Page 4
Draft prETS 300 ???: Month YYYY

Error! No text of specified style in document.
104
Error! No text of specified style in document.

	3GPP TSG-T3 Java Card API Testing ad hoc #90

Madrid, Spain, 24-26 March, 2003
	Tdoc T3z030424

	CR-Form-v3

	CHANGE REQUEST

	

	(

	51.013
	CR
	
	(

rev
	-
	(

Current version:
	1.0.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	X
	ME/UE
	
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	Update of 51.013 Specification for Release 5

	
	

	Source:
(

	3GPP adhoc Java API Testing

	
	

	Work item code:
(

	TEI
	
	Date: (

	20/03/03

	
	
	
	
	

	Category:
(

	D
	
	Release: (

	R4

	
	Use one of the following categories:
F (essential correction)
A (corresponds to a correction in an earlier release)
B (Addition of feature),
C (Functional modification of feature)
D (Editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	Rel 5 Creation.

	
	

	Summary of change:
(

	·

	
	

	Consequences if
(

not approved:
	No release 5 available.

	
	

	Clauses affected:
(

	

	
	

	Other specs
(

	
	 Other core specifications
(

	

	Affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://www.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2000-09 contains the specifications resulting from the September 2000 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
(void)

[2]
(void)

[3]
3GPP TS 51.011: " Specification of the Subscriber Identity Module - Mobile Equipment (SIM - ME) interface".

[4]
3GPP TS 11.14: "
Specification of the SIM application toolkit for the Subscriber Identity Module – Mobile Equipment (SIM – ME) interface".

[5]
GSM 11.17: "Subscriber Identity Module" (SIM) conformance test specification".

[6]
(void)

[7]
3GPP TS 43.019 Rel-5: " Subscriber Identity Module Application Programming Interface (SIM API) for Java Card™; Stage 2".

[8]
3GPP TS 23.048 Rel-5: " Security Mechanisms for the (U)SIM application toolkit; Stage 2"

 [9]
ISO/IEC 7816-3 (1997) " Identification cards ‑ Integrated circuit(s) cards with contacts, Part 3: Electronic signals and transmission protocols".

[10]
3GPP TS 42.019: " Subscriber Identity Module Application Programming Interface (SIM API); Service description; Stage 1".

[11]
SUN Java Card Specification "Java Card 2.1 API Specification".

[12]
SUN Java Card Specification "Java Card 2.1 Runtime Environment Specification".

[13]
SUN Java Card Specification "Java Card 2.1 VM Architecture Specification".

SUN Java Card Specifications can be downloaded at http://java.sun.com/products/javacard
[14]
ETSI TS 101 220 "Integrated Circuit Cards (ICC); ETSI numbering system for telecommunication; Application providers (AID)".

[15]
GSM 11.10-1: "Digital cellular telecommunication system (Phase 2+); Mobile Station (MS) conformance specification; Part 1: Conformance specification".

4.1
Applicability

The tests defined in this specification shall be performed taking into account the services supported by the card as specified in the EFSST file.

The tests defined in this specification are applicable to cards implementing 3GPP TS 43.019 [7] unless otherwise stated.

The tests defined in this specification require that the card support the concatenation process with 2 concatenated SMS. Therefore the envelope handler shall support 280 bytes of data.

4.6.2
Specific Test Applet Name for Framework
Specific applet test name (bits b4-b24):

	b4
	b5
	b6
	b7
	b8
	b9
	b10
	b11
	b12
	b13
	b14
	b15
	b16
	b17
	b18
	b19
	b20
	b21
	b22
	b23
	b24

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	RFU (set to 0)

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Applet instance Number

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Applet Class Number

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Test Area within the chapter

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Chapter

for Chapter (5 bits)

00001 Toolkit Installation Parameters

00010 Minimum Handler Availability

00011 Handler Integrity

00100 Applet Triggering

00101 Proactive Command Sending

00110 Framework Security

00111 Envelope Response Posting

01000 File System Context

01001 Exception Handling

01010 Other parts transferred to framework from API

01011 Concatenation processing

other are RFU

Test Area within the chapter (6 bits): values are defined in Annex F

Applet Class number (5 bits): linked to Test Area, it shall start with 1 for classes and shall be 0 for package.

Applet Instance number (3 bits) defined in the test procedure it shall start with 01 for applet instance and shall be 00 for package and class.

6.2.2
Interface ToolkitInterface

6.2.2.1.1
Conformance Requirement:

The method with following prototype shall be compliant to its definition in the API.

public void processToolkit(byte event)

throws
ToolkitException
Normal execution

CRRN1: This interface must be implemented by a Toolkit applet (which extends the javacard.framework.Applet class) so that it can be triggered by the Toolkit Handler according to the registration information.

CRRN2: The Toolkit applet will have to implement the processToolkit shared method so that the following events can be notified:

	Event
	Description

	 EVENT_PROFILE_DOWNLOAD
	Terminal Profile command reception

	 EVENT_FORMATTED_SMS_PP_ENV
	Formatted envelope SMS-PP Data Download reception

	 EVENT_FORMATTED_SMS_PP_UPD
	Formatted Update Record EF SMS

	 EVENT_FORMATTED_SMS_CB
	Formatted envelope Cell Broadcast Data Download command reception

	 EVENT_UNFORMATTED_SMS_PP_ENV
	Unformatted Envelope SMS-PP Data Download reception

	 EVENT_UNFORMATTED_SMS_PP_UPD
	Unformatted Update Record EF SMS

	 EVENT_UNFORMATTED_SMS_CB
	Unformatted Cell Broadcast Data Download command reception

	 EVENT_MENU_SELECTION
	Envelope Menu Selection command reception

	 EVENT_MENU_SELECTION_HELP_REQUEST
	Envelope Menu Selection Help Request command reception

	 EVENT_CALL_CONTROL_BY_SIM
	Envelope Call Control by SIM command reception

	 EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM
	Envelope MO Short Message Control by SIM command reception

	 EVENT_TIMER_EXPIRATION
	Envelope Timer Expiration

	 EVENT_EVENT_DOWNLOAD_MT_CALL
	Envelope Event Download - MT call

	 EVENT_EVENT_DOWNLOAD_CALL_CONNECTED
	Envelope Event Download - Call connected

	 EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED
	Event Download - Call disconnected

	 EVENT_EVENT_DOWNLOAD_LOCATION_STATUS
	Envelope Event Download - Location status

	 EVENT_EVENT_DOWNLOAD_USER_ACTIVITY
	Envelope Event Download - User activity

	 EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE
	Envelope Event Download - Idle screen available

	 EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS
	Envelope Event Download - Card Reader Status

	 EVENT_EVENT_DOWNLOAD_LANGUAGE_SELECTION
	Envelope Event Download – Language Selection

	 EVENT_EVENT_DOWNLOAD_BROWSER_TERMINATION
	Envelope Event Download – Browser Termination

	EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE
	Envelope Event Download - Data Available

	EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS
	Envelope Event Download - Channel Status

	EVENT_FIRST_COMMAND_AFTER_SELECT
	First command performed after select GSM application or ATR

	 EVENT_STATUS_COMMAND
	Status APDU command event

	 EVENT_UNRECOGNIZED_ENVELOPE
	Unrecognized Envelope command reception

6.2.4
Class EnvelopeHandler
6.2.4.3
Method getSecuredDataLength

Test Area Reference: API_2_ENH_GSDL

6.2.4.3.1
Conformance Requirement:

The method with following header shall be compliant to its definition in the API.

public short getSecuredDataLength()

 throws ToolkitException

Normal execution

CRRN1: The method shall return the length of the Secured Data from the Command Packet in the SMS TPDU (simple or concatenated) or Cell Broadcast Page Simple TLV contained in the Envelope handler
CRRN2: The length is from the first SMS TPDU TLV or Cell Broadcast Page Simple TLV.

CRRN3: The length should not include padding bytes.

CRRN4: The method can be used if the event is EVENT_FORMATTED_SMS_PP_ENV and if the SMS TP-UD is formatted according to [8].
CRRN5: The method can be used if the event is EVENT_FORMATTED_SMS_PP_UPD and if the SMS TP-UD is formatted according to [8].
CRRN6: The method can be used if the event is EVENT_FORMATTED_SMS_CB and if the Cell Broadcast Page is formatted according to [8].

CRRN7: If the method is successful and if the event is EVENT_FORMATTED_SMS_PP_ENV, the selected TLV should be the SMS TPDU TLV.

CRRN8: If the method is successful and if the event is EVENT_FORMATTED_SMS_PP_UPD, the selected TLV should be the SMS TPDU TLV.

CRRN9: If the method is successful and if the event is EVENT_FORMATTED_SMS_CB, the selected TLV should be the Cell Broadcast Page TLV.

Context errors

CRRC1: The method shall thrown ToolkitException (UNAVAILABLE_ELEMENT) in case of unavailable SMS TPDU TLV element or Cell Broadcast Page Simple TLV
CRRC2: The method shall thrown ToolkitException (UNAVAILABLE_ELEMENT) in case of wrong data format.
6.2.4.3.2
Test suite files

Specific triggering:

-
FORMATTED SMS CB

-
UNFORMATTED SMS CB

-
FORMATTED SMS PP UPD

-
UNFORMATED SMS PP ENV

· For Formatted triggering if CC/RC/DS is used, the security parameters are the one used for downloading applications.

Test Script:

API_2_ENH_GSDL_1.scr

Test Applet:

API_2_ENH_GSDL_1.java

Load Script:

API_2_ENH_GSDL_1.ldr

Cleanup Script:

API_2_ENH_GSDL_1.clr

Parameter File:

API_2_ENH_GSDL_1.par
6.2.4.3.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	
	FORMATTED SMS PP ENV Triggering
	
	

	
	
	

	

	1
	Test with FORMATTED_SMS_PP_ENV and TP-OA length of 2
	Returns 0x002A

	

	
	
	
	

	2
	Test with TP-OA length of 6
	Returns 0x002A
	

	
	
	
	

	3
	Test with TP-OA length of 12
	Returns 0x002A
	

	
	
	
	

	4
	Test with RC/CC/DS length of 0
	Returns 0x0010
	

	
	
	
	

	5
	Test with RC/CC/DS length of 8
	Returns 0x0010
	

	
	
	
	

	6
	Test with PCNTR = 0
	Returns 0x0010
	

	
	
	
	

	7
	Test with PCNTR = 7
	Returns 0x0005
	

	
	
	
	

	8
	Test with Secured Data Length = 00
	Returns 0x0000
	

	
	
	
	

	9
	Test with Secured Data Length = 0x33
	Returns 0x0033
	

	
	
	
	

	10
	Test with Secured Data Length = 0x6C (UDL = 0x7F)
	Returns 0x006C
	

	
	
	
	

	11
	Test with Secured Data Length = 0x6D (UDL = 0x80)
	Returns 0x006D
	

	
	
	
	

	12
	Test with Secured Data Length = maximum length for one envelope : 0x79 (UDL = 0x8C)
	Returns 0x0079
	

	
	

	
	

	
	
	
	

	13
	Verify it is the first TPDU TLV:

Send a SMS PP with 2 TPDU TLV and inside two different secured data lengths: 5 and 10
	Returns 0x0005
	

	14
	Test with secured data length = 0x7F (2 concatenated envelopes are needed)
	Returns 0x007F
	

	15
	Test with secured data length = 0x80 (2 concatenated envelopes are needed)
	Returns 0x0080
	

	16
	Test with secured data length = maximum length for 2 concatenated envelopes : 0xFA
	Returns 0x00FA
	

	17
	Test with FORMATTED_SMS_PP_ENV

Verify after call of the method the current TLV is the TPDU TLV:

findTLV device identities, getSecuredDataLength and then getValueByte to verify that the current TLV is the TPDU TLV
	getValueByte returns 0x0040
	

	
	FORMATTED SMS PP UPD Triggering
	
	

	
	
	
	

	18
	Same test as 1 but with FORMATTED_SMS_PP_UPD
	Returns 0x002A
	

	
	
	
	

	19
	Same test as 2 but with FORMATTED_SMS_PP_UPD
	Returns 0x002A
	

	
	
	
	

	20
	Same test as 3 but with FORMATTED_SMS_PP_UPD
	Returns 0x002A
	

	
	
	
	

	21
	Same test as 4 but with FORMATTED_SMS_PP_UPD
	Returns 0x0010
	

	
	
	
	

	22
	Same test as 5 but with FORMATTED_SMS_PP_UPD
	Returns 0x0010
	

	
	
	
	

	23
	Same test as 6 but with FORMATTED_SMS_PP_UPD
	Returns 0x0010
	

	
	
	
	

	24
	Same test as 7 but with FORMATTED_SMS_PP_UPD
	Returns 0x0005
	

	
	
	
	

	25
	Same test as 8 but with FORMATTED_SMS_PP_UPD
	Returns 0x0000
	

	
	
	
	

	26
	Same test as 9 but with FORMATTED_SMS_PP_UPD
	Returns 0x0033
	

	
	
	
	

	27
	Same test as 10 but with FORMATTED_SMS_PP_UPD
	Returns 0x006C
	

	
	
	
	

	28
	Same test as 11 but with FORMATTED_SMS_PP_UPD
	Returns 0x006D
	

	
	
	
	

	29
	Same test as 12 but with FORMATTED_SMS_PP_UPD
	Returns 0x0079
	

	
	
	
	

	30
	Same test as 13 but with FORMATTED_SMS_PP_UPD
	Returns 0x0005
	

	31
	Test with secured data length = 0x7F (2 concatenated envelopes are needed)
	Returns 0x007F
	

	32
	Test with secured data length = 0x80 (2 concatenated envelopes are needed)
	Returns 0x0080
	

	33
	Test with secured data length = maximum length for 2 concatenated envelopes : 0xFA
	Returns 0x00FA
	

	34
	Test with FORMATTED_SMS_PP_UPD

Verify after call of the method the current TLV is the TPDU TLV:

findTLV device identities, getSecuredDataLength and then getValueByte to verify that the current TLV is the TPDU TLV
	getValueByte returns 0x0040
	

	
	FORMATTED SMS CB Triggering
	
	

	
	
	
	

	35
	Same test as 4 but with FORMATTED_SMS_CB
	Returns 0x0010
	

	
	
	
	

	36
	Same test as 5 but with FORMATTED_SMS_CB
	Returns 0x0010
	

	
	
	
	

	37
	Same test as 6 but with FORMATTED_SMS_CB
	Returns 0x0010
	

	
	
	
	

	38
	Same test as 7 but with FORMATTED_SMS_CB
	Returns 0x0005
	

	
	
	
	

	39
	Same test as 8 but with FORMATTED_SMS_CB
	Returns 0x0000
	

	
	
	
	

	40
	Same test as 9 but with FORMATTED_SMS_CB
	Returns 0x0033
	

	
	

	
	

	
	

	
	

	41
	Same test as 12 but with maximum secured data length: 0x42, and FORMATTED_SMS_CB
	Returns 0x0042
	

	
	
	
	

	42
	Test with FORMATTED_SMS_CB

Verify after call of the method the current TLV is the Cell Broadcast Page TLV:

findTLV device identities, getSecuredDataLength and then getValueByte to verify that the current TLV is the Cell Broadcast Page TLV
	getValueByte returns 0x00
	

	
	Error tests
	
	

	43
	Send an envelope SMS CB, getSecuredDataLength
	ToolkitException UNAVAILABLE_ELEMENT
	

	
	
	
	

	44
	Send an envelope SMS PP unformatted
	ToolkitException UNAVAILABLE_ELEMENT
	

6.2.4.3.4
Test Coverage

	CRR number
	Test case number

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	N1
	1 to 42.

	N2
	13, 30.

	N3
	6, 7, 23, 24, 37, 38.

	N4
	1 to 17.

	N5
	18 to 34.

	N6
	35 to 42.

	N7
	17

	N8
	34

	N9
	42

	C1
	43

	C2
	44

6.2.4.4
Method getSecuredDataOffset

Test Area Reference: API_2_ENH_GSDO

6.2.4.4.1
Conformance Requirement:

The method with following header shall be compliant to its definition in the API.

public short getSecuredDataOffset()

 throws ToolkitException

Normal execution

CRRN1: The method shall return the offset of the secured data first byte contained in a SMS TPDU TLV.

CRRN2: The offset is from the first SMS TPDU TLV.

CRRN3: The method can be used if the event is EVENT_FORMATTED_SMS_PP_ENV and if the SMS TP-UD is formatted according to [8].
CRRN4: The method can be used if the event is EVENT_FORMATTED_SMS_PP_UPD and if the SMS TP-UD is formatted according to [8].
CRRN5: The method can be used if the event is EVENT_FORMATTED_SMS_CB and if the Cell Broadcast Page is formatted according to [8].

CRRN6: If the method is successful and if the event is EVENT_FORMATTED_SMS_PP_ENV, the selected TLV should be the SMS TPDU TLV.

CRRN7: If the method is successful and if the event is EVENT_FORMATTED_SMS_PP_UPD, the selected TLV should be the SMS TPDU TLV.

CRRN8: If the method is successful and if the event is EVENT_FORMATTED_SMS_CB, the selected TLV should be the Cell Broadcast Page TLV.

CRNN9: If the Secured Data length is zero the value returned shall be the offset of the first byte following the [8] Command Packet structure.
Context errors

CRRC1: The method shall thrown ToolkitException (UNAVAILABLE_ELEMENT) in case of unavailable SMS TPDU TLV element.

CRRC2: The method shall thrown ToolkitException (UNAVAILABLE_ELEMENT) in case of wrong data format
6.2.4.4.2
Test suite files

Specific triggering:

-
FORMATTED SMS CB

-
UNFORMATTED SMS CB

-
FORMATTED SMS PP UPD

-
UNFORMATED SMS PP ENV

-
For Formatted triggering if CC/RC/DS is used, the security parameters are the one used for downloading applications.

Test Script:

API_2_ENH_GSDO_1.scr

Test Applet:

API_2_ENH_GSDO_1.java

Load Script:

API_2_ENH_GSDO_1.ldr

Cleanup Script:

API_2_ENH_GSDO_1.clr

Parameter File:

API_2_ENH_GSDO_1.par

6.2.4.4.3
Test Procedure

	Id
	Description
	API Expectation
	APDU Expectation

	
	FORMATTED SMS PP ENV triggering
	
	

	
	
	
	

	1
	Test with TP-OA length of 2 and RC/CC/DS length is 0
	Returns 0x21
	

	
	
	
	

	2
	Test with TP-OA length of 6 and RC/CC/DS length is 0
	Returns 0x23
	

	
	
	
	

	3
	Test with TP-OA length of 12 and RC/CC/DS length is 0
	Returns 0x26
	

	
	
	
	

	4
	Test with RC/CC/DS length of 0 and TP-OA length is 2
	Returns 0x21
	

	
	
	
	

	5
	Test with RC/CC/DS length of 8 and TP-OA length is 2
	Returns 0x29
	

	6
	Send a SMS PP with 2 TPDU TLV and inside two different secured data offsets
	Returns 0x24 (the first offset)
	

	
	
	
	

	7
	Same test as 1 but without any secured data
	Returns 0x21
	

	
	
	
	

	8
	Test with FORMATTED_SMS_PP ENV

Verify after call of the method the current TLV is the TPDU TLV:

findTLV device identities, getSecuredDataOffset and then getValueByte to verify that the current TLV is the TPDU TLV
	Returns 0x40
	

	
	
	
	

	9
	Same test as 1, but with a concatenated SMS (2 Short Messages and maximum Secured Data Length = 0x00FA)
	Returns 0x21
	

	
	FORMATTED SMS PP UPR triggering
	
	

	
	
	
	

	10
	Same test as 1 but with FORMATTED_SMS_PP_UPD
	Returns 0x21
	

	
	
	
	

	11
	Same test as 2 but with FORMATTED_SMS_PP_UPD
	Returns 0x23
	

	
	
	
	

	12
	Same test as 3 but with FORMATTED_SMS_PP_UPD
	Returns 0x26
	

	13
	Same test as 4 but with FORMATTED_SMS_PP_UPD
	Returns 0x21
	

	14
	Same test as 5 but with FORMATTED_SMS_PP_UPD
	Returns 0x29
	

	15
	Same test as 6 but with FORMATTED_SMS_PP_UPD
	Returns 0x24 (the first offset)
	

	
	

	
	

	16
	Same test as 7 but with FORMATTED_SMS_PP_UPD
	Returns 0x21
	

	17
	Test with FORMATTED_SMS_PP UPD

Verify after call of the method the current TLV is the TPDU TLV:

findTLV device identities, getSecuredDataOffset and then getValueByte to verify that the current TLV is the TPDU TLV
	Returns 0x40
	

	
	
	
	

	18
	Same test as 10, but with a concatenated SMS (2 Short Messages and maximum Secured Data Length = 0x00FA)
	Returns 0x21
	

	
	FORMATTED SMS CB triggering
	
	

	19
	Same test as 4 but with FORMATTED_SMS_CB
	Returns 0x16
	

	
	
	
	

	20
	Same test as 5 but with FORMATTED_SMS_CB
	Returns 0x1E
	

	
	

	
	

	21
	Same test as 7 but with FORMATTED_SMS_CB
	Returns 0x16
	

	
	
	
	

	22
	Test with FORMATTED_SMS_CB

Verify after call of the method the current TLV is the Cell Broadcast Page TLV:

findTLV device identities, getSecuredDataOffset and then getValueByte to verify that the current TLV is the Cell Broadcast Page TLV
	Returns 0x00
	

	
	UNFORMATTED Triggering
	
	

	23
	Send an UNFORMATTED SMS CB envelope, getSecuredDataOffset
	ToolkitException UNAVAILABLE_ELEMENT
	

	
	
	
	

	24
	Send an UNFORMATTED SMS PP envelope, getSecuredDataOffset
	ToolkitException UNAVAILABLE_ELEMENT
	

	
	
	
	

6.2.4.4.4
Test Coverage

	CRR number
	Test case number

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	N1
	1 to 22.

	N2
	6, 15.

	N3
	1 to 9.

	N4
	10 to 18.

	N5
	19, 20, 21, 22

	N6
	8

	N7
	17

	N8
	22

	N9
	7, 16, 21.

	C1
	23

	C2
	24

6.2.4.6
Method getTPUDLOffset

Test Area Reference: API_2_ENH_GTPO

6.2.4.6.1
Conformance Requirement:

The method with following header shall be compliant to its definition in the API.

public short getTPUDLOffset()

 throws ToolkitException

Normal execution

CRRN1: The method shall return the TPUDL offset in a SMS TPDU TLV.

CRRN2: The offset is from the first SMS TPDU TLV.

CRRN3: The method can be used if the event is EVENT_FORMATTED_SMS_PP_ENV.

CRRN4: The method can be used if the event is EVENT_FORMATTED_SMS_PP_UPD.

CRRN5: The method can be used if the event is EVENT_UNFORMATTED_SMS_PP_ENV.

CRRN6: The method can be used if the event is EVENT_UNFORMATTED_SMS_PP_UPD.

CRRN7: If the method is successful, the selected TLV should be the SMS TPDU TLV.

Context errors

CRRC1: The method shall thrown ToolkitException (UNAVAILABLE_ELEMENT) in case of unavailable SMS TPDU TLV element.

CRRC2: The method shall thrown ToolkitException (UNAVAILABLE_ELEMENT) if the TPUDL field does not exist.

6.2.4.6.2
Test suite files

Specific triggering:

-
FORMATTED SMS PP UPD

-
UNFORMATTED SMS PP UPD

-
UNFORMATTED SMS PP ENV

-
SMS CB

Test Script:

API_2_ENH_GTPO_1.scr

Test Applet:

API_2_ENH_GTPO_1.java

Load Script:

API_2_ENH_GTPO_1.ldr

Cleanup Script:

API_2_ENH_GTPO_1.clr

Parameter file:

API_2_ENH_GTPO_1.par

6.2.4.6.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	
	FORMATTED SMS PP ENV triggering
	
	

	1
	Test with TP-OA length of 2
	Returns 0x0D
	

	2
	Test with TP-OA length of 6
	Returns 0x0F
	

	3
	Test with TP-OA length of 12
	Returns 0x12
	

	
	
	
	

	4
	Send a SMS PP with 2 TPDU TLV and inside two different UDL offsets
	Returns 0x10 (the first offset)
	

	
	
	
	

	5
	Same test as 1, but with a concatenated SMS (2 Short Messages and maximum Secured Data Length = 0x00FA)
	Returns 0x0D
	

	
	
	
	

	6
	Verify after call of the method the current TLV is the TPDU TLV:

findTLV device identities, getTPUDLOffset and then getValueByte to verify that the current TLV is the TPDU TLV
	Returns 0x40
	

	
	FORMATTED SMS PP UPR triggering
	
	

	
	
	
	

	7
	Same test as 1 but with FORMATTED_SMS_PP_UPD
	Returns 0x0D
	

	
	
	
	

	8
	Same test as 2 but with FORMATTED_SMS_PP_UPD
	Returns 0x0F
	

	9
	Same test as 3 but with FORMATTED_SMS_PP_UPD
	Returns 0x12
	

	
	
	
	

	
	
	
	

	10
	Same test as 4 but with FORMATTED_SMS_PP_UPD
	Returns 0x10 (the first offset)
	

	
	
	
	

	11
	Same test as 7, but with a concatenated SMS (2 Short Messages and maximum Secured Data Length = 0x00FA)
	Returns 0x0D
	

	
	UNFORMATTED SMS PP UPR triggering
	
	

	
	
	
	

	12
	Same test as 1 but with UNFORMATTED_SMS_PP_UPD
	Returns 0x0D
	

	
	
	
	

	13
	Same test as 2 but with UNFORMATTED_SMS_PP_UPD
	Returns 0x0F
	

	
	
	
	

	14
	Same test as 3 but with UNFORMATTED_SMS_PP_UPD
	Returns 0x12
	

	
	
	
	

	15
	Same test as 4 but with UNFORMATTED_SMS_PP_UPD
	Returns 0x12 (the first offset)
	

	
	
	
	

	16
	Same test as 12, but with a concatenated SMS (2 Short Messages and maximum User Data Length = 0x010C)
	Returns 0x0D
	

	
	UNFORMATTED SMS PP ENV triggering
	
	

	17
	Same test as 1 but with UNFORMATTED_SMS_PP_ENV
	Returns 0x0D
	

	18
	Same test as 2 but with UNFORMATTED_SMS_PP_ENV
	Returns 0x0F
	

	19
	Same test as 3 but with UNFORMATTED_SMS_PP_ENV
	Returns 0x12
	

	
	

	
	

	
	
	
	

	20
	Same test as 4 but with UNFORMATTED_SMS_PP_ENV
	Returns 0x10 (the first offset)
	

	21
	Same test as 17, but with a concatenated SMS (2 Short Messages and maximum User Data Length = 0x010C)
	Returns 0x0D
	

	
	SMS CB triggering
	
	

	22
	Send an envelope SMS CB, getTPUDLOffset
	ToolkitException UNAVAILABLE_ELEMENT
	

6.2.4.6.4
Test Coverage

	CRR number
	Test case number

	
	

	
	

	N1
	1 to 21.

	N2
	4, 10, 15, 20.

	
	

	
	

	
	

	N3
	1, 2, 3, 4, 5, 6

	N4
	7, 8, 9, 10, 11,

	N5
	12, 13, 14, 15, 16

	
	

	
	

	
	

	N6
	 17, 18, 19, 20, 21

	N7
	6

	C1
	22

	C2
	Not applicable

6.2.4.7
Method getLength

Test Area Reference: API_2_ENH_GLEN

6.2.4.7.1
Conformance Requirement

The method with following header shall be compliant to its definition in the API.

public short getLength()

throws ToolkitException

Normal execution

CRRN1: returns the length in bytes of the TLV list.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException.HANDLER_NOT_AVAILABLE.

6.2.4.7.2
Test Suite files

Specific triggering: None

Test Script:

API_2_ENH_GLEN_1.scr

Test Applet:

API_2_ENH_GLEN_1.java

Load Script:

API_2_ENH_GLEN_1.ldr

Cleanup Script:

API_2_ENH_GLEN_1.clr

Parameter File:

API_2_ENH_GLEN_1.par

6.2.4.7.3
Test Procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	Send an envelope SMS PP with BER length of 0x31
	Result of getLength() is 0x0031
	

	2
	Send an envelope SMS PP with BER length of 0x7F
	Result of getLength() is 0x007Fh
	

	3
	Send an envelope SMS PP with BER length of 81 80
	Result of getLength() is 0x0080h
	

	
	
	
	

	4
	Send an envelope SMS PP with BER length of 81 FC (maximum length for a single SMS)
	Result of getLength() is 0x00FCh
	

	5
	Send formatted SMS with BER length of 0x00FF, using 2 concatenated SMS
	Result of getLength() is 0x00FFh
	

	6
	Send formatted SMS with BER length of 0x0100, using 2 concatenated SMS
	Result of getLength() is 0x0100h
	

	7
	Send formatted SMS with maximum user data length (0x10D) (BER length:0x012F), using 2 concatenated SMS
	Result of getLength() is 0x012Fh
	

6.2.4.7.4
Test Coverage

	CRR number
	Test case number

	
	

	N1
	1, 2, 3, 4, 5, 6, 7

	C1
	Does not apply for EnvelopeHandler

6.2.4.8
Method copy

Test Area Reference: API_2_ENH_COPY_BSS

6.2.4.8.1
Conformance Requirement

The method with following header shall be compliant to its definition in the API.

public short copy(byte[] dstBuffer,

short dstOffset,

short dstLength)

 throws java.lang.NullPointerException,

 java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException

Normal execution

CRRN1: copies the simple TLV list contained in the handler to the destination byte array.

CRRN2: returns dstOffset + dstLength.

Parameter errors

CRRP1: if dstBuffer is null a NullPointerException is thrown.

CRRP2: if dstOffset or dstLength or both would cause access outside array bounds, or if dstLength is negative, an ArrayIndexOutOfBoundsException is thrown.

CRRP3: if dstLength is greater than the length of the simple TLV List, an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException OUT_OF_TLV_BOUNDARIES.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

6.2.4.8.2
Test Suite files

Specific triggering: None

Test Script:

API_2_ENH_COPY_BSS_1.scr

Test Applet:

API_2_ENH_COPY_BSS_1.java

Load Script:

API_2_ENH_COPY_BSS_1.ldr

Cleanup Script:

API_2_ENH_ COPY_BSS_1.clr
Parameter File:

API_2_ENH_ COPY_BSS_1.par
6.2.4.8.3
Test Procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	NULL as parameter to dstBuffer

	NullPointerException is thrown
	

	2
	dstOffset (dstBuffer.length

dstBuffer.length = 5

dstOffset = 5

dstLength = 1
	ArrayIndexOutOfBoundsException is thrown
	

	3
	dstOffset < 0

dstBuffer.length = 5

dstOffset = -1

dstLength = 1
	ArrayIndexOutOfBoundsException is thrown
	

	4
	dstLength > dstBuffer.length

dstBuffer.length = 5

dstOffset = 0

dstLength = 6
	ArrayIndexOutOfBoundsException is thrown
	

	5
	DstOffset + dstLength > dstBuffer.length

DstBuffer.length = 5

DstOffset = 3

DstLength = 3
	ArrayIndexOutOfBoundsException is thrown
	

	6
	dstLength < 0

dstBuffer.length = 5

dstOffset = 0

dstLength = -1
	ArrayIndexOutOfBoundsException is thrown
	

	7
	DstLength > length of the simple TLV list

DstBuffer.length = 48

DstOffset = 0

DstLength = 48
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	8
	Successful call, dstBuffer is the whole buffer

DstBuffer.length = 47

DstOffset = 0

DstLength = 47
	Result of copy() is 0X0047
	

	9
	Compare the buffer
	Result of arrayCompare() is 0
	

	10
	Successful call, dstBuffer is part of a buffer

DstBuffer.length = 50

dstOffset = 3

dstLength = 47
	Result of copy() is 0X0032
	

	11
	Compare the whole buffer
	Result of arrayCompare() is 0
	

	12
	Successful call, dstBuffer is part of a buffer

dstBuffer.length = 15

dstOffset = 3

dstLength = 6
	Result of copy() is 0X0009
	

	13
	Compare the whole buffer
	Result of arrayCompare() is 0
	

	14
	Successful call, dstBuffer is part of a buffer

dstBuffer.length = 260

dstOffset = 257

dstLength = 3
	Result of copy() is 0X0104
	

	15
	Compare the whole buffer
	Result of arrayCompare() is 0
	

	16
	Successful call, copy with length =0

dstBuffer.length = 260

dstOffset = 260

dstLength = 0
	Result of copy() is 0x104
	

	
	Send Unformatted SMS PP with the maximum user data length = 0x010C, using 2 concatenated envelopes
	
	

	17
	Successful call, copy with length =300

dstBuffer.length = 300

dstOffset = 0

dstLength = 300
	Result of copy() is 0x12C
	

6.2.4.8.4
Test Coverage

	CRR number
	Test case number

	N1
	9, 11, 13, 15

	
	

	N2
	8, 10, 12, 14, 16, 17

	P1
	1

	P2
	2, 3, 4, 5, 6

	P3
	7

	C1
	Does not apply for EnvelopeHandler

6.2.4.10
Method getValueLength

Test Area Reference: API_2_ENH_GVLE

6.2.4.10.1
Conformance Requirement

The method with following header shall be compliant to its definition in the API.

public short getValueLength()

throws ToolkitException

Normal execution

CRRN1: gets and returns the binary length of the value field for the last TLV element which has been found in the handler.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

CRRC2: in case of unavailable TLV element an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException UNAVAILABLE_ELEMENT.

6.2.4.10.2
Test Suite files

Specific triggering: None

Test Script:

API_2_ENH_GVLE_1.scr

Test Applet:

API_2_ENH_GVLE_1.java

Load Script:

API_2_ENH_GVLE_1.ldr

Cleanup Script:

API_2_ENH_GVLE_1.clr

Parameter File:

API_2_ENH_GVLE_1.par

6.2.4.10.3
Test Procedure

	Id
	Description
	API Expectation
	APDU Expectation

	
	Fill the SMS PP with TLV: Tag 33, Length C8
	
	

	1
	getValueLength()

	ToolkitException.UNAVAILABLE_ELEMENT is thrown
	

	2
	Search TLV 02h
	
	

	
	getValueLength()
	Result is 0X0002
	

	3
	Search TLV 0Bh
	
	

	
	getValueLength()
	Result is 0X0024
	

	4
	Search TLV 33h
	
	

	
	getValueLength()
	Result is 0X00C8
	

	
	Send Formatted SMS PP with the maximum user data length = 0x010D, using 2 concatenated envelopes
	
	

	5
	Search SMS TPDU TAG
	
	

	
	getValueLength()
	Result is 0X0120
	

6.2.4.10.4
Test Coverage

	CRR number
	Test case number

	
	

	N1
	2, 3, 4, 5

	C1
	Does not apply for EnvelopeHandler

	C2
	1

6.2.4.11
Method getValueByte

Test Area Reference: API_2_ENH_GVBYS

6.2.4.11.1
Conformance Requirement

The method with following header shall be compliant to its definition in the API.

public byte getValueByte(short valueOffset)

throws ToolkitException

Normal execution

CRRN1: Gets a byte from the last TLV element which has been found in the handler and returns its value (1 byte).

Parameter errors

CRRP1: if valueOffset is out of the current TLV an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException OUT_OF_TLV_BOUNDARIES.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

CRRC2: in case of unavailable TLV element an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException UNAVAILABLE_ELEMENT.

6.2.4.11.2
Test Suite files

Specific triggering: None

Test Script:

API_2_ENH_GVBYS_1.scr

Test Applet:

API_2_ENH_GVBYS_1.java

Load Script:

API_2_ENH_GVBYS_1.ldr
Cleanup Script:

API_2_ENH_GVBYS_1.clr

Parameter File:

API_2_ENH_GVBYS_1.par

6.2.4.11.3
Test Procedure

	Id
	Description
	API Expectation
	APDU Expectation

	
	Fill the SMS PP with TLV: Tag 33, Length C8 Value 01 02 …
	
	

	1
	getValueByte(0)
	ToolkitException.UNAVAILABLE_ELEMENT is thrown
	

	2
	Search TLV 02h
	
	

	
	getValueByte(2)
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	3
	Search TLV 02h
	
	

	
	getValueByte(1)
	Result is 0x81
	

	4
	Search TLV 02h (Device Identities TLV)
	
	

	
	getValueByte(0)
	Result is 83h (Source)
	

	5
	Search TLV 33h
	
	

	
	getValueByte(7E)
	Result is 0x7F
	

	6
	Search TLV 33h
	
	

	
	getValueByte(80)
	Result is 0x81
	

	7
	getValueByte(7F)
	Result is 0x80
	

	8
	Search TLV B3h
	
	

	
	getValueByte(C7)
	Result is 0xC8
	

	
	Send Formatted SMS PP with the maximum user data length = 0x010D, using 2 concatenated envelopes
	
	

	9
	Search SMS TPDU TAG
	
	

	
	getValueByte(0x011F)
	Result is 0xFA
	

6.2.4.11.4
Test Coverage

	CRR number
	Test case number

	
	

	N1
	3, 4, 5, 6, 7, 8, 9

	P1
	2

	C1
	Does not apply for EnvelopeHandler

	C2
	1

6.2.4.12
Method copyValue

Test Area Reference: API_2_ENH_CPYVS_BSS

6.2.4.12.1
Conformance Requirement

The method with following header shall be compliant with its definition in the API.

public short copyValue(short valueOffset,

byte[] dstBuffer,

short dstOffset,

short dstLength)

throws java.lang.NullPointerException,

java.lang.ArrayIndexOutOfBoundsException,

ToolkitException

Normal execution

CRRN1: copies a part of the last TLV element which has been found, into a destination. buffer.

CRRN2: returns dstOffset + dstLength.

Parameter errors

CRRP1: if dstBuffer is null NullPointerException is thrown.

CRRP2: if dstOffset or dstLength or both would cause access outside array bounds, or if dstLength is negative ArrayIndexOutOfBoundsException is thrown.

CRRP3: if valueOffset, dstLength or both are out of the current TLV an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException OUT_OF_TLV_BOUNDARIES.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

CRRC2: in case of unavailable TLV element an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException UNAVAILABLE_ELEMENT.

6.2.4.12.3
Test Suite files

Specific triggering: None

Test Script:

API_2_ENH_CPYVS_BSS_1.scr

Test Applet:

API_2_ENH_CPYVS_BSS_1.java

Load Script:

API_2_ENH_CPYVS_BSS_1.ldr

Cleanup Script:

API_2_ENH_CPYVS_BSS_1.clr

Parameter File:

API_2_ENH_CPYVS_BSS_1.par

6.2.4.12.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	Search TLV 02h
	
	

	
	copyValue() with a null dstBuffer
	NullPointerException is thrown
	

	2
	Search TLV 0Bh
	
	

	
	dstOffset (dstBuffer.length

dstBuffer.length = 5

dstOffset = 5

dstLength = 1
	ArrayIndexOutOfBoundsException is thrown
	

	3
	dstOffset < 0

dstBuffer.length = 5

dstOffset = -1

dstLength = 1
	ArrayIndexOutOfBoundsException is thrown
	

	4
	dstLength >dstBuffer.length

dstBuffer.length = 5

dstOffset = 0

dstLength = 6
	ArrayIndexOutOfBoundsException is thrown
	

	5
	dstOffset + dstLength >dstBuffer.length

dstBuffer.length = 5

dstOffset = 3

dstLength = 3
	ArrayIndexOutOfBoundsException is thrown
	

	6
	dstLength < 0

dstBuffer.length = 5

dstOffset = 0

dstLength = -1
	ArrayIndexOutOfBoundsException is thrown
	

	7
	Search TLV 06h
	
	

	
	valueOffset (TLV Length

valueOffset = 6

dstBuffer.length = 15

dstOffset = 0

dstLength = 1
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	8
	valueOffset < 0

valueOffset = -1

dstBuffer.length = 15

dstOffset = 0

dstLength = 1
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	9
	dstLength > TLV length

valueOffset = 0

dstBuffer.length = 15

dstOffset = 0

dstLength = 7
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	10
	valueOffset + dstLength > TLV length

valueOffset = 2

dstBuffer.length = 15

dstOffset = 0

dstLength = 5
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	11
	Search TLV 01h
	
	

	
	copyValue()
	ToolkitException.UNAVAILABLE_ELEMENT is thrown on the copyValue() method
	

	12
	Search TLV 06h
	
	

	
	Successful call

valueOffset = 0

dstBuffer.length = 6

dstOffset = 0

dstLength = 6
	Result of copyValue() is 0x0006
	

	13
	Compare buffer

buffer = 81 11 22 33 44 F5
	Result is 00h
	

	14
	initialise dstBuffer

dstBuffer = 55 55 … 55
	
	

	
	Successful call

valueOffset = 1

dstBuffer.length = 20

dstOffset = 3

dstLength = 4
	Result of copyValue() is 0x0007
	

	15
	Compare buffer

buffer =

55 55 55 11 22

33 44 55 55 55

55 55 55 55 55

55 55 55 55 55
	Result is 00h
	

	16
	Successful call, copy with length =0

dstBuffer.length = 20

dstOffset = 20

dstLength = 0
	Result of copyValue() is 20
	

	
	Send Unformatted SMS with the maximum user data length = 0x010C, using 2 concatenated envelopes
	
	

	17
	Search SMS TPDU TAG
	
	

	
	Successful call

valueOffset = 0x12

dstBuffer.length = 0x010C

dstOffset = 0

dstLength = 0x010C
	Result of copyValue() is 0x010C
	

	18
	Compare buffer

buffer = 01 02 … FE FF 01 02 … 0B 0C
	Result is 00h
	

	19
	Initialise dstBuffer

dstBuffer = 55 55 … 55
	
	

	
	Successful call

valueOffset = 0x0112

dstBuffer.length = 0x010C

dstOffset = 0x0100

dstLength = 0x000C
	Result of copyValue() is 0x010C
	

	20
	Compare buffer

buffer =

55 55 55 55 55 55 55 55

…

55 55 02 03 04 05 06 07

08 09 0A 0B 0C
	Result is 00h
	

6.2.4.12.4
Test Coverage

	CRR number
	Test case number

	
	

	N1
	13, 15, 18, 20

	
	

	N2
	12, 14, 16, 17, 19

	P1
	1

	P2
	2, 3, 4, 5, 6

	P3
	7, 8, 9, 10

	C1
	Does not apply for EnvelopeHandler

	C2
	11

6.2.4.13
Method compareValue

Test Area Reference: API_2_ENH_CPRVS_BSS

6.2.4.13.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public byte compareValue(short valueOffset,

byte[] compareBuffer,

short compareOffset,

short compareLength)

throws java.lang.NullPointerException,

java.lang.ArrayIndexOutOfBoundsException,

ToolkitException

Normal execution

Compares the last found TLV element with a buffer:

CRRN1: returns 0 if identical.

CRRN2: returns -1 if the first miscomparing byte in simple TLV List is less than that in compareBuffer.

CRRN3: returns 1 if the first miscomparing byte in simple TLV List is greater than that in compareBuffer.

Parameter errors

CRRP1: if compareBuffer is null NullPointerException shall be thrown.

CRRP2: if compareOffset or compareLength or both would cause access outside array bounds, or if compareLength is negative ArrayIndexOutOfBoundsException shall be thrown.

CRRP3: if valueOffset, dstLength or both are out of the current TLV an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException OUT_OF_TLV_BOUNDARIES.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

CRRC2: in case of unavailable TLV element an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException UNAVAILABLE_ELEMENT.

6.2.4.13.3
Test Suite files

Specific triggering: None

Test Script:

API_2_ENH_CPRVS_BSS_1.scr

Test Applet:

API_2_ENH_CPRVS_BSS_1.java

Load Script:

API_2_ENH_CPRVS_BSS_1.ldr

Cleanup Script:

API_2_ENH_CPRVS_BSS_1.clr

Parameter File:

API_2_ENH_CPRVS_BSS_1.par

6.2.4.13.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	Search TLV 02h
	
	

	
	compareValue() with a null compareBuffer

	NullPointerException is thrown
	

	2
	Search TLV 0Bh
	
	

	
	compareOffset (compareBuffer.length

compareBuffer.length = 5

compareOffset = 5

compareLength = 1
	ArrayIndexOutOfBoundsException is thrown
	

	3
	compareOffset < 0

compareBuffer.length = 5

compareOffset = -1

compareLength = 1
	ArrayIndexOutOfBoundsException is thrown
	

	4
	compareLength >compareBuffer.length

compareBuffer.length = 5

compareOffset = 0

compareLength = 6
	ArrayIndexOutOfBoundsException is thrown
	

	5
	compareOffset + compareLength >compareBuffer.length

compareBuffer.length = 5

compareOffset = 3

compareLength = 3
	ArrayIndexOutOfBoundsException is thrown
	

	6
	compareLength < 0

compareBuffer.length = 5

compareOffset = 0

compareLength = -1
	ArrayIndexOutOfBoundsException is thrown
	

	7
	Search TLV 06h
	
	

	
	valueOffset (TLV Length

valueOffset = 6

compareBuffer.length = 15

compareOffset = 0

compareLength = 1
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	8
	valueOffset < 0

valueOffset = -1

compareBuffer.length = 15

compareOffset = 0

compareLength = 1
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	9
	compareLength > TLV length

valueOffset = 0

compareBuffer.length = 15

compareOffset = 0

compareLength = 7
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	10
	valueOffset + compareLength > TLV length

valueOffset = 2

compareBuffer.length = 15

compareOffset = 0

compareLength = 5
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	11
	Search TLV 01h
	Result is TLV_NOT_FOUND
	

	
	compareValue()

	ToolkitException.UNAVAILABLE_ELEMENT is thrown
	

	12
	Search TLV 06h
	
	

	
	Initialise compareBuffer

compareBuffer =

81 11 22 33 44 F5
	
	

	
	Compare buffers

valueOffset = 0

compareOffset = 0

compareLength = 6
	Result is 00h
	

	13
	Initialise compareBuffer

compareBuffer =

7F 11 22 33 44 F5
	
	

	
	Compare buffers with same parameters
	Result is -1
	

	14
	Initialise compareBuffer

compareBuffer =

83 11 22 33 44 F5
	
	

	
	Compare buffers with same parameters
	Result is -1
	

	15
	Initialise compareBuffer

compareBuffer =

55 55 55 81 11 22 33 44 F5

55 55 55 55 55
	
	

	
	Compare buffers

valueOffset = 1

compareOffset = 4

compareLength = 5
	Result is 00h
	

	16
	Initialise compareBuffer

compareBuffer =

55 55 55 81 10 22 33 44 F5

55 55 55 55 55
	
	

	
	Compare buffers with same parameters
	Result is +1
	

	17
	Initialise compareBuffer

compareBuffer =

55 55 55 81 12 22 33 44 F5

55 55 55 55 55
	
	

	
	Compare buffers with same parameters

	Result is -1
	

	18
	Successful call, compareValue with length =0

CompareBuffer.length = 15

CompareOffset = 15

CompareLength = 0
	Result of compareValue() is 0
	

	
	Send Unformatted SMS PP with the maximum user data length = 0x010C, using 2 concatenated envelopes
	
	

	
	Search SMS TPDU TAG
	
	

	
	Initialise compareBuffer

compareBuffer = 01 02 … FE FF 01 02 … 0C
	
	

	19
	Compare buffers

valueOffset = 0x12

compareOffset = 0

compareLength = 0x010C

compareBufferLength = 0x010C
	Result is 00h
	

	20
	Compare buffers

valueOffset = 0x0112

compareOffset = 0x0100

compareLength = 0x000C

compareBufferLength = 0x010C
	Result is 00h
	

6.2.4.13.4
Test Coverage

	CRR number
	Test case number

	
	

	N1
	12, 15, 19, 20

	N2
	13, 16, 18

	N3
	14, 17

	P1
	1

	P2
	2, 3, 4, 5, 6

	P3
	7, 8, 9, 10

	C1
	Does not apply for EnvelopeHandler

	C2
	11

6.2.4.14
Method findAndCopyValue(byte tag, byte[] dstBuffer, short dstOffset)

Test Area Reference: API_2_ENH_FACYB_BS

6.2.4.14.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public short findAndCopyValue(byte tag,

 byte[] dstBuffer,

 short dstOffset)

throws
java.lang.NullPointerException,

java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException

Normal execution

CRRN1: looks for the first occurrence of a TLV element from the beginning of a TLV list and copy its value into a destination buffer.

CRRN2: if no TLV element is found, the UNAVAILABLE_ELEMENT exception is thrown and the current TLV is no longer defined.

CRRN3: if the method is successful then the corresponding TLV becomes current and dstOffset + length of the copied value is returned.

CRRN4: The search method is comprehension required flag independent.

Parameter errors

CRRP1: if dstBuffer is null NullPointerException shall be thrown.

CRRP2: if dstOffset would cause access outside array bounds ArrayIndexOutOfBoundsException shall be thrown.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

6.2.4.14.3
Test Suite files

Specific triggering: None

Test Script:

API_2_ENH_FACYB_BS_1.scr

Test Applet:

API_2_ENH_FACYB_BS_1.java

Load Script:

API_2_ENH_FACYB_BS_1.ldr

Cleanup Script:

API_2_ENH_FACYB_BS_1.clr

Parameter File:

API_2_ENH_FACYB_BS_1.par

6.2.4.14.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	
	Fill the SMS PP with TLV: Tag 02 Value 22 44 Tag 33, Length C4 Value 01 02 …
	
	

	1
	FindAndCopyValue() with a null dstBuffer
	NullPointerException is thrown
	

	2
	dstOffset (dstBuffer.length

tag = 06h

dstBuffer.length = 06

dstOffset = 06
	ArrayIndexOutOfBoundsException is thrown
	

	3
	dstOffset < 0

dstBuffer.length = 06

dstOffset = -1
	ArrayIndexOutOfBoundsException is thrown
	

	4
	length > dstBuffer.length

dstBuffer.length = 05

dstOffset = 0
	ArrayIndexOutOfBoundsException is thrown
	

	5
	DstOffset + length >dstBuffer.length

DstBuffer.length = 06

DstOffset = 1

	ArrayIndexOutOfBoundsException is thrown
	

	6
	Select a TLV (tag 02h)
	
	

	
	findAndCopyValue()

tag = 03h
	ToolkitException.UNAVAILABLE_ELEMENT is thrown
	

	
	
	
	

	7
	Call the getValueLength() method
	ToolkitException.UNAVAILABLE_ELEMENT is thrown.
	

	
	

	
	

	8
	Successful call

Tag = 06h

DstBuffer.length = 06

DstOffset = 0
	Result of findAndCopyValue () is 0006
	

	
	

	
	

	9
	Compare buffer

buffer = 81 11 22 33 44 F5
	Result is 00h
	

	
	

	
	

	10
	initialise dstBuffer

dstBuffer = 55 55 … 55
	
	

	
	Successful call

dstBuffer.length = 12

dstOffset = 2
	Result of findAndCopyValue () is 0008
	

	
	

	
	

	11
	Compare buffer

buffer =

55 55 81 11 22 33 44 F5 55 55 55 55

	Result is 00h
	

	
	

	
	

	12
	Successful call

tag = 02h

dstBuffer.length = 2

dstOffset = 0
	Result of findAndCopyValue () is 0002
	

	
	

	
	

	13
	Compare buffer

buffer = 83 81
	Result is 00h
	

	
	

	
	

	14
	Successful call (with tag 82h)

tag = 82h

dstBuffer.length = 02

dstOffset = 0
	Result of findAndCopyValue () is 0002
	

	
	

	
	

	15
	Compare buffer

buffer = 83 81
	Result is 00h
	

	
	

	
	

	16
	Successful call (with tag B3h)

tag = B3h

dstBuffer.length = C4

dstOffset = 0
	Result of findAndCopyValue () is 00C4
	

	
	

	
	

	17
	Compare buffer

buffer = 01 02 … C4
	Result is 00h
	

	
	Send Unformatted SMS PP with the maximum user data length = 0x010C, using 2 concatenated envelopes
	
	

	18
	Successful call (with SMS TPDU TAG)

tag = 0Bh

dstBuffer.length = 0x011E

dstOffset = 0
	Result of findAndCopyValue () is 0x011E
	

	19
	Compare buffer

buffer = 00 01 02 … EF FF 01 … 0C
	Result is 00h
	

	20
	Successful call (with SMS TPDU TAG)

tag = 0Bh

dstBuffer.length = 0x0220

dstOffset = 0x0100
	Result of findAndCopyValue () is 0x021E
	

	21
	Compare buffer

buffer = 00 01 02 … EF FF 01 … 0C
	Result is 00h
	

6.2.4.14.4
Test Coverage

	CRR number
	Test case number

	
	

	
	

	
	

	
	

	N1
	9, 11, 13

	N2
	6, 7

	N3
	8, 10, 12

	N4
	14, 15, 16, 17, 18, 19, 20, 21

	P1
	1

	P2
	2, 3, 4, 5

	C1
	Does not apply for EnvelopeHandler

6.2.4.15
Method findAndCopyValue(byte tag, byte occurrence, short valueOffset, byte[] dstBuffer, short dstOffset, short dstLength)

Test Area Reference: API_2_ENH_FACYBS_BSS

6.2.4.15.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public short findAndCopyValue(byte tag,

 byte occurence,

 short valueOffset,

 byte[] dstBuffer,

 short dstOffset,

 short dstLength)

 throws java.lang.NullPointerException,

 java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException

Normal execution

CRRN1: looks for the indicated occurrence of a TLV element from the beginning of a TLV list and copy its value into a destination buffer.

CRRN2: if no TLV element is found, the UNAVAILABLE_ELEMENT exception is thrown and the current TLV is no longer defined.

CRRN3: if the method is successful then the corresponding TLV becomes current and dstOffset + dstLength is returned.

CRRN4: The search method is comprehension required flag independent.

Parameter errors

CRRP1: if dstBuffer is null NullPointerException shall be thrown.

CRRP2: if dstOffset or dstLength or both would cause access outside array bounds, or if dstLength is negative ArrayIndexOutOfBoundsException shall be thrown.

CRRP3: if valueOffset, dstLength or both are out of the current TLV an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException OUT_OF_TLV_BOUNDARIES.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

6.2.4.15.3
Test Suite files

Test Script:

API_2_ENH_FACYBS_BSS_1.scr

Test Applet:

API_2_ENH_FACYBS_BSS_1.java

Load Script:

API_2_ENH_FACYBS_BSS_1.ldr

Cleanup Script:

API_2_ENH_FACYBS_BSS_1.clr

Parameter File:

API_2_ENH_FACYBS_BSS_1.par

6.2.4.15.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	
	Fill the SMS PP with TLV: Tag 02 Value 22 44 Tag 33, Length C4 Value 01 02 …
	
	

	1
	findAndCopyValue() with a null dstBuffer

	NullPointerException is thrown
	

	2
	dstOffset (dstBuffer.length

tag = 06h, occurrence = 1

valueOffset = 0

dstBuffer.length = 5

dstOffset = 5

dstLength = 1
	ArrayIndexOutOfBoundsException is thrown
	

	3
	dstOffset < 0

dstBuffer.length = 5

dstOffset = -1

dstLength = 1
	ArrayIndexOutOfBoundsException is thrown
	

	4
	dstLength >dstBuffer.length

dstBuffer.length = 5

dstOffset = 0

dstLength = 6
	ArrayIndexOutOfBoundsException is thrown
	

	5
	dstOffset + dstLength >dstBuffer.length

dstBuffer.length = 5

dstOffset = 3

dstLength = 3
	ArrayIndexOutOfBoundsException is thrown
	

	6
	dstLength < 0

dstBuffer.length = 5

dstOffset = 0

dstLength = -1
	ArrayIndexOutOfBoundsException is thrown
	

	7
	valueOffset (Value Length

tag = 06h, occurrence = 1

valueOffset = 6

dstBuffer.length = 15

dstOffset = 0

dstLength = 1
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	8
	valueOffset < 0

valueOffset = -1

dstBuffer.length = 15

dstOffset = 0

dstLength = 1
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	9
	dstLength > Value length

valueOffset = 0

dstBuffer.length = 15

dstOffset = 0

dstLength = 7
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	10
	valueOffset + dstLength > Text String length

valueOffset = 2

dstBuffer.length = 15

dstOffset = 0

dstLength = 5
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	11
	Select a TLV (tag 02h)
	
	

	
	findAndCopyValue()

tag = 06h

occurrence = 2
	ToolkitException.UNAVAILABLE_ELEMENT is thrown
	

	
	
	
	

	12
	Call the getValueLength() method
	ToolkitException.UNAVAILABLE_ELEMENT is thrown.
	

	
	

	
	

	13
	Successful call

tag = 06h, occurrence = 1

valueOffset = 0

dstBuffer.length = 06

dstOffset = 0

dstLength = 06
	Result of findAndCopyValue() is 6
	

	
	

	
	

	14
	Compare buffer

buffer = 81 11 22 33 44 F5
	Result is 00h
	

	
	

	
	

	15
	initialise dstBuffer

dstBuffer = 55 55 … 55
	
	

	
	Successful call

tag = 06h, occurrence = 1

valueOffset = 2

dstBuffer.length = 12

dstOffset = 3

dstLength = 04
	Result of findAndCopyValue () is 0007
	

	
	

	
	

	16
	Compare buffer

buffer =

55 55 55 22 33 44 F5 55 55 55 55 55
	Result is 00h
	

	
	

	
	

	17
	Successful call

tag = 02h, occurrence = 1

valueOffset = 0

dstBuffer.length = 12

dstOffset = 0

dstLength = 2
	Result of findAndCopyValue() is 0002
	

	
	

	
	

	18
	Compare buffer

buffer = 83 81 55 … 55
	Result is 00h
	

	
	

	
	

	19
	Successful call

tag = 02h, occurrence = 2

valueOffset = 0

dstBuffer.length = 12

dstOffset = 0

dstLength = 2
	Result of findAndCopyValue() is 0002
	

	
	

	
	

	20
	Compare buffer

buffer = 22 44 55 … 55
	Result is 00h
	

	
	

	
	

	21
	Successful call (with tag 82h)

tag = 82h

occurrence = 1

valueOffset = 0

dstBuffer.length = 12

dstOffset = 0

dstLength = 02
	Result of findAndCopyValue () is 0002
	

	
	

	
	

	22
	Compare buffer

buffer = 83 81 55 … 55
	Result is 00h
	

	
	

	
	

	23
	Successful call (with tag 82h)

tag = 82h

occurrence = 2

valueOffset = 0

dstBuffer.length = 12

dstOffset = 0

dstLength = 02
	Result of findAndCopyValue () is 0002
	

	
	

	
	

	24
	Compare buffer

Buffer = 22 44 55 … 55
	Result is 00h
	

	
	

	
	

	25
	Successful call, findAndCopyValue with length =0

DstBuffer.length = 12

dstOffset = 12

dstLength = 0
	Result of findAndCopyValue () is 12
	

	
	Send Unformatted SMS PP with the maximum user data length = 0x010C, using 2 concatenated envelopes
	
	

	26
	Successful call

tag = 0Bh, occurrence = 1

valueOffset = 0x12

dstBuffer.length = 0x010C

dstOffset = 0

dstLength = 0x010C
	Result of findAndCopyValue() is 0x010C
	

	27
	Compare buffer

buffer = 01 02 … EF FF 01 … 0C
	Result is 00h
	

	28
	initialise dstBuffer

dstBuffer = 55 55 … 55
	
	

	
	Successful call

tag = 0Bh, occurrence = 1

valueOffset = 0x0112

dstBuffer.length = 0x010C

dstOffset = 0x0100

dstLength = 0x0C
	Result of findAndCopyValue () is 0x010C
	

	29
	Compare buffer

buffer =

55 55 … 55 55 02 03 04 05 06 07 08 09 0A 0B 0C
	Result is 00h
	

6.2.4.15.4
Test Coverage

	CRR number
	Test case number

	
	

	
	

	
	

	
	

	N1
	14, 15, 17, 19, 20

	N2
	11, 12

	N3
	13, 15, 17, 19, 25

	N4
	21, 22, 23, 24, 26, 27, 28,29

	P1
	1

	P2
	2, 3, 4, 5, 6

	P3
	7, 8, 9, 10

	C1
	Does not apply for EnvelopeHandler

6.2.4.16
Method findAndCompareValue(byte tag, byte[] compareBuffer, short compareOffset)

Test Area Reference: API_2_ENH_FACRB_BS

6.2.4.16.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public byte findAndCompareValue(byte tag,

 byte[] compareBuffer,

 short compareOffset)

throws
java.lang.NullPointerException,

java.lang.ArrayIndexOutOfBoundsException,

ToolkitException

Normal execution

Looks for the first occurrence of a TLV element from beginning of a TLV list and compare its value with a buffer:

CRRN1: if no TLV element is found, the UNAVAILABLE_ELEMENT exception is thrown and the current TLV is no longer defined.

CRRN2: if the method is successful then the corresponding TLV becomes current.

CRRN3: if identical returns 0.

CRRN4: if the first miscomparing byte in simple TLV is less than that in compareBuffer returns -1.

CRRN5: if the first miscomparing byte in simple TLV is greater than that in compareBuffer returns 1.

CRRN6: The search method is comprehension required flag independent.

Parameter errors

CRRP1: if compareBuffer is null NullPointerException shall be thrown.

CRRP2: if compareOffset would cause access outside array bounds ArrayIndexOutOfBoundsException shall be thrown.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

6.2.4.16.3
Test Suite files

Test Script:

API_2_ENH_FACRB_BS_1.scr

Test Applet:

API_2_ENH_FACRB_BS_1.java

Load Script:

API_2_ENH_FACRB_BS_1.ldr

Cleanup Script:

API_2_ENH_FACRB_BS_1.clr

Parameter File:

API_2_ENH_FACRB_BS_1.par

6.2.4.16.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	
	Fill the SMS PP with TLV: Tag 02 Value 22 44 Tag 33, Length C4 Value 01 02 …
	
	

	1
	findAndCompareValue() with a null dstBuffer
	NullPointerException is thrown
	

	2
	compareOffset (compareBuffer.length

tag = 06h

compareBuffer.length = 12

compareOffset = 12
	ArrayIndexOutOfBoundsException is thrown
	

	3
	compareOffset < 0

compareBuffer.length = 12

compareOffset = -1
	ArrayIndexOutOfBoundsException is thrown
	

	4
	length > compareBuffer.length

compareBuffer.length = 05

compareOffset = 0
	ArrayIndexOutOfBoundsException is thrown
	

	5
	compareOffset + length > compareBuffer.length

compareBuffer.length = 12

compareOffset = 7
	ArrayIndexOutOfBoundsException is thrown
	

	6
	Select a TLV (tag 02h)
	
	

	
	findAndCompareValue()

tag = 03h
	ToolkitException.UNAVAILABLE_ELEMENT is thrown
	

	
	
	
	

	7
	Call the getValueLength() method
	ToolkitException.UNAVAILABLE_ELEMENT is thrown.
	

	
	

	
	

	8
	Initialise compareBuffer

compareBuffer = 81 11 22 33 44 F5
	
	

	
	Compare buffers

tag = 06h

compareOffset = 0
	Result is 00h
	

	
	

	
	

	9
	Verify current TLV

getValueLength()
	Result is 06
	

	
	

	
	

	10
	Initialise compareBuffer

compareBuffer = 81 11 22 33 44 F4
	
	

	
	Compare buffers with same parameters
	Result is +1
	

	
	

	
	

	11
	Initialise compareBuffer

compareBuffer = 81 11 22 33 44 F6
	
	

	
	Compare buffers with same parameters
	Result is -1
	

	
	

	
	

	12
	Initialise compareBuffer

compareBuffer =

55 55 81 11 22 33 44 F5 55 55 55 55
	
	

	
	Compare buffers

compareOffset = 2
	Result is 00h
	

	
	

	
	

	13
	Initialise compareBuffer

compareBuffer =

55 55 83 81 55 55 55 55 55 55 55 55
	
	

	
	Compare buffers

compareOffset = 2
	Result is 00h
	

	
	

	
	

	14
	Initialise compareBuffer

compareBuffer =

55 55 83 80 55 55 55 55 55 55 55 55
	
	

	
	Compare buffers

compareOffset = 2
	Result is +1
	

	
	

	
	

	15
	Initialise compareBuffer

compareBuffer =

55 55 83 82 55 55 55 55 55 55 55 55
	
	

	
	Compare buffers

compareOffset = 2
	Result is –1
	

	
	

	
	

	16
	Initialise compareBuffer

compareBuffer =

83 81 55 55 55 55 55 55 55 55 55 55
	
	

	
	Successful call (with tag 02h)

tag = 02h

compareBuffer.length = 12

compareOffset = 0
	Result is 00h
	

	
	

	
	

	17
	Initialise compareBuffer

CompareBuffer = 01 02 … C4
	
	

	
	Successful call (with tag B3h)

Tag = B3h

CompareBuffer.length = C4

CompareOffset = 0
	Result is 00h
	

	
	Send Unformatted SMS PP with the maximum user data length = 0x010C, using 2 concatenated envelopes
	
	

	
	Initialise compareBuffer

CompareBuffer = 0340 Header + user data (00 01 02 … FF 01 … 0C)
	
	

	18
	Successful call (with SMS TPDU TAG)

Tag = 0Bh

CompareBuffer.length = 0x011E

CompareOffset = 0
	Result is 00h
	

	
	Initialise compareBuffer

CompareBuffer = 55 55 … 55

CompareBuffer from offset 0x0100= 0340 Header + user data (00 01 02 … FF 01 … 0C)
	
	

	19
	Successful call (with SMS TPDU TAG)

Tag = 0Bh

CompareBuffer.length = 0x220

CompareOffset = 0x0100
	Result is 00h
	

6.2.4.16.4
Test Coverage

	CRR number
	Test case number

	
	

	
	

	
	

	
	

	
	

	
	

	N1
	6,7

	N2
	9

	N3
	8, 12, 13, 18, 19

	N4
	10, 14

	N5
	11, 15

	N6
	16, 17

	P1
	1

	P2
	2, 3, 4, 5

	C1
	Does not apply for EnvelopeHandler

6.2.4.17
Method findAndCompareValue(byte tag, byte occurrence, short valueOffset, byte[] compareBuffer, short compareOffset, short compareLength)

Test Area Reference: API_2_ENH_FACRBBS_BSS

6.2.4.17.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public byte findAndCompareValue(byte tag,

 byte occurence,

 short valueOffset,

 byte[] compareBuffer,

 short compareOffset,

 short compareLength)

 throws java.lang.NullPointerException,

java.lang.ArrayIndexOutOfBoundsException,

ToolkitException

Normal execution

Looks for the indicated occurrence of a TLV element from the beginning of a TLV list and compare its value with a buffer:

CRRN1: if no TLV element is found, the UNAVAILABLE_ELEMENT exception is thrown and the current TLV is no longer defined.

CRRN2: if the method is successful then the corresponding TLV becomes current.

CRRN3: if identical 0 is returned.

CRRN4: if the first miscomparing byte in simple TLV is less than that in compareBuffer -1 is returned.

CRRN5: if the first miscomparing byte in simple TLV is greater than that in compareBuffer 1 is returned

CRRN6: The search method is comprehension required flag independent.

Parameter errors

CRRP1: if compareBuffer is null NullPointerException shall be thrown.

CRRP2: if compareOffset or compareLength or both would cause access outside array bounds, or if compareLength is negative ArrayIndexOutOfBoundsException shall be thrown.

CRRP3: if valueOffset, compareLength or both are out of the current TLV an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException OUT_OF_TLV_BOUNDARIES.

CRRP4: if an input parameter is not valid (e.g. occurence = 0) an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException BAD_INPUT_PARAMETER.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

6.2.4.17.3
Test Suite files

Test Script:

API_2_ENH_FACRBBS_BSS_1.scr

Test Applet:

API_2_ENH_FACRBBS_BSS_1.java

Load Script:

API_2_ENH_FACRBBS_BSS_1.ldr

Cleanup Script:

API_2_ENH_FACRBBS_BSS_1.clr

Parameter File:

API_2_ENH_FACRBBS_BSS_1.par

6.2.4.17.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	
	Fill the SMS PP with TLV: Tag 02 Value 22 44 Tag 33, Length C4 Value 01 02 …
	
	

	1
	findAndCompareValue() with a null compareBuffer
	NullPointerException is thrown
	

	2
	compareOffset (compareBuffer.length

tag = 06h, occurrence = 1

valueOffset = 0

compareBuffer.length = 6

compareOffset = 6

compareLength = 1
	ArrayIndexOutOfBoundsException is thrown
	

	3
	compareOffset < 0

compareBuffer.length = 6

compareOffset = -1

compareLength = 1
	ArrayIndexOutOfBoundsException is thrown
	

	4
	compareLength >compareBuffer.length

compareBuffer.length = 5

compareOffset = 0

compareLength = 6
	ArrayIndexOutOfBoundsException is thrown
	

	5
	compareOffset + compareLength >compareBuffer.length

compareBuffer.length = 5

compareOffset = 3

compareLength = 3
	ArrayIndexOutOfBoundsException is thrown
	

	6
	compareLength < 0

compareBuffer.length = 5

compareOffset = 0

compareLength = -1
	ArrayIndexOutOfBoundsException is thrown
	

	7
	valueOffset (Value Length

tag = 06h, occurrence = 1

valueOffset = 6

compareBuffer.length = 15

compareOffset = 0

compareLength = 1
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	8
	valueOffset < 0

valueOffset = -1

compareBuffer.length = 15

compareOffset = 0

compareLength = 1
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	9
	compareLength > Value length

valueOffset = 0

compareBuffer.length = 15

compareOffset = 0

compareLength = 7
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	10
	valueOffset + compareLength > Value length

valueOffset = 2

compareBuffer.length = 15

compareOffset = 0

compareLength = 5
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	11
	Invalid parameter

occurrence = 0
	ToolkitException.BAD_INPUT_PARAMETER is thrown
	

	12
	Select a TLV (tag 02h)
	
	

	
	findAndCompareValue()

tag = 06h

occurrence = 2
	ToolkitException.UNAVAILABLE_ELEMENT is thrown
	

	
	
	
	

	13
	Call the getValueLength() method
	ToolkitException.UNAVAILABLE_ELEMENT is thrown.
	

	
	

	
	

	14
	Initialise compareBuffer

compareBuffer = 81 11 22 33 44 F5
	
	

	
	findAndCompareValue()

tag = 06h, occurrence = 1

valueOffset = 0

compareOffset = 0

compareLength = 6
	Result is 00h
	

	
	

	
	

	15
	Verify current TLV

getValueLength()
	Result is 0006
	

	
	

	
	

	16
	Initialise compareBuffer

compareBuffer = 81 11 22 33 44 F4
	
	

	
	Compare buffers with same parameters
	Result is +1
	

	
	

	
	

	17
	Initialise compareBuffer

compareBuffer = 81 11 22 33 44 F6
	
	

	
	Compare buffers with same parameters
	Result is -1
	

	
	

	
	

	18
	Initialise compareBuffer

compareBuffer =

55 55 55 22 33 44 F5 55 55 55 55
	
	

	
	Compare buffers

valueOffset = 2

compareOffset = 3

compareLength = 4
	Result is 00h
	

	
	

	
	

	19
	Initialise compareBuffer

compareBuffer =

55 55 55 22 33 45 F5 55 55 55 55
	
	

	
	Compare buffers with same parameters
	Result is -1
	

	
	

	
	

	20
	Initialise compareBuffer

compareBuffer =

55 55 55 22 33 43 F5 55 55 55 55
	
	

	
	Compare buffers with same parameters
	Result is +1
	

	
	

	
	

	21
	Initialise compareBuffer

compareBuffer =

83 81 55 55 55 55 55 55 55 55 55 55
	
	

	
	findAndCompareValue()

tag = 02h, occurrence = 1

valueOffset = 0

compareOffset = 0

compareLength = 2
	Result is 00h
	

	
	

	
	

	22
	Initialise compareBuffer

compareBuffer =

22 44 55 55 55 55 55 55 55 55 55 55
	
	

	
	findAndCompareValue()

tag = 02h, occurrence = 2

valueOffset = 0

compareOffset = 0

compareLength = 2
	Result is 00h
	

	
	

	
	

	23
	Initialise compareBuffer

compareBuffer =

22 45 55 55 55 55 55 55 55 55 55 55
	
	

	
	findAndCompareValue()

tag = 02h, occurrence = 2

valueOffset = 0

compareOffset = 0

compareLength = 2
	Result is -1
	

	
	

	
	

	24
	Initialise compareBuffer

compareBuffer =

83 81 55 55 55 55 55 55 55 55 55 55
	
	

	
	Successful call (with tag 02h)

tag = 02h, occurrence = 1

valueOffset = 0

compareBuffer.length = 12

compareOffset = 0

compareLength = 2
	Result is 00h
	

	
	

	
	

	25
	Initialise compareBuffer

compareBuffer = 01 02 … C4
	
	

	
	Successful call (with tag B3h)

tag = B3h, occurrence = 1

valueOffset = 0

compareBuffer.length = 00C4

compareOffset = 0

compareLength = 00C4
	Result is 00h
	

	
	

	
	

	26
	Successful call, findAndCompareValue with length =0

DstBuffer.length = C4

DstOffset = C4

DstLength = 0
	Result of findAndCompareValue() is 00h
	

	
	Send Unformatted SMS PP with the maximum user data length = 0x010C, using 2 concatenated envelopes
	
	

	
	Initialise compareBuffer

CompareBuffer = 01 02 … FF 01 … 0C
	
	

	27
	Successful call (with SMS TPDU TAG)

tag = 0Bh, occurrence = 1

valueOffset = 0x12

compareBuffer.length = 0x010C

compareOffset = 0

compareLength = 0x010C
	Result is 00h
	

	
	Initialise compareBuffer

CompareBuffer = 55 55 … 01 … 0C
	
	

	28
	Successful call (with SMS TPDU TAG)

tag = 0Bh, occurrence = 1

valueOffset = 0x12

compareBuffer.length = 0x010C

compareOffset = 0x0100

compareLength = 0x0C
	Result is 00h
	

6.2.4.17.4
Test Coverage

	CRR number
	Test case number

	
	

	
	

	
	

	
	

	
	

	
	

	N1
	12, 13

	N2
	15

	N3
	14, 18, 21, 22, 26, 27, 28

	N4
	16, 20

	N5
	17, 19, 23

	N6
	24, 25

	P1
	1

	P2
	2, 3, 4, 5, 6

	P3
	7, 8, 9, 10

	P4
	11

	C1
	Does not apply for EnvelopeHandler

6.2.4.18
Method getUserDataLength

Test Area Reference: API_2_ENH_GUDL

6.2.4.18.1
Conformance Requirement:

The method with following header shall be compliant to its definition in the API.

public short getUserDataLength()

Normal execution

CRRN1: The method shall return the length of the User Data contained in the SMS TPDU TLV element.

CRRN2: The length is from the first SMS TPDU TLV element.

CRRN3: If the SMS TPDU TLV element is available, it becomes the selected TLV

CRRN4: The method can be used if the event is EVENT_FORMATTED_SMS_PP_ENV.

CRRN5: The method can be used if the event is EVENT_FORMATTED_SMS_PP_UPD.

CRRN6: The method can be used if the event is EVENT_UNFORMATED_SMS_PP_ENV.

CRRN7: The method can be used if the event is EVENT_UNFORMATTED_SMS_PP_UDP.

Context errors

CRRC1: The method shall throw UNAVAILABLE_ELEMENT in case of unavailable TPDU TLV element.

CRRC2: The method shall throw UNAVAILABLE_ELEMENT in case of wrong data format.

6.2.4.18.2
Test suite files

Specific triggering:

· UNFORMATTED_SMS_PP_ENV

· FORMATTED_SMS_PP_UPD

· UNFORMATED_SMS_PP_UPD

· UNRECOGNIZED_ENVELOPE

· For Formatted triggering if CC/RC/DS is used, the security parameters are those used for downloading applications.

Test Script:

API_2_ENH_GUDL_1.scr

Test Applet:

API_2_ENH_GUDL_1.java

Load Script:

API_2_ENH_GUDL_1.ldr

Cleanup Script:

API_2_ENH_GUDL_1.clr

Parameter File:

API_2_ENH_GUDL_1.par

6.2.4.18.3
Test Procedure

	Id
	Description
	API Expectation
	APDU Expectation

	
	FORMATTED SMS PP ENV Triggering
	
	

	1
	Test with FORMATTED_SMS_PP_ENV and TP-OA length of 2 and user data length of 0x3D
	Returns 0x003D

	

	2
	Test with TP-OA length of 12 and user data length of 0x3D
	Returns 0x003D
	

	3
	Test with RC/CC/DS length of 0 and secured data length of 0x10
	Returns 0x0023
	

	4
	Test with RC/CC/DS length of 8 and secured data length of 0x10
	Returns 0x002B
	

	5
	Test with PCNTR = 0, no RC/CC/DS and data length of 0x10
	Returns 0x0023
	

	6
	Test with PCNTR = 7, no RC/CC/DS and data length of 0x05
	Returns 0x001F
	

	7
	Test with SecuredDataLength = 00 and no RC/CC/DS
	Returns 0x0013
	

	8
	Test with UserDataLength = 0x7F
	Returns 0x007F
	

	9
	Test with UserDataLength = 0x80
	Returns 0x0080
	

	10
	Test with UserDataLength = maximum length (0x8C) for a single SMS
	Returns 0x008C
	

	11
	Verify it is the first TPDU TLV:

Send a SMS PP with 2 TPDU TLV with two different user data lengths: 0x18 and 0x23
	Returns 0x0018
	

	12
	Send envelope SMS-PP Formatted.

FindTLV() with TAG_DEVICE_IDENTITIES. GetUserDataLength() and then getValueByte() with offset 0
	GetValueByte() returns 0x40(23.040 first byte)
	

	13
	Test with UserDataLength = 0xFF with 2 concatenated SMS
	Returns 0x00FF
	

	14
	Test with UserDataLength = 0x100 with 2 concatenated SMS
	Returns 0x0100
	

	15
	Test with UserDataLength = maximum length (0x010D) with 2 concatenated SMS
	Returns 0x010D
	

	
	FORMATTED SMS PP UPD Triggering
	
	

	16
	Test with FORMATTED_SMS_PP_UPD and TP-OA length of 2 and user data length of 0x3D
	Returns 0x003D

	

	17
	Test with TP-OA length of 12 and user data length of 0x3D
	Returns 0x003D
	

	18
	Test with RC/CC/DS length of 0 and secured data length of 0x10
	Returns 0x0023
	

	19
	Test with RC/CC/DS length of 8 and secured data length of 0x10
	Returns 0x002B
	

	20
	Test with PCNTR = 0, no RC/CC/DS and data length of 0x10
	Returns 0x0023
	

	21
	Test with PCNTR = 7, no RC/CC/DS and data length of 0x05
	Returns 0x001F
	

	22
	Test with SecuredDataLength = 00 and no RC/CC/DS
	Returns 0x0013
	

	23
	Test with UserDataLength = 0x7F
	Returns 0x007F
	

	24
	Test with UserDataLength = 0x80
	Returns 0x0080
	

	25
	Test with UserDataLength = maximum length(0x8C) for a single SMS
	Returns 0x008C
	

	26
	Verify it is the first TPDU TLV:

Send a SMS PP with 2 TPDU TLV with two different user data lengths: 0x18 and 0x23
	Returns 0x0018
	

	27
	Send envelope SMS-PP Formatted.

FindTLV() with TAG_DEVICE_IDENTITIES. GetUserDataLength() and then getValueByte() with offset 0
	GetValueByte() returns 0x40(23.040 first byte)
	

	28
	Test with UserDataLength = 0xFF with 2 concatenated SMS
	Returns 0x00FF
	

	29
	Test with UserDataLength = 0x100 with 2 concatenated SMS
	Returns 0x0100
	

	30
	Test with UserDataLength = maximum length (0x010D) with 2 concatenated SMS
	Returns 0x010D
	

	
	UNFORMATTED SMS PP ENV Triggering
	
	

	31
	Test with UNFORMATTED_SMS_PP_ENV and TP-OA length of 2, and user data length of 0x3D
	Returns 0x003D

	

	32
	Test with TP-OA length of 12, and user data length of 0x3D
	Returns 0x003D
	

	33
	Test with UserDataLength = 0x00
	Returns 0x0000
	

	34
	Test with UserDataLength = 0x7F
	Returns 0x007F
	

	35
	Test with UserDataLength = 0x80
	Returns 0x0080
	

	36
	Test with UserDataLength = maximum length: 0x8C for a single SMS
	Returns 0x008C
	

	37
	Verify it is the first TPDU TLV:

Send a SMS PP with 2 TPDU TLV with two different user data lengths: 0x18 and 0x23
	Returns 0x0018
	

	38
	Send envelope SMS-PP Unformatted.

FindTLV() with TAG_DEVICE_IDENTITIES. GetUserDataLength() and then getValueByte() with offset 0 (first user data = 0x55)
	GetValueByte() returns 0x00

(23.040 first byte)
	

	39
	Test with UserDataLength = 0xFE with 2 concatenated SMS
	Returns 0x00FF
	

	40
	Test with UserDataLength = 0x0FF with 2 concatenated SMS
	Returns 0x0100
	

	41
	Test with UserDataLength = maximum length (0x010C) with 2 concatenated SMS
	Returns 0x010D
	

	
	UNFORMATTED SMS PP UPD Triggering
	
	

	42
	Test with UNFORMATTED_SMS_PP_UPD and TP-OA length of 2, and user data length of 0x3D
	Returns 0x003D

	

	43
	Test with TP-OA length of 12, and user data length of 0x3D
	Returns 0x003D
	

	44
	Test with UserDataLength = 0x00
	Returns 0x0000
	

	45
	Test with UserDataLength = 0x7F
	Returns 0x007F
	

	46
	Test with UserDataLength = 0x80
	Returns 0x0080
	

	47
	Test with UserDataLength = maximum length: 0x8C for a single SMS
	Returns 0x008C
	

	48
	Verify it is the first TPDU TLV:

Send a SMS PP with 2 TPDU TLV with two different user data lengths: 0x18 and 0x23
	Returns 0x0018
	

	49
	Send envelope SMS-PP Unformatted.

FindTLV() with TAG_DEVICE_IDENTITIES. GetUserDataLength() and then getValueByte() with offset 0
	GetValueByte() returns 0x00

(23.040 first byte)
	

	50
	Test with UserDataLength = 0xFE with 2 concatenated SMS
	Returns 0x00FF
	

	51
	Test with UserDataLength = 0xFF with 2 concatenated SMS
	Returns 0x0100
	

	52
	Test with UserDataLength = maximum length (0x010C) with 2 concatenated SMS
	Returns 0x010D
	

	
	UNRECOGNIZED_ENVELOPE Triggering
	
	

	53

	Test with an UNRECOGNIZED_ENVELOPE
	ToolkitException UNAVAILABLE_ELEMENT
	

6.2.4.18.4
Test Coverage

	CRR number
	Test case number

	N1
	All test cases excepted:

53

	N2
	11, 26, 37, 48

	N3
	12, 27, 38, 49

	N4
	1 to 15

	N5
	16 to 30

	N6
	31 to 41

	N7
	42 to 52

	C1
	53

	C2
	Not applicable

6.2.4.19
Method getCapacity

Test Area Reference: API_2_ENH_GCAP

6.2.4.19.1
Conformance Requirement:

The method with following header shall be compliant to its definition in the API.

public byte getCapacity()

Normal execution

CRRN1: The method shall return the maximum size of the Simple TLV list managed by the handler.

6.2.4.19.2
Test suite files

Test Script:

API_2_ENH_GCAP_1.scr

Test Applet:

API_2_ENH_GCAP_1.java

Load Script:

API_2_ENH_GCAP_1.ldr

Cleanup Script:

API_2_ENH_GCAP_1.clr

Parameter File:

API_2_ENH_GCAP_1.par

6.2.4.19.3
Test Procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	EnvelopeHandler available

1 - Send envelope SMS-PP Formatted

2 - The applet calls the getLength() method

3 - The applet calls getCapacity()method

	1 - Applet is triggered

2 - No exception is thrown

3 - No exception is thrown; the capacity is greater than the BER TLV Length
	

6.2.4.19.4
Test Coverage

	CRR number
	Test case number

	N1
	1

6.2.4.20
Method getChannelIdentifier

Test Area Reference: API_2_ENH_GCID

6.2.4.20.1
Conformance Requirement:

The method with following header shall be compliant to its definition in the API.

public byte getChannelIdentifier()

 throws ToolkitException

Normal execution

CRRN1: The method shall return the channel identifier byte value.

CRRN2: The channel identifier byte value returned shall be from the first Channel status TLV element.

CRRN3: If the element is available it becomes the currently selected TLV.

CRRN4: The channel identifier is available for all triggered toolkit applets from the invocation to the termination of their processToolkit method if the EnvelopeHandler is available.

Context errors

CRRC1: The method shall throw ToolkitException (UNAVAILABLE_ELEMENT) if the Channel status TLV is not present.

CRRC2 : The method shall throw ToolkitException (OUT_OF_TLV_BOUNDARIES) if the Simple TLV Channel Status length is equal to 0.

6.2.4.20.2
Test suite files

Test Script:

API_2_ENH_GCID_1.scr

Test Applet:

API_2_ENH_GCID_1.java

Load Script:

API_2_ENH_GCID_1.ldr

Cleanup Script:

API_2_ENH_GCID_1.clr

Parameter File:

API_2_ENH_GCID_1.par

6.2.4.20.3
Test Procedure

	Id
	Description
	API Expectation
	APDU Expectation

	0
	1- Applet1 is installed with maximum number of channel = 07.

2- Applet1 builds proactive commands OPEN CHANNEL with init() method in order to open all channels.

ProactiveHandler.send() methods are called.
	
	2- OPEN CHANNEL proactive command is fetched

TERMINAL RESPONSE is issued with Channel Id from 01 to 07

	1
	1- Send envelope Event Download Channel Status with channel status TLV:
channel status value = 0x8100.

2- Call EnvelopeHandler.getChannelIdentifier() method
	1- Applet1 is triggered

2- Returns 0x01

	

	2
	1- Send envelope Event Download Channel Status with two channel status TLV:

first value = 0x8400

second value = 0x8500.

2- Call twice the EnvelopeHandler.getChannelIdentifier() method
	2- Returns 0x04

Returns 0x04
	

	3
	1- Send envelope Event Download Channel Status with channel status TLV:

Channel Status value = 0x0605

ViewHandler.FindTLV() with Device IdentityTag.

2- Call EnvelopeHandler.getChannelIdentifier() method.

3- Compare EnvelopeHandler.getChannelIdentifier() and then ViewHandler.getValueByte(0).
	2- Returns 0x06

3- GetChannelIdentifier() =getValueByte(0)
	

	4
	1- Send envelope Menu Selection without Channel Status TLV.

2- Call EnvelopeHandler.getChannelIdentifier() method.
	2- A Toolkit exception UNAVAILABLE_ELEMENT is thrown.
	

	5
	1- Send Envelope Event Download Channel Status with Channel Status TLV:

Channel status value = 0x0600

2- Call EnvelopeHandler.getChannelIdentifier() method.
	1- Returns 0x06
	

	6
	1- Send unrecognized envelope with a Channel Status TLV having a length equal to 0.

2- Call EnvelopeHandler.getChannelIdentifier() method.
	2- A Toolkit exception OUT_OF_TLV_BOUNDARIES is thrown.
	

6.2.4.20.4
Test Coverage

	CRR number
	Test case number

	N1
	1, 2

	N2
	3

	N3
	3

	N4
	5

	C1
	4

	C2
	6

6.2.8.20
Method getCapacity

Test Area Reference: API_2_PRH_GCAP

6.2.8.20.1
Conformance Requirement:

The method with following header shall be compliant to its definition in the API.

public byte getCapacity()

Normal execution

CRRN1: The method shall return the maximum size of the Simple TLV list managed by the handler.

6.2.8.20.2
Test suite files

Test Script:

API_2_PRH_GCAP_1.scr

Test Applet:

API_2_PRH_GCAP_1.java

Load Script:

API_2_PRH_GCAP_1.ldr

Cleanup Script:

API_2_PRH_GCAP_1.clr

Parameter File:

API_2_PRH_GCAP_1.par

6.2.8.20.3
Test Procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	ProactiveResponseHandler available

1- Send envelope SMS-PP Formatted

2- The applet sends a proactive command

3- Fetch the proactive command and send Terminal Response

4- The applet calls method getCapacity() method

5- The applet calls method getLength() method

	1- Applet is triggered

4-No exception is thrown

5- The Capacity result is greater or equal to getLength() result
	2- 91 XX

3- The proactive command is fetched

6.2.8.20.4
Test Coverage

	CRR number
	Test case number

	N1
	1

6.2.5.21
Method getCapacity

Test Area Reference: API_2_ERH_GCAP

6.2.5.21.1
Conformance Requirement:

The method with following header shall be compliant to its definition in the API.

Public byte getCapacity()

Normal execution

CRRN1: The method shall return the maximum size of the Simple TLV list managed by the handler.

Context errors

CRRC1: The method shall throw HANDLER_NOT_AVAILABLE ToolkitException if the handler is busy.

6.2.5.21.2
Test suite files

Test Script:

API_2_ERH_GCAP_1.scr

Test Applet:

API_2_ERH_GCAP_1.java

Load Script:

API_2_ERH_GCAP_1.ldr

Cleanup Script:

API_2_ERH_GCAP_1.clr

Parameter File:

API_2_ERH_GCAP_1.par

6.2.5.21.3
Test Procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	EnvelopeResponseHandler available

1- Send envelope SMS-PP Formatted

2- The applet calls getTheHandler() method

3- The applet calls getCapacity() method on the EnvelopeResponseHandler

4- The applet fills the handler with the maximum capacity using AppendTLV() method

5- The applet calls clear() method on the EnvelopeResponseHandler

6- The applet fills the handler with the maximum capacity plus one, using AppendTLV() method
	1- Applet is triggered

2- No exception is thrown

3- No exception is thrown

4- No exception is thrown

5- No exception is thrown

6- HANDLER_OVERFLOW exception is thrown
	

6.2.5.21.4
Test Coverage

	CRR number
	Test case number

	N1
	1

	C1
	Tested in Framework part: FWK_MHA_ERHD

6.2.7
Class ProactiveHandler

6.2.7.3
Method initDisplayText
Test Area Reference: API_2_PAH_INDTBB_BSS

6.2.7.3.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public void initDisplayText(byte qualifier,

 byte dcs,

 byte[] buffer,

 short offset,

 short length)

 throws java.lang.NullPointerException,

 java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException

Normal execution

CRRN1: The method shall build a DISPLAY TEXT proactive command in the ProactiveHandler, using qualifier, dcs and buffer parameters. Comprehension required flags are set.

CRRN2: A call to this method clears the handler then initialises it.

CRRN3: No TLV is selected after a call to the method.

CRRN4: The DISPLAY TEXT command is not sent by the method.

CRRN5: The Command Number may take any value between 01h and FEh.

CRRN6: If length is equal to zero, then the Text String TLV inserted in the command is a null text string TLV as defined in TS 11.14 [4].

Parameter errors

CRRP1: The method shall throw NullPointerException if buffer is null.

CRRP2: If offset or length or both would cause access outside array bounds, an ArrayIndexOutOfBoundsException shall be thrown.

Context errors

CRRC1: A ToolkitException.HANDLER_OVERFLOW shall be thrown if the ProactiveHandler is too small to put the requested data.

6.2.7.3.2
Test Suite files

Test Script:

API_2_PAH_INDTBB_BSS_1.scr

Test Applet:

API_2_PAH_INDTBB_BSS_1.java

Load Script:

API_2_PAH_INDTBB_BSS_1.ldr

Cleanup Script:

API_2_PAH_INDTBB_BSS_1.clr

Parameter File:

API_2_PAH_INDTBB_BSS_1.par

6.2.7.3.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	NULL as parameter to buffer

buffer = NULL
	NullPointerException is thrown
	

	2
	offset > buffer.length

buffer = "Text"

offset = 5

length = 0
	ArrayIndexOutOfBoundsException is thrown
	

	3
	offset < 0

buffer = "Text"

offset = -1
	ArrayIndexOutOfBoundsException is thrown
	

	4
	length > buffer.length

buffer = "Text"

offset = 0

length = 5
	ArrayIndexOutOfBoundsException is thrown
	

	5
	offset + length > buffer.length

buffer = "Text"

offset = 3

length = 2
	ArrayIndexOutOfBoundsException is thrown
	

	6
	length < 0

buffer = "Text"

offset = 3

length = -1
	ArrayIndexOutOfBoundsException is thrown
	

	7
	Successful call, buffer is the whole buffer

qualifier = 0

dcs = 4

buffer = "TextA"

offset = 0

length = 5
	No exception is thrown
	

	
	Verify the command number value

	Command number between 01h and FEh
	

	8
	 Send the command

	
	DISPLAY TEXT Proactive command

qualifier = 00h

dcs = 4

Text = "TextA"

	9
	Succesfull call, buffer is part of a buffer with the end part

Send the command

qualifier = 0

dcs = 4

buffer = "12TextB"

offset = 2

length = 5
	
	DISPLAY TEXT Proactive command

qualifier = 00h

dcs = 4

Text = "TextB"

	10
	Succesfull call, buffer is part of a buffer with the first part

Send the command

qualifier = 0

dcs = 4

buffer = "TextC12"

offset = 0

length = 5
	
	DISPLAY TEXT Proactive command

qualifier = 00h

dcs = 4

Text = "TextC"

	11
	Succesfull call, buffer is part of a buffer

Send the command

qualifier = 0

dcs = 4

buffer = "12TextD34"

offset = 2

length = 5
	
	DISPLAY TEXT Proactive command

qualifier = 00h

dcs = 4

Text = "TextD"

	12
	Succesfull call, qualifier = 81h

Send the command

qualifier = 81h

dcs = 4

buffer = "TextE"

offset = 0

length = 5
	
	DISPLAY TEXT Proactive command

qualifier = 81h

dcs = 4

Text = "TextE"

	13
	Succesfull call, DCS=0 (7 bits)

Send the command

qualifier = 0

dcs = 0

buffer = "TextF"

offset = 0

length = 5
	
	DISPLAY TEXT Proactive command

qualifier = 00h

dcs = 0

Text = "TextF"

	14
	Succesfull call, DCS=8 (UCS2)

Send the command

qualifier = 0

dcs = 8

buffer = "TextG"

offset = 0

length = 5
	
	DISPLAY TEXT Proactive command

qualifier = 00h

dcs = 8

Text = "TextG"

	15
	Call the initDisplayText() method with any value

Then build and send a DISPLAY TEXT command

qualifier = 0

dcs = 4

buffer = "TextHTextH"

offset = 0

length = 10
	
	DISPLAY TEXT Proactive command

qualifier = 00h

dcs = 4

Text = "TextHTextH"

	
	

	
	

	16
	Successful call, text length is zero

Send the command

qualifier = 0

dcs = 4

buffer = "TextHTextH"

offset = 0

length = 0
	
	DISPLAY TEXT Proactive command

qualifier = 00h

Text String TLV = 8D 00

	17
	Select a TLV in the ProactiveHandler

Call the initDisplayText() method

Call the getValueLength() method

	UNAVAILABLE_ELEMENT ToolkitException is thrown by getValueLength()

	

	18
	Successful call, buffer length = 7Eh

qualifier = 0

dcs = 4

buffer = "UUU…"

offset = 0

length = 7Eh
	
	DISPLAY TEXT Proactive command

Text String TLV =

8D 7F 04 55 55…

	19
	Successful call, buffer length = 7Fh

qualifier = 0

dcs = 4

buffer = "UUU…"

offset = 0

length = 7Fh
	
	DISPLAY TEXT Proactive command

Text String TLV = 8D 81 80 04 55 55…

	20
	Successful call, buffer length = 240

Qualifier = 0

dcs = 4

buffer = "UUU…"

offset = 0

length = 240
	
	DISPLAY TEXT Proactive command

Text String TLV =

8D 81 F1 04 55 55…

	21
	Call the initDisplayText() method with a too long buffer

qualifier = 0

dcs = 4

buffer = "XXXX…"

offset = 0

length = 241
	HANDLER_OVERFLOW ToolkitException is thrown
	

	22
	Call the initDisplayText() without sending the command

	
	No proactive command shall be sent expected status is '9000'

6.2.7.3.4
Test Coverage

	CRR number
	Test case number

	N1
	8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20

	N2
	15

	N3
	17

	N4
	22

	N5
	7

	N6
	16

	P1
	1

	P2
	2, 3, 4, 5, 6

	C1
	21

6.2.7.4 Method initGetInkey
Test Area Reference: API_2_PAH_INGKBB_BSS

6.2.7.4.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public void initGetInkey(byte qualifier,

 byte dcs,

 byte[] buffer,

 short offset,

 short length)

 throws java.lang.NullPointerException,

 java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException

Normal execution

CRRN1: The method shall build a GET INKEY proactive command in the ProactiveHandler, using qualifier, dcs and buffer parameters. Comprehension Required flags are set.

CRRN2: A call to this method clears the handler then initialises it.

CRRN3: No TLV is selected after a call to the method.

CRRN4: The GET INKEY command is not sent by the method.

CRRN5: The Command Number may take any value between 01h and FEh.

CRRN6: If length is equal to zero, then the Text String TLV inserted in the command is a null text string TLV as defined in TS 11.14 [4].

Parameter errors

CRRP1: The method shall throw NullPointerException if buffer is null.

CRRP1: If offset or length or both would cause access outside array bounds, a ArrayIndexOutOfBoundsException shall be thrown.

Context errors

CRRC1: A ToolkitException.HANDLER_OVERFLOW shall be thrown if the ProactiveHandler is to small to put the requested data.

6.2.7.4.2
Test Suite files

Test Script:

API_2_PAH_INGKBB_BSS_1.scr

Test Applet:

API_2_PAH_INGKBB_BSS_1.java

Load Script:

API_2_PAH_INGKBB_BSS_1.ldr

Cleanup Script:

API_2_PAH_INGKBB_BSS_1.clr

Parameter File:

API_2_PAH_INGKBB_BSS_1.par

6.2.7.4.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	NULL as parameter to buffer

buffer = NULL
	NullPointerException is thrown
	

	2
	offset > buffer.length

buffer = "Text"

offset = 5
	ArrayIndexOutOfBoundsException is thrown
	

	3
	offset < 0

buffer = "Text"

offset = -1
	ArrayIndexOutOfBoundsException is thrown
	

	4
	length > buffer.length

buffer = "Text"

offset = 0

length = 5
	ArrayIndexOutOfBoundsException is thrown
	

	5
	offset + length > buffer.length

buffer = "Text"

offset = 3

length = 2
	ArrayIndexOutOfBoundsException is thrown
	

	6
	length < 0

buffer = "Text"

offset = 3

length = -1
	ArrayIndexOutOfBoundsException is thrown
	

	7
	Successful call, buffer is the whole buffer

qualifier = 0

dcs = 4

buffer = "TextA"

offset = 0

length = 5
	No exception is thrown
	

	
	Verify the command number value
	Command number between 01h and FEh
	

	8
	Send the command

	
	GET INKEY Proactive command

qualifier = 00h

dcs = 4

Text = "TextA"

	9
	Succesfull call, buffer is part of a buffer with the end part

qualifier = 0

dcs = 4

buffer = "12TextB"

offset = 2

length = 5
	
	GET INKEY Proactive command

qualifier = 00h

dcs = 4

Text = "TextB"

	10
	Succesfull call, buffer is part of a buffer with the first part

qualifier = 0

dcs = 4

buffer = "TextC12"

offset = 0

length = 5
	
	GET INKEY Proactive command

qualifier = 00h

dcs = 4

Text = "TextC"

	11
	Succesfull call, buffer is part of a buffer

Send the command

qualifier = 0

dcs = 4

buffer = "12TextD34"

offset = 2

length = 5
	
	GET INKEY Proactive command

qualifier = 00h

dcs = 4

Text = "TextD"

	12
	Succesfull call, qualifier = 81h

qualifier = 81h

dcs = 4

buffer = "TextE"

offset = 0

length = 5
	
	GET INKEY Proactive command

qualifier = 81h

dcs = 4

Text = "TextE"

	13
	Succesfull call, DCS=0 (7 bits)

qualifier = 0

dcs = 0

buffer = "TextF"

offset = 0

length = 5
	
	GET INKEY Proactive command

qualifier = 00h

dcs = 0

Text = "TextF"

	14
	Succesfull call, DCS=8 (UCS2)

qualifier = 0

dcs = 8

buffer = "TextG"

offset = 0

length = 5
	
	GET INKEY Proactive command

qualifier = 00h

dcs = 8

Text = "TextG"

	15
	Call the initGetInkey() method with any value

Then build and send a GET INKEY command

qualifier = 0

dcs = 4

buffer = "TextHTextH"

offset = 0

length = 10
	
	GET INKEY Proactive command

qualifier = 00h

dcs = 4

Text = "TextHTextH"

	
	

	
	

	16
	Successful call, text length is zero

Send the command

qualifier = 0

dcs = 4

buffer = "TextHTextH"

offset = 0

length = 0
	
	GET INKEY Proactive command

qualifier = 00h

Text String TLV = 8D 00

	17
	Select a TLV in the ProactiveHandler

Call the initGetInkey() method

Call the getValueLength() method

	UNAVAILABLE_ELEMENT ToolkitException is thrown by getValueLength()

	

	18
	Successful call, buffer length = 7Eh

qualifier = 0

dcs = 4

buffer = "UUU…"

offset = 0

length = 7Eh
	
	GET INKEY Proactive command

Text String TLV =

8D 7F 04 55 55…

	19
	Successful call, buffer length = 7Fh

qualifier = 0

dcs = 4

buffer = "UUU…"

offset = 0

length = 7Fh
	
	GET INKEY Proactive command

Text String TLV = 8D 81 80 04 55 55…

	20
	Successful call, buffer length = 240

Qualifier = 0

dcs = 4

buffer = "UUU…"

offset = 0

length = 240
	
	GET INKEY Proactive command

Text String TLV =

8D 81 F1 04 55 55…

	21
	Call the initGetInkey() method with a too long buffer

qualifier = 0

dcs = 4

buffer = "XXXX…"

offset = 0

length = 241
	HANDLER_OVERFLOW ToolkitException is thrown
	

	22
	Call the initGetInkey() without sending the command

	
	No proactive command shall be sent expected status is '9000'

6.2.7.4.4
Test Coverage

	CRR number
	Test case number

	N1
	8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20

	N2
	15

	N3
	17

	N4
	22

	N5
	7

	N6
	16

	P1
	1

	P2
	2, 3, 4, 5, 6

	C1
	21

6.2.7.5 Method initGetInput

Test Area Reference: API_2_PAH_INGPBB_BSSSS

6.2.7.5.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public void initGetInput(byte qualifier,

 byte dcs,

 byte[] buffer,

 short offset,

 short length,

 short minRespLength,

 short maxRespLength)

 throws java.lang.NullPointerException,

 java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException

Normal execution

CRRN1: The method shall build a GET INPUT proactive command in the ProactiveHandler, using qualifier, dcs, buffer, minRespLength and maxRespLength parameters. Comprehension Required flags are set.

CRRN2: A call to this method clears the handler then initialises it.

CRRN3: No TLV is selected after a call to the method.

CRRN4: The GET INPUT command is not sent by the method.

CRRN5: The Command Number may take any value between 01h and FEh.

CRRN6: If length is equal to zero, then the Text String TLV inserted in the command is a null text string TLV as defined in TS 11.14 [4].

Parameter errors

CRRP1: The method shall throw NullPointerException if buffer is null.

CRRP2: If offset or length or both would cause access outside array bounds, a ArrayIndexOutOfBoundsException shall be thrown.

Context errors

CRRC1: A ToolkitException.HANDLER_OVERFLOW shall be thrown if the ProactiveHandler is to small to put the requested data.

6.2.7.5.2
Test Suite files

Test Script:

API_2_PAH_INGPBB_BSSSS_1.scr

Test Applet:

API_2_PAH_INGPBB_BSSSS_1.java

Load Script:

API_2_PAH_INGPBB_BSSSS_1.ldr

Cleanup Script:

API_2_PAH_INGPBB_BSSSS_1.clr

Parameter File:

API_2_PAH_INGPBB_BSSSS_1.par

6.2.7.5.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	NULL as parameter to buffer

buffer = NULL
	NullPointerException is thrown
	

	2
	offset > buffer.length

buffer = "Text"

offset = 5
	ArrayIndexOutOfBoundsException is thrown
	

	3
	offset < 0

buffer = "Text"

offset = -1
	ArrayIndexOutOfBoundsException is thrown
	

	4
	length > buffer.length

buffer = "Text"

offset = 0

length = 5
	ArrayIndexOutOfBoundsException is thrown
	

	5
	offset + length > buffer.length

buffer = "Text"

offset = 3

length = 2
	ArrayIndexOutOfBoundsException is thrown
	

	6
	length < 0

buffer = "Text"

offset = 3

length = -1
	ArrayIndexOutOfBoundsException is thrown
	

	7
	Successful call, buffer is the whole buffer

qualifier = 0

dcs = 4

buffer = "TextA"

offset = 0

length = 5

minRespLength = 00h

maxRespLength = FFh
	No exception is thrown
	

	
	Verify the command number value
	Command number between 01h and FEh
	

	8
	Send the command
	
	GET INPUT Proactive command

qualifier = 00h

dcs = 4

Text = "TextA"

Min Length = 00h

Max Length = FFh

	9
	Succesfull call, buffer is part of a buffer with the end part

Send the command

qualifier = 0

dcs = 4

buffer = "12TextB"

offset = 2

length = 5

minRespLength = 10h

maxRespLength = FFh
	
	GET INPUT Proactive command

qualifier = 00h

dcs = 4

Text = "TextB"

Min Length = 10h

Max Length = FFh

	10
	Succesfull call, buffer is part of a buffer with the first part

Send the command

qualifier = 0

dcs = 4

buffer = "TextC12"

offset = 0

length = 5

minRespLength = FFh

maxRespLength = FFh
	
	GET INPUT Proactive command

qualifier = 00h

dcs = 4

Text = "TextC"

Min Length = FFh

Max Length = FFh

	11
	Succesfull call, buffer is part of a buffer

Send the command

qualifier = 0

dcs = 4

buffer = "12TextD34"

offset = 2

length = 5

minRespLength = 00h

maxRespLength = 00h
	
	GET INPUT Proactive command

qualifier = 00h

dcs = 4

Text = "TextD"

Min Length = 00h

Max Length = 00h

	12
	Succesfull call, qualifier = 81h

qualifier = 81h

dcs = 4

buffer = "TextE"

offset = 0

length = 5

minRespLength = 00h

maxRespLength = 10h
	
	GET INPUT Proactive command

qualifier = 81h

dcs = 4

Text = "TextE"

Min Length = 00h

Max Length = 10h

	13
	Succesfull call, DCS=0 (7 bits)

qualifier = 0

dcs = 0

buffer = "TextF"

offset = 0

length = 5

minRespLength = 10h

maxRespLength = 10h
	
	GET INPUT Proactive command

qualifier = 00h

dcs = 0

Text = "TextF"

Min Length = 10h

Max Length = 10h

	14
	Succesfull call, DCS=8 (UCS2)

qualifier = 0

dcs = 8

buffer = "TextG"

offset = 0

length = 5

minRespLength = 00h

maxRespLength = FFh
	
	GET INPUT Proactive command

qualifier = 00h

dcs = 8

Text = "TextG"

Min Length = 00h

Max Length = FFh

	15
	Call the initGetInput() method with any value

Then build and send a GET INPUT command

qualifier = 0

dcs = 4

buffer = "TextHTextH"

offset = 0

length = 10

minRespLength = 00h

maxRespLength = 10h
	
	GET INPUT Proactive command

qualifier = 00h

dcs = 4

Text = "TextHTextH"

Min Length = 00h

Max Length = 10h

	
	

	
	

	16
	Successful call, text length is zero

Send the command

qualifier = 0

dcs = 4

buffer = "TextHTextH"

offset = 0

length = 0

minRespLength = 00h

maxRespLength = 10h
	
	GET INPUT Proactive command

qualifier = 00h

Text String TLV = 8D 00

Min Length = 00h

Max Length = 10h

	17
	Select a TLV in the ProactiveHandler

Call the initGetInput() method

Call the getValueLength() method

	UNAVAILABLE_ELEMENT ToolkitException is thrown by getValueLength()

	

	18
	Successful call, buffer length = 7Eh

qualifier = 0

dcs = 4

buffer = "UUU…"

offset = 0

length = 7Eh

minRespLength = 00h

maxRespLength = 10h
	
	GET INPUT Proactive command

Text String TLV =

8D 7F 04 55 55…

Min Length = 00h

Max Length = 10h

	19
	Successful call, buffer length = 7Fh

qualifier = 0

dcs = 4

buffer = "UUU…"

offset = 0

length = 7Fh

minRespLength = 00h

maxRespLength = 10h
	
	GET INPUT Proactive command

Text String TLV = 8D 81 80 04 55 55…

Min Length = 00h

Max Length = 10h

	20
	Successful call, buffer length = 236

Qualifier = 0

dcs = 4

buffer = "UUU…"

offset = 0

length = 236

minRespLength = 00h

maxRespLength = 10h
	
	GET INPUT Proactive command

Text String TLV =

8D 81 ED 04 55 55…

	21
	Call the initGetInput() method with a too long buffer

qualifier = 0

dcs = 4

buffer = "XXXX…"

offset = 0

length = 237

minRespLength = 00h

maxRespLength = 10h
	HANDLER_OVERFLOW ToolkitException is thrown
	

	22
	Call the initGetInput() without sending the command

	
	No proactive command shall be sent expected status is '9000'

6.2.7.5.4
Test Coverage

	CRR number
	Test case number

	N1
	8, 9, 10, 11, 12, 13, 14, 15,16,18, 19, 20

	N2
	15

	N3
	17

	N4
	22

	N5
	7

	N6
	16

	P1
	1

	P2
	2, 3, 4, 5, 6

	C1
	21

6.2.7.6 Method send

Test Area Reference: API_2_PAH_SEND

6.2.7.6.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public byte send()

Normal execution

CRRN1: The send() method send the current proactive command to the mobile.

CRRN2: The returned byte is equal to general result of the command (first byte of Result TLV in Terminal Response).

CRRN3: The handler remains unchanged after a call to send() method until the use of initXX() or appendTLV().

CRRN4: There is no invocation of select() or deselect() method.

CRRN5: A pending toolkit applet transaction at the method invocation is aborted.

Context errors

CRRC1: A ToolkitException.UNAVAILABLE_ELEMENT shall be thrown is the Result Simple TLV is missing in Terminal Response.

CRRC2: A ToolkitException.OUT_OF_TLV_BOUNDARIES shall be thrown if the general result byte is missing in the Result Simple TLV in Terminal Response.

CRRC3 : A ToolkitException COMMAND_NOT_ALLOWED shall be thrown if the proactive command to be sent is not allowed by the SIM Toolkit Framework.

CRRC4 : A ToolkitException COMMAND_NOT_ALLOWED shall be thrown if one parameter of the proactive command to be sent is not allowed by the SIM Toolkit Framework.

6.2.7.6.2
Test Suite files

Test Script:

API_2_PAH_SEND_1.scr

Test Applet:

API_2_PAH_SEND_1.java

Load Script:

API_2_PAH_SEND_1.ldr

Cleanup Script:

API_2_PAH_SEND_1.clr

Parameter File:

API_2_PAH_SEND_1.par

6.2.7.6.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	Build and send a DISPLAY TEXT command

qualifier = 00h

dcs = 04h

buffer = 'Text'
	
	DISPLAY TEXT Proactive command

	2
	Terminal Response with General Result = 00

Result TLV = 03 01 00 (command performed successfully)
	Result of send() is 00h
	

	3
	Build and send a DISPLAY TEXT command

qualifier = 00h

dcs = 04h

buffer = 'Text'
	
	DISPLAY TEXT Proactive command

	4
	Terminal Response with General Result = 01, without Additional information on result

Result TLV = 03 01 01 (command performed with partial comprehension)
	Result of send() is 01h
	

	5
	Build and send a DISPLAY TEXT command

qualifier = 00h

dcs = 04h

buffer = 'Text'
	
	DISPLAY TEXT Proactive command

	6
	Terminal Response with General Result = 01, with Additional information on result

Result TLV = 03 02 01 55 (command performed with partial comprehension)
	Result of send() is 01h
	

	7
	Build and send a DISPLAY TEXT command

qualifier = 00h

dcs = 04h

buffer = 'Text'
	
	DISPLAY TEXT Proactive command

	8
	Terminal Response with General Result = 02

Result TLV = 03 04 02 65 43 21 (Missing information)
	Result of send() is 02h
	

	9
	Build and send a 7Fh byte command (DISPLAY TEXT)

qualifier = 00h

dcs = 04h

buffer = "UUUUU…"

length = 73h
	
	DISPLAY TEXT Proactive command

BER-TLV = D0 7F

Text String TLV = 8D 74 04 55 55 55…

	10
	Build and send a 80h byte command (DISPLAY TEXT)

qualifier = 00h

dcs = 04h

buffer = "UUUUU…"

length = 74h
	
	DISPLAY TEXT Proactive command

BER-TLV = D0 81 80

Text String TLV = 8D 75 04 55 55 55…

	11
	Build and send a maximum length command (length of the handler should be 253)

DISPLAY TEXT:

Qualifier = 0

dcs = 4

buffer = "UUU…"

offset = 0

length = 240
	
	DISPLAY TEXT Proactive command

BER-TLV = D0 81 FD

Text String TLV = 8D 81 F1 04 55 55…

	12
	Verify that the Proactive Handler is not modified after a send()

Build a DISPLAY TEXT command

	
	

	
	Copy ProactiveHandler to source byte array

	
	

	
	Send command

	
	

	
	Copy ProactiveHandler to destination byte array

	
	

	
	Compare source and destination
	Source and destination are identical
	

	13
	Build and send a DISPLAY TEXT command

Verify there is no invocation of select() or deselect() method.
	
	DISPLAY TEXT Proactive command

	14
	Build and send a DISPLAY TEXT command

	
	DISPLAY TEXT Proactive command

	
	Terminal Response with 2 Result TLV

1st Result TLV = 03 02 02 12

2nd Result TLV = 03 03 03 34 56
	Result of send() is 02h
	

	15
	Build and send a DISPLAY TEXT command

	
	DISPLAY TEXT Proactive command

	
	Terminal Response without Result Simple TLV

	ToolkitException.UNAVAILABLE_ELEMENT is thrown by send()
	

	16
	Build and send a DISPLAY TEXT command

	
	DISPLAY TEXT Proactive command

	
	Terminal Response without general result byte in the Simple TLV

Result TLV = 03 00
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown by send()
	

6.2.7.6.4
Test Coverage

	CRR number
	Test case number

	N1
	1, 3, 5, 7, 9, 10, 11, 12, 13, 14

	N2
	2, 4, 6, 8, 14

	N3
	12

	N4
	13

	N5
	To be checked in Framework tests and insert here cross reference

	C1
	15

	C2
	16

	C3
	checked in the Framework test : FWK_PCS_PCCO (test case 1)

	C4
	checked in the Framework test : FWK_PCS_PCCO (test cases 2 to 3)

6.2.7.12
Method copyValue

Test Area Reference API_2_PAH_CPYVS_BSS

6.2.7.12.1
Conformance requirement

The method with following header shall be compliant with its definition in the API.

public short copyValue(short valueOffset,

 byte[] dstBuffer,

 short dstOffset,

 short dstLength)

 throws java.lang.NullPointerException,

 java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException

Normal execution

CRRN1: copies a part of the last TLV element which has been found, into a destination. buffer.

CRRN2: returns dstOffset + dstLength.

Parameter errors

CRRP1: if dstBuffer is null NullPointerException is thrown.

CRRP2: if dstOffset or dstLength or both would cause access outside array bounds, or if dstLength is negative ArrayIndexOutOfBoundsException is thrown.

CRRP3: if valueOffset is negative or valueOffset + dstLength > current TLV length, an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException OUT_OF_TLV_BOUNDARIES.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

CRRC2: in case of unavailable TLV element an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException UNAVAILABLE_ELEMENT.

6.2.7.12.2
Test Suite files

Test Script:

API_2_PAH_CPYVS_BSS_1.scr

Test Applet:

API_2_PAH_CPYVS_BSS_1.java

Load Script:

API_2_PAH_CPYVS_BSS_1.ldr

Cleanup Script:

API_2_PAH_CPYVS_BSS_1.clr

Parameter File:

API_2_PAH_CPYVS_BSS_1.par

6.2.7.12.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	Initialise the handler

Select a TLV
	
	

	
	copyValue() with a null dstBuffer

	NullPointerException is thrown
	

	2
	initDisplayText() with length = 15

Select Text String TLV
	
	

	
	dstOffset > dstBuffer.length

dstBuffer.length = 5

dstOffset = 6

dstLength = 0
	ArrayIndexOutOfBoundsException is thrown
	

	3
	dstOffset < 0

dstBuffer.length = 5

dstOffset = -1

dstLength = 1
	ArrayIndexOutOfBoundsException is thrown
	

	4
	dstLength >dstBuffer.length

dstBuffer.length = 5

dstOffset = 0

dstLength = 6
	ArrayIndexOutOfBoundsException is thrown
	

	5
	dstOffset + dstLength >dstBuffer.length

dstBuffer.length = 5

dstOffset = 3

dstLength = 3
	ArrayIndexOutOfBoundsException is thrown
	

	6
	dstLength < 0

dstBuffer.length = 5

dstOffset = 0

dstLength = -1

	ArrayIndexOutOfBoundsException is thrown
	

	7
	initDisplayText() with length = 5

Select Text String TLV
	
	

	
	valueOffset > Text String Length

valueOffset = 7

dstBuffer.length = 15

dstOffset = 0

dstLength = 0
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	8
	[Select Text String TLV]

valueOffset < 0

valueOffset = -1

dstBuffer.length = 15

dstOffset = 0

dstLength = 1
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	9
	[Select Text String TLV]

dstLength > Text String length

valueOffset = 0

dstBuffer.length = 15

dstOffset = 0

dstLength = 7
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	10
	[Select Text String TLV]

valueOffset + dstLength > Text String length

valueOffset = 2

dstBuffer.length = 15

dstOffset = 0

dstLength = 5

	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	11
	Initialise the handler
	
	

	
	copyValue()

	ToolkitException.UNAVAILABLE_ELEMENT is thrown
	

	12
	initDisplayText()

dcs = 4

buffer = 00 01 … 0F

Select Text String TLV
	
	

	
	Successful call

valueOffset = 0

dstBuffer.length = 17

dstOffset = 0

dstLength = 17
	Result of copyValue() is 17
	

	13
	Compare buffer

buffer = 04 00 01 … 0F

	Result is 00h
	

	14
	initialise dstBuffer

dstBuffer = 55 55 … 55
	
	

	
	Successful call

valueOffset = 2

dstBuffer.length = 20

dstOffset = 3

dstLength = 12
	Result of copyValue() is 15
	

	15
	Compare buffer

buffer =

55 55 55 01 02

03 04 05 06 07

08 09 0A 0B 0C

55 55 55 55 55
	Result is 00h
	

6.2.7.12.4
Test Coverage

	CRR number
	Test case number

	N1
	13, 15

	N2
	12, 14

	P1
	1

	P2
	2, 3, 4, 5, 6

	P3
	7, 8, 9, 10

	C1
	Does not apply for Proactive Handler

	C2
	11

6.2.7.13
Method compareValue

Test Area Reference API_2_PAH_CPRVS_BSS

6.2.7.13.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public byte compareValue(short valueOffset,

 byte[] compareBuffer,

 short compareOffset,

 short compareLength)

 throws java.lang.NullPointerException,

 java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException

Normal execution

Compares the last found TLV element with a buffer:

CRRN1: returns 0 if identical.

CRRN2: returns -1 if the first miscomparing byte in simple TLV List is less than that in compareBuffer.

CRRN3: returns 1 if the first miscomparing byte in simple TLV List is greater than that in compareBuffer.

Parameter errors

CRRP1: if compareBuffer is null NullPointerException shall be thrown.

CRRP2: if compareOffset or compareLength or both would cause access outside array bounds, or if compareLength is negative ArrayIndexOutOfBoundsException shall be thrown.

CRRP3: if valueOffset is negative or valueOffset + dstLength > current TLV length, an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException OUT_OF_TLV_BOUNDARIES.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

CRRC2: in case of unavailable TLV element an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException UNAVAILABLE_ELEMENT.

6.2.7.13.2
Test Suite files

Test Script:

API_2_PAH_CPRVS_BSS_1.scr

Test Applet:

API_2_PAH_CPRVS_BSS_1.java

Load Script:

API_2_PAH_CPRVS_BSS_1.ldr

Cleanup Script:

API_2_PAH_CPRVS_BSS_1.clr

Parameter File:

API_2_PAH_CPRVS_BSS_1.par

6.2.7.13.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	Initialise the handler

Select a TLV
	
	

	
	compareValue() with a null compareBuffer

	NullPointerException is thrown
	

	2
	initDisplayText() with length = 15

Select Text String TLV
	
	

	
	compareOffset > compareBuffer.length

compareBuffer.length = 5

compareOffset = 6

compareLength = 0
	ArrayIndexOutOfBoundsException is thrown
	

	3
	compareOffset < 0

compareBuffer.length = 5

compareOffset = -1

compareLength = 1
	ArrayIndexOutOfBoundsException is thrown
	

	4
	compareLength >compareBuffer.length

compareBuffer.length = 5

compareOffset = 0

compareLength = 6
	ArrayIndexOutOfBoundsException is thrown
	

	5
	compareOffset + compareLength >compareBuffer.length

compareBuffer.length = 5

compareOffset = 3

compareLength = 3
	ArrayIndexOutOfBoundsException is thrown
	

	6
	compareLength < 0

compareBuffer.length = 5

compareOffset = 0

compareLength = -1
	ArrayIndexOutOfBoundsException is thrown
	

	7
	initDisplayText() with length = 5

Select Text String TLV
	
	

	
	valueOffset > Text String Length

valueOffset = 7

compareBuffer.length = 15

compareOffset = 0

compareLength = 0
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	8
	[Select Text String TLV]

valueOffset < 0

valueOffset = -1

compareBuffer.length = 15

compareOffset = 0

compareLength = 1
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	9
	[Select Text String TLV]

compareLength > Text String length

valueOffset = 0

compareBuffer.length = 15

compareOffset = 0

compareLength = 7
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	10
	[Select Text String TLV]

valueOffset + compareLength > Text String length

valueOffset = 2

compareBuffer.length = 15

compareOffset = 0

compareLength = 5

	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	11
	Initialise the handler
	
	

	
	compareValue()

	ToolkitException.UNAVAILABLE_ELEMENT is thrown
	

	12
	initDisplayText()

dcs = 4

buffer = 00 01 … 0F

Select Text String TLV
	
	

	
	Initialise compareBuffer

compareBuffer =

04 00 01 … 0F
	
	

	
	Compare buffers

valueOffset = 0

compareOffset = 0

compareLength = 17

	Result is 00h
	

	13
	Initialise compareBuffer

compareBuffer =

04 00 01 02 03

04 05 06 07 08

05 0A 0B 0C 0D

0E 10
	
	

	
	Compare buffers with same parameters

	Result is -1
	

	14
	Initialise compareBuffer

compareBuffer =

03 00 01 … 0F
	
	

	
	Compare buffers with same parameters

	Result is +1
	

	15
	Initialise compareBuffer

compareBuffer =

55 55 55 01 02

03 04 05 06 07

08 09 0A 0B 0C

55 55 55 55 55
	
	

	
	Compare buffers

valueOffset = 2

compareOffset = 3

compareLength = 12

	Result is 00h
	

	16
	Initialise compareBuffer

compareBuffer =

55 55 55 02 01

03 04 05 06 07

08 09 0A 0B 0C

55 55 55 55 55
	
	

	
	Compare buffers with same parameters

	Result is -1
	

	17
	Initialise compareBuffer

compareBuffer =

55 55 55 01 02

03 04 05 06 07

08 09 0A 0A 0D

55 55 55 55 55
	
	

	
	Compare buffers with same parameters
	Result is +1
	

	18
	Initialise compareBuffer

compareBuffer =

55 55 55 99 03

03 04 05 06 07

08 09 0A 0B 0C

55 55 55 55 55
	
	

	
	Compare buffers with same parameters
	Result is +1
	

6.2.7.13.4
Test Coverage

	CRR number
	Test case number

	N1
	12, 15

	N2
	13, 16

	N3
	14, 17, 18

	P1
	1

	P2
	2, 3, 4, 5, 6

	P3
	7, 8, 9, 10

	C1
	Does not apply for Proactive Handler

	C2
	11

6.2.7.15
Method findAndCopyValue(byte tag, byte occurence, short valueOffset, byte[] dstBuffer, short dstOffset, short dstLength)

Test Area Reference API_2_PAH_FACYBBS_BSS

6.2.7.15.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public short findAndCopyValue(byte tag,

 byte occurence,

 short valueOffset,

 byte[] dstBuffer,

 short dstOffset,

 short dstLength)

 throws java.lang.NullPointerException,

 java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException

Normal execution

CRRN1: looks for the indicated occurrence of a TLV element from the beginning of a TLV list and copy its value into a destination buffer.

CRRN2: if no TLV element is found, the UNAVAILABLE_ELEMENT exception is thrown and the current TLV is no longer defined.

CRRN3: if the method is successful then the corresponding TLV becomes current and dstOffset + dstLength is returned.

CRRN4: The search method is comprehension required flag independent.

Parameter errors

CRRP1: if dstBuffer is null NullPointerException shall be thrown.

CRRP2: if dstOffset or dstLength or both would cause access outside array bounds, or if dstLength is negative ArrayIndexOutOfBoundsException shall be thrown.

CRRP3: if valueOffset is negative or valueOffset + dstLength > current TLV length, an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException OUT_OF_TLV_BOUNDARIES.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

6.2.7.15.2
Test Suite files

Test Script:

API_2_PAH_FACYBBS_BSS_1.scr

Test Applet:

API_2_PAH_FACYBBS_BSS_1.java

Load Script:

API_2_PAH_FACYBBS_BSS_1.ldr

Cleanup Script:

API_2_PAH_FACYBBS_BSS_1.clr

Parameter File:

API_2_PAH_FACYBBS_BSS_1.par

6.2.7.15.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	Initialise the handler
	
	

	
	findAndCopyValue() with a null dstBuffer

	NullPointerException is thrown
	

	2
	initDisplayText() with length = 15
	
	

	
	dstOffset > dstBuffer.length

tag = 0Dh, occurrence = 1

valueOffset = 0

dstBuffer.length = 5

dstOffset = 6

dstLength = 0
	ArrayIndexOutOfBoundsException is thrown
	

	3
	dstOffset < 0

dstBuffer.length = 5

dstOffset = -1

dstLength = 1
	ArrayIndexOutOfBoundsException is thrown
	

	4
	dstLength >dstBuffer.length

dstBuffer.length = 5

dstOffset = 0

dstLength = 6
	ArrayIndexOutOfBoundsException is thrown
	

	5
	dstOffset + dstLength >dstBuffer.length

dstBuffer.length = 5

dstOffset = 3

dstLength = 3
	ArrayIndexOutOfBoundsException is thrown
	

	6
	dstLength < 0

dstBuffer.length = 5

dstOffset = 0

dstLength = -1

	ArrayIndexOutOfBoundsException is thrown
	

	7
	initDisplayText() with length = 5
	
	

	
	valueOffset > Text String Length

tag = 0Dh, occurrence = 1

valueOffset = 7

dstBuffer.length = 15

dstOffset = 0

dstLength = 0
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	8
	valueOffset < 0

valueOffset = -1

dstBuffer.length = 15

dstOffset = 0

dstLength = 1
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	9
	dstLength > Text String length

valueOffset = 0

dstBuffer.length = 15

dstOffset = 0

dstLength = 7
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	10
	valueOffset + dstLength > Text String length

valueOffset = 2

dstBuffer.length = 15

dstOffset = 0

dstLength = 5

	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	11
	InitDisplayText()
	
	

	
	Select a TLV (tag 02h)
	
	

	
	findAndCopyValue()

tag = 0Dh

occurrence = 2
	ToolkitException.UNAVAILABLE_ELEMENT is thrown
	

	
	Call the getValueLength() method
	ToolkitException.UNAVAILABLE_ELEMENT is thrown.
	

	12
	initDisplayText()

dcs = 4

buffer = 00 01 … 0F
	
	

	
	Successful call

tag = 0Dh, occurrence = 1

valueOffset = 0

dstBuffer.length = 17

dstOffset = 0

dstLength = 17
	Result of findAndCopyValue() is 17
	

	13
	Compare buffer

buffer = 04 00 01 … 0F

	Result is 00h
	

	14
	initialise dstBuffer

dstBuffer = 55 55 … 55
	
	

	
	Successful call

tag = 0Dh, occurrence = 1

valueOffset = 2

dstBuffer.length = 20

dstOffset = 3

dstLength = 12
	Result of findAndcopyValue() is 15
	

	15
	Compare buffer

buffer =

55 55 55 01 02

03 04 05 06 07

08 09 0A 0B 0C

55 55 55 55 55
	Result is 00h
	

	16
	Append a Text String TLV

tag = 0D

buffer = 00 11 22 33 44 55 (no specific DCS byte)
	
	

	
	Successful call

tag = 0Dh, occurrence = 1

valueOffset = 0

dstBuffer.length = 17

dstOffset = 0

dstLength = 17
	Result of findAndCopyValue() is 17
	

	17
	Compare buffer

buffer = 04 00 01 … 0F

	Result is 00h
	

	18
	Successful call

tag = 0Dh, occurrence = 2

valueOffset = 0

dstBuffer.length = 6

dstOffset = 0

dstLength = 6
	Result of findAndCopyValue() is 6
	

	19
	Compare buffer

buffer = 00 11 22 33 44 55

	Result is 00h
	

	20
	initDisplayText()

dcs = 4

buffer = 00 01 … 0F
	
	

	
	Successful call (with tag 8Dh)

tag = 8Dh

occurrence = 1

valueOffset = 0

dstBuffer.length = 17

dstOffset = 0

dstLength = 17
	Result of findAndcopyValue() is 17
	

	21
	Compare buffer

buffer = 04 00 01 … 0F

	Result is 00h
	

	22
	Append tag 0Fh

buffer = 00 01 … 0F
	
	

	
	Successful call (with tag 8Fh)

tag = 8Fh

occurrence = 1

valueOffset = 0

dstBuffer.length = 16

dstOffset = 0

dstLength = 16
	Result of findAndcopyValue() is 16
	

	23
	Compare buffer

buffer = 00 01 … 0F

	Result is 00h
	

6.2.7.15.4
Test Coverage

	CRR number
	Test case number

	N1
	13, 15, 17, 19

	N2
	11

	N3
	12, 14, 16, 18

	N4
	20, 21, 22, 23

	P1
	1

	P2
	2, 3, 4, 5, 6

	P3
	7, 8, 9, 10

	C1
	Does not apply for ProactiveHandler

6.2.7.17
Method findAndCompareValue(byte tag, byte occurence, short valueOffset, byte[] compareBuffer, short compareOffset, short compareLength)

Test Area Reference API_2_PAH_FACRBBS_BSS

6.2.7.17.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public byte findAndCompareValue(byte tag,

 byte occurence,

 short valueOffset,

 byte[] compareBuffer,

 short compareOffset,

 short compareLength)

 throws
java.lang.NullPointerException,

java.lang.ArrayIndexOutOfBoundsException,

ToolkitException

Normal execution

Looks for the indicated occurrence of a TLV element from the beginning of a TLV list and compare its value with a buffer:

CRRN1: if no TLV element is found, the UNAVAILABLE_ELEMENT exception is thrown and the current TLV is no longer defined.

CRRN2: if the method is successful then the corresponding TLV becomes current.

CRRN3: if identical 0 is returned.

CRRN4: if the first miscomparing byte in simple TLV is less than that in compareBuffer -1 is returned.

CRRN5: if the first miscomparing byte in simple TLV is greater than that in compareBuffer 1 is returned

CRRN6: The search method is comprehension required flag independent.

Parameter errors

CRRP1: if compareBuffer is null NullPointerException shall be thrown.

CRRP2: if compareOffset or compareLength or both would cause access outside array bounds, or if compareLength is negative ArrayIndexOutOfBoundsException shall be thrown.

CRRP3: if valueOffset is negative or valueOffset + dstLength > current TLV length, an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException OUT_OF_TLV_BOUNDARIES.

CRRP4: if an input parameter is not valid (e.g. occurrence = 0) an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException BAD_INPUT_PARAMETER.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

6.2.7.17.2
Test Suite files

Test Script:

API_2_PAH_FACRBBS_BSS_1.scr

Test Applet:

API_2_PAH_FACRBBS_BSS_1.java

Load Script:

API_2_PAH_FACRBBS_BSS_1.ldr

Cleanup Script:

API_2_PAH_FACRBBS_BSS_1.clr

Parameter File:

API_2_PAH_FACRBBS_BSS_1.par

6.2.7.17.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	Initialise the handler
	
	

	
	findAndCompareValue() with a null compareBuffer

	NullPointerException is thrown
	

	2
	initDisplayText() with length = 15
	
	

	
	compareOffset > compareBuffer.length

tag = 0Dh, occurrence = 1

valueOffset = 0

compareBuffer.length = 5

compareOffset = 6

compareLength = 0
	ArrayIndexOutOfBoundsException is thrown
	

	3
	compareOffset < 0

compareBuffer.length = 5

compareOffset = -1

compareLength = 1
	ArrayIndexOutOfBoundsException is thrown
	

	4
	compareLength >compareBuffer.length

compareBuffer.length = 5

compareOffset = 0

compareLength = 6
	ArrayIndexOutOfBoundsException is thrown
	

	5
	compareOffset + compareLength >compareBuffer.length

compareBuffer.length = 5

compareOffset = 3

compareLength = 3
	ArrayIndexOutOfBoundsException is thrown
	

	6
	compareLength < 0

compareBuffer.length = 5

compareOffset = 0

compareLength = -1

	ArrayIndexOutOfBoundsException is thrown
	

	7
	initDisplayText() with length = 5
	
	

	
	valueOffset > Text String Length

tag = 0Dh, occurrence = 1

valueOffset = 7

compareBuffer.length = 15

compareOffset = 0

compareLength = 0
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	8
	valueOffset < 0

valueOffset = -1

compareBuffer.length = 15

compareOffset = 0

compareLength = 1
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	9
	compareLength > Text String length

valueOffset = 0

compareBuffer.length = 15

compareOffset = 0

compareLength = 7
	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	10
	valueOffset + compareLength > Text String length

valueOffset = 2

compareBuffer.length = 15

compareOffset = 0

compareLength = 5

	ToolkitException.OUT_OF_TLV_BOUNDARIES is thrown
	

	11
	Invalid parameter

occurrence = 0

	ToolkitException.BAD_INPUT_PARAMETER is thrown
	

	12
	InitDisplayText()
	
	

	
	Select a TLV (tag 02h)
	
	

	
	findAndCompareValue()

tag = 0Dh

occurrence = 2
	ToolkitException.UNAVAILABLE_ELEMENT is thrown
	

	
	Call the getValueLength() method
	ToolkitException.UNAVAILABLE_ELEMENT is thrown.
	

	13
	initDisplayText()

dcs = 4

buffer = 00 01 … 0F
	
	

	
	Initialise compareBuffer

compareBuffer =

04 00 01 … 0F
	
	

	
	findAndCompareValue()

tag = 0Dh, occurrence = 1

valueOffset = 0

compareOffset = 0

compareLength = 17

	Result is 00h
	

	14
	Verify current TLV

getValueLength()

	Result is 17
	

	15
	Initialise compareBuffer

compareBuffer =

04 00 01 … 10
	
	

	
	Compare buffers with same parameters

	Result is -1
	

	16
	Initialise compareBuffer

compareBuffer =

03 00 01 … 0F
	
	

	
	Compare buffers with same parameters

	Result is +1
	

	17
	Initialise compareBuffer

compareBuffer =

55 55 55 01 02

03 04 05 06 07

08 09 0A 0B 0C

55 55 55 55 55
	
	

	
	Compare buffers

valueOffset = 2

compareOffset = 3

compareLength = 12

	Result is 00h
	

	18
	Initialise compareBuffer

compareBuffer =

55 55 55 02 01

03 04 05 06 07

08 09 0A 0B 0C

55 55 55 55 55
	
	

	
	Compare buffers with same parameters

	Result is -1
	

	19
	Initialise compareBuffer

compareBuffer =

55 55 55 01 02

03 04 05 06 07

08 09 0A 0A 0D

55 55 55 55 55
	
	

	
	Compare buffers with same parameters

	Result is +1
	

	20
	append a Text String TLV

tag = 0Dh

buffer = 00 11 22 33 44 55
	
	

	
	Initialise compareBuffer

compareBuffer =

04 00 01 … 0F
	
	

	
	findAndCompareValue()

tag = 0Dh, occurrence = 1

valueOffset = 0

compareOffset = 0

compareLength = 17

	Result is 00h
	

	21
	Initialise compareBuffer

compareBuffer =

00 11 22 33 44 55
	
	

	
	findAndCompareValue()

tag = 0Dh, occurrence = 2

valueOffset = 0

compareOffset = 0

compareLength = 6

	Result is 00h
	

	22
	Initialise compareBuffer

compareBuffer =

00 11 22 33 44 66
	
	

	
	findAndCompareValue()

tag = 0Dh, occurrence = 2

valueOffset = 0

compareOffset = 0

compareLength = 6

	Result is –1
	

	23
	initDisplayText()

dcs = 4

buffer = 00 01 … 0F
	
	

	
	Initialise compareBuffer

CompareBuffer = 04 00 01 … 0F
	
	

	
	Successful call (with tag 8Dh)

tag = 8Dh, occurrence = 1

valueOffset = 0

compareBuffer.length = 17

compareOffset = 0

compareLength = 17
	Result is 00h
	

	24
	Append tag 0Fh

buffer = 00 01 … 0F
	
	

	
	Initialise compareBuffer

compareBuffer = 00 01 … 0F
	
	

	
	Successful call (with tag 8Fh)

tag = 8Fh, occurrence = 1

valueOffset = 0

compareBuffer.length = 16

compareOffset = 0

compareLength = 16
	Result is 00h
	

	25
	Initialise compareBuffer

compareBuffer =0099 02 … 0F
	
	

	
	findAndCompareValue()

tag = 0Dh, occurrence = 1

valueOffset = 0

compareOffset = 0

compareLength = 17
	Result is +1
	

6.2.7.17.4
Test Coverage

	CRR number
	Test case number

	N1
	12

	N2
	14

	N3
	13, 17, 20, 21

	N4
	15, 18, 22

	N5
	16, 19

	N6
	23, 24

	P1
	1

	P2
	2, 3, 4, 5, 6

	P3
	7, 8, 9, 10

	P4
	11

	C1
	Does not apply for Proactive Handler

6.2.7.24
Method getCapacity

Test Area Reference: API_2_PAH_GCAP

6.2.7.24.1
Conformance Requirement:

The method with following header shall be compliant to its definition in the API.

public byte getCapacity()

Normal execution

CRRN1: The method shall return the maximum size of the Simple TLV list managed by the handler.

6.2.7.24.2
Test suite files

Test Script:

API_2_PAH_GCAP_1.scr

Test Applet:

API_2_PAH_GCAP_1.java

Load Script:

API_2_PAH_GCAP_1.ldr

Cleanup Script:

API_2_PAH_GCAP_1.clr

Parameter File:

API_2_PAH_GCAP_1.par

6.2.7.24.3
Test Procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	ProactiveHandler available

1- Send envelope SMS-PP Formatted

2- The applet calls getTheHandler()

3- The applet calls getCapacity() on the ProactiveHandler

4- The applet fills the handler with the maximum capacity, using appendTLV() method

5- The applet calls clear() on the proactive handler

6- The applet fills the handler with the maximum capacity plus one, using appendTLV() method
	1- Applet is triggered

2- No exception is thrown

3- No exception is thrown, the capacity shall not be null

4- No exception is thrown

5- No exception is thrown

6- HANDLER_OVERFLOW exception is thrown
	

6.2.7.24.4
Test Coverage

	CRR number
	Test case number

	N1
	1

6.2.7.25
Method initCloseChannel

Test Area Reference: API_2_PAH_ICCHB

6.2.7.25.1
Conformance requirement:

The method with following header shall be compliant to its definition in the API.

public void initCloseChannel(byte bChannelIdentifier)

Normal execution

CRRN1: The method shall build a Close Channel Proactive command, using Channel Identifier. Comprehension Required flags are set.

CRRN2: A call to this method clears the handler then initialises it with Close Channel Proactive command.

CRRN3: After the method invocation, no TLV is selected.

CRRN4: The Close Channel Proactive command is not sent by the method.

6.2.7.25.2
Test suite files

Test Script:

API_2_PAH_ICCHB_1.scr

Test Applet:

API_2_PAH_ICCHB_1.java

Load Script:

API_2_PAH_ICCHB_1.ldr

Cleanup Script:

API_2_PAH_ICCHB_1.clr

Parameter File:

API_2_PAH_ICCHB_1.par

6.2.7.25.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	0
	Applet1 is installed with maximum number of channel = 01.
	
	

	1
	Call initCloseChannel() method

1- Call ProactiveHandler.init() method to Open a Channel.

Call the ProactiveHandler.send() method.

2- Send an EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS Envelope.

3- Call the ProactiveHandler.initCloseChannel() method with Channel Id = 01.

4- Call the ProactiveHandler.send() method.

5- Send an EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS Envelope.
	2- Applet1 is triggered.

5- Applet1 is not triggered.
	1- OPEN CHANNEL proactive command is fetched.

TERMINAL RESPONSE of OPEN CHANNEL is sent to the SIM with Channel Id = 01.

4- CLOSE CHANNEL proactive command is fetched.

TERMINAL RESPONSE of CLOSE CHANNEL is sent to the SIM.

	2
	Call the initCloseChannel () method with any value then build and send a Close Channel command

1- Call ProactiveHandler.init() to Open a Channel and ProactiveHandler.send() methods.

2- ProactiveHandler.initCloseChannel() with Channel Id = 2

3- ProactiveHandler.initCloseChannel() with the Channel Id = 1.

4- call the send() method.

5- Send an EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS Envelope.
	5- Applet1 is not triggered.
	1- OPEN CHANNEL proactive command is fetched.

TERMINAL RESPONSE of OPEN CHANNEL is sent to the SIM with Channel Id = 01.

4- CLOSE CHANNEL proactive command is fetched.

TERMINAL RESPONSE of CLOSE CHANNEL is sent to the SIM.

	3
	Select a TLV in the ProactiveHandler

Call the initCloseChannel () method

1- Call ProactiveHandler.init() method to open a Channel and call the ProactiveHandler.send() method.

Select 1st TLV of the Proactive Handler.

2- Call ProactiveHandler.initCloseChannel() method with Channel Id = 01.

3- Call the ViewHandler.getValueLength() method.

4- Call ProactiveHandler.send() method.
	3- UNAVAILABLE_ELEMENT ToolkitException is thrown by getValueLength() method.

	1- OPEN CHANNEL proactive command is fetched.

TERMINAL RESPONSE of OPEN CHANNEL is sent to the SIM with Channel Id = 01.

4- CLOSE CHANNEL proactive command is fetched.

TERMINAL RESPONSE of CLOSE CHANNEL is sent to the SIM.

	4
	Call the initCloseChannel() without sending the command

1- Call ProactiveHandler.init() method to open a Channel and call the ProactiveHandler.send() method.

2- Call the ProactiveHandler.initCloseChannel() method with Channel Id = 01 without ProactiveHandler.send().

3- Send an EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS Envelope.
	3- Applet1 is triggered.
	1- OPEN CHANNEL proactive command is fetched.

TERMINAL RESPONSE of OPEN CHANNEL is sent to the SIM with Channel Id = 01.

No proactive command shall be sent. Expected status is '9000'

6.2.7.25.4
Test Coverage

	CRR number
	Test case number

	N1
	1

	N2
	2

	N3
	3

	N4
	2, 4

6.2.8
Class ProactiveResponseHandler

6.2.8.20 Method getChannelIdentifier

Test Area Reference: API_2_PRH_GCID

6.2.4.8.1 Conformance Requirement:

The method with following header shall be compliant to its definition in the API.

public byte getChannelIdentifier()

 throws ToolkitException

Normal execution

CRRN1:The method shall return the channel identifier byte value.

CRRN2:The channel identifier byte value returned shall be from the first Channel status TLV element.

CRRN3: If the element is available it becomes the currently selected TLV.

Context errors

CRRC1: The method shall throw ToolkitException (UNAVAILABLE_ELEMENT) if the Channel status TLV is not present.

CRRC2: The method shall throw ToolkitException (OUT_OF_TLV_BOUNDARIES) if the Simple TLV Channel Status length is equal to 0.

6.2.8.20.2
Test suite files

Test Script:

API_2_PRH_GCID_1.scr

Test Applet:

API_2_PRH_GCID_1.java

Load Script:

API_2_PRH_GCID_1.ldr

Cleanup Script:

API_2_PRH_GCID_1.clr

Parameter File:

API_2_PRH_GCID_1.par

6.2.8.20.3
Test Procedure

	Id
	Description
	API Expectation
	APDU Expectation

	0
	Applet1 is installed with maximum number of channel = 01.
	
	

	1
	Channel status TLV is not present

1- Build and send a DISPLAY TEXT command

2- Call ProactiveResponseHandler.getChannelIdentifier() method.

	2- UNAVAILABLE_ELEMENT ToolkitException is thrown
	1- DISPLAY TEXT Proactive command is fetched.

TERMINAL RESPONSE with no Channel status TLV available.

	2
	Channel status TLV with a length equal to 0
1- Build and send a OPEN CHANNEL proactive command

2- Call ProactiveResponseHandler.getChannelIdentifier() method.

	2- OUT_OF_TLV_BOUNDARIES ToolkitException is thrown
	1- OPEN CHANNEL Proactive command is fetched.

TERMINAL RESPONSE with Channel status TLV length equal to 0.

	3
	Get channel identifier value
1- Call ProactiveHandler.init() and ProactiveHandler.send() methods to open a channel.

2- Call ProactiveResponseHandler.getChannelIdentifier() method.

3- Call ProactiveHandler.initCloseChannel() and ProactiveHandler.send() methods.

	2- Returns 0x01

	1- OPEN CHANNEL Proactive Command is fetched.

TERMINAL RESPONSE is issued with channel status value = 0x8100.

	4
	Get channel identifier value with 2 TLV

1- Call ProactiveHandler.init()and ProactiveHandler.send() methods to open a channel

2- Call ProactiveResponseHandler.getChannelIdentifier()

3- Call ProactiveHandler.initCloseChannel() and ProactiveHandler.send() methods.
	2- Returns 0x01
	1- OPEN CHANNEL Proactive Command is fetched.

TERMINAL RESPONSE is issued with channel status value = 0x8100 and 0x8200.

	5
	Channel status TLV is currently selected TLV

1- Call ProactiveHandler.init() and ProactiveHandler.send() methods to open a channel.

ViewHandler.FindTLV with Device Identity Tag.

2- Call ProactiveResponseHandler.getChannelIdentifier() method.

3- Compare ProactiveResponseHandler.getChannelIdentifier() and then ViewHandler.getValueByte(0) methods.

	2- Returns 0x03

3- Check getChannelIdentifier() =getValueByte(0)
	1- OPEN CHANNEL Proactive Command is fetched.

TERMINAL RESPONSE is issued with channel status value = 0x0305.

6.2.8.20.4
Test Coverage

	CRR number
	Test case number

	N1
	3

	N2
	4

	N3
	5

	C1
	1

	C2
	2

6.2.8.21
Method copyChannelData

Test Area Reference: API_2_PRH_CCHD_BSS

6.2.8.21.1
Conformance Requirement:

The method with following header shall be compliant to its definition in the API.

public short copyChannelData(byte[] dstBuffer,

 short dstOffset,

 short dstLength)

 throws java.lang.NullPointerException,

 java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException

Normal execution

CRRN1: The method shall copy a part of the Channel data string field.

CRRN2: The Channel data string field value returned shall be the first Channel data TLV element of the current response data field.

CRRN3: If the element is available it becomes the currenly selected TLV.

CRRN4: Returns dstOffset + dstLength.

Parameters error

CRRP1: If dstBuffer is null, a NullPointerException is thrown.

CRRP2: If dstOffset or dstLength parameter is negative an ArrayIndexOutOfBoundsException exception is thrown and no copy is performed.

CRRP3: If dstOffset+dstLength is greater than dstBuffer.length, the length of the dstBuffer array an ArrayIndexOutOfBoundsException exception is thrown and no copy is performed.

CRRP4: If dstLength is greater than the value field of the available TLV, a OUT_OF_TLV_BOUNDARIES ToolkitException is thrown.

Context errors

CRRC1: The method shall throw a UNAVAILABLE_ELEMENT ToolkitException if the Result TLV is not present.

6.2.8.21.2
Test suite files

Test Script:

API_2_PRH_CCHD_BSS_1.scr

Test Applet:

API_2_PRH_CCHD_BSS_1.java

Load Script:

API_2_PRH_CCHD_BSS_1.ldr

Cleanup Script:

API_2_PRH_CCHD_BSS_1.clr

Parameter File:

API_2_PRH_CCHD_BSS_1.par

6.2.8.21.3
Test Procedure

	Id
	Description
	API Expectation
	APDU Expectation

	0
	1- Applet1 is installed with maximum number of channel = 01.

2- Applet1 builds proactive commands OPEN CHANNEL with init() method in order to open one channel.

ProactiveHandler.send() method is called.
	
	2- OPEN CHANNEL proactive command is fetched

TERMINAL RESPONSE is issued with Channel Id = 01

	1
	CopyChannelData() with NULL dstBuffer
Build and send a RECEIVE DATA command

Call ProactiveResponseHandler.copyChannelData dstBuffer = NULL

DstOffset = 0

DstLength = 1
	NullPointerException is thrown
	RECEIVE DATA Proactive command is fetched.

TERMINAL RESPONSE with not empty Channel Data TLV is issued.

	2
	CopyChannelData() with negative dstOffset
1- call init() method for the RECEIVE DATA proactive command.

2- call ProactiveResponseHandler.copyChannelData()

DstBuffer.length = 6

DstOffset = -1

DstLength = 1

3- check dstBuffer is empty.
	2- an ArrayIndexOutOfBoundsException exception is thrown.

3- no copy is performed.
	1- RECEIVE DATA proactive command is fetched.

TERMINAL RESPONSE with 6 bytes avalaible (‘Hello1’)

	3
	CopyChannelData() with negative dstLength
1- call ProactiveResponseHandler.copyChannelData()

DstBuffer.length = 6

DstOffset = 0

DstLength = -1

2- check dstBuffer is empty.
	1- an ArrayIndexOutOfBoundsException exception is thrown.

2- no copy is performed.
	

	4
	CopyChannelData() with dstOffset+dstLength greater than dstBuffer.length
1- call ProactiveResponseHandler.copyChannelData() with dstOffset+dstLength greater than dstBuffer.length.

DstBuffer.length = 6

DstOffset = 5

DstLength = 2

2- check dstBuffer is empty.

	1- an ArrayIndexOutOfBoundsException exception is thrown.

2- no copy is performed.
	

	5
	CopyChannelData() with dstLength too large

Call ProactiveResponseHandler.copyChannelData() with dstLength greater than the value field of the available TLV.

DstBuffer.length = 6

DstOffset = 0

DstLength = 10

	a OUT_OF_TLV_BOUNDARIES ToolkitException is thrown.
	

	6
	CopyChannelData() without Channel Data TLV element

1- call init() method for the RECEIVE DATA proactive command.

Call send() method.

2- call ProactiveResponseHandler.copyChannelData()

DstBuffer.length = 10

DstOffset = 0

DstLength = 10

	2- a UNAVAILABLE_ELEMENT ToolkitException is thrown.
	1- RECEIVE DATA proactive command is fetched

TERMINAL RESPONSE without ChannelData TLV element.

	7
	Successful copyChannelData()

Call init() method for the RECEIVE DATA proactive command.

Call send() method.

2- Call findTLV() with TAG of DEVICE IDENTITY.

3- Call ProactiveResponseHandler.copyChannelData()

DstBuffer.length = 6

DstOffset = 0

DstLength = 6

DstBuffer is the whole Buffer.
	3- the Channel Data TLV is copied into dstBuffer.

The applet checks the returned value is dstOffset + dstLength = 6.
	1- RECEIVE DATA proactive command is fetched

TERMINAL RESPONSE with one Channel data TLV element. (6 bytes available = ‘Hello2’)

	8
	Compare copied Buffer

Check dstBuffer.
	The applet checks that dstBuffer contains the channel data from the TERMINAL RESPONSE.
	

	9
	Check the Channel Data TLV is selected

Call the ViewHandler.getValueByte(0) method

	The returned byte is the same than the first byte of the Channel data TLV (i.e. ‘H’)
	

	10
	Successful copyChannelData()

Call ProactiveResponseHandler.copyChannelData()

DstBuffer.length = 6

DstOffset = 2

DstLength = 3

DstBuffer is a part of Buffer.
	The Channel Data TLV is copied into dstBuffer.

The applet checks the returned value is dstOffset + dstLength = 5.

	

	11
	Compare copied Buffer

Check dstBuffer.
	The applet checks that bytes from 2 to 4 of dstBuffer contain the first 3 bytes of channel data TLV from the TERMINAL RESPONSE.
	

	12
	Successful copyChannelData()

1- Initialise dstBuffer to [00, 01…]

2- Call ProactiveResponseHandler.copyChannelData()

DstBuffer.length = 6

DstOffset = 2

DstLength = 3

DstBuffer is a part of buffer.
	2- The Channel Data TLV is copied into dstBuffer.

The returned value is dstOffset + dstLength = 5.
	

	13
	Compare copied Buffer

Check dstBuffer.
	The applet checks that only bytes from 2 to 4 of dstBuffer have been updated with the first 3 bytes of channel data TLV from the TERMINAL RESPONSE.
	

	14
	Successful copyChannelData(), with 2 TLV

1- call init() method for the RECEIVE DATA proactive command.

Call send() method.

2- call ProactiveResponseHandler.copyChannelData() with dstLength lower than the value field of the available TLV.

DstBuffer.length = 6

DstOffset = 0

DstLength = 6
	2- the first Channel Data TLV is copied into dstBuffer.

The returned value is dstOffset+dstLength =0x06
	1- RECEIVE DATA proactive command is fetched

TERMINAL RESPONSE with two Channel data TLV element

1st TLV : 6 bytes available = ‘Hello3’

2nd TLV : 6 bytes available = ‘Hello4’

	15
	Compare copied Buffer

Check dstBuffer.
	Check that dstBuffer contains the first Channel Data TLV from the TERMINAL RESPONSE.
	

6.2.8.21.4
Test Coverage

	CRR number
	Test case number

	N1
	7, 10, 12, 14

	N2
	14

	N3
	9

	N4
	8, 11, 13, 15

	P1
	1

	P2
	2, 3

	P3
	4

	P4
	5

	C1
	6

6.2.9.3
Method clearEvent

Test Area Reference: API_2_TKR_CEVTB

6.2.9.3.1
Conformance requirement:

The method with following header shall be compliant to its definition in the API.

public void clearEvent(byte event)

 throws ToolkitException,

 javacard.framework.TransactionException
Normal execution

CRRN1: A call to isEventSet() method for a cleared event should return false after a call to clearEvent.

CRRN2: The SIM Toolkit Framework shall not trigger the applet on the occurrence of the cleared event anymore.

CRRN3: if event was EVENT_CALL_CONTROL_BY_SIM and after the call, no applet is registered to it, The SIM Toolkit Framework shall allow an applet to register to this event.

CRRN4: if event was EVENT_CALL_CONTROL_BY_SIM and one applet is still registered to these event, The SIM Toolkit Framework shall not allow an applet to register to this event.

CRRN5: if event was EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM and after the call, no applet is registered to it, The SIM Toolkit Framework shall allow an applet to register to this event.

CRRN6: if event was EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM and one applet is still registered to these event, The SIM Toolkit Framework shall not allow an applet to set this event.

Parameters error

CRRP1: Shall throw a Toolkit Exception with reason EVENT_NOT_ALLOWED if event was EVENT_MENU_SELECTION.

CRRP2: Shall throw a Toolkit Exception with reason EVENT_NOT_ALLOWED if event was EVENT_MENU_SELECTION_HELP_REQUEST.

CRRP3: Shall throw a Toolkit Exception with reason EVENT_NOT_ALLOWED if event was EVENT_TIMER_EXPIRATION.

CRRP4: Shall throw a Toolkit Exception with reason EVENT_NOT_ALLOWED if event was EVENT_STATUS_COMMAND.

Context errors

CRRC1: shall throw javacard.framework.TransactionException - if the operation would cause the commit capacity to be exceeded.

No requirements

6.2.9.3.2
Test suite files

Test Script:

API_2_TKR_CEVTB_1.scr

Test Applet:

API_2_TKR_CEVTB_1.java

As default but applet registers to an event list which contains all defined events in [7] excepted those that aren't allowed or supported by setEvent().
Load Script:

API_2_TKR_CEVTB_1.ldr

Cleanup script:

API_2_TKR_CEVTB_1.clr

Parameter File:

API_2_TKR_CEVTB_1.par

6.2.9.3.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	
	

	

	

	1
	Clear ALLOWED unregistered events

For events ranging from -1, 1 to 24 and 127* excepted those that aren't allowed (7, 8, 11, 19), the applet calls:

1-
clearEvent() method

2-
isEventSet() method

	1-
No exception is thrown each time.

2-
Shall return false each time.

	

	
	

	

	

	2
	Clear registered events

1-
For each ALLOWED and SUPPORTED event (-1, 1 to 24 and 127)* excepted those that aren't allowed (7, 8, 11, 19), the applet calls setEvent() method.

2-
For each ALLOWED and SUPPORTED event (-1, 1 to 24 and 127)* excepted those that aren't allowed (7, 8, 11, 19), the applet calls:

2.1- clearEvent() method

2.2- isEventSet() method

	1-
No exception shall be thrown.

2.1- No exception shall be thrown.

2.2- Shall return false.
	

	
	

	
	

	3
	Clearing NOT ALLOWED events

For each event among:

EVENT_MENU_SELECTION, EVENT_MENU_SELECTION_HELP_REQUEST, EVENT_TIMER_EXPIRATION, EVENT_STATUS_COMMAND

1- The applet calls clearEvent(event) method.

	1- Each time, clearEvent shall throw a ToolkitException with reason EVENT_NOT_ALLOWED.
	

	4
	Checking applet isn't triggered by an ENVELOPE(SMS-PP DOWNLOAD) command

1 -
reset and initialise the card

2 - An ENVELOPE(SMS-PP DOWNLOAD) is sent with a TAR referencing applet.

	Applet is not trigged by an ENVELOPE(SMS-PP DOWNLOAD) command
	

*Note: Although the method clearEvent is defined for a range from –128 to 127 only the allowed events are tested here, because the range from -128 to –2 is reserved for propriatary use in [7] chapter 6.2 and the range from 25 to 126 is omitted for compatibility with future releases of [7]
6.2.9.3.4
Test Coverage

	CRR number
	Test case number

	N1
	1,2

	N2
	4

	N3
	Framework

	N4
	Framework

	N5
	Framework

	N6
	Framework

	P1
	3

	P2
	3

	P3
	3

	P4
	3

	C1
	not testable

6.2.9.9
Method isEventSet

Test Area Reference: API_2_TKR_IEVSB

6.2.9.9.1
Conformance requirement:

The method with following header shall be compliant to its definition in the API.

public boolean isEventSet(byte event)

Normal execution

CRRN1: shall return true if the event is set in the Toolkit Registry for the applet

CRRN2: shall return false if the event isn't set in the Toolkit Registry for the applet

Parameters error

No requirements.

Context errors

No requirements

6.2.9.9.2
Test suite files

Test Script:

API_2_TKR_IEVSB_1.scr

Test Applet:

API_2_TKR_IEVSB_1.java

API_2_TKR_IEVSB_2.java

Installation parameter:

Same as default applet but with:

-
Maximum text length for a menu entry:
15

-
Maximum number of menu entries:

1

-
Position / Identifier for each menu entry:
'01'/'01'

-
Maximum number of timers:

1

Load Script:

API_2_TKR_IEVSB_1.ldr

Cleanup script:

API_2_TKR_IEVSB_1.clr

Parameter File:

API_2_TKR_IEVSB_1.par

6.2.9.9.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	
	

	
	

	1
	Install Applet1 only registered to

EVENT FORMATTED_SMS_PP_ENV and EVENT_MENU_SELECTION

Test that events aren't set

Applet calls isEventSet() for each event ranging from –1, 1 to 24 and 127* excepted EVENT_FORMATTED_SMS_PP_ENV (2) and EVENT_MENU_SELECTION (7).

	Shall return false each time.
	

	
	

	
	

	2
	For EVENT_FORMATTED_SMS_PP_ENV

isEventSet(EVENT_FORMATTED_SMS_PP_ENV)

	Shall return true.
	

	
	

	
	

	3
	For EVENT_MENU_SELECTION

isEventSet(EVENT_MENU_SELECTION)

	Shall return true
	

	
	

	

	

	4
	After clearing EVENT_FORMATTED_SMS_PP_ENV

1-
clearEvent(EVENT_FORMATTED_SMS_PP_ENV)

2- isEventSet(EVENT_FORMATTED_SMS_PP_ENV)

	1-
No exception shall be thrown.

2-
Shall return false.
	

	
	

	

	

	5
	Setting events

For all allowed events defined in TS43.019[7] for method setEvent():
EVENT_PROFILE_DOWNLOAD, EVENT_FORMATTED_SMS_PP_ENV, EVENT_FORMATTED_SMS_PP_UPD, EVENT_FORMATTED_SMS_CB, EVENT_UNFORMATTED_SMS_PP_ENV, EVENT_UNFORMATTED_SMS_PP_UPD, EVENT_UNFORMATTED_SMS_CB, EVENT_CALL_CONTROL_BY_SIM, EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM, EVENT_EVENT_DOWNLOAD_MT_CALL, EVENT_EVENT_DOWNLOAD_CALL_CONNECTED, EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED, EVENT_EVENT_DOWNLOAD_LOCATION_STATUS, EVENT_EVENT_DOWNLOAD_USER_ACTIVITY, EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE, EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS, EVENT_EVENT_DOWNLOAD_LANGUAGE_SELECTION, EVENT_EVENT_DOWNLOAD_BROWSER_TERMINATION,

EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE,

EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS,

EVENT_FIRST_COMMAND_AFTER_SELECT,

EVENT_UNRECOGNIZED_ENVELOPE

applet calls:

1- setEvent() method

2- isEventSet() method

	1-
No exception shall be thrown.

2-
Shall return true each time.
	

	
	

	

	

	6
	For EVENT_MENU_SELECTION_HELP_ REQUEST

1- isEventSet(EVENT_MENU_SELECTION_HELP_ REQUEST)

2- call changeMenuEntry() with help supported

3- isEventSet(EVENT_MENU_SELECTION_HELP_ REQUEST)

	1- Shall return false.

3- Shall return true.
	

	
	

	

	

	7
	For EVENT_TIMER_EXPIRATION

1-
isEventSet(EVENT_TIMER_EXPIRATION)

2-
call allocateTimer()

3-
isEventSet(EVENT_TIMER_EXPIRATION)

	1-
Shall return false.

3-
Shall return true.
	

	
	

	

	

	8
	For EVENT_STATUS_COMMAND

1-
isEventSet(EVENT_STATUS_COMMAND)

2- call requestPollInterval(POLL_SYSTEM_ DURATION)

3-
isEventSet(EVENT_STATUS_COMMAND)

	1-
Shall return false.

3-
Shall return true.
	

	9
	Install Applet2 only registered to

EVENT FORMATTED_SMS_PP_ENV

isEventSet(EVENT_MENU_SELECTION)
	Shall return false.
	

*Note: Although the method isEventSet() is defined for a range from –128 to 127 only the allowed events are tested, because the range from -128 to –2 is reserved for propriatary use in [7] chapter 6.2 and the range from 25 to 126 is omitted for compatibility with future releases of [7]

6.2.9.9.4
Test Coverage

	CRR number
	Test case number

	N1
	2,3,4,5,6,7,8

	
	

	N2
	1,5,6,7,8,9

6.2.9.12
Method setEvent

Test Area Reference: API_2_TKR_SEVTB

6.2.9.12.1
Conformance Requirement:

The method with following header shall be compliant to its definition in the API.

public void setEvent(byte id)

 throws ToolkitException,

 javacard.framework.TransactionException

Normal execution

CRRN1: a following call to isEventSet() method with the same event id shall answer true for the applet.

CRRN2: the SIM Toolkit Framework shall trigger the applet if an occurrence of the set event happens.

CRRN3: the method shall accept all the events defined in [7] except: EVENT_MENU_SELECTION, EVENT_MENU_SELECTION_HELP_REQUEST, EVENT_TIMER_EXPIRATION , EVENT_STATUS_COMMAND

CRRN4: no exception shall be thrown if the applet registers more than once to the same event.

CRRN5: all updates in the ToolkitRegistry are atomic

Parameters error

CRRP1: shall throw a ToolkitException with EVENT_NOT_SUPPORTED reason if event is 0.

CRRP2: shall throw a ToolkitException with EVENT_NOT_ALLOWED reason if event is EVENT_MENU_SELECTION.

CRRP3: shall throw a ToolkitException with EVENT_NOT_ALLOWED reason if event is EVENT_MENU_SELECTION_HELP_REQUEST.

CRRP4: shall throw a ToolkitException with EVENT_NOT_ALLOWED reason if event is EVENT_TIMER_EXPIRATION.

CRRP5: shall throw a ToolkitException with EVENT_NOT_ALLOWED reason if event is EVENT_STATUS_COMMAND.

Context errors

CRRC1: shall throw a ToolkitException with EVENT_ALREADY_REGISTERED if event is EVENT_CALL_CONTROL_BY_SIM but another applet is already registered to it.

CRRC2: shall throw a ToolkitException with EVENT_ALREADY_REGISTERED if event is EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM but another applet is already registered to it.

CRRC3: shall throw a ToolkitException with TAR_NOT_DEFINED if event is FORMATTED_SMS_PP_ENV and the applet has no TAR defined.

CRRC4: shall throw a ToolkitException with TAR_NOT_DEFINED if event is FORMATTED_SMS_PP_UPD and the applet has no TAR defined.

CRRC5: shall throw a ToolkitException with TAR_NOT_DEFINED if event is FORMATTED_SMS_CB_ENV and the applet has no TAR defined.

CRRC6: shall throw javacard.framework.TransactionException - if the operation would cause the commit capacity to be exceeded.

6.2.9.12.2
Test suite files

Test Script:

API_2_TKR_SEVTB_1.scr

Test Applet:

API_2_TKR_SEVTB_1.java

API_2_TKR_SEVTB_2.java

API_2_TKR_SEVTB_3.java

API_2_TKR_SEVTB_4.java

Load Script:

API_2_TKR_SEVTB_1.ldr

The load script installs the 4 instances.

Cleanup script:

API_2_TKR_SEVTB_1.clr

Parameter File:

API_2_TKR_SEVTB_1.par

6.2.9.12.3
Test Procedure

	Id
	Description
	API Expectation
	APDU Expectation

	
	

	
	

	1
	Applet 1 is triggered by ENVELOPE(SMS_ PP_FORMATTED) command.

Send ENVELOPE(SMS_PP_FORMATTED)

	Applet 1 shall be triggered
	

	
	

	

	

	2
	Setting ALLOWED and SUPPORTED events

1-
For all allowed events (-1, 1 to 24 and 127 excepted 7, 8, 11, 19) defined in TS43.019[7]*:
EVENT_PROFILE_DOWNLOAD, EVENT_FORMATTED_SMS_PP_ENV, EVENT_FORMATTED_SMS_PP_UPD, EVENT_FORMATTED_SMS_CB, EVENT_UNFORMATTED_SMS_PP_ENV, EVENT_UNFORMATTED_SMS_PP_UPD, EVENT_UNFORMATTED_SMS_CB, EVENT_CALL_CONTROL_BY_SIM, EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM, EVENT_EVENT_DOWNLOAD_MT_CALL, EVENT_EVENT_DOWNLOAD_CALL_CONNECTED, EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED, EVENT_EVENT_DOWNLOAD_LOCATION_STATUS, EVENT_EVENT_DOWNLOAD_USER_ACTIVITY, EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE, EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS, EVENT_EVENT_DOWNLOAD_LANGUAGE_SELECTION, EVENT_EVENT_DOWNLOAD_BROWSER_TERMINATION,

EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE,

EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS,

EVENT_FIRST_COMMAND_AFTER_SELECT,

EVENT_UNRECOGNIZED_ENVELOPE

1.1-
clearEvent(event)

1.2-
isEventSet(event)

1.3-
setEvent(event)

1.4-
isEventSet(event)

1.5-
clearEvent(event)

	1.1-
No exception shall be thrown.

1.2-
Shall return false.

1.3-
No exception shall be thrown.

1.4-
Shall return true.

1.5-
No exception shall be thrown.
	

	3
	Event 0

Call setEvent(0)
	Shall throw a ToolkitException with EVENT_NOT_SUPPORTED reason code.

	

	4
	Setting EVENT_MENU_SELECTION

Call setEvent(EVENT_MENU_SELECTION)
	Shall throw a ToolkitException with EVENT_NOT_ALLOWED reason code.

	

	5
	Setting EVENT_MENU_SELECTION_HELP_REQUEST

Call setEvent(EVENT_MENU_SELECTION_HELP_REQUEST)
	Shall throw a ToolkitException with EVENT_NOT_ALLOWED reason code.

	

	6
	Setting EVENT_TIMER_EXPIRATION

Call setEvent(EVENT_TIMER_EXPIRATION)
	Shall throw a ToolkitException with EVENT_NOT_ALLOWED reason code.

	

	7
	Setting EVENT_STATUS_COMMAND

Call setEvent(EVENT_STATUS_COMMAND)
	Shall throw a ToolkitException with EVENT_NOT_ALLOWED reason code.

	

	8
	Setting EVENT_CALL_CONTROL_BY_SIM

Call setEvent(EVENT_CALL_CONTROL_BY_SIM)
	No Exception shall be thrown

	

	
	

	

	

	9
	Setting EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

Call setEvent(EVENT_MO_SHORT_MESSAGE_ CONTROL_BY_SIM)
	No Exception shall be thrown

	

	
	

	
	

	10
	Check applet is triggered by an ENVELOPE(CALL_CONTROL_BY_SIM)

Trigger the applet
	Applet is triggered by an ENVELOPE(CALL_CONTROL_BY_SIM)
	

	
	

	
	

	11
	Check applet is triggered by an ENVELOPE(MO_SHORT_MESSAGE_CONTROL_BY_SIM)

Trigger the Applet
	Applet is triggered by an ENVELOPE(MO_SHORT_MESSAGE_CONTROL_BY_SIM)
	

	
	

	
	

	12
	Applet 2 is triggered by ENVELOPE(SMS_ PP_DOWNLOAD) command.

Trigger the applet 2
	Applet 2 is triggered by an ENVELOPE(SMS_ PP_DOWNLOAD) command
	

	13
	Applet 2 registers to CALL_CONTROL_BY_SIM
but it is already assigned

setEvent(EVENT_CALL_CONTROL_BY_SIM)
	Shall throw a ToolkitException with EVENT_ALREADY_REGISTERED reason code.

	

	14
	Applet 2 registers to MO_MESSAGE_CONTROL_BY SIM
but it is already assigned

setEvent(EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM)
	Shall throw a ToolkitException with EVENT_ALREADY_REGISTERED reason code.

	

	15
	Applet 3 with no TAR defined registers to EVENT_UNFORMATTED_SMS_CB

1- send ENVELOPE(CELL_BROADCAST_DATA_ DOWNLOAD)

2- setEvent(FORMATTED_SMS_PP_ENV)

3- setEvent(FORMATTED_SMS_PP_UPD)

4- setEvent(FORMATTED_SMS_CB_ENV)

	1- Applet 3 shall be triggered

2- ToolkitException with reason code TAR_NOT_DEFINED should be thrown

3- ToolkitException with reason code TAR_NOT_DEFINED should be thrown

4- ToolkitException with reason code TAR_NOT_DEFINED should be thrown
	

	16
	Applet 4 registers multiple to

EVENT_FORMATTED_SMS_PP_ENV

1- send ENVELOPE(EVENT_FORMATTED_ SMS_PP_ENV)

2- setEvent(EVENT_FORMATTED_SMS_PP_ UPD)

3- setEvent(EVENT_FORMATTED_SMS_PP_ UPD)

4- send ENVELOPE(EVENT_FORMATTED_ SMS_PP_UPD)

	1- Applet 4 shall be triggered

2- no Exception shall be thrown

3- no Exception shall be thrown

4- Applet 4 shall be triggered
	

*Note: Although the method setEvent is defined for a range from –128 to 127 only the allowed events are tested, because the range from -128 to –2 is reserved for propriatary use in [7] chapter 6.2 and the range from 25 to 126 is omitted for compatibility with future releases of [7]

6.2.9.12.4
Test Coverage

	CRR number
	Test case number

	N1
	2

	N2
	1, 8,9,10, 11, 12

	N3
	2,4,5,6,7

	N4
	16

	N5
	not testable

	P1
	3

	P2
	4

	P3
	5

	P4
	6

	P5
	7

	C1
	13

	C2
	14

	C3
	15

	C4
	15

	C5
	15

	C6
	not testable

6.2.9.13
Method setEventList

Test Area Reference: API_2_TKR_SEVL_BSS

6.2.9.13.1
Conformance Requirement:
The method with following header shall be compliant to its definition in the API.

public void setEventList(byte[] eventList,

 short offset,

 short length)

throws java.lang.NullPointerException,

 java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException,

 javacard.framework.TransactionException
Normal execution

CRRN1: for all events set successfully by this method, a call to isEventSet() method should return true.

CRRN2: the SIM Toolkit Framework shall trigger the applet if an occurrence of one of the successfully registered events happens.

CRRN3: this method shall accept all the events defined in [7] except: EVENT_MENU_SELECTION, EVENT_MENU_SELECTION_HELP_REQUEST, EVENT_TIMER_EXPIRATION , EVENT_STATUS_COMMAND.

CRRN4: all updates on the ToolkitRegistry are atomic

CRRN5: No exception shall be thrown if the applet registers more than once to the same event.

Parameters error
CRRP1: shall throw a java.lang.NullPointerException if eventList is null.

CRRP2: shall throw a java.lang.ArrayIndexOutOfBoundsException if offset would cause access outside array bounds.

CRRP3: shall throw a java.lang.ArrayIndexOutOfBoundsException if length would cause access outside array bounds.

CRRP4: shall throw a java.lang.ArrayIndexOutOfBoundsException if both offset and length would cause access outside array bounds.

CRRP5: shall throw a ToolkitException with EVENT_NOT_SUPPORTED reason if event is 0.

CRRP6: shall throw a ToolkitException with EVENT_NOT_ALLOWED reason if eventList contains EVENT_MENU_SELECTION.

CRRP7: shall throw a ToolkitException with EVENT_NOT_ALLOWED reason if eventList contains EVENT_MENU_SELECTION_HELP_REQUEST.

CRRP8: shall throw a ToolkitException with EVENT_NOT_ALLOWED reason if eventList contains EVENT_TIMER_EXPIRATION.

CRRP9: shall throw a ToolkitException with EVENT_NOT_ALLOWED reason if eventList contains EVENT_STATUS_COMMAND.

Context errors

CRRC1: shall throw a ToolkitException with EVENT_ALREADY_REGISTERED if eventList contains EVENT_CALL_CONTROL_BY_SIM but another applet is already registered to it.

CRRC2: shall throw a ToolkitException with EVENT_ALREADY_REGISTERED if eventList contains EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM but another applet is already registered to it.

CRRC3: shall throw a ToolkitException with TAR_NOT_DEFINED if event is FORMATTED_SMS_PP_ENV and the applet has no TAR defined.

CRRC4: shall throw a ToolkitException with TAR_NOT_DEFINED if event is FORMATTED_SMS_PP_UPD and the applet has no TAR defined.

CRRC5: shall throw a ToolkitException with TAR_NOT_DEFINED if event is FORMATTED_SMS_CB_ENV and the applet has no TAR defined.

CRRC6: shall throw javacard.framework.TransactionException - if the operation would cause the commit capacity to be exceeded.

6.2.9.13.2
Test suite files

Test Script:

API_2_TKR_SEVL_BSS_1.scr

Test Applet:

API_2_TKR_SEVL_BSS_1.java

API_2_TKR_SEVL_BSS_2.java

API_2_TKR_SEVL_BSS _3.java

Load Script:

API_2_TKR_SEVL_BSS_1.ldr

The load script installs the 4 instances.

Cleanup script:

API_2_TKR_SEVL_BSS_1.clr

Parameter File:

API_2_TKR_SEVL_BSS_1.par

6.2.9.13.3
Test Procedure

	Id
	Description
	API Expectation
	APDU Expectation

	
	

	

	

	1
	Applet 1 Registering all eventList buffer

EventList = all allowed events (-1, 1 to 24 and 127 excepted 7, 8, 11, 19) defined in TS43.019[7]:
EVENT_PROFILE_DOWNLOAD, EVENT_FORMATTED_SMS_PP_ENV, EVENT_FORMATTED_SMS_PP_UPD, EVENT_FORMATTED_SMS_CB, EVENT_UNFORMATTED_SMS_PP_ENV, EVENT_UNFORMATTED_SMS_PP_UPD, EVENT_UNFORMATTED_SMS_CB, EVENT_CALL_CONTROL_BY_SIM, EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM, EVENT_EVENT_DOWNLOAD_MT_CALL, EVENT_EVENT_DOWNLOAD_CALL_CONNECTED, EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED, EVENT_EVENT_DOWNLOAD_LOCATION_STATUS, EVENT_EVENT_DOWNLOAD_USER_ACTIVITY, EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE,

EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS, EVENT_EVENT_DOWNLOAD_LANGUAGE_SELECTION, EVENT_EVENT_DOWNLOAD_BROWSER_TERMINATION,

EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE,

EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS,

EVENT_FIRST_COMMAND_AFTER_SELECT,

EVENT_UNRECOGNIZED_ENVELOPE

1-
For each event in EventList clearEvent(event)

2-
setEventList(eventList)

Offset = 0

Length = eventList.lentgh

3-
For all events in eventList isEventSet(event)

4-
For each event in EventList clearEvent(event)

	1-
No exception shall be thrown.

2-
No exception shall be thrown.

3-
Each time shall return true.

4-
No exception shall be thrown.

	

	
	

	

	

	2
	Registering part of eventList buffer

EventList = all allowed events defined in TS43.019[7] (see test case 1).

1-
For each event in EventList clearEvent(event)

2-
setEventList(eventList, offset, length)

Offset > 0

Length = eventList.lentgh – offset

3-
For all events in eventList:

isEventSet(event)

4-
For each event in EventList: clearEvent(event)

	1-
No exception shall be thrown.

2-
No exception shall be thrown.

3-
Each time shall return true for events ranging from offset to offset+length else shall return false.

4-
No exception shall be thrown.

	

	3
	Null buffer

EventList = null

	Shall throw a java.lang.NullPointerException Exception
	

	4
	Out of bounds offset

Offset = eventList.length

Length = 1

	Shall throw a java.lang.ArrayIndexOutOfBounds Exception
	

	5
	Out of bounds and big offset

Offset = 255

Length = 1

	Shall throw a java.lang.ArrayIndexOutOfBounds Exception
	

	6
	Offset < 0

Offset = -1

Length = 1

	Shall throw a java.lang.ArrayIndexOutOfBounds Exception
	

	7
	Out of bounds length

Offset = 0

Length = eventList.length + 1

	Shall throw a java.lang.ArrayIndexOutOfBounds Exception
	

	8
	Out of bounds and big length

Offset = 0

Length = 255

	Shall throw a java.lang.ArrayIndexOutOfBounds Exception
	

	9
	Length < 0

Offset = 0

Length = -1

	Shall throw a java.lang.ArrayIndexOutOfBounds Exception
	

	10
	Out of bounds offset + Length

Offset + length > eventList.length + 1

	Shall throw a java.lang.ArrayIndexOutOfBounds Exception
	

	11
	Event 0

Call setEventList(eventList) with eventList indicating event 0
	Shall throw a ToolkitException with EVENT_NOT_SUPPORTED reason code.

	

	12
	EVENT_MENU_SELECTION

Call setEventList(eventList) with eventList indicating EVENT_MENU_SELECTION
	Shall throw a ToolkitException with reason code EVENT_NOT_ALLOWED.

	

	13
	EVENT_MENU_SELECTION_HELP_REQUEST

Call setEventList(eventList) with eventList indicating EVENT_MENU_SELECTION_HELP_REQUEST
	Shall throw a ToolkitException with reason code EVENT_NOT_ALLOWED.

	

	14
	EVENT_TIMER_EXPIRATION

Call setEventList(eventList) with eventList indicating EVENT_TIMER_EXPIRATION
	Shall throw a ToolkitException with reason code EVENT_NOT_ALLOWED.

	

	15
	EVENT_STATUS_COMMAND

Call setEventList(eventList) with eventList indicating EVENT_STATUS_COMMAND
	Shall throw a ToolkitException with reason code EVENT_NOT_ALLOWED.

	

	16
	Setting EVENT_CALL_CONTROL_BY_SIM

setEventList(List, 0, 2) with List containing

EVENT_CALL_CONTROL_BY_SIM & EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM
	Shall not throw an exception

	

	17
	Check applet is triggered by an ENVELOPE(CALL_CONTROL_BY_SIM)

Reset and initialise the card

Trigger the applet
	Applet is trigged by an ENVELOPE(CALL_CONTROL_BY_SIM)
	

	18
	Check applet is triggered by an ENVELOPE(MO_SHORT_MESSAGE_CONTROL_BY_SIM)

Trigger the applet
	Applet is trigged by an ENVELOPE(MO_SHORT_MESSAGE_CONTROL_BY_SIM)
	

	19
	Applet 2 registers to CALL_CONTROL_BY_SIM
but it is already assigned

setEventList(MonoEventList,0,1) with MonoEventList containing EVENT_CALL_CONTROL_BY_SIM

	Shall throw a ToolkitException with EVENT_ALREADY_REGISTERED reason code.

	

	20
	Applet 2 registers to MO_SHORT_MESSAGE_CONTROL_BY_SIM
but it is already assigned setEventList(MonoEventList,0,1) with MonoEventList containing EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

	Shall throw a ToolkitException with EVENT_ALREADY_REGISTERED reason code.

	

	21
	Applet 3 with no TAR defined registers to EVENT_UNFORMATTED_SMS_CB

1- send ENVELOPE(EVENT_UNFORMATTED_SMS_CB)

2- setEventList(EVENT_FORMATTED_SMS_PP_ENV, EVENT_UNFORMATTED_SMS_PP_ENV, EVENT_UNFORMATTED_SMS_PP_ENV)

3- setEventList(EVENT_UNFORMATTED_SMS_PP_ ENV, EVENT_FORMATTED_SMS_PP_UPD, EVENT_UNFORMATTED_SMS_PP_ENV)

4- setEventList(EVENT_UNFORMATTED_SMS_PP_ENV, EVENT_UNFORMATTED_SMS_PP_ENV, EVENT_FORMATTED_SMS_CB_ENV)

5- isEventSet(EVENT_UNFORMATTED_SMS_PP_ENV)

6- isEventSet(EVENT_UNFORMATTED_SMS_PP_UPD)

7- isEventSet(EVENT_FORMATTED_SMS_PP_ENV)

8- isEventSet(EVENT_FORMATTED_SMS_PP_UPD)

9- isEventSet(EVENT_FORMATTED_SMS_CB_ENV)
	1- Applet3 shall be triggered

2- ToolkitException with reason code TAR_NOT_DEFINED should be thrown

3- ToolkitException with reason code TAR_NOT_DEFINED should be thrown

4- ToolkitException with reason code TAR_NOT_DEFINED should be thrown

5- method should return FALSE

6- method should return FALSE

7- method should return FALSE

8- method should return FALSE

9- method should return FALSE

	

	22
	1- setEventList(EVENT_UNFORMATTED_SMS_PP_ENV, EVENT_UNFORMATTED_SMS_PP_ENV)

2- isEventSet(EVENT_UNFORMATTED_SMS_PP_ENV)

	1- no exception should be thrown

2- method should return true

	

6.2.9.13.4
Test Coverage

	CRR number
	Test case number

	N1
	1,2

	N2
	16,17,18

	N3
	1,2,11,12,13,14,15

	N4
	21

	N5
	22

	P1
	3

	P2
	4,5,6

	P3
	7,8,9

	P4
	10

	P5
	11

	P6
	12

	P7
	13

	P8
	14

	P9
	15

	C1
	19

	C2
	20

	C3
	21

	C4
	21

	C5
	21

	C6
	not testable

6.3
SIM Toolkit Framework

6.3.1

Minimum Handler Availability

6.3.1.1
ProactiveHandler

Test Area Reference: FWK_MHA_PAHD

6.3.1.1.1
Conformance Requirement

Normal Execution

CRRN1: If a proactive session is not ongoing the ProactiveHandler is available from the invocation to the termination of the processToolkit method for the following events:

EVENT_FORMATTED_SMS_PP_ENV

EVENT_UNFORMATTED_SMS_PP_ENV

EVENT_FORMATTED_SMS_PP_UPD

EVENT_UNFORMATTED_SMS_PP_UPD

EVENT_FORMATTED_SMS_CB

EVENT_UNFORMATTED_SMS_CB

EVENT_MENU_SELECTION

EVENT_MENU_SELECTION_HELP_REQUEST

EVENT_TIMER_EXPIRATION

EVENT_EVENT_DOWNLOAD_MT_CALL

EVENT_EVENT_DOWNLOAD_CALL_CONNECTED

EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED

EVENT_EVENT_DOWNLOAD_LOCATION_STATUS

EVENT_EVENT_DOWNLOAD_USER_ACTIVITY

EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE

EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS

EVENT_EVENT_DOWNLOAD_LANGUAGE_SELECTION

EVENT_EVENT_DOWNLOAD_BROWSER_TERMINATION

EVENT_UNRECOGNIZED_ENVELOPE

EVENT_STATUS_COMMAND

EVENT_CALL_CONTROL

EVENT_SMS_MO_CONTROL

EVENT_PROFILE_DOWNLOAD

EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE

EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS

Context Errors

CRRC1: The ProactiveHandler and its content are not available for any toolkit applet triggered from the invocation to the termination of their processToolkit method for the following events:

EVENT_FIRST_COMMAND_AFTER_SELECT

6.3.1.1.2
Test Suite Files

Test Script:

FWK_MHA_PAHD_1.scr

Test Applet:

FWK_MHA_PAHD_1.java

FWK_MHA_PAHD_2.java

Load Script:

FWK_MHA_PAHD_1.ldr

Cleanup Script:

FWK_MHA_PAHD_1.clr

Parameter File:

FWK_MHA_PAHD_1.par

6.3.1.1.3 Test Procedure

	Id
	Description
	API /Framework Expectation
	APDU Expectation

	
	

	

	

	1
	Applets registration to all events and Proactive Handler availability with EVENT_FIRST_COMMAND_AFTER_SELECT

Applet1 is registered to all events defined in [7].

Using the methods initMenuEntry() for EVENT_MENU_SELECTION, requestPollInterval() for EVENT_STATUS_COMMAND, allocateTimer() for EVENT_TIMER_EXPIRATION and setEventList() for the rest of the events.

Applet2 is registered to all events defined in [7], , EVENT_CALL_CONTROL_BY_SIM and EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM.

Using the methods initMenuEntry() for EVENT_MENU_SELECTION, requestPollInterval() for EVENT_STATUS_COMMAND, allocateTimer() for EVENT_TIMER_EXPIRATION and setEventList() for the rest of the events.

The priority of applet1 is higher than priority of applet2

1- Select MF
2-Applet1 gets the Proactive Handler.

Applet1 is deregistered from EVENT_FIRST_COMMAND_AFTER_SELECT.

3-Applet2 gets the Proactive Handler

Applet2 is deregistered to EVENT_FIRST_COMMAND_AFTER_SELECT.

	1- Applet1 is triggered by EVENT_FIRST_COMMAND_AFTER_SELECT

2- A Toolkit Exception HANDLER_NOT_AVAILABLE is thrown.

Applet1 finalizes

 Applet2 is triggered by EVENT_FIRST_COMMAND_AFTER_SELECT

3-A Toolkit Exception HANDLER_NOT_AVAILABLE is thrown.

Applet2 finalizes

	

	
	

	

	

	2
	Proactive Handler availability with EVENT_PROFILE_DOWNLOAD

1-Terminal Profile command is sent to the SIM without the facility of SET_EVENT_LIST, POLL_INTERVAL,SET UP IDLE MODE TEXT and SET UP MENU.

2-Applet1 gets the Proactive Handler

Applet1 is deregistered to EVENT_PROFILE_DOWNLOAD

3-Applet2 gets the Proactive Handler

Applet2 is deregistered to EVENT_PROFILE_DOWNLOAD

	1- Applet1 is triggered by EVENT_PROFILE_DOWNLOAD

2- No exception is thrown.

Applet1 finalizes.

Applet2 is triggered by EVENT_PROFILE_DOWNLOAD

3 No exception is thrown
	

	
	

	

	

	3
	Proactive Handler availability with EVENT_MENU_SELECTION_HELP_REQUEST

Perform SIM initialization with all the facilities supported

1-Envelope menu selection with help request is sent to the SIM

2-Applet1 gets the Proactive Handler

	1- Applet1 is triggered

2- No exception is thrown

Applet1 finalizes

	

	
	

	

	

	4
	Proactive Handler availability with EVENT_MENU_SELECTION

1-Envelope menu selection is sent to the SIM

2-Applet1 gets the Proactive Handler

	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

	

	
	

	

	

	5
	Proactive Handler availability with EVENT_FORMATTED_SMS_PP_ENV

1-Envelope dataDownLoad formatted is sent to the SIM

2-Applet1 gets the Proactive Handler

	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

	

	6
	Proactive Handler availability with EVENT_UNFORMATTED_SMS_PP_ENV

1-Envelope dataDownLoad unformatted is sent to the SIM

2-Applet1 gets the Proactive Handler

3-Applet2 gets the Proactive Handler
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

Applet2 is triggered

3 No exception is thrown.
	

	
	

	

	

	
	

	

	

	7
	Proactive Handler availability with EVENT_FORMATTED_CELL BROADCAST

1-Envelope cell broadcast formatted is sent to the SIM

2-Applet1 gets the Proactive Handler

	1- Applet1 is triggered

2-No exception is thrown

Applet1 finalizes

	

	8
	Proactive Handler availability with EVENT_UNFORMATTED_CELL BROADCAST

1-Envelope cell broadcast unformatted is sent to the SIM

2-Applet1 gets the Proactive Handler

3-Applet2 gets the Proactive Handler
	1- Applet1 is triggered

2- No exception is thrown

Applet1 finalizes

Applet2 is triggered

3 No exception is thrown
	

	
	

	

	

	
	

	

	

	9
	Proactive Handler availability with EVENT_TIMER_EXPIRATION

1-Timer Id =1

Envelope Timer Expiration is sent to the SIM

2-Applet1 gets the Proactive Handler

	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

	

	10
	Proactive Handler availability with EVENT_CALL_CONTROL_BY_SIM

1-Envelope call control by SIM is sent to the SIM

2-Applet1 gets the Proactive Handler
	1- Applet1 is triggered

2- No exception is thrown.
	

	
	

	

	

	11
	Proactive Handler availability with EVENT_MO_SHORT_MESSAGE_CONTROL

1-Envelope mo short message control by SIM is sent to the SIM

2-Applet1 gets the Proactive Handler
	1- Applet1 is triggered

2- No exception is thrown
	

	
	

	

	

	12
	Proactive Handler availability with EVENT_EVENT_DOWNLOAD_MT_CALL

1-Envelope event download mt call is sent to the SIM

2-Applet1 gets the Proactive Handler

3-Applet2 gets the Proactive Handler

	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

Applet2 is triggered

3-No exception is thrown
	

	
	

	

	

	13
	Proactive Handler availability with EVENT_EVENT_DOWNLOAD_CALL_CONNECTED

1-Envelope event download call connected is sent to the SIM

2-Applet1 gets the Proactive Handler

3-Applet2 gets the Proactive Handler

	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

Applet2 is triggered

3- No exception is thrown
	

	
	

	

	

	14
	Proactive Handler availability with EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED

1-Envelope event download call disconnected is sent to the SIM

2-Applet1 gets the Proactive Handler

3-Applet2 gets the Proactive Handler

	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

Applet2 is triggered

3- No exception is thrown.
	

	
	

	

	

	15
	Applets triggering with EVENT_EVENT_LOCATION_STATUS

1-Envelope event download location status is sent to the SIM

2-Applet1 gets the Proactive Handler

3-Applet2 gets the Proactive Handler

	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

Applet2 is triggered

3- No exception is thrown
	

	
	

	

	

	16
	Proactive Handler availability with EVENT_EVENT_DOWNLOAD_USER_ACTIVITY

1-Envelope event download user activity is sent to the SIM

2-Applet1 gets the Proactive Handler

3-Applet2 gets the Proactive Handler
	1- Applet1 is triggered

2- No exception is thrown

Applet1 finalizes

Applet2 is triggered

3- No exception is thrown
	

	
	

	

	

	17
	Proactive Handler availability with EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE

1-Envelope event download idle screen available is sent to the SIM

2-Applet1 gets the Proactive Handler

3- Applet2 gets the Proactive Handler
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

Applet2 is triggered

3- No exception is thrown
	

	
	

	

	

	18
	Proactive Handler availability with EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS

1-Envelope event download card reader status is sent to the SIM

2-Applet1 gets the Proactive Handler

3-Applet2 gets the Proactive Handler
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

Applet2 is triggered

3- No exception is thrown
	

	
	

	

	

	19
	Proactive Handler availability with EVENT_EVENT_DOWNLOAD_LANGUAGE_SELECTION

1-Envelope event download language selection is sent to the SIM

2-Applet1 gets the Proactive Handler

3-Applet2 gets the Proactive Handler
	1- Applet1 is triggered

2-No exception is thrown.

Applet1 finalizes

Applet2 is triggered

3-No exception is thrown
	

	
	

	

	

	20
	Proactive Handler availability with EVENT_EVENT_DOWNLOAD_BROWSER_TERMINATION

1-Envelope event download browser termination is sent to the SIM

2-Applet1 gets the Proactive Handler

3-Applet2 gets the Proactive Handler
	1- Applet1 is triggered

2-No exception is thrown.

Applet1 finalizes

Applet2 is triggered

3-No exception is thrown
	

	
	

	

	

	21
	Proactive Handler availability with EVENT_STATUS_COMMAND

1-Status command is sent to the SIM

2-Applet1 gets the Proactive Handler

3- Applet2 gets the Proactive Handler

	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

Applet2 is triggered

3- No exception is thrown.
	

	
	

	

	

	22
	Proactive Handler availability with EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE

1- Applet1 builds a proactive command OPEN CHANNEL proactiveHandler.send() method is called.

2- An Envelope Event Download Data Available is sent to the SIM, with channelId=01.

3- Applet1 gets the Proactive Handler

	1- Appelt1 is registered to EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE and EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS.

2-Applet1 is triggered

3-No exception is thrown.

Applet1 finalizes

	1- OPEN CHANNEL proactive Command is fetched

TERMINAL RESPONSE is issued with Channel Id = 01

	23
	Proactive Handler availability with EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS

1- An Envelope Event Download Channel Status is sent to the SIM, with ChannelId=01

2-Applet1 gets the Proactive Handler

	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

	

	24
	Proactive Handler availability with UNRECOGNIZED_ENVELOPE

1-An unrecognized Envelope (BER TLV Tag unrecognized) is sent to the SIM

2-Applet1 gets the Proactive Handler

3-Applet2 gets the Proactive Handler
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

Applet2 is triggered

3- No exception is thrown
	

	25
	Proactive Handler availability with EVENT_FORMATTED_SMS_PP_UPD

1- Update Record EFsms instruction formatted is sent to the SIM

2-Applet1 gets the Proactive Handler

3- Update Record EFsms instruction formatted is sent to the SIM

4-Applet2 gets the Proactive Handler

	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

 4- No exception is thrown
	

	26
	Proactive Handler availability with EVENT_UNFORMATTED_SMS_PP_UPD

1- Update Record EFsms instruction unformatted is sent to the SIM

2-Applet1 gets the Proactive Handler

3-Applet2 gets the Proactive Handler
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown.
	

6.3.1.1.4
Test Coverage

	CRR Number
	Test Case Number

	
	

	CRRN1
	2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26

	CRRC1
	1

6.3.1.2

ProactiveResponseHandler

Test Area Reference: FWK_MHA_PRHD

6.3.1.2.1
Conformance Requirement

Normal Execution

CRRN1: The ProactiveResponseHandler is available after the first call to the ProactiveHandler.send method to the termination of the processToolkit method for the following events:

EVENT_FORMATTED_SMS_PP_ENV

EVENT_UNFORMATTED_SMS_PP_ENV

EVENT_FORMATTED_SMS_PP_UPD

EVENT_UNFORMATTED_SMS_PP_UPD

EVENT_FORMATTED_SMS_CB

EVENT_UNFORMATTED_SMS_CB

EVENT_MENU_SELECTION

EVENT_MENU_SELECTION_HELP_REQUEST

EVENT_TIMER_EXPIRATION

EVENT_EVENT_DOWNLOAD_MT_CALL

EVENT_EVENT_DOWNLOAD_CALL_CONNECTED

EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED

EVENT_EVENT_DOWNLOAD_LOCATION_STATUS

EVENT_EVENT_DOWNLOAD_USER_ACTIVITY

EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE

EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS

EVENT_EVENT_DOWNLOAD_LANGUAGE_SELECTION

EVENT_EVENT_DOWNLOAD_BROWSER_TERMINATION

EVENT_UNRECOGNIZED_ENVELOPE

EVENT_STATUS_COMMAND

EVENT_CALL_CONTROL

EVENT_SMS_MO_CONTROL

EVENT_PROFILE_DOWNLOAD

EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE
EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS
Context Errors
CRRC1: The ProactiveResponseHandler and its content are not available for any toolkit applet triggered from the invocation to the termination of their processToolkit method for the following events:

EVENT_FIRST_COMMAND_AFTER_SELECT

6.3.1.2.2
Test Suite Files

Test Script:

FWK_MHA_PRHD_1.scr

Test Applet:

FWK_MHA_PRHD_1.java

FWK_MHA_PRHD_2.java

Load Script:

FWK_MHA_PRHD_1.ldr

Cleanup Script:

FWK_MHA_PRHD_1.clr

Parameter File:

FWK_MHA_PRHD_1.par

6.3.1.2.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	
	
	
	

	
	

	

	

	1
	Proactive Handler availability with EVENT_PROFILE_DOWNLOAD
1-Terminal Profile command is sent to the SIM without the facility of SET_EVENT_LIST, POLL_INTERVAL,SET UP IDLE MODE TEXT and SET UP MENU.

2- Applet1 builds a proactive command DISPLAY TEXT.

3- ProactiveHandler.send() method is called

4- ProactiveResponseHandler.getTheHandler() method is called

Applet1 is deregistered to EVENT_PROFILE_DOWNLOAD

5- Applet2 builds a proactive command DISPLAY TEXT.

6- ProactiveHandler.send() method is called

7- ProactiveResponseHandler.getTheHandler() method is called

Applet1 is deregistered to EVENT_PROFILE_DOWNLOAD

	2-Applet1 is triggered by EVENT_PROFILE_DOWNLOAD

No exception is thrown

4- No exception is thrown

Applet1 finalizes

Applet2 is triggered by EVENT_PROFILE_DOWNLOAD

7- No exception is thrown
	3- The proactive command

DISPLAY TEXT is fetched

TERMINAL RESPONSE

6- The proactive command

DISPLAY TEXT is fetched

TERMINAL RESPONSE

	
	

	

	

	2
	Proactive Response Handler availability with EVENT_MENU_SELECTION_HELP_REQUEST

Perform SIM initialization with all the facilities supported

1-Envelope menu selection with help request is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2- ProactiveHandler.send() method is called

3- ProactiveResponseHandler.getTheHandler() method is called

	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	
	

	

	

	3
	Proactive Response Handler availability with EVENT_MENU_SELECTION

1-Envelope menu selection is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2- ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called

	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	
	

	

	

	4
	Proactive Response Handler availability with EVENT_FORMATTED_SMS_PP_ENV

1-Envelope dataDownLoad formatted is sent to the SIM

Applet builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called

	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	5
	Proactive Response Handler availability with EVENT_UNFORMATTED_SMS_PP_ENV

1-Envelope dataDownLoad unformatted is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2- ProactiveHandler.send() method is called

3- ProactiveResponseHandler.getTheHandler() method is called

Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called

	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown
	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	
	

	

	

	6
	Proactive Response Handler availability with EVENT_FORMATTED_SMS _CB

1-Envelope cell broadcast formatted is

sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2- ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called.

	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	7
	Proactive Response Handler availability with EVENT_UNFORMATTED_SMS _CB

1-Envelope call broadcast unformatted is

sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2- ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called.

Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called

	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown
	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	
	

	

	

	8
	Proactive Response Handler availability with EVENT_TIMER_EXPIRATION

Timer id=1

1-Envelope Timer Expiration is sent to the SIM

Applet builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called

	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	9
	Proactive Response Handler availability with EVENT_CALL_CONTROL_BY_SIM

1-Envelope call control by sim is sent to the SIM

Applet builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called

	1- Applet1 is triggered

3- No exception is thrown

	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	10
	Proactive Response Handler availability with _ MO_SHORT_MESSAGE_CONTROL_BY_SIM

1-Envelope mo short message control by sim is sent to the SIM

Applet builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called

	1- Applet1 is triggered

3- No exception is thrown

	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	11
	Proactive Response Handler availability with EVENT_EVENT_DOWNLOAD_MT_CALL

1-Envelope event download mt call is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called.

Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called
	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown
	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	12
	Proactive Response Handler availability with EVENT_EVENT_DOWNLOAD_CALL_CONNECTED

1-Envelope event download call connected is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called

Applet builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called
	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown
	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	13
	Proactive Response Handler availability with EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED

1-Envelope event download call disconnected is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called

Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called
	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown
	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	14
	Proactive Response Handler availability with EVENT_EVENT_DOWNLOAD_CALL_CONNECTED

1-Envelope event download location status is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called

Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called
	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown
	2-A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	15
	Proactive Response Handler availability with EVENT_EVENT_DOWNLOAD_USER_ACTIVITY

1-Envelope event download user activity is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called

Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called
	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown
	2-A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	16
	Proactive Response Handler availability with EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE

1-Envelope event download idle screen available is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called

Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called
	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown
	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	17
	Proactive Response Handler availability with EVENT_EVENT_DOWNLOAD_CALL_CONNECTED

1-Envelope event download card reader status is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called
Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called
	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown
	2-A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	18
	Proactive Response Handler availability with EVENT_EVENT_DOWNLOAD_LANGUAGE_

SELECTION

1-Envelope event download language selection is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called
Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called
	1- Applet1 is triggered

3-No exception is thrown

Applet1 finalizes

Applet2 is triggered

5-No exception is thrown
	2-A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

4-A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	19
	Proactive Response Handler availability with EVENT_EVENT_DOWNLOAD_BROWSER_

TERMINATION

1-Envelope event download Browser termination is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called
Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called
	1- Applet1 is triggered

3-No exception is thrown

Applet1 finalizes

Applet2 is triggered

5-No exception is thrown
	2-A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

4-A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	
	

	

	

	20
	Proactive Response Handler availability with EVENT_STATUS_COMMAND

1-Status command is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called

Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called

	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown

	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	
	

	

	

	21
	Proactive Handler availability with EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE

1- Applet1 builds a proactive command OPEN CHANNEL.proactiveHandler.send method is called

2- An Envelope Event Download Data Available is sent to the SIM, with ChannelId=01.

3-Applet1 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called

	1- Applet1 is registered to EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE and EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS

2- Applet1 is triggered

5- No exception is thrown

Applet1 finalizes

	1- OPEN CHANNEL proactive command is fetched

TERMINAL RESPONSE is issued with Channel Id = 01

4- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	22
	Proactive Handler availability with EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS

1-An Envelope Event Download Channel Status is sent to the SIM with ChannelId=01.

Applet1 builds a proactive command DISPLAY TEXT

2- ProactiveHandler.send() method is called

3- ProactiveResponseHandler.getTheHandler() method is called

	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	23
	Proactive Response Handler availability with UNRECOGNIZED_ENVELOPE

1-An unrecognized Envelope is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called

Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called
	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown
	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	24

	Proactive Response Handler availability with EVENT_FORMATTED_SMS_PP_ENV

1- Update Record EFsms instruction formatted is sent to the SIM

Applet builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called

4- Update Record EFsms instruction formatted is sent to the SIM

Applet2 builds a proactive command DISPLAY TEXT

5-ProactiveHandler.send() method is called

6-ProactiveResponseHandler.getTheHandler() method is called
	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown
	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	25

	Proactive Response Handler availability with EVENT_UNFORMATTED_SMS_PP_UPD

1- Update Record EFsms instruction unformatted is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2- ProactiveHandler.send() method is called

3- ProactiveResponseHandler.getTheHandler() method is called

Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called

	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown
	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

6.3.1.2.4
Test Coverage

	CRR Number
	Test Case Number

	
	

	CRRN1
	1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25

	CRRC1
	Not testable

6.3.1.3

EnvelopeHandler

Test Area Reference: FWK_MHA_ENHD

6.3.1.3.1
Conformance Requirement

Normal Execution

CRRN1: The EnvelopeHandler and its content are available for all toolkit applets triggered from the invocation to the termination of their processToolkit method for the following events:

EVENT_FORMATTED_SMS_PP_ENV

EVENT_UNFORMATTED_SMS_PP_ENV

EVENT_FORMATTED_SMS_PP_UPD

EVENT_UNFORMATTED_SMS_PP_UPD

EVENT_FORMATTED_SMS_CB

EVENT_UNFORMATTED_SMS_CB

EVENT_MENU_SELECTION

EVENT_MENU_SELECTION_HELP_REQUEST

EVENT_TIMER_EXPIRATION

EVENT_EVENT_DOWNLOAD_MT_CALL

EVENT_EVENT_DOWNLOAD_CALL_CONNECTED

EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED

EVENT_EVENT_DOWNLOAD_LOCATION_STATUS

EVENT_EVENT_DOWNLOAD_USER_ACTIVITY

EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE

EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS

EVENT_EVENT_DOWNLOAD_LANGUAGE_SELECTION

EVENT_EVENT_DOWNLOAD_BROWSER_TERMINATION

EVENT_UNRECOGNIZED_ENVELOPE

EVENT_CALL_CONTROL

EVENT_SMS_MO_CONTROL

EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE

EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS

Context Errors

CRRC1: The EnvelopeHandler and its content are not available for any toolkit applet triggered from the invocation to the termination of their processToolkit method for the following events:

EVENT_STATUS_COMMAND

EVENT_PROFILE_DOWNLOAD

EVENT_FIRST_COMMAND_AFTER_SELECT

6.3.1.3.2
Test Suite Files

Test Script:

FWK_MHA_ENHD_1.scr

Test Applet:

FWK_MHA_ENHD_1.java

FWK_MHA_ENHD_2.java

Load Script:

FWK_MHA_ENHD_1.ldr

Cleanup Script:

FWK_MHA_ENHD_1.clr

Parameter File:

FWK_MHA_ENHD_1.par

6.3.1.3.3
Test Procedure
	Id
	Description
	API/Framework Expectation
	APDU Expectation

	
	

	

	

	
	

	

	

	1
	Applet1 and Applet2 registration and Envelope Handler availability with EVENT_FIRST_COMMAND_AFTER_SELECT

1.Applet1 is registered to all events defined [7].

The registration is done using the methods initMenuEntry() for EVENT_MENU_SELECTION, requestPollInterval() for EVENT_STATUS_COMMAND, allocateTimer() for EVENT_TIMER_EXPIRATION and setEventList() for the rest of the events.

Applet2 is registered to all events defined [7] except EVENT_PROFILE_DOWNLOAD, EVENT_CALL_CONTROL_BY_SIM and EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM.

The registration is done using the methods initMenuEntry() for EVENT_MENU_SELECTION, requestPollInterval() for EVENT_STATUS_COMMAND, allocateTimer for EVENT_TIMER_EXPIRATION and setEventList for the rest of the events.

2- Select MF.

3-EnvelopeHandler.getTheHandler() method is called by Applet1

Applet1 is deregistered from EVENT_FIRST_COMMAND_AFTER_SELECT.

4-EnvelopeHandler.getTheHandler() method is called by Applet2

Applet2 is deregistered to EVENT_FIRST_COMMAND_AFTER_SELECT.
	1- No exception is thrown

2- Applet1 is triggered by EVENT_FIRST_COMMAND_AFTER_SELECT

3- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes

Applet2 is triggered

4- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown
	

	2
	Handler availability with EVENT_PROFILE_DOWNLOAD

1- Terminal Profile command is sent to the SIM without the facility of SET_EVENT_LIST, SETUP_IDLE_MODE_TEXT, POLL_INTERVAL and SETUP MENU

2- EnvelopeHandler.getTheHandler() method is called by Applet1

Applet1 is deregistered to EVENT_PROFILE_DOWNLOAD

3-EnvelopeHandler.getTheHandler() method is called by Applet2

Applet2 is deregistered to EVENT_PROFILE_DOWNLOAD

	1- Applet1 is triggered by EVENT_PROFILE_DOWNLOAD

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes

Applet2 is triggered by EVENT_PROFILE_DOWNLOAD

3- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown
	

	
	

	

	

	3
	Envelope Handler availability with EVENT_MENU_SELECTION_HELP_REQUEST

Perform SIM initialization with all the facilities supported

Envelope menu selection with help request is sent to the SIM

1-EnvelopeHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered

2- No exception is thrown.

	

	
	

	

	

	
	

	

	

	
	

	

	

	
	

	

	

	
	

	

	

	
	

	

	

	
	

	

	

	
	

	

	

	
	

	

	

	
	

	

	

	
	

	

	

	
	

	

	

	
	

	

	

	
	

	

	

	
	

	

	

	
	

	

	

	
	

	

	

	
	

	

	

	
	

	
	

	
	

	4
	Envelope Handler availability with EVENT_MENU_SELECTION

1-Envelope menu selection is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered

2- No exception is thrown.

	

	5
	Envelope Handler availability with EVENT_FORMATTED_SMS_PP_ENV

1-A EVENT_FORMATTED_SMS_PP_ENV envelope is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered

2- No exception is thrown.

	

	6
	Envelope Handler availability with EVENT_UNFORMATTED_SMS_PP_ENV

1-An unformatted sms pp envelope is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3-EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered
4- No exception is thrown.
	

	7
	Envelope Handler availability with EVENT_FORMATTED_CB

1-Envelope cell broadcast formatted is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1
	1- Applet1 is triggered

2-No exception is thrown
	

	8
	Envelope Handler availability with EVENT_UNFORMATTED_CB

1-Envelope cell broadcast unformatted is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3-EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown
	

	9
	Envelope Handler availability with EVENT_TIMER_EXPIRATION

Timer id=1

1-Envelope Timer Expiration is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1
	1- Applet1 is triggered

2- No exception is thrown.

	

	10
	Envelope Handler availability with EVENT_CALL_CONTROL_BY_SIM

1-Envelope call control by sim is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered

2- No exception is thrown.

	

	11
	Envelope Handler availability with EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

1-Envelope mo short message control by sim is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1.
	1- Applet1 is triggered

2- No exception is throw

	

	12
	Envelope Handler availability with EVENT_EVENT_DOWNLOAD_MT_CALL

1-Envelope event download mt call is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3-EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown.
	

	13
	Envelope Handler availability with EVENT_EVENT_DOWNLOAD_CALL_CONNECTED

1-Envelope event download call connected is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3-EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown.
	

	14
	Envelope Handler availability with EVENT_EVENT_DOWNLOAD_CALL_DISCONECTTED

1-Envelope event download call disconnected is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3-EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered.

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown.
	

	15
	Envelope Handler availability with EVENT_EVENT_DOWNLOAD_LOCATION_STATUS

1-Envelope event download location status is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3-EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown.
	

	16
	Envelope Handler availability with EVENT_EVENT_DOWNLOAD_USER_ACTIVITY

1-Envelope event download user activity is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3-EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown
	

	17
	Envelope Handler availability with EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE

1-Envelope event download idle screen available is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3-EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown.
	

	18
	Envelope Handler availability with EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS

1-Envelope event download card reader status is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3-EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown.
	

	19
	Envelope Handler availability with EVENT_EVENT_DOWNLOAD_LANGUAGE_

SELECTION

1-Envelope event download language selection is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

Applet1 finalizes.

3-EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2-No exception is thrown.

Applet1 finalizes.

Applet2 is triggered

3-No exception is thrown.
	

	20
	Envelope Handler availability with EVENT_EVENT_DOWNLOAD_BROWSER_

TERMINATION

1-Envelope event download browser termination is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3-EnvelopeHandler.getTheHandler() method is called by Applet2

	1- Applet1 is triggered

2-No exception is thrown.

Applet1 finalizes.

Applet2 is triggered

3-No exception is thrown.
	

	21
	Envelope Handler availability with EVENT_STATUS_COMMAND

1-Status command is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3-EnvelopeHandler.getTheHandler() method is called by Applet2

	1- Applet1 is triggered

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes.

3- Applet2 is triggered

4- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	22
	Envelope Handler availability with EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE

1- Applet1 builds a proactive command OPEN CHANNEL.

proactiveHandler.send() method is called
2-Envelope event download data available is sent to the SIM with ChannelId=01.

3-EnvelopeHandler.getTheHandler() method is called by Applet1

	1- Applet1 is registered to EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE and EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS

2- Applet1 is triggered

3-No exception is thrown.

	1- OPEN CHANNEL proactive command is fetched

TERMINAL RESPONSE is issued with Channel Id = 01

	23
	Envelope Handler availability with EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS

1-Envelope event download channel status is sent to the SIM with ChannelId=01.

2-EnvelopeHandler.getTheHandler() method is called by Applet1
	1- Applet1 is triggered

2-No exception is thrown.

	

	24
	Envelope Handler availability with EVENT_ UNRECOGNIZED_ENVELOPE

1-An unrecognized Envelope is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3-EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

Applet2 is triggered

3- No exception is thrown.

	

	25
	Envelope Handler availability with EVENT_FORMATTED_SMS_PP_UPD

1- A formatted Update Record EFsms instruction is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered

2- No exception is thrown.

	

	26
	Envelope Handler availability with EVENT_UNFORMATTED_SMS_PP_UPD

1-An unformatted Update Record EFsms instruction is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3-EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

Applet2 is triggered
3- No exception is thrown.
	

6.3.1.3.4
Test Coverage

	CRR Number
	Test Case Number

	CRRN1
	3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26

	CRRC1
	1, 2, 21

6.3.1.4

EnvelopeResponseHandler

Test Area Reference: FWK_MHA_ERHD

6.3.1.4.1
Conformance Requirement

Normal Execution

CRRN1: The handler is available for all triggered toolkit applets from the invocation of the processToolkit method of the toolkit applet until a toolkit applet has posted an envelope response or the first invocation of the ProactiveHandler.send method for the following events:

EVENT_FORMATTED_SMS_PP_ENV

EVENT_UNFORMATTED_SMS_PP_ENV

EVENT_CALL_CONTROL

EVENT_SMS_MO_CONTROL

EVENT_UNRECOGNIZED_ENVELOPE

CRRN2: After a call to the post method the handler is not longer available

CRRN3: After a call to the send method the handler is not longer available

Context Errors
CRRC1: The handler is not available for the following events:

EVENT_FORMATTED_SMS_CB

EVENT_UNFORMATTED_SMS_CB

EVENT_MENU_SELECTION

EVENT_MENU_SELECTION_HELP_REQUEST

EVENT_TIMER_EXPIRATION

EVENT_EVENT_DOWNLOAD_MT_CALL

EVENT_EVENT_DOWNLOAD_CALL_CONNECTED

EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED

EVENT_EVENT_DOWNLOAD_LOCATION_STATUS

EVENT_EVENT_DOWNLOAD_USER_ACTIVITY

EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE

EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS

EVENT_EVENT_DOWNLOAD_LANGUAGE_SELECTION

EVENT_EVENT_DOWNLOAD_BROWSER_TERMINATION

EVENT_STATUS_COMMAND

EVENT_PROFILE_DOWNLOAD

EVENT_FIRST_COMMAND_AFTER_SELECT

EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE

EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS

EVENT_FORMATTED_SMS_PP_UPD

EVENT_UNFORMATTED_SMS_PP_UPD

6.3.1.4.2
Test Suite Files

Test Script:

FWK_MHA_ERHD_1.scr

Test Applet:

FWK_MHA_ERHD_1.java

FWK_MHA_ERHD_2.java

Load Script:

FWK_MHA_ERHD_1.ldr

Cleanup Script:

FWK_MHA_ERHD_1.clr

Parameter File:

FWK_MHA_ERHD_1.par

6.3.1.4.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	
	

	

	

	1
	Toolkit Applet1 and Toolkit Applet2 registration and Envelope Response Handler availability with EVENT_FIRST_COMMAND_AFTER_SELECT

1- Applet1 is registered to all events defined in [7].

Using the methods initMenuEntry() for EVENT_MENU_SELECTION, requestPollInterval() for EVENT_STATUS_COMMAND, allocateTimer() for EVENT_TIMER_EXPIRATION and setEventList() for the rest of the events.

Applet2 is registered to

EVENT_UNFORMATTED_SMS_PP_ENV and EVENT_UNRECOGNIZED_ENVELOPE.

2- Select MF.

3-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

Applet1 is deregistered to EVENT_FIRST_COMMAND_AFTER_SELECT.

	1- No exception is thrown

2- Applet1 is triggered by EVENT_FIRST_COMMAND_AFTER_SELECT

3- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown
	

	
	

	

	

	2
	Handler availability with EVENT_PROFILE_DOWNLOAD

1- Terminal Profile command is sent to the SIM without the facility of SET_EVENT_LIST, SETUP_IDLE_MODE_TEXT, SETUP_MENU and POLL_INTERVAL.

2- EnvelopeResponseHandler.getTheHandler() method is called by Applet1

Applet1 is deregistered to EVENT_PROFILE_DOWNLOAD

	1- Applet1 Is Triggered By EVENT_PROFILE_DOWNLOAD

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown
	

	3
	Envelope Response Handler availability with EVENT_MENU_SELECTION_HELP_REQUEST

Perform SIM initialization with all the facilities supported

1-Envelope menu selection with help request is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered.

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	4
	Envelope Response Handler availability with EVENT_MENU_SELECTION

1-A envelope menu selection is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	5
	Envelope Response Handler availability with EVENT_FORMATTED_CB

1-Envelope cell broadcast formatted is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- The applet1 is triggered.

2-A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	6
	Envelope Response Handler availability with EVENT_UNFORMATTED_CB

1-Envelope cell broadcast unformatted is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered.

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	7
	Envelope Response Handler availability with EVENT_TIMER_EXPIRATION

1-Envelope Timer Expiration is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered.

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	8
	Envelope Response Handler availability with EVENT_EVENT_DOWNLOAD_MT_CALL

1-Envelope event download mt call is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered.

2 -A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	9
	Envelope Response Handler availability with EVENT_EVENT_DOWNLOAD_CALL_CONNECTED

1-Envelope event download call connected is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered.

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	10
	Envelope Response Handler availability with EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED

1-Envelope event download call disconnected is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered.

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	
	

	

	

	11
	Envelope Response Handler availability with EVENT_EVENT_DOWNLOAD_LOCATION_STATUS

1-Envelope event download location status is sent to the SIM

2-Applet1 obtains the Envelope Response Handler

	1- Applet1 is triggered.

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	12
	Envelope Response Handler availability with EVENT_EVENT_DOWNLOAD_USER_ACTIVITY

1-Envelope event download user activity is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered.

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	13
	Envelope Response Handler availability with EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE

1-Envelope event download idle screen available is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered.

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	14
	Envelope Response Handler availability with EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS

1-Envelope event download card reader status is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	15
	Envelope Response Handler availability with EVENT_EVENT_DOWNLOAD_LANGUAGE_

SELECTION

1-Envelope event download language selection is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered

2-A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	16
	Envelope Response Handler availability with EVENT_EVENT_DOWNLOAD_BROWSER_

TERMINATION

1-Envelope event download browser termination is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered

2-A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	17
	Envelope Response Handler availability with EVENT_STATUS_COMMAND

1-Status command is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	
	

	

	

	18
	Envelope Response Handler availability with EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE

1- Applet1 initialises a proactive command OPEN CHANNEL and calls the send() method.

2- Envelope event download data avalaible is sent to the SIM with channelId=01

3-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	2- Applet1 is triggered

3- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	1- The OPEN CHANNEL command is fetched.

TERMINAL RESPONSE IS SENT TO THE SIM with channelId=01

	19
	Envelope Response Handler availability with EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS

1- Envelope event download channel status is sent to the SIM with channelId=01

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	20
	Envelope Response Handler availability with EVENT_FORMATTED_SMS_PP_ENV

1-A formatted sms pp envelope is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

3-Applet1 builds an additional information for response packet and it calls the post method

4-Applet1 calls all methods of the Envelope Response Handler (including the inherited method)

5-A EVENT_FORMATTED_SMS_PP_ENV envelope is sent to the SIM

6-EnvelopeResponseHandler.getTheHandler() method is called by Applet1
7-Applet1 builds a proactive command and it calls the send() method

8-Applet1 calls all methods of the Envelope Response Handler (including the inherited method)

	1- Applet1 is triggered

2- No exception is thrown.

4- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown for each method

 Applet1 finalizes

5- Applet1 is triggered

6- No Exception is thrown

8- Toolkit exception HANDLER_NOT_AVAILABLE is thrown for each method
	3- The response packet is sent

7- The proactive command is sent

	
	

	

	

	21
	Envelope Response Handler availability with EVENT_UNFORMATTED_SMS_PP_ENV

1-A unformatted sms pp envelope is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

3-Applet1 builds the envelope response and it calls the post() method

4- Applet1 calls all methods of the Envelope Response Handler (including the inherited method)

5-EnvelopeResponseHandler.getTheHandler() method is called

6-A unformatted sms pp envelope is sent to the SIM

7-EnvelopeResponseHandler.getTheHandler() method is called.

8-Applet1 builds a proactive command and it calls the send() method

9-Applet1 calls all methods of the Envelope Response Handler (including the inherited method)

10-EnvelopeResponseHandler.getTheHandler() method is called by Applet2

	1- Applet1 is triggered

2- No exception is thrown.

4- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown for each method

Applet1 finalizes

5- Applet2 is triggered.

6- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown.

Applet2 finalizes

7- Applet1 is triggered

8- No exception is thrown.

10- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown for each method

Applet1 finalizes

11- Applet2 is triggered

12- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	3- The envelope response is sent

9- The proactive command is fetched and the Terminal response is issued.

	
	

	

	

	22
	Envelope Response Handler availability with EVENT_CALL_CONTROL_BY_SIM

1-Envelope call control by sim is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

3-Applet1 builds the envelope response and it calls the postAsBERTLV() method

4-Applet1 calls all methods of the Envelope Response Handler (including the inherited method)

5-Envelope call control by sim is sent to the SIM

6-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

7-Applet1 builds a proactive command and it calls the send() method

8-Applet1 calls all methods of the Envelope Response Handler (including the inherited method)
	1- Applet1 is triggered

2- No exception is thrown.

4- Toolkit exception HANDLER_NOT_AVAILABLE is thrown for each method

Applet1 finalizes

5- Applet1 is triggered

6- No Exception is thrown

8- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown for each method

	3- The envelope response is sent

7- The proactive command is fetched and the Terminal response is issued

	
	

	

	

	23
	Envelope Response Handler availability with EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

1-Envelope mo short message control by sim is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

3-Applet1 builds the envelope response and it calls the postAsBERTLV() method

4-Applet1 calls all methods of the Envelope Response Handler (including the inherited method)

5-Envelope mo short message control by sim is sent to the SIM

6-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

7-Applet1 builds a proactive command and it calls the send method

8-Applet1 calls all methods of the Envelope Response Handler (including the inherited method)
	1- Applet1 is triggered

2- No exception is thrown.

4- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown for each method

Applet1 finalizes

5- Applet1 is triggered

6- No exception is thrown

8- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown for each method

	3-The envelope response is sent

7- The proactive command is fetched and the Terminal Response is issued

	
	

	

	

	24
	Envelope Response Handler availability with EVENT_UNRECOGNIZED_ENVELOPE

1-An unrecognized Envelope is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

3-Applet1 builds the envelope response and it calls the postAsBERTLV() or post method

4-Applet1 calls all methods of Envelope Response Handler (including the inherited method)

5-EnvelopeResponseHandler.getTheHandler() method is called

6-An unrecognized Envelope is sent to the SIM

7-EnvelopeResponseHandler.getTheHandler() method is called

8-Applet1 builds a proactive command and it calls the send() method

9-Applet1 calls all methods of the Envelope Response Handler (including the inherited method)

10-EnvelopeResponseHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown.

4- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown for each method

Applet1 finalizes

5- Applet2 is triggered.

6- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown for each method

Applet2 finalizes

7- Applet1 is triggered.

8- No exception is thrown.

10- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown for each method

Applet1 finalizes

11- Applet2 is triggered

12- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown for each method

	3- The envelope response is sent

9- The proactive command is fetched and the Terminal response is issued

	
	

	

	

	25
	The envelope response is sent when a proactive session is ongoing

1-A formatted SMS PP envelope is sent to the SIM.

2-Proactive command DISPLAY TEXT is built and it calls the send() method.

3-A call control by sim envelope is sent to the SIM.

4-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

5-Applet1 builds the envelope response and it calls the postAsBERTLV

	1- Applet1 is triggered.

3- Applet1 is triggered

4- No exception is thrown

	2- 91 XX

5-The envelope response is sent

9F YY

GET RESPONSE

Data

91 XX

Fetch DISPLAY TEXT

Terminal Response DISPLAY TEXT

	26
	Envelope Response Handler availability with EVENT_UNFORMATTED_SMS_PP_ENV in case of multi-triggering

1-A unformatted sms pp envelope is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

5-EnvelopeResponseHandler.getTheHandler() method is called by Applet 2

6- Applet2 calls the post() method

	1- Applet1 is triggered

2- No exception is thrown.

3- Applet1 finalizes

4- Applet2 is triggered.

5- No Exception is thrown

Applet2 finalizes

	6. The response is checked.

	27
	Envelope Response Handler availability with EVENT_UNRECOGNIZED_ENVELOPE

1-An unrecognized Envelope is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

5-EnvelopeResponseHandler.getTheHandler() method is called by Applet 2

6- Applet2 calls the post() method

	1- Applet1 is triggered

2- No exception is thrown.

3- Applet1 finalizes

4- Applet2 is triggered.

5- No Exception is thrown

Applet2 finalizes

	6- The response is checked

	28
	Envelope Response Handler availability with EVENT_FORMATTED_SMS_PP_UPD

1- Update Record EFsms instruction formatted is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- The applet1 is triggered.

2-A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	29
	Envelope Response Handler availability with EVENT_UNFORMATTED_SMS_PP_UPD

1- Update Record EFsms instruction unformatted is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered.

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

6.3.1.4.4
Test Coverage

	CRR Number
	Test Case Number

	
	

	
	

	
	

	
	

	CRRN1
	20, 21, 22, 23, 24, 25,26,27

	CRRN2
	20, 21, 22, 23, 24, 25

	CRRN3
	20, 21, 22, 23, 24, 25

	CRRC1
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 28, 29

6.3.2 Handler Integrity

6.3.2.3

EnvelopeHandler

Test Area Reference: FWK_HIN_ENHD

6.3.2.3.1
Conformance Requirement

Normal Execution

CRRN1: The EnvelopeHandler and its content are available for all triggered toolkit applets, from the invocation to the termination of their processToolkit method.

CRRN2: The SIM Toolkit Framework guarantees that all triggered toolkit applets receive the data.

CRRN3: The SIM Toolkit Framework shall convert the Update Record EFsms in the EnvelopeHandler TLV List containing Device Identities TLV, Address TLV and SMS TPDU TLV.
CRRN4: The getEnvelopeTag() method shall return BTAG_SMS_PP_DOWNLOAD.

CRRN5: The getLength() method shall return the Simple TLV list length.

CRRN6 The Device Identity Simple TLV is used to store the information about the absolute record number in the EFsms file and the value of the EFsms record status byte.

6.3.2.3.2
Test Suite Files

Test Script:

FWK_HIN_ENHD_1.scr

Test Applet:

FWK_HIN_ENHD_1.java

Load Script:

FWK_HIN_ENHD_1.ldr

Cleanup Script:

FWK_HIN_ENHD_1.clr

Parameter File:

FWK_HIN_ENHD_1.par

6.3.2.3.3
Test Procedure
	Id
	Description
	API/Framework Expectation
	APDU Expectation

	
	

	

	

	1
	Applet initialization and Envelope Handler integrity checks with EVENT_MENU_SELECTION_HELP_REQUEST

1- Applet is registered to all events defined in [7] except EVENT_PROFILE_DOWNLOAD and EVENT_STATUS_COMMAND.

Using the methods initMenuEntry() for EVENT_MENU_SELECTION, allocateTimer()for EVENT_TIMER_EXPIRATION, and setEventList() for the rest of the events.

Perform SIM initialization with all the facilities supported

2-Envelope menu selection with help request is sent to the SIM

3-EnvelopeHandler.getTheHandler() method is called

4-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_HELP_REQUEST

5-A proactive command DISPLAY TEXT is sent

6-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

7- It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

Check that the TAG_HELP_REQUEST is the TLV selected

8-The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()

	1-No exception is thrown

2- Applet is triggered

3- No exception is thrown.

4- No exception is thrown

6- Applet is triggered

7- No exception is thrown and the handler contains the envelope call control by SIM

8- The contents of the envelope handler shall be the same as stored in buffer 1
	5- 91 xx.

 A proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	
	

	

	

	2
	Envelope Handler integrity checks with EVENT_MENU_SELECTION

1-An envelope menu selection is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_ITEM_IDENTIFIER

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6- It’s checked the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_ITEM_IDENTIFIER is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()

	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	
	

	

	

	3
	Envelope Handler integrity checks with EVENT_FORMATTED_SMS_PP_ENV

1-A formatted sms pp envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_SMS_TPDU

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_SMS_TPDU is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	
	

	

	

	4
	Envelope Handler integrity checks with EVENT_UNFORMATTED_SMS_PP_ENV

1-A unformatted sms pp envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV method is called with TAG_DEVICE_IDENTITIES

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_DEVICE_IDENTITIES is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	
	

	

	

	5
	Envelope Handler integrity checks with EVENT_UNFORMATTED_SMS_CB

1-A unformatted cellbroadcast envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_CELLBROADCAST_PAGE

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_CELLBROADCAST_PAGE is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	
	

	

	

	6
	Envelope Handler integrity checks with EVENT_TIMER_EXPIRATION

1-A timer expiration envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

 3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_TIMER_ID

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_TIMER_ID is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	
	

	

	

	7
	Envelope Handler integrity checks with EVENT_CALL_CONTROL_BY_SIM

1-A call control envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

 3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_ADDRESS

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_ADDRESS is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	
	

	

	

	8
	Envelope Handler integrity checks with EVENT_ MO_SHORT_MESSAGE_CONTROL_BY_SIM

1-A mo short message control by sim envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

 3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_ADDRESS

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It's checked that the TAG_ADDRESS is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	
	

	

	

	9
	Envelope Handler integrity checks with EVENT_ EVENT_DOWNLOAD_MT_CALL

1-A event download mt call envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_ADDRESS

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_ADDRESS is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	
	

	

	

	10
	Envelope Handler integrity checks with EVENT_ EVENT_DOWNLOAD_CALL_CONNECTED

1-A event download call connected envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

 3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_ADDRESS

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_ADDRESS is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	
	

	

	

	11
	Envelope Handler integrity checks with EVENT_ EVENT_DOWNLOAD_CALL_DISCONNECTED

1-A event download call disconnected envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

 3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_ADDRESS

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_ADDRESS is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	
	

	

	

	12
	Envelope Handler integrity checks with EVENT_ EVENT_DOWNLOAD_LOCATION_STATUS

1-A event download location status envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_LOCATION_STATUS

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_LOCATION_STATUS is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4-91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	
	

	

	

	13
	Envelope Handler integrity checks with EVENT_ EVENT_DOWNLOAD_USER_ACTIVITY

1-A event download user activity envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It's checked that the TAG_DEVICE_IDENTITIES is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	
	

	

	

	14
	Envelope Handler integrity checks with EVENT_ EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE

1-A event download idle screen available envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_DEVICE_IDENTITIES is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	
	

	

	

	15
	Envelope Handler integrity checks with EVENT_ EVENT_DOWNLOAD_CARD_READER_STATUS

1-A event download card reader status envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_CARD_READER_STATUS

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

It’s checked that the TAG_CARD_READER_STATUS is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	
	

	

	

	16
	Envelope Handler integrity checks with UNRECOGNIZED_ENVELOPE

1-A unrecognized envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

The EnvelopeHandler.getValueLength() is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	17
	Envelope Handler integrity checks with EVENT_EVENT_DOWNLOAD_LANGUAGE_SELECTION

1-A event download language selection envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_EVENT_LIST

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_EVENT_LIST is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2-No exception is thrown.

3-No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4-91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	18
	Envelope Handler integrity checks with EVENT_EVENT_DOWNLOAD_BROWSER_TERMINATION

1-A event download browser termination envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_EVENT_LIST

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_EVENT_LIST is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2-No exception is thrown.

3-No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4-91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	19
	Envelope Handler integrity checks with EVENT_FORMATTED_SMS_CB

1-An envelope SMS-CB formatted according to [8] is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_CELL_BROADCAST_PAGE

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_CELL_BROADCAST_PAGE is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2-No exception is thrown.

3-No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4-91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	20
	Envelope Handler integrity checks with EVENT_FORMATTED_SMS_PP_UPD

1-Update Record EFsms instruction single and formatted is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_SMS_TPDU

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare methods

The EnvelopeHandler.findTLV() method is called with TAG_SMS_TPDU

Call Control execution is finished.

It’s checked that the TAG_SMS_TPDU is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()

	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1

	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	21
	Envelope Handler integrity checks with EVENT_UNFORMATTED_SMS_PP_UPD

1- Update Record EFsms instruction single and unformatted is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV method is called with TAG_SMS_TPDU

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_DEVICE_IDENTITIES is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()

	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1.

	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	22
	Check the TLV list conversion for EVENT_FORMATTED_SMS_PP_UPD

1- An EVENT_FORMATTED_SMS_PP_UPD is sent to the SIM.

2- The findTLV(tag == device identities Tag) is called.

3- The getValueByte(offset == 0) is called.

4- The getValueByte(offset == 1) is called.

5- The findTLV(tag == address Tag) is called.

6- Check the content

7- The findTLV(tag == SMS TPDU Tag) is called.

8- Check the content

	1- Applet is triggered

2- No exception is thrown.

3- return the absolute record.

4- return the record status

5- No exception is thrown.

7- No exception is thrown.

	

	23
	Check TLV list conversion for EVENT_FORMATTED_SMS_PP_UPD

1- The getLength() method is called

	1. return the Simple TLV list length
	

	24
	Check TLV list conversion for EVENT_FORMATTED_SMS_PP_UPD

1- The getEnvelopeTag() method is called

	1- return BTAG_SMS_PP_DOWNLOAD
	

	25
	Check the TLV list conversion for EVENT_UNFORMATTED_SMS_PP_UPD

1- An EVENT_UNFORMATTED_SMS_PP_UPD is sent to the SIM.

2- The findTLV(tag == device identities Tag) is called.

3- The getValueByte(offset == 0) is called.

4- The getValueByte(offset == 1) is called.

5- The findTLV(tag == address Tag) is called.

6- Check the content

7- The findTLV(tag == SMS TPDU Tag) is called.

8- Check the content

	1- Applet is triggered

2- No exception is thrown.

3- return the absolute record.

4- return the record status

5- No exception is thrown.

7- No exception is thrown.

	

	26
	Check TLV list conversion for EVENT_UNFORMATTED_SMS_PP_UPD

1- The getLength() method is called

	1. return the Simple TLV list length
	

	27
	Check TLV list conversion for EVENT_UNFORMATTED_SMS_PP_UPD

1- The getEnvelopeTag() method is called

	1- return BTAG_SMS_PP_DOWNLOAD
	

6.3.2.3.4 Test Coverage

	
	

	CRR Number
	Test Case Number

	
	

	CRRN1
	1,2,3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21

	
	

	CRRN2
	1,2,3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21

	CRRN3
	22, 25

	CRRN4
	23, 26

	CRRN5
	24, 27

	CRRN6
	22, 25

6.3.2.4 EnvelopeResponseHandler

Test Area Reference: FWK_HIN_ERHD

6.3.2.4.1 Conformance Requirement

Normal Execution

CRRN1: At the processToolkit invocation the TLV-List is cleared.

6.3.2.4.2 Test Suite Files:

Test Script:

FWK_HIN_ERHD_1.scr

Test Applet:

FWK_HIN_ERHD_1.java

Load Script:

FWK_HIN_ERHD_1.ldr

Cleanup Script:

FWK_HIN_ERHD_1.clr

Parameter File:

FWK_HIN_ERHD_1.par

6.3.2.4.3 Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Applet1 is registered to EVENT_UNRECOGNIZED_ENVELOPE.

	
	

	
	1-An unrecognised envelope is sent to the SIM

	1- Applet 1 is triggered.
	

	
	2- EnvelopeResponseHandler.getTheHandler()is called by the Applet1.
	
	

	
	3- EnvelopeResponseHandler.getLength() method is called by Applet1
	2- The return value shall be 0.
	

6.3.2.4.4 Test Coverage

	CRR Number
	Test Case Number

	CRRN1
	1

6.3.3

Applet Triggering

6.3.3.3
EVENT_MENU_SELECTION_HELP_REQUEST

Test Area Reference: FWK_APT_EMSH

6.3.3.3.1
Conformance Requirement

Normal Execution

CRRN1: If and ENVELOPE (MENU_SELECTION_HELP_SUPPORTED) command is received for one entry supporting help, then STF shall trigger the corresponding applet.

CCRN2: A toolkit applet shall be triggered by the EVENT_MENU_SELECTION_HELP_REQUEST event only if the Menu Id corresponding to the Envelope Menu Selection Help Request received by the SIM Toolkit framework was registered with the helpSupported value set to true.

CCRN3: If at least one menuId of a Toolkit Applet registers to EVENT_MENU_SELECTION_HELP_REQUEST, the SET UP MENU proactive command sent by the SIM Toolkit Framework shall indicate to the ME that help information is available unless all the menus entries that support help are disabled.

6.3.3.3.2
Test Suite Files

Test Script:

FWK_APT_EMSH_1.scr

Test Applet:

FWK_APT_EMSH_1.java

FWK_APT_EMSH_2.java

FWK_APT_EMSH_3.java
Load Script:

FWK_APT_EMSH_1.ldr

Cleanup Script:

FWK_APT_EMSH_1.clr

Parameter File:

FWK_APT_EMSH_1.par

6.3.3.3.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	
	

	

	

	1
	Applet registration to EVENT_MENU_SELECTION_HELP_REQUEST and triggering

Applet1 and Applet2 are installed

ToolkitRegistry.InitMenuEntry() method is called in the constructor of Applet1 and Applet2.

For Applet1 (item id 1):

MenuEntry="Applet1A"

Offset=0

Length=menuEntry.length

HelpSupported=true

IconQualifier=0

IconIdentifier=0

For Applet1 (item id 2):

MenuEntry="Applet1B"

Offset=0

Length=menuEntry.length

HelpSupported=false

IconQualifier=0

IconIdentifier=0

event= EVENT_MENU_SELECTION_HELP_REQUEST

1- ToolkitRegistry.isEventSet() is called in constructor.

For Applet2 (item id 3):

MenuEntry="Applet2A"

Offset=0

Length=menuEntry.length

HelpSupported=true

IconQualifier=0

IconIdentifier=0

For Applet2 (item id 4):

MenuEntry="Applet2B"

Offset=0

Length=menuEntry.length

HelpSupported=false

IconQualifier=0

IconIdentifier=0

event= EVENT_MENU_SELECTION_HELP_REQUEST

2- ToolkitRegistry.isEventSet() is called in constructor.

Perform SIM initialization with the facility SET UP MENU and without the facilities SET EVENT LIST and POLL INTERVAL

3-Item identifier = 1

Menu Selection Help Request envelope is sent to the SIM with item identifier 1 belonging to applet1

4-Item identifier = 2

Menu Selection Help Request envelope is sent to the SIM with item identifier 2 belonging to applet1

5-Item identifier = 3

Menu Selection Help Request envelope is sent to the SIM with item identifier 3 belonging to applet2

6-Item identifier = 4

Menu Selection Help Request envelope is sent to the SIM with item identifier 4 belonging to applet2

	1- The command shall return true.

2- The command shall return true.

3- Applet1 is triggered and Applet2 is not triggered

4 Applet1 and Applet2 are not triggered

5- Applet2 is triggered and Applet1 is not triggered

6- Applet2 and Applet1 are not triggered

	

	2
	Applet deregistration to EVENT_MENU_SELECTION_HELP_REQUEST
Applet1 and Applet2 are deleted

Applet3 is installed

ToolkitRegistry.InitMenuEntry() method is called in the constructor of Applet3.

For Applet3 (item id 5):

MenuEntry="Applet3A"

Offset=0

Length=menuEntry.length

HelpSupported=true

IconQualifier=0

IconIdentifier=0

For Applet3 (item id 6):

MenuEntry="Applet3B"

Offset=0

Length=menuEntry.length

HelpSupported=true

IconQualifier=0

IconIdentifier=0

For Applet3 (item id 7):

MenuEntry="Applet3C"

Offset=0

Length=menuEntry.length

HelpSupported=false

IconQualifier=0

IconIdentifier=0

1. Perform SIM initialization with the facility SET UP MENU and without the facilities SET EVENT LIST and POLL INTERVAL

2. Menu Selection Help Request envelope is sent to the SIM with item identifier 5 belonging to applet3

3. ToolkitRegistry.disableMenuEntry() method for item id 5 is called by the Menu Selection Help Request Envelope.

4. Menu Selection Help Request envelope is sent to the SIM with item identifier 6 belonging to applet3

5. ToolkitRegistry.disableMenuEntry() method for item id 6 is called by the Menu Selection Help Request Envelope.

	2. Applet3 is triggered by EVENT_MENU_SELECTION_HELP_REQUEST

4. Applet3 is triggered by EVENT_MENU_SELECTION_HELP_REQUEST

	1. The SIM shall issue a SET UP MENU proactive command with Menu Entry ID entry '05', '06' and ‘07’, and Help supported set to true.
3. The SIM shall issue a SET UP MENU proactive command with Menu Entry ID entry ‘06’ and ‘07’, and Help supported set to true.

5. The SIM shall issue a SET UP MENU proactive command with Menu Entry ID entry ‘07’, and Help supported set to false.

6.3.3.3.4
Test Coverage

	CRR Number
	Test Case Number

	CRRN1
	1

	CRRN2
	1

	CRRN3
	2

6.3.3.4
EVENT_FORMATTED_SMS_PP_ENV
Test Area Reference: FWK_APT_EFSE
6.3.3.4.1
Conformance Requirement
Normal Execution
CRRN1: The applet is triggered by the EVENT_FORMATTED_SMS_PP_ENV once:
· it has been registered to this event,
· a Short Message Point to Point (Single or Concatenated) is received by Envelope APDU(s) and is formatted according to [8],
· the toolkit applet to be triggered is registered with the corresponding TAR in the SMS TPDU,
the security is verified
CRRN2: The applet is not triggered by the EVENT_FORMATTED_SMS_PP_ENV once it has deregistered from this event.
6.3.3.4.2
Test Suite Files
Test Script:

FWK_APT_EFSE_1.scr
Test Applet:

FWK_APT_EFSE_1.java
Load Script:

FWK_APT_EFSE_1.ldr
Cleanup Script:

FWK_APT_EFSE_1.clr
Parameter File:

FWK_APT_EFSE_1.par
6.3.3.4.3
Test Procedure
	Id
	Description
	API/Framework Expectation
	APDU Expectation

	
	

	
	

	1
	Applet registration to EVENT_FORMATTED_SMS_PP_ENV and triggering
Applet is registered to EVENT_FORMATTED_SMS_PP_ENV and EVENT_UNRECOGNIZED_ENVELOPE
1- A Single Short Message SMS-PP Formatted Data Download is sent to the SIM.
2- A Concatenated Short Message SMS-PP Formatted Data Download is sent to the SIM (composed of 2 Short Messages. The UDL for the first Short Message is 70 and for the second 70)

	1- Applet is triggered
2- Applet is triggered
	

	
	

	

	

	2
	Applet deregistration
ToolkitRegistry.clearEvent() method is called for EVENT_FORMATTED_SMS_PP_ENV
1- A Single Short Message SMS-PP Data Download is sent to the SIM..
2- A Concatenated Short Messages SMS-PP Data Download is sent to the SIM (composed of 2 Short Messages. The UDL for the first Short Message is 70 and for the second 70).
An unrecognized envelope is sent to the sim
ToolkitRegistry.setEvent() method is called for EVENT_FORMATTED_SMS_PP_ENV
3- A Single Short Messages SMS-PP Data Download is sent to the SIM.
4- A Concatenated Short Messages SMS-PP Data Download is sent to the SIM (composed of 2 Short Messages. The UDL for the first Short Message is 70 and for the second 70).

	1- Applet is not triggered
2- Applet is not triggered
3- Applet is triggered
4- Applet is triggered

	

6.3.3.4.4
Test Coverage
	
	

	CRR Number
	Test Case Number

	
	

	CRRN1 (See note 1)
	1, 2

	CRRN2
	2

Note 1: The security checks are not relevant to the test designed in this test area; they will be checked in the "Framework Security Management" section.
6.3.3.5
EVENT_UNFORMATTED_SMS_PP_ENV
Test Area Reference: FWK_APT_EUSE
6.3.3.5.1
Conformance Requirement
Normal Execution
CRRN1: The applets registers are triggered by the EVENT_UNFORMATTED_SMS_PP_ENV once a Short Message Point to Point (Single or Concatenated) is received by Envelope APDU(s) and is unformatted.
CRRN2: The applet is not triggered by the EVENT_UNFORMATTED_SMS_PP_ENV once it has deregistered from this event.
6.3.3.5.2
Test Suite Files
Test Script:

FWK_APT_EUSE_1.scr
Test Applet:

FWK_APT_EUSE_1.java
Load Script:

FWK_APT_EUSE_1.ldr
Cleanup Script:

FWK_APT_EUSE_1.clr
Parameter File:

FWK_APT_EUSE_1.par
6.3.3.5.3
Test Procedure
	Id
	Description
	API/Framework Expectation
	APDU Expectation

	
	

	

	

	1
	Applet registration to EVENT_UNFORMATTED_SMS_PP_ENV and triggering
Applet is registered to the EVENT_UNFORMATTED_SMS_PP_ENV and EVENT_FORMATTED_SMS_PP_ENV.
1-Toolkit Registry.isEventSet() method is called for EVENT_UNFORMATTED_SMS_PP_ENV
2- A Single and Unformatted SMS-PP Data Download Envelope is sent to the SIM.
3- A Concatenated and Unformatted SMS-PP Data Download Envelope is sent to the SIM (composed of 2 Short Messages. The UDL for the first Short Message is 70 and for the second 70)

	1- The method returns true
2- Applet is triggered
3- Applet is triggered

	

	
	

	

	

	2
	Applet deregistration
Toolkit Registry.clearEvent()method is called for EVENT_UNFORMATTED_SMS_PP_ENV
1- A Single and Unformatted SMS-PP Data Download Envelope is sent to the SIM.
2- A Concatenated and Unformatted SMS-PP Data Download Envelope is sent to the SIM (composed of 2 Short Messages. The UDL for the first Short Message is 70 and for the second 70)
Applet is triggered by a EVENT_FORMATTED_SMS_PP_ENV
Toolkit Registry.setEvent() method is called for EVENT_UNFORMATTED_SMS_PP_ENV
3- A Single and Unformatted SMS-PP Data Download Envelope is sent to the SIM.
4- A Concatenated and Unformatted SMS-PP Data Download Envelope is sent to the SIM (composed of 2 Short Messages. The UDL for the first Short Message is 70 and for the second 70)

	1- Applet isn't triggered
2- Applet isn't triggered
3- Applet is triggered
4- Applet is triggered

	

6.3.3.5.4
Test Coverage
	CRR Number
	Test Case Number

	CRRN1
	1, 2

	CRRN2
	2

6.3.3.22 EVENT_FORMATTED_SMS_PP_UPD

Test Area Reference: FWK_APT_EFSU

6.3.3.22.1 Conformance Requirement

Normal Execution

CRRN1: The applet is triggered by the EVENT_FORMATTED_SMS_PP_UPD once:

· it has been registered to this event,

· a Short Message Point to Point (Single or Concatenated) is received by Update Record EFsms APDU(s) and is formatted according to [8],

· the toolkit applet to be triggered is registered with the corresponding TAR in the SMS TPDU,

CRRN2: The applets are not triggered by the EVENT_FORMATTED_SMS_PP_UPD once it has deregistered from this event.

6.3.3.22.2 Test Suite Files

Test Script:

FWK_APT_EFSU_1.scr

Test Applet:

FWK_APT_EFSU_1.java

Load Script:

FWK_APT_EFSU_1.ldr

Cleanup Script:

FWK_APT_EFSU_1.clr

Parameter File:

FWK_APT_EFSU_1.par
6.3.3.22.3 Test Procedure
	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Applet registration to EVENT FORMATTED_SMS_PP_UPD and triggering

Applet is registered to EVENT_FORMATTED_SMS_PP_UPD and EVENT_UNRECOGNIZED_ENVELOPE

1. Toolkit Registry.isEventSet() method is called for EVENT_FORMATTED_SMS_PP_UPD

2. Short Message Point to Point Single and Formatted is received by Update Record EFsms APDU.

3. Short Message Point to Point Concatenated Formatted is received by Update Record EFsms APDU(s) (The Concatenated Message is composed of 2 Short Messages. The UDL for the first Short Message is 70 and for the second 70).

	1- The method returns true.

2- Applet is triggered.

3- Applet is triggered on reception of the last concatenated SMS
	

	2
	Applet deregistration

ToolkitRegistry.clearEvent() method is called for EVENT_FORMATTED_SMS_PP_UPD

1. Short Message Point to Point Single and Formatted is received by Update Record EFsms APDU.

2. Short Message Point to Point Concatenated and Formatted is received by Update Record EFsms APDU(s). (The Concatenated Message is composed of 2 Short Messages. The UDL for the first Short Message is 70 and for the second 70).

An unrecognized envelope is sent to the sim

ToolkitRegistry.setEvent() method is called for EVENT_FORMATTED_SMS_PP_UPD

3. Short Message Point to Point Single and Formatted is received by Update Record EFsms APDU.

4. Short Message Point to Point Concatenated Formatted is received by Update Record EFsms APDU(s). (The Concatenated Message is composed of 2 Short Messages. The UDL for the first Short Message is 70 and for the second 70).

	1- Applet is not triggered

2- Applet is not triggered

3- Applet is triggered

4- Applet is triggered on reception of the last concatenated SMS.

	

6.3.3.22.4 Test Coverage

	CRR Number
	Test Case Number

	CRRN1 (See note1)
	1,2

	CRRN2
	2

Note 1: The security checks are not relevant to the test designed in this test area; they will be checked in the "Framework Security Management" section.

6.3.3.23 EVENT_UNFORMATTED_SMS_PP_UPD
Test Area Reference: FWK_APT_EUSU
6.3.3.23.1 Conformance Requirement
Normal Execution
CRRN1: The applets registers are triggered by the EVENT_UNFORMATTED_SMS_PP_UPD once a Short Message Point to Point (Single or Concatenated) is received by Update Record EFsms APDU(s) and is unformatted.

CRRN2: The applets are not triggered by the EVENT_UNFORMATTED_SMS_PP_UPD once it has deregistered from this event.
6.3.3.23.2 Test Suite Files
Test Script:

FWK_APT_EUSU_1.scr
Test Applet:

FWK_APT_EUSU_1.java
Load Script:

FWK_APT_EUSU_1.ldr
Cleanup Script:

FWK_APT_EUSU_1.clr
Parameter File:

FWK_APT_EUSU_1.par
6.3.3.23.3
Test Procedure
	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Applet registration to EVENT UNFORMATTED_SMS_PP_UPD and triggering
Applet is registered to EVENT_UNFORMATTED_SMS_PP_UPD and EVENT_UNRECOGNIZED_ENVELOPE
1. Toolkit Registry.isEventSet() method is called for EVENT_UNFORMATTED_SMS_PP_UPD
2. Short Message Point to Point Single and Unformatted is received by Update Record EFsms APDU
3. Short Message Point to Point Concatenated and Unformatted is received by Update Record EFsms APDU (The Concatenated Message is composed of 2 Short Messages. The UDL for the first Short Message is 70 and for the second 70).

	1- Applet is not triggered
2- Applet is triggered.
3- Applet is triggered on reception of the last concatenated SMS.
	

	2
	Applet deregistration
ToolkitRegistry.clearEvent() method is called for EVENT_UNFORMATTED_SMS_PP_UPD
1. Short Message Point to Point Single and Unformatted is received by Update Record EFsms APDU
2. Short Message Point to Point Concatenated and Unformatted is received by Update Record EFsms APDU(s) (The Concatenated Message is composed of 2 Short Messages. The UDL for the first Short Message is 70 and for the second 70).
An unrecognized envelope is sent to the sim
ToolkitRegistry.setEvent() method is called for EVENT_UNFORMATTED_SMS_PP_UPD
3. Short Message Point to Point Single and Unformatted is received by Update Record EFsms APDU
4. Short Message Point to Point Concatenated and Unformatted is received by Update Record EFsms APDU(s) (The Concatenated Message is composed of 2 Short Messages. The UDL for the first Short Message is 70 and for the second 70).

	1- Applet is not triggered
2- Applet is not triggered.
3- Applet is triggered
4- Applet is triggered on reception of the last concatenated SMS

	

6.3.3.23.4
Test Coverage
	CRR Number
	Test Case Number

	CRRN1
	1,2

	CRRN2
	2

6.3.3.24
EVENT_FIRST_COMMAND_AFTER_SELECT

Test Area Reference: FWK_APT_EFCA

6.3.3.24.1
Conformance Requirement

Normal Execution

CRRN1: The applet is triggered by the EVENT_FIRST_COMMAND_AFTER_SELECT once it has registered to this event; Upon reception of the first command received by the GSM application after it has been selected, or after the ATR if it is the default application, and before the Status Word of the processed command has been sent back by the GSM application, the toolkit framework shall trigger all the toolkit applets registered to this event.

CRRN2: The applet is not triggered by the EVENT_FIRST_COMMAND_AFTER_SELECT once it has deregistered from this event.

CRRN3: If the first command received by the GSM application is a toolkit applet triggering command (e.g. TERMINAL PROFILE), the toolkit applets registered on the EVENT_FIRST_COMMAND_AFTER_SELECT event shall be triggered first.

6.3.3.24.2
Test Suite Files

Test Script:

FWK_APT_EFCA_1.scr

Test Applet:

FWK_APT_EFCA_1.java

FWK_APT_EFCA_2.java

FWK_APT_EFCA_3.java

FWK_APT_EFCA_4.java

FWK_APT_EFCA_5.java

Load Script:

FWK_APT_EFCA_1.ldr

Cleanup Script:

FWK_APT_EFCA_1.clr

Parameter File:

FWK_APT_EFCA_1.par

6.3.3.24.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Applets registration to EVENT_FIRST_COMMAND_AFTER_SELECT and triggering

Applet1 is registered to the EVENT_FIRST_COMMAND_AFTER_SELECT

Applet2 is registered to the EVENT_PROFILE_DOWNLOAD.

Applet3 is registered to EVENT_FORMATTED_SMS_PP_ENV.

1-Terminal Profile command is sent to the SIM.

Applet1 deregisters from EVENT_FIRST_COMMAND_AFTER_SELECT.

2- Applet2 deregisters from EVENT_PROFILE_DOWNLOAD.

3-Envelope(SMS-PP-DOWNLOAD) formatted is sent to the SIM

4-Applet3 calls setEvent() on event EVENT_FIRST_COMMAND_AFTER_SELECT.

	1- Applet1 is triggered by EVENT_FIRST_COMMAND_AFTER_SELECT

Applet1 finalizes

Applet2 is triggered by EVENT_PROFILE_DOWNLOAD

Applet2 finalizes

Applet3 is not triggered

3-Applet3 is triggered.

	

	2
	Deregistered applets are not triggered

1-Reset then Terminal Profile command is sent to the SIM

2-Applet3 calls setEvent() on EVENT_PROFILE_DOWNLOAD.

	1-Applet3 is triggered.

Applet1 and Applet2 are not triggered.

2-Applet3 finalizes.
	

	3
	Install a 4th applet registered to EVENT_FIRST_COMMAND_AFTER_SELECT and EVENT_PROFILE_DOWNLOAD

Applet4 is installed, with the same priority level as Applet3.

1-Reset then Terminal Profile command is sent to the SIM

Delete all applets.

	1- Applet4 is triggered by EVENT_FIRST_COMMAND_AFTER_SELECT.

Applet3 is triggered by EVENT_FIRST_COMMAND_AFTER_SELECT.

Applet4 is triggered by EVENT_PROFILE DOWNLOAD.

 Applet3 is triggered by EVENT_PROFILE_DOWNLOAD.
	

	4
	Check that the applet is triggered before the first SW is sent.

1-Install Applet 5.

Applet 5 is registered with two entries in the menu entries list. Applet5 is also registered to EVENT_FIRST_COMMAND_AFTER_SELECT.

2-Reset and TERMINAL PROFILE.

3-Applet disables a menu entry.
	2- Applet 5 is triggered
	3-The SETUP MENU proactive command is fetched.

There is only one item for Applet5.

[Note: Testing the triggering of an applet upon the first command after select is not possible.]

6.3.3.24.4
Test Coverage

	CR Number
	Test Case Number

	CRRN1
	1,2,3, 4

	CRRN2
	3

	CRRN3
	1, 4

6.3.3.25 EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE

Test Area Reference: FWK_APT_EDDA

6.3.3.25.1
Conformance Requirement

Normal Execution
CRRN1: For EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE, the framework shall only trigger the applet registered to this event with the appropriate channel identifier.

CRRN2: The registration to the EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE is effective once the toolkit applet has issued a successful OPEN CHANNEL proactive command, and valid till the first successful CLOSE CHANNEL or a channel link is released by the ME or the card session.

CRRN3: When a Toolkit Applet has sent an OPEN CHANNEL proactive command and received a successful TERMINAL RESPONSE, the framework shall register the received channel identifier for the calling Toolkit Applet.

CRRN4: When a Toolkit Applet has sent a CLOSE CHANNEL proactive command and received a successful TERMINAL RESPONSE, the framework shall release the channel identifier contained in the command. A successful TERMINAL RESPONSE means that the result of the proactive command execution belongs to command performed category (i.e. General Result ='0x').

6.3.3.25.2
Test Suite Files

Test Script:

FWK_APT_EDDA_1.scr

Test Applet:

FWK_APT_EDDA_1.java

Load Script:

FWK_APT_EDDA_1.ldr

Cleanup Script:

FWK_APT_EDDA_1.clr

Parameter File:

FWK_APT_EDDA_1.par

6.3.3.25.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Applet registration to EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE
Applet1 is registered to Unformatted SMS PP Envelope.

1- Unformatted SMS PP envelope is sent to the SIM.

2- Applet calls setEvent() with the event EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE.

3- An envelope Event Download Data Available is sent to the SIM

Channel Status = 81 00

4- Unformatted SMS PP envelope is sent to the SIM.

5- Applet1 builds a proactive command OPEN CHANNEL calling ProactiveHandler.init() method.

6- send() method is called to register to this event.

8- An envelope Event Download Data Available is sent to the SIM with Channel Status = 01 00.

9- Unformatted SMS PP envelope is sent to the SIM.

10- Applet1 builds a proactive command OPEN CHANNEL calling ProactiveHandler.init() method.

11- send() method is called to register to this event.

	1- Applet1 is triggered by Unformatted SMS PP envelope.

2- Applet1 finalizes.

3- Applet1 is not triggered.

4- Applet1 is triggered by Unformatted SMS PP envelope.

7- Applet1 finalizes.

8- Applet1 is not triggered.

9- Applet1 is triggered by EVENT_UNFORMATTED_SMS_PP_ENV.

12- Applet1 finalizes.
	6- OPEN CHANNEL proactive command is fetched.

Unsuccessful TERMINAL RESPONSE of OPEN CHANNEL is sent to the SIM.

11- OPEN CHANNEL proactive command is fetched.

Successful TERMINAL RESPONSE of OPEN CHANNEL is sent to the SIM with Channel Id = 01.

	2
	Applet triggering to EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE

1- An envelope Event Download Data Available is sent to the SIM

Channel Status = 81 00.

	1- Applet1 is triggered.
	

	3
	Applet not triggered if channel link is released by the ME.

1- An ENVELOPE(event channel status) is sent to the SIM, indicating that channel 01 is no more available.

2- An envelope Event Download Data Available is sent to the SIM

Channel Status = 01 00

	2 – Applet1 is not triggered.
	

	3
	Applet deregistration to EVENT_EVENT_ DOWNLOAD_DATA_ AVAILABLE

0- Unformatted SMS PP envelope is sent to the SIM.

1- Applet1 initializes and sends an OPEN CHANNEL proactive command.

2- Applet1 builds a CLOSE CHANNEL Proactive Command calling ProactiveHandler.initCloseChannel() and ProactiveHandler.send() methods.

3- An envelope Event Download Data Available is sent to the SIM.

Channel Status = 82 00

4- Applet1 builds a CLOSE CHANNEL Proactive Command calling ProactiveHandler.initCloseChannel() and ProactiveHandler.send() methods.

	0- Applet1 is triggered.

3- Applet1 is triggered.

5- Applet1 finalizes.
	1- OPEN CHANNEL proactive command is fetched.

Successful terminal response is sent, with channelId=02.

2- CLOSE CHANNEL proactive command is fetched.

Unsuccessful TERMINAL RESPONSE of CLOSE CHANNEL is sent to the SIM.

4- CLOSE CHANNEL proactive command is fetched.

Successful TERMINAL RESPONSE of CLOSE CHANNEL is sent to the SIM with Channel Id = 02.

	4
	Applet triggering to EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE

1- An envelope Event Download Data Available is sent to the SIM

Channel Status = 82 00.
	1- Applet1 is not triggered.
	

	5
	Applet1 not triggered after a reset

0- Applet1 is triggered by an unformatted SMS PP Envelope

1- Applet1 builds a proactive command OPEN CHANNEL calling ProactiveHandler.init() method.

2- send() method is called to register to this event.

3- isEventSet() method is called.

4- Reset the card.

5- An envelope Event Download Data Available is sent to the SIM

Channel Status = 82 00.

	3- returns true.

5- Applet1 is not triggered.

	1- OPEN CHANNEL proactive command is fetched.

2- Successful TERMINAL RESPONSE of OPEN CHANNEL is sent to the SIM with Channel Id = 02.

6.3.3.25.4
Test Coverage

	CR Number
	Test Case Number

	CRRN1
	2

	CRRN2
	1, 4, 5

	CRRN3
	1

	CRRN4
	3

6.3.3.26 EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS

Test Area Reference: FWK_APT_EDCS

6.3.3.26.1.1 Conformance Requirement

Normal Execution

CRRN1: For EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS, the framework shall only trigger the applet registered to this event with the appropriate channel identifier.

CRRN2: The registration to the EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS is effective once the toolkit applet has issued a successful OPEN CHANNEL proactive command, and valid till the first successful CLOSE CHANNEL or a channel link is released by the ME or the card session.

CRRN3: When a Toolkit Applet has sent an OPEN CHANNEL proactive command and received a successful TERMINAL RESPONSE, the framework shall register the received channel identifier for the calling Toolkit Applet.

CRRN4: When a Toolkit Applet has sent a CLOSE CHANNEL proactive command and received a successful TERMINAL RESPONSE, the framework shall release the channel identifier contained in the command. A successful TERMINAL RESPONSE means that the result of the proactive command execution belongs to command performed category (i.e. General Result ='0x').

6.3.3.26.2 Test Suite Files

Test Script:

FWK_APT_EDCS_1.scr

Test Applet:

FWK_APT_EDCS_1.java

Load Script:

FWK_APT_EDCS_1.ldr

Cleanup Script:

FWK_APT_EDCS_1.clr

Parameter File:

FWK_APT_EDCS_1.par

6.3.3.26.3 Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Applet registration to EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS
Applet1 is registered to Unformatted SMS PP Envelope.

1-Unformatted SMS PP envelope is sent to the SIM.

2-The applet calls setEvent() with EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS.

3- An envelope Event Download Channel Status is sent to the SIM.

Channel Status = 81 00

4-Unformatted SMS PP envelope is sent to the SIM.

5- Applet1 builds a proactive command OPEN CHANNEL calling ProactiveHandler.init() method.
6- send() method is called to register to this event.

8- An envelope Event Download Data Available is sent to the SIM with Channel Status = 01 00.

9- Unformatted SMS PP envelope is sent to the SIM.

10- Applet1 builds a proactive command OPEN CHANNEL calling ProactiveHandler.init() method.

11- send() method is called to register to this event a second time.

	1- Applet1 is triggered by Unformatted SMS PP envelope

2- Applet1 finalizes.

3- Applet1 is not triggered.

4- Applet1 is triggered by Unformatted SMS PP envelope.

7- Applet finalizes.

8- Applet1 is not triggered.

9- Applet1 is triggered by EVENT_UNFORMATTED_SMS_PP_ENV.

12- Applet1 finalizes.
	6- OPEN CHANNEL proactive command is fetched.

Unsuccessful TERMINAL RESPONSE of OPEN CHANNEL is sent to the SIM.

11- OPEN CHANNEL proactive command is fetched.

Successful TERMINAL RESPONSE of OPEN CHANNEL is sent to the SIM with Channel Id = 01.

	2
	Applet triggering to EVENT_EVENT_DOWNLOAD_CHANNEL STATUS

1- An envelope Event Download Channel Status is sent to the SIM.

Channel Status = 81 00

	1- Applet1 is triggered.
	

	3
	Applet is not triggered after a channel link is released by the ME
.

1-An envelope Event Download Channel Status is sent to the SIM, indicating that channel 01 is released.

2- An envelope Event Download Channel Status is sent to the SIM with channelId 01.

	2-Applet1 is not triggered.
	

	3
	Applet deregistration to EVENT_EVENT_ DOWNLOAD_CHANNEL STATUS

0- Unformatted SMS PP envelope is sent to the SIM.

1-Applet1 initializes and sends an OPEN CHANNEL proactive command.

2- Applet1 builds a CLOSE CHANNEL Proactive Command calling ProactiveHandler.initCloseChannel() and ProactiveHandler.send() methods.

3-An envelope Event Download Channel Status is sent to the SIM.

Channel Status = 82 00
4- Applet1 builds a Close Channel Proactive Command calling ProactiveHandler.initCloseChannel() and ProactiveHandler.send() methods.

	0- Applet1 is triggered.

3- The applet is triggered.

5- Applet1 finalizes.
	OPEN CHANNEL proactive command is fetched.

Successful terminal response is sent, with channelId=02.

2-CLOSE CHANNEL proactive command is fetched.

Unsuccessful TERMINAL RESPONSE of CLOSE CHANNEL is sent to the SIM.

4- CLOSE CHANNEL proactive command is fetched.

Successful TERMINAL RESPONSE of CLOSE CHANNEL is sent to the SIM with Channel Id = 02.

	4
	Applet triggering to EVENT_EVENT_DOWNLOAD_CHANNEL STATUS

1- An envelope Event Download Channel Status is sent to the SIM.

Channel Status = 82 00
	Applet1 is not triggered.
	

	5
	Applet1 not triggered after a reset

0- Applet1 is triggered by an unformatted SMS PP Envelope.

1- Applet1 builds a proactive command OPEN CHANNEL calling ProactiveHandler.init() method.

2- send() method is called to register to this event.

3- isEventSet() method is called.

4- Reset the card.

5- An envelope Event Download Data Available is sent to the SIM

Channel Status = 82 00.

	3- returns true.

5- Applet1 is not triggered.

	1- OPEN CHANNEL proactive command is fetched.

2- Successful TERMINAL RESPONSE of OPEN CHANNEL is sent to the SIM with Channel Id = 02.

6.3.3.26.4 Test Coverage

	CR Number
	Test Case Number

	CRRN1
	2

	CRRN2
	1, 4, 5

	CRRN3
	1

	CRRN4
	3

6.3.4
Proactive Command Sending by the STF

6.3.4.3
Proactive Command Control

Test Area Reference: FWK_PCS_PCCO

6.3.4.1.1
Conformance Requirements

Normal Execution

CRRN1: The SIM Toolkit Framework shall prevent the toolkit applet to issue the following proactive commands: SET UP MENU, SET UP EVENT LIST, POLL INTERVAL, POLLING OFF. If an applet attempts to issue such a command, the SIM Toolkit Framework shall throw an exception.

CRRN2: The SIM Toolkit Framework shall prevent a toolkit applet to issue a TIMER MANAGEMENT proactive command using a timer identifier, which is not allocated to it. If an applet attempts to issue such a command, the SIM Toolkit Framework shall throw an exception.

CRRN3: The SIM Toolkit Framework shall prevent a toolkit applet to issue a SEND DATA, RECEIVE DATA and CLOSE CHANNEL proactive commands using a channel identifier, which is not allocated to it. If an applet attempts to issue such a command the SIM Toolkit Framework shall throw an exception.

CRRN4: The SIM Toolkit Framework shall prevent a toolkit applet to issue an OPEN CHANNEL proactive command if it exceeds the maximum number of channel allocated to this applet. If an applet attempts to issue such a command the SIM Toolkit Framework shall throw an exception.

6.3.4.1.2
Test Suite Files

Test Script:

FWK_PCS_PCCO_1.scr

Test Applet:

FWK_PCS_PCCO_1.java

FWK_PCS_PCCO_2.java

FWK_PCS_PCCO_3.java

Load Script:

FWK_PCS_PCCO_1.ldr

Cleanup Script:
FWK_PCS_PCCO_1.clr

Parameter File:
FWK_PCS_PCCO_1.par

6.3.4.1.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	0
	Applets installation

Applet1 is installed with 4 timers maximum, 0 channel maximum and 1 menu.

Applet2 is installed with 8 timers maximum, 3 channels maximum.

Applet3 is installed with 1 channel maximum.
	
	

	1
	STK Proactive Commands
1- Send a formatted envelope with the TAR of Applet1

2- Applet1 builds and sends a SET UP MENU proactive command

3- Applet1 builds and sends a SET UP EVENT LIST proactive command

4- Applet1 builds and sends a POLL INTERVAL proactive command

5- Applet1 builds and sends a POLLING OFF proactive command
	1- Applet1 is triggered

2- COMMAND_NOT_ALLOWED toolkit exception is thrown

3- COMMAND_NOT_ALLOWED toolkit exception is thrown

4- COMMAND_NOT_ALLOWED toolkit exception is thrown

5- COMMAND_NOT_ALLOWED toolkit exception is thrown
	1- 90 00 (no proactive command is sent)

	2
	TIMER MANAGEMENT Proactive command
1- Send a formatted envelope with the TAR of Applet2

2- Applet2 allocates 8 timers by calling allocateTimer() method and release the 3 timers from id 1 to 3.

3- Send a formatted envelope with the TAR of Applet1

4- Applet1 allocates 3 timers (Id 1 to 3) by calling allocateTimer() method 3 times

5- Send a formatted envelope with the TAR of Applet2

6- Applet2 releases timers of Id 4 to 7

7- Send a formatted envelope with the TAR of Applet1

8- For each of the 3 timers allocated by Applet1 (Id 1to 3) a TIMER MANAGEMENT proactive session is performed

9- For other timers (Id 4 to 8), Applet1 builds and sends a TIMER MANAGEMENT proactive command
	1- Applet2 is triggered

2- No exception is thrown

3- Applet1 is triggered

4- No exception is thrown

5- Applet2 is triggered

6- No exception is thrown

7- Applet1 is triggered

8- No exception is thrown

9- COMMAND_NOT_ALLOWED toolkit exception is thrown
	8- 3 TIMER MANAGEMENT proactive commands are fetched

9- The Status word of the last previous Terminal Response is 90 00 (no more proactive command is sent)

	3
	No Channel allowed

1- Send a formatted envelope with the TAR of Applet1

2- Applet1 builds and sends a CSD OPEN CHANNEL proactive command

3- Applet1 builds and sends a GPRS OPEN CHANNEL proactive command

4Applet1 builds and sends a SEND DATA proactive command

5- Applet1 builds and sends a RECEIVE DATA proactive command

6- Applet1 builds and sends a CLOSE CHANNEL proactive command
	1- Applet1 is triggered

2- COMMAND_NOT_ALLOWED toolkit exception is thrown

3- COMMAND_NOT_ALLOWED toolkit exception is thrown

4- COMMAND_NOT_ALLOWED toolkit exception is thrown

5- COMMAND_NOT_ALLOWED toolkit exception is thrown

6- COMMAND_NOT_ALLOWED toolkit exception is thrown
	1- 90 00 (no proactive command is sent)

	4
	4 Channels allowed
1- Send a formatted envelope with the TAR of Applet3

2- Applet3 builds and sends a CSD OPEN CHANNEL proactive command

3- Send a Fetch and Terminal Response OK on channel 7

4- Send a formatted envelope with the TAR of Applet2

5- Applet2 builds and sends a CSD OPEN CHANNEL proactive command

6- Send a Fetch and Terminal Response OK on channel 1

7- Applet2 builds and sends a GPRS OPEN CHANNEL proactive command

8- Send Fetch and Terminal Response OK on channel 2

9- For each channel id from 3 to 7, Applet2 builds and sends a SEND DATA proactive command

10- For each channel id from 3 to 7, Applet2 builds and sends a RECEIVE DATA proactive command

11- For each channel id from 3 to 7, Applet2 builds and sends a CLOSE CHANNEL proactive command

12- Applet2 builds and sends a CSD OPEN CHANNEL proactive command

13- Fetch and Terminal Response OK on channel 3

14- Applet2 builds and sends an OPEN CHANNEL proactive command
	1- Applet3 is triggered

2- No exception is thrown

4- Applet2 is triggered

5- No exception is thrown

7- No exception is thrown

9- COMMAND_NOT_ALLOWED toolkit exception is thrown

10- COMMAND_NOT_ALLOWED toolkit exception is thrown

11- COMMAND_NOT_ALLOWED toolkit exception is thrown

12- No exception is thrown

14- COMMAND_NOT_ALLOWED toolkit exception is thrown

	2- 91 1C

3- OPEN CHANNEL proactive

5- 91 1C

6- OPEN CHANNEL proactive command is fetched

7- 91 17

8- OPEN CHANNEL proactive command is fetched, SW = 91 1C on the Terminal Response

13- OPEN CHANNEL proactive command is fetched

14- 90 00 expected to the previous Terminal Response (no proactive command is sent)

6.3.4.1.4
Test Coverage

	CRR number
	Test case number

	N1
	1

	N2
	2

	N3
	3,4

	N4
	3,4

6.3.6
Framework Security Management

Security Parameters

The table that follows contains the security parameters that shall be used when the [8]security is required in the test cases developed in the current section.

	Parameter
	Value in hexadecimal

	KIC
	11

	KID
	11

	CNTR
	00 00 00 00 01

	Key for ciphering
	01 41 42 7F DA E8 91 A7

	Key for RC/CC/DS
	01 23 45 67 89 AB CD EF

If a parameter is not listed explicitly in the above table, the default values of section 4.7.3.1 apply.

6.3.6.1
Input Data

Test Area Reference: FWK_FWS_INDA

6.3.6.1.1
Conformance Requirements

Normal Execution

CRRN1: If the SIM receives an envelope APDU containing an SMS_PP_DATADOWNLOAD BER TLV formatted according to [8], the SIM Toolkit Framework shall verify the security of the SMS TPDU.

CRRN2: The toolkit applet will only be triggered if the TAR is known and the security verified.

CRRN3: If the SIM receives an envelope APDU containing an SMS_CB_DATADOWNLOAD formatted according to [8], the SIM Toolkit Framework shall verify the security of the cell broadcast page.

CRRN4: If the SIM receives an Update Record EFsms instruction formatted according to [8], the SIM Toolkit Framework shall verify the security of the SMS.

CRRN5: The STF shall provide the input data deciphered.

6.3.6.1.2
Test Area Files

Test Script:

FWK_FWS_INDA_1.scr

Test Applet:

FWK_FWS_INDA_1.java

FWK_FWS_INDA_2.java

FWK_FWS_INDA_3.java

FWK_FWS_INDA_4.java

FWK_FWS_INDA_5.java

FWK_FWS_INDA_6.java

Load Script:

FWK_FWS_INDA_1.ldr

Cleanup Script:

FWK_FWS_INDA_1.clr

Parameter File:

FWK_FWS_INDA_1.par

6.3.6.1.3 Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	
	

	
	

	1
	Framework checks the Cryptographic checksum and deciphers the data

Applet1 is loaded and installed

1-Envelope(SMS-PP) single and formatted is sent to the SIM with this features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet 1;

Data = 01

2- Short Message concatenated and formatted is sent to the SIM by an Envelope (SMS PP)with these features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet 1;

Data length is 150.

	1- The applet 1 is triggered and the value integrity is checked.

2- The applet 1 is triggered and the value integrity is checked

	1- The SIM answers to the Envelope with status words 9000

2- The SIM answers to the Envelope with status words 9000

	
	

	

	

	
	

	
	

	2
	Triggering two different applets with different security

Applet2 is installed

1-Envelope(SMS-PP) single and formatted is sent to the SIM with this features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet 1

Data = 03

2- Short Message concatenated and formatted is sent to the SIM by an Envelope (SMS PP)with these features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet 1

Data length = 150

3-Envelope(SMS-PP) single and formatted is sent to the SIM with this features:

No ciphering;

No cryptographic checksum;

No proof of receipt;

TAR of Applet 2

Data = 05

4- Short Message concatenated and formatted is sent to the SIM by an Envelope (SMS PP)with these features::

No ciphering;

No cryptographic checksum;

No proof of receipt;

TAR of Applet 2

Data length = 150.

	1- Applet 1 is triggered and the value integrity is checked

2- Applet 1 is triggered and the value integrity is checked

3- Applet 2 is triggered and the value integrity is checked

4- Applet 2 is triggered and the value integrity is checked

	1- The SIM answers to the Envelope with status words 9000

2- The SIM answers to the Envelope with status words 9000

3- The SIM answers to the Envelope with status words 9000

4- The SIM answers to the Envelope with status words 9000

	3
	Envelope(SMS-PP) formatted with wrong cryptographic checksum

1-Envelope 03.48 single and formatted is sent to the SIM with this features:

No ciphering;

Wrong cryptographic checksum;

No proof of receipt;

TAR of Applet 1

Data = 07

2- Short Message concatenated and formatted is sent to the SIM by an Envelope (SMS PP)with these features:

No ciphering;

Wrong cryptographic checksum;

No proof of receipt;

TAR of Applet 1

Data length = 150

	1- No applet is triggered.

2- No applet is triggered.

	1- The SIM answers to the Envelope with status words 9000

	
	

	
	

	4
	Framework checks the Cryptographic checksum and deciphers the data

Applet3 is loaded and installed

1-Envelope(SMS-CB) formatted is sent to the SIM with this features:
Ciphering;

Cryptographic checksum;

No proof of receipt;

Data = 01

	1- Applet3 is triggered and the value integrity is checked
	1- The SIM answers to the Envelope with status words 9000

	
	

	

	

	5
	Triggering two different applets with different security on Envelope(SMS-CB) formatted

Applet4 is installed

1-Envelope(SMS-CB) formatted is sent to the SIM with this features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet 3

Data = 02

2-Envelope(SMS-CB) formatted is sent to the SIM with this features:

No ciphering;

No cryptographic checksum;

No proof of receipt;

TAR of Applet 4

Data = 03

	1- Applet3 is triggered and the value integrity is checked

2- Applet4 is triggered and the value integrity is checked
	1- The SIM answers to the Envelope with status words 9000

2- The SIM answers to the Envelope with status words 9000

	
	

	
	

	6
	Envelope(SMS-CB) formatted with wrong cryptographic checksum

No ciphering;

Wrong Cryptographic checksum;

No proof of receipt;

TAR of Applet 3

Data = 04
	No applet is triggered
	1- The SIM answers to the Envelope with status words 9000

	7
	Framework checks the Cryptographic checksum and deciphers the data

Applet5 is installed

1- Short Message single and formatted is sent to the SIM by Update Record EFsms instruction with these features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet5;

Data = 01

2- Short Message concatenated and formatted is sent to the SIM by Update Record EFsms instruction with these features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet5;

Data length = 150.

	1- The applet5 is triggered and the value integrity is checked.

2- The applet5 is triggered and the value integrity is checked

	1- The SIM answers to the Update Record EFsms instruction with status words 9000

2- The SIM answers to the Update Record EFsms instruction with status words 9000

	8
	Triggering two different applets with different security

Applet6 is installed

1- Short Message single and formatted is sent to the SIM by Update Record EFsms instruction with these features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet5

Data = 03

2- Short Message concatenated and formatted is sent to the SIM by Update Record EFsms instruction with these features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet5

Data length = 150.

3- Short Message single and formatted is sent to the SIM by Update Record EFsms instruction with these features:

No ciphering;

No cryptographic checksum;

No proof of receipt;

TAR of Applet6;

Data = 05

4- Short Message concatenated and formatted is sent to the SIM by Update Record EFsms instruction with these features:

No ciphering;

No cryptographic checksum;

No proof of receipt;

TAR of Applet6;

Data length = 150.

	1- Applet5 is triggered and the value integrity is checked.

2- Applet5 is triggered and the value integrity is checked.

3- Applet6 is triggered and the value integrity is checked.

4- Applet6 is triggered and the value integrity is checked.

	1- The SIM answers to the Update Record EFsms instruction with status words 9000

2- The SIM answers to the Update Record EFsms instruction with status words 9000

3- The SIM answers to the Update Record EFsms instruction with status words 9000

4- The SIM answers to the Update Record EFsms instruction with status words 9000

	9
	Update Record EFsms instruction formatted with wrong cryptographic checksum

1- Short Message single and formatted is sent to the SIM by Update Record EFsms instruction with these features:No ciphering;

Wrong Cryptographic checksum;

No proof of receipt;

TAR of Applet5

Data = 07

2- Short Message concatenated and formatted is sent to the SIM by Update Record EFsms instruction with these features:

No ciphering;

Wrong Cryptographic checksum;

No proof of receipt;

TAR of Applet5

Data length = 150

	1- No applet is triggered.

2- No applet is triggered.

	1- The SIM answers to the Update Record EFsms instruction with status words 9000

2- The SIM answers to the Update Record EFsms instruction with status words 9000

6.3.6.1.4
Test Coverage

	CRR Number
	Test Case Number

	CRRN1
	1,2,3

	
	

	CRRN2
	3,6,9

	CRRN3
	4,5,6

	CRRN4
	7,8,9

	CRRN5
	1,2,4,5,7,8

6.3.7

Envelope Response Posting

6.3.7.4
EVENT_FORMATTED_SMS_PP_ENV

Test Area Reference: FWK_ERP_EFSE

6.3.7.4.1

Conformance Requirement

Normal Execution

CRRN1: If PoR is required a SMS-DELIVER REPORT is sent by the SIM, when the post() or the postAsBERTLV() method is invoked and if bit 6 of the second octet of SPI is set to 0.

CRRN2: If PoR is required a SMS-SUBMIT is sent by the SIM, when the post() or the postAsBERTLV() method is invoked and if bit 6 of the second octet of SPI is set to 1. In this case the statusType method parameter is meaningless. The SIM Toolkit Framework shall build and issue a Send Short Message proactive command as defined in TS 31.111 [4].

6.3.7.4.2
Test Suite Files

Test Script:

FWK_ERP_EFSE_1.scr

Test Applet:

FWK_ERP_EFSE_1.java

FWK_ERP_EFSE _2.java

Load Script:

FWK_ERP_EFSE _1.ldr

Cleanup Script:

FWK_ERP_EFSE _1.clr

Parameter File:

FWK_ERP_EFSE _1.par

6.3.7.4.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	SMS DELIVER REPORT

1- A formatted sms pp envelope with SMS Deliver Report required is sent to the SIM with bit 6 of SPI2 set to 0.

2- EnvelopeResponseHandler.getTheHandler() method is called by Applet1

3- Applet1 builds the answer and calls the post() method with StatusType=SW1_RP_ACK

4- A formatted sms pp envelope with SMS Deliver Report required is sent to the SIM with bit 6 of SPI2 set to 0.

5- EnvelopeResponseHandler.getTheHandler() method is called by Applet1

6- Applet1 builds the answer and calls the postAsBERTLV() method with StatusType=SW1_RP_ACK

	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

4- Applet1 is triggered

5- No exception is thrown.

Applet1 finalizes

	3- ME receives 9FXX and checks the response

5- ME receives 9FXX and checks the response

	2
	SMS-SUBMIT

1- A formatted sms pp envelope with SMS Submit required is sent to the SIM with bit 6 of SPI2 set to 1.

2- EnvelopeResponseHandler.getTheHandler() method is called by Applet1

3- Applet1 builds the answer and calls the post() method with StatusType=SW1_RP_ACK

SIM Initialisationreset.

4- A formatted sms pp envelope with SMS Submit required is sent to the SIM with bit 6 of SPI2 set to 1.

5- EnvelopeResponseHandler.getTheHandler() method is called by Applet1

SIM Initialisationreset.
6- Applet1 builds the answer and calls the post() method with StatusType=SW1_RP_ERROR

7- A formatted sms pp envelope with SMS Submit required is sent to the SIM with bit 6 of SPI2 set to 1.

8- EnvelopeResponseHandler.getTheHandler() method is called by Applet1

9.-Applet1 builds the answer and calls the postAsBERTLV() method with StatusType=SW1_RP_ACK

reset. SIM Initialisation
10- A formatted sms pp envelope with SMS Submit required is sent to the SIM with bit 6 of SPI2 set to 1.

11- EnvelopeResponseHandler.getTheHandler() method is called by Applet1

12- Applet1 builds the answer and calls the postAsBERTLV () method with StatusType=SW1_RP_ERROR

SIM Initialisationreset.

	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

4- Applet1 is triggered

5- No exception is thrown

Applet1 finalizes

7- Applet1 is triggered

8- No exception is thrown.

Applet1 finalizes

10- Applet1 is triggered

11- No exception is thrown.

	3- ME receives 91XX and checks the response

6- ME receives 91XX and checks the response

9- ME receives 91XX and checks the response

12- ME receives 91XX and checks the response

6.3.7.4.4
Test Coverage

	CRR Number
	Test Case Number

	CRRN1
	1

	CRRN2
	2

6.3.8
Toolkit Installation

6.3.8.1
Timers Allocation

Test Area Reference: FWK_TIN_TMAL

6.3.8.1.1
Conformance Requirements

Normal execution

CRRN1: One toolkit applet can register to several timers, but a timer can only be allocated to one toolkit applet.

Context errors

CRRC1 : Allocated timers shall not exceed the maximum number of timers allowed for this applet instance defined during installation.

CRRC2 : The total number of timers allocated for all the applets shall not exceed 8. If the maximum number of timers required is greater than '08' (maximum numbers of timers specified in TS 31.111 [16], the card shall return the Status Word '6A80', incorrect parameters in data field, to the Install(Install) command.
6.3.8.1.2
Test suite files

Test Script:

FWK_TIN_TMAL_1.scr

Test Applet:

FWK_TIN_TMAL_1.java

FWK_TIN_TMAL_2.java

FWK_TIN_TMAL_3.java

Load Script:

FWK_TIN_TMAL_1.ldr

Cleanup Script:

FWK_TIN_TMAL_1.clr

Parameter File:

FWK_TIN_TMAL_1.par

6.3.8.1.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	
	

	

	

	1
	More than 8 timers at the instantiation of applet1: check that applet1 is not installed.
Install for install of applet1 with maximum 9 timers allocated, requesting a PoR to be sent via SMS-DELIVER-REPORT.

	
	The SIM answers to the Envelope with status words 9Fxx

A GET RESPONSE is sent and the additional data in the PoR is checked. It must be 01 6A 80.

	
	
	
	

	
	Reset the card
	
	

	2
	Good installation of applet2
Install for install of applet2 (maximum 4 timers allocated).

	
	The SIM answers to the Envelope with status words 90 00

	3
	Allocate 4 timers

Applet2

	No exception shall be thrown.

	

	4
	Allocate one more timer

Applet2

	Shall throw a ToolkitException with reason NO_TIMER_AVAILABLE
	

	5
	Good installation of applet3

Install for install of applet3 (maximum 8 timers allocated).

	
	The SIM answers to the Envelope with status words 90 00

	6
	Allocate 4 timers

Applet3

	No exception shall be thrown.

	

	7
	Allocate one more timer

Applet3

	Shall throw a ToolkitException with reason NO_TIMER_AVAILABLE
	

	8
	Check that each timerId (allocated by applet2 and applet3) is between 1 and 8 and is different from each other

	
	

6.3.8.1.4
Test Coverage

	CRR number
	Test case number

	N1
	2,3,8

	C1
	1, 7

	C2
	4,5,6

6.3.8.8 Channel Allocation

Test Area Reference: FWK_TIN_CHAL

6.3.8.8.1
Conformance Requirements

Normal execution

CRRN1: One toolkit applet can register to several channels, but a channel can only be allocated to one toolkit applet.

Context errors

CRRC1 : Allocated channels shall not exceed the maximum number of channels allowed for this applet instance.

CRRC2 : The total number of channels allocated for all the applets shall not exceed 7. If the maximum number of channels required is greater than '07' (maximum numbers of channels specified in TS 31.111 [16]), the card shall return the Status Word '6A80', incorrect parameters in data field, to the Install(Install) command.

6.3.8.8.2
Test suite files

Test Script:

FWK_TIN_CHAL_1.scr

Test Applet:

FWK_TIN_CHAL_1.java

FWK_TIN_CHAL_2.java

FWK_TIN_CHAL_3.java

Load Script:

FWK_TIN_CHAL_1.ldr

Cleanup Script:

FWK_TIN_CHAL_1.clr

Parameter File:

FWK_TIN_CHAL_1.par

6.3.8.8.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	More than 7 channels at the instantiation of applet1: check that applet1 is not installed

1-Install for install of applet1 with maximum 8 channels allocated.

A PoR is asked to be sent via SMS-DELIVER-REPORT.

	
	1- The SIM answers to the Envelope with status words 9Fxx.

A GET RESPONSE is sent and the additional data in the PoR is checked. It must be 01 6A 80.

	
	Reset the card
	
	

	2
	Good installation of applet2
Install for install of applet2 (maximum 4 channels allocated).

	
	The SIM answers to the Envelope with status words 90 00

	3
	Open 4 channels

Applet2
Applet2 builds a proactive command OPEN CHANNEL 4 times, calling init() and send() methods.

	No exception shall be thrown.

	OPEN CHANNEL proactive command are fetched.

Successful TERMINAL RESPONSE of OPEN CHANNEL are sent to the SIM with Channel Id = 01 to 04

	4
	Open one more channel

Applet2
Applet2 builds a proactive command OPEN CHANNEL once again, calling init() and send() methods.
	Shall throw a ToolkitException with reason COMMAND_NOT_ALLOWED
	

	5
	Good installation of applet3
Install for install of applet3 (maximum 7 channels allocated).

	
	The SIM answers to the Envelope with status words 90 00

	6
	Open 3 channels

Applet3
Applet3 builds a proactive command OPEN CHANNEL 3 times, calling init() and send() methods.
	No exception shall be thrown.

	OPEN CHANNEL proactive command is fetched.

Successful TERMINAL RESPONSE of OPEN CHANNEL are sent to the SIM with Channel Id from 05 to 07

	7
	Open one more channel

Applet3

Applet3 builds a proactive command OPEN CHANNEL once again, calling init() and send() methods.
	No exception shall be thrown.
	OPEN CHANNEL proactive command is fetched.

Unsuccessful Terminal Response is sent to the SIM with ‘No Channel Available’ as Additional Information on Result.

6.3.8.8.4
Test Coverage

	CRR number
	Test case number

	N1
	2, 3

	C1
	1, 7

	C2
	4, 5, 6

6.3.8.8 Minimum Security Level

Test Area Reference: FWK_TIN_MSL

6.3.8.8.1
Conformance Requirements

Normal execution

CRRN1: The Receiving Entity shall check the Minimum Security Level during processing the security of the Command Packet.

CRRN2: The Receiving Entity shall reject the message if the MSL check fails.

CRRN3: If the MSL check fails, a Response Packet with the 'Insufficient Security Level' Response Status Code shall be sent if required.

CRRN4: If the length of the Minimum Security Level field is greater than zero, the Minimum Security Level is used to specify the minimum level of security to be applied to Secured Packets. The first byte shall be the MSL Parameter, other bytes shall be the MSL Data.

CRRN5: If the length of the Minimum Security Level field is zero, no minimum security level check shall be performed by the receiving entity.

CRRN6: If no Minimum Security Level field is present (no MSL length, no MSL parameter and no MSL data), no minimum security level check shall be performed by the receiving entity.

CRRN7: If the Maximum number of channels field is included in the command data then the Length of Minimum Security Level field shall also be included.

CRRN8: If an optional parameter is included, then all the previous parameters shall be included also

6.3.8.8.2
Test suite files

Test Script:

FWK_TIN_MSL_1.scr

Test Applet:

FWK_TIN_MSL_1.java

Load Script:

FWK_TIN_MSL_1.ldr

Cleanup Script:

FWK_TIN_MSL_1.clr

Parameter File:

FWK_TIN_MSL_1.par

6.3.8.8.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Installation with MSL length of 0
1- Install (install) applet with a MSL length = 0

2- Send formatted SMS PP env with no RC/CC/DS, no Ciphering and counter mode 0 (not checked)

3- Send a formatted SMS PP env with CC, ciphering and counter mode 1 (counter available and no checking)

4- Delete the applet instance
	2- Applet is triggered

3- Applet is triggered
	1- 9000

	2
	Installation without MSL field
1- Install (install) applet without MSL field (no MSL length, no MSL parameter and no data)

2- Send formatted SMS PP env with no RC/CC/DS, no Ciphering and counter mode 0 (not checked)

3- Send a formatted SMS PP env with CC, ciphering and counter mode 1 counter available and no checking)

4- Delete the applet instance
	2- Applet is triggered

3- Applet is triggered
	1- 9000

6.3.8.9.4 Test Coverage

	CRR number
	Test case number

	CRRN1
	Not applicable

	CRRN2
	Not applicable

	CRRN3
	Not applicable

	CRRN4
	Not applicable

	CRRN5
	1

	CRRN6
	2

	CRRN7
	Not testable

	CRRN8
	Not testable

6.3.11 Concatenated SMS

6.3.11.1 Concatenation processing

6.3.11.1 Conformance Requirements:

Normal execution

CRRN1: The SIM Toolkit Framework shall link single Short Messages together to re-assemble the original message before any further processing.

CRRN2: The concatenation control headers used to re-assemble the short messages in the correct order shall not be present in the SMS TPDU.

CRRN3: The TP-elements of the SMS TPDU and the Address (TS-Service-Centre-Address) shall correspond to the ones in the last received Short Message (independently of the Sequence number of Information-Element-Data).

CRRN4: The original Short Message shall be placed in one SMS TPDU TLV (with TP-UDL field coded on one octet) included in the EnvelopeHandler.

CRRN5: The SIM Toolkit Framework shall be able to process messages with the following properties:

The Information Element Identifier is equal to the 8-bit reference number

It contains uncompressed 8 bit data or uncompressed UCS2 data, as defined in TS 23.038.

6.3.11.2 Test Suite Files

Test Script:

FWK_CSM_PROC_1.scr

Test Applet:

FWK_CSM_PROC_1.java

Load Script:

FWK_CSM_PROC_1.ldr

Cleanup Script:

FWK_CSM_PROC_1.clr

Parameter File:

FWK_CSM_PROC_1.par

6.3.11.3 Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	
	Applet registration to EVENT FORMATTED_SMS_PP_ENV and triggering

Applet is registered to EVENT_FORMATTED_SMS_PP_ENV and EVENT_UNFORMATTED_SMS_PP_ENV

A concatenated formatted SMS_PP short message is sent to the SIM (composed of two segments).

	
	

	1
	The second segment of a concatenated short message is sent to the SIM.

	1- Applet is not triggered.
	

	2
	The first segment of the concatenated short message is sent to the SIM
	2- Applet is triggered.
	

	3
	Call the EnvelopeHanlder.getTheHandler()
	3- No exception is throw.
	

	4
	Call the EnvelopeHandler.getTPUDLOffset()to select the TPDU TLV and the EnvelopeHandler.compareValue().
	4- Check that the message has been re-assembled in the correct order. Check that TP-UDL field is coded one octet. Check that the concatenation control header is not present in the message.
	

	5
	A new concatenated formatted short message is sent to the SIM composed of two segment). The Address field of the first segment is different from the address field in the second segment.
	5- Applet is triggered.
	

	6
	Call the EnvelopeHandler.getTheHandler()
	6- No exception is throw.
	

	7
	Call the EnvelopeHandler.findAndCompareValue() with the address tag in parameter.
	7- Check that the address field of the message is equal to the address field of the second segment.
	

	8
	Send a concatenated formatted short message (composed of 2 segment)with uncompressed 8 bit data.
	8- Applet is triggered.
	

	9
	Send a concatenated formatted short message (composed of 2 segment)with uncompressed UCS2 data.
	9- Applet is triggered.
	

	
	Applet registration to EVENT UNFORMATTED_SMS_PP_ENV and triggering

Same test as 1 but with an unformatted SMS_PP envelope.

A concatenated unformatted SMS_PP short message is sent to the SIM (composed of two segments).

	
	

	10
	The second segment of a concatenated short message is sent to the SIM.

	10- Applet is not triggered.
	

	11
	The first segment of the concatenated short message is sent to the SIM
	11- Applet is triggered.
	

	12
	Call the EnvelopeHanlder.getTheHandler()
	12- No exception is throw.
	

	13
	Call the EnvelopeHandler.getTPUDLOffset()to select the TPDU TLV and the EnvelopeHandler.compareValue().
	13- Check that the message has been re-assembled in the correct order. Check that TP-UDL field is coded one octet. Check that the concatenation control header is not present in the message.
	

	14
	A new concatenated formatted short message is sent to the SIM composed of two segment). The Address field of the first segment is different from the address field in the second segment.
	14- Applet is triggered.
	

	15
	Call the EnvelopeHandler.getTheHandler()
	15- No exception is throw.
	

	16
	Call the EnvelopeHandler.findAndCompareValue() with the address tag in parameter.
	16- Check that the address field of the message is equal to the address field of the second segment.
	

6.3.11.4 Test Coverage

	CRR number
	Test case number

	N1
	1,2,10,11

	N2
	4,13

	N3
	7,16

	N4
	4,13

	N5
	8,9

Annex A (normative):
Class and Methods AID numbering and acronyms

A.2.4
EnvelopeHandler methods

	Method Name
	Acronyms
	Numbering on 6 bits

	Byte getEnvelopeTag()
	GENT
	000001

	Byte getItemIdentifier()
	GIID
	000010

	Short getSecuredDataLength()
	GSDL
	000011

	Short getSecuredDataOffset()
	GSDO
	000100

	EnvelopeHandler getTheHandler()
	GTHD
	000101

	Short getTPUDLOffset()
	GTPO
	000110

	Short getCapacity()
	GCAP
	010010

	Short getUserDataLength()
	GUDL
	010011

	Byte getChannelIdentifier()
	GCID
	010100

	
	
	

	Inherited Method Name: ViewHandler
	
	

	Byte

compareValue(short valueOffset,byte[] compareBuffer,short compareOffset, short compareLength)
	CPRVS_BSS
	000111

	Short

copy(byte[] dstBuffer,short dstOffset,short dstLength)
	COPY_BSS
	001000

	Short

copyValue(short valueOffset, byte[] dstBuffer,short dstOffset,short dstLength)

	CPYVS_BSS
	001001

	Byte

findAndCompareValue(byte tag,byte[] compareBuffer,short compareOffset)

	FACRB_BS
	001010

	Byte findAndCompareValue(byte tag,byte occurrence, short valueOffset,byte[] compareBuffer,short compareOffset,short compareLength)
	FACRBBS_BSS
	001011

	Short FindAndCopyValue(byte tag,byte occurrence,short valueOffset, byte[] dstBuffer, short dstOffset, short dstLength)
	FACYBBS_BSS
	001100

	Short findAndCopyValue(byte tag,byte[] dstBuffer,short dstOffset)
	FACYB_BS
	001101

	Byte

FindTLV(byte tag,byte occurrence)
	FINDBB
	001110

	Short

GetLength()
	GLEN
	001111

	Byte

GetValueByte(short valueOffset)
	GVBYS
	010000

	Short

GetValueLength()
	GVLE
	010001

A.2.5
EnvelopeResponseHandler methods

	Method Name
	Acronym
	Numbering on 6 bits

	EnvelopeResponseHandler getTheHandler()
	GTHD
	000001

	Void post(byte statusType)
	POSTB
	000010

	Void postAsBERTLV(byte statusType, byte tag)
	POSTBB
	000011

	Short getCapacity()
	GCAP
	010101

	
	
	

	Inherited Method Name: EditHandler
	
	

	Void appendArray(byte[] buffer, short offset, short length)
	APDA_BSS
	000100

	Void appendTLV(byte tag, byte value)
	APTLBB
	000101

	Void appendTLV(byte tag, byte[] value, short valueOffset, short valueLength)
	APTLB_BSS
	000110

	Void appendTLV(byte tag, byte value1, byte value2)
	APTLBBB
	000111

	Void appendTLV(byte tag, byte value1, byte[] value2, short value2Offset, short value2Length)
	APTLBB_BSS
	001000

	Void clear()
	CLER
	001001

	
	
	

	Inherited Method Name: ViewHandler
	
	

	Byte

compareValue(short valueOffset,byte[] compareBuffer,short compareOffset, short compareLength)
	CPRVS_BSS
	001010

	Short

Copy(byte[] dstBuffer,short dstOffset,short dstLength)
	COPY_BSS
	001011

	Short

CopyValue(short valueOffset, byte[] dstBuffer,short dstOffset,short dstLength)

	CPYVS_BSS
	001100

	

	
	

	Byte

findAndCompareValue(byte tag,byte[] compareBuffer,short compareOffset)

	FACRB_BS
	001101

	Byte findAndCompareValue(byte tag,byte occurence, short valueOffset,byte[] compareBuffer,short compareOffset,short compareLength)
	FACRBBS_BSS
	001110

	
	
	

	Short findAndCopyValue(byte tag,byte occurence,short valueOffset, byte[] dstBuffer, short dstOffset, short dstLength)
	FACYBBS_BSS
	001111

	Short findAndCopyValue(byte tag,byte[] dstBuffer,short dstOffset)
	FACYB_BS
	010000

	

	
	

	Byte

findTLV(byte tag,byte occurrence)
	FINDBB
	010001

	Short

GetLength()
	GLEN
	010010

	

	
	

	Byte

getValueByte(short valueOffset)
	GVBYS
	010011

	

	
	

	Short

getValueLength()
	GVLE
	010100

A.2.7
ProactiveHandler methods

	Method Name
	Acronyms
	Numbering on 6 bits

	
	
	

	ProactiveHandler getTheHandler()
	GTHD
	000001

	
	
	

	Void init(byte type, byte qualifier, byte dstDevice)
	INITBBB
	000010

	
	
	

	Void initDisplayText(byte qualifier, byte dcs, byte[] buffer, short offset, short length)
	INDTBB_BSS
	000011

	
	
	

	Void initGetInkey(byte qualifier, byte dcs, byte[] buffer, short offset, short length)
	INGKBB_BSS
	000100

	
	
	

	Void initGetInput(byte qualifier, byte dcs, byte[] buffer, short offset, short length, short minRespLength, short maxRespLength)
	INGPBB_BSSSS
	000101

	Byte send()
	SEND
	000110

	Short getCapacity()
	GCAP
	011000

	Void initCloseChannel(byte bChannelIdentifier)
	ICCHB
	011001

	
	
	

	Inherited Method Name: EditHandler
	
	

	Void appendArray(byte[] buffer, short offset, short length)
	APDA_BSS
	000111

	Void appendTLV(byte tag, byte value)
	APTLBB
	001000

	Void appendTLV(byte tag, byte[] value, short valueOffset, short valueLength)
	APTLB_BSS
	001001

	Void appendTLV(byte tag, byte value1, byte value2)
	APTLBBB
	001010

	Void appendTLV(byte tag, byte value1, byte[] value2, short value2Offset, short value2Length)
	APTLBB_BSS
	001011

	Void clear()
	CLER
	001100

	
	
	

	Inherited Method Name: ViewHandler
	
	

	

	
	

	Byte

compareValue(short valueOffset,byte[] compareBuffer,short compareOffset, short compareLength)
	CPRVS_BSS
	001101

	

	
	

	Short

copy(byte[] dstBuffer,short dstOffset,short dstLength)
	COPY_BSS
	001110

	

	
	

	Short

copyValue(short valueOffset, byte[] dstBuffer,short dstOffset,short dstLength)

	CPYVS_BSS
	001111

	

	
	

	Byte

findAndCompareValue(byte tag,byte[] compareBuffer,short compareOffset)

	FACRB_BS
	010000

	Byte findAndCompareValue(byte tag,byte occurence, short valueOffset,byte[] compareBuffer,short compareOffset,short compareLength)
	FACRBBS_BSS
	010001

	
	
	

	Short findAndCopyValue(byte tag,byte occurence,short valueOffset, byte[] dstBuffer, short dstOffset, short dstLength)
	FACYBBS_BSS
	010010

	Short findAndCopyValue(byte tag,byte[] dstBuffer,short dstOffset)
	FACYB_BS
	010011

	

	
	

	Byte

findTLV(byte tag,byte occurrence)
	FINDBB
	010100

	

	
	

	Short

getLength()
	GLEN
	010101

	

	
	

	Byte

getValueByte(short valueOffset)
	GVBYS
	010110

	

	
	

	Short

getValueLength()
	GVLE
	010111

A.2.8
ProactiveResponseHandler methods

	Method Name
	Acronyms
	Numbering on 6 bits

	
	
	

	Short copyAdditionalInformation(byte[] dstBuffer, short dstOffset, short dstLength)
	CPAI_BSS
	000001

	Short copyTextString(byte[] dstBuffer, short dstOffset)
	CPTS_BS
	000010

	Short getAdditionalInformationLength()
	GTIL
	000011

	Byte getGeneralResult()
	GTGR
	000100

	Byte getItemIdentifier()
	GTII
	000101

	Byte getTextStringCodingScheme()
	GTCS
	000110

	Short getTextStringLength()
	GTTL
	000111

	
	
	

	ProactiveResponseHandler getTheHandler()
	GTHD
	001000

	Short getCapacity()
	GCAP
	010100

	Byte getChannelIdentifier()
	GCID
	010101

	Short copyChannelData(byte[] dstBuffer, short dstOffset, short dstLength)
	CCHD_BSS
	010110

	
	
	

	Inherited Method Name: ViewHandler
	
	

	Byte

CompareValue(short valueOffset,byte[] compareBuffer,short compareOffset, short compareLength)
	CPRVS_BSS
	001001

	Short

Copy(byte[] dstBuffer,short dstOffset,short dstLength)
	COPY_BSS
	001010

	Short

CopyValue(short valueOffset, byte[] dstBuffer,short dstOffset,short dstLength)

	CPYVS_BSS
	001011

	 Byte

FindAndCompareValue(byte tag,byte[] compareBuffer,short compareOffset)

	FACRB_BS
	001100

	 Byte findAndCompareValue(byte tag,byte occurence, short valueOffset,byte[] compareBuffer,short compareOffset,short compareLength)
	FACRBBS_BSS
	001101

	 Short FindAndCopyValue(byte tag,byte occurence,short valueOffset, byte[] dstBuffer, short dstOffset, short dstLength)
	FACYBBS_BSS
	001110

	 Short findAndCopyValue(byte tag,byte[] dstBuffer,short dstOffset)
	FACYB_BS
	001111

	Byte

FindTLV(byte tag,byte occurrence)
	FINDBB
	010000

	Short

GetLength()
	GLEN
	010001

	 Byte

GetValueByte(short valueOffset)
	GVBYS
	010010

	 Short

GetValueLength()
	GVLE
	010011

B.4
Style and formatting
In order to show a common appearance all the scripts shall follow those format rules:

start always with a 'RST'.

The command, data to be checked and status to be checked shall be presented in the following order:

CMD COMMAND [EXPECTED DATA] (EXPECTED STATUS)

APDU shall be presented with command (CLA INS P1 P2 P3) in one line and data (if present) in next line grouped 16 bytes per line (see example above).

The expected data (if present) shall be presented in 16 bytes groups per line (see example above).

F.1
Toolkit Installation Parameters (TIN)

	Test Area within the chapter
	Acronyms
	Numbering on 6 bits

	Timer allocation
	TMAL
	000001

	Item identifier
	ITID
	000010

	Item position
	ITPO
	000011

	Access conditions
	ACCO
	000100

	Priority level
	PRLV
	000101

	Maximum length for each menu entry
	MLME
	000110

	Number of menu entries
	NBME
	000111

	Memory space
	MESP
	001000

	Channel Allocation
	CHAL
	001001

	Minimum Security Level
	MSL
	001010

F.3
Handler Integrity (HIN)

	Test Area within the chapter
	Acronyms
	Numbering on 6 bits

	ProactiveHandler
	PAHD
	000001

	ProactiveResponseHandler
	PRHD
	000010

	EnvelopeHandler
	ENHD
	000011

	EnvelopeResponseHandler
	ERHD
	000100

F.4
Applet Triggering (APT)

	Test Area within the chapter
	Acronyms
	Numbering on 6 bits

	EVENT_PROFILE_DOWNLOAD
	EPDW
	000001

	EVENT_MENU_SELECTION
	EMSE
	000010

	EVENT_MENU_SELECTION_HELP_REQUEST
	EMSH
	000011

	EVENT_FORMATTED_SMS_PP_ENV
	EFSE
	000100

	EVENT_UNFORMATTED_SMS_PP_ENV
	EUSE
	000101

	EVENT_CALL_CONTROL_BY_SIM
	ECCN
	000110

	EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM
	EMCN
	000111

	EVENT_TIMER_EXPIRATION
	ETEX
	001000

	EVENT_UNFORMATTED_SMS_CB
	EUCB
	001001

	EVENT_EVENT_DOWNLOAD_MT_CALL
	EDMC
	001010

	EVENT_EVENT_DOWNLOAD_CALL_CONNECTED
	EDCC
	001011

	EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED
	EDCD
	001100

	EVENT_EVENT_DOWNLOAD_LOCATION_STATUS
	EDLS
	001101

	EVENT_EVENT_DOWNLOAD_USER_ACTIVITY
	EDUA
	001110

	EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE
	EDIS
	001111

	EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS
	EDCR
	010000

	
	
	

	EVENT_UNRECOGNIZED_ENVELOPE
	EUEV
	010001

	EVENT_STATUS_COMMAND
	ESTC
	010010

	EVENT_EVENT_DOWNLOAD_LANGUAGE_SELECTION
	EDLG
	010011

	EVENT_EVENT_DOWNLOAD_BROWSER_TERMINATION
	EDBT
	010100

	EVENT_FORMATTED_SMS_CB
	EFCB
	010101

	EVENT_FIRST_COMMAND_AFTER_SELECT
	EFCA
	010110

	EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE
	EDDA
	010111

	EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS
	EDCS
	011000

	EVENT_FORMATTED_SMS_PP_UPD
	EFSU
	011001

	EVENT_UNFORMATTED_SMS_PP_UPD
	EUSU
	011010

F.5
Proactive Command Sending (PCS)

	Test Area within the chapter
	Acronyms
	Numbering on 6 bits

	System Proactive commands
	SPCO
	000001

	Interaction with GSM commands
	IGCO
	000010

	Errors during proactive command sending
	EPCS
	000011

	Proactive Command Control
	PCCO
	000100

F.6
Envelope Response Posting (ERP)

	Test Area within the chapter
	Acronyms
	Numbering on 6 bits

	EVENT_CALL_CONTROL_BY_SIM
	ECCN
	000001

	EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM
	EMCN
	000010

	EVENT_UNRECOGNIZED_ENVELOPE
	EUEN
	000011

	EVENT_FORMATTED_SMS_PP_ENV
	EFSE
	000010

F.11
Concatenation processing (PROC)

	Test Area within the chapter
	Acronyms
	Numbering on 6 bits

	Concatenation processing
	PROC
	000001

G.2.5
INSTALL(install) Section

Here are the parameters to be included in the Install(Install) command (as specified in [8])
	Parameter
	Description

	PackageAID
	AID of the package

	AppletClassAID
	AID of the applet

	InstanceAID
	AID of the instance of the applet

	InstallationNonVolatileMemSize
	Non volatile memory required for installation, in bytes

	InstallationVolatileMemSize
	Volatile memory required for installation, in bytes

	AccessDomain
	Specify the SIM files that may be accessed by the applet and the operations allowed on these files. This parameter includes the Access Domain Parameter (ADP) and Access Domain Data (ADD)

	PriorityLevel
	Priority level of the Toolkit applet instance

	MaxNumberOfTimers
	Maximum number of timers allowed for this applet instance

	MaxMenuEntryTextLength
	Maximum text length for a menu entry

	MaxNumberOfMenuEntries
	Maximum number of menu entries allowed for this applet instance

	MenuEntriesPositionIdentifier
	For each menu entry: Position and identifier of that menu entry

	MaxNumberOfChannels
	Maximum Number of channels for this applet instance

	MSLFieldLength
	Length of Minimum Security Level field

	MSLParameter
	MSL Parameter

	MSLData
	MSL Data

	AppletSpecificParameters
	Parameters specific to the applet

The applet shall be installed with install(install and make selectable) command.

G.3
Full example

[CONVERT]

PackageAID = A0 00 00 00 30 00 02 FF FF FF FF 89 00 00 01 00

PackageName = sim.test.access.api_1_svw_updrbs

PackageVersion = 1.0

AppletClassAID = A0 00 00 00 30 00 02 FF FF FF FF 89 00 00 01 01

AppletClassName = API_1_SVW_UPDRBS_1

AppletClassAID = A0 00 00 00 30 00 02 FF FF FF FF 89 00 00 01 02

AppletClassName = API_1_SVW_UPDRBS_2

[INSTALL(load)]

PackageNonVolatileMemSize = 0D27

;InstallationNonVolatileMemSize = 0400

;InstallationVolatileMemSize = 0000

[LOAD]

MaxLoadCommandDataLength = 6C ; max value

[INSTALL(install)]

AppletClassAID = A0 00 00 00 30 00 02 FF FF FF FF 89 00 00 01 01

InstanceAID = A0 00 00 00 30 00 02 FF FF FF FF 89 00 00 01 01

InstallationNonVolatileMemSize = 0400

InstallationVolatileMemSize = 0000

AccessDomain = 00

PriorityLevel = FF

MaxNumberOfTimers = 00

MaxMenuEntryTextLength = 10

MaxNumberOfMenuEntries = 01

MenuEntriesPositionIdentifier = 0001

AppletSpecificParameters =

[INSTALL(install)]

AppletClassAID = A0 00 00 00 30 00 02 FF FF FF FF 89 00 00 01 02

InstanceAID = A0 00 00 00 30 00 02 FF FF FF FF 89 00 00 01 02

InstallationNonVolatileMemSize = 0200

InstallationVolatileMemSize = 0000

MenuEntriesPositionIdentifier = 0002

MaxNumberOfChannels = 05

MSLFieldLength = 00

MSLParameter =

MSLData =

; rest of INSTALL(install) parameters are taken from previous INSTALL(install)...

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the lastest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. Work item acronyms are listed in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

�PAGE \# "'Page: '#'�'" ��Waiting for approval or not of the on going CR…

�PAGE \# "'Page: '#'�'" �� Waiting for approval or not of the on going CR…

3GPP

