Page 1

3GPP T3 ad hoc meeting #59

München, Germany, 11 – 13 December 2001
Tdoc T3z012013

CR-Form-v3

CHANGE REQUEST

(

31.113
CR

(

rev
1
(

Current version:
5.0.0
(

For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

Proposed change affects:
(

(U)SIM
X
ME/UE

Radio Access Network

Core Network

Title:
(

Addition of Security Plug-Ins

Source:
(

SmartTrust

Work item code:
(

USAT interpreter

Date: (

2001-11-30

Category:
(

B

Release: (

Rel-5

Use one of the following categories:
F (essential correction)
A (corresponds to a correction in an earlier release)
B (Addition of feature),
C (Functional modification of feature)
D (Editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

Reason for change:
(

The first release of the USAT Interpreter should have standardised security plug-ins

Summary of change:
(

Native Commands (Plug-Ins) for PKI, Triple-DES and PIN-handling are added

Consequences if
(

not approved:

Clauses affected:
(

Other specs
(

 Other core specifications
(

affected:

 Test specifications

 O&M Specifications

Other comments:
(

9
Native Commands

Native Commands or "plug-ins" shall be used to provide specific functionality not contained in the USAT Interpreter byte code set. This can be e.g. operating system calls, execution of specific security algorithms, calculation routines or conversion routines. All native commands are called using the Execute Native Command byte code.

Each native command shall have a Native Code Identifier. The Native Code Identifier has a size of 2 bytes and is binary coded, most significant byte first. The values '0000' to '7FFF' are RFU for native commands specified in the present document. Other values may be used for proprietary implementations.

Native Commands are optionally to be supported by the USAT Interpreter. If Native Commands are supported by the USAT Interpreter, which are specified within the present document (using a NCI specified in the present document), they shall be implemented according to the present document.

Native commands specified by the present document:

9.1 PKI Plug-ins
9.1.1
P7 - PKCS#7 Signature Plug-In

9.1.1.1
Description

The P7 plug-in is used to provide a digital signature based on a private RSA key stored on a USIM card. The output of this plug-in is compliant with the WMLScript Crypto Library SignText function, [WMLCLIB]. As such, P7 will also be compliant with other important (de-facto) standards like PKCS#1, PKCS#7 and CMS.

When executed, the plug-in starts by showing the text-to-be-signed to the user and awaits user conformation. The user confirms by pressing the ‘OK’ button, or rejects by pressing the ‘Cancel’ button. If the user confirms, he will also be requested to enter the signature PIN. After the PIN has been entered correctly, the plug-in calculates the signature and returns the signature value to the calling script.

9.1.1.2
NCI

The NCI for this plug-in is [TODO].

9.1.1.3
Arguments

The arguments (i.e. the value part of the input list TLV) shall be according to the following table:

Length
Value
Description
M/O/C

1
‘00’/’01’/

’02’/’03’
Indicates the type of the key identifier supplied in the next parameter:

· ‘00’ = No key identifier supplied. The plug-in shall choose a default key, if such a key exists, or abort with error code ‘No such key error’.

· ’01 = User key hash. SHA-1 hash of the user public key is supplied in the next parameter. The plug-in MUST use the private key that corresponds to the public key hash or, if this key is not available, or abort with error code ‘No such key error’.

· ‘02’ = Trusted key hash. A SHA-1 hash of a trusted CA public key is supplied in the next parameter. The plug-in MUST use a signature key that is certified by the indicated CA or, if such a key is not available, or abort with error code ‘No such key error’.

· ‘03’ = Index to asymmetric key.
M

1
AKI
Index of asymmetric key.
C

20
Data
User key hash.
C

20
Data
Trusted key hash.
C

1
‘04’/’08’
Character encoding scheme.

· ‘04’ = SMS default (unpacked)

· ‘08’ = UCS-2.
M

1
Data
Processing options.
M

1-160
Data
Text to be signed (TTBS). Represented In the indicated character encoding scheme.
M

Note: Malformed, out of range, or missing input parameters shall result in error code ‘Input parameter error’ and plug-in termination.

Note: If the selected key is not suitable for the operation performed by the plug-in (e.g. due to key usage restrictions), this shall result in error code ‘Illegal operation’ and plug-in termination.

Coding of the ‘Processing options’:

b8
b7
b6
b5
b4
b3
b2
b1

CTFLG - Content flag

0: Don’t include TTBS in the output.

1: Include the TTBS in the output.

KHFLG – Key hash flag

0: Don’t include hash of the public key corresponding to the signature key in the output.

1: Include hash of the public key corresponding to the signature key in the output.

CEFLG – Certificate flag

0: Don’t include a URL to the public key certificate in the output.

1: Include a URL to the public key certificate in the output.

ICCFLG - ICCID flag

0: Don’t include the ICCID in the output.

1: Include the ICCID in the output.

MDFLG – Message digest flag

0: Don’t include the message digest of the TTBS in the output.

1: Include the message digest of the TTBS in the output.

RFU

9.1.1.4
Output Parameters

The output from the plug-in is a single element representing one (and only one) of the following:

· A SignedContent data structure as described in D.5.2.3.

· An error message in case the user cancels the operation.

The output shall be returned in the variable indicated in the output variable list.

9.1.1.5
Execution

The detailed execution of the plug-in is described in annex D.5.1.

9.1.1.6
Errors

The following errors are possible:

Error Code
Description
Action

No error
OK.
Continue

Input parameter error
Invalid input parameter.
Stop

Internal error
Internal error.
Stop

User cancel
User cancelled the operation.
Continue

No such key error
The requested key is not available.
Stop

RSA error
Error occurred in RSA calculation.
Stop

Illegal operation
Attempt to perform an illegal operation.
Stop

9.1.2
FP – Fingerprint Plug-In

9.1.2.1
Description

The FP plug-in is used to provide a digital signature based on a private RSA key stored on a USIM card. The output of the plug-contains a PKCS#1 compliant signature and will as such be compliant with important (de-facto) standards like PKCS#1, PKCS#7 and CMS.

At first glance, FP may seem strikingly similar to the P7 plug-in. This is nevertheless not the case. As opposed to the P7 plug-in, FP will not operate strictly according to the WYSIWYS (what-you-see-is-what-you-sign) paradigm, but instead work more as an alternative to a smart card in a “fixed” PKI scenario. This ensures that FP can be utilized in cases where P7 is clearly unsuitable, e.g:

· Signing data larger than a few hundred bytes, e.g. an email message or word-processors document.

· Signing data that is not displayable on a mobile phone, e.g. a word-processor document or random nonce in a VPN set-up phase.

Other utilization is also easily imaginable.

When executed, the plug-in starts by displaying a certain value (called an authorization value) to the user that must be explicitly verified. The user confirms by pressing the ‘OK’ button or rejects by pressing the ‘Cancel’ button. If the user confirms, he will also be requested to enter the signature PIN. After the PIN has been entered correctly, the plug-in calculates the signature and returns the signature value to the calling script.

9.1.2.2
NCI

The NCI for this plug-in is [TODO].

9.1.2.3
Arguments

The arguments (i.e. the value part of the input list TLV) shall be according to the following table:

Length
Value
Description
M/O/C

1
‘00’/’01’/

’02’/’03’
Indicates the type of the key identifier supplied in the next parameter:

· ‘00’ = No key identifier supplied. The plug-in shall choose a default key, if such a key exists, or abort with error code ‘No such key error’.

· ’01 = User key hash. SHA-1 hash of the user public key is supplied in the next parameter. The plug-in MUST use the private key that corresponds to the public key hash or, if this key is not available, or abort with error code ‘No such key error’.

· ‘02’ = Trusted key hash. A SHA-1 hash of a trusted CA public key is supplied in the next parameter. The plug-in MUST use a signature key that is certified by the indicated CA or, if such a key is not available, or abort with error code ‘No such key error’.

· ‘03’ = Index to asymmetric key.
M

1
AKI
Index of asymmetric key.
C

20
Data
User key hash.
C

20
Data
Trusted key hash.
C

1
Data
Processing options.
M

16 – 255
Data
Data-to-be-signed. To be truly PKCS#1 compliant, this should be a DER encoded value of the DigestInfo ASN.1 type, as specified in [PKCS1]. Note: This is binary data (and not text as in P7) in any sensible utilization of the plug-in.
M

Note: Malformed, out of range, or missing input parameters shall result in error code ‘Input parameter error’ and plug-in termination.

Note: If the selected key is not suitable for the operation performed by the plug-in (e.g. due to key usage restrictions), this shall result in error code ‘Illegal operation’ and plug-in termination.

Coding of the ‘Processing options’:

b8
b7
b6
b5
b4
b3
b2
b1

RFU

KHFLG – Key hash flag

0: Don’t include hash of the public key corresponding to the signature key in the output.

1: Include hash of the public key corresponding to the signature key in the output.

CEFLG – Certificate flag

0: Don’t include a URL to the public key certificate in the output.

1: Include a URL to the public key certificate in the output.

ICCFLG - ICCID flag

0: Don’t include the ICCID in the output.

1: Include the ICCID in the output.

RFU

9.1.2.4
Output Parameters

The output from the plug-in is a single value representing a WrappedContent data structure as described in D.6.3. The output shall be returned in the variable indicated in the output variable list.

9.1.2.5
Execution

The detailed execution of the plug-in is described in annex D.6.1.

9.1.2.6
Errors

The following errors are possible:

Error Code
Description
Action

No error
OK.
Continue

Input parameter error
Invalid input parameter(s).
Stop

Internal error
Internal error.
Stop

User cancel
User cancelled the operation.
Continue

No such key error
The requested key is not available.
Stop

RSA error
Error occurred in RSA calculation.
Stop

Illegal operation
Attempt to perform an illegal operation.
Stop

9.1.3
AD – Asymmetric Decryption Plug-In

9.1.3.1
Description

This plug-in is used for application-level asymmetric (RSA) decryption.

Just as in the case with the FP plug-in, the motivation for this plug-in is to serve as a replacement for a smart card in a “fixed” PKI scenario. While the FP plug-in is focused on digital signatures, AD is focused on the remaining private key operation, namely decryption.

Together, FP and AD form a complete replacement to the “PC attached” smart card, and in addition offer other benefits like end-user mobility, cost effectiveness and easy deployment.

If the output of the plug-in shall be used in a network application, it is crucial that the plaintext is protected by some means, e.g. using cryptographic blinding techniques.

When executed, the plug-in starts by displaying a certain value (called an authorization value) to the user that must be explicitly verified. The user confirms by pressing the ‘OK’ button or rejects by pressing the ‘Cancel’ button. If the user confirms, he will also be requested to enter the private key PIN. After the PIN has been entered correctly, the plug-in calculates the signature and returns the signature value to the calling script.

9.1.3.2
NCI

The NCI for this plug-in is [TODO].

9.1.3.3
Arguments

The arguments (i.e. the value part of the input list TLV) shall be according to the following table:

Length
Value
Description
M/O/C

1
‘00’/’01’/

’02’/’03’
Indicates the type of the key identifier supplied in the next parameter:

· ‘00’ = No key identifier supplied. The plug-in shall choose a default key, if such a key exists, or abort with error code ‘No such key error’.

· ’01 = User key hash. SHA-1 hash of the user public key is supplied in the next parameter. The plug-in MUST use the private key that corresponds to the public key hash or, if this key is not available, or abort with error code ‘No such key error’.

· ‘02’ = Trusted key hash. A SHA-1 hash of a trusted CA public key is supplied in the next parameter. The plug-in MUST use a decryption key that is certified by the indicated CA or, if such a key is not available, or abort with error code ‘No such key error’.

· ‘03’ = Index to asymmetric key.
M

1
AKI
Index of asymmetric key.
C

20
Data
User key hash.
C

20
Data
Trusted key hash.
C

16 – 255
Data
Ciphertext. A byte string of length k, where k is the length in bytes of the modulus n. Hence, for a 1024 bit key, the ciphertext must be of length 128.
M

Note: Malformed, out of range, or missing input parameters shall result in error code ‘Input parameter error’ and plug-in termination.

Note: If the selected key is not suitable for the operation performed by the plug-in (e.g. due to key usage restrictions), this shall result in error code ‘Illegal operation’ and plug-in termination.

9.1.3.4
Output Parameters

The output from the plug-in is a value element representing the decrypted ciphertext as described in D.7.2. The output shall be returned in the variable indicated in the output variable list.

9.1.3.5
Execution

The detailed execution of the plug-in is described in annex D.7.1.

9.1.3.6
Errors

The following errors are possible:

Error Code
Description
Action

No error
OK
Continue

Input parameter error
Invalid input parameter(s)
Stop

Internal error
Internal error.
Stop

User cancel
User cancelled the operation
Continue

No such key error
The requested key is not available
Stop

RSA error
Error occurred in RSA calculation.
Stop

Illegal operation
Attempt to perform an illegal operation.
Stop

9.2
Triple DES Plug-ins

9.2.1
DE – Triple DES Encryption Plug-In

9.2.1.1
Description

The DE plug-in is used to encrypt arbitrary application-level data. It is typically called from a page to privacy-protect data before it is transmitted to a network application.

9.2.1.2
NCI

The NCI for this plug-in is [TODO].

9.2.1.3
Arguments

The arguments (i.e. the value part of the input list TLV) shall be according to the following table:

Length
Value
Description
M/O/C

1
SKI
Index of symmetric key to use for operation.
M

1
Data
Processing options.
M

16 - 255
Data
Data to encrypt (plaintext).
M

Note: Malformed, out of range, or missing input parameters shall result in error code ‘Input parameter error’ and plug-in termination.

Note: If the selected key is not suitable for the operation performed by the plug-in (e.g. due to key usage restrictions), this shall result in error code ‘Illegal operation’ and plug-in termination.

Coding of the ‘Processing options’:

b8
b7
b6
b5
b4
b3
b2
b1

IVFLG - IV flag

0: IV=0

1: Plaintext starts with IV (8 bytes)

Cipher spec:

0: 3DES EDE EBC with two keys

1: 3DES EDE CBC with two keys

RFU

9.2.1.4
Output Parameters

The output from the plug-in is a single value representing the encrypted plaintext (i.e. ciphertext). The output shall be returned in the variable indicated in the output variable list.

The length of the output is 1 to 8 bytes longer than the length of the plaintext.

9.2.1.5
Execution

The detailed execution of the plug-in is described in annex [X-REF].

9.2.1.6
Errors

The following errors are possible:

Error Code
Description
Action

No error
OK
Continue

Input parameter error
Invalid input parameter(s)
Stop

Internal error
Internal error.
Stop

No such key error
The requested key is not available.
Stop

Illegal operation
Attempt to perform an illegal operation.
Stop

9.2.2
DD – Triple DES Decryption Plug-In

9.2.2.1
Description

The DD plug-in is used to decrypt arbitrary application-level data. It is typically called from a page to recover data that has been privacy protected by a network application.

9.2.2.2
NCI

The NCI for this plug-in is [TODO].

9.2.2.3
Arguments

The arguments (i.e. the value part of the input list TLV) shall be according to the following table:

Length
Value
Description
M/O/C

1
SKI
Index of symmetric key to use for operation.
M

1
Data
Processing options.
M

16 - 255
Data
Data to decrypt (ciphertext)
M

Note: Malformed, out of range, or missing input parameters shall result in error code ‘Input parameter error’ and plug-in termination.

Note: If the selected key is not suitable for the operation performed by the plug-in (e.g. due to key usage restrictions), this shall result in error code ‘Illegal operation’ and plug-in termination.

Coding of the ‘Processing options’:

b8
b7
b6
b5
b4
b3
b2
b1

IVFLG - IV flag

0: IV=0

1: Ciphertext starts with IV (8 bytes)

Cipher spec:

0: 3DES EDE EBC with two keys

1: 3DES EDE CBC with two keys

RFU

9.2.2.4
Output Parameters

The output from the plug-in is a single value representing the decrypted ciphertext (i.e. plaintext). The output shall be returned in the variable indicated in the output variable list.

The length of the output is 1 to 8 bytes shorter than the length of the ciphertext.

9.2.2.5
Execution

The detailed execution of the plug-in is described in annex [X-REF].

9.2.2.6
Errors

The following errors are possible:

Error Code
Description
Action

No error
OK.
Continue

Input parameter error
Invalid input parameter(s).
Stop

Internal error
Internal error.
Stop

No such key error
The requested key is not available.
Stop

9.2.3
DS – Triple DES Sign Plug-In

9.2.3.1
Description

The DS plug-in is used to calculate a message authentication code (MAC) for arbitrary application-level data. The MAC can be used as a data integrity mechanism to verify that data has not been altered in an unauthorised manner. It can also be used as a message authentication mechanism to provide assurance that a message has been originated by an entity in possession of the secret key.

9.2.3.2
NCI

The NCI for this plug-in is [TODO].

9.2.3.3
Arguments

The arguments (i.e. the value part of the input list TLV) shall be according to the following table:

Length
Value
Description
M/O/C

1
SKI
Index of symmetric key to use for operation.
M

1
Data
Processing options.
M

1
‘04’/’08’
Character encoding scheme.

· ‘04’ = SMS default (unpacked)

· ‘08’ = UCS-2.
M

1 – 160
Data
Text to be signed (TTBS). Represented In the indicated character encoding scheme.
M

Note: Malformed, out of range, or missing input parameters shall result in error code ‘Input parameter error’ and plug-in termination.

Note: If the selected key is not suitable for the operation performed by the plug-in (e.g. due to key usage restrictions), this shall result in error code ‘Illegal operation’ and plug-in termination.

Coding of the ‘Processing options’:

b8
b7
b6
b5
b4
b3
b2
b1

TRCFLG - Truncation flag

0: 4 byte output

1: 8 byte output

RFU

9.2.3.4
Output Parameters

The output from the plug-in is a single value representing the signature (or more correctly, the MAC) on the text-to-be-signed. The output shall be returned in the variable indicated in the output variable list.

The length of the output is 4 or 8 bytes as indicated by the truncation flag..

9.2.3.5
Execution

The detailed execution of the plug-in is described in annex [X-REF].

9.2.3.6
Errors

The following errors are possible:

Error Code
Description
Action

No error
OK.
Continue

Input parameter error
Invalid input parameter(s).
Stop

Internal error
Internal error.
Stop

No such key error
The requested key is not available.
Stop

9.2.4
DU – Triple DES Unwrap Plug-In

9.2.4.1
Description

The DU plug-in is a key-management plug-in that enables a party in possession of a certain secret key, called a key encryption key, to replace a key stored in the USIM at its own desire. The replacement subjected to rigorous security controls.

9.2.4.2
NCI

The NCI for this plug-in is [TODO].

9.2.4.3
Arguments

The arguments (i.e. the value part of the input list TLV) shall be according to the following table:

Length
Value
Description
M/O/C

1
SKI
Index of the symmetric key to be updated.
M

1
AID
Algorithm ID.

· ‘01’ = 3DES + SHA-1 MDC

· ‘02’ = 3DES + ISO 97979 MAC
M

N
Data
Key data, encrypted and integrity protected.
M

Note: Malformed, out of range, or missing input parameters shall result in error code ‘Input parameter error’ and plug-in termination.

Note: If the selected key is not suitable for the operation performed by the plug-in (e.g. due to key usage restrictions), this shall result in error code ‘Illegal operation’ and plug-in termination.

9.2.4.4
Output Parameters

The plug-in does not produce an output.

9.2.4.5
Execution

The detailed execution of the plug-in is described in annex [X-REF].

9.2.4.6
Errors

The following errors are possible:

Error Code
Description
Action

No error
OK.
Continue

Input parameter error
Invalid input parameter(s).
Stop

Internal error
Internal error.
Stop

Illegal operation
Attempt to perform an illegal operation.
Stop

Integrity error
Integrity error.
Stop

No such key error
The requested key is not available.
Stop

9.3
PIN Management Plug-ins

9.3.1
CP – Change PIN Plug-In

9.3.1.1
Description

The CP plug-in shall be used to change a PIN to a value specified by the user. The user is requested to enter the new PIN twice.

9.3.1.2
NCI

The NCI for this plug-in is [TODO].

9.3.1.3
Arguments

The arguments (i.e. the value part of the input list TLV) shall be according to the following table:

Length
Value
Description
M/O

1
’01’/’02’/

’03’/’04’
Indicates the type of the key identifier supplied in the next parameter:

· ’01 = User key hash. SHA-1 hash of the user public key is supplied in the next parameter. The plug-in MUST use the private key that corresponds to the public key hash or, if this key is not available, or abort with error code ‘No such key error’.

· ‘02’ = Trusted key hash. A SHA-1 hash of a trusted CA public key is supplied in the next parameter. The plug-in MUST use a signature key that is certified by the indicated CA or, if such a key is not available, or abort with error code ‘No such key error’.

· ‘03’ = Index to asymmetric key.

· ‘04’ = Index to symmetric key.
M

1
SKI
Index of symmetric key.
C

1
AKI
Index of asymmetric key.
C

20
Data
User key hash
C

20
Data
Trusted key hash
C

Note: Malformed, out of range, or missing input parameters shall result in error code ‘Input parameter error’ and plug-in termination.

9.3.1.4
Output Parameters

The plug-in does not produce an output.

9.3.1.5
Execution

The detailed execution of the plug-in is described in annex E.6.1.

9.3.1.6 Errors

The following errors are possible:

Error Code
Description
Action

No error
OK
Continue

Input parameter error
Invalid input parameter(s)
Stop

Internal error
Internal error
Stop

No such key error
The requested key is not available.
Stop

Integrity error
Integrity error.

9.3.1
RP – Reset PIN Plug-In

9.3.1.1
Description

A specially trusted party may use the RP plug-in to set a PIN to a value of its own choice.

9.3.1.2
NCI

The NCI for this plug-in is [TODO].

9.3.1.3
Arguments

The arguments (i.e. the value part of the input list TLV) shall be according to the following table:

Length
Value
Description
M/O/C

1
’01’/’02’/

’03’/’04’
Indicates the type of the key identifier supplied in the next parameter:

· ’01 = User key hash. SHA-1 hash of the user public key is supplied in the next parameter. The plug-in MUST use the private key that corresponds to the public key hash or, if this key is not available, or abort with error code ‘No such key error’.

· ‘02’ = Trusted key hash. A SHA-1 hash of a trusted CA public key is supplied in the next parameter. The plug-in MUST use a signature key that is certified by the indicated CA or, if such a key is not available, or abort with error code ‘No such key error’.

· ‘03’ = Index to asymmetric key.

· ‘04’ = Index to symmetric key.
M

1
SKI
Index of symmetric key.
C

1
AKI
Index of asymmetric key.
C

20
Data
User key hash.
C

20
Data
Trusted key hash.
C

N
Data
Encrypted PIN block
M

Note: Malformed, out of range, or missing input parameters shall result in error code ‘Input parameter error’ and plug-in termination.

Note: If the selected key is not suitable for the operation performed by the plug-in (e.g. due to key usage restrictions), this shall result in error code ‘Illegal operation’ and plug-in termination.

9.3.1.4
Output Parameters

The plug-in does not produce an output.

9.3.1.5
Execution

The detailed execution of the plug-in is described in annex E.7.1.

9.3.1.6
 Errors

The following errors are possible:

Error Code
Description
Action

No error
OK.
Continue

Input parameter error
Invalid input parameter(s).
Stop

Internal error
Internal error.
Stop

PIN length error
The received PIN was to long or to short.
Stop

Integrity error
Integrity error.
Stop

No such key error
The requested key is not available.
Stop

Annex D (informative):
PKI Plug-ins Implementation Specification

D.1
Scope

This annex provides detailed implementation guidelines for the PKI plug-ins outlined in section 9.1 of this document.

D.2
References

[PKCS1]
RSA Laboratories , “PKCS #1 v2.0: RSA Cryptography Standard”, http://www.rsalabs.com/pkcs/
[PKCS7]
RSA Laboratories , “PKCS #7 v1.5: Cryptographic Message Syntax”, http://www.rsalabs.com/pkcs/
[PKCS9]
RSA Laboratories , “PKCS#9 v2.0: Selected Object Classes and Attribute Types”, http://www.rsalabs.com/pkcs/
[PKCS15]
RSA Laboratories , “PKCS #15 v1.1: Cryptographic Token Information Syntax Standard”, http://www.rsalabs.com/pkcs/
[SHA1]
FIPS PUB 180-1, “Secure Hash Standard (SHS)”

[WMLCLIB]
Wireless Application Forum , “Wireless Application Protocol – WMLScript Crypto Library Specification”, Version 20-Jun-2001.

[WAPWTLS]
Wireless Application Forum , “Wireless Application Protocol – Wireless Transport Layer Security Specification”, Version 18-Feb-2000s.

D.3
Symbols

|| . ||
Byte length operator.

bn
Individual bit in a byte. Range from bit 1 (least significant), denoted b1, to bit 8 (most significant), denoted b8.

Bn
Individual byte in a byte-string. Range from byte 1 (leftmost), denoted B1, to byte n (rightmost), denoted Bn.

CEFLG
Certificate flag. 0 or 1 as determined by b3 of input parameter OPTS.

CES
Character encoding scheme. Input parameter to P7 plug-in.

c
Ciphertext representative. An integer between 0 and n-1.

C
Ciphertext. Input parameter to the AD plugin.

CTFLG
Content flag. 0 or 1 as determined by b2 of input parameter ‘Processing Options’.

DTBS
Data-to-be-signed. Input parameter to the FP plugin.

dtbsLen
Length in bytes of DTBS.

EM
Encoded message, a byte string.

EMSA-PKCS1-v1_5-ENCODE
PKCS#1 encoding function. See [PKCS1] section 9.2.1 for further reference

I2OSP
Integer-to-Octet-String primitive. See [PKCS1] section 4.1 for further reference.

ICCFLG
ICCID flag. 0 or 1 as determined by b4 of input parameter ‘Processing Options’.

ICCID
Raw ICCID. 10 bytes length.

k
Length in bytes of the modulus.

K
RSA private key.

KH
SHA-1 hash of the public key. The hash shall be computed on the on the (raw) unsigned modulus. For an example, see the test vectors towards the end of this annex.

KHFLG
Key hash flag. 0 or 1 as determined by b1 of input parameter ‘Processing Options’.

m
Message representative. An integer between 0 and n-1.

M
Message, a byte string.

MD
SHA-1 hash of the TTBS.

MDFLG
Message digest flag. 0 or 1 as determined by b5 of input parameter ‘Processing Options’.

n
Modulus.

OS2IP
Octet-String-to-Integer primitive. See [PKCS1] section 4.2 for further reference.

R
Random nonce. 8 bytes length.

RSADP
RSA decryption primitive. See [PKCS1] section 5.1.2 for further reference.

RSASP1
RSA signature primitive. See [PKCS1] section 5.2.1 for further reference.

RSASSA-PKCS1-v1_5-SIGN
PKCS#1 signature generation function. See [PKCS1] section 8.1.1 for further reference.

S
Raw signature of byte length k.

SHA1
SHA-1 hash function. See [SHA1] for further reference.

siLen
Length of all SignerInfos. Equals CEFLG* totUrlLen + ICCFLG*11 + KHFLG*21.

totUrlLen
∑ (|| URLi || + 2). Length contribution to SignerInfos caused by URLs.

TTBS
Text-to-be-signed. Byte string. Input parameter to P7 plug-in.

ttbsLen
Length in bytes of TTBS.

URLi
Certificate URL i.

urlNum
Number of URLs associated with key K.

X || Y
Concatenation of byte-strings X and Y (in that order).

D.4
Abbreviations

For the purposes of the present annex, following abbreviations apply:

AD
Asymmetric Decryption Plug-in

ASN.1

Abstract Syntax Notation One (1)

CMS

Cryptographic Message Syntax

DER

Distinguished Encoding Rules of ASN.1

FP
Fingerprint Plug-in

IANA

Internet Assigned Numbers Authority

OID

Object Identifier

P7
PKCS#7 Signature Plug-in

OTA

Over-the-Air

PIN

Personal Identification Number

PKCS

Public-Key Cryptography Standards

RFU

Reserved for Future Use

RSA

Algorithm invented by Rivest, Adleman and Shamir.

SHA-1
Secure Hash Algorithm 1

UCS2

Universal Character Set (2)

URL

Universal Resource Locator

D.5
P7

D.5.1
Plug-in Execution

The process diagram below illustrates briefly the different steps of the P7 execution.

[image: image1]
As illustrated, the plug-in starts by showing the text-to-be-signed to the user and then awaits user confirmation. The user confirms by pressing the OK-button or cancels by pressing the CANCEL-button. If the user confirms, he will be asked to enter his PIN and after that, if the PIN was valid, the plug-in calculates the signature.

The termination states indicate the following:

CANCEL - Indicates that the user cancelled the operation. The plug-in shall set the error code to ‘User cancel’, the output to the string “error:userCancel”, and terminate.

FINISHED - Indicates success. The plug-in shall set the error code to ‘No error’, the output to the calculated SignedContent data structure, and terminate.

Note: The ‘Verify PIN’ procedure is described in E.6.1.

The ‘Select key’ procedure is implementation specific and cannot therefore be described in detail here. Nevertheless, the following requirements apply:

· An implementation shall be capable of selecting a key based on any valid key identifier type.

· The P7 plug-in is a digital signature plug-in. Consequently, only private keys assigned for digital signatures shall be accessible through the plug-in. If the selected key does not satisfy this criteria, the plug-in shall set the error code to ‘Illegal operation’ and terminate. Using PKCS#15 terminology, suitable keys would in this case be keys with ‘sign’ or ‘nonRepudiation’ key usage flags.

D.5.2
Signature calculation

The output from the P7 plug-in is a SignedContent data structure as specified in [WMLCLIB]. The (ordered) steps to produce this data structure are as follows:

1. Template expansion

2. Signing

3. Output formatting

Each step is described thoroughly in the following sections.

D.5.2.1
Template Expansion

The template expansion constructs the signer’s authenticated attributes. These are:

Attribute
OID
Binary OID

contentType
pkcs-9 3
2A 86 48 86 F7 0D 01 09 03

messageDigest
pkcs-9 4
2A 86 48 86 F7 0D 01 09 04

signerNonce
pkcs-9 25 3
2A 86 48 86 F7 0D 01 09 19 03

See [PKCS9] for further information regarding these attributes.

First, construct the following 91-byte buffer (‘xx’ indicates an undefined value):

31 59

 30 18

 06 09 2a 86 48 86 f7 0d 01 09 03 -– contentType
 31 0B

 06 09 2a 86 48 86 f7 0d 01 07 01 -- data

 30 18

 06 0A 2a 86 48 86 f7 0d 01 09 19 03 –- signerNonce
 31 0A

 04 08 xx xx xx xx xx xx xx xx –- random nonce

 30 23

 06 09 2A 86 48 86 F7 0D 01 09 04 -– messageDigest

 31 16

 04 14 xx xx xx xx xx xx xx xx xx -- SHA-1 digest

 xx xx xx xx xx xx xx xx xx xx xx

Note: The authenticated attributes are included in ascending order compared as byte strings.

Now perform the following steps.

1. Generate R, a 8 byte nonce, and replace B47 to B54 with R. The nonce should be a pseudorandom number generated securely in the USIM and of good quality. Recommended standards for implementing pseudorandom bit generators are ANSI X9.19 or FIPS 186.

2. Generate MD = SHA-1(TTBS). Replace B72 to B91 of the with MD.

The expanded buffer constitutes the input to the signature generation operation.

D.5.2.2
Signature Generation Operation

Generate the signature

 S = RSASSA-PKCS1-v1_5-SIGN(K, M)

where K is the selected private key and M is the output from the pervious step.

Note: The hash function required in EMSA-PKCS1-v1_5-ENCODE shall be SHA-1. See [PKCS1] section 9.2.1 for further details.

Errors occurring during the signature generation shall lead to error code ‘RSA error’ and plug-in termination.

D.5.2.3
Output data formatting

The SignedContent data-structure may be encoded in a one-pass encoding operation. The pseudo-code below covers the required steps.

Note: B is a buffer variable used to accumulate the output.

Line
Pseudo-code
Comment

1
B := ‘01’
SignedContent.version = 1

2
B := B || ‘01’
SignedContent.signature.algorithm = SHA-1

3
B := B || k || S
SignedContent.Signature.signature. k shall be encoded in two bytes, big-endian.

4
B := B || siLen
Total length of all SignerInfo’s. Two bytes, big endian.

5
If (ICCFLG = 1)

6

B := B || ‘80’ || ICCID
ICCID ID = 128.

7
If (KHFLG = 1)

8

B := B || ‘01’ || KH
Include public key hash.

9
If (CEFLG = 1and urlNum != 0)

10

For (i=1,2,3,…,urlNum)

11

B := ‘05’ || L || URLi
Include URL(s). L = || URLi|| encoded as one byte.

12
B := B || ‘01’
ContentInfo.content_type = text

13
If (CES = ‘08’)

14

B := B || ‘03E8’
ContentInfo.content_encoding = UCS2 (ISO 10646)

15
Elseif (CES = ‘04’)

16

B := B || ‘07D0’
ContentInfo.content_encoding = SMS default. The value ‘07D0’ (2000) was chosen because SMS default has no IANA assigned number.

17
If (CTFLG = 1)

18

B := B || ‘01’
ContentInfo.content_present = true

19

B := B || ttbsLen || TTBS
ContentInfo.content. Length encoded two bytes, big-endian.

20
Else

21

B := B || ‘00’
ContentInfo.content_present = false

22
If (MDFLG = 1)

23

B:= B || ‘1E’
SignedContent.authenticated_attributes

24

B := B || ‘80’ || MD
Messaged digest . ID = 128.

25
Else

26

B := B || ‘09’
SignedContent.authenticated_attributes

27
B := B || ‘02’ || R
Signer nonce. ID = 2.

After successfully formatting the output, set the error code to ‘No error’, copy the contents of B to the variable indicated first in the output variable list, and terminate the plug-in.

D.5.3
Test Vectors

TBD.

D.6
FP

D.6.1
Plug-in Execution

The process diagram below illustrates briefly the different steps of the FP execution.

[image: image2]
As illustrated, the plug-in starts by displaying the authorization request to the user and the await user confirmation.

The authorization request itself consists of the authorization prompt concatenated with the authorization value, which is an excerpt of the data-to-be-signed (DTBS). The authorization value shall be displayed using a two-digit hexadecimal representation for every byte. The digits of the hexadecimal alphabet shall be “0123456789ABCDEF”, i.e. lower-case letters are not allowed. If DTBS is longer than 16 bytes, only the 16 least significant bytes shall be shown, starting with the most significant byte. To improve readability, the hexadecimal digits shall be grouped 4‑and‑4, with space between the groups. Splitting a group over two consecutive lines should be avoided if possible.

After explicitly validating the authorization value with information received via some other channel, the user confirms by pressing the OK-button or cancels by pressing the CANCEL-button. If the user confirms, he will be asked to enter his PIN and after that, if the PIN was valid, the plug-in calculates the signature.

The termination states indicate the following:

CANCEL - Indicates that the user cancelled the operation. The plug-in shall set the error code to ‘User cancel’, the output to the string “error:userCancel”, and terminate.

FINISHED - Indicates success. The plug-in shall set the error code to ‘No error’, the output to the calculated WrappedContent data structure, and terminate.

Note: The ‘Verify PIN’ procedure is described in E.6.1.

The ‘Select key’ procedure is implementation specific and cannot therefore be described in detail here. Nevertheless, the following requirements apply:

· An implementation shall be capable of selecting a key based on any valid key identifier type.

· The FP plug-in is a digital signature plug-in. Consequently, only private keys assigned for digital signatures shall be accessible through the plug-in. If the selected key does not satisfy this criteria, the plug-in shall set the error code to ‘Illegal operation’ and terminate. Using PKCS#15 terminology, suitable keys would in this case be keys with ‘sign’ or ‘nonRepudiation’ key usage flags.

D.6.2
Signature calculation

D.6.2.1
Signature Generation Operation

Generate the signature

 S = RSASSA-PKCS1-v1_5-SIGN(K, DTBS)

where K is the selected private key and DTBS is supplied as a parameter.

Note: In EMSA-PKCS1-v1_5-ENCODE, only steps from (including) step 3 shall be executed. The following equality (using PKCS#1 terminology) apply for the computation of the remaining steps:

 T = DTBS and ||T|| = dtbsLen
Errors occurring during the signature generation shall lead to error code ‘RSA error’ and plug-in termination.

D.5.2.2
Output data formatting

The WrappedContent data-structure may be encoded in a one-pass encoding operation. The pseudo-code below covers the required steps.

Note: B is a buffer variable used to accumulate the output data.

Line
Pseudo-code
Comment

1
B := ‘01’
WrappedContent.version = 1

2
B := B || k || S
WrappedContent.Signature.signature. k shall be encoded in two bytes, big-endian.

3
B := B || siLen
Total length of all SignerInfo’s. Two bytes, big endian.

4
If (ICCFLG = 1)

5

B := B || ‘80’ || ICCID
ICCID ID = 128.

7
If (KHFLG = 1)

8

B := B || ‘01’ || KH
Include public key hash.

9
If (CEFLG = 1and urlNum != 0)

10

For (i=1,2,3,…,urlNum)

11

B := ‘05’ || L || URLi
Include URL(s). L = || URLi|| encoded as one byte.

After successfully formatting the output, set the error code to ‘No error’, copy the contents of B to the variable indicated first in the output variable list, and terminate the plug-in.

D.6.3
Format of WrappedContent

For completeness, the formal definition of WrappedContent is included below (it is described using the same presentation language as used in [WMLCLIB]).

struct {

 opaque signature<0.. 2^16-1>;

} Signature;

enum {

 sha_key_hash(1),

 certificate_url(5),

 iccid (128),

 (255)

} SignerInfoType;

Item
Description

sha_key_hash
The SHA-1 hash of the public key, encoded as specified in [WAPWTLS].

certificate_url
A URL where the certificate is located.

iccid
The (raw) ICCID.

struct {

 SignerInfoType signer_info_type;

 switch (signer_info_type) {

 case sha_key_hash: opaque hash[20];

 case certificate_url: opaque url<0..255>;

 case iccid: opaque iccid[10];

 };

} SignerInfo;

struct {

 uint8 version;

 Signature signature;

 SignerInfo signer_infos<0..2^16-1>;

} WrappedContent;

Item
Description

version
Version of the WrappedContent structure. The current version is 1.

signature
Signature

signer_infos
Information about the signer. This may contain zero items (in case the signer is implicit). Also, there may be multiple items of SignerInfo present (public key hash and a certificate).

D.6.4
Test Vectors

TBD.

D.7
AD

D.7.1
Plug-in Execution

The process diagram below illustrates briefly the different steps of the AD execution.

[image: image3]
As illustrated, the plug-in starts by displaying the authorization request to the user and the await user confirmation.

The authorization request itself consists of the authorization prompt concatenated with the authorization value, which is an excerpt of the ciphertext (C). The authorization value shall be displayed using a two-digit hexadecimal representation for every byte. The digits of the hexadecimal alphabet shall be “0123456789ABCDEF”, i.e. lower-case letters are not allowed. If C is longer than 16 bytes, only the 16 least significant bytes shall be shown, starting with the most significant byte. To improve readability, the hexadecimal digits shall be grouped 4‑and‑4, with space between the groups. Splitting a group over two consecutive lines should be avoided if possible.

After explicitly validating the authorization value with information received via some other channel, the user confirms by pressing the OK-button or cancels by pressing the CANCEL-button. If the user confirms, he will be asked to enter his PIN and after that, if the PIN was valid, the plug-in decrypts the data.

The termination states indicate the following:

CANCEL - Indicates that the user cancelled the operation. The plug-in shall set the error code to ‘User cancel’, the output to the string “error:userCancel”, and terminate.

FINISHED - Indicates success. The plug-in shall set the error code to ‘No error’, the output to the calculated WrappedContent data structure, and terminate.

Note: The ‘Verify PIN’ procedure is described in E.6.1.

The ‘Select key’ procedure is implementation specific and cannot therefore be described in detail here. Nevertheless, the following requirements apply:

· An implementation shall be capable of selecting a key based on any valid key identifier type.

· Only private keys assigned for decryption purposes shall be accessible through the plug-in. If the selected key does not satisfy this criteria, the plug-in shall set the error code to ‘Illegal operation’ and terminate. Using PKCS#15 terminology, suitable keys would in this case be keys with ‘decrypt’ or ‘unwrap’ key usage flags.

D.7.2
Decryption calculation

The decrypted ciphertext (i.e. cleartext), and hence the output of the plug-in is generated by computing the steps outlined below.

1. Convert the ciphertext C to an integer ciphertext representative c:

 c = OS2IP(C)

2. Calculate the integer message representative m:

 m = RSADP (K, c)

where K is the selected private key.
3. Convert the message representative m to an encoded message M of length k octets:

 M = I2OSP (m, k)

Errors occurring during the decryption shall lead to error code ‘RSA error’ and plug-in termination

After successfully formatting the output, set the error code to ‘No error’, copy the contents of M to the variable indicated first in the output variable list, and terminate the plug-in.

D.7.4
Test Vectors

TBD.
D.8
Additional Requirements

D.8.3
OTA/Management Requirements

1. It shall be possible to enable or disable the ‘Authorization request’ (FP and AD plug-ins) and the subsequent user confirmation by performing an administrative task, both at personalization time and OTA.

2. The authorization prompt value (i.e. the text that is displayed on the screen) shall be configurable through an administrative task, both at personalization time and OTA. UCS2 and SMS default alphabets shall be supported.

3. It should be possible to configure the number of digits displayed in the authorization value to 4, 8, 12 or 16 digits, both at personalization time and OTA.

4. The URL(s) linked to a key shall be updatable through an administrative task, both at personalization time and OTA.

Annex E (informative):
PIN Management Plug-ins Implementation Specification

E.1
Scope

This annex provides detailed implementation guidelines for the PIN management plug-ins outlined in section 9.3 of this document.

E.2
References

[APPLIED]
B. Schneier, “Applied Cryptography: Protocols, Algorithms and Source Code in C”, 2nd Edition.

 [DEA]
ISO 8731-1, “Banking – Approved algorithms for message authentication – Part 1: DEA”
[ISO9797]
ISO/IEC 9797-1:1999(E) – Information technology – Security techniques – Message Authentication Codes (MACs)
[MODES]
ISO/IEC 10116 – Security Techniques – Modes of Operation for an n-bit Block Cipher Algorithm”
[SHA1]
FIPS PUB 180-1, “Secure Hash Standard (SHS)”

E.3
Symbols

<i..j>
Sub-string extraction operator. Extracts bytes i through j.

[image: image4.wmf]j

i

£

£

1

.

|| . ||
Byte length operator.

bn
Individual bit in a byte. Range from bit 1 (least significant), denoted b1, to bit 8 (most significant), denoted b8.

Bn
Individual byte in a byte-string. Range from byte 1 (leftmost), denoted B1, to byte n (rightmost), denoted Bn.

DP
Decrypted PIN data.

EP
Encrypted PIN payload.

ISO_9797_ALG3
MAC algorithm 3. See [ISO9797] section 7.3 for further reference.

ISO_9797_PAD2
ISO9797 padding method 2. See [ISO9797] section 6.1.2 for further reference.

K1, K2, K , K’

MD
Message digest.

SHA1
SHA-1 hash function. See [SHA1] for further reference.

TDEA_DECR
Triple DES decryption algorithm. See [APPLIED] section 15.2 for details regarding the algorithm.

X || Y
Concatenation of byte-strings X and Y (in that order).

E.4
Abbreviations

For the purposes of the present annex, following abbreviations apply:

3DES
Triple DES

AO
Authentication Object

CBC
Cipher Block Chaining (Mode)

CHV

Cardholder Verification

CP
Change PIN Plug-in

DES

Data Encryption Standard

ECB
Electronic Code-book (mode)

EDE
Encrypt-Decrypt-Encrypt

IV
Initialization Vector

MAC
Message Authentication Code

MDC
Modification Detection Code

OTA

Over-the-Air

PIN

Personal Identification Number

PO
Private Object

PUK

PIN Unblocking Key

RFU

Reserved for Future Use

RP
Reset PIN Plug-in

SHA-1
Secure Hash Algorithm 1

UCS2

Universal Character Set (2)

URL

Universal Resource Locator

E.5
Overview

E.5.1
Introduction

The PIN (or CHV in the “GSM world”) is a secret number that is involved in the process of user identification. The usual procedure starts with the user entering his PIN at a terminal, and shortly thereafter the display shows whether the PIN was correct, and if not, how many attempts are still left. In this process the PIN is compared with a reference value that is securely stored (preferably) inside a Smart Card (like a USIM). If the user enters the PIN incorrectly several consecutive times, the PIN is blocked for any further PIN verification, and may only be unblocked by using a special unblocking PIN called PUK (this possibility may not exist in all applications).

In an ideal world there would be no need to change or reset the PIN. Unfortunately, PINs are occasionally compromised and users have a tendency of forgetting them. To handle such situations, this annex introduces plug-ins for PIN management:

Change PIN - This plug-in is capable of changing the PIN to a value entered by the user on the UE keypad.

Reset PIN - This plug in offers means whereby a trusted party may (re)set a PIN value over-the-air.

E.5.2
Protection Model

This annex makes use of a protection model where the PIN is viewed as an authentication object (AO) protecting the access to a private object (PO), such as a private key. If the PIN is entered correctly, the user is granted access to the private key, and in case of failure, access is denied.

Clearly, there must be an association, direct or indirect, between the PO and its AO to enforce the protection policy. The exact nature of this association is outside the scope of this annex, but it is customary that the PO holds a reference to its AO.

In some situations, e.g. when changing the PIN, the PIN takes the additional role of a PO requiring a AO to restrict access to the procedure that modifies the PIN value. This is the case with the ‘Change PIN’ and ‘Reset PIN’ plug-ins. The object diagram below illustrates the situation.

[image: image5]

[image: image6]
As illustrated, it is possible to change a PIN by entering the PIN itself (i.e. the PIN becomes it’s own AO) or reset a PIN by using a (cryptographic) reset key. It is also possible to use a PUK to unblock a blocked PIN.

All the links in the object diagram shall be configurable through administrative tasks at personalisation time.

E.5.3
Addressing PINs

With the protection model in mind, it is clear that PINs need not to be addressed directly when they are subject to change. Instead, PINs are addresses through the objects they protect. As an example, to address the PIN associated with a key in order to change it, the key itself should be addressed.

E.5.4
PIN States

Below is an illustration showing the different states a PIN may have, as well as the transition conditions between the states.

[image: image7]
‘PIN TERMINATED’ shall be an unrecoverable state. I.e. once this state is entered, all other states shall be unconditionally unreachable. ‘PIN BLOCKED’ is recoverable by using a special unblocking PIN called PUK.

E.5.5
PIN Prompts

It is possible to augment the protection model described earlier with the following figure:

[image: image8]
As illustrated, each PIN is associated with an ‘Enter PIN prompt’. This prompt is displayed during the PIN verification procedure, requesting the user to enter the PIN for a certain PO. Since it its possible to have different PINs for different POs, it must be possible to equip every PIN with a unique ‘Enter PIN prompt’.

In addition to the ‘Enter PIN prompt, the following prompts and messages also required in the PIN verification procedure:

· Wrong PIN message

· PIN blocked message

· PIN terminated message

· Enter new PIN prompt

· Confirm PIN prompt

· Enter PUK prompt

· Wrong PUK prompt

These are considered to be system wide values, so only one instance of each type is needed.

E.6
CP

E.6.1
Plug-in Execution

The flowchart below illustrates briefly the different steps of the CP execution.

[image: image9]

[image: image10]
Note: If the PIN is entered incorrectly, the ‘Wrong PIN message’ shall be displayed concatenated with the number of attempts left. E.g. if the ‘Wrong PIN message’ is “Wrong PIN. Attempts left: ” and there is two attempts left before blocking, the message displayed on the screen shall be “Wrong PIN. Attempts left: 2”.

A PIN shall be associated with a maximum and minimum length. The plug-in shall ensure that these lengths, set at personalisation time, are obeyed

E.7
RP

E.7.1
Plug-in Execution

The flowchart below illustrates briefly the different steps of the RP execution.

[image: image11]
Note: If the verification procedure fails, the plug-in shall set the error code to ‘Integrity error’ and terminate.

E.7.1
Decryption and Verification

This procedure includes decryption of the encrypted PIN data, as well as verification of it’s authenticity.

The encrypted PIN block shall be formatted according to the following table:

Bytes
Description
M/O
Length

1
Header.

B1: Algorithm identifier. The following values
 are legal:

 ‘01’ = 3DES + SHA-1 MDC
 ‘02’ = 3DES + ISO9797 MAC

 All other values are RFU..
M
1

2 – N+1
Encrypted PIN payload (EP)
M
N

To decrypt and verify the PIN payload, select the correct algorithm based on the algorithm identifier field and thereafter decrypt and verify according to the selected algorithm.

Note: An implementation must support at least one algorithm.

Note: Algorithm 1 is the preferred algorithm and shall be implemented unless specific reasons exist, e.g. like non-existing SHA-1 support on a SIM card.

E.7.1.1
Algorithm 1: 3DES with SHA-1 MDC

Bytes
Description
M/O
Length

1 – 8
Nonce. 8 bytes of random data.
M
8

9 – 16
PIN value. Each digit in the PIN shall be encoded with it’s corresponding SMS default alphabet value. All unused digits at the end shall be encoded as ‘FF’.
M
8

17 – 36
SHA-1 MDC
M
20

To decrypt and verify the PIN payload, do the following:

4. Select two associated DES keys, K1 and K2. Exactly how this is done is outside the scope of this specification, but it seems likely to traverse the link between the private object and it’s PIN, and for each PIN find the associated keys.

Note: It is very important that the keys are used only for the purposes described in this annex, and nothing else. Otherwise a simple attack may become possible.

a) Calculate the decrypted PIN payload DP = TDEA_DECR(EP) using the following cipher parameterisation:

Keys
K1, K2

Cipher mode
Outer CBC using two keys in DED operation.

IV
0 (this is not a weakness since the nonce effectively becomes a randomly chosen IV).

Note: Due to the DES block-size, EP will be 40 bytes (5 DES blocks).
Note: DP<37..40> shall be ignored (unused DES padding).

5. Calculate MD = SHA1(‘01’ || DP<1..16>).

6. Compare MD with DP<17..36>. If identical, proceed to the next step. Otherwise, set error code to ‘Integrity error’ and terminate.

7. Success. The new PIN is DP<9..16>.

E.7.1.2
Algorithm 2: 3DES with ISO9797 MAC

Bytes
Description
M/O
Length

1 – 8
Nonce. 8 bytes of random data.
M
8

9 – 16
PIN value. Each digit in the PIN shall be encoded with it’s corresponding GSM default alphabet value. All unused digits at the end shall be encoded as ‘FF’.
M
8

17 – 24
ISO 9797 MAC
M
8

To decrypt and verify the PIN payload, do the following:

8. Select two associated DES keys, K1 and K2. Exactly how this is done is outside the scope of this specification, but it seems likely to traverse the link between the private object and it’s PIN, and for each PIN find the associated decryption key.

Note: It is very important that the keys are used only for the purposes described in this annex, and nothing else. Otherwise a simple attack may become possible.

9. Calculate the decrypted PIN payload DP = TDEA_DECR(EP) using the following cipher parameterisation:

Keys
K1, K2

Cipher mode
Outer CBC using two keys in DED operation.

IV
0 (this is not a weakness since the nonce effectively becomes a randomly chosen IV).

10. Calculate PM = ISO_9797_PAD2(‘02’ || DP<1..16>).
11. Calculate MAC = ISO_9797_ALG3(PM).

Note: Using terminology from [ISO9797], keys K and K’ shall be derived by complementing alternate sub-strings of four bits of K1 and K2 respectively, commencing with the first four bits.

Note: 8 bytes of output from the MAC calculation shall be used (i.e. m=64 using ISO9797 terminology).

12. Compare MAC with DP<17..24>. If identical, proceed to the next step. Otherwise, set the error code to ‘Integrity error’ and terminate.

13. Success. The new PIN is DP<9..16>.

E.7.2
Changing the PIN value

Changing the PIN value is simply copying the new PIN value to the appropriate location, possibly stripping of the padding bytes and/or converting the PIN value to an internal format.

Note: The ‘remaining attempts’ counter shall always be reset to it’s maximum value at the same time.

Note: The max. and min. length restrictions on the PIN value shall be checked, and if violated set error code to ‘PIN length error’ and terminate.

E.7.3
Test Vectors

TBD.
E.8
Additional Requirements

E.8.1
OTA/Management Requirements

The following links and values shall be configurable through administrative tasks at personalization time:

1. Linking of a PIN to a key. A non-existing link indicates that the key shall not be subjected to PIN verification.

2. Linking of a PUK to a PIN. A non-existing link indicates that PIN unblocking via PUK shall be disabled.

3. Linking of a reset key to a PIN. A non-existing link indicates that the key shall not be re-settable via the ‘Reset PIN’ plug-in.

4. Linking of a ‘Enter PIN prompt’ to a PIN.

5. Prompt values. Both USC2 and SMS default alphabets shall be supported.

6. The maximum and minimum lengths of the PINs.
7. Maximum number of attempts before blocking for PINs and PUKs
8. PIN and PUK values.
Decrypt

CANCEL

Verify PIN

Select �key

START

FINISHED

OK

CANCEL

Key pressed?

Request authorization

Generate signature

CANCEL

Verify PIN

Select �key

START

FINISHED

OK

CANCEL

Key pressed?

Request authorization

Generate signature

CANCEL

Verify PIN

Select �key

START

FINISHED

OK

CANCEL

Key pressed?

Display TTBS

aKey

aPIN

protected by

protected by

aPUK

aPINResetKey

unblocked by

reset by

0..1

0..1

0..1

1

AO

PIN Reset Key

PIN

PUK

PO

Private Key

Secret Key

PIN VERIFIED

PIN NOT VERIFIED

PIN BLOCKED

PIN TERMINATED

Plug-in terminates

PIN entered successfully

Unblocked via PUK

PIN entered unsuccessfully

New PIN via ‘Change PIN’

Unblocked via ‘Reset PIN

Max failed attempts reached (PIN)

Max failed attempts reached (PUK)

has a

aPIN

anEnterPINPrompt

1

Enter new PIN message

User enters new PIN

Confirm new PIN message

User confirms new PIN

PIN entries identical?

Wrong PIN message

NO

Modify PIN

YES

FINISHED

Change PIN

Verify PIN

Verify PIN

Attempts left?

Decrement counter

YES

NO

Enter PIN message

User enters PIN

Check input

Reset counter

PIN VERIFIED

Wrong PIN message + attempts left

PIN blocked message

PIN BLOCKED

Incorrect PIN

Correct PIN

Reset PIN

Decrypt and verify

YES

Verified correctly?

Reset PIN value

FINISHED

ERROR

NO

�PAGE \# "'PAGE: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'PAGE: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'PAGE: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'PAGE: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the lastest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'PAGE: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'PAGE: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'PAGE: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'PAGE: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'PAGE: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. Work item acronyms are listed in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'PAGE: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'PAGE: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'PAGE: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'PAGE: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'PAGE: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'PAGE: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'PAGE: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'PAGE: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'PAGE: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'PAGE: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

CR page 1

_1061965489.unknown

