Page 1



3GPP T3 ad hoc meeting #57

Madrid, Spain 20-22 November 2001
Tdoc T3z011810

CR-Form-v3

CHANGE REQUEST



(

31.113
CR

(

rev
-
(

Current version:
2.0.0
(




For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.



Proposed change affects:
(

(U)SIM
X
ME/UE

Radio Access Network

Core Network




Title:
(

Enhancement of Annex B




Source:
(

SmartTrust




Work item code:
(

USAT interpreter

Date: (

2001-11-16







Category:
(

B

Release: (

Rel-5


Use one of the following categories:
F  (essential correction)
A  (corresponds to a correction in an earlier release)
B  (Addition of feature), 
C  (Functional modification of feature)
D  (Editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)




Reason for change:
(

Desire to extend the reachable functionality of WML example




Summary of change:
(

Addition of functionality for Interpreter Internals and Terminal Response Handler




Consequences if 
(

not approved:
All bytecodes will not be reachable from WML level




Clauses affected:
(






Other specs
(


 Other core specifications
(



affected:

 Test specifications




 O&M Specifications





Other comments:
(



Annex B (Informative): Example of Accessing USAT Interpreter Functionality in Wireless Mark-up Language

B.1 Introduction

B.1.1 Purpose

The annex demonstrates how USAT Interpreter functionality can be provided to the application developer by usage of a mark-up language without requiring in-depth knowledge of USAT Commands. The annex is informative and the functionality does not have to be limited to what is proposed here.

The annex proposes how to form WML [B5] code to address USIM Application Toolkit commands and Plug-In extensions. The WML code constitutes the deck delivered from an application provider as a response to a request for an application. 

The intention is to provide a necessary base for developing applications in WML. The annex thus describes a limited set of WML that can be regarded as the minimal support needed for application development.

B.1.2 Terminology

This document uses the terms Implicit and Explicit calls when discussing access to USAT and Plug-In functionality. The distinction is that when the term Implicit is made it refers to cases where the WML code does not indicate that a specific command is called but the rendering of the WML will be encoded to use specific commands.

When using the term explicit, it refers to cases where the WML code specifically states that it intends to call a specific function.

As an example, one can say that the following WML code is an implicit call of the USAT command displayText since that function will be used to render the WML

<wml>
 <card id="implicit">
  <p>   
   Displayed
  </p>
 </card>
</wml>

The explicit version of that WML would be

<wml>
 <card id="explicit">
  <p>
   <do type="vnd.3gpp.org">
    <go href="efi://vnd.3gpp.interpreter/atk/displayText?text=Displayed"/>
   </do>
  </p>
 </card>
</wml>

B.1.3 Definitions and abbreviations

Acronym
Definition

DCS
Data Coding Scheme

PID
Protocol IDentifier

WAP
Wireless Application Protocol

WML
Wireless Mark-up Language

UCS
Universal Character Set

URL
Uniform Resource Locators

USIM
Universal Subscriber Identity Module

UTF
Unicode Transformation Format

XML
eXtensible Mark-up Language

B.2 Namespace

The WML code makes use of the concept of namespace to address the functionality. The WML code in this document uses the efi scheme, as defined by WAP Forum in reference [B6], to address USAT commands, Card plug-ins and other explicitly addressed functionality. The concepts used in the namespace for addressing this functionality is described in that specification.

According to the terminology of the EFI Framework specification, the USAT Interpreter can be introduced as an EF Class. The addressing is then fully compliant with those ideas, regardless of future development.

According to the EFI Framework specification, the WML namespace used for addressing services from WML is structured according to the below.

efi://vnd.3gpp.interpreter/atk/sendSm
In the terminology used in the EFI Framework, the above URL uses the default implementation of the vnd.3gpp.interpreter class as the server and calls the service named atk/sendSm.

B.2.1 The USAT Interpreter EF Class

The USAT Interpreter is viewed as an EF Class with the name vnd.3gpp.interpreter. Its services are named using an internally hierarchical structure to group the command types.

According to the EFI Framework, service names can contain the "/” which can be used to give a logical grouping to the services supplied by the class. The USAT Interpreter class uses this notation to place services in logical groups. The service groups address USAT Commands, Card resident plug-ins and interpreter internal functionality in appropriate groups.

The service grouping used is listed in the below table.

Service Type
Service Group

USAT commands
atk/

Client side plug-in
cpi/

USIM Manufacturer specifics
ssp/

Interpreter Internals
ipi/

This document only specifies specific forms for the atk and ipi groups of services.

B.2.2 Examples

The following lists a few examples of URLs that are used to address different type of functionality.

The following URL addresses the USAT command powerOffCard with argument card
efi://vnd.3gpp.interpreter/atk/powerOffCard?card=<value>

The following URL addresses a client side plug-in with name sign, which is called with argument doc containing the data to be signed and keyId identifying the key to be used.

efi://vnd.3gpp.interpreter/cpi/sign?doc=<text>&keyId=<value>

The following URL addresses the USIM Manufacturer specific function doSpecifics with data as contained by data.

efi://vnd.3gpp.interpreter/ssp/doSpecifics?data=11624

Here are some examples of more complete code using the addressing principles.

<wml>
 <card id="play">
  <p>
   I will play you a tone!
   <do type="vnd.3gpp.org">
    <go href="efi://vnd.3gpp.interpreter/atk/playTone?toneId=03&amp;
              timeUnit=01&amp;duration=10&amp;text=Hej" />
   </do>
  </p>
 </card>
</wml>

<wml>
 <card id="test">
  <p>
   Calling funny plugin
   <do type="vnd.3gpp.org">
    <go href="efi://vnd.3gpp.interpreter/cpi/doGuess?
              age=$(age)&amp;outputVar=output">
     <setvar name="age" value="35"/>  
    </go>
   </do>
  Olle has a mobile of the brand $(output)!
  </p>
 </card>
</wml>

B.3 WML

This chapter gives an introduction to the WML and extended functionality.

B.3.1 WML Syntax

B.3.1.1 The WML page

A WML page is either stored at an application provider, or stored in compiled form on the USIM.

B.3.1.2 Entities

Entities are used to specify characters in the document character set which either need to be escaped in WML or may be difficult to enter in a text editor. WML text can contain numeric or named character entities. All entities begin with an ampersand and end with a semicolon.

The following predefined named entities are supported:

Entity
Character

&amp;
&

&apos; 
apostrophe

&lt;
<

&gt;
>

&nbsp;
non-breaking space

&shy;
soft hyphen

&quot;
"

B.3.1.3 Elements

Elements may contain a start tag, content and an end tag. Elements have one of two structures:

<tag/>   or   <tag>content</tag>

B.3.1.4 Attributes

Attributes specify additional information about an element and are always specified in the start tag of an element. For example,

<tag attr="abcd"/>   or   <tag attr="abcd">content</tag>

All attribute values are quoted using double quotation marks (").

B.3.1.5 Variables

Variables can be used in the place of strings and are substituted at run-time with their current values. Anywhere the variable syntax is legal, an $ character followed by (VARIABLENAME) indicates a variable substitution:

$(VARIABLENAME)

The setvar, input and select elements can be used to set a variable.

Different variables may contain characters from different character sets. The type of a variable is set the first time the variable is defined in the WML document (for instance in a setvar, input or select element).

Variables have to be named with characters supported by ISO-8859-1.

A sequence of two dollar signs ($$) represents a single dollar sign, where variable syntax is legal.

B.3.2 Extended functionality interface

Some commands on the USAT Interpreter are not possible to address using WML [B5] tags. In those cases, an EFI [B6] syntax is used according to the following example: 

<go href="efi://vnd.3gpp.interpreter/atk/functionName?arg1=a1"/>

The syntax is described in Chapter B.2.

The function name is unique for the command. All commands are called with different arguments, see chapter B.5, and the arguments are used for both input and output data. The name of the function defines which command to be called. 

B.4 Implicit calls using WML syntax

Supported WML tags are described in this chapter. 

B.4.1 Prologue

A WML document always starts with an XML declaration and a document type declaration.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE wml PUBLIC "-//3GPP//DTD USAT-WML 1.0//EN" 
          "http://www.3gpp.org/DTD/USAT-WML10.dtd">

B.4.2 Character encoding

The document always begins with an XML declaration containing the encoding attribute.

The following examples show the declarations for two different character encoding: 

<?xml version="1.0" encoding="UTF-8" ?>

or

<?xml version="1.0" encoding="ISO-8859-1" ?>

This example shows how Unicode can be used for text that are to be input and output on the telephone, and for the content of variables. It also shows that the Unicode variable content can be passed to the application provider as a parameter value to the "go href" command. The whole URL in "go href" is limited to contain valid URL characters. However, the content of the variables that are passed in the query string can be Unicode, e.g. in the example, the content of the variable DRINK is Unicode.

[image: image1.png]
B.4.3 Elements

The order of elements in a WML document is significant since the USAT interpreter will interpret the elements in sequence.

In the following subsections, the last column in the attribute tables indicates if the attribute is Optional(O) or Mandatory(M).

The mapping of implicit WML tags to USAT commands are explained in the following table.

WML tag
USAT Command

wml
-

p
If containing text, DISPLAY TEXT is used.

br
-

input
GET INPUT

card
-

option
SELECT ITEM (In the select tag.)

select
SELECT ITEM

go
SELECT ITEM / SEND SM

setvar
-

noop
-

do
-

refresh
-

B.4.3.1 wml element

The WML element defines a WML document and encloses all information in the document.

Syntax
<wml>content</wml>

B.4.3.2 card element

The card element defines a container of text and elements in a WML document. A document may contain multiple card elements but card elements may not be nested. The first card element in a document is the start card.

Syntax

<card>content</card>

Attribute
Explanation


id
This attribute specifies a unique id of the card within the deck.
O

newcontext
This attribute specifies if the current USAT interpreter context is to be re-initialised. Allowed values: true or false (Default).
O

<card id="card1">
.
.
</card>

B.4.3.3 p element

The p element, or paragraph element, delimits a text section. 
No arguments are supported for the p element.

Syntax

<p>content</p>
B.4.3.4 br element

The br element inserts a line break in the displayed text.

The <br/> element can not take any arguments.

Syntax

<br/> 

B.4.3.5 input element

The input element defines an input field where the user may enter information. 

Syntax

<input/>

Attribute
Explanation


name
This attribute specifies the name of variable to set.
M

value
This attribute specifies the default value of the variable named in the name attribute.
O

format
This attribute Expected data format entered by the user. The following values are allowed:

*M - Any character. (Default)
*N - Any numeric character.
O

emptyok
This attribute specifies whether or not empty input will be accepted Allowed values: true or false (Default). 
O

maxlength
This attribute specifies the max number of bytes that can be entered by the user.
O

title
This attribute specifies the prompting string. 
O

class
This attribute specifies the type of the variable. The following values are allowed:

SMSDefault – Default for an ISO-8859 WML document.
UCS2 - Default for an UTF-8 WML document.
O

<input title="Please enter your phone number" name="PHONE" format="*N" maxlength="20"/>

B.4.3.6 select Element

The select element defines and displays a set of optional list items from which the user can select an item. An option element is required for each item in the list, see Section B.4.3.7. The name of the menu, normally displayed by the telephone, is specified by the title attribute. 

Either the name or iname attribute can be used. If the iname attribute is used, the value attribute in the contained option elements will be overridden with the calculated index. 

Syntax

<select>content</select>

Attribute
Explanation


title
This attribute specifies the title of the menu.
O

name
This attribute specifies the name of the variable to set. 
O

iname
This variable specifies the name of the variable to set with the index result of the selection. See the WAP WML specification [B5].
O

B.4.3.7 option element

The option element represents a list item in a list defined by the select element. The content consists of text that is displayed as the option text. This text is used as the value of the value attribute if that attribute is not present. Empty item text strings are not supported. 

When an option is selected, the variable named in the enclosing select element is set to the value given by the value attribute. Then the USAT interpreter navigates to the URI specified by the onpick attribute if present.

Syntax

<option>content</option>

Attribute
Explanation


value
This attribute specifies what the variable named in select attribute name is set to, if this option element is selected.
O

onpick
This attribute specifies a destination URI to go to, if this option element is selected.
O

This example illustrates the use of select and option. If the user selects the "Banking" option, a jump will occur to "card2". If the user selects the "Gambling" option, a jump will occur to "card3". If "[Home]" is selected a GET request will be sent for the "home.wml" document. Note that the value attribute in the option element can not be used for anything if the corresponding onpick attribute refers to an external URL.

<select title="Please choose service" name="SELECTION">
 <option value="BANKING" onpick="#card2">Banking</option>
 <option value="GAMBLING" onpick="#card3">Gambling</option>
 <option value="Not used." onpick="http://www.3gpp.org/home.wml">[Home]</option>
</select>

B.4.3.8 go element

The go element declares a go task to a URL or to a specified card in the document. The go element may also be used for performing USAT interpreter or Gateway specific commands.
Note that after each "go href" referring to an external URL, no more WML elements will be executed. Using text or WML tags after a "go href" referring to an external URL may cause problems for the application. 

The URL may contain variable references.

The URL starts with "https://", if SSL is to be used for connecting to the application server.

For referencing a card, a hash sign ('#') is used:

<go href="#CARD"/>

Syntax

<go/>
<go>content<go>

Attribute
Explanation


href
This attribute identifies the destination URI. 
M

method
This attribute specifies the http submission method to be used by the Gateway. The following values are allowed:

get - HTTP GET will be used. (Default)
post - HTTP POST will be used. 
O

<card>
 <p>
  <input title="Variable" name="VARIABLE"/>
  <do type="accept">
   <go href="http://www.3gpp.org/page.jsp?f=$(VARIABLE)&amp;l=StaticText "/>
   </do>
 </p>
</card>

<card>
 <p>
  <input title="First name" name="FIRSTNAME"/>
  <input title="Last name" name="LASTNAME"/>
  <input title="Age" name="AGE"/>
  <do type="accept">
   <go method="post" href="http://www.3gpp.org/page.jsp? 
      f=$(FIRSTNAME)&amp;l=$(LASTNAME)&amp;a=$(AGE)"/>
  </do>
 </p>
</card>

A card reference starts with the character  '#'.

<card id="CARD1">
 <p>
  <do type="accept">
   <go href="#CARD2"/>
  </do>
 </p>
</card>
<card id="CARD2">
 <p>
  You have jumped to CARD2.
 </p>
</card>

B.4.3.9 setvar element

The setvar element sets the value of a variable. 

The class attribute is used for setting the type of the variable according to the present document.

Syntax

<setvar/>

Attribute
Explanation


name
This attribute specifies the name of the variable to be set.
M

value
This attribute specifies the value the variable is set to. May only contain fixed text. Variables are not allowed.
M

class
This attribute specifies an optional type specification of the variable, used for conversion purposes in the Gateway. The following values are allowed:

SMSDefault
SMSDefault.packed
UCS2
binary.base64 - The variable contains binary data coded according to base64 encoding. This is the default value if the "class" attribute is omitted. The "binary.base64" class is used for instance when encrypted data is sent to the content. The type in the USAT interpreter will be "Binary" (Default).
O

The variable COUNTRY is set to "Sweden". The variable may later be used by referring to $(COUNTRY).

<setvar name="COUNTRY" value="Sweden"/>

setvar is contained in a refresh element

<card id="setexample2">
 <p>
  <do type="accept">
   <refresh>
    <setvar name="HEXVARIABLE" class="binary.base64" value="A678F5D3"/>
   </refresh>
  </do>   
  <do type="accept">
   <go href="http://www.3gpp.org?a=$(HEXVARIABLE)"/>
  </do>
 </p>
</card>

setvar is contained in a go element. The variables are set before the go element is executed.

<card id="setexample3">
 <p>
  <do type="vnd.3gpp.org">
   <go href="efi://vnd.3ggp.interpreter/cpi/encrypt?
       a1=$(KEY1)&amp;a2=$(KEY2)&amp;outputVar=out">
    <setvar name="KEY1" class="binary.base64" value="F5FF34FF"/>
    <setvar name="KEY2" class="binary.base64" value="90AB45DA"/>
   </go>
  </do>
 </p>
</card>

B.4.3.10 noop element

The noop element specifies that nothing will be done. The noop element requires a start tag only.

Syntax

<noop/>

B.4.3.11 do element

The do element is a general mechanism for the user to act upon the current card. The supported types are accept and vnd.3gpp.org. Both of these imply that the task following the do element is always executed. 

This means that the execution of the script does not stop at the do element. If a stop before the do element is desired, a construction as in 0 can be used. 

Syntax

<do>content</do>

Attribute
Explanation


type
This attribute specifies the type of the do element. The following values are allowed:

vnd.3gpp.org - When the do element contains a USAT interpreter specific command. 
accept - All other cases.
M

<wml>
 <card id="command">
  <p>
   <input title="Enter your age:" name="AGE"/>
   <do type="accept">
    <go href="http://www.3gpp.org/survey.asp?f=$(AGE)&amp;name=Martin"/>
   </do>
  </p>
 </card>
</wml>

B.4.3.12 refresh Element

The refresh element surrounds the setvar tag. The refresh tag has no function in itself. 

Syntax

<refresh>content</refresh>

B.5 Explicit calls using WML syntax

This chapter demonstrates how the namespace can be used to explicitly address USAT Commands, USAT Interpreter specific functions and Plug-ins. The purpose is to demonstrate how this can be done rather than to describe how the complete command set of the USAT Interpreter is addressed.

Mandatory parameters need always be present in an explicit call and the optional attributes may be left out. The last column in the following tables indicates if the attribute is M-mandatory or O-optional. 

An argument value can include a variable, which is substituted at run-time with its current value.

B.5.1 Services for USAT Commands

Access to USAT commands is grouped into the service group atk. Anything that belongs to this group of services can be coded, by the gateway, by using generic coding on the byte code level.

The following table lists the logical group of services used for calling USAT commands. 

Service Name

atk/launchBrowser

atk/playTone

atk/provideLocalInfo

atk/refresh

atk/runATCommand

atk/sendUSSD

atk/sendSM

atk/setupCall

atk/setIdleModeText

For detailed information on the parameters and data format, see 3G TS 31.111 [B3]. Although the "GO" tag is used, no message is sent to the server, as the commands are executed locally on the USIM.

The following chapters handle these functions in detail. The parameter names as listed in the tables below are the same as the ones that are to be used in the URL query string. The parameter names are case sensitive.

B.5.1.1 Launch Browser

This command causes the USIM to request that the ME start a browser to interpret the content corresponding to the URL.

Service name: atk/launchBrowser?qualifier=&URL=

Argument
Argument value


qualifier
The Command Details to use (see [B3]). The value is given in decimal format. The default value is 0.
O

URL
The URL whose contents is to be displayed.
M

A browser will be launched and the URL "http://www.3gpp.org/page.wml" will be fetched.
<card>
 <p>
  <do type="vnd.3gpp.org">
   <go href="efi://vnd.3gpp.interpreter/atk/launchBrowser?
       URL=http://www.3gpp.org/page.wml"/>
  </do>
 </p>
</card>

B.5.1.2 Play tone

This command makes the mobile station play a tone. 

Service name: atk/playTone?toneId=&timeUnit=&duration=&text=
Argument
Argument value


toneId
01: Dial tone
02: Called subscriber busy
03: Congestion
04: Radio path acknowledge
05: Radio path not available
06: Error / special information 
07: Call waiting time
08: Ringing tone
M

timeUnit
00: minutes
01: seconds
02: tenths of seconds
M

duration
Coded as integer multiples of the time unit used. Decimal value. Allowed values: 0-255.
M

text
Text to display. (Corresponds to the alpha identifier according to [B3])
O

In this example, the mobile phone is requested to play a congestion tone with duration of 10 seconds. Since text string is empty, no text will be displayed.

<card>
 <p>
  <do type="vnd.3gpp.org">
   <go href="efi://vnd.3gpp.interpreter/atk/playTone?
   

toneId=03&amp;timeUnit=01&amp;duration=10"/>
  </do>
 </p>
</card>

B.5.1.3 Provide Local Information

This command is used to get location information from the mobile station. Different location parameters can be fetched from the mobile phone and put into a variable.

Service name: atk/provideLocalInfo?qualifier=&outputVar=
Argument
Argument value


qualifier
00: location information (7 bytes)
01: IMEI of ME (8 bytes)
02: Network measurement results and BCCH list (16 bytes)
03: Date, time and time zone (7 bytes)
04: Language setting (2 bytes)
05: Timing advance (2 bytes)
M

outputVar
Variable to contain output data. 
M

In this example, the IMEI is fetched and put in the variable imeiOutput. On the next line, the IMEI is sent to a content provider.

<card>
 <p>
  <do type="vnd.3gpp.org">
   <go href="efi://vnd.3gpp.interpreter/atk/provideLocalInfo?
       qualifier=01&amp;outputVar=imeiOutput"/>
  </do>
  <do type="accept">
   <go href="http://www.arne.se?IMEI=$(imeiOutput)"/>
  </do>
 </p>
</card>

B.5.1.4 Refresh

This command makes the USIM notify the mobile phone of changes in the USIM configuration as the result of USIM application activity. Depending on the command qualifier, different tasks will be performed. For more information see [B3].

Service name: atk/refresh?qualifier=&numberOfFiles=&fileList=
Argument
Argument value


qualifier
00: USIM Initialisation and Full File Change Notification 
01: File Change Notification (requires file list)
02: USIM Initialisation and File Change Notification (requires file list)
03: USIM Initialisation
04: USIM Reset
M

numberOfFiles
Number of files included in filelist. Decimal value. Default: 0.
O

fileList
List of files.
O

In the example, a USIM initialisation is requested, and in addition, the mobile phone in notified that two files on the USIM have been updated, 3F00/2F05 and 3F00/7F10/6F3A.

<card id="command">
 <p>
  <do type="vnd.3gpp.org">
   <go href ="efi://vnd.3gpp.interpreter/atk/refresh?qualifier=02&amp;
        numberOfFiles=02&amp;fileList=3F002F053F007F106F3A"/>
  </do>
 </p>
</card>

Full paths are given to files. Each file path is at least 4 octets in length. An entry in the file description begins with '3FXX' and there is no delimiters between files.

B.5.1.5 Run AT Command

This command makes the USIM request the ME to execute an AT Command.

Service name: atk/runATCommand?command=&text=&iconId=
Argument
Argument value


command
The AT Command string that is to be executed
M

text
Text to be displayed to the user.
O

iconId
The identifier of an icon to show instead of text.
O

<card id="command">
 <p>
  <do type="vnd.3gpp.org">
   <go href ="efi://vnd.3gpp.interpreter/atk/runATCommand?


command=ATD0706746151&amp;text=Calling"/>
  </do>
 </p>
</card>

B.5.1.6 Send USSD

This command sends a byte string by the Unstructured Supplementary Service.

Service name: atk/sendUSSD?text=&ussd=
Argument
Argument value


text
Text to display. 
O

ussd
According to [B1].
M

In this example, a USSD message with the contents "*21*1222#" is sent to the network.

<card>
 <p>
  <do type="vnd.3gpp.org">
   <go href="efi://vnd.3gpp.interpreter/atk/sendUSSD?
             text=MessageText&amp;ussd=*21*1222#"/>
  </do>
 </p>
</card>

B.5.1.7 Send SM

This command sends a plain text SM to a particular destination.

Service name: atk/sendSM?userData=&pid=&dcs=&bNumber=&smscAddress=

Argument
Argument value


userData
Text in the SM. 
O

pid
Protocol identifier. Decimal value. Default: 0.
O

dcs
Data Coding Scheme, according to [B4]. Decimal value. 
O

bNumber
The called party number.
M

smscAddress
The number of the service center. 
O

In this example, a text SM, with contents as entered by the user, is sent to MSISDN "0706754321". As "PID" and "DCS" are omitted, the default values "0" and "242" decimally are used. The Service Centre "+46705008999" is used, regardless of the default value in the mobile phone.

<card>
 <p>
  <input title="Please enter message" name="m"/>
  <do type="vnd.3gpp.org">
   <go href="efi://vnd.3gpp.interpreter/atk/sendSM?userData=$(m)&amp;
             bNumber=0706754321&amp;smscAddress=+46705008999"/>
  </do>
 </p>
</card>

B.5.1.8 Set up call

This command requests the mobile phone to initiate a call.

Service name:
atk/setupCall?qualifier=&text=&capability=&timeUnit=&duration=&bNumber=

Argument
Argument value


qualifier
00: only if not currently busy
01: only if not currently busy, with redial
02: putting all other calls on hold
03: putting all other calls on hold, with redial
04: disconnecting all other calls
05: disconnecting all other calls, with redial
M

text
Text to display. (Corresponds to the alpha identifier according to [B3].)
O

capability
Capability Configuration Parameters. For coding, see [B2]. Default: None.
O

timeUnit
This argument is mandatory if duration attribute is used. Default: Not used.
00: minutes
01: seconds
02: tenths of seconds
O

duration
Coded as integer multiples of the time unit used. Decimal value. Allowed values: 0-255. Default: Not used.
O

bNumber
The called party number.
M

In this example, the USIM requests the mobile phone to set up a call to "0707789613", if not currently busy with another call. No text is displayed, no Capability Configuration Parameters are attached, and no automatic retries to set up the call will be made.

B.5.1.8.1 <card>
 <p>
  <do type="vnd.3gpp.org">
   <go href="efi://vnd.3gpp.interpreter/atk/setupCall?
             qualifier=00&amp;bNumber=0707789613"/>
  </do>
 </p>
</card>
B.5.1.9 Set Idle Mode Text

This command sets a text on the idle screen of the mobile station.

If no text attribute is included or the text attribute consists of an empty string, the existing idle mode text on the mobile phone will be removed. 

Service name: atk/setIdleModeText?text=

Argument
Argument value


text
The idle mode text to display.
O

This example will set the idle mode text to "Welcome".

<card>
 <p>
  <do type="vnd.3gpp.org">
   <go href="efi://vnd.3gpp.interpreter/atk/setIdleModeText?
             text=Welcome"/>
   </do>
 </p>
</card>

B.5.2 Services for Interpreter Commands

These are commands that are directed to the Interpreter itself and thus are internally handled by the interpreter. Unless otherwise stated, the encoding of the result variables match the format of the information as specified in other parts of this specification.
The following table lists the logical group of services used for calling interpreter internal functions.

Service Name

ipi/getInterpreterVersion

 ipi/getBufferSize

ipi/getNativeCommandList

ipi/getTerminalProfile

ipi/getErrorCode

ipi/getMaxPageSize

ipi/getIssuerUrl

ipi/getIssuerUrlHash

B.5.2.1 Get Interpreter Version Information 

This command reads the version information of the USAT Interpreter and assigns it to the specified variable. 

Service name: ipi/getInterpreterVersion?outputVar=
Argument
Argument value


outputVar
Variable to contain output data. 
M

B.5.2.2 Get Interpreter Buffer Size 

This command reads the size of the receive and send buffer of the USAT Interpreter and assigns it to the specified variable. 

Service name: ipi/getBufferSize?outputVar=
Argument
Argument value


outputVar
Variable to contain output data. 
M

In the following example, the interpreter buffer size and version information are put into the variables "bufferSize" and "version" respectively. On the next line, the information is sent back to the Application Provider.

<card>
 <p>
  <do type="vnd.3gpp.org">
   <go href="efi://vnd.3gpp.interpreter/ipi/getInterpreterVersion?
              outputVar=version"/>
  </do>
  <do type="vnd.3gpp.org">
   <go href="efi://vnd.3gpp.interpreter/ipi/getBufferSize?
              outputVar=bufferSize"/>
  </do>
  <do type="accept">
   <go href="http://www.server.com?VERSION=$(version)&BUFFER=$(bufferSize)"/>
  </do>
 </p>
</card>
B.5.2.3 Get Native Command List
This command reads the list of supported native commands.

Service name: ipi/getNativeCommandList?outputVar=
Argument
Argument value


outputVar
Variable to contain the output list of supported Native Commands
M

B.5.2.4 Get Terminal Profile

This command gets the Terminal Profile as got at runtime by the USAT Interpreter.

Service name: ipi/getTerminalProfile?outputVar=
Argument
Argument value


outputVar
Variable to contain the binary encoded terminal profile
M

B.5.2.5 Get Error Code for Last Byte Code Command
This command gets the Error Code generated by the last executed byte code command.

Service name: ipi/getErrorCode?outputVar=
Argument
Argument value


outputVar
Variable to contain the error code
M

B.5.2.6 Get Maximum Size for Temporary Storage of Page

This command gets the maximum page size for temporary storage of one page.
Service name: ipi/getMaxPageSize?outputVar=
Argument
Argument value


outputVar
Variable to contain the maximum size of a page
M

B.5.2.7 Get USAT Interpreter Issuer URL
This command gets the URL of the issuer of the USAT Interpreter.
Service name: ipi/getIssuerUrl?outputVar=
Argument
Argument value


outputVar
Variable to contain the URL of the issuer of the USAT Interpreter
M

B.5.2.8 Get USAT Interpreter Issuer URL Hash
This command gets the 4 most significant byte of the SHA-1 hash of the URL of the issuer of the USAT Interpreter.

Service name: ipi/getIssuerUrl?outputVar=
Argument
Argument value


outputVar
Variable to contain the hash of the URL 
M

B.5.2.9 Get User Name
This command gets the name of the end user, if the end user has set the values.
Service name: ipi/getUserName?outputVar=
Argument
Argument value


outputVar
Variable to contain the name of the end user
M

B.5.2.10 Get User Email

This command gets the email of the end user, if the user has chosen to set it.
Service name: ipi/getUserEmail?outputVar=
Argument
Argument value


outputVar
Variable to contain the email of the end user.
M

B.5.3 Services for Calling Client Plug-Ins

This chapter illustrates the way the addressing for calling a card plug-in is done and the principles for handling the arguments to the plug-in. The addressing enables the application to call any plug-in that is available for the application. The actual plug-ins that are available for the application depends on the configuration of the USAT Interpreter. On the byte code level, the card plug-ins are called in a generic way. The translation to generic format is done by the gateway.

To exemplify the calling of plug-ins from the application, an example plug-in with the name myPlugin is used. It is assumed that there are seven arguments to the plug-in as described in the table below.

a#
Argument
Argument value


a1
homeTown
The home town of the user
M

a2
currentTown
The town where the user currently is.
M

a3
homePhone
The home phone number of the user
O

a4
buyTicket
This parameter acts as a Boolean value. If it is set to 1, a ticket will be reserved. If set to 0, only timetable is provided. The default behaviour is to provide timetable information only.
O

a5
timeToLeave
If set, the parameter gives a date when the user wishes to start travelling.
O

a6
timeToArrive
If set, this parameter gives a date when the user wishes to arrive.
O

a7
transport
The desired means of transport for the user.
O

As a calling convention for plug-ins, the parameter names are enumerated using a as a prefix. The enumeration order indicates the order in which the arguments are sent to the plug-in. Optional parameters that are not used are left out from the URL query string.

The order of the parameters in the query string is insignificant. It is the naming of the parameters that control the order when calling the plug-in.

This service will call the plug-in myPlugin. Any other plug-in is called in the same manner based on its documentation. The plug-in services are always placed in the cpi service group.

Service name: cpi/myPlugin
In this example, the plug-in myPlugin is called using only arguments 1,2 and 7 as described by the documentation.

<card>
 <p>
  <do type="vnd.3gpp.org">
   <go href="efi://vnd.3gpp.interpreter/cpi/myPlugin?
 

a2=Stockhom&amp;a7=Train&amp;a1=Paris"/>
  </do>
 </p>
</card>

The WML code above causes the gateway to construct a call to the generic plug-in mechanism to call a plug-ins whose name is myPlugin. The arguments to the generic call are inserted in the order the naming enumerates them.

B.6 Access to Some Special Features
This chapter describes how to modify the behaviour of the interpreter. This includes modifying the Terminal Response Handler and variable management.
B.6.1 Variable Management
The byte code of the USAT Interpreter provides mechanisms for sharing access to variables between pages. The behaviour can be initiated from WML by using the constructs exemplified in this chapter.
B.6.1.1 Keep Alive and Protect Variables
The functionality to control saving of variables between decks is reached through a service. What is given is a list of variables that shall be shared with the next deck. Up to 64 variables can be indicated.
In the context of variable management, the one time password is used to control access to variables. Together with the Page Unlock Code, it provides a possibility for sharing variable values between decks in a protected manner. This is controlled by giving an argument to control password protection of the variables.
Service name:ssp/keepAlive?variableList=&password=
Argument
Argument value


variableList
List of the variables that shall be made available to the following page
M

password
Indicates if the variables shall be protected by a usage of the combination of a one-time password and a page unlock. Values can be “yes” or “no”. The default value is “no”.
C

The service is valid for the whole deck and is thus called in a template at deck level.
<wml>
 <template>
  <do type="vnd.3gpp.org">
   <go href="efi://vnd.3gpp.interpreter/ssp/keepAlive?
             variableList=’A, B, NAME’&amp;password=yes"/>
   </do>
 </template>



B.6.2 Terminal Response Handler Modifier

This chapter illustrates how the Terminal Response Handler can be modified. The Terminal Response Handler Modifier allows modification of the default behaviour for the Terminal Response Handler. In this context, modification includes addition and overriding of the default behaviour. The Terminal Response Handler can be modified for the whole page and/or for each Navigation Unit.

Once again the EFI mechanisms are used to reach the services. When the service for modifying the Terminal Response Handler is called from a card, the scope is card. When the call is handled as a template at the deck level, it is valid for the whole deck.
The following table lists the logical group of services used for performing Terminal Response Handler modification.

Service Name

trh/replace

trh/add

trh/restore

trh/remove

The arguments to be supplied vary for the services.

B.6.2.1 Replace
Service name: trh/replace?start=&end=&text=&actionDesc=&actionId=&href=&displayText=&
variableName=&setvarValue=&getInputString
The replace operation erases all previously defined actions for a result range and adds the one supplied as an argument
Argument
Argument value


start
The start of the general result range that shall be modified
M

end
The end of the general result range that shall be modified
M

text
Text to display to the user when handling this general result range.
O

actionDesc
Text to describe the action. To be used in User Interface for select item when asking the user which action to perform when multiple actions are defined for the general result range.
C

actionId
Unique identifier of the action to be performed
M

href
Indicates where to branch execution if the intended action is a navigation action. The href argument can also be used if the intended action is to execute a native command, call a USAT Command or perform another action as specified in this appendix.
C1

displayText
Text to be displayed if the desired action is to execute a display text
C1

variableName
Name of variable to set. If this argument is present, either the setvarValue or getInputString shall be supplied. In the case where setvarValue is supplied, as set variable is executed. If getInputString is supplied, the user is asked for input by supplying the string.
C1

setvarValue
Value to assign to the variable. This argument shall be present only if the setvarName is given.
C1

getInputString
Text to display to the user when asking for input.
C1

The principle is to express the range that shall be modified and an action to be performed for that range. The actions that can be used require somewhat different arguments. The arguments having the “C1”-property are mutually exclusive. If the actions are system actions, which means that the actionId is ‘00’ – ‘03’, none of the “C1” arguments shall be supplied. If the action to be performed is a navigation action, the argument href is used. This attributes is also used for calling USAT Commands and Native Commands as defined elsewhere in this appendix.
This service will modify the Terminal Response Handler by replacing the action for the general result value of 10 with a call to a USAT Command for setting a new idle mode text. The change is valid for the current card.
<card>
 <p>
  <do type="vnd.3gpp.org">
   <go href="efi://vnd.3gpp.interpreter/trh/replace?
             start=10&amp;end=10&amp;
             text=Changing%20Idle Mode Text&amp;
             actionId=42&amp;href=’efi://vnd.3gpp.interpreter/atk/setIdleModeText?
             text=Welcome’"/>
   </do>
 </p>
</card>
In the following example, the same change is applied to the whole deck.

<wml>
 <template>
  <do type="vnd.3gpp.org">
   <go href="efi://vnd.3gpp.interpreter/trh/replace?
             start=10&amp;end=10&amp;
             text=Changing%20Idle%20Mode%20Text&amp;
             actionId=42&amp;href=’efi://vnd.3gpp.interpreter/atk/setIdleModeText?
             text=Welcome’"/>
   </do>
 </template>

 <card>
  <p>
   This is the card
  </p>
 </card>
</wml>
B.6.2.2 Add
Service name: trh/replace?start=&end=&text=&actionDesc=&actionId=&href=&displayText=&
variableName=&setvarValue=&getInputString

The add operation adds a new action for an existing general result range or defines a new general result range and the corresponding action.
Argument
Argument value


start
The start of the general result range that shall be modified
M

end
The end of the general result range that shall be modified
M

text
Text to display to the user when handling this general result range.
O

actionDesc
Text to describe the action. To be used in User Interface for select item when asking the user which action to perform when multiple actions are defined for the general result range.
C

actionId
Unique identifier of the action to be performed
M

href
Indicates where to branch execution if the intended action is a navigation action. The href argument can also be used if the intended action is to execute a native command, call a USAT Command or perform another action as specified in this appendix.
C1

displayText
Text to be displayed if the desired action is to execute a display text
C1

variableName
Name of variable to set. If this argument is present, either the setvarValue or getInputString shall be supplied. In the case where setvarValue is supplied, as set variable is executed. If getInputString is supplied, the user is asked for input by supplying the string.
C1

setvarValue
Value to assign to the variable. This argument shall be present only if the setvarName is given.
C1

getInputString
Text to display to the user when asking for input.
C1

The principle is exactly the same as for the replace modification.
B.6.2.3 Restore

Service name: trh/restore?start=&end=&

The operation restores the general result range.
Argument
Argument value


start
The start of the general result range that shall be modified
M

end
The end of the general result range that shall be modified
M

<card>
 <p>
  <do type="vnd.3gpp.org">
   <go href="efi://vnd.3gpp.interpreter/trh/restore?
             start=10&amp;end=10”/>
   </do>
 </p>
</card>

B.6.2.4 Remove

Service name: trh/remove?start=&end=&actionId=

The remove operation removes the specified action from the general result range that is specified.

Argument
Argument value


start
The start of the general result range that shall be modified
M

end
The end of the general result range that shall be modified
M

actionId
Unique identifier of the action to be performed
M

This service will modify the Terminal Response Handler by removing the action of changing idle mode text for the general result value of 10.

<card>
 <p>
  <do type="vnd.3gpp.org">
   <go href="efi://vnd.3gpp.interpreter/trh/remove?
             start=10&amp;end=10&amp;
             actionId=42"/>
   </do>
 </p>
</card>

B.7 References

[B1]  
3GPP TS 22.030: "Technical Specification Group Services and System Aspects;Man-Machine Interface (MMI) of the User Equipment (UE)"

[B2]  
3GPP TS 24.008: " Technical Specification Group Core Network; Mobile radio interface layer 3 specification;Core Network Protocols – Stage 3"

[B3] 
3GPP TS 31.111: "3rd Generation Partnership Project (3GPP); USIM Application Toolkit (USAT)"

[B4] 
3GPP TS 23.038: "3rd Generation Partnership Project (3GPP); Alphabets and language‑specific information."

[B5]  
Wireless Application Protocol Forum: "Wireless Markup Language Specification. Version 1.3. 19 February 2000. Available: http://www.wapforum.org/"

[B6]   
Wireless Application Protocol: "EFI Framework. Draft Version 0.15."

History

Document history

V0.0.9
January 2001
First full ETSI style version

V0.0.10
February 2001
Prepared version for ad-hoc #25 05-07.02.2001 Stockholm

V0.0.11
February 2001
New version after ad-hoc #25 and #29

V1.0.0
March 2001
Presented for information to TSG-T #11

V1.1.0
April 2001
New version after ad-hoc #33 and #35

V1.2.0
May 2001
New version after ad-hoc during T3 #19

V1.3.0
June 2001
New version after ad-hoc #38

V1.4.0
July 2001
New version after ad-hoc #43

V1.5.0
July 2001
New version after ad-hoc #45

V1.6.0
August 2001
New version for ad-hoc #48

V1.6.1
August 2001
Revised version for ad-hoc #48

V1.7.0
August 2001
New version after ad-hoc #48

V1.7.1
August 2001
Version for presentation to T3 #20

V1.7.2
September 2001
Editorial changes of T3 #20 incorporated

V2.0.0
September 2001
For presentation to TSG-T #13 for approval































































�SEITE \# "'PAGE: '#'�'"  �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�SEITE \# "'PAGE: '#'�'"  �� Enter the CR number here. This number is allocated by the 3GPP support team.

�SEITE \# "'PAGE: '#'�'"  �� Enter the revision number of the CR here. If it is the first version, use a "-".

�SEITE \# "'PAGE: '#'�'"  �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the lastest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�SEITE \# "'PAGE: '#'�'"  �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�SEITE \# "'PAGE: '#'�'"  �� Mark one or more of the boxes with an X.

�SEITE \# "'PAGE: '#'�'"  �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�SEITE \# "'PAGE: '#'�'"  �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�SEITE \# "'PAGE: '#'�'"  �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. Work item acronyms are listed in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�SEITE \# "'PAGE: '#'�'"  �� Enter the date on which the CR was last revised.

�SEITE \# "'PAGE: '#'�'"  �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�SEITE \# "'PAGE: '#'�'"  �� Enter a single release code from the list below.

�SEITE \# "'PAGE: '#'�'"  �� Enter text which explains why the change is necessary.

�SEITE \# "'PAGE: '#'�'"  �� Enter text which describes the most important components of the change. i.e. How the change is made.

�SEITE \# "'PAGE: '#'�'"  �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�SEITE \# "'PAGE: '#'�'"  �� Enter each the number of each clause which contains changes.

�SEITE \# "'PAGE: '#'�'"  �� Enter an X in the box if any other specifications are affected by this change.

�SEITE \# "'PAGE: '#'�'"  �� List here the specifications which are affected or the CRs which are linked.

�SEITE \# "'PAGE: '#'�'"  �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.



CR page 1

