Envelope Response Handler errors

· Api_2_erh_apda_bss: OK to be correct.

Done

It should be allowed to build a response of 256 data.
// --

 // Test Case 7 : handler overflow

 testCaseNb = (byte) 7 ;

 bRes = false ;

 try {

 try {

 offset = (short)0 ;

 length = (short)buffer256.length ;

 EnvRespHdlr.appendArray(buffer256, offset, length) ;

 } catch (ToolkitException e) {

 bRes = (e.getReason() == ToolkitException.HANDLER_OVERFLOW) ;

 }

 }

 catch (Exception e) {

 bRes = false ;

 }

 reportTestOutcome(testCaseNb, bRes) ;

11.11:

9.1
Mapping principles

An APDU can be a command APDU or a response APDU.

A command APDU has the following general format:

	
	CLA
	INS
	P1
	P2
	P3
	Data

The response APDU has the following general format:

	
	Data
	SW1
	SW2

An APDU is transported by the T=0 transmission protocol without any change. Other protocols might embed an APDU into their own transport structure (ISO/IEC 7816‑3 [26]).

The bytes have the following meaning:

‑
CLA is the class of instruction (ISO/IEC 7816‑3 [26]), 'A0' is used in the GSM application;

‑
INS is the instruction code (ISO/IEC 7816‑3 [26]) as defined in this subclause for each command;

‑
P1, P2, P3 are parameters for the instruction. They are specified in table 9. 'FF' is a valid value for P1, P2 and P3. P3 gives the length of the data element. P3='00' introduces a 256 byte data transfer from the SIM in an outgoing data transfer command (response direction). In an ingoing data transfer command (command direction), P3='00' introduces no transfer of data;

‑
SW1 and SW2 are the status words indicating the successful or unsuccessful outcome of the command.

For some of the functions described in clause 8 it is necessary for T=0 to use a supplementary transport service command (GET RESPONSE) to obtain the output data. For example, the SELECT function needs the following two commands:

‑
the first command (SELECT) has both parameters and data serving as input for the function;

‑
the second command (GET RESPONSE) has a parameter indicating the length of the data to be returned.

If the length of the response data is not known beforehand, then its correct length may be obtained by applying the first command and interpreting the status words. SW1 shall be '9F' and SW2 shall give the total length of the data. Other status words may be present in case of an error. The various cases are:

· Api_2_erh_aptlbb: OK to be correct.
Done
Case 1: it shouldn’t be thrown an HANDLER_OVERFLOW exception with a length of 254 data

// --

 // Test Case 1 : handler overflow

 testCaseNb = (byte) 1 ;

 bRes = false ;

 try {

 // Initialise the handler

 offset = (short)0 ;

 length = (short)251 ;

 EnvRespHdlr.appendArray(buffer, offset, length) ;

 // appendTLV

 try {

 EnvRespHdlr.appendTLV(tag, value) ;

 }

catch (ToolkitException e) {

 bRes = (e.getReason() == ToolkitException.HANDLER_OVERFLOW) ;

 }

 }

 catch (Exception e) {

 bRes = false ;

 }

 reportTestOutcome(testCaseNb, bRes) ;
· Api_2_erh_aptlbbb: OK to be correct.
Done
Case 1: it shouldn’t be thrown an HANDLER_OVERFLOW exception with a length of 254 data

// --

 // Test Case 1 : handler overflow

 testCaseNb = (byte) 1 ;

 bRes = false ;

 try {

 // Initialise the handler

 offset = (short)0 ;

 length = (short)250 ;

 EnvRespHdlr.appendArray(buffer, offset, length) ;

 // appendTLV

 try {

 EnvRespHdlr.appendTLV(tag, value1, value2) ;

 }

catch (ToolkitException e) {

 bRes = (e.getReason() == ToolkitException.HANDLER_OVERFLOW) ;

 }

 }

 catch (Exception e) {

 bRes = false ;

 }

 reportTestOutcome(testCaseNb, bRes) ;

· Api_2_erh_copy_bss OK to be correct.
Done: move the appendTLV from TC2 to TC1
Case 1: More than one exception could be thrown, one test only have to produce one exception because the order of the exception is not defined.

EnvRespHdlr.copy(null, (short)0, (short)1) ;

· Api_2_erh_cprvs_bss OK to be correct.
Done : move initialisation from TC2 to TC1
Case 1: More than one exception could be thrown, one test only have to produce one exception because the order of the exception is not defined.

EnvRespHdlr.compareValue((short)0, null, (short)0, (short)1) ;

· Api_2_erh_cpyvs_bss OK to be correct.
Done : same as previous
Case 1: More than one exception could be thrown, one test only have to produce one exception because the order of the exception is not defined.

EnvRespHdlr.copyValue((short)0, null, (short)0, (short)1) ;

· Api_2_erh_facrb_bs OK to be correct.

Done change TAG 2 to 0D
Case 1: More than one exception could be thrown, one test only have to produce one exception because the order of the exception is not defined.

EnvRespHdlr.findAndCompareValue((byte)2, null, (short)0) ;

· Api_2_erh_postb_1 and Api_2_erh_postbb_1 OK to be corrected
In the case 2, 3, 4 and 7 of the tests API_2_ERH_POSTB_1.scr and API_2_ERH_POSTBB_1.scr in the second byte of the SPI doesn't indicate that answer is request and the command returns 9FXX or 9EXX.

The respond packet is also incorrect.
Done triggering made by Call Control
Envelope Handler errors

Done for all sub cases
1:

In the subtest number 2 of the test number 2 of the script API_2_ENH_GSDL_1.scr it is not specified certified and however the command envelope contains the bytes of RC/CC/DS

Example: OK to be correct: Change in the SPI to use a real signature

REM trig the appli with RC/CC/DS length=8

CMD A0 C2 00 00 48 \

D1 46 82 02 83 81 06 05 80 11 22 33 44 8B 39 40 \

02 81 55 7F F6 00 11 29 12 00 00 04 2B 02 70 00 \

00 26 15 08 00 00 00 28 81 85 00 00 00 00 01 00 \

11 22 33 44 55 66 77 88 10 11 12 13 14 15 16 17 \

18 19 1A 1B 1C 1D 1E 1F \

(90 00)

2:

In the subtest number 2 of the test number 12 of the script API_2_ENH_GSDL_1.scr it is not specified certified and however the command update record contains the bytes of RC/CC/DS

Example: OK to be correct: Change in the SPI to use a real signature

REM trig the appli with RC/CC/DS length=8

CMD A0 AD 01 04 B0 \

03 05 80 11 22 33 44 40 02 81 55 7F F6 00 11 29 \

12 00 00 04 45 02 70 00 00 26 15 08 00 00 00 28 \

81 85 00 00 00 00 01 00 11 22 33 44 55 66 77 88 \

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F \

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF \

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF \

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF \

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF \

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF \

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF \

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF \

(90 00)

3:

In the test number 5 of the script API_2_ENH_GSDO_1.scr it is not specified certified and however the command envelope contains the bytes of RC/CC/DS

Example: OK to be correct: Change in the SPI to use a real signature

REM trig the appli with RC/CC/DS length=8

CMD A0 C2 00 00 48 \

D1 46 82 02 83 81 06 05 80 11 22 33 44 8B 39 40 \

02 81 55 7F F6 00 11 29 12 00 00 04 2B 02 70 00 \

00 26 15 08 00 00 00 28 81 85 00 00 00 00 01 00 \

11 22 33 44 55 66 77 88 10 11 12 13 14 15 16 17 \

18 19 1A 1B 1C 1D 1E 1F \

(90 00)

4:

In the test number 11 of the script API_2_ENH_GSDO_1.scr it is not specified certified and however the command update record contains the bytes of RC/CC/DS

Example: OK to be correct: Change in the SPI to use a real signature

REM trig the appli with RC/CC/DS length=8

CMD A0 AD 01 04 B0 \

03 05 80 11 22 33 44 40 02 81 55 7F F6 00 11 29 \

12 00 00 04 45 02 70 00 00 26 15 08 00 00 00 28 \

81 85 00 00 00 00 01 00 11 22 33 44 55 66 77 88 \

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F \

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF \

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF \

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF \

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF \

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF \

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF \

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF \

(90 00)

03.48:

If the SPI indicates that no RC, CC or DS is present in the Command Header, the RC/CC/DS field shall be of zero length.

Oberthurcs Test

API_2_ENH_GSD0 : wrong length UDL (45 -> 2b) in Testcase 5 / *.scr
OK to be corrected (OCS)
Done
API_2_ERH_POSTB and API_2_ERH_POSTBB :

I think, we can't use the Formatted SMS PP for triggering the applet, because the GSM03.19 (part 6.2 Applet Triggering)defined
...take the optional Application Data posted by the triggered toolkit applet if present; secure and send the response packet
Í think, thats means, if the applet is triggered with 0348 formatted SMS PP the post method send a secured 0348 response packet.
So it's better to trigger the Applet with.. for example :Call Control.
OK to be changed (OCS)

Done triggering made by Call Control
