PAGE
‘C’-language binding for SIM API, DRAFT version 0.1.1

3GPP T3 Ad hoc Meeting #41

London, 31 May 2001
Tdoc T3z010650

Title:

‘C’-language binding to (U)SIM API - Draft stage 2 description v 0.1.1

Source:
WI Rapporteur

Introduction:

The document is the first draft of a platform-independent ‘C’-language binding to GSM 02.19 SIM API.

This work has been done under work item Tdoc T3-010343. This work item is being changed to become technology independent.

Contents

51.
Scope

2.
References
6
2.1.
Normative references
6
3.
Definitions and abbreviations
7
3.1.
Definitions
7
3.2.
Abbreviations
7
4.
Description
8
4.1.
Overview
8
4.2.
Design Rationale and Upward Compatibility
8
5.
‘C’-language binding for (U)SIM API
10
5.1.
Overview
10
5.2.
Toolkit Version
11
5.3.
Toolkit Application Functions
11
5.3.1.
main
11
5.3.2.
SimGetFrameworkEvent
12
5.3.3.
SimExit
12
5.4.
Registry
13
5.4.1.
SimSetMenuString
13
5.4.2.
SimNotifyOnFrameworkEvent
13
5.4.3.
SimNotifyOnEnvelope
13
5.4.4.
SimNotifyOnEvent
14
5.5.
Man-Machine Interface
14
5.5.1.
SimAddItem
14
5.5.2.
SimSelectItem
14
5.5.3.
SimEndSelectItem
15
5.5.4.
SimDisplayText
15
5.5.5.
SimGetInKey
16
5.5.6.
SimGetInput
16
5.5.7.
SimSetupIdleModeText
17
5.5.8.
SimPlayTone
17
5.6.
Network Services
18
5.6.1.
SimGetLocationInformation
18
5.6.2.
SimGetTimingAdvance
18
5.6.3.
SimGetIMEI
18
5.6.4.
SimGetNetworkMeasurementResults
19
5.6.5.
SimGetDateTimeAndTimeZone
19
5.6.6.
SimGetLanguage
19
5.6.7.
SimSetupCall
19
5.6.8.
SimSendShortMessage
21
5.6.9.
SimSendSS
22
5.6.10.
SimSendUSSD
22
5.6.11.
SimOpenCSChannel
23
5.6.12.
SimOpenGPRSChannel
25
5.6.13.
SimCloseChannel
27
5.6.14.
SimReceiveData
27
5.6.15.
SimSendData
28
5.6.16.
SimGetChannelStatus
28
5.7.
Timers
29
5.7.1.
SimGetTimer
29
5.7.2.
SimFreeTimer
29
5.7.3.
SimStartTimer
29
5.7.4.
SimGetTimerValue
29
5.8.
Supplementary Card Reader Management
30
5.8.1.
SimPowerOnCard
30
5.8.2.
SimPowerOffCard
30
5.8.3.
SimPerformCardAPDU
30
5.8.4.
SimGetReaderStatus
31
5.9.
GSM File Store Access
31
5.9.1.
SimSelect
31
5.9.2.
SimStatus
31
5.9.3.
SimGetCHVStatus
32
5.9.4.
SimReadBinary
32
5.9.5.
SimUpdateBinary
32
5.9.6.
SimReadRecord
32
5.9.7.
SimUpdateRecord
33
5.9.8.
SimSeek
33
5.9.9.
SimIncrease
34
5.9.10.
SimInvalidate
34
5.9.11.
SimRehabilitate
34
5.10.
Miscellaneous
35
5.10.1.
SimGetTerminalProfile
35
5.10.2.
SimMoreTime
35
5.10.3.
SimRunATCommand
35
5.10.4.
SimSendDTMFCommand
35
5.10.5.
SimPollingOff
36
5.10.6.
SimPollInterval
36
5.10.7.
SimRefresh
37
5.10.8.
SimLanguageNotification
37
5.10.9.
SimLaunchBrowser
37
5.11.
Low-level Interface
39
5.11.1.
SimResetBuffer
39
5.11.2.
SimStartProactiveCommand
39
5.11.3.
SimSendProactiveCommand
39
5.11.4.
SimOpenEnvelope
40
5.11.5.
SimSendEnvelopeResponse
40
5.11.6.
SimSendEnvelopeErrorResponse
40
5.11.7.
SimPutData
40
5.11.8.
SimPutByte
40
5.11.9.
SimPutTLV
40
5.11.10.
SimPutBytePrefixedTLV
41
5.11.11.
SimPutOneByteTLV
41
5.11.12.
SimPutTwoByteTLV
41
5.11.13.
SimGetByte
42
5.11.14.
SimGetData
42
5.11.15.
SimFindNthTLV
42
5.11.16.
SimFindNthTLVInUserBuffer
42
5.12.
Supporting Data Types
43
5.12.1.
SimFrameworkEventType
43
5.12.2.
SimEnvelopeTagType
43
5.12.3.
SimEventType
43
5.12.4.
SimIconOption
43
5.12.5.
SimDisplayTextOptions
44
5.12.6.
SimGetInKeyOptions
44
5.12.7.
SimGetInputOptions
44
5.12.8.
SimTimeUnit
44
5.12.9.
SimTone
44
5.12.10.
SimDCSValue
45
5.12.11.
SimTypeOfNumberAndNumberingPlanIdentifier
45
5.12.12.
SimSendShortMessageOptions
46
5.12.13.
SimRefreshOptions
46
5.12.14.
SimLanguageNotificationOptions
46
5.12.15.
SimSetupCallOptions
46
5.12.16.
SimLaunchBrowserOptions
46
5.12.17.
SimSendDataOptions
46
5.12.18.
SimSelectItemOptions
47
5.12.19.
SimBearer
47
5.12.20.
SimOpenChannelOptions
47
5.12.21.
SimGetReaderStatusOptions
47
5.12.22.
SimDevice
47
5.12.23.
SimGeneralResult
48
5.12.24.
SimTimerValue
48
5.12.25.
SimTimeInterval
49
5.12.26.
SimIconIdentifier
49
5.12.27.
SimFileStatus
49
5.12.28.
SimLocationInformation
50
5.12.29.
SimTimingAdvance
50
5.12.30.
SimTextString
50
5.12.31.
SimAlphaString
50
5.12.32.
SimAddressType
50
5.12.33.
SimSIM_MEInterfaceTransportLevelType
51
Annex A (informative): STK application example using ‘C’ (U)SIM API
52
History
53

1. Scope

A Subscriber Identity Module Application Programming Interface (SIM API) has been defined elsewhere [5] as a technology-independent API specification of how SIM Toolkit applications and (U)SIMs co-operate. That specification aims to be independent of both the underlying platform and the programming language technologies.

The main body of the document specifies ‘C’ language binding for the (U)SIM API but remains independent of the underlying platform. Assumptions about the platform are those carried over from 02.19 [5] which are:

· There shall be a virtual machine through which the Toolkit applications execute.

· The platform shall provide context switching between applications.

The present document includes information applicable to SIM Toolkit application developers programming in ‘C’ and an annex showing how an example STK application can be written in a platform-independent manner. It specifies a stage two description of the (U)SIM API internal to the (U)SIM.

The API for loading and deleting toolkit application is specified in GSM 03.48 [4] and is not part of the (U)SIM API 02.19 [5]. Therefore, C-bindings for loading and deleting Toolkit application are not included in this document.

2. References

References may be made to:

a)
specific versions of publications (identified by date of publication, edition number, version number, etc.), in which case, subsequent revisions to the referenced document do not apply; or

b)
all versions up to and including the identified version (identified by "up to and including" before the version identity); or

c)
all versions subsequent to and including the identified version (identified by "onwards" following the version identity); or

d)
publications without mention of a specific version, in which case the latest version applies.

A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same number.

2.1. Normative references

[1]
GSM 01.04 “Digital cellular telecommunications system (Phase 2+); Abbreviations and acronyms”.

[2]
3GPP TS 11.11 V8.4.0: “3rd Generation Partnership Project; Technical Specification Group Terminals Specification of the Subscriber Identity Module – Mobile Equipment (SIM-ME) interface (Release 1999)”.

[3]
3GPP TS 11.14 V8.5.0: “3rd Generation Partnership Project; Specification of the SIM Application Toolkit for the Subscriber Identity Module – Mobile Equipment (SIM-ME) interface (Release 1999)”.

[4]
3GPP TS 03.48 V8.4.0: “3rd Generation Partnership Project; Technical Specification Group Terminals; Security Mechanisms for the SIM application toolkit; Stage 2 (Release 1999)”.

[5]
ETSI TS 02.19 V7.1.0: “Digitial cellular telecommunications system (Phase 2+); Subscriber Identity Module Application Programming Interface (SIM API); Service description; Stage 1 (Release 1998)”.

[6]
ISO 639 (1988): “Code for the representation of names of languages”.

[7]
GSM 03.38: “Digital cellular telecommunications system (Phase 2+); Alphabets and language-specific information”.

3. Definitions and abbreviations

3.1. Definitions

For the purposes of the present document, the following definitions apply:

Application: A smart card application.

Framework : A framework defines a set of Application Programming Interface (API) functions for developing applications and for providing system services to those applications.

GSM application: Functionality conforming to GSM 11.11[2] and GSM 11.14[3]. This may be an application executing through a virtual machine, or it may be implemented in native code if the underlying technology requires.

Toolkit Application: An application which uses the API [5] for which the ‘C’-language binding is described within this document and which only runs under the control of the GSM Application.

3.2. Abbreviations

For the purpose of the present document, the following abbreviations apply, in addition to those listed in GSM 01.04[1]:

APDU
Application Protocol Data Unit

API
Application Programming Interface

DCS
Digital Cellular System

DF
Dedicated File

DTMF
Dual Tone Multiple Frequency

EF
Elementary File

FFS
For Further Study

FID
File Identifier

GSM
Global System for Mobile communications

ME
Mobile Equipment

OTA
Over The Air

SIM
Subscriber Identity Module

SMS
Short Message Service

STK
SIM ToolKit

TBD
To be determined

TLV
Tag, Length, Value

TPDU
Transport Protocol Data Unit

URL
Uniform Resource Locator

USIM
Universal SIM

USSD
Unstructured Supplementary Services Data

4. Description

The GSM Application consists of the following:

-
GSM 11.11[3] APDU handlers for communicating with the mobile equipment,

-
GSM 11.11[3] File system and file access control,

-
SIM Toolkit Framework which provides services to Toolkit applications.

This document describes the ‘C’ language bindings for the API [5] between the GSM Application and Toolkit Applications. This API allows application ‘C’ programmers to access functions and data described in GSM 11.11[2] and GSM 11.14[3], such that SIM based services can be developed and loaded onto SIMs. If required and supported by the underlying smart card technology, Toolkit Applications can be loaded or deleted remotely, after the card has been issued.

From the STK application programmer’s point of view, this API [5] is an extension to any existing platform API available.

4.1. Overview

The ‘C’-binding for (U)SIM API shall provide function calls for GSM 11.14 [3] (pro-active functions) and GSM 11.11 [2] (transport functions). The figure below shows the interactions between a typical Toolkit application (shown in blue) and the various functional blocks (shown in orange) of the SIM [3]. The C-bindings for these APIs are presented in section 4.2.

[image: image1.wmf]Registered

event

or install

Update

Information

Request

Toolkit

application

Proactive

command

handler

Proactive

response

handler

APDU

handler

Toolkit

application

triggering

Load/delete Toolkit

Application 03.48

New Toolkit

application

Registry handler

GSM

file

access

Mobile

Equipment

APDU

Toolkit

event

Terminal response

Envelope response

handler

Terminal

response data

Proactive command

91

xx

Proactive command

Fetch command

Response data

Registry

File access

Request

File data

GSM File system

File data

Allowed Access/

Command

Toolkit application

information

Create new Toolkit

application from SMS-PP

4.2. Design Rationale and Upward Compatibility

This C SIM API is intended to be general enough for many purposes. Some functions that implement proactive commands take parameters that correspond to optional TLVs in GSM 11.14. If the actual parameter value passed to the function is NULL, the corresponding TLV is not passed to the mobile equipment; an example of an optional parameter is SimIconIdentifier that corresponds to the ICON IDENTIFIER TLV.

Some proactive commands have a very large number of optional TLVs, such as SETUP CALL. Therefore, this API offers two variants that address this aspect, SimSetupCall and SimSetupCallEx. The first function, SimSetupCall, takes as parameters everything that is necessary to issue a successful SETUP CALL proactive command (i.e. everything required to construct the mandatory TLVs as required by GSM 11.14) and also includes optional user interface TLVs (title and icon) for ease of use.

The second function, SimSetupCallEx, takes a parameter block that can be extended in future versions of this standard. The parameter block contains members that correspond to all mandatory and optional TLVs for the SETUP CALL proactive command.

The reason for introducing the “…Ex” variants are threefold:

· Rather than extend the parameter list of a function to take a large number of optional parameters for each call, it is sometimes preferable to set up the parameters using named structure members before issuing the call to the function.

· If a future version of GSM 11.14 extends the optional parameters for a proactive command, the corresponding parameter block can be extended to encompass these parameters without changing the function prototype.

· Any source code written for an older version of this C SIM API can be recompiled with a later version without change and will remain upwardly compatible at the source as long as the suggested coding standards are adhered to. No claim is made as to binary compatibility between implementations or different releases of this standard.

5. ‘C’-language binding for (U)SIM API
5.1. Overview

This section presents the ‘C’-language binding to (U)SIM API. It is divided into sections as follows:

· Toolkit application entry and exit

· Man-Machine Interface

· Network services

· Timers

· Supplementary card reader

· GSM file store access

· Registry

· Miscellaneous

· Low-level functions

· Supporting data types

For each function, the prototype is given followed by a table describing the parameters and whether they are input [in] or output [out] parameters. There is explanatory text which explains the function’s purpose and whether it is a proactive command or not.

The function names begin with “Sim” in order to avoid clashing with other function names perhaps being used within STK application.
Toolkit Version

The version of the API that is implemented by a SIM is defined by the preprocessor symbol “SIM_TOOLKIT_VERSION”. This preprocessor symbol can be used by toolkit applications to conditionally compile applets that add or remove functionality depending upon the toolkit version they are compiled for.

5.2. Toolkit Application Functions

Toolkit applications will start by executing the application-defined function main. There are no arguments to main, nor are there any return results. The application can find out why it was invoked using the SimGetFrameworkEvent function. The Framework events that can cause an application to be invoked can be split into the following groups

· Command monitoring

· ME monitor events

· Applet lifecycle change

· Framework fabricated events

Command monitoring enables applets to be invoked when the framework receives commands from the ME. Currently supported commands that can be monitored are

· TERMINAL PROFILE – monitoring this command enables an applet to be invoked when the ME is powered on.

· STATUS – monitoring this command enables an applet to be invoked when the ME polls for proactive commands.

· ENVELOPE – monitoring this command enables the applet to be informed of specific envelope type arrival for example call control envelopes can be monitored.

ME monitor events are events that the framework can ask the ME to monitor; for example an event can be sent on call connection. ME monitored events are delivered to the application in the EVENT DOWNLOAD envelope as received from the ME.

The applet lifecycle event enables the framework to invoke an applet when the applet status has changed. This is mainly to enable an applet to be run at installation time so that it can set up its registry entries. The precise details of the applet lifecycle event are not defined in this document.

Framework fabricated events enable the framework to invoke an applet when some state in the SIM has changed. An example of this is to invoke an applet when the EFsms file has been updated. The set of framework fabricated events are not defined in this document.

5.2.1. main

void
main (void);

The main function is the application entry point. The application should not return from main; it must call the SimExit function.

An example main function is given below

 void main(void)
 {
 switch (SimGetFrameworkEvent())
 {
 case EVENT_APPLET_LIFECYCLE_INSTALL:
 // set up registry for this applet
 SimSetMenuString(…..
 SimNotifyOnEnvelope(SMS_PP_DOWNLOAD_TAG,1);
 SimNotifyOnEvent(CARD_READER_STATUS,1);
 break;
 case EVENT_ENVELOPE_COMMAND:
 {
 BYTE length;
 switch (SimOpenEnvelope(&length))
 {
 case MENU_SELECTION_TAG:
 // search for help request …..
 break;
 case SMS_PP_DOWNLOAD_TAG:
 …..
 break;
 case EVENT_DOWNLOAD_TAG:
 // search for card reader status event …..
 break;
 default:
 SimExit(SIM_EXIT_FAILURE);
 }
 }
 break;
 default:
 SimExit(SIM_EXIT_FAILURE);
 break;
 }
 SimExit(SIM_EXIT_SUCCESS);
 }

5.2.2. SimGetFrameworkEvent

SimFrameworkEventType
SimGetFrameworkEvent(void);

RETURN

Framework event type that caused the application to run; see SimFrameworkEventType for details.

SimGetFrameworkEvent returns the framework event that caused the application to run.

5.2.3. SimExit

void
SimExit (UINT16 code);

Code
[in]
The implementation defined macros SIM_EXIT_SUCCESS or SIM_EXIT_FAILURE should be used to indicate success or failure.

SimExit causes the application to terminate execution and return control to the framework. When the application is restarted, it enters at main.

5.3. Registry

The menu entry(ies) of the application, together with the set of framework events that the application is interested in, may be registered using the functions defined in this section.

5.3.1. SimSetMenuString

void
SimSetMenuString (BYTE MenuID,
 BYTE MenuStringLength, const void *MenuString,
 const SimIconIdentifier *IconIdentifier,
 BYTE HelpAvailable,
 BYTE NextAction);

MenuID
[in]
The menu ID by which this entry is known.

MenuStringLength
[in]
The length, in bytes, of MenuString.

MenuString
[in]
The menu entry to be placed in the registry. If MenuString is NULL or MenuStringLength is zero, any existing menu entry associated with MenuID is removed and is not displayed by the ME.

IconIdentifier
[in]
Optional icon identifier; see SimIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

HelpAvailable
[in]
If non zero the application can supply help.

NextAction
[in]
The (optional) next action value

SimSetMenuString allows the application to define a menu entry together with an icon. A non-zero value can be supplied if a next action indicator is required. This function will implicitly request that the applet be notified of menu selection envelopes i.e. there is no requirement to call the SimNotifiyOnEnvelope function. An application can have several menu entries and must examine the menu selection envelope to decide which menu selection caused it to be invoked.

The ordering of menu entries within a menu presented by the ME is based on increasing integer values of identifiers selected by the application. Note that any applet’s menu item ordering may be further overridden by an external source, e.g. card issuer, via a request to the SIM Toolkit framework—this mechanism is beyond the scope of this document.

5.3.2. SimNotifyOnFrameworkEvent

void
SimNotifyOnFrameworkEvent(SimFrameworkEventType Event, BYTE Enabled);

Event
[in]
A framework event the application is interested in, see SimFrameworkEventType for details.

Enabled
[in]
If non-zero the framework event is monitored otherwise the framework event isn’t monitored. By default only applet lifecycle events are monitored.

SimNotifyOnFrameworkEvent enables the application to add/remove a framework event to/from the set of framework events that it is interested in.

5.3.3. SimNotifyOnEnvelope

void
SimNotifyOnEnvelope(SimEnvelopeTagType Tag, BYTE Enabled);

Tag
[in]
The particular envelope type to monitor; see SimEnvelopeTagType for details.

Enabled
[in]
If non-zero the envelope type is monitored otherwise the envelope type isn’t monitored.

SimNotifyOnEnvelope enables the application to add/remove an envelope monitoring event to/from the set of the envelope monitoring events it is interested in. Note that the monitoring of MENU SELECTION, TIMER EXPIRATION and EVENT DOWNLOAD envelopes is handled by the framework.

5.3.4. SimNotifyOnEvent

void
SimNotifyOnEnvelope(SimEventType EventType, BYTE Enabled);

EventType
[in]
The particular event type to monitor; see SimEventType for details.

Enabled
[in]
If non-zero the event type is monitored otherwise the event isn’t monitored.

SimNotifyOnEvent enables the application to add/remove an ME monitored event to/from the set of ME monitored events it is interested in.

5.4. Man-Machine Interface

5.4.1. SimAddItem

void
SimAddItem(BYTE ItemTextLength, const void *ItemText, BYTE ItemIdentifier);

PRIVATE
ItemTextLength
[in]
The length in bytes of ItemText.

ItemText
[in]
Text associated with item.

ItemIdentifier
[in]
Specifies a unique identifier to be associated with this selection. This value is returned in the SelectedItem parameter of SimSelectItem if this item is selected from the menu.

SimAddItem adds an item to a list for the user to select. It is not a proactive command.

To display a list of items for the user to choose from, at least three calls that must be issued with no intervening global services for mobile commmunications (GSM) proactive commands in between them. This application programming interface (API) call is the second call. SimAdditem must be called after SimSelectItem and before SimEndSelectItem. SimAddItem may be called multiple times consecutively add items to a selection list.

5.4.2. SimSelectItem

void
SimSelectItem (BYTE TitleLength, const void *Title,
 SimSelectItemOptions Options);

TitlePRIVATE
Length
[in]
The length in bytes of Title.

Title
[in]
Title of the list of choices.

Options
[in]
Acceptable values for this parameter are listed in SimSelectItemOptions.

SimSelectItem displays a list of items on the mobile equipment for the user to choose from. Even though this function, by name, maps to a GSM proactive command, this API does not itself issue a proactive command. SimEndSelectItem must be called for an actual proactive command to be issued.

To display a list of items for the user to choose from, at least three calls must be issued with no intervening GSM proactive commands between them. This API call is the first. The other two APIs required are SimAddItem and SimEndSelectItem.

5.4.3. SimEndSelectItem

SimGeneralResult
SimEndSelectItem (BYTE *SelectedItem,
 const SimIconIdentifier *IconIdentifier);

PRIVATE
SelectedItem
[out]
Index of item selected by user.

IconIdentifier
[in]
Optional icon identifier; see SimIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

RETURN

The GeneralResult code of the SELECT ITEM proactive command.

SimEndSelectItem issues the proactive command SELECT ITEM that displays on the mobile equipment a list of items for the user to choose from. The terminal response is parsed and if successful the SelectedItem parameter is updated.

To display a list of items for the user to choose from, at least three calls must be issued with no intervening global services for mobile communications (GSM) proactive commands in between them. This function call is the last. The other two APIs required are SimSelectItem and SimAddItem.

5.4.4. SimDisplayText

SimGeneralResult
SimDisplayText (SimDCSValue TextDCS, BYTE TextLength, const void *Text,
 SimDisplayTextOptions Options,
 const SimIconIdentifier *IconIdentifier,
 BYTE ImmediateResponse);

PRIVATE
TextDCS
[in]
The data coding scheme for Text. Acceptable values for this parameter are listed in SimDCSValue.

TextLength
[in]
The length in bytes of Text.

Text
[in]
String to display on ME.

Options
[in]
Acceptable values for this parameter are listed in SimDisplayTextOptions.

IconIdentifier
[in]
Optional icon identifier; see SimIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

ImmediateResponse
[in]
True—program continues execution as soon as ME receives instruction.
False—program waits until text is cleared on the mobile equipment before continuing, and the Immediate Response TLV is not passed to the mobile equipment.

RETURN

The GeneralResult code of the DISPLAY TEXT proactive command.

SimDisplayText issues a proactive command that displays text on the display of the mobile equipment.

5.4.5. SimGetInKey

SimGeneralResult
SimGetInKey (SimDCSValue TitleDCS, BYTE TitleLength, const void *Title,
 SimGetInKeyOptions Options,
 const SimIconIdentifier *IconIdentifier,
 SimDCSValue *DCSOut, void *KeyOut);

PRIVATE
TitleDCS
[in]
The data coding scheme for Title. Acceptable values for this parameter are listed in SimDCSValue

.

TitleLength
[in]
The length in bytes of Title.

Title
[in]
String to display on ME.

Options
[in]
Acceptable values for this parameter are listed in SimGetInKeyOptions.

IconIdentifier
[in]
Optional icon identifier; see SimIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

DcsOut
[out]
The packing type of the returned key. This parameter is set to one of the values listed in SimDCSValue

.

KeyOut
[out]
The key pressed.

RETURN

The GeneralResult code of the GET INKEY proactive command.

SimGetInKey issues the proactive command GET INKEY. The terminal response is parsed and if successful the DCSOut and KeyOut parameters are updated

5.4.6. SimGetInput

SimGeneralResult
SimGetInput(SimDCSValue TitleDCS, BYTE TitleLength, const void *Title,
 SimGetInputOptions Options,
 SimDCSValue DefaultReplyDCS,
 BYTE DefaultReplyLength, const void *DefaultReply,
 BYTE MinimumResponseLength,
 BYTE MaximumResponseLength,
 const SimIconIdentifier *IconIdentifier,
 SimDCSValue *MsgOutDCS, BYTE *MsgOutLength, void *MsgOut);

PRIVATE
TitleDCS
[in]
The data-coding scheme for Title. Acceptable values for this parameter are listed in SimDCSValue

.

TitleLength
[in]
The length in bytes of Title.

Title
[in]
String to display on ME while waiting for the user to press a key.

Options
[in]
Acceptable values for this parameter are listed in SimGetInputOptions.

DefaultReplyDCS
[in]
The data coding scheme for DefaultReply. Acceptable values for this parameter are listed in SimDCSValue

.

DefaultReplyLength
[in]
The length in bytes of DefaultReply.

DefaultReply
[in]
Default response string; use NULL for "no reply"—no Default Reply tag length value (TLV) is sent to the ME.

MinimumResponseLength
[in]
Minimum allowed length for the response, in either characters or digits.

MaximumResponseLength
[in]
Maximum allowed length for the response, in either characters or digits.

IconIdentifier
[in]
Optional icon identifier; see SimIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

MsgOutDCS
[out]
Packing type of the returned data. This parameter is set to one of the values listed in SimDCSValue

.

MsgOutLength
[out]
Length of the returned message in bytes.

MsgOut
[out]
A pointer to where the returned string or message is placed.

RETURN

The GeneralResult code of the GET INPUT proactive command.

SimGetInput issues the proactive command GET INPUT. The terminal response is parsed and if successful MsgOutDCS, MsgOutLength, MsgOut parameters are updated.

5.4.7. SimSetupIdleModeText

SimGeneralResult
SimSetupIdleModeText (SimDCSValue TextDCS, BYTE TextLength, const void *Text,
 const SimIconIdentifier *IconIdentifier);

PRIVATE
TextDCS
[in]
The data-coding scheme for Text. Acceptable values for this parameter are listed in SimDCSValue

.

TextLength
[in]
The length in bytes of Text.

Text
[in]
String to display while mobile equipment is idle.

IconIdentifier
[in]
Optional icon identifier; see SimIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

RETURN

The GeneralResult code of the SETUP IDLE MODE TEXT proactive command.

SimSetupIdleModeText issues the proactive command SET UP IDLE MODE TEXT that sets the mobile equipment's default text string.

5.4.8. SimPlayTone

SimGeneralResult
SimPlayTone (BYTE TextLength, const void *Text,
 SimTone Tone,
 SimTimeUnit Units, BYTE Duration,
 const SimIconIdentifier *IconIdentifier);

PRIVATE
TextLength
[in]
The length in bytes of the string Text to display on the ME.

Text
[in]
String to display on ME while sound is being played.

Tone
[in]
Specifies tone to play. Acceptable values for this parameter are listed in SimTone.

Units
[in]
Unit of time specified for duration parameter. Acceptable values for this parameter are listed in SimTimeUnit.

Duration
[in]
Amount of time to play the tone, in units specified in the Units parameter

IconIdentifier
[in]
Optional icon identifier; see SimIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

RETURN

The GeneralResult code of the PLAY TONE proactive command.

SimPlayTone issues the proactive command PLAY TONE.

5.5. Network Services

5.5.1. SimGetLocationInformation

SimGeneralResult
SimGetLocationInformation (SimLocationInformation *LocationInformation);

LocationInformation
[out]
A pointer to where the location information from the mobile equipment is placed. Refer to the SimLocalInformation section for member details.

RETURN

The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

The GeneralResult code of the DISPLAY TEXT proactive command.

SimProvideLocationInformation requests the mobile equipment to send location information to the SIM using the PROVIDE LOCAL INFORMATION proactive command.

5.5.2. SimGetTimingAdvance

SimGeneralResult
SimGetTimingAdvance (SimTimingAdvance *TimingAdvance);

TimingAdvance
[out]
A pointer to where the timing advance information from the mobile equipment is placed. Refer to the SimTimingAdvance section for member details.

RETURN

The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

SimProvideTimingAdvance requests the mobile equipment to send timing advance information to the SIM using the PROVIDE LOCAL INFORMATION proactive command.

5.5.3. SimGetIMEI

SimGeneralResult
SimGetIMEI (BYTE IMEI[8]);

IMEI
[out]
A pointer to where the IMEI of the mobile equipment is placed.

RETURN

The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

SimGetIMEI requests the mobile equipment to send the IMEI to the SIM using the PROVIDE LOCAL INFORMATION proactive command.

5.5.4. SimGetNetworkMeasurementResults

SimGeneralResult
SimGetNetworkMeasurementResults (BYTE MeasurementResults[10]);

MeasurementResults
[out]
A pointer to where the network measurement results from the mobile equipment is placed.

RETURN

The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

SimGetNetworkMeasurementResults requests the mobile equipment to send the network measurement results to the SIM using the PROVIDE LOCAL INFORMATION proactive command.

5.5.5. SimGetDateTimeAndTimeZone

SimGeneralResult
SimGetDateTimeAndTimeZone (BYTE DateTimeAndTimeZone[7]);

DateTimeAndTimeZone
[out]
A pointer to where the date, time, and time zone from the mobile equipment is placed.

RETURN

The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

SimGetDateTimeAndTimeZones requests the mobile equipment to send the date, time, and time zone information to the SIM using the PROVIDE LOCAL INFORMATION proactive command.

5.5.6. SimGetLanguage

SimGeneralResult
SimGetLanguage (BYTE Language[2]);

DateTimeAndTimeZone
[out]
A pointer to where the language from the mobile equipment is placed.

RETURN

The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

SimGetLanguage requests the mobile equipment to send the language information to the SIM using the PROVIDE LOCAL INFORMATION proactive command.

5.5.7. SimSetupCall

SimGeneralResult
SimSetupCall (BYTE CallSetupMessageLength, const void *CallSetupMessage,
 SimTypeOfNumberAndNumberingPlanIdentifier TONandNPI,
 BYTE DiallingNumberLength, const void *DiallingNumber,
 SimSetupCallOptions Options,
 const SimIconIdentifier *UserConfirmationIconIdentifier,
 BYTE CallSetupMessageLength, const void *CallSetupMessage,
 const SimIconIdentifier *CallSeupIconIdentifier);
PRIVATE
UserConfirmationMessageLength
[in]
Length in bytes of UserConfirmationMessage.

UserConfirmationMessage
[in]
Message to display for user confirmation or NULL.

TONandNPI
[in]
Acceptable values for this parameter are listed in SimTypeOfNumberAndNumberingPlanIdentifier.

DiallingNumberLength
[in]
Length in bytes of DiallingNumber.

DialingNumber
[in]
Number to call is coded as binary-coded decimal.

Options
[in]
Acceptable values for this parameter are listed in SimSetupCallOptions.

UserConfirmationIconIdentifier
[in]
Optional icon identifier to use during the user confirmation phase; see SimIconIdentifier for member details. If UserConfirmationIconIdentifier is NULL or if UserConfirmationIconIdentifier.UseIcon is zero, no user confirmation phase icon identifier is sent to the ME.

PRIVATE
CallSetupMessageLength
[in]
Length in bytes of CallSetupMessage.

CallSetupMessage
[in]
Message to display for call set up or NULL.

CallSetupIconIdentifier
[in]
Optional icon identifier to use during the call setup phase; see SimIconIdentifier for member details. If CallSetupIconIdentifier is NULL or if CallSetupIconIdentifier.UseIcon is zero, no call setup phase icon identifier is sent to the ME.

RETURN

The GeneralResult code of the SET UP CALL proactive command.

SimSetupCall and SimSetupCallEx issue the SET UP CALL proactive command to the ME.

SimGeneralResult
SimSetupCallEx (const SimSetupCallExParams *Params);

The type SimSetupCallExParams is defined as follows:

typedef struct
{
 // Mandatory fields
 SimSetupCallOptions Options;
 SimTypeOfNumberAndNumberingPlanIdentifier TONandNPI;
 BYTE DiallingNumberLength;
 const void *DialingNumber;

 // Optional fields
 SimAlphaString UserConfirmationMessage;
 BYTE CapabilityConfigParamsLength;
 const void *CapabilityConfigParams;
 BYTE CalledPartySubaddressLength;
 const void *CalledPartySubaddress;
 SimTimeInterval RedialMaximumDuration;
 SimIconOption UserConfirmationIcon;
 SimAlphaString CallSetupMessage;
 SimIconOptions CallSetupIcon;
} SimSetupCallExParams;

with the following members:

Options
Acceptable values for this parameter are listed in SimSetupCallOptions.

TONandNPI
Acceptable values for this parameter are listed in SimTypeOfNumberAndNumberingPlanIdentifier.

DiallingNumberLength
Length in bytes of DiallingNumber.

DialingNumber
Number to call is coded as binary-coded decimal.

UserConfirmationPRIVATE
Message
String to display during the user confirmation phase; see SimAlphaString. If this parameter is null, no user confirmation message TLV is passed to the ME.

CapabilityConfigParamsLength
Length in bytes of CapabilityConfigParams.

CapabilityConfigParams
A pointer to the capability configuration parameters as coded for EFCCP.

CalledPartySubaddressLength
Length in bytes of CalledPartySubaddress.

CalledPartySubaddress
The called party subaddress.

RedialMaximumDuration
An optional maximum duration for the redial mechanism. If the timeInterval member of this structure is zero, no duration TLV is sent to the ME.

UserConfirmationIcon
The icon to display during the user confirmation phase. If the UseIcon member of this structure is zero, no user confirmation icon TLV is sent to the ME.

CallSetupPRIVATE
Message
String to display during the call set up phase; see SimAlphaString.

CallSetupIcon
The icon to display during the call setup phase.

Optional parameters are specifically chosen to use an all-zero binary representation. This means that it is simple to set up only the required members of the SetupCallExParams structure by zeroing the whole structure using memset, filling in the required members, and sending the result to SimSetupCallEx. As all optional parameters use a zero binary representation, the memset serves to initialise them all to the “not present” status.

5.5.8. SimSendShortMessage

SimGeneralResult
SimSendShortMessage (BYTE TitleLength, const void *Title,
 SimTypeOfNumberAndNumberingPlanIdentifier TONandNPI,
 BYTE AddressLength, const void *Address,
 BYTE SmsTPDULength, const void *SmsTPDU,
 SimSendShortMessageOptions Options,
 const SimIconIdentifier *IconIdentifier);

PRIVATE
TitleLength
[in]
Length in bytes of Title.

Title
[in]
String to display while mobile equipment is sending a message.

TONandNPI
[in]
Acceptable values for this parameter are listed in SimTypeOfNumberAndNumberingPlanIdentifier

.

AddressLength
[in]
Length in bytes of Address.

Address
[in]
Address of the service center where message is being sent.

SmsTPDULength
[in]
Length in bytes of SmsTPDU.

SmTPDU
[in]
Formatted short message service (SMS) message to send.

Options
[in]
Specifies who packs the message. Acceptable values for this parameter are listed in SimSendShortMessageOptions.

IconIdentifier
[in]
Optional icon identifier; see SimIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

RETURN

The GeneralResult code of the SEND SHORT MESSAGE proactive command.

SimSendShortMessage issues the SEND SHORT MESSAGE proactive.

5.5.9. SimSendSS

SimGeneralResult
SimSendSS (BYTE TitleLength, const void *Title,
 SimTypeOfNumberAndNumberingPlanIdentifier TONandNPI,
 BYTE SSStringLength, const void *SSString,
 const SimIconIdentifier *IconIdentifier);

PRIVATE
TitleLength
[in]
Length in bytes of Title.

Title
[in]
String to display while mobile equipment is sending a message.

TONandNPI
[in]
Acceptable values for this parameter are listed SimTypeOfNumberAndNumberingPlanIdentifier

.

SSStringLength
[in]
Length in bytes of SSString.

SSString
[in]
SS string to mobile equipment.

IconIdentifier
[in]
Optional icon identifier; see SimIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

RETURN

The GeneralResult code of the SEND SS proactive command.

SimSendSS issues the SEND SS proactive command to the mobile equipment.

5.5.10. SimSendUSSD

SimGeneralResult
SimSendUSSD (BYTE TitleLength, const void *Title,
 SimDCSValue MessageDCS, BYTE MessageLength, const void *Message,
 SimDCSValue *MsgOutDCS, BYTE *MsgOutLength, void *MsgOut,
 const SimIconIdentifier *IconIdentifier);

PRIVATE
TitleLength
[in]
The length in bytes of Title.

Title
[in]
String to display while mobile equipment is sending a message.

MessageDCS
[in]
The data-coding scheme for Message. Acceptable values for this parameter are listed in SimDCSValue

.

MessageLength
[in]
The length in bytes of Message.

Message
[in]
Message to send.

MsgOutDCS
[out]
Identifies type of DCS for the returned message.

MsgOutLength
[out]
Length of the returned message in bytes.

MsgOut
[out]
Returned string or message.

IconIdentifier
[in]
Optional icon identifier; see SimIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

RETURN

The GeneralResult code of the SEND USSD proactive command.

SimSendUSSD issues the SEND USSD proactive command. The terminal response is parsed and if successful the MsgOutDCS, MsgOutLength and MsgOut parameters are updated.

5.5.11. SimOpenCSChannel

SimGeneralResult
SimOpenCSChannel(SimOpenChannelOptions Options,
 BYTE UserConfirmationLength, const void *UserConfirmation,
 const SimIconIdentifier *UserConfimationIconIdentifier,
 SimTypeOfNumberAndNumberingPlanIdentifier TONandNPI,
 BYTE DiallingNumberLength, const void *DiallingNumber,
 BYTE BearerDescription[3],
 UINT16 *BufferSize,
 SimDevice *ChannelIdentifier);

Options
[in]
Acceptable values for this parameter are listed in SimOpenChannelOptions.

PRIVATE
UserConfirmationLength
[in]
Length in bytes of UserConfirmation.

UserConfirmation
[in]
String to display when ME alerts user that channel is to be opened.

UserConfirmationIconIdentifier
[in]
Optional icon identifier to use during the user confirmation phase; see SimIconIdentifier for member details. If UserConfirmationIconIdentifier is NULL or if UserConfirmationIconIdentifier.UseIcon is zero, no user confirmation phase icon identifier is sent to the ME.

TONandNPI
[in]
Acceptable values for this parameter are listed in SimTypeOfNumberAndNumberingPlanIdentifier.

DiallingNumberLength
[in]
Length in bytes of DiallingNumber.

DialingNumber
[in]
Number to call is coded as binary-coded decimal.

BearerDescription
[in/out]
Initially contains the bearer description parameters (data rate, bearer service and connection element) and is modified to the actual bearer description as allocated by the ME.

BufferSize
[in/out]
Initially contains the desired buffer size and is modified to the actual buffer size as allocated by the ME.

ChannelIdentifier
[out]
The channel identifier that has been allocated by the ME.

RETURN

The GeneralResult code of the OPEN CHANNEL proactive command.

SimGeneralResult
SimOpenCSChannelEx(const SimOpenCSChannelExParams *Params,
 SimDevice *ChannelIdentifier,
 BYTE BearerDescription[3],
 UINT16 *BufferSize);

PRIVATE
Params
[in]
Constant parameter set as defined below.

ChannelIdentifier
[out]
The channel identifier that has been allocated by the ME.

BearerDescription
[out]
An array to which the actual bearer description allocated by the ME will be written.

BufferSize
[out]
The actual buffer size allocated by the ME.

RETURN

The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

SimOpenCSChannel and SimOpenCSChannelEx issue the proactive command OPEN CHANNEL related to a CS bearer. The terminal response is parsed and if the command was successful the BearerDescription, BufferSize and ChannelIdentifier parameters are updated.

The type SimOpenCSChannelExParams is defined as follows:

typedef struct
{
 // Mandatory fields
 SimOpenChannelOptions Options;
 BYTE AddressLength;
 const BYTE *Address;
 BYTE BearerDescription[3];
 UINT16 BufferSize;

 // Optional fields
 SimAlphaString UserConfirmationMessage;
 SimIconIdentifier UserConfirmationIconIdentifier;
 BYTE SubAddressLength;
 const BYTE *SubAddress;
 BYTE Duration1Defined;
 SimTimeInterval Duration1;
 BYTE Duration2Defined;
 SimTimeInterval Duration2;
 SimAddressType LocalAddress;
 SimTextString UserLogin;
 SimTextString UserPassword;
 SimSIM_MEInterfaceTransportLevelType SIM_MEInterfaceTransportLevel;
 SimAddressType DataDestinationAddress;
} SimOpenCSChannelExParams;

With the following members:

Options
Acceptable values for this parameter are listed in SimOpenChannelOptions. This field is mandatory.

AddressLength
Length in bytes of Address. This field is mandatory.

Address
The address to call. This field is mandatory.

BearerDescription
The desired bearer parameters (data rate, bearer service and connection element). This field is mandatory.

BufferSize
The desired buffer size. This field is mandatory.

UserConfirmationPRIVATE
Message
String to display during the user confirmation phase; see SimAlphaString. If this parameter is null, no user confirmation message TLV is passed to the ME. If UserConfirmationPRIVATE
Message is not null but UserConfirmationPRIVATE
MessageLength is zero, a user confirmation message TLV is passed to the ME with the length component set to zero.

UserConfirmationIconIdentifier
The icon to display during the user confirmation phase. If the UseIcon member of this structure is zero, no user confirmation icon TLV is sent to the ME.

SubAddressLengthPRIVATE

Length in bytes of SubAddress.

SubAddress
The subaddress to call.

Duration1Defined
Set to nonzero if Duration1 is defined.

Duration1
Duration of reconnect tries; see SimTimeInterval.

Duration2Defined
Set to nonzero if Duration2 is defined.

Duration2
Duration of timeout; see SimTimeInterval.

LocalAddress
The LocalAddress; see SimAddressType.

UserLogin
The user login string.

UserPassword
The user password string.

SIM_MEInterfaceTransportLevel
See SimSIM_MEInterfaceTransportLevelType.

DataDestinationAddress
The DataDestinationAddress; see SimAddressType.

5.5.12. SimOpenGPRSChannel

SimGeneralResult
SimOpenGPRSChannel(SimOpenChannelOptions Options,
 BYTE UserConfirmationLength, const void *UserConfirmation,
 const SimIconIdentifier *UserConfirmationIconIdentifier,
 BYTE BearerDescription[8],
 UINT16 *BufferSize,
 SimDevice *ChannelIdentifier);

Options
[in]
Acceptable values for this parameter are listed in SimOpenChannelOptions.

PRIVATE
UserConfirmationLength
[in]
Length in bytes of UserConfirmation.

UserConfirmation
[in]
String to display when ME alerts user that channel is to be opened.

UserConfirmationIconIdentifier
[in]
Optional icon identifier to use during the user confirmation phase; see SimIconIdentifier for member details. If UserConfirmationIconIdentifier is NULL or if UserConfirmationIconIdentifier.UseIcon is zero, no user confirmation phase icon identifier is sent to the ME.

BearerDescription
[in/out]
Initially contains the bearer description and is modified to the actual bearer description as allocated by the ME.

BufferSize
[in/out]
Initially contains the desired buffer size and is modified to the actual buffer size as allocated by the ME.

ChannelIdentifier
[out]
The channel identifier that has been allocated by the ME.

RETURN

The GeneralResult code of the OPEN CHANNEL proactive command.

SimGeneralResult
SimOpenGPRSChannelEx(const SimOpenGPRSChannelExParams *Params,
 SimDevice *ChannelIdentifier,
 BYTE ActualBearerDescription[8],
 UINT16 *ActualBufferSize);

PRIVATE
Params
[in]
Constant parameter set as defined below.

ChannelIdentifier
[out]
The channel identifier that has been allocated by the ME.

ActualBearerDescription
[out]
An array to which the actual bearer description allocated by the ME will be written.

ActualBufferSize
[out]
The actual buffer size allocated by the ME.

RETURN

The GeneralResult code of the OPEN CHANNEL proactive command.

SimOpenGPRSChannel and SimOpenGPRSChannelEx issues the proactive command OPEN CHANNEL related to a GPRS bearer. The terminal response is parsed and if the command was successful the BearerDescription, BufferSize and ChannelIdentifier parameters are updated.

The type SimOpenGPRSChannelExParams is defined as follows:

typedef struct
{
 // Mandatory fields
 GsmOpenChannelOptions Options;
 BYTE AddressLength;
 const BYTE *Address;
 BYTE BearerDescription[8];
 UINT16 BufferSize;

 // Optional fields
 SimAlphaString UserConfirmationMessage;
 SimIconIdentifier UserConfirmationIconIdentifier;
 BYTE AccessPointNameLength;
 const BYTE *AccessPointName;
 SimAddressType LocalAddress;
 Sim_SIM_ME_InterfaceTransportLevelType SIM_ME_InterfaceTransportLevel;
 SimAddressType DataDestinationAddress;
} GsmOpenGPRSChannelExParams;

With the following members:

Options
Acceptable values for this parameter are listed in SimOpenChannelOptions. This field is mandatory.

AddressLength
Length in bytes of Address. This field is mandatory.

Address
The address to call. This field is mandatory.

BearerDescription
The desired bearer. This field is mandatory.

BufferSize
The desired buffer size. This field is mandatory.

UserConfirmationPRIVATE
Message
String to display during the user confirmation phase; see SimAlphaString. If this parameter is null, no user confirmation message TLV is passed to the ME. If UserConfirmationPRIVATE
Message is not null but UserConfirmationPRIVATE
MessageLength is zero, a user confirmation message TLV is passed to the ME with the length component set to zero.

UserConfirmationIconIdentifier
The icon to display during the user confirmation phase. If the UseIcon member of this structure is zero, no user confirmation icon TLV is sent to the ME.

AccessPointNameLength
The length in bytes of AccessPoint.

AccessPointName
The Access Point Name.

LocalAddress
See SimAddressType.

SIM_ME_InterfaceTransportLevel
See SimSIM_MEInterfaceTransportLevelType.

DataDestinationAddress
See SimAddressType.

5.5.13. SimCloseChannel

SimGeneralResult
SimCloseChannel (SimDevice ChannelIdentifier,
 BYTE TitleLength, const void *Title,
 const SimIconIdentifier *IconIdentifier);

ChannelIdentifier
[in]
The channel identifier as returned from one of the open commands

PRIVATE
TitleLength
[in]
The length in bytes of Title.

Title
[in]
String to display while mobile equipment is closing the channel.

IconIdentifier
[in]
Optional icon identifier; see SimIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

RETURN

The GeneralResult code of the CLOSE CHANNEL proactive command.

SimCloseChannel issues a CLOSE CHANNEL proactive command that closes an open channel.

5.5.14. SimReceiveData

SimGeneralResult
SimReceiveData (SimDevice ChannelIdentifier,
 BYTE TitleLength, const void *Title,
 BYTE RequestedChannelDataLength,
 const SimIconIdentifier *IconIdentifier,
 BYTE *ChannelData,
 BYTE *NumChannelBytesRead,
 BYTE *NumChannelBytesLeft);

ChannelIdentifier
[in]
The channel identifier as returned from one of the open commands

PRIVATE
TitleLength
[in]
The length in bytes of Title.

Title
[in]
String to display while mobile equipment is receiving data.

RequestedChannelDataLength
[in]
The number of bytes requested to be read.

IconIdentifier
[in]
Optional icon identifier; see SimIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

ChannelData
[out]
Received channel data.

NumChannelBytesRead
[out]
The number of bytes received as channel data.

NumChannelBytesLeft
[out]
The number of bytes remaining to be read from the channel buffer, or 255 if there are more than 255 bytes left to be read.

RETURN

The GeneralResult code of the RECEIVE DATA proactive command.

SimReceiveData issues a RECEIVE DATA proactive command that receives data from an open channel. The terminal response is parsed and if the command is successful the received data is copied into the ChannelData array and the NumChannelBytesRead and NumChannelBytesLeft parameters are updated.

5.5.15. SimSendData

SimGeneralResult
SimSendData (SimDevice ChannelIdentifier,
 SimSendDataOptions Options,
 BYTE TitleLength, const void *Title,
 BYTE ChannelDataLength
 const void *ChannelData,
 const SimIconIdentifier *IconIdentifier,
 BYTE *ActualBytesSent);

ChannelIdentifier
[in]
The channel identifier as returned from one of the open commands

PRIVATE
TitleLength
[in]
The length in bytes of Title.

Title
[in]
String to display while mobile equipment is receiving data.

Options
[in]
Specifies who packs the message. Acceptable values for this parameter are listed in SimSendDataOptions.

ChannelDataLength
[in]
The number of bytes to be sent from ChannelData.

ChannelData
[in]
The data to be sent.

IconIdentifier
[in]
Optional icon identifier; see SimIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

ActualBytesSent
[out]
The number of bytes sent (derived from the CHANNEL DATA LENGTH TLV in the TERMINAL RESPONSE).

RETURN

The GeneralResult code of the SEND DATA proactive command.

SimSendData issues the proactive command SEND DATA that sends data to an open channel.

5.5.16. SimGetChannelStatus

SimGeneralResult
SimGetChannelStatus (SimDevice ChannelIdentifier, void *ChannelStatus);

ChannelIdentifier
[in]
The channel identifier.

PRIVATE
ChannelStatus
[out]
Returned channel status bytes.

RETURN

The GeneralResult code of the GET CHANNEL STATUS proactive command.

SimGetChannelStatus issues a proactive command GET CHANNEL STATUS. The terminal response is parsed if the command is successful to find the status of the supplied channel.

5.6. Timers

5.6.1. SimGetTimer

BYTE
SimGetTimer (void);

RETURN

The identifier of the timer.

SimGetTimer returns the ID of an available timer. If no timer is available, this function returns zero. Timer identifiers are apportioned by the framework.

5.6.2. SimFreeTimer

void
SimFreeTimer (BYTE TimerID);

PRIVATE
TimerID
[in]
ID of timer to free; obtained from SimGetTimer.

SimFreeTimer frees the handle to the specified timer, making it available for the next request. It is not a proactive command. No information is passed to the mobile equipment by this function.

The value returned is zero if the TimerID is valid and is freed, otherwise a non-zero value is received.

5.6.3. SimStartTimer

void
SimStartTimer (BYTE TimerID, SimTimerValue *TimerValue);

PRIVATE
TimerID
[in]
ID of the timer to initialize; obtained from SimGetTimer.

TimerValue
[in]
Initial value of the timer. The value is specified in a structure of type SimTimerValue.

SimStartTimer issues a proactive TIMER MANAGEMENT command to initializ a timer to the parameter values.

5.6.4. SimGetTimerValue

void
SimGetTimerValue (BYTE TimerID, SimTimerValue *TimerValue);

PRIVATE
TimerID
[in]
ID of the timer from which to obtain values; obtained from SimGetTimer

TimerValue
[out]
The time remaining to run of timer TimerID. The value is returned in a structure of type SimTimerValue.

SimGetTimerValue issues a proactive TIMER MANAGEMENT command to obtain the timer's current value.

5.7. Supplementary Card Reader Management

5.7.1. SimPowerOnCard

SimGeneralResult
SimPowerOnCard (SimDevice DeviceID, void *ATR, BYTE *ATRLength);

PRIVATE
DeviceID
[in]
The device to power on. An acceptable value for this parameter is a card reader device selected from SimDevice.

ATR
[out]
Pointer to where answer to reset (ATR) will be stored.

ATRLength
[out]
Number of bytes returned by the card as the ATR.

RETURN

The GeneralResult code of the POWER ON CARD proactive command.

SimPowerOnCard issues the proactive command POWER ON CARD that powers on a supplementary card reader. The terminal response is parsed and if successful the ATR and ATRLength parameters are.

5.7.2. SimPowerOffCard

SimGeneralResult
SimPowerOffCard (SimDevice DeviceID);

PRIVATE
DeviceID
[in]
The device to power off. An acceptable value for this parameter is a card reader device selected from SimDevice.

RETURN

The GeneralResult code of the POWER OFF CARD proactive command.

SimPowerOffCard issues the proactive command POWER OFF CARD that turns off the supplementary card reader.

5.7.3. SimPerformCardAPDU

SimGeneralResult
SimPerformCardAPDU (SimDevice DeviceID,
 const void *CAPDU, BYTE CAPDULength,
 void *RAPDU, BYTE *RAPDULength);

PRIVATE
DeviceID
[in]
The device to send the command APDU (C-APDU) to. An acceptable value for this parameter is a card reader device selected from SimDevice.

CAPDU
[in]
Pointer to the command C-APDU to be sent to the additional card device.

CAPDULength
[in]
The number of bytes in the C-APDU.

RAPDU
[out]
Pointer to the buffer that will contain the response APDU (R-APDU) returned by the card in the additional card reader. You must allocate enough space to hold the R-APDU sent by the card.

RAPDULength
[out]
The number of bytes returned by the card in the additional card reader.

RETURN

The GeneralResult code of the PERFORM CARD APDU proactive command.

SimPerformCardAPDU issues the proactive command PERFORM CARD APDU that sends application program data units (APDU) to the supplementary card reader. The terminal response is parsed and if successful the RAPDU and RAPDULength parameters are updated.

5.7.4. SimGetReaderStatus

SimGeneralResult
SimGetReaderStatus (SimDevice DeviceID, SimReaderStatusOptions Options,
 BYTE *Status);

PRIVATE
DeviceID
[in]
Device to detect status of. An acceptable value for this parameter is a card reader device selected from SimDevice.

Options
[in]
Selects what type of status information to return. An acceptable value for this parameter is selected from SimGetReaderStatusOptions.

Status
[out]
Status of additional card reader.

RETURN

The GeneralResult code of the GET READER STATUS proactive command.

SimGetReaderStatus issues the proactive command GET READER STATUS that retrieves the status of the additional card readers on the mobile equipment. The terminal response is parsed and if successful the Status parameter is updated.

5.8. GSM File Store Access

The abstract type FID is used to denote the file and a set of pre-processor macros are defined that enumerate all of the standard files of a GSM 11.11 file store. A FID could be implemented as an unsigned 16 bit number as follows

typedef unsigned short FID;

#define FID_MF
 0x3F00

All GSM functions return the status bytes according to GSM 11.11, where 90 00 represents “success.”

5.8.1. SimSelect

UINT16
SimSelect (FID FileIdentifier, SimFileStatus *status);

PRIVATE
FileIdentifier
[in]
The file to select.

RETURN

The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

SimSelect selects the specified file as the current working file.

5.8.2. SimStatus

UINT16
SimStatus (SimFileStatus *status);

PRIVATE
NumBytes
[out]
The number of bytes written.

Buffer
[out]
The status of the currently selected file.

RETURN

The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

SimStatus returns the file status of the currently selected file as specified in GSM11.11.

5.8.3. SimGetCHVStatus

void
SimGetCHVStatus (BYTE CHV[4]);

CHVType
[out]
Updates the CHV array with CHV1, CHV2, UNBLOCKCHV1,
and UNBLOCKCHV2 with CHV1 at array element zero.

SimGetCHVStatus returns the current CHV values. The format of the returned bytes is specified in GSM11.11.

5.8.4. SimReadBinary

UINT16
SimReadBinary (unsigned short Offset,
 void *NumBytes,
 void *Buffer);

Offset
[in]
The offset into the file.

PRIVATE
NumBytes
[in]
The number of bytes to read.

Buffer
[out]
The buffer into which the data is written.

RETURN

The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

SimReadBinary reads NumBytes from position Offset in the currently selected file into Buffer.

5.8.5. SimUpdateBinary

UINT16
SimUpdateBinary (unsigned short Offset,
 BYTE *NumBytes,
 const void *Buffer);

Offset
[in]
The offset into the file.

PRIVATE
NumBytes
[in]
The number of bytes to write.

Buffer
[in]
The buffer containing the data to write to the file.

RETURN

The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

SimUpdateBinary writes NumBytes contained in Buffer to position Offset in the currently selected file.

5.8.6. SimReadRecord

UINT16
SimReadRecord (BYTE RecordNumber,
 SimRecordAccessModes Mode,
 BYTE NumBytes,
 void *Buffer);

RecordNumber
[in]
The record number to read from.

Mode
[in]
How to interpret the RecordNumber. One of
REC_ACC_MODE_NEXT,
REC_ACC_MODE_PREVIOUS, REC_ACC_MODE_ABSOLUTE_CURRENT.

PRIVATE
NumBytes
[in]
The number of bytes to read from the record.

Buffer
[out]
The buffer into which the data is written.

RETURN

The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

SimReadRecord reads NumBytes from the record RecordNumber of the currently selected file into Buffer.

5.8.7. SimUpdateRecord

UINT16
SimUpdateRecord (BYTE RecordNumber,
 SimRecordAccessModes Mode,
 BYTE NumBytes,
 const void *Buffer);

RecordNumber
[in]
The record number to write into.

Mode
[in]
How to interpret the RecordNumber. One of
REC_ACC_MODE_NEXT,
REC_ACC_MODE_PREVIOUS, REC_ACC_MODE_ABSOLUTE_CURRENT.

PRIVATE
NumBytes
[in]
The number of bytes to write into the record.

Buffer
[out]
The buffer containing the data to write to the file.

RETURN

The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

SimUpdateRecord writes NumBytes into the record RecordNumber of the currently selected file from Buffer.

5.8.8. SimSeek

UINT16
SimSeek (SimSeekModes Mode,
 BYTE PatternLength,
 const void *Pattern);

Mode
[in]
Defines the seek method, One of
SEEK_FROM_BEGINNING_FORWARD,
SEEK_FROM_END_BACKWARD,
SEEK_FROM_NEXT_FORWARD,
SEEK_FROM_PREVIOUS_BACKWARD

PRIVATE
PatternLength
[in]
The size in bytes of the pattern to search for.

Pattern
[in]
The buffer containing the pattern to search for.

RETURN

The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

SimSeek searches the currently selected file for a pattern of length patternLength contained in Pattern. If the pattern is found the current record is set appropriately.

5.8.9. SimIncrease

UINT16
SimIncrease(unsigned long Increment,
 unsigned long *Value);

Increment
[in]
The value to increase by.

PRIVATE
Value
[out]
The new value.

RETURN

The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

SimIncrease adds Increment to the current record of the selected cylic file and returns the new Value. The most significant byte of Increment is ignored.

5.8.10. SimInvalidate

UINT16
SimInvalidate (void);

RETURN

The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

SimInvalidate invalidates the selected file.

5.8.11. SimRehabilitate

UINT16
SimRehabilitate (void);

RETURN

The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

SimRehabilitate rehabilitates the selected file.

5.9. Miscellaneous

5.9.1. SimGetTerminalProfile

void
SimGetTerminalProfile (BYTE *Profile,
 BYTE *ProfileOutLength);

Profile
[out]
Where the terminal profile is written.

ProfileOutLength
[out]
The number of bytes written to Profile.

SimGetTerminalProfile returns the stored terminal profile in Profile.

5.9.2. SimMoreTime

SimGeneralResult
SimMoreTime (void);

RETURN

The GeneralResult code of the MORE TIME proactive command.

SimMoreTime issues the proactive command MORE TIME to the mobile equipment that it needs more time to process an application.

5.9.3. SimRunATCommand

SimGeneralResult
SimRunATCommand (BYTE TitleLength, const void *Title,
 BYTE CommandLength, const void *Command,
 const SimIconIdentifier *IconIdentifier,
 void *Response, BYTE *ResponseLength);

PRIVATE
TitleLength
[in]
Length in bytes of Title.

Title
[in]
String to display on mobile equipment while command is executing.

CommandLength
[in]
Length in bytes of Command.

Command
[in]
AT command string

IconIdentifier
[in]
Optional icon identifier; see SimIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

Response
[out]
Mobile equipment response string.

ResponseLength
[out]
Length in bytes of mobile equipment response string.

RETURN

The GeneralResult code of the RUN AT COMMAND proactive command.

SimRunATCommand issues the proactive command RUN AT COMMAND that sends an AT command to the mobile equipment. The terminal response is parsed and if successful the parameters Response and ResponseLength are updated.

5.9.4. SimSendDTMFCommand

SimGeneralResult
SimSendDTMFCommand (BYTE TitleLength, const void *Title,
 BYTE DTMFCodeLength, const void *DTMFCode,
 const SimIconIdentifier *IconIdentifier);
PRIVATE
TitleLength
[in]
The length in bytes of Title.

Title
[in]
Title displayed while the DTMF string is sent to the network.

DTMFCodeLength
[in]
The length in bytes of DTMFCode.

DTMFCode
[in]
DTMF string sent to the network.

IconIdentifier
[in]
Optional icon identifier; see SimIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

RETURN

The GeneralResult code of the SEND DTMF COMMAND proactive command.

SimSendDTMF issues the SEND DTMF COMMAND proactive command that sends a dual tone multiple frequency (DTMF) string to the network.

5.9.5. SimPollingOff

SimGeneralResult
SimPollingOff (void);

RETURN

The GeneralResult code of the POLLING OFF proactive command.

SimPollingOff issues the proactive command POLLING OFF that disables proactive polling; this essentially turns off SimPollInterval.

5.9.6. SimPollInterval

SimGeneralResult
SimPollInterval (SimTimeUnit Unit, BYTE Interval,
 SimTimeInterval *ActualIntervalOut);

PRIVATE
Unit
[in]
Desired time interval. Acceptable values for this parameter are listed in SimTimeUnit

.

Interval
[in]
Interval in units.

ActualIntervalOut
[out]
Response from mobile equipment negotiating the interval. This may or may not be the same as Unit and Interval. The value returned is in a structure of type SimTimeInterval.

RETURN

The GeneralResult code of the POLL INTERVAL proactive command.

SimPollInterval issues the proactive command POLL INTERVAL that requests the mobile equipment to set a time interval between status application program data units (APDU) that the mobile equipment sends to the subscriber identity module (SIM). The mobile equipment responds with a time interval of its own that most closely matches the application programming interface (API) request.

Polling can be disabled by using SimPollingOff.

5.9.7. SimRefresh

SimGeneralResult
SimRefresh (SimRefreshOptions Options);

SimGeneralResult
SimRefreshWithFileList (SimRefreshOptions Options
 BYTE FileListLength,
 const void *FileList);

OptionsPRIVATE

[in]
Informs the ME of what needs refreshing. Acceptable values for this parameter are listed in SimRefreshOptions.

FileListLength
[in]
The length, in bytes, of FileList.

FileList
[in]
The file identifiers of the files that have changed.

RETURN

The GeneralResult code of the SIM REFRESH proactive command.

SimRefresh issues the proactive command REFRESH that informs mobile equipment that the SIM has changed configuration due to SIM activity (such as an application running).

5.9.8. SimLanguageNotification

void
SimLanguagenotification (SimLanguageNotificationOptions Options,
 const void *Language);

Options
[in]
Language options. An acceptable value for this parameter is a card reader device selected from SimLanguageNotificationOptions.

LanguagePRIVATE

[in]
The 2-character language code as defined by ISO 639 [6], encoded using SMS default 7-bit coded alphabet as defined by GSM 03.38 [7].

RETURN

The GeneralResult code of the LANGUAGE NOTIFICATION proactive command.

SimLanguageNotification issues the proactive command LANGUAGE NOTIFICATION that notifies the mobile equipment about the language currently used for any text string within proactive commands or envelope command responses.

5.9.9. SimLaunchBrowser

SimGeneralResult
SimLaunchBrowser (SimLaunchBrowserOptions Options,
 BYTE TitleLength, const void *Title,
 BYTE URLLength, const void *URL,
 const SimIconIdentifier *IconIdentifier);

Options
[in]
Options used to launch the browser. Acceptable values for this parameter are listed in SimLaunchBrowserOptions.

PRIVATE
TitleLength
[in]
The length in bytes of the string Title

Title
[in]
String to display on the ME during the user confirmation phase.

PRIVATE
URLLength
[in]
The length in bytes of URL.

URL
[in]
The URL to open the browser at.

IconIdentifier
[in]
Optional icon identifier; see SimIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

RETURN

The GeneralResult code of the LAUNCH BROWSER proactive command.

SimLaunchBrowser and SimLaunchBrowserEx issue the proactive command LAUNCH BROWSER that launches a browser on the ME.

SimGeneralResult
SimLaunchBrowserEx (const SimLaunchBrowserExParams *params);

The structure SimLaunchBrowserExParams has the following members:

typedef struct
{
 // Mandatory fields
 SimLaunchBrowserOptions Options,
 BYTE URLLength;
 const void *URL;

 // Optional fields
 BYTE BrowserIdentityLength;
 const void *BrowserIdentity;
 BYTE BearerLength;
 const BYTE *Bearer;
 BYTE NumProvisioningFileReferences;
 BYTE *ProvisioningFileReferenceLengths;
 const BYTE **ProvisioningFileReferences;
 BYTE GatewayProxyIdLength;
 const void * GatewayProxyId;
 SimAlphaString Title;
 SimIconIdentifier IconIdentifier;
} SimLaunchBrowerExParams;
with the following members:

PRIVATE
URLLength
[in]
The length in bytes of URL.

URL
[in]
The URL to open the browser at.

BrowserIdentityLength
[in]
Length in bytes of BrowserIdentity.

BrowserIdentity
[in]
The browser identity. If BrowserIdentity is NULL, no BROWSER IDENTITY TLV is sent to the ME.

BearerLength
[in]
Length in bytes of Bearer.

Bearer
[in]
The list of bearers in order of priority requested. The type SimBearer defines the values acceptable. If Bearer is NULL, no BEARER TLV is sent to the ME.

NumProvisioningFileReferences
[in]
The number of Provisioning File References.

ProvisioningFileReferenceLengths
[in]
A pointer to the array of Provisioning File References lengths.

ProvisioningFileReferences
[in]
A pointer to the array of Provisioning File References.

GatewayProxyIdLength
[in]
Length in bytes of GatewayProxyId.

GatewayProxyId
[in]
The gateway or proxy identity. If GatewayProxyId is NULL, no TEXT STRING TLV describing the gateway/proxy is sent to the ME.

Title
[in]
String to display on the ME; see SimAlphaString.

IconIdentifier
[in]
Optional icon identifier; see SimIconIdentifier for member details. If IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

5.10. Low-level Interface

This section presents a low-level programming interface which allows you to

· Construct proactive commands and send them to the mobile equipment.

· Access the terminal response from the mobile equipment.

· Search the terminal response and contents of envelopes for specified TLVs.

· Unpack the contents of envelopes from the ME and send responses.

These functions are provided so that functionality that is not provided in the high level API is still accessible. All of these functions work on a single data buffer that has a single data pointer and can only be accessed sequentially. The high-level proactive functions may make use of the data buffer so consequently the high-level proactive functions should not be used whilst using the low-level functions.

5.10.1. SimResetBuffer

void
SimResetBuffer(void);

This function resets the data pointer to the beginning of the buffer.

5.10.2. SimStartProactiveCommand

void
SimStartProactiveCommand(BYTE Command,
 BYTE Options,
 BYTE To);

PRIVATE
Command
[in]
Command byte of proactive command.

Options
[in]
Command options of proactive command.

To
[in]
The destination device identity.

SimStartProactiveCommand resets the data pointer and starts the construction of a proactive command by writing the command tag, command details and device identities to the data buffer. The data pointer is left pointing after the device identities so that proactive command specific data can be written.

5.10.3. SimSendProactiveCommand

SimGeneralResult
SimSendProactiveCommand (BYTE *Length);

Length
[out]
Pointer that is updated with the length of the terminal response

RETURN
[out]
The general result byte of the terminal response

SimSendProactiveCommand sends the contents of the data buffer as a proactive command and updates the data buffer with the terminal response. The general result byte of the terminal response is returned by this function. The length of the terminal response is written to *Length. The data pointer is set to point to the additional information of the terminal response.

5.10.4. SimOpenEnvelope

SimEnvelopeTagType
SimOpenEnvelope(BYTE *Length);

Length
[out]
Pointer that is updated with the length of the envelope

RETURN
[out]
The envelope tag

SimOpenEnvelope returns the envelope tag of the data buffer and the length of the envelope data. The data pointer is set to point to the envelope data.

5.10.5. SimSendEnvelopeResponse

void
SimSendEnvelopeResponse (void);

SimSendEnvelopeResponse sends the contents of the data buffer as a successful envelope response.

5.10.6. SimSendEnvelopeErrorResponse

void
SimSendEnvelopeErrorResponse (void);

This function sends the contents of the data buffer as an unsuccessful envelope response.

5.10.7. SimPutData

void
SimPutData(BYTE Length,
 const void *Data)

PRIVATE
Length
[in]
Length of Data

Data
[in]
Pointer to Data.

SimPutData appends Length bytes of data to the data buffer

5.10.8. SimPutByte

void
SimPutByte (BYTE Data)

Data
[in]
Data byte.

SimPutByte appends the supplied data byte to the data buffer.

5.10.9. SimPutTLV

void
SimPutTLV (BYTE Tag,
 BYTE Length,
 const void *Value);

PRIVATE
Tag
[in]
Tag byte.

Length
[in]
Length of value.

Value
[in]
A pointer to the value.

SimPutTLV appends a general TLV to the data buffer.

5.10.10. SimPutBytePrefixedTLV

void
SimPutBytePrefixedTLV (BYTE Tag,
 BYTE Prefix,
 BYTE Length,
 const void *Value);

PRIVATE
Tag
[in]
Tag byte.

Prefix
[in]
Prefix byte.

Length
[in]
Length of value.

Value
[in]
A pointer to the value.

SimPutBytePrefixedTLV appends a TLV to the data buffer with a single byte placed before the Value.

5.10.11. SimPutOneByteTLV

void
SimPutOneByteTLV (BYTE Tag,
 BYTE Value);

PRIVATE
Tag
[in]
Tag byte.

Value
[in]
Value byte.

SimPutOneByteTLV appends a single byte valued TLV to the data buffer.

5.10.12. SimPutTwoByteTLV

void
SimPutTwoByteTLV (BYTE Tag,
 BYTE Value1,
 BYTE Value2);

PRIVATE
Tag
[in]
Tag byte.

Value1
[in]
First Value byte.

Value2
[in]
Second Value byte.

SimPutTwoByteTLV appends a two byte valued TLV to the data buffer.

5.10.13. SimGetByte

BYTE
SimGetByte (void)

RETURN
[out]
Data byte.

SimGetByte returns the byte at the current data pointer and increments the data pointer by one.

5.10.14. SimGetData

const void *
SimGetData (BYTE Length)

PRIVATE
Length
[in]
Length of Data

RETURN
[out]
Pointer to Data.

SimGetData returns the current data pointer and increments the data pointer by Length bytes.

5.10.15. SimFindNthTLV

const void *
SimFindNthTLV (BYTE Tag,
 BYTE Occurrence,
 BYTE *Length);

Tag
[in]
Tag to find.

Occurrence
[in]
Occurrence of Tag to find with “1” being the first.

Length
[out]
Length of found TLV.

RETURN
[out]
Pointer to data of found TLV

SimFindNthTLV finds the nth TLV that matches Tag in the data buffer, where nth is specified by the Occurrence parameter. If a match is found the data pointer is updated to the found TLV, the function returns a pointer to the found value and updates Length with the data length. If no match was found the function returns the null pointer and the data pointer is left unchanged.

5.10.16. SimFindNthTLVInUserBuffer

const void *
SimFindNthTLVInUserBuffer (BYTE BufferLen,
 const void *Buffer,
 BYTE Tag,
 BYTE Occurrence,
 BYTE *Length);

BufferLen
[in]
Length of buffer

Buffer
[in]
Buffer to search

Tag
[in]
Tag to find.

Occurrence
[in]
Occurrence of Tag to find with “1” being the first.

Length
[out]
Length of found TLV.

RETURN
[out]
Pointer to data of found TLV

SimFindNthTLVInUserBuffer finds the nth TLV that matches Tag is the supplied buffer. The function returns a pointer to the found value and updates Length with the data length. If no match was found the function returns the null pointer.

5.11. Supporting Data Types

5.11.1. SimFrameworkEventType

typedef enum
{
 // Command monitoring events
 EVENT_TERMINAL_PROFILE_COMMAND,
 EVENT_STATUS_COMMAND
 EVENT_ENVELOPE_COMMAND,
 // Applet lifecycle events start here
 EVENT_APPLET_LIFECYCLE_INSTALL = 0x20
 // Framework fabricated events start here
 EVENT_UPDATE_EF_SMS = 0x40
} GsmFrameworkEventType;

5.11.2. SimEnvelopeTagType
typedef enum {
 SMS_PP_DOWNLOAD_TAG = 0xD1,
 CELL_BROADCAST_TAG = 0xD2,
 MENU_SELECTION_TAG = 0xD3,
 CALL_CONTROL_TAG = 0xD4,
 MO_SHORT_MESSAGE_CONTROL_TAG = 0xD5,
 EVENT_DOWNLOAD_TAG = 0xD6,
 TIMER_EXPIRATION = 0xD7
} SimEnvelopeTagType;

5.11.3. SimEventType

typedef enum {
 MT_CALL_EVENT = 0x00,
 CALL_CONNECTED_EVENT = 0x01,
 CALL_DISCONNECTED_EVENT = 0x02,
 LOCATION_STATUS_EVENT = 0x03,
 USER_ACTIVITY_EVENT = 0x04,
 IDLE_SCREEN_AVAILABLE = 0x05,
 CARD_READER_STATUS = 0x06,
 LANGUAGE_SELECTION = 0x07,
 BROWSER_TERMINATION = 0x08,
 DATA_AVAILABLE = 0x09,
 CHANNEL_STATUS = 0x0A
} SimEventType;

5.11.4. SimIconOption

typedef enum

{

 SHOW_WITHOUT_TEXT = 0x00,

 SHOW_WITH_TEXT = 0x01

} SimIconOption;

5.11.5. SimDisplayTextOptions

typedef enum

{

 NORMAL_PRIORITY_AUTO_CLEAR = 0x00,

 NORMAL_PRIORITY_USER_CLEAR = 0x80,

 HIGH_PRIORITY_AUTO_CLEAR = 0x01,

 HIGH_PRIORITY_USER_CLEAR = 0x81

} SimDisplayTextOptions;

5.11.6. SimGetInKeyOptions

typedef enum

{

 YES_NO_OPTION_NO_HELP = 0x04,

 YES_NO_OPTION_WITH_HELP = 0x84,

 DIGITS_ONLY_NO_HELP = 0x00,

 DIGITS_ONLY_WITH_HELP = 0x80,

 SMS_CHARACTER_NO_HELP = 0x01,

 SMS_CHARACTER_WITH_HELP = 0x81,

 UCS2_CHARACTER_NO_HELP = 0x03,

 UCS2_CHARACTER_WITH_HELP = 0x83

} SimGetInKeyOptions;

5.11.7. SimGetInputOptions

typedef enum

{

 PACKED_DIGITS_ONLY_NO_HELP = 0x08,

 PACKED_DIGITS_ONLY_WITH_HELP = 0x88,

 PACKED_DIGITS_ONLY_NO_ECHO_NO_HELP = 0x0C,

 PACKED_DIGITS_ONLY_NO_ECHO_WITH_HELP = 0x8C,

 UNPACKED_DIGITS_ONLY_NO_HELP = 0x00,

 UNPACKED_DIGITS_ONLY_WITH_HELP = 0x80,

 UNPACKED_DIGITS_ONLY_NO_ECHO_NO_HELP = 0x04,

 UNPACKED_DIGITS_ONLY_NO_ECHO_WITH_HELP = 0x84,

 PACKED_SMS_ALPHABET_NO_HELP = 0x09,

 PACKED_SMS_ALPHABET_WITH_HELP = 0x89,

 PACKED_SMS_ALPHABET_NO_ECHO_NO_HELP = 0x0D,

 PACKED_SMS_ALPHABET_NO_ECHO_HELP = 0x8D,

 UNPACKED_SMS_ALPHABET_NO_HELP = 0x01,

 UNPACKED_SMS_ALPHABET_WITH_HELP = 0x81,

 UNPACKED_SMS_ALPHABET_NO_ECHO_NO_HELP = 0x05,

 UNPACKED_SMS_ALPHABET_NO_ECHO_WITH_HELP = 0x85,

 UCS2_ALPHABET_NO_HELP = 0x03,

 UCS2_ALPHABET_WITH_HELP = 0x83,

 UCS2_ALPHABET_NO_ECHO_NO_HELP = 0x07,

 UCS2_ALPHABET_NO_ECHO_WITH_HELP = 0x87

} SimGetInputOptions;

5.11.8. SimTimeUnit

typedef enum

{

 GSM_MINUTES = 0x00,

 GSM_SECONDS = 0x01,

 GSM_TENTHS_OF_SECONDS = 0x02

} SimTimeUnit;

5.11.9. SimTone

typedef enum

{

 DIAL_TONE = 0x01,

 CALLER_BUSY = 0x02,

 CONGESTION = 0x03,

 RADIO_PATH_ACKNOWLEDGE = 0x04,

 CALL_DROPPED = 0x05,

 SPECIAL_INFORMATION_OR_ERROR = 0x06,

 CALL_WAITING_TONE = 0x07,

 RINGING_TONE = 0x08,

 GENERAL_BEEP = 0x10,

 POSITIVE_ACKNOWLEDGE_TONE = 0x11,

 NEGATIVE_ACKNOWLEDGE_TONE = 0x12

} SimTone;

5.11.10. SimDCSValue

typedef enum

{

 DCS_SMS_PACKED = 0x00,

 DCS_SMS_UNPACKED = 0x04,

 DCS_SMS_UNICODE = 0x08

} SimDCSValue;

5.11.11. SimTypeOfNumberAndNumberingPlanIdentifier

typedef enum

{

 TON_UNKNOWN_AND_NPI_UNKNOWN = 0x80,

 TON_INTERNATIONAL_AND_NPI_UNKNOWN = 0x90,

 TON_NATIONAL_AND_NPI_UNKNOWN = 0xA0,

 TON_NETWORK_AND_NPI_UNKNOWN = 0xB0,

 TON_SUBSCRIBER_AND_NPI_UNKNOWN = 0xC0,

 TON_UNKNOWN_AND_NPI_TELEPHONE = 0x81,

 TON_INTERNATIONAL_AND_NPI_TELEPHONE = 0x91,

 TON_NATIONAL_AND_NPI_TELEPHONE = 0xA1,

 TON_NETWORK_AND_NPI_TELEPHONE = 0xB1,

 TON_SUBSCRIBER_AND_NPI_TELEPHONE = 0xC1,

 TON_UNKNOWN_AND_NPI_DATA = 0x83,

 TON_INTERNATIONAL_AND_NPI_DATA = 0x93,

 TON_NATIONAL_AND_NPI_DATA = 0xA3,

 TON_NETWORK_AND_NPI_DATA = 0xB3,

 TON_SUBSCRIBER_AND_NPI_DATA = 0xC3,

 TON_UNKNOWN_AND_NPI_TELEX = 0x84,

 TON_INTERNATIONAL_AND_NPI_TELEX = 0x94,

 TON_NATIONAL_AND_NPI_TELEX = 0xA4,

 TON_NETWORK_AND_NPI_TELEX = 0xB4,

 TON_SUBSCRIBER_AND_NPI_TELEX = 0xC4,

 TON_UNKNOWN_AND_NPI_NATIONAL = 0x88,

 TON_INTERNATIONAL_AND_NPI_NATIONAL = 0x98,

 TON_NATIONAL_AND_NPI_NATIONAL = 0xA8,

 TON_NETWORK_AND_NPI_NATIONAL = 0xB8,

 TON_SUBSCRIBER_AND_NPI_NATIONAL = 0xC8,

 TON_UNKNOWN_AND_NPI_PRIVATE = 0x89,

 TON_INTERNATIONAL_AND_NPI_PRIVATE = 0x99,

 TON_NATIONAL_AND_NPI_PRIVATE = 0xA9,

 TON_NETWORK_AND_NPI_PRIVATE = 0xB9,

 TON_SUBSCRIBER_AND_NPI_PRIVATE = 0xC9,

 TON_UNKNOWN_AND_NPI_ERMES = 0x8A,

 TON_INTERNATIONAL_AND_NPI_ERMES = 0x9A,

 TON_NATIONAL_AND_NPI_ERMES = 0xAA,

 TON_NETWORK_AND_NPI_ERMES = 0xBA,

 TON_SUBSCRIBER_AND_NPI_ERMES = 0xCA

} SimTypeOfNumberAndNumberingPlanIdentifier;

5.11.12. SimSendShortMessageOptions

typedef enum

{

 PACKING_NOT_REQUIRED = 0x00,

 PACKING_BY_THE_ME_REQUIRED = 0x01

} SimSendShortMessageOptions;

5.11.13. SimRefreshOptions

typedef enum

{

 REFRESH_SIM_INIT_AND_FULL_FILE_CHANGE_NOTIFICATION = 0x00,
 REFRESH_FILE_CHANGE_NOTIFICATION = 0x01,

 REFRESH_SIM_INIT_AND_FILE_CHANGE_NOTIFICATION = 0x02,

 REFRESH_SIM_INIT = 0x03,
 REFRESH_SIM_RESET = 0x04

} SimRefreshOptions;

5.11.14. SimLanguageNotificationOptions

typedef enum

{

 LANGUAGE_NON_SPECIFIC_NOTIFICATION = 0x00,
 LANGUAGE_SPECIFIC_NOTIFICATION = 0x01
} SimLanguageNotificationOptions;

5.11.15. SimSetupCallOptions

typedef enum

{

 CALL_ONLY_IF_NOT_BUSY = 0x00,

 CALL_ONLY_IF_NOT_BUSY_WITH_REDIAL = 0x01,

 CALL_AND_PUT_ALL_OTHER_CALLS_ON_HOLD = 0x02,

 CALL_AND_PUT_ALL_OTHER_CALLS_ON_HOLD_WITH_REDIAL = 0x03,

 CALL_AND_DISCONNECT_ALL_OTHER_CALLS = 0x04,

 CALL_AND_DISCONNECT_ALL_OTHER_CALLS_WITH_REDIAL = 0x05

} SimSetupCallOptions;

5.11.16. SimLaunchBrowserOptions

typedef enum

{

 LAUNCH_BROWSER_IF_NOT_ALREADY_LAUNCHED = 0x00,

 USE_EXISTING_BROWSER = 0x02,

 CLOSE_EXISTING_BROWSER_AND_LAUNCH_NEW_BROWSER = 0x03

} SimLaunchBrowserOptions;

5.11.17. SimSendDataOptions

typedef enum

{

 STORE_DATA_IN_TX_BUFFER = 0x00,
 SEND_DATA_IMMEDIATELY = 0x01

} SimSendDataOptions;

5.11.18. SimSelectItemOptions

typedef enum

{

 PRESENT_AS_DATA_VALUES_NO_HELP = 0x01,

 PRESENT_AS_DATA_VALUES_WITH_HELP = 0x81,

 PRESENT_AS_NAVIGATION_OPTIONS_NO_HELP = 0x03,

 PRESENT_AS_NAVIGATION_OPTIONS_WITH_HELP = 0x83,

 DEFAULT_STYLE_NO_HELP = 0x00,

 DEFAULT_STYLE_WITH_HELP = 0x80

} SimSelectItemOptions;

5.11.19. SimBearer

typedef enum

{

 BEARER_SMS = 0x00,
 BEARER_CSD = 0x01,
 BEARER_USSD = 0x02,
 BEARER_GPRS = 0x03

} SimBearer;

5.11.20. SimOpenChannelOptions

typedef enum

{

 ON_DEMAND_LINK_ESTABLISHMENT = 0x00,
 IMMEDIATE_LINK_ESTABLISHMENT = 0x01
} SimOpenChannelOptions;

5.11.21. SimGetReaderStatusOptions

typedef enum

{

 CARD_READER_STATUS = 0x00,
 CARD_READER_IDENTIFIER = 0x01
} SimGetReaderStatusOptions;

5.11.22. SimDevice

typedef enum

{

 DEVICE_KEPYAD = 0x01,

 DEVICE_DISPLAY = 0x02,

 DEVICE_EARPIECE = 0x03,

 DEVICE_CARD_READER_0 = 0x10,

 DEVICE_CARD_READER_1 = 0x11,

 DEVICE_CARD_READER_2 = 0x12,

 DEVICE_CARD_READER_3 = 0x13,

 DEVICE_CARD_READER_4 = 0x14,

 DEVICE_CARD_READER_5 = 0x15,

 DEVICE_CARD_READER_6 = 0x16,

 DEVICE_CARD_READER_7 = 0x17,

 DEVICE_CHANNEL_1 = 0x21,

 DEVICE_CHANNEL_2 = 0x22,

 DEVICE_CHANNEL_3 = 0x23,

 DEVICE_CHANNEL_4 = 0x24,

 DEVICE_CHANNEL_5 = 0x25,

 DEVICE_CHANNEL_6 = 0x26,

 DEVICE_CHANNEL_7 = 0x27,

 DEVICE_SIM = 0x81,

 DEVICE_ME = 0x82,

 DEVICE_NETWORK = 0x83

} SimDevice;

5.11.23. SimGeneralResult

typedef enum

{

 SIM_COMMAND_SUCCESSFUL = 0x00,

 SIM_COMMAND_SUCCESSFUL_WITH_PARTIAL_COMPREHENSION = 0x01,

 SIM_COMMAND_SUCCESSFUL_WITH_MISSING_INFORMATION = 0x02,

 SIM_REFRESH_SUCCESSFUL_WITH_ADDITIONAL_EFS_READ = 0x03,

 SIM_COMMAND_SUCCESSFUL_BUT_ICON_NOT_FOUND = 0x04,

 SIM_COMMAND_SUCCESSFUL_BUT_MODIFIED_BY_CALL_CONTROL = 0x05,

 SIM_COMMAND_SUCCESSFUL_BUT_LIMITED_SERVICE = 0x06,

 SIM_COMMAND_SUCCESSFUL_WITH_MODIFICATION = 0x07,

 SIM_ABORTED_BY_USER = 0x10,

 SIM_BACKWARD = 0x11,

 SIM_NO_RESPONSE = 0x12,

 SIM_HELP_REQUIRED = 0x13,

 SIM_USSD_ABORTED_BY_USER = 0x14,

 SIM_ME_UNABLE_TO_PROCESS_COMMAND = 0x20,

 SIM_NETWORK_UNABLE_TO_PROCESS_COMMAND = 0x21,

 SIM_USER_REJECTED_SETUP_CALL = 0x22,

 SIM_USER_CLEARED_BEFORE_RELEASE = 0x23,

 SIM_ACTION_CONTRADICT_TIMER_STATE = 0x24,

 SIM_TEMP_PROBLEM_IN_CALL_CONTROL = 0x25,

 SIM_LAUNCH_BROWSER_ERROR = 0x26,

 SIM_COMMAND_BEYOND_ME_CAPABILITIES = 0x30,

 SIM_COMMAND_TYPE_NOT_UNDERSTOOD = 0x31,

 SIM_COMMAND_DATA_NOT_UNDERSTOOD = 0x32,

 SIM_COMMAND_NUMBER_NOT_KNOWN = 0x33,

 SIM_SS_RETURN_ERROR = 0x34,

 SIM_SMS_RP_ERROR = 0x35,

 SIM_REQUIRED_VALUES_MISSING = 0x36,

 SIM_USSD_RETURN_ERROR = 0x37,

 SIM_MULTIPLE_CARD_COMMAND_ERROR = 0x38,

 SIM_PERMANENT_PROBLEM_IN_SMS_OR_CALL_CONTROL = 0x39,

 SIM_BEARER_INDEPENDENT_PROTOCOL_ERROR = 0x3A

} SimGeneralResult;

5.11.24. SimTimerValue

typedef struct

{

 BYTE hour;

 BYTE minute;

 BYTE second;

} SimTimerValue;

The SimTimerValue data type has three one-byte values:

hourPRIVATE

Hours part of timer.

minute
Minutes part of timer.

second
Seconds part of timer.

5.11.25. SimTimeInterval

typedef struct

{

 BYTE timeUnit;

 BYTE timeInterval;

} SimTimeInterval;

The SimTimInterval data type has two one-byte values:

timeUnit
One of the SimTimeUnit enumeration values. This is specified as a BYTE rather than SimTimeUnit as, in C, an enumeration uses the same storage as an int which is at least 16 bits, whereas the proactive commands that use these identifiers use 8-bit quantities.

timeInterval
The number of timeUnits.

5.11.26. SimIconIdentifier

typedef struct

{

 BYTE UseIcon;

 BYTE IconIdentifier;
 BYTE IconOptions;

} SimIconIdentifier;

The SimIconIdentifier structure is defined as follows:

UseIcon
If zero, the icon identifier is not used in the proactive command. If non-zero, the IconIdentifier and IconOption members are used in the proactive command.

IconIdentifier
Index of the icon to display.

IconOptions
Options with which to display the icon selected from SimIconOption. This is specified as a BYTE rather than SimIconOptios as, in C, an enumeration uses the same storage as an int which is at least 16 bits, whereas the proactive commands that use these identifiers use 8-bit quantities.

5.11.27. SimFileStatus

typedef struct

{

 BYTE increaseAllowed;

 BYTE accessConditions[3];

 BYTE fileStatus; // 00=transparent, 01=linear, 03=cyclic
 BYTE lengthOfTrailer;

 BYTE structureOfEF;

 BYTE recordLength;
 BYTE trailer[36]; // Not 36, need to figure out how big this actually is

} SimEFStatus;

typedef struct

{

 BYTE rfu1[4];

 BYTE lengthOfTrailer;

 BYTE fileCharacteristics;
 BYTE numberOfDFs;
 BYTE numberofCHVs;
 BYTE rfu2;

 BYTE CHV1Status;

 BYTE unblockCHV1Status;

 BYTE CHV2Status;

 BYTE unblockCHV2Status;

 BYTE rfu3;

 BYTE adminReserved[10];

} SimDFStatus;

typedef struct

{

 BYTE rfu[2];

 UINT16 fileSize;

 UINT16 fileID;

 BYTE fileType; // 00=RFU, 01=MF, 02=DF, 04=EF

 union
 {

 SimEFStatus ef;
 SimDFStatus df;
 } u;

} SimFileStatus;

5.11.28. SimLocationInformation

typedef struct

{

 BYTE mobileCountryNetworkCodes[3];
 BYTE LAC[2];
 BYTE cellID[2];
} SimLocationInformation;

5.11.29. SimTimingAdvance

typedef struct

{

 BYTE MEStatus;
 BYTE timingAdvance;
} SimTimingAdvance;

5.11.30. SimTextString

typedef struct

{

 SimDCSValue DCSValue;
 BYTE TextStringLength;
 const void *TextString;
} SimTextString;

5.11.31. SimAlphaString

typedef struct

{
 BYTE AlphaStringLength;
 const void *AlphaString;
} SimTextString;

5.11.32. SimAddressType

typedef struct
{
 enum

 {

 IPV4 = 0x21,

 IPV6 = 0x97

 } AddressType;
 BYTE AddressLength;
 const void *Address;
} SimAddressType;

5.11.33. SimSIM_MEInterfaceTransportLevelType

typedef struct
{
 enum
 {
 UDP = 0x01,
 TCP = 0x02
 } TransportProtocolType;
 UINT16 SIM_ME_PortNumber;
} SimSIM_MEInterfaceTransportLevelType;

Annex A (informative): STK application example using ‘C’ (U)SIM API

FFS

History

Document history

V0.0.0
August 2000
First draft for comment

V0.0.1
November 2000
Revised first draft, containing typographical and grammatical amendments and alterations.

V0.0.2
January 2001
Revised to present a ‘C’-language bindings as the main document. MULTOS implementation detail moved to Annex.

V0.1.0
March 2001
Significant restructuring and changes to make the C binding completely platform independent.

V0.1.1
May 2001
Reworked after meeting T3 ad hoc #34, Edinburgh, according to the meeting report.

�PAGE \# "'Page: '#'�'" ��

We need to define the values that this symbol can take such that upward compatibility is assured. For example, code such as

#if SIM_TOOLKIT_VERSION >= SIM_TOOLKIT_R99

should be allowed. We need to enumerate the various flavours of SIM_TOOLKIT_xxx (e.g. SIM_TOOLKIT_GSM, SIM_TOOLKIT_R98, SIM_TOOLKIT_R99, SIM_TOOLKIT_USIM or whatever).

DRAFT
53

