PAGE
‘C’-language binding for SIM API, DRAFT version 0.1.0

	3GPP T3 Ad hoc Meeting #34

Edinburgh, 6 April 2001
	Tdoc T3z010380

Title:

‘C’-language binding to (U)SIM API - Draft stage 2 description v 0.1.0

Source:
WI Rapporteur

Introduction:

The document is the first draft of a platform-independent ‘C’-language binding to GSM 02.19 SIM API.

This work has been done under work item 446. This work item is being changed to become technology independent.

Contents

51.
Scope

2.
References
6
2.1.
Normative references
6
3.
Definitions and abbreviations
7
3.1.
Definitions
7
3.2.
Abbreviations
7
4.
Description
8
4.1.
Overview
8
4.2.
Design Rationale and Upward Compatibility
8
5.
‘C’-language binding for (U)SIM API
10
5.1.
Overview
10
5.2.
Toolkit application entry and exit
11
5.2.1.
main
11
5.2.2.
GsmGetInvocationReason
11
5.2.3.
GsmExit
11
5.3.
Man-Machine Interface
11
5.3.1.
GsmAddItem
11
5.3.2.
GsmSelectItem
12
5.3.3.
GsmEndSelectItem
12
5.3.4.
GsmDisplayText
12
5.3.5.
GsmGetInKey
13
5.3.6.
GsmGetInput
13
5.3.7.
GsmSetupIdleModeText
14
5.3.8.
GsmPlayTone
14
5.4.
Network Services
15
5.4.1.
GsmProvideLocalInformation
15
5.4.2.
GsmSetupCall
15
5.4.3.
GsmSendSMS
17
5.4.4.
GsmSendSS
18
5.4.5.
GsmSendUSSD
18
5.4.6.
GsmOpenChannel
19
5.4.7.
GsmCloseChannel
19
5.4.8.
GsmReceiveData
19
5.4.9.
GsmSendData
19
5.4.10.
GsmGetChannelStatus
20
5.5.
Timers
20
5.5.1.
GsmGetTimer
20
5.5.2.
GsmFreeTimer
20
5.5.3.
GsmStartTimer
20
5.5.4.
GsmGetTimerValue
21
5.6.
Supplementary Card Reader Management
21
5.6.1.
GsmPowerOnCard
21
5.6.2.
GsmPowerOffCard
21
5.6.3.
GsmPerformCardAPDU
21
5.6.4.
GsmGetReaderStatus
22
5.7.
GSM File Store Access
22
5.7.1.
GsmSelect
22
5.7.2.
GsmStatus
22
5.7.3.
GsmReadBinary
23
5.7.4.
GsmUpdateBinary
23
5.7.5.
GsmReadRecord
23
5.7.6.
GsmUpdateRecord
24
5.7.7.
GsmSeek
24
5.7.8.
GsmIncrease
24
5.7.9.
GsmInvalidate
24
5.7.10.
GsmRehabilitate
25
5.8.
Registry
26
6.1.1
GsmStartRegistryUpdate
26
6.1.2
GsmEndRegistryUpdate
26
6.1.3
GsmSetMenuString
26
5.8.1.
GsmClearMenuString
26
6.1.4
GsmSetEvent
26
6.1.5
GsmClearEvent
27
5.9.
Miscellaneous
27
5.9.1.
GsmMoreTime
27
5.9.2.
GsmRunATCommand
27
5.9.3.
GsmSendDTMF
27
5.9.4.
GsmPollingOff
28
5.9.5.
GsmPollInterval
28
5.9.6.
GsmRefresh
28
5.9.7.
GsmLanguageNotification
29
5.9.8.
GsmLaunchBrowser
29
5.10.
Low-level Interface
30
5.10.1.
GsmResetBuffer
30
5.10.2.
GsmStartProactiveCommand
31
5.10.3.
GsmSendProactiveCommand
31
5.10.4.
GsmHandleEnvelope
31
5.10.5.
GsmSendEnvelopeResponse
31
5.10.6.
GsmSendEnvelopeErrorResponse
31
5.10.7.
GsmPutData
32
5.10.8.
GsmPutByte
32
5.10.9.
GsmPutTLV
32
5.10.10.
GsmPutBytePrefixedTLV
32
5.10.11.
GsmPutOneByteTLV
32
5.10.12.
GsmPutTwoByteTLV
33
5.10.13.
GsmGetByte
33
5.10.14.
GsmGetData
33
5.10.15.
GsmFindNthTLV
33
5.10.16.
GsmFindNthTLVInBuffer
33
5.11.
Supporting Data Types
34
5.11.1.
GsmEventType
34
5.11.2.
GsmIconOption
34
5.11.3.
GsmDisplayTextOptions
34
5.11.4.
GsmGetInKeyOptions
35
5.11.5.
GsmGetInputOptions
35
5.11.6.
GsmTimeUnit
35
5.11.7.
GsmTone
35
5.11.8.
GsmDCSValue
36
5.11.9.
GsmProvideLocalInformationOptions
36
5.11.10.
GsmTypeOfNumberAndNumberingPlanIdentifier
36
5.11.11.
GsmSendShortMessageOptions
37
5.11.12.
GsmRefreshOptions
37
5.11.13.
GsmLanguageNotificationOptions
37
5.11.14.
GsmSetupCallOptions
37
5.11.15.
GsmLaunchBrowserOptions
37
5.11.16.
GsmSendDataOptions
38
5.11.17.
GsmRegistryError
38
5.11.18.
GsmBearer
38
5.11.19.
GsmOpenChannelOptions
38
5.11.20.
GsmTimerValue
38
5.11.21.
GsmTimeInterval
39
5.11.22.
GsmIconIdentifier
39
Annex A (informative): STK application example using ‘C’ (U)SIM API
40
History
41

1. Scope

A Subscriber Identity Module Application Programming Interface (SIM API) has been defined elsewhere [5] as a technology-independent API specification of how SIM Toolkit applications and (U)SIMs co-operate. That specification aims to be independent of both the underlying platform and the programming language technologies.

The main body of the document specifies ‘C’ language binding for the (U)SIM API but remains independent of the underlying platform. Assumptions about the platform are those carried over from 02.19 [5] which are:

· There shall be a virtual machine through which the Toolkit applications execute.

· The platform shall provide context switching between applications.

The present document includes information applicable to SIM Toolkit application developers programming in ‘C’ and an annex showing how an example STK application can be written in a platform-independent manner. It specifies a stage two description of the (U)SIM API internal to the (U)SIM.

The API for loading and deleting toolkit application is specified in GSM 03.48 [4] and is not part of the (U)SIM API 02.19 [5]. Therefore, C-bindings for loading and deleting Toolkit application are not included in this document.

2. References

References may be made to:

a)
specific versions of publications (identified by date of publication, edition number, version number, etc.), in which case, subsequent revisions to the referenced document do not apply; or

b)
all versions up to and including the identified version (identified by "up to and including" before the version identity); or

c)
all versions subsequent to and including the identified version (identified by "onwards" following the version identity); or

d)
publications without mention of a specific version, in which case the latest version applies.

A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same number.

2.1. Normative references

[1]
GSM 01.04 “Digital cellular telecommunications system (Phase 2+); Abbreviations and acronyms”.

[2]
3GPP TS 11.11 V8.4.0: “3rd Generation Partnership Project; Technical Specification Group Terminals Specification of the Subscriber Identity Module – Mobile Equipment (SIM-ME) interface (Release 1999)”.

[3]
3GPP TS 11.14 V8.5.0: “3rd Generation Partnership Project; Specification of the SIM Application Toolkit for the Subscriber Identity Module – Mobile Equipment (SIM-ME) interface (Release 1999)”.

[4]
3GPP TS 03.48 V8.4.0: “3rd Generation Partnership Project; Technical Specification Group Terminals; Security Mechanisms for the SIM application toolkit; Stage 2 (Release 1999)”.

[5]
ETSI TS 02.19 V7.1.0: “Digitial cellular telecommunications system (Phase 2+); Subscriber Identity Module Application Programming Interface (SIM API); Service description; Stage 1 (Release 1998)”.

[6]
ISO 639 (1988): “Code for the representation of names of languages”.

[7]
GSM 03.38: “Digital cellular telecommunications system (Phase 2+); Alphabets and language-specific information”.

3. Definitions and abbreviations

3.1. Definitions

For the purposes of the present document, the following definitions apply:

Application: A smart card application.

Framework : A framework defines a set of Application Programming Interface (API) functions for developing applications and for providing system services to those applications.

GSM application: Functionality conforming to GSM 11.11[2] and GSM 11.14[3]. This may be an application executing through a virtual machine, or it may be implemented in native code if the underlying technology requires.

Toolkit Application: An application which uses the API [5] for which the ‘C’-language binding is described within this document and which only runs under the control of the GSM Application.

3.2. Abbreviations

For the purpose of the present document, the following abbreviations apply, in addition to those listed in GSM 01.04[1]:

APDU
Application Protocol Data Unit

API
Application Programming Interface

DCS
Digital Cellular System

DF
Dedicated File

DTMF
Dual Tone Multiple Frequency

EF
Elementary File

FFS
For Further Study

FID
File Identifier

GSM
Global System for Mobile communications

ME
Mobile Equipment

OTA
Over The Air

SIM
Subscriber Identity Module

SMS
Short Message Service

TBD
To be determined

TLV
Tag, Length, Value

TPDU
Transport Protocol Data Unit

URL
Uniform Resource Locator

USSD
Unstructured Supplementary Services Data

4. Description

The GSM Application consists of the following:

-
GSM 11.11[3] APDU handlers for communicating with the mobile equipment,

-
GSM 11.11[3] File system and file access control,

-
SIM Toolkit Framework which provides services to Toolkit applications.

This document describes the ‘C’ language bindings for the API [5] between the GSM Application and Toolkit Applications. This API allows application ‘C’ programmers to access functions and data described in GSM 11.11[2] and GSM 11.14[3], such that SIM based services can be developed and loaded onto SIMs. If required and supported by the underlying smart card technology, Toolkit Applications can be loaded or deleted remotely, after the card has been issued.

From the STK application programmer’s point of view, this API [5] is an extension to any existing platform API available.

4.1. Overview

The ‘C’-binding for (U)SIM API shall provide function calls for GSM 11.14 [3] (pro-active functions) and GSM 11.11 [2] (transport functions). The figure below shows the interactions between a typical Toolkit application (shown in blue) and the various functional blocks (shown in orange) of the SIM [3]. The C-bindings for these APIs are presented in section 4.2.

[image: image1.wmf]Registered

event

or install

Update

Information

Request

Toolkit

application

Proactive

command

handler

Proactive

response

handler

APDU

handler

Toolkit

application

triggering

Load/delete Toolkit

Application 03.48

New Toolkit

application

Registry handler

GSM

file

access

Mobile

Equipment

APDU

Toolkit

event

Terminal response

Envelope response

handler

Terminal

response data

Proactive command

91

xx

Proactive command

Fetch command

Response data

Registry

File access

Request

File data

GSM File system

File data

Allowed Access/

Command

Toolkit application

information

Create new Toolkit

application from SMS-PP

4.2. Design Rationale and Upward Compatibility

This C SIM API is intended to be general enough for many purposes. Some functions that implement proactive commands take parameters that correspond to optional TLVs in GSM 11.14. If the actual parameter value passed to the function is NULL, the corresponding TLV is not passed to the mobile equipment; an example of an optional parameter is GsmIconIdentifier that corresponds to the ICON IDENTIFIER TLV.

Some proactive commands have a very large number of optional TLVs, such as SETUP CALL. Therefore, this API offers two variants that address this aspect, GsmSetupCall and GsmSetupCallEx. The first function, GsmSetupCall, takes as parameters everything that is necessary to issue a successful SETUP CALL proactive command (i.e. everything required to construct the mandatory TLVs as required by GSM 11.14).

The second function, GsmSetupCallEx, takes a parameter block that can be extended in future versions of this standard. The parameter block contains members that correspond to all mandatory and optional TLVs for the SETUP CALL proactive command.

The reason for introducing the “…Ex” variants are threefold:

· Rather than extend the parameter list of a function to take a large number of optional parameters for each call, it is sometimes preferable to set up the parameters using named structure members before issuing the call to the function.

· If a future version of GSM 11.14 extends the optional parameters for a proactive command, the corresponding parameter block can be extended to encompass these parameters without changing the function prototype.

· Any source code written for an older version of this GSM C API can be recompiled with a later version without change and will remain upwardly compatible at the source as long as the suggested coding standards are adhered to. No claim is made as to binary compatibility between implementations or different releases of this standard.

5. ‘C’-language binding for (U)SIM API
5.1. Overview

This section presents the ‘C’-language binding to (U)SIM API. It is divided into sections as follows:

· Toolkit application entry and exit

· Man-Machine Interface

· Network services

· Timers

· Supplementary card reader

· GSM file store access

· Registry

· Miscellaneous

· Low-level functions

· Supporting data types

For each function, the prototype is given followed by a table describing the parameters and whether they are input [in] or output [out] parameters. There is explanatory text which explains the function’s purpose and whether it is a proactive command or not.
Toolkit application entry and exit

Toolkit applications will start by executing the application-defined function main. There are no arguments to main, nor are there any return results. The application can find out why it was invoked using the GsmGetInvocationReason function. The application should not return from main; it must call the GsmExit function.

5.1.1. main

void
main (void);

The main function is the application entry point.

5.1.2. GsmGetInvocationReason

GsmEventType
GsmGetInvocationReason (void);

GsmGetInvocationReason returns the event that caused the application to run. Events that can cause the application to run are

· Installation of application

· Data download

· Call control

· Timer expiration

· Event download

5.1.3. GsmExit

void
GsmExit (void);

GsmExit causes the application to terminate execution. When the application is restarted, it enters at main.

5.2. Man-Machine Interface

5.2.1. GsmAddItem

void
GsmAddItem(BYTE ItemTextLength, const void *ItemText, BYTE ItemIdentifier);

	PRIVATE
ItemTextLength
	[in]
	The length of the ItemText.

	ItemText
	[in]
	Text associated with item.

	ItemIdentifier
	[in]
	Specifies a unique identifier to be associated with this selection. This value is returned in the SelectedItem parameter of GsmSelectItem if this item is selected from the menu.

GsmAddItem adds an item to a list for the user to select. It is not a proactive command.

To display a list of items for the user to choose from, at least three calls that must be issued with no intervening global services for mobile commmunications (GSM) proactive commands in between them. This application programming interface (API) call is the second call. GsmAdditem must be called after GsmSelectItem and before GsmEndSelectItem. GsmAddItem may be called multiple times consecutively add items to a selection list.

5.2.2. GsmSelectItem

void
GsmSelectItem (BYTE TitleLength, const void *Title,
 GsmSelectItemOptions Options);

	TitlePRIVATE
Length
	[in]
	The length in bytes of Title.

	Title
	[in]
	Title of the list of choices.

	Options
	[in]
	Acceptable values for this parameter are listed in GsmSelectItemOptions.

GsmSelectItem displays a list of items on the mobile equipment for the user to choose from. Even though this function, by name, maps to a GSM proactive command, this API does not itself issue a proactive command. GsmEndSelectItem must be called for an actual proactive command to be issued.

To display a list of items for the user to choose from, at least three calls must be issued with no intervening GSM proactive commands between them. This API call is the first. The other two APIs required are GsmAddItem and GsmEndSelectItem.

5.2.3. GsmEndSelectItem

GsmGeneralResult
GsmEndSelectItem (BYTE *SelectedItem,
 const GsmIconIdentifier *IconIdentifier);

	PRIVATE
SelectedItem
	[out]
	Index of item selected by user.

	IconIdentifier
	[in]
	Optional icon identifier; see GsmIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

GsmEndSelectItem displays on the mobile equipment a list of items for the user to choose from. It can be considered a proactive command in that calling this function causes a proactive command to be sent to the ME.

To display a list of items for the user to choose from, at least three calls must be issued with no intervening global services for mobile communications (GSM) proactive commands in between them. This function call is the last. The other two APIs required are GsmSelectItem and GsmAddItem.

5.2.4. GsmDisplayText

GsmGeneralResult
GsmDisplayText (GsmDCSValue TextDCS, BYTE TextLength, const void *Text,
 GsmDisplayTextOptions Options,
 const GsmIconIdentifier *IconIdentifier,
 BYTE ImmediateResponse);

	PRIVATE
TextDCS
	[in]
	The data coding scheme for Text. Acceptable values for this parameter are listed in GsmDCSValue.

	TextLength
	[in]
	The length in bytes of Text.

	Text
	[in]
	String to display on ME.

	Options
	[in]
	Acceptable values for this parameter are listed in GsmDisplayTextOptions.

	IconIdentifier
	[in]
	Optional icon identifier; see GsmIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	ImmediateResponse
	[in]
	True—program continues execution as soon as ME receives instruction.
False—program waits until text is cleared on the mobile equipment before continuing, and the Immediate Response TLV is not passed to the mobile equipment.

GsmDisplayText is a proactive command that displays text on the display of the mobile equipment.

5.2.5. GsmGetInKey

GsmGeneralResult
GsmGetInKey (GsmDCSValue TitleDCS, BYTE TitleLength, const void *Title,
 GsmGetInKeyOptions Options,
 const GsmIconIdentifier *IconIdentifier,
 GsmDCSValue *DCSOut, void *ByteOut);

	PRIVATE
TitleDCS
	[in]
	The data coding scheme for Title. Acceptable values for this parameter are listed in GsmDCSValue

.

	TitleLength
	[in]
	The length in bytes of Title.

	Title
	[in]
	String to display on ME.

	Options
	[in]
	Acceptable values for this parameter are listed in GsmGetInKeyOptions.

	IconIdentifier
	[in]
	Optional icon identifier; see GsmIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	DcsOut
	[out]
	The packing type of the returned key. This parameter is set to one of the values listed in GsmDCSValue

.

	ByteOut
	[out]
	The key pressed.

	
	
	

GsmGetInKey is a proactive command that gets a single keystroke from the user.

5.2.6. GsmGetInput

GsmGeneralResult
GsmGetInput(GsmDCSValue TitleDCS, BYTE TitleLength, const void *Title,
 GsmGetInputOptions Options,
 GsmDCSValue DefaultReplyDCS,
 BYTE DefaultReplyLength, const void *DefaultReply,
 BYTE MinimumResponseLength,
 BYTE MaximumResponseLength,
 const GsmIconIdentifier *IconIdentifier,
 GsmDCSValue *MsgOutDCS,
 void *MsgOut,
 void *MsgOutLength);

	PRIVATE
TitleDCS
	[in]
	The data-coding scheme for Title. Acceptable values for this parameter are listed in GsmDCSValue

.

	TitleLength
	[in]
	The length in bytes of Title.

	Title
	[in]
	String to display on ME while waiting for the user to press a key.

	Options
	[in]
	Acceptable values for this parameter are listed in GsmGetInputOptions.

	DefaultReplyDCS
	[in]
	The data coding scheme for DefaultReply. Acceptable values for this parameter are listed in GsmDCSValue

.

	DefaultReplyLength
	[in]
	The length in bytes of DefaultReply.

	DefaultReply
	[in]
	Default response string; use NULL for "no reply"—no Default Reply tag length value (TLV) is sent to the ME.

	MinimumResponseLength
	[in]
	Minimum allowed length for the response, in either characters or digits.

	MaximumResponseLength
	[in]
	Maximum allowed length for the response, in either characters or digits.

	MsgOutDCS
	[out]
	Packing type of the returned data. This parameter is set to one of the values listed in GsmDCSValue

.

	MsgOut
	[out]
	A pointer to where the returned string or message is placed.

	MsgOutLength
	[out]
	Length of the returned message in bytes.

	IconIdentifier
	[in]
	Optional icon identifier; see GsmIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

GsmGetInput is a proactive command that gets a string of input from the user.

5.2.7. GsmSetupIdleModeText

GsmGeneralResult
GsmSetupIdleModeText (GsmDCSValue TextDCS, BYTE TextLength, const void *Text,
 const GsmIconIdentifier *IconIdentifier);

	PRIVATE
TextDCS
	[in]
	The data-coding scheme for Text. Acceptable values for this parameter are listed in GsmDCSValue

.

	TextLength
	[in]
	The length in bytes of Text.

	Text
	[in]
	String to display while mobile equipment is idle.

	IconIdentifier
	[in]
	Optional icon identifier; see GsmIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

GsmSetupIdleModeText is a proactive command that sets the mobile equipment's default text string.

5.2.8. GsmPlayTone

GsmGeneralResult
GsmPlayTone (BYTE TextLength, const void *Text,
 GsmTone Tone,
 GsmTimeUnit Units, int Duration,
 const GsmIconIdentifier *IconIdentifier);

	PRIVATE
TextLength
	[in]
	The length of the string Text to display on the ME.

	Text
	[in]
	String to display on ME while sound is being played.

	Tone
	[in]
	Specifies tone to play. Acceptable values for this parameter are listed in GsmTone.

	Units
	[in]
	Unit of time specified for duration parameter. Acceptable values for this parameter are listed in GsmTimeUnit.

	Duration
	[in]
	Amount of time to play the tone, in units specified in the unit parameter

	IconIdentifier
	[in]
	Optional icon identifier; see GsmIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

GsmPlayTone is a proactive command that plays a sound on the mobile equipment.

5.3. Network Services

5.3.1. GsmProvideLocalInformation

GsmGeneralResult
GsmProvideLocalInformation (GsmProvideLocalInformationOptions Options,
 void *LocalInformation,
 BYTE *LocalInformationLen);

	PRIVATE
Options
	[in]
	Specifies the type of local information to be received from the mobile equipment. Acceptable values for this parameter are listed in GsmProvideLocalInformationOptions.

	LocalInformation
	[out]
	A pointer to where the local information from the mobile equipment is placed.

	LocalInformationLen
	[out]
	The number of bytes returned in LocalInformation.

GsmProvideLocalInformation is a proactive command that requests the mobile equipment to send local information to the SIM.

5.3.2. GsmSetupCall

GsmGeneralResult
GsmSetupCall (BYTE CallSetupMessageLength, const void *CallSetupMessage,
 GsmTypeOfNumberAndNumberingPlanIdentifier TONandNPI,
 BYTE DiallingNumberLength, const void *DiallingNumber,
 GsmSetupCallOptions Options,
 const GsmIconIdentifier *UserConfirmationIconIdentifier,
 const GsmIconIdentifier *CallSeupIconIdentifier);
	PRIVATE
CallSetupMessageLength
	[in]
	Length in bytes of CallSetupMessage.

	CallSetupMessage
	[in]
	String to call setup message.

	TONandNPI
	[in]
	Acceptable values for this parameter are listed in GsmTypeOfNumberAndNumberingPlanIdentifier.

	DiallingNumberLength
	[in]
	Length in bytes of DiallingNumber.

	DialingNumber
	[in]
	Number to call is coded as binary-coded decimal.

	Options
	[in]
	Acceptable values for this parameter are listed in GsmSetupCallOptions.

	UserConfirmationIconIdentifier
	[in]
	Optional icon identifier to use during the user confirmation phase; see GsmIconIdentifier for member details. If UserConfirmationIconIdentifier is NULL or if UserConfirmationIconIdentifier.UseIcon is zero, no user confirmation phase icon identifier is sent to the ME.

	CallSetupIconIdentifier
	[in]
	Optional icon identifier to use during the call setup phase; see GsmIconIdentifier for member details. If CallSetupIconIdentifier is NULL or if CallSetupIconIdentifier.UseIcon is zero, no call setup phase icon identifier is sent to the ME.

GsmSetupCall is a proactive command that sets up a call.

GsmGeneralResult
GsmSetupCallEx (const GsmSetupCallExParams *Params);

GsmSetupCallEx is a proactive command that is used to set up a call with a given set of parameters. The type GsmSetupCallExParams is defined as follows:

typedef struct
{
 GsmSetupCallOptions Options;

 BYTE UserConfirmationMessageLength;
 const BYTE *UserConfirmationMessage;
 GsmIconOption UserConfirmationIcon;

 BYTE CallSetupMessageLength;
 const BYTE *CallSetupMessage;
 GsmIconOptions CallSetupIcon;

 BYTE AddressLength;
 const BYTE *Address;

 BYTE CalledPartySubaddressLength;
 const BYTE *CalledPartySubaddress;

 BYTE CapabilityConfigParamsLength;
 const BYTE *CapabilityConfigParams;

 GsmTimeInterval RedialMaximumDuration;
} GsmSetupCallExParams;
with the following members:

	Options
	Acceptable values for this parameter are listed in GsmSetupCallOptions.

	UserConfirmationPRIVATE
MessageLength
	Length in bytes of UserConfirmationPRIVATE
Message.

	UserConfirmationPRIVATE
Message
	String to display during the user confirmation phase. If this parameter is null, no user confirmation message TLV is passed to the ME. If UserConfirmationPRIVATE
Message is not null but UserConfirmationPRIVATE
MessageLength is zero, a user confirmation message TLV is passed to the ME with the length component set to zero.

	UserConfirmationIcon
	The icon to display during the user confirmation phase. If the UseIcon member of this structure is zero, no user confirmation icon TLV is sent to the ME.

	CallSetupPRIVATE
MessageLength
	Length in bytes of CallSetupPRIVATE
Message.

	CallSetupPRIVATE
Message
	String to display during the call set up phase.

	CallSetupIcon
	The icon to display during the call setup phase.

	AddressLength
	Length in bytes of Address.

	Address
	The address to call.

	CalledPartySubaddressLength
	Length in bytes of CalledPartySubaddress.

	CalledPartySubaddress
	The called party subaddress.

	CapabilityConfigParamsLength
	Length in bytes of CapabilityConfigParams.

	CapabilityConfigParams
	A pointer to the capability configuration parameters as coded for EFCCP.

	RedialMaximumDuration
	An optional maximum duration for the redial mechanism. If the timeInterval member of this structure is zero, no duration TLV is sent to the ME.

Optional parameters are specifically chosen to use an all-zero binary representation. This means that it is simple to set up only the required members of the SetupCallExParams structure by zeroing the whole structure using memset, filling in the required members, and sending the result to GsmSetupCallEx. As all optional parameters use a zero binary representation, the memset serves to initialise them all to the “not present” status.

5.3.3. GsmSendSMS

GsmGeneralResult
GsmSendSMS (BYTE TitleLength, const void *Title,
 GsmTypeOfNumberAndNumberingPlanIdentifier TONandNPI,
 BYTE AddressLength, const void *Address,
 BYTE SmsTPDULength, const void *SmsTPDU,
 GsmSendShortMessageOptions Options,
 const GsmIconIdentifier *IconIdentifier);

	PRIVATE
TitleLength
	[in]
	Length in bytes of Title.

	Title
	[in]
	String to display while mobile equipment is sending a message.

	TONandNPI
	[in]
	Acceptable values for this parameter are listed in GsmTypeOfNumberAndNumberingPlanIdentifier

.

	AddressLength
	[in]
	Length in bytes of Address.

	Address
	[in]
	Address of the service center where message is being sent.

	SmsTPDULength
	[in]
	Length in bytes of SmsTPDU.

	SmTPDU
	[in]
	Formatted short message service (SMS) message to send.

	Options
	[in]
	Specifies who packs the message. Acceptable values for this parameter are listed in GsmSendShortMessageOptions.

	IconIdentifier
	[in]
	Optional icon identifier; see GsmIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

GsmSendSMS is a proactive command that sends a short message to the network or another mobile equipment unit on the network.

5.3.4. GsmSendSS

GsmGeneralResult
GsmSendSS (BYTE TitleLength, const void *Title,
 GsmTypeOfNumberAndNumberingPlanIdentifier TONandNPI,
 BYTE SSStringLength, const void *SSString,
 const GsmIconIdentifier *IconIdentifier);

	PRIVATE
TitleLength
	[in]
	Length in bytes of Title.

	Title
	[in]
	String to display while mobile equipment is sending a message.

	TONandNPI
	[in]
	Acceptable values for this parameter are listed GsmTypeOfNumberAndNumberingPlanIdentifier

.

	SSStringLength
	[in]
	Length in bytes of SSString.

	SSString
	[in]
	SS string to mobile equipment.

	IconIdentifier
	[in]
	Optional icon identifier; see GsmIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

GsmSendSS sends SS proactive commands to the mobile equipment.

5.3.5. GsmSendUSSD

GsmGeneralResult
GsmSendUSSD (BYTE TitleLength, const void *Title,
 GsmDCSValue MessageDCS, BYTE MessageLength, const void *Message,
 GsmDCSValue *MsgOutDCS,
 void *MsgOut, BYTE *MsgOutLength,
 const GsmIconIdentifier *IconIdentifier);

	PRIVATE
TitleLength
	[in]
	The length in bytes of Title.

	Title
	[in]
	String to display while mobile equipment is sending a message.

	MessageDCS
	[in]
	The data-coding scheme for Message. Acceptable values for this parameter are listed in GsmDCSValue

.

	MessageLength
	[in]
	The length in bytes of Message.

	Message
	[in]
	Message to send.

	MsgOutDCS
	[out]
	Identifies type of DCS for the returned message.

	MsgOut
	[out]
	Returned string or message.

	MsgOutLength
	[out]
	Length of the returned message in bytes.

	IconIdentifier
	[in]
	Optional icon identifier; see GsmIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

GsmSendUSSD is a proactive command that sends unstructured supplementary services data (USSD) to the mobile equipment.

5.3.6. GsmOpenChannel

GsmGeneralResult
GsmOpenChannel (GsmOpenChannelOptions Options, …)

TBD.

5.3.7. GsmCloseChannel

GsmGeneralResult
GsmCloseChannel (BYTE TitleLength, const void *Title,
 const GsmIconIdentifier *IconIdentifier);

	PRIVATE
TitleLength
	[in]
	The length in bytes of Title.

	Title
	[in]
	String to display while mobile equipment is closing the channel.

	IconIdentifier
	[in]
	Optional icon identifier; see GsmIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

Close an open channel.

5.3.8. GsmReceiveData

GsmGeneralResult
GsmReceiveData (BYTE TitleLength, const BYTE *Title,
 BYTE RequestedChannelDataLength,
 const GsmIconIdentifier *IconIdentifier,
 BYTE *ChannelData,
 BYTE *NumChannelBytesRead,
 BYTE *NumChannelBytesLeft);

	PRIVATE
TitleLength
	[in]
	The length in bytes of Title.

	Title
	[in]
	String to display while mobile equipment is receiving data.

	RequestedChannelDataLength
	[in]
	The number of bytes requested to be read.

	IconIdentifier
	[in]
	Optional icon identifier; see GsmIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	ChannelData
	[in]
	Received channel data.

	NumChannelBytesRead
	[out]
	The number of bytes received as channel data.

	NumChannelBytesLeft
	[out]
	The number of bytes remaining to be read from the channel buffer, or 255 if there are more than 255 bytes left to be read.

Read data from an open channel.

5.3.9. GsmSendData

GsmGeneralResult
GsmSendData (BYTE TitleLength, const void *Title,
 GsmSendDataOptions Options,
 BYTE ChannelDataLength
 const void *ChannelData,
 const GsmIconIdentifier *IconIdentifier,
 BYTE *ActualBytesSent);

	PRIVATE
TitleLength
	[in]
	The length in bytes of Title.

	Title
	[in]
	String to display while mobile equipment is receiving data.

	Options
	[in]
	Specifies who packs the message. Acceptable values for this parameter are listed in GsmSendDataOptions.

	ChannelDataLength
	[in]
	The number of bytes to be sent from ChannelData.

	ChannelData
	[in]
	The data to be sent.

	IconIdentifier
	[in]
	Optional icon identifier; see GsmIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	ActualBytesSent
	[out]
	The number of bytes sent (derived from the CHANNEL DATA LENGTH TLV in the TERMINAL RESPONSE).

Write data to an open channel.

5.3.10. GsmGetChannelStatus

GsmGeneralResult
GsmGetChannelStatus (void *ChannelStatus);

	PRIVATE
ChannelStatus
	[out]
	Returned channel status bytes.

Get the status of a channel.

5.4. Timers

5.4.1. GsmGetTimer

BYTE
GsmGetTimer (void);

GsmGetTimer returns the ID of an available timer. If no timer is available, this function returns zero.

5.4.2. GsmFreeTimer

int
GsmFreeTimer (BYTE TimerID);

	PRIVATE
TimerID
	[in]
	ID of timer to free; obtained from GsmGetTimer.

GsmFreeTimer frees the handle to the specified timer, making it available for the next request. It is not a proactive command. No information is passed to the mobile equipment by this function.

5.4.3. GsmStartTimer

int
GsmStartTimer (BYTE TimerID, GsmTimerValue *TimerValue);

	PRIVATE
TimerID
	[in]
	ID of the timer to initialize; obtained from GsmGetTimer.

	TimerValue
	[in]
	Initial value of the timer. The value is specified in a structure of type GsmTimerValue.

GsmStartTimer initializes a timer to the parameter values.

This is a proactive command that corresponds to "Timer Management" in the global service for mobile communications (GSM) 11.14 specification.

5.4.4. GsmGetTimerValue

int
GsmGetTimerValue (BYTE TimerID, GsmTimerValue *TimerValue);

	PRIVATE
TimerID
	[in]
	ID of the timer from which to obtain values; obtained from GsmGetTimer

	TimerValue
	[out]
	The time remaining to run of timer TimerID. The value is returned in a structure of type GsmTimerValue.

GsmGetTimerValue obtains the timer's current value.

This is a proactive command that corresponds to "Timer Management" in the global service for mobile communications (GSM) 11.14 specification.

5.5. Supplementary Card Reader Management

5.5.1. GsmPowerOnCard

GsmGeneralResult
GsmPowerOnCard (GsmDevice DeviceID, void *ATR, BYTE *ATRLength);

	PRIVATE
DeviceID
	[in]
	The device to power on. An acceptable value for this parameter is a card reader device selected from GsmDeviceID.

	ATR
	[out]
	Pointer to where answer to reset (ATR) will be stored.

	ATRLength
	[out]
	Number of bytes returned by the card as the ATR.

GsmPowerOnCard is a proactive command that turns on the other card reader.

5.5.2. GsmPowerOffCard

GsmGeneralResult
GsmPowerOffCard (GsmDevice DeviceID);

	PRIVATE
DeviceID
	[in]
	The device to power off. An acceptable value for this parameter is a card reader device selected from GsmDeviceID.

GsmPowerOffCard is a proactive command that turns off the other card reader.

5.5.3. GsmPerformCardAPDU

GsmGeneralResult
GsmPerformCardAPDU (GsmDevice DeviceID,
 const void *CAPDU, BYTE CAPDULength,
 void *RAPDU, BYTE *RAPDULength);

	PRIVATE
DeviceID
	[in]
	The device to send the command APDU (C-APDU) to. An acceptable value for this parameter is a card reader device selected from GsmDeviceID.

	CAPDU
	[in]
	Pointer to the command C-APDU to be sent to the additional card device.

	CAPDULength
	[in]
	The number of bytes in the C-APDU.

	RAPDU
	[out]
	Pointer to the buffer that will contain the response APDU (R-APDU) returned by the card in the additional card reader. You must allocate enough space to hold the R-APDU sent by the card.

	RAPDULength
	[out]
	The number of bytes returned by the card in the additional card reader.

GsmPerformCardAPDU is a proactive command that sends application program data units (APDU) to an additional card reader.

5.5.4. GsmGetReaderStatus

GsmGeneralResult
GsmGetReaderStatus (GsmDevice DeviceID, BYTE *Status);

	PRIVATE
DeviceID
	[in]
	Device to detect status of. An acceptable value for this parameter is a card reader device selected from GsmDeviceID.

	Status
	[out]
	Status of additional card reader.

GsmGetReaderStatus is a proactive command that retrieves status of additional card readers on the mobile equipment.

5.6. GSM File Store Access

The abstract type FID is used to denote the file and a set of pre-processor macros are defined that enumerate all of the standard files of a GSM 11.11 file store. A FID could be implemented as an unsigned 16 bit number as follows

typedef unsigned short FID;

#define FID_MF
 0x3F00

All GSM functions return the status bytes according to GSM 11.11, where 90 00 represents “success.”

5.6.1. GsmSelect

UINT16
GsmSelect (FID FileIdentifier);

	PRIVATE
FileIdentifier
	[in]
	The file to select.

GsmSelect selects the specified file as the current working file. Note that there is no requirement for the implementation to support GSM 11.11 file selection semantics. This specification requires that all files in the file store are uniquely identified and can be selected regardless of the previously selected file.

5.6.2. GsmStatus

UINT16
GsmStatus (BYTE *NumBytes,
 void *Buffer);

	PRIVATE
NumBytes
	[out]
	The number of bytes written.

	Buffer
	[out]
	The status of the currently selected file.

GsmStatus returns the file status of the currently selected file as specified in GSM11.11.

5.6.3. GsmReadBinary

UINT16
GsmReadBinary (unsigned short Offset,
 void *NumBytes,
 void *Buffer);

	Offset
	[in]
	The offset into the file.

	PRIVATE
NumBytes
	[in]
	The number of bytes to read.

	Buffer
	[out]
	The buffer into which the data is written.

GsmReadBinary reads NumBytes from position Offset in the currently selected file into Buffer.

5.6.4. GsmUpdateBinary

UINT16
GsmUpdateBinary (unsigned short Offset,
 BYTE *NumBytes,
 const void *Buffer);

	Offset
	[in]
	The offset into the file.

	PRIVATE
NumBytes
	[in]
	The number of bytes to write.

	Buffer
	[in]
	The buffer containing the data to write to the file.

GsmUpdateBinary writes NumBytes contained in Buffer to position Offset in the currently selected file.

5.6.5. GsmReadRecord

UINT16
GsmReadRecord (BYTE RecordNumber,
 GsmRecordAccessModes Mode,
 BYTE NumBytes,
 void *Buffer);

	RecordNumber
	[in]
	The record number to read from.

	Mode
	[in]
	How to interpret the RecordNumber. One of
REC_ACC_MODE_NEXT,
REC_ACC_MODE_PREVIOUS, REC_ACC_MODE_ABSOLUTE_CURRENT.

	PRIVATE
NumBytes
	[in]
	The number of bytes to read from the record.

	Buffer
	[out]
	The buffer into which the data is written.

GsmReadRecord reads NumBytes from the record RecordNumber of the currently selected file into Buffer.

5.6.6. GsmUpdateRecord

UINT16
GsmUpdateRecord (BYTE RecordNumber,
 GsmRecordAccessModes Mode,
 BYTE NumBytes,
 const void *Buffer);

	RecordNumber
	[in]
	The record number to write into.

	Mode
	[in]
	How to interpret the RecordNumber. One of
REC_ACC_MODE_NEXT,
REC_ACC_MODE_PREVIOUS, REC_ACC_MODE_ABSOLUTE_CURRENT.

	PRIVATE
NumBytes
	[in]
	The number of bytes to write into the record.

	Buffer
	[out]
	The buffer containing the data to write to the file.

GsmUpdateRecord writes NumBytes into the record RecordNumber of the currently selected file from Buffer.

5.6.7. GsmSeek

UINT16
GsmSeek (GsmSeekModes Mode,
 BYTE PatternLength,
 const void *Pattern);

	Mode
	[in]
	Defines the seek method, One of
SEEK_FROM_BEGINNING_FORWARD,
SEEK_FROM_END_BACKWARD,
SEEK_FROM_NEXT_FORWARD,
SEEK_FROM_PREVIOUS_BACKWARD

	PRIVATE
PatternLength
	[in]
	The size of the pattern to search for.

	Pattern
	[in]
	The buffer containing the pattern to search for.

GsmSeek searches the currently selected file for a pattern of length patternLength contained in Pattern. If the pattern is found the current record is set appropriately.

5.6.8. GsmIncrease

UINT16
GsmIncrease(unsigned long Increment,
 unsigned long *Value);

	Increment
	[in]
	The value to increase by.

	PRIVATE
Value
	[out]
	The new value.

GsmIncrease adds Increment to the current record of the selected cylic file and returns the new Value. The most significant byte of Increment is ignored.

5.6.9. GsmInvalidate

UINT16
GsmInvalidate (void);

GsmInvalidate invalidates the selected file.

5.6.10. GsmRehabilitate

UINT16
GsmRehabilitate (void);

GsmRehabilitate rehabilitates the selected file.

5.7. Registry

The Menu entry of the application, together with the set of events that the application is interested in, may be registered using the functions defined in this section. To update the registry the GsmStartRegistryUpdate function must be called. The application can then make calls to functions that set up the Menu entry and events. When the application calls the function GsmEndRegistryUpdate then the registry update occurs.

6.1.1 GsmStartRegistryUpdate

void
GsmStartRegistryUpdate (void);

GsmStartRegistryUpdate starts the process by which the registry will be updated.

6.1.2 GsmEndRegistryUpdate

GsmRegistryError
GsmEndRegistryUpdate (void);

GsmEndRegistryUpdate completes the registry update of the application.

6.1.3 GsmSetMenuString

void
GsmSetMenuString (BYTE MenuStringLength,
 const void *MenuString,
 const GsmIconIdentifier *IconIdentifier,
 BYTE NextAction);

	MenuStringLength
	[in]
	The size of the menu entry.

	MenuString
	[in]
	The menu entry to be placed in the registry

	IconIdentifier
	[in]
	Optional icon identifier; see GsmIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	NextAction
	[in]
	The (optional) next action value

GsmSetMenuString allows the application to define its menu entry together with an icon. A non-zero value can be supplied if a next action indicator is required. Note that this function won’t set the registry to respond to menu selection events. A separate call to GsmSetEvent must be used for this.

5.7.1. GsmClearMenuString

void
GsmClearMenuString (void);

GsmClearMenuString clears the menu entry of the calling application.

6.1.4 GsmSetEvent

void
GsmSetEvent (GsmEventType Event);

	Event
	[in]
	an event the application is interested in.

GsmSetEvent enables the application to add an event to the set of events it is interested in.

6.1.5 GsmClearEvent

void
GsmClearEvent (GsmEventType Event);

	Event
	[in]
	an event the application is no longer interested in.

GsmClearEvent enables the application to remove an event to the set of events it is interested in

5.8. Miscellaneous

5.8.1. GsmMoreTime

GsmGeneralResult
GsmMoreTime (void);

GsmMoreTime is a proactive command that the SIM sends to the mobile equipment to inform it that it needs more time to process an application.

5.8.2. GsmRunATCommand

GsmGeneralResult
GsmRunATCommand (BYTE TitleLength, const void *Title,
 BYTE CommandLength, const void *Command,
 const GsmIconIdentifier *IconIdentifier,
 void *Response, BYTE *ResponseLength);

	PRIVATE
TitleLength
	[in]
	Length in bytes of Title.

	Title
	[in]
	String to display on mobile equipment while command is executing.

	CommandLength
	[in]
	Length in bytes of Command.

	Command
	[in]
	AT command string

	IconIdentifier
	[in]
	Optional icon identifier; see GsmIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	Response
	[out]
	Mobile equipment response string.

	ResponseLength
	[out]
	Length of mobile equipment response string.

GsmRunATCommand is a proactive command that sends an AT command to the mobile equipment.

5.8.3. GsmSendDTMF

GsmGeneralResult
GsmSendDTMF (BYTE TitleLength, const void *Title,
 BYTE DTMFCodeLength, const void *DTMFCode,
 const GsmIconIdentifier *IconIdentifier);
	PRIVATE
TitleLength
	[in]
	The length in bytes of Title.

	Title
	[in]
	Title displayed while the DTMF string is sent to the network.

	DTMFCodeLength
	[in]
	The length in bytes of DTMFCode.

	DTMFCode
	[in]
	DTMF string sent to the network.

	
	
	

	IconIdentifier
	[in]
	Optional icon identifier; see GsmIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

GsmSendDTMF is a proactive command that sends a dual tone multiple frequency (DTMF) string to the network.

5.8.4. GsmPollingOff

GsmGeneralResult
GsmPollingOff (void);

GsmPollingOff is a proactive command that disables proactive polling; this essentially turns off GsmPollInterval.

5.8.5. GsmPollInterval

GsmGeneralResult
GsmPollInterval (GsmTimeUnit Unit, BYTE Interval,
 GsmTimeInterval *ActualIntervalOut);

	PRIVATE
Unit
	[in]
	Desired time interval. Acceptable values for this parameter are listed in GsmTimeUnit

.

	Interval
	[in]
	Interval in units.

	ActualIntervalOut
	[out]
	Response from mobile equipment negotiating the interval. This may or may not be the same as Unit and Interval. The value returned is in a structure of type GsmTimeInterval.

GsmPollInterval is a proactive command that requests the mobile equipment to set a time interval between status application program data units (APDU) that the mobile equipment sends to the subscriber identity module (SIM). The mobile equipment responds with a time interval of its own that most closely matches the application programming interface (API) request.

Polling can be disabled by using GsmPollingOff.

5.8.6. GsmRefresh

GsmGeneralResult
GsmRefresh (GsmRefreshOptions Options);

GsmGeneralResult
GsmRefreshWithFileList (GsmRefreshOptions Options
 BYTE FileListLength,
 const void *FileList);

	OptionsPRIVATE

	[in]
	Informs the ME of what needs refreshing. Acceptable values for this parameter are listed in GsmRefreshOptions.

	FileListLength
	[in]
	The length, in bytes, of FileList.

	FileList
	[in]
	The file identifiers of the files that have changed.

GsmRefresh is a proactive command that informs mobile equipment that the SIM has changed configuration due to SIM activity (such as an application running).

5.8.7. GsmLanguageNotification

void
GsmLanguagenotification (GsmLanguageNotificationOptions Options,
 const void *Language);

	Options
	[in]
	Language options. An acceptable value for this parameter is a card reader device selected from GsmLanguageNotificationOptions.

	LanguagePRIVATE

	[in]
	The 2-character language code as defined by ISO 639 [6], encoded using SMS default 7-bit coded alphabet as defined by GSM 03.38 [7].

GsmLanguageNotification notifies the mobile equipment about the language currently used for any text string within proactive commands or envelope command responses.

5.8.8. GsmLaunchBrowser

GsmGeneralResult
GsmLaunchBrowser (GsmLaunchBrowserOptions Options,
 BYTE TitleLength, const void *Title,
 BYTE URLLength, const void *URL,
 const GsmIconIdentifier *IconIdentifier);

	Options
	[in]
	Options used to launch the browser. Acceptable values for this parameter are listed in GsmLaunchBrowserOptions.

	PRIVATE
TitleLength
	[in]
	The length of the string Title

	Title
	[in]
	String to display on the ME during the user confirmation phase.

	PRIVATE
URLLength
	[in]
	The length in bytes of URL.

	URL
	[in]
	The URL to open the browser at.

	IconIdentifier
	[in]
	Optional icon identifier; see GsmIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	
	
	

GsmGeneralResult
GsmLaunchBrowserEx (const GsmLaunchBrowserExParams *params);

The structure GsmLaunchBrowserEx has the following members:

typedef struct
{
 // Mandatory fields
 BYTE URLLength;
 const void *URL;

 // Optional fields
 BYTE TitleLength;
 const BYTE *Title;

 GsmIconIdentifier IconIdentifier; // Note: this is not a pointer

 BYTE BrowserIdentityLength;
 const void *BrowserIdentity;

 BYTE BearerLength;
 const BYTE *Bearer;

 BYTE GatewayProxyIdLength;
 const void * GatewayProxyId;
} GsmLaucnhBrowerExParams;

with the following members:

	PRIVATE
URLLength
	[in]
	The length in bytes of URL.

	URL
	[in]
	The URL to open the browser at.

	PRIVATE
TitleLength
	[in]
	The length of the string Title.

	Title
	[in]
	String to display on the ME.

	IconIdentifier
	[in]
	Optional icon identifier; see GsmIconIdentifier for member details. If IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	BrowserIdentityLength
	[in]
	Length in bytes of BrowserIdentity.

	BrowserIdentity
	[in]
	The browser identity. If BrowserIdentity is NULL, no BROWSER IDENTITY TLV is sent to the ME.

	BearerLength
	[in]
	Length in bytes of Bearer.

	Bearer
	[in]
	The list of bearers in order of priority requested. The type GsmBearer defines the values acceptable. If Bearer is NULL, no BEARER TLV is sent to the ME.

	GatewayProxyIdLength
	[in]
	Length in bytes of GatewayProxyId.

	GatewayProxyId
	[in]
	The gateway or proxy identity. If GatewayProxyId is NULL, no TEXT STRING TLV describing the gateway/proxy is sent to the ME.

5.9. Low-level Interface

This section presents a low-level programming interface which allows you to

· Construct proactive commands and send them to the mobile equipment.

· Access the terminal response from the mobile equipment.

· Search the terminal response and contents of envelopes for specified TLVs.

· Unpack the contents of envelopes from the ME and send responses.

These functions are provided so that functionality that is not provided in the high level API is still accessible. All of these functions work on a single data buffer that has a single data pointer and can only be accessed sequentially. The high-level proactive functions may make use of the data buffer so consequently the high-level proactive functions should not be used whilst using the low level functions.

5.9.1. GsmResetBuffer

void
GsmResetBuffer(void);

This function resets the data pointer to the beginning of the buffer.

5.9.2. GsmStartProactiveCommand

void
GsmStartProactiveCommand(BYTE Command,
 BYTE Options,
 BYTE To);

	PRIVATE
Command
	[in]
	Command byte of proactive command

	Options
	[in]
	Command options of proactive command

	To
	[in]
	The destination device identity

This function resets the data pointer and starts the construction of a proactive command by writing the command tag, command details and device identities to the data buffer. The data pointer is left pointing after the device identities so that proactive command specific data can be written.

5.9.3. GsmSendProactiveCommand

GsmGeneralResult
GsmSendProactiveCommand (BYTE *Length);

	Length
	[out]
	Pointer that is updated with the length of the terminal response

	RETURN
	[out]
	The general result byte of the terminal response

This function sends the contents of the data buffer as a proactive command and updates the data buffer with the terminal response. The general result byte of the terminal response is returned by this function. The length of the terminal response is written to *Length. The data pointer is set to point to the additional information of the terminal response.

5.9.4. GsmHandleEnvelope

BYTE
GsmHandleEnvelope(BYTE *Length);

	Length
	[out]
	Pointer that is updated with the length of the envelope

	RETURN
	[out]
	The envelope tag

This function returns the envelope tag of the data buffer and the length of the envelope data. The data pointer is set to point to the envelope data.

5.9.5. GsmSendEnvelopeResponse

void
GsmSendEnvelopeResponse (void);

This function sends the contents of the data buffer as a successful envelope response.

5.9.6. GsmSendEnvelopeErrorResponse

void
GsmSendEnvelopeErrorResponse (void);

This function sends the contents of the data buffer as an unsuccessful envelope response.

5.9.7. GsmPutData

void
GsmPutData(BYTE Length,
 const void *Data)

	PRIVATE
Length
	[in]
	Length of Data

	Data
	[in]
	Pointer to Data.

This function appends Length bytes of data to the data buffer

5.9.8. GsmPutByte

void
GsmPutByte (BYTE Data)

	Data
	[in]
	Data byte.

This function appends the supplied data byte to the data buffer.

5.9.9. GsmPutTLV

void
GsmAppendTLV (BYTE Tag,
 BYTE Length,
 const void *Value);

	PRIVATE
Tag
	[in]
	Tag byte.

	Length
	[in]
	Length of value.

	Value
	[in]
	A pointer to the value.

This function appends a general TLV to the data buffer.

5.9.10. GsmPutBytePrefixedTLV

void
GsmPutBytePrefixedTLV (BYTE Tag,
 BYTE Prefix,
 BYTE Length,
 const void *Value);

	PRIVATE
Tag
	[in]
	Tag byte.

	Prefix
	[in]
	Prefix byte.

	Length
	[in]
	Length of value.

	Value
	[in]
	A pointer to the value.

This function appends a TLV to the data buffer with a single byte placed before the Value.

5.9.11. GsmPutOneByteTLV

void
GsmPutOneByteTLV (BYTE Tag,
 BYTE Value);

	PRIVATE
Tag
	[in]
	Tag byte.

	Value
	[in]
	Value byte.

This function appends a single byte valued TLV to the data buffer.

5.9.12. GsmPutTwoByteTLV

void
GsmPutTwoByteTLV (BYTE Tag,
 BYTE Value1,
 BYTE Value2);

	PRIVATE
Tag
	[in]
	Tag byte.

	Value1
	[in]
	First Value byte.

	Value2
	[in]
	Second Value byte.

This function appends a two byte valued TLV to the data buffer.

5.9.13. GsmGetByte

BYTE
GsmGetByte (void)

	RETURN
	[out]
	Data byte.

This function returns the byte at the current data pointer and increments the data pointer by one.

5.9.14. GsmGetData

const void *
GsmGetData (BYTE Length)

	PRIVATE
Length
	[in]
	Length of Data

	RETURN
	[out]
	Pointer to Data.

This function returns the current data pointer and increments the data pointer by Length bytes.

5.9.15. GsmFindNthTLV

const void *
GsmFindNthTLV (BYTE Tag,
 BYTE Occurrence,
 BYTE *Length);

	Tag
	[in]
	Tag to find.

	Occurrence
	[in]
	Occurrence of Tag to find.

	Length
	[out]
	Length of found TLV.

	RETURN
	[out]
	Pointer to data of found TLV

This function finds the nth TLV that matches Tag in the data buffer, where nth is specified by the Occurrence parameter. If a match is found the data pointer is updated to the found TLV, the function returns a pointer to the found value and updates *Length with the data length. If no match was found the function returns the null pointer and the data pointer is left unchanged.

5.9.16. GsmFindNthTLVInBuffer

const void *
GsmFindNthTLVInBuffer (BYTE BufferLen,
 const void *Buffer,
 BYTE Tag,
 BYTE *Length);

	BufferLen
	[in]
	Length of buffer

	Buffer
	[in]
	Buffer to search

	Tag
	[in]
	Tag to find.

	Length
	[out]
	Length of found TLV.

	RETURN
	[out]
	Pointer to data of found TLV

This function finds the nth TLV that matches Tag is the supplied buffer. The function returns a pointer to the found value and updates *Length with the data length. If no match was found the function returns the null pointer.

5.10. Supporting Data Types

5.10.1. GsmEventType

typedef enum
{
 EVENT_PROFILE_DOWNLOAD,
 EVENT_FORMATTED_SMS_PP_UPD,
 EVENT_STATUS_COMMAND,
 EVENT_UNFORMATTED_SMS_PP_UPD,
 EVENT_MENU_SELECTION,
 EVENT_FORMATTED_SMS_PP_ENV,
 EVENT_UNFORMATTED_SMS_PP_ENV,
 EVENT_FORMATTED_SMS_PP_CB,
 EVENT_MENU_SELECTION_HELP_REQUEST,
 EVENT_CALL_CONTROL_BY_SIM,
 EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM,
 EVENT_TIMER_EXPIRATION,
 EVENT_DOWNLOAD_MT_CALL_EVENT,
 EVENT_DOWNLOAD_CALL_CONNECTED_EVENT,
 EVENT_DOWNLOAD_CALL_DISCONNECTED_EVENT,
 EVENT_DOWNLOAD_LOCATION_STATUS_EVENT,
 EVENT_DOWNLOAD_USER_ACTIVITY_EVENT,
 EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE_EVENT,
 EVENT_DOWNLOAD_CARD_READER_STATUS_EVENT,
 EVENT_DOWNLOAD_LANGUAGE_SELECTION_EVENT,
 EVENT_DOWNLOAD_BROWSER_TERMINATION_EVENT,
 EVENT_DOWNLOAD_DATA_AVAILABLE_EVENT,
 EVENT_DOWNLOAD_CHANNEL_STATUS_EVENT,
 EVENT_UNRECOGNIZED_ENVELOPE,
 EVENT_TERMINAL_RESPONSE,
 EVENT_APPLET_INSTALL = 31
} GsmEventType;
5.10.2. GsmIconOption

typedef enum

{

 SHOW_WITHOUT_TEXT = 0x00,

 SHOW_WITH_TEXT = 0x01

} GsmIconOption;

5.10.3. GsmDisplayTextOptions

typedef enum

{

 NORMAL_PRIORITY_AUTO_CLEAR = 0x00,

 NORMAL_PRIORITY_USER_CLEAR = 0x80,

 HIGH_PRIORITY_AUTO_CLEAR = 0x01,

 HIGH_PRIORITY_USER_CLEAR = 0x81

} GsmDisplayTextOptions;

5.10.4. GsmGetInKeyOptions

typedef enum

{

 YES_NO_OPTION_NO_HELP = 0x04,

 YES_NO_OPTION_WITH_HELP = 0x84,

 DIGITS_ONLY_NO_HELP = 0x00,

 DIGITS_ONLY_WITH_HELP = 0x80,

 SMS_CHARACTER_NO_HELP = 0x01,

 SMS_CHARACTER_WITH_HELP = 0x81,

 UCS2_CHARACTER_NO_HELP = 0x03,

 UCS2_CHARACTER_WITH_HELP = 0x83

} GsmGetInKeyOptions;

5.10.5. GsmGetInputOptions

typedef enum

{

 PACKED_DIGITS_ONLY_NO_HELP = 0x08,

 PACKED_DIGITS_ONLY_WITH_HELP = 0x88,

 PACKED_DIGITS_ONLY_NO_ECHO_NO_HELP = 0x0C,

 PACKED_DIGITS_ONLY_NO_ECHO_WITH_HELP = 0x8C,

 UNPACKED_DIGITS_ONLY_NO_HELP = 0x00,

 UNPACKED_DIGITS_ONLY_WITH_HELP = 0x80,

 UNPACKED_DIGITS_ONLY_NO_ECHO_NO_HELP = 0x04,

 UNPACKED_DIGITS_ONLY_NO_ECHO_WITH_HELP = 0x84,

 PACKED_SMS_ALPHABET_NO_HELP = 0x09,

 PACKED_SMS_ALPHABET_WITH_HELP = 0x89,

 PACKED_SMS_ALPHABET_NO_ECHO_NO_HELP = 0x0D,

 PACKED_SMS_ALPHABET_NO_ECHO_HELP = 0x8D,

 UNPACKED_SMS_ALPHABET_NO_HELP = 0x01,

 UNPACKED_SMS_ALPHABET_WITH_HELP = 0x81,

 UNPACKED_SMS_ALPHABET_NO_ECHO_NO_HELP = 0x05,

 UNPACKED_SMS_ALPHABET_NO_ECHO_WITH_HELP = 0x85,

 UCS2_ALPHABET_NO_HELP = 0x03,

 UCS2_ALPHABET_WITH_HELP = 0x83,

 UCS2_ALPHABET_NO_ECHO_NO_HELP = 0x07,

 UCS2_ALPHABET_NO_ECHO_WITH_HELP = 0x87

} GsmGetInputOptions;

5.10.6. GsmTimeUnit

typedef enum

{

 GSM_MINUTES = 0x00,

 GSM_SECONDS = 0x01,

 GSM_TENTHS_OF_SECONDS = 0x02

} GsmTimeUnit;

5.10.7. GsmTone

typedef enum

{

 DIAL_TONE = 0x01,

 CALLER_BUSY = 0x02,

 CONGESTION = 0x03,

 RADIO_PATH_ACKNOWLEDGE = 0x04,

 CALL_DROPPED = 0x05,

 SPECIAL_INFORMATION_OR_ERROR = 0x06,

 CALL_WAITING_TONE = 0x07,

 RINGING_TONE = 0x08,

 GENERAL_BEEP = 0x10,

 POSITIVE_ACKNOWLEDGE_TONE = 0x11,

 NEGATIVE_ACKNOWLEDGE_TONE = 0x12

} GsmTone;

5.10.8. GsmDCSValue

typedef enum

{

 DCS_SMS_PACKED = 0x24,

 DCS_SMS_UNPACKED = 0x04,

 DCS_SMS_UNICODE = 0x08

} GsmDCSValue;

5.10.9. GsmProvideLocalInformationOptions

typedef enum

{

 LOCAL_INFORMATION = 0x00,

 IMEI_OF_THE_PHONE = 0x01,

 NETWORK_MEASUREMENTS = 0x02,

 DATE_TIME_AND_TIME_ZONE = 0x03,

 LANGUAGE_SETTING = 0x04,
 TIMING_ADVANCE = 0x05,

} GsmProvideLocalInformationOptions;

5.10.10. GsmTypeOfNumberAndNumberingPlanIdentifier

typedef enum

{

 TON_UNKNOWN_AND_NPI_UNKNOWN = 0x80,

 TON_INTERNATIONAL_AND_NPI_UNKNOWN = 0x90,

 TON_NATIONAL_AND_NPI_UNKNOWN = 0xA0,

 TON_NETWORK_AND_NPI_UNKNOWN = 0xB0,

 TON_SUBSCRIBER_AND_NPI_UNKNOWN = 0xC0,

 TON_UNKNOWN_AND_NPI_TELEPHONE = 0x81,

 TON_INTERNATIONAL_AND_NPI_TELEPHONE = 0x91,

 TON_NATIONAL_AND_NPI_TELEPHONE = 0xA1,

 TON_NETWORK_AND_NPI_TELEPHONE = 0xB1,

 TON_SUBSCRIBER_AND_NPI_TELEPHONE = 0xC1,

 TON_UNKNOWN_AND_NPI_DATA = 0x83,

 TON_INTERNATIONAL_AND_NPI_DATA = 0x93,

 TON_NATIONAL_AND_NPI_DATA = 0xA3,

 TON_NETWORK_AND_NPI_DATA = 0xB3,

 TON_SUBSCRIBER_AND_NPI_DATA = 0xC3,

 TON_UNKNOWN_AND_NPI_TELEX = 0x84,

 TON_INTERNATIONAL_AND_NPI_TELEX = 0x94,

 TON_NATIONAL_AND_NPI_TELEX = 0xA4,

 TON_NETWORK_AND_NPI_TELEX = 0xB4,

 TON_SUBSCRIBER_AND_NPI_TELEX = 0xC4,

 TON_UNKNOWN_AND_NPI_NATIONAL = 0x88,

 TON_INTERNATIONAL_AND_NPI_NATIONAL = 0x98,

 TON_NATIONAL_AND_NPI_NATIONAL = 0xA8,

 TON_NETWORK_AND_NPI_NATIONAL = 0xB8,

 TON_SUBSCRIBER_AND_NPI_NATIONAL = 0xC8,

 TON_UNKNOWN_AND_NPI_PRIVATE = 0x89,

 TON_INTERNATIONAL_AND_NPI_PRIVATE = 0x99,

 TON_NATIONAL_AND_NPI_PRIVATE = 0xA9,

 TON_NETWORK_AND_NPI_PRIVATE = 0xB9,

 TON_SUBSCRIBER_AND_NPI_PRIVATE = 0xC9,

 TON_UNKNOWN_AND_NPI_ERMES = 0x8A,

 TON_INTERNATIONAL_AND_NPI_ERMES = 0x9A,

 TON_NATIONAL_AND_NPI_ERMES = 0xAA,

 TON_NETWORK_AND_NPI_ERMES = 0xBA,

 TON_SUBSCRIBER_AND_NPI_ERMES = 0xCA

} GsmTypeOfNumberAndNumberingPlanIdentifier;

5.10.11. GsmSendShortMessageOptions

typedef enum

{

 PACKING_NOT_REQUIRED = 0x00,

 PACKING_BY_THE_PHONE_REQUIRED = 0x01

} GsmSendShortMessageOptions;

5.10.12. GsmRefreshOptions

typedef enum

{

 REFRESH_SIM_INIT_AND_FULL_FILE_CHANGE_NOTIFICATION = 0x00,
 REFRESH_FULL_FILE_NOTIFICATION = 0x01,

 REFRESH_SIM_INIT_AND_FILE_CHANGE_NOTIFICATION = 0x02,

 REFRESH_SIM_INIT = 0x03,
 REFRESH_SIM_RESET = 0x04

} GsmRefreshOptions;

5.10.13. GsmLanguageNotificationOptions

typedef enum

{

 LANGUAGE_NON_SPECIFIC_NOTIFICATION = 0x00,
 LANGUAGE_SPECIFIC_NOTIFICATION = 0x01
} GsmLanguageNotificationOptions;

5.10.14. GsmSetupCallOptions

typedef enum

{

 CALL_ONLY_IF_NOT_BUSY = 0x00,

 CALL_ONLY_IF_NOT_BUSY_WITH_REDIAL = 0x01,

 CALL_AND_PUT_CURRENT_CALL_ON_HOLD = 0x02,

 CALL_AND_PUT_CURRENT_CALL_ON_HOLD_WITH_REDIAL = 0x03,

 CALL_AND_DISCONNECT_CURRENT_CALL = 0x04,

 CALL_AND_DISCONNECT_CURRENT_CALL_WITH_REDIAL = 0x05

} GsmSetupCallOptions;

5.10.15. GsmLaunchBrowserOptions

typedef enum

{

 LAUNCH_BROWSER_WITHOUT_MAKING_CONNECTION = 0x00,

 LAUNCH_BROWSER_MAKING_A_CONNECTION = 0x01,
 LAUNCH_USE_EXISTING_BROWSER = 0x02,

 LAUNCH_NEW_BROWSER_MAKING_A_CONNECTION = 0x03,

 LAUNCH_NEW_BROWSER_USING_SECURE_SESSION = 0x04

} GsmLaunchBrowserOptions;

5.10.16. GsmSendDataOptions

typedef enum

{

 STORE_DATA_IN_TX_BUFFER = 0x00,
 SEND_DATA_IMMEDIATELY = 0x01

} GsmLaunchBrowserOptions;

5.10.17. GsmRegistryError

typedef enum

{

 REGISTRY_OK, // completed successfully

 REGISTRY_EVENT_NOT_SUPPORTED,
 REGISTRY_EVENT_ALREADY_REGISTERED,
 REGISTRY_EVENT_NOT_ALLOWED,
 REGISTRY_MENU_STRING_TOO_LONG,
 REGISTRY_BAD_MENU_ENTRY

} GsmRegistryError;

5.10.18. GsmBearer

typedef enum

{

 BEARER_SMS = 0x00,
 BEARER_CSD = 0x01,
 BEARER_USSD = 0x02,
 BEARER_GPRS = 0x03

} GsmBearer;

5.10.19. GsmOpenChannelOptions

typedef enum

{

 OPEN_CHANNEL_ON_DEMAND = 0x00,
 OPEN_CHANNEL_IMMEDIATELY = 0x01
 } GsmOpenChannelOptions;

5.10.20. GsmTimerValue

typedef struct

{

 BYTE hour;

 BYTE minute;

 BYTE second;

} GsmTimerValue;

The GsmTimerValue data type has three one-byte values:

	hourPRIVATE

	Hours part of timer.

	minute
	Minutes part of timer.

	second
	Seconds part of timer.

5.10.21. GsmTimeInterval

typedef struct

{

 BYTE timeUnit;

 BYTE timeInterval;

} GsmTimeInterval;

The GsmTimerValue data type has three one-byte values:

	timeUnit
	One of the GsmTimeUnit enumeration values.

	TimeInterval
	The number of timeUnits.

5.10.22. GsmIconIdentifier

typedef struct

{

 BYTE UseIcon;

 BYTE IconIdentifier;
 BYTE IconOptions;

} GsmIconIdentifier;

The GsmIconIdentifier structures is defined as follows:

	UseIcon
	If zero, the icon identifier is not used in the proactive command. If non-zero, the IconIdentifier and IconOption members are used in the proactive command.

	IconIdentifier
	Index of the icon to display.

	IconOptions
	Options with which to display the icon selected from GsmIconOption.

Annex A (informative): STK application example using ‘C’ (U)SIM API

FFS

History

	Document history

	V0.0.0
	August 2000
	First draft for comment

	V0.0.1
	November 2000
	Revised first draft, containing typographical and grammatical amendments and alterations.

	V0.0.2
	January 2001
	Revised to present a ‘C’-language bindings as the main document. MULTOS implementation detail moved to Annex.

	V0.1.0
	March 2001
	 Significant restructuring and changes to make the C binding completely platform independent.

DRAFT
10

