3GPP T3 ad-hoc meeting #28

Sophia-Antipolis, France, 26 Feb, 2001
Tdoc T3z010266

Fehler! Verweisquelle konnte nicht gefunden werden.

Title:

WML Annex, Use of the USAT Interpreter for WML Access to

USIM Application Toolkit and Plug-In Extensions

Source:
SmartTrust

To:

T3 SIM Interpreter WI group

WML Annex

Use of the USAT Interpreter for WML Access to USIM Application Toolkit and Plug-In Extensions

Contents

41 Introduction

1.1 Purpose
4
1.2 Terminology
4
1.3 Definitions and abbreviations
4
Abbreviation
4
2 Namespace
4
2.1 Notation
5
Scheme
5
Server
6
Service
6
Parameters
6
Examples
7
2.2 Usage Examples
7
3 WML
8
3.1 WML Syntax
8
3.1.1 The WML page
8
3.1.2 Entities
8
3.1.3 Elements
8
3.1.4 Attributes
8
3.1.5 Variables
9
3.2 WML Script Syntax
9
4 Implicit Calls Using WML Syntax
9
4.1 Elements
9
4.1.1 Prologue
9
4.1.2 Unicode
10
4.1.3 p element
10
4.1.4 br element
12

12
4.1.5 Input
12
<input/>
12
4.1.6 Card
13
4.1.7 Select
14
4.1.8 Option
14
4.1.9 Go
15
4.1.10 Setvar
16
4.1.11 Noop
17
4.1.12 Do
17
5 Explicit Calls Using WML Syntax
18
5.1 Descriptions for Toolkit Commands
18
5.1.1 Launch Browser
19
5.1.2 Play tone
19
Argument
19
5.1.3 Provide Local Information
20
5.1.4 Refresh
20
5.1.5 Run AT Command
21
5.1.6 Send USSD
21
5.1.7 Send SM
21
5.1.8 Set up call
22
5.1.9 Set Idle Mode Text
23
5.2 Descriptions for Interpreter Commands
23
5.2.1 Get Interpreter Version Information
23
5.2.2 Set return tar value
23
5.2.3 Get script buffer size
24
6 References
24

1 Introduction

1.1 Purpose

This document proposes how to form WML code to address USIM Application Toolkit commands or Plug-In extensions. The WML code is part of a deck delivered from a content provider, either as a response to a get or sent as a push to the client. The WML can also have been previously cached on the client device.

1.2 Terminology

This document uses the terms Implicit and Explicit calls when discussing access to Toolkit and Plug-In functionality. The distinction is that when the term Implicit is made it refers to cases where the WML code does not indicate that a specific command shall be called but the rendering of the WML will be encoded to use specific commands.

When using the term explicit, it refers to cases where the WML code specifically states that it intends to call a specific function.

As an example, one can say that the following WML code is an implicit call of the toolkit command displayText since that function will be used to render the WML.

<wml>
 <p>
 This will be displayed.
 </p>
</wml>

The explicit version of that WML would be

<wml>
 <go href=”efi://atk#displayText(‘This will be displayed.´)”/>
</wml>

1.3 Definitions and abbreviations

Abbreviation
Name

HT
Tabulation

CR
Carriage Return

LF
Line Feed

SP
Space

|
Or

2 Namespace

The WML code makes use of the concept of namespace to address the functionality discussed in this document. The namespace that is used in this document is presented in this chapter. At the end, there are some examples of the namespace usage. These examples use concepts introduced later in the document.

2.1 Notation

The namespace consists of four segments, of which two can be built into the hierarchical structure. The notation used to express the namespace is compliant with [RFC2396]. The necessary escape convention is also drawn from [RFC2396].

The naming convention, as defined below, makes use of the following notation, which is the simplified version of the notation found in [RFC2396].

· < >
Angle brackets denotes a non-terminal element

· []
Square brackets denote an optional section.

· |
Vertical bar denotes a pair of mutually exclusive options

· ()
Brackets are used to group elements

· *
Star denotes that the next element can repeat none or multiple times

The namespace contains of up to four segments, as shown below. There is a compulsory separator between the Scheme and the Server as well as between the Server and Service and between Service and Parameters (if parameters are present at all)

[Scheme] "//" Server "/" Service ["?" Parameters]

The hierarchical structure of the name of both Server and Service segments does not imply the hierarchical structure of classes, units or services. The hierarchy of names is used only to encourage logical grouping of names of servers and services.

Scheme

The scheme is the fixed component of each name that belongs to the namespace. The scheme element identifies the name as belonging to the namespace.

The scheme component is case-insensitive, e.g. efi:, Efi: or EFI: can be used.

Scheme =
"efi:"

Server

The server part identifies the component that provides the service. Following are the possible name structures that can be used to identify the server.

Server =
Toolkit-Command |

Client-Plug-in |

Server-Plug-in |

Interpreter-internal |

SIM-Manufacturer-Specific

Toolkit-Command = "atk"

Client-Plugin = "cpi"

Server-Plugin = "spi"

Interpreter Internal = “ipi”

SIM-Manufacturer-Specific = “ssp”

The server name is case-insensitive, regardless of the type of the server name in use.

Service

The service component identifies the service that is provided by the server. Services bear names that are unique within the server.

Service = Service-Name

Service-Name = Segment *(("/" Segment) | ("." Segment))

Segment = alphanum * alphanum

alphanum
as in [RFC2396]
The service name, as seen by the application, is case-sensitive.

Parameters

Parameters can be passed to the service by the namespace and take the form of named values.

Parameters = param "=" value *("&" param "=" value)

Param = alphanum * alphanum

Value = * Char

Char = unreserved | escaped

alphanum
as in [RFC2396]
unreserved
as in [RFC2396]
escaped
as in [RFC2396]

Names of parameters and their values are case-sensitive.

Examples

In the following tables, some examples of naming are shown.

Name
Identifies

WML:
EFI://atk/powerOffCard?card=<value>

WMLS:
efi://atk#powerOffCard(card)
The Toolkit command powerOffCard with argument card.

WML:
Efi://cpi/sign?doc=”<HTTP-encoded-text>”&keyId=<value>

WMLS:
efi://cpi#sign(doc, keyId)
The client side plug-in with name sign is called with argument doc containing the data to be signed and keyId identifying the key to be used.

WML:
eFI://spi/sendSM?text=”Hi Staffan”&recipient=”+46708135969”

WMLS:
eFi://spi#sendSM(text, recipient)
The server side plug-in with name sendSM is called to send an SM with contents as expressed by text to the recipient.

WML:
Efi://ssp/doSecretStuff?data=11624

WMLS:
efI://ssp#doSecretStuff(data)
Addresses the SIM Manufacturer specific function doSecretStuff with data as contained by data.

Table 1. Examples of the namespace usage

2.2 Usage Examples

<wml>
 <p>
 Do you want me to play a tone?
 </p>
 <go href="efi://atk#playTone(´03´,´01´,´10´,´Hej´)"/>
</wml>

<wml>
 <card id=test”>
 <p>
 Calling funny plugin
 <setvar name=age value="35"/>
 <go href=”efi://cpi#doSmartGuess(age,output)”/>
 Olle has a mobile of the brand $(output)!
 </p>
 </card>
</wml>

3 WML

This chapter describes the subset of WML, see reference [1], required to address the USAT interpreter functionality. Further it specifies the way functionality supported by USAT interpreter but not possible to address via WML [1] is addressed.

3.1 WML Syntax

3.1.1 The WML page

A WML page is either stored on a web server, or stored in compressed form on the USIM as a start-up file for the USAT interpreter.

3.1.2 Entities

Entities are used to specify characters in the document character set either which must be escaped in WML or which may be difficult to enter in a text editor. WML text can contain numeric or named character entities. All entities begin with an ampersand and end with a semicolon.

The following predefined named entities are supported:

Entity
Character

&
&

<
<

>
>

"
“

3.1.3 Elements

Elements may contain a start tag, content and an end tag. Elements have one of two structures:

<tag/>
or
 <tag> content </tag>.

3.1.4 Attributes

Attributes specify additional information about an element and are always specified in the start tag of an element. For example,

<tag attr="abcd"/>

All attribute values must be quoted using double quotation marks (").

Ref. [1] contains additional information about the attributes described in this specification, for instance which ones are mandatory and which ones are optional.

3.1.5 Variables

Variables can be used in the place of strings and are substituted at run-time with their current values. Anywhere the variable syntax is legal, an '$' character indicates a variable substitution. For example,

<p> My first name is $(FIRSTNAME).</p>

A variable can be set for instance by the setvar, input and select elements, see the element definitions below. A variable can have a value equal to the empty string ("").

3.2 WML Script Syntax

Some commands on the USAT Interpreter are not possible to address using WML [1] tags. In those cases, an EFI [4] syntax is used according to the following example:

<go href=”efi://atk#functionName(arg1,arg2,arg3)”/>

The syntax is described in chapter 2.

The function name is unique for the command. All commands are called with different arguments, see chapter 5, and the arguments are used for both input and output data. The name of the function defines which command shall be called.

4 Implicit Calls Using WML Syntax

Supported WML tags are described in this chapter.

4.1 Elements

The order of elements in a WML document is significant since it will be interpreted in sequence by the USAT INTERPRETER.

4.1.1 Prologue

A WML deck may contain an XML declaration and a document type declaration.

Example:

<?xml version="1.0"?>
<!DOCTYPE WML PUBLIC "-//xxxxxx"
 "http://www.3gpp.org/xxxxx">

4.1.2 Unicode

WML pages can be encoded either with 8-bit ASCII, which is default, or with UTF-8 character encoding. If a page is written in UTF-8, it should start with a prologue containing the attribute

encoding=”utf-8”

This will result in that all text strings that are sent between the gateway and the SIM are encoded with UCS2. UCS2 uses two bytes for every character i.e. double the space that is needed when using the GSM default alphabet. The picture shows an example of a UTF-8 WML page:

[image: image1.wmf]
The example shows how Unicode can be used for the texts that are to be input and output on the telephone, and for the contents of variables. It also shows that the Unicode variable contents can be passed to the content provider as a parameter to the go href command. However, the Western character set is always used for WML tags, variable names, attribute names, most attribute values, and URIs.

The whole URL in “go href”, including the query string, must be Western characters. However, the contents of the variables that are passed in the query string can be Unicode, e.g. in the example above, the contents of the variable DRINK is Unicode.

The WML element defines a WML document and encloses all information in the document. The WML element requires a start and an end tag.

<wml> content </wml>
Attribute
Argument

xml:lang
Language in which the document is written. Not currently used for anything by the Gateway.

4.1.3 p element

The p element limits a text section.

<p> content </p>

No arguments are supported for the p element.

In some cases, a text paragraph is automatically associated to a following input or select tag, see below.

The character < is forbidden in the text, as this is taken for the start of a tag.

If the encoding=”utf-8” attribute is set on the WML page, the text contains characters contained in the Unicode character set (see below).

4.1.4 br element

The br element inserts a CRLF sequence in the text.

Any blank spaces (HT|CR|LF|SP) following the br element will be removed.

No arguments are supported for the
 tag.

4.1.5 Input

The input element defines an input field where the user may enter information.

<input/>

The following attributes and arguments are supported

Attribute
Argument

name
Name of variable to set

type
Text (default)
password, meaning that the text is not echoed on the mobile phone.

value
The default value of the variable named in the name attribute.

format
Expected data format entered by the user.
*M - Any character (default)
*N - Any numeric character

emptyok
true - This input element accepts empty input.
false – Empty input not allowed.
If omitted, ‘true’ is assumed.

maxlength
Max number of characters that can be entered by the user

title
Prompting string

class
Optional type specification of the variable, used for conversion purposes in the Gateway. If omitted, “GSMDefault” is presumed in a Western character set page, and “UCS2” is presumed in a Unicode page.

If the attribute “title” is not included in the tag, the text immediately preceding the input tag is used as a prompting string for the input field. Omitting any prompting string will cause undefined results.

If the attribute “title” is included, the title will be used as the prompting string and if there is text immediately preceding the input tag this text will be displayed before the input title.

If the encoding=”utf-8” attribute is set on the WML page, the user of the mobile phone will be prompted for a Unicode string. In addition, the prompting string as well as the argument of the “value” attribute contains characters allowed by the Unicode character set.

The “class” attribute is used for conversion purposes when the variable is later on passed in a “go href” from the USAT Interpreter to the content provider. It may have the following values in the input tag:

· “GSMDefault”, the variable contains characters of the GSM default alphabet. When sent through the Gateway to the Content Provider, the data is converted to ASCII. This value is used by default in a page with the Western character set.

· “UCS2”, the variable contains UCS2-encoded characters. When sent through the Gateway to the Content Provider, the data is converted to UTF-8. This value is used as default in a Unicode page.

On many mobile phones, passwords may only be entered as numbers, not as text. input type=password will fail on these phones without the format=”*N” attribute.

Example 1:

<input title=”Please enter your phone number” type="text" name="PHONE" format="*N" maxlength="20"/>

Example 2:

Assume that Unicode is used for encoding the page, but the mobile phone only supports the Western character set for input. The variable is manually set to be of type “GSMDefault”:

<input title=”Please enter your name” name="MYNAME" class=”GSMDefault"/>

4.1.6 Card

The card element defines a container of text and elements in a WML document. A document may contain multiple card elements but card elements may not be nested. The first card element in a document is the start card. The card element requires a start and an end tag.

<card> content </card>
Attribute
Argument

id
Advisory information about the element.

newcontext
Current browser context should be re-initialised, i.e. all variables are erased. True or false.

Example:

<card id="card1">
Please enter your first name
<input type="text" name="firstname"/>
</card>

4.1.7 Select

The select element defines and displays a set of optional list items from which the user can select an item. An option element is required for each item in the list, see the option element section. The name of the menu, normally displayed by the telephone, is specified by the “title” attribute.

If the attribute “title” is not included the preceding text or text paragraph is automatically associated to the “select” tag and used as title text.

The select element requires a start and an end tag.

<select> content </select>
Attribute
Argument

Title
Title of the menu.

Name
Name of the variable to set.

Iname
Name of the variable to set with the index result of the selection. See ref. [1]

Either the name or iname attribute can be used. If the iname attribute is used the option value attribute will be overridden with the calculated index.

If the encoding=”utf-8” attribute is set on the WML page, the value of the “title” attribute contains characters allowed by the Unicode character set.

4.1.8
Option

The option element represents a list item in a list defined by the select element. The option element requires a start and an end tag.

<option> content </option>

The content consists of text that is displayed as the option text.

Attribute
Argument

Value
The select element name is set to this argument if this option element was selected.

Onpick
A destination href.

The content text to an option element is used as value argument if the value attribute is not present. Empty item text strings are not supported. If the encoding=”utf-8” attribute is set on the WML page, the content text as well as the argument of the “value” attribute contains characters allowed by the Unicode character set.

The option element can also specify a destination card in the same deck. The onpick event occurs when the user selects this option. In the example below, a jump will occur to “card2” if the user select the “BANKING” option, and to “card3” if the user selects the “GAMBLING” option.

Example:

<select title=”Please choose service“ name="selection">
<option value="Banking" onpick="#card2">BANKING</option>
<option value="Gambling" onpick="#card3">GAMBLING</option>
</select>

4.1.9 Go

The go element declares a go task to a href (URI) or a specified card in the document.

The URL might contain variable references in the host name:

<go href=”www.$(hostname).com”/>

as well as in the parameters of the URL, following the host name and a question mark:

<go href="www.3gpp.org?name=$(name)"/>

The following parameter names are reserved, i.e. they may not be used in the URL following a question mark:

Parameter Name
Description

WPLGN
Reserved for specifying name of server side plug-in to use when request is sent from mobile to content provider.

_PS_LI_
Reserved for Location Area Identification data when a positioning service shall be used.

_PS_NMR_
Reserved for network measurement data when a positioning service shall be used.

_PS_DT_
Reserved for date-time data when a positioning service shall be used.

_PS_IMEI_
Reserved for international mobile-entity identification-data when a positioning service shall be used.

_PS_TA_
Reserved for timing advance data when a positioning service shall be used.

The go element requires a start tag only.

<go />
Attribute
Argument

href
A destination URI.

The URL may be specified as http://host/path or https://host/path, in that way selecting if SSL shall be used for the web server connection or not. Relative URL:s are not supported.

Only Western characters are allowed in the URL (including the query string), even if the encoding=”utf-8” attribute is set on the WML page. However, the URL may contain variable references where the variables contain characters encoded with UTF-8.

Note that after each “go href”, no more WML tags should be executed. Using text or WML tags after a go href may cause problems for the application. Executing several go href:s in a row may cause undefined behaviour.

Example 1:

<input title="Variable" type="text" name="VARIABLE"/>
<go href="http://www.3gpp.org?f=$(VARIABLE)&l=StaticText "/>

Example 2:

<input title="First name" type="text" name="firstname"/>
<input title="Last name" type="text" name="lastname"/>
<input title="Age" type="text" name="age"/>
<go href="http://www.3gpp.org?f=$(firstname)&l=$(lastname)&a=$(age)&x=You can write whatever you want here"/>

Example 3:

<go href="#card1"/>

4.1.10 Setvar

The setvar element allows the author to set the value of a variable without performing any side effects. The var element requires a start tag only.

<setvar/>
Attribute
Argument

Name
Name of the variable to be set

Value
The variable is set to this argument.

Class
Optional type specification of the variable, used for conversion purposes in the Gateway. If omitted, “Binary” is presumed. See below.

If the encoding=”utf-8” attribute is set on the WML page, the argument of the “value” attribute contains characters allowed by the Unicode character set.

The “class” attribute is used for conversion purposes when the variable is passed in a “go href” from the USAT Interpreter to the content provider. It may have the following values:

· “GSMDefault”, the variable contains characters of the GSM default alphabet. When sent through the Gateway to the Content Provider, the data is converted to ASCII.

· “UCS2”, the variable contains UCS2-encoded characters. When sent through the Gateway to the Content Provider, the data is converted to UTF-8. Note that UTF-8 should normally not be stored directly in a variable on the card, as the encoding used by the card is UCS2.

· “Binary”, the variable contains binary data that is not to be converted. This is the default value if the “class” attribute is omitted. The “binary” class is used for instance when encrypted data is sent to the content provider.

The “setvar” element supports hexadecimal numeric character entities in the value attribute argument, e.g. "]".

Example 1:

<setvar name="Country" value="Sweden"/>

Example 2:

<setvar name="BYTES" value="&#e3;?"/>

Example 3:

<setvar name="BYTES" value="&#e3;?" class=”Binary”/>

4.1.11 Noop

The noop element specifies that nothing should be done, no operation. The noop element requires a start tag only.

<noop/>

4.1.12 Do

The “do” element is a general mechansim for the user to act upon the current card. The only supported type in the Gateway at the moment is accept, and that gives that the task following the "do" element is always executed.

Because of this the execution of the script does not stop at the "do" command. If a stop before the "do" command is wanted a construction of the page like in the example below can accomplish that. The execution will continue after the name has been input.
<do> content </do>

Attribute
Argument

Type
accept

Example:

<card>
<input title="Enter your age:" type="text" name="age"/>
<do type="accept">
<go href="http://www.3gpp.org/survey.asp?f=$(age)&name=Martin"/>
</do>
</card>
5 Explicit Calls Using WML Syntax

All arguments must be included in the call, but some of them can be empty. If the last column in the following tables indicates if the attribute is M-mandatory there must be a value included. If the column indicates O-optional the argument can be empty, but don't forget that is has to be included with a comma ','. All argument values can be enclosed by single quotes (‘) but if spaces or comma ‘,’ is to be included in the argument value, the value must be enclosed by simple quotes (‘). Double quotes (“) are not allowed in the argument values.

An argument value can include a variable, which is substituted at run-time with its current value.

In the following example assume that myname is set to John. The userdata will then have the value “Hi John!”

<wml>
<input title=”Please enter his name” name="myname"/>
<go href="efi://atk#sendSM('Hi $(myname)!',,, '0706754321', '+46705008999')"/>
</wml>

5.1 Descriptions for Toolkit Commands

The table assumes that the data types for the arguments to the WMLScript Syntax version are the same as for the WML Syntax.

WML Syntax
WMLScript Syntax

displayText?text=”<HTTP-encoded-text>”
#displayText(text)

getInKey?text=”<HTTP-encoded-text>”
#getInKey(text)

getInput?text=”<HTTP-encoded-text>”&length=<value>
#getInput(text,length)

getReaderStatus
#getReaderStatus()

launchBrowser?url=”<HTTP-encoded-string>”
#launchBrowser(url)

performCardAPDU?card=<value>&apdu=”<Base64-sequence>”
#performCardAPDU(card,apdu)

playTone?freq=<value>&duration=<time>
#playTone(toneId,timeUnit,duration,text)

powerOffCard?card=<value>
#powerOffCard(card)

powerOnCard?card=<value>
#powerOnCard(card)

provideLocalInfo?qualifier=<value>
#provideLocalInfo(qualifier)

Refresh
#refresh()

runATCommand?atCommand=”<Base64-sequence>”
#runATCommand(atCommand)

sendDtmf?dtmf=”<HTTP-encoded-string>”
#sendDtmf(dtmf)

selectItem?title=”<HTTP-encoded-text>”&items=”<Base64-sequence>”
#selectItem(title,items)

sendSM?message=”<Base64-sequence>”&recip=”<HTTP-text>”
#sendSM(message,recip)

sendSS?message=”<Base64-sequence>
#sendSS(message)

sendUSSD?message=”<Base64-seuqence>”
#sendUSSD(message)

setupCall?bNumber=”<Http-encoded-text>”&dtmfDigits=”<HTTP-encoded-text>”
#setupCall(bNumber,dtmfDigits)

SetupIdleModeText?text=”>HTTP-encoded-text>”
#setupIdleModeText(text)

For detailed information on the parameters and data format, see 3G TS 31.111, ref [5]. Although the “GO” tag is used, no message is sent to the server, as the routine is stored locally on the SIM.

5.1.1 Launch Browser

This command causes the SIM to request that the ME start a browser to interpret the content corresponding to the URL.

Function name: launchBrowser(URL)

Argument
Argument value

URL
The URL whose contents shall be displayed
M

5.1.2 Play tone

This command makes the mobile station play a tone.

Function name: playTone(toneId, timeUnit, duration, text)

Argument
Argument value

toneId
01: Dial tone
02: Called subscriber busy
03: Congestion
04: Radio path acknowledge
05: Radio path not available
06: Error / special information
07: Call waiting time
08: Ringing tone
M

timeUnit
00: minutes
01: seconds
02: tenths of seconds
M

duration
Coded as integer multiples of the time unit used, 01-FF.
M

text
Text to display.
O

In this example, the mobile phone is requested to play a congestion tone with duration of 10 seconds. Since text is omitted, nothing is displayed.

<wml>
<go href="efi://atk#playTone(03,01,10,)"/>
</wml>

5.1.3 Provide Local Information

This command is used to get location information from the mobile station. Different location parameters can be fetched from the mobile phone and put into a variable.

Function name: provideLocalInfo(qualifier, outputVar).

Argument
Argument value

commandqualifier
00: location information (7 bytes)
01: IMEI of ME (8 bytes)
02: Network measurement results and BCCH list (16 bytes)
03: Date, time and time zone (7 bytes)
04: Language setting (2 bytes)
05: Timing advance (2 bytes)
M

outputVar
Variable to contain output data.
M

In the following example, the IMEI is fetched and put in the variable POSITION. On the next line, the IMEI is sent to a content provider.

<wml>
<go href="efi://atk#provideLocalInfo(01,'imei')"/>
<go href=http://www.arne.se?IMEI=$(imei)/>
</wml>

5.1.4 Refresh

This command makes the SIM notify the mobile phone of changes in the SIM configuration as the result of SIM application activity. Depending on the command qualifier, different tasks will be performed. For more information see GSM 11.14, ref. [3].

Function name: refresh(qualifier, numberOfFiles, fileList)

Argument
Argument value

qualifier
00: SIM Initialization and Full File Change Notification
01: File Change Notification (requires file list)
02: SIM Initialization and File Change Notification (requires file list)
03: SIM Initialization
04: SIM Reset
M

numberOfFiles
Number of files included in the filelist.
O

fileList
List of files.
O

In the example, a SIM initialisation is requested, and in addition, the mobile phone in notified that two files on the SIM have been updated, 7F10/6F3A (the ADN list) and 7F20/6F30 (the PLMN selector file)

<wml>
<go href ="efi://atk#refresh(02,02,'3F007F106F3A3F007F206F30')"/>
<wml/>

Full paths are given to files. Each file path shall be at least 4 octets in length. An entry in the file description begins with 3FXX and there shall be no delimiters between files.

5.1.5 Run AT Command

This command makes the SIM request the ME to execute an AT Command.

Function name: runATCommand(command, text, iconId)

Argument
Argument value

command
The AT Command string that shall be executed
M

text
Text to be displayed to the user
O

iconId
The identifier of an icon to show instead of text
O

5.1.6 Send USSD

This command sends a byte string by the Unstructured Supplementary Service.

Function name: sendUSSD(text, ussd)
Argument
Argument value

text
Text to display.
O

ussd
According to GSM 02.30.
M

In the example, a USSD message with the contents “*21*1222#” is sent to the network. No text is displayed.

<wml>
<go href="efi://atk#sendUSSD(,'*21*1222#')"/>
</wml>

5.1.7 Send SM

This command sends a plain text SM to a particular destination.

Function name: sendSM(userData, pid, dcs, bNumber, smscAddress)
Argument
Argument value

userData
Text in the SM. Might contain variable references.
O

pid
Protocol identifier
O

dcs
Data Coding Scheme, according to GSM 03.38.
O

bNumber
The called party number.
M

smscAddress
The number of the service center.
O

In the example, a text SM with the contents “Hello!” is sent to MSISDN “0706754321”. As “PID” and “DCS” are omitted, the default values “0” and “242” decimally are used. It is made sure that the specified Service Center “+46705008999” is used, regardless of the default value in the mobile phone.

<wml>
<input title=”Please enter his name” name="myname"/>
<go href="efi://atk#sendSM('Hello $(myname)!',,, '0706754321', '+46705008999')"/>
</wml>

5.1.8 Set up call

This command requests the mobile phone to initiate a call.

Function name:
setupCall(qualifier, text, capability, timeUnit, duration, bNumber)
Argument
Argument value

qualifier
00: only if not currently busy
01: only if not currently busy, with redial
02: putting all other calls on hold
03: putting all other calls on hold, with redial
04: disconnecting all other calls
05: disconnecting all other calls, with redial
M

text
Text to display.
O

capability
Capability Configuration Parameters. For coding, see GSM 04.08.
O

timeUnit
00: minutes
01: seconds
02: tenths of seconds
O

duration
Coded as integer multiples of the time unit used, 01-FF. Defines the duration of time that automatic retries to set up the call will be made
O

bNumber
The called party number.
M

In the example, the SIM requests the mobile phone to, if not currently busy with another call, set up a call to “0707789613”. No text is displayed, no Capability Configuration Parameters are attached, and no automatic retries to set up the call will be made.

<wml>
<go href="efi://atk#setupCall(00,,,,,'0707789613')"/>
</wml>

5.1.9 Set Idle Mode Text

This command sets a text on the idle screen of the mobile station.

If no text attribute is included or the text attribute consists of an empty string, the idle text will be removed.

Function name: setIdleModeText(text)
Argument
Argument value

text
Text to display.
O

<wml>
<go href="efi://atk#setIdleModeText('Welcome')"/>
</wml>

5.2 Descriptions for Interpreter Commands

These are commands that are directed to the Interpreter itself and thus are internally handled.

WML Syntax
WMLScript Syntax

getInterpreterVersion
#getInterpreterVersion(outputVar)

setReturnTarValue?recordId=<value>
#setReturnTarValue(recordId)

getScriptBufferSize
#getScriptBufferSize(OutputVar)

5.2.1 Get Interpreter Version Information

This command reads the version information of the USAT Interpreter and assigns it to the specified variable.

Function name: getInterpreterVersion(outputVar)

Argument
Argument value

outputVar
Variable to contain output data.
M

In the example, the interpreter version information on the SIM is copied from 2700/6F07 and put in the variable version. On the next line, the version information is sent back to the Content Provider.

<wml>
<go href="efi://ipi#getInterpreterVersion('version')"/>
<go href=”http://www.myserv.com?VERSION=$(version)/>
</wml>

5.2.2 Set return tar value

This command makes sure that the next submit from the browser to the server has destination TAR address as in the specified record id of the setup file on the SIM.

Function name: setReturnTarValue(recordId)

Argument
Argument value

recordid
Record of elementary file. 01 and 02 supported.
M

In the example, the WML page “index.wml” will be fetched from the server with the TAR value specified in record 2 of the setup file 2700/6F01 on the SIM.

<wml>
<go href="efi://ipi#setReturnTarValue(02)"/>
<go href=”http://www.myserv.com/index.wml/>
</wml>

5.2.3 Get script buffer size

This command reads the current script buffer size and assigns it to the specified variable.

Function name: getScriptBufferSize(outputVar)

Argument
Argument value

outputVar
Variable to contain output data.
M

In the example, the size of the internal USAT INTERPRETER script buffer on the SIM copied put in the variable SZ. On the next line, it sent back to the Content Provider.

<wml>
<go href="efi://ipi#getScriptBufferSize('sz')"/>
<go href="http://www.myserv.com?sixe=$(sz)"/>
</wml>

6 References

[1] WML Specification

[2] xxxx

[3] GSM 11.14

[4] EFI Framework

[5] 3G TS 31.111

– 24 –

_1015691869.doc
[image: image1.png]

