Use of the USAT Interpreter for Remote Access

to the USIM Application Toolkit

Scott Guthery (sguthery@mobile-mind.com)

DRAFT of

January 29, 2001

1.0 Introduction

The USAT Interpreter [1, 2, 3] was originally designed to be used with mark-up languages such as WML, cHTML and Basic XHTML. Services written in these languages are stored on content servers, retrieved and translated by Internet gateways and sent in a byte-coded form to the USAT Interpreter on the 3G UICC. The byte codes include instructions that cause the USAT Interpreter to place calls on the USIM Application Toolkit (USAT) application program interface (API) [4, 5] on the mobile equipment. In this way the mark-up language pages are displayed on the mobile equipment and interaction with the user conducted.

Since it is possible to encode calls to all the elements of the USAT API using USAT Interpreter byte codes, in addition to being an attractive processor for mark-up languages, the USAT Interpreter is an attractive way to provide access to the USAT API from procedural languages such as C and remote query languages such as the Universal Resource Locator (URL) [18]. Furthermore, the name space and compositional capabilities of the USAT Interpreter provide a basis for a modest scripting capability for more efficient use of the air interface.

The URL interface to the USIM Toolkit API makes connecting Web-based services to the mobile equipment particularly easy. The URL approach doesn’t require the downloading of applets with the associated permanent commitment of SIM memory and costly administrative overhead.

This note discusses the use of the USAT Interpreter and its byte codes to provide programmatic and Web-based remote access to the USAT API.

2.0 Remote Access to the USAT API

Application programs running in the USAT application use the USAT API to interact with the mobile user. These programs are typically written in a procedural language and are translated into processor-independent byte codes (not to be confused with the USAT Interpreter byte codes) that are interpreted by a virtual machine in the SIM card to realize program execution. The Multos MEL virtual machine, the Microsoft RTE virtual machine and the Java Card virtual machine are all examples.

For program development and testing purposes and for some applications it is useful to be able to build programs that can access the USAT API but which run on a computer that is remote from the ME and its USIM. This can be accomplished by a well-known programming technique called a remote procedure call. When the program on the remote computer calls a function on one of the APIs, the name of the function call is packaged together with the arguments of the call, transported to the SIM chip, unpacked, executed, and the result of the execution if any transported back to the program on the remote computer.

Over the years number of mechanisms and protocols have been proposed and employed to transport procedural language function calls to distant APIs and to return the results of their execution [6, 7]. More recently an RPC mechanism that has become popular because of its use on the World Wide Web is the Universal Resource Locator (URL). Some previous work [8, 9] demonstrated a Web server running on a GSM SIM that accepts URL requests and returns replies. It is natural to extend this work to include remote invocation of the USAT API.

In both cases – the procedural language RPC and the URL RPC – an efficient binary representation of the remote procedure call, which includes some state preservation between messages, is needed. This efficient binary representation can be provided by the byte codes of the USAT Interpreter.

3.0 Syntax of USAT RPC

In the interest of efficiency in exposition, we will discuss the procedural language and URL forms of USAT RPC in parallel.

3.1 Syntax of Procedural Language RPC

Remote procedural language calls to the SAT can be taken directly from the on-card versions of these calls. Indeed, the goal is that applications developed on the remote procedure call interface can be moved easily – with no change whatsoever, if possible – to the UICC. For example, to play a middle C on the mobile equipment (ME) a SAT application written in C would place the call:

playTone(262)

This should be exactly the same call that a remote program makes to play a middle C on the ME with the only addition being that the remote program has to say which ME whereas for the SAT application it is obvious which ME is being addresses. Thus the RPC version of the call is:

playTone(“+16175551234”, 262)

3.2 Syntax of URL RPC

The use of Universal Resource Locators (URL) to implement remote procedure calls is standard practice on the World Wide Web [10, 11]. For example, a URL of the form:

http://www.acme.com/cgi-bin/lookup.exe?firstname=Sally&lastname=Green

activates the lookup program on the Web site www.acme.com and passes it values for two named arguments, firstname and lastname. The response to this request will be the result of running the lookup program with this input data.

3.2.1 Simple URL RPCs

We will use exactly the same URL syntax as a remote programmer interface to the functions on the USAT API. We extend the syntax slightly by adding the telephone number of the GSM phone whose USIM we wish to access [16].

For example, to play a middle C via the USAT API on the ME whose telephone number is +1 617 964 3963, we would code the following URL:

http://www.telecom.com/+16172903963/playTone?tone=262

In this example, www.telecom.com could be a server at the short message system center (SMSC) of the network operator or it could be an independent service provider. The /-delimited field after the server’s Internet address is the mobile phone number to which to send the following command. The material following the right-most / is called the command string and contains the command or commands that are to be executed on the SIM against the USAT API.

3.2.2 Compound URL RPCs

Multiple semi-colon separated commands can appear in the command string:

http://www.telecom.com/+16172903963/playTone?tone=262;selectItem?items=(A,B,C)

The response of such a compound RPC is the response of the last command executed. There may be side effects to the execution of intermediate commands.

3.3 RPC Return Value

The USIM’s response to a remote procedure call – either procedural language or URL – is an HTTP Entity-Body of type application/octet-stream consisting of the sequence of one-byte data-type tagged values in the order given in the entry point description. In the case of a compound URL RPC the Content-Length field of the response contains the total length of the sequence of all values in the response to the last successfully executed command in the command string. In the case of a procedural language call, the octet-stream is returned in an array.

The one-byte data-type tags used as the first byte of each element of the responses are:

	Tag (Binary)
	 Data Type

	'00000001'
	Single Byte Value

	'00000010'
	Two-Byte Word Value

	'00000100'
	Four-Byte Double Word Value

	'1xxxxxxx'
	Byte Array of Length 'xxxxxxx'

4.0 USIM Application Toolkit Remote Procedure Calls

The following sections include the description of the C programming language and URL command interface to each of the USAT entry points together with the response returned to the caller.

 4.1 Display Text

C Language: displayText(char *telephonenumber, char *text, unsigned char *response)

URL: displayText?text="<HTTP-encoded text>"

Action: Display the provided text on the screen of the ME.

Response:
	Order
	Data Type
	Value

	1
	Word
	Status Word from SIM

4.2 Get In Key

C Language: getInKey(char *telephonenumber, char *text, unsigned char *response)

URL: getInKey?text="<HTTP-encoded text>"

Action: Display the provided text on the screen of the ME and retrieve and return one key press.

Response:
	Order
	Data Type
	Value

	1
	Byte
	Key press

	2
	Word
	Status Word from SIM

4.3 Get Input

C Language: getInput(char *telephonenumber, int length, unsigned char *response)

URL: getInput?text="<HTTP-encoded text>"&length=<value>

Action: Display the provided text on the screen of the ME and return at least the number of characters given by length.

Response:
	Order
	Data Type
	Value

	1
	Array
	Array of key presses

	2
	Word
	Status Word from SIM

4.4 Get Reader Status

C Language: getReaderStatus(unsigned char *response)

URL: getReaderStatus

Action: Request that the ME return information about all interfaces to additional card readers as a response to the next call to Terminal Response.

Response:
	Order
	Data Type
	Value

	1
	Word
	Status Word from SIM

4.5 Perform Card APDU

C Language: performCardAPDU(char *telephonenumber, int card, unsigned char *apdu,

 unsigned char *response)

URL: performCardAPDU?card=<value>&apdu='<Base64 command>'

Action: Send the provided ISO 7816-4 command to the indicated card on the ME. The value for card is 0x10 through 0x17 and is the device identity value assigned by the ME.

Response:
	Order
	Data Type
	Value

	1
	Array
	Data returned from other card

	2
	Word
	Status Word from other card

	3
	Word
	Status Word from SIM

4.6 Play Tone

C Language: playTone(char *telephonenumber, int tone, unsigned char *response)

URL: playTone?tone=<value>

Action: Play a tone of the given frequency on the ME.

Response:
	Order
	Data Type
	Value

	1
	Word
	Status Word from SIM

4.7 Power Off Card

C Language: powerOffCard(char *telephonenumber, int card, unsigned char *response)

URL: powerOffCard?card=<value>

Action: Turns power off the indicated card on the ME. The value for card is 0x10 through 0x17 and is the device identity value assigned by the ME.

Response:
	Order
	Data Type
	Value

	1
	Word
	Status Word from SIM

4.8 Power On Card

C Language: powerOnCard(char *telephonenumber, int card, unsigned char *response)

URL: powerOnCard?card=<value>

Action: Turns power on the indicated card on the ME. The value for card is 0x10 through 0x17 and is the device identity value assigned by the ME.

Response:
	Order
	Data Type
	Value

	1
	Word
	Status Word from SIM

4.9 Provide Local Information

C Language: provideLocalInformation(char *telephonenumber, int qualifiers)

URL: provideLocalInformation?qualifier=<value>

Action: Requests ME to send local information in response to next Terminal Response command. The qualifier indicates which local information is requested.

	Qualifier Value
	Local Information Requested

	0x0001
	Mobile country code (MCC)

	0x0002
	Mobile network code (MNC)

	0x0004
	Location area code (LAC)

	0x0008
	Cell Id of the current serving cell

	0x000F
	IMEI of the ME

	0x0010
	Network measurement results (NMR)

	0x0020
	BCCH channel list

	0x0040
	Current date, time and time zone

Response:
	Order
	Data Type
	Value

	1
	Array
	Local Information

	2
	Word
	Status Word from SIM

4.10 Refresh

C Language: refresh(char *telephonenumber, unsigned char *response)

URL: refresh

Action: Requests ME to refresh its caches of information on the SIM card.

Response:
	Order
	Data Type
	Value

	1
	Word
	Status Word from SIM

4.11 Run AT Command

C Language: runATCommand(char *telephonenumber, unsigned char *command, int length,

 unsigned char *response)

URL: runATCommand?atCommand='<Base64 sequence>'

Action: Send the AT given command to the ME for execution.

Response:
	Order
	Data Type
	Value

	1
	Array
	Response from ME

	2
	Word
	Status Word from SIM

4.12 Select Item

C Language: selectItem(char *telephonenumber, char *title, unsigned char *items, int length,

 unsigned char *response)

URL: selectitem?title="<HTTP-encoded text>"&items='<Base64 sequence>'

Action: Display the given text on the ME and then send the item list to the ME and retrieve and return one selection from the item list.

Response:
	Order
	Data Type
	Value

	1
	Byte
	Selected item

	2
	Word
	Status Word from SIM

4.13 Send Short Message

C Language: sendShortMessage(char *telephonenumber, unsigned char *message, int length,

 unsigned char *response)

URL: sendShortMessage?message='<Base64 sequence>'

Action: Sends the given short message via the ME.

Response:
	Order
	Data Type
	Value

	1
	Word
	Status Word from SIM

4.14 Send SS

C Language: sendSS(char *telephonenumber, unsigned char *message, int length,

 unsigned char *response)

URL: sendSS?message='<Base64 sequence>'

Action: Sends the given supplementary service message via the ME.

Response:
	Order
	Data Type
	Value

	1
	Word
	Status Word from SIM

4.15 Send USSD

C Language: sendUSSD(char *telephonenumber, char *message, int length,

 unsigned char *response)

URL: sendUSSD?message='<Base64 sequence>'

Action: Sends the given unstructured supplementary service message via the ME.

Response:
	Order
	Data Type
	Value

	1
	Word
	Status Word from SIM

4.16 Setup Call

C Language: setupCall(char *telephonenumber, unsigned char *number, int numlength,

 unsigned char *dtmfDigits, int numdigits, unsigned char *response)

URL: setupCall?number=<HTTP-encoded text>&dtmfDigits=<HTTP-encoded text>

Action: Setup a call to the given number and send the given DTMF digits after the call has been connected.

Response:
	Order
	Data Type
	Value

	1
	Word
	Status Word from SIM

4.17 Setup Idle Mode Text

C Language: setupIdleModeText(char *telephonenumber, unsigned char *text, int length,

 unsigned char *response)

URL: setupIdleModeText?text="<HTTP-encoded text>"

Action: Instruct ME to display given text when in idle mode.

Response:
	Order
	Data Type
	Value

	1
	Word
	Status Word from SIM

4.18 Setup Menu

C Langauge: setupMenu(char *telephonenumber, unsigned char *title, int titlelength,

 unsigned char *items, int itemslength, unsigned char *response)

URL: setupMenu?title="<HTTP-encoded text>"&items='<Base64 sequence>'

Action: Instruct the ME to obtain from the user a selection from the given menu of items.

Response:
	Order
	Data Type
	Value

	1
	Byte
	Index of item selected

	2
	Word
	Status Word from SIM

4.19 Setup Event List

C Language: setupEventList(char *telephonenumber, unsigned char *events, int eventlength,

 unsigned char *response)

URL: setupEventList?events='<Base64 sequence>'

Action: Instruct the ME to monitor the provided list of events.

Response:
	Order
	Data Type
	Value

	1
	Byte
	Index of item selected

	2
	Word
	Status Word from SIM

4.20 Timer Management

C Language: timerManagement(char *telephonenumber, int timer, int action, int duration,

 unsigned char *response)

URL: timerManagement?timer=<value>&action=<value>&duration=<value>

Action: Perform the indicated action on the indicated timer.

	Action Value
	Action

	1
	Start the timer to run for given duration

	2
	Deactivate timer

	3
	Get current value of timer

Response:
	Order
	Data Type
	Value

	1
	Word
	Status Word from SIM

5.0 Use of the USAT Interpreter Byte Codes

There are 12 USAT Interpreter byte codes:

	Name
	Byte Code Tag

	Set Variable
	0x14

	Assign and Branch
	0x15

	Extract
	0x16

	Encrypt
	0x17

	Decrypt
	0x18

	Go Back
	0x19/0x99

	Branch on Variable Value
	0x1A

	Exit
	0x1B

	Execute USAT Command
	0x1C/0x9C

	Execute Native Command
	0x1D/0x9D

	Get Length
	0x1E

	Get TLV Value
	0x1F

Where two byte codes appear, the second indicates that the first byte of the data field is an attribute byte that modifies the default meaning of the byte code.

Obviously the “Execute USAT Command” byte code is used to cause the USAT Interpreter to place the call on the USAT API. The other byte codes can be used to create new remote procedure calls, to create a richer and more efficient execution environment for the remote procedure call, and to construct the RPC return value.

5.1 USAT Interpreter Scripts

It is possible to create new RPC functions by combining USAT Interpreter byte codes into scripts. Usage and the needs of application programmers will dictate what additional RPC functions are necessary. One capability of the USAT Interpreter, which would clearly be of use to surface on the RPC interface, is a remote procedure call to any of the available USAT Interpreter “plug-ins”.

5.1.1 Execute Native Function

C Language: executePlugIn(char *telephonenumber, unsigned char *AID,

 unsigned char *argument, unsigned char *response)

URL: executePlugIn?AID=<Base64 sequence>&argument='<Base64 sequence>'

Action: Executes a USAT Interpreter “plug-in” installed on the USIM, passing it the given argument.

Response:
	Order
	Data Type
	Value

	1
	Array
	Response of the native function

5.2 Flow Control for Compound URLs

In building compound URL commands, each command in a command string is regarded as a statement. Four commands are provided to branch to a statement other than the next one. Branching can be absolute or relative.

5.2.1 Branch

URL: branch?{absolute, relative}=<value>

Action: The next statement is absolute statement <value> or is offset from the current statement by <value> statements.

Response:
	Order
	Data Type
	Value

	1
	Word
	Current Statement Number

5.2.2 Branch Positive

URL: branchPositive?value=<value1>&{absolute, relative}=<value2>

Action: The next statement is absolute statement <value2> or is offset from the current statement by <value2> statements if <value1> is positive.

Response:
	Order
	Data Type
	Value

	1
	Word
	Next Statement Number

5.2.3 Branch Equal

URL: branchEqual?value1=<value1>&value2=<value2>&{absolute, relative}=<value3>

Action: The next statement is absolute statement <value3> or is offset from the current statement by <value3> statements if <value1> is equal to <value2>

Response:
	Order
	Data Type
	Value

	1
	Word
	Next Statement Number

5.2.4 Branch Not Equal

URL: branchNotEqual?value1=<value1>&value2=<value2>&{absolute, relative}=<value3>

Action: The next statement is absolute statement <value3> or is offset from the current statement by <value3> statements if <value1> is not equal to <value2>

Response:
	Order
	Data Type
	Value

	1
	Word
	Next Statement Number

5.2.5 Exit

URL: exit

Action: Terminates evaluation of the command string and returns control to the USAT Interpreter.

Response:
	Order
	Data Type
	Value

	1
	Word
	Exit Status SW

5.3 The USAT Interpreter Name Space

The USAT Interpreter defines a name space within which USAT Interpreter byte codes are executed. This name space can be used to add efficiency and security to remote procedure calls.

As a service to the URL procedural caller, values associated with the arguments accompanying a remote procedure are preserved. As a result if the argument is used by a following command but has the same value as the previous command, the argument need not be mentioned and its current value is used. For example, to send a command to card in slot 0x20 one need only code

powerOnCard?card=0x20; performCard?command='<Base64 command>'; powerOffCard

The value of ‘card’ set in the first command is preserved and used when ‘card’ is not explicitly specified in the second and third commands.

A variable can be set to the one of the results of the execution of a command by simply including the variable name preceded by a dollar sign ($) and setting it equal to the index of the result also preceded by a dollar sign ($). For example,

getInKey?text="<HTTP-encoded text>"&$key=$1

would set the variable ‘key’ equal to the value of first field in the sequence of fields returned by getInKey. For example,

getInKey?text="Which card?”&$key=$1;powerOnCard?card=plus(key,0x16)

Variables can also be explicitly manipulated by surfacing some of the USAT Interpreter byte codes as remote procedure calls.

5.3.1 Reset Name Space or Variable

C Language: reset(char *telephonenumber, unsigned long variablename, unsigned char *response)

URL: reset{?<variable name>}

Action: Without an argument sets the value of all variables in the name space to ‘not defined’. With an argument sets the value of the named variable to ‘not defined’.

Response:
	Order
	Data Type
	Value

	1
	Word
	Number of Variables Cleared

7.3.2 Set Variable Value

C Language: set(char *telephonenumber, unsigned long variablename, unsigned char *value,

 unsigned char *response)

URL: set?<variable name>=<value>

Action: Enters <variable name> into the name space and sets its value to <value>

Response:
	Order
	Data Type
	Value

	1
	Word
	

7.4 URL In-Line Functions

URL in-line functions are provided to form new values from existing values.

	In-Line Function
	Result

	plus(a, b)
	Sum of numerical values a and b

	minus(a,b)
	Difference of numerical values a and b

	times(a,b)
	Product of numerical values a and b

	divide(a,b)
	Integer part of division of a by b

	modulo(a,b)
	Remainder of division of a by b

	
	

	concat(a,b)
	Concatenation of byte string a and string b

	substr(a,m,n)
	Substring of byte string a from element m to n.

8.0 Examples

This section includes examples of the encoding of remote procedure calls to the USAT API. It will be completed when the USAT Interpreter byte codes have stabilized.

8.1 Play a Tone on the Mobile

The URL:

http://www.telecom.com/+16172903963/playTone?tone=262

would be encoded as follows in USAT byte codes:

	Byte
	Description

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

The transmission of this byte string to the USAT Interpreter would cause it to place a call on the USIM Application Toolkit API function ‘playTone’ with the argument 262 causing a middle C to be played on the ME.

8.2 Securely Retrieve Cell Identifier

The following command string causes a URL to be read from a PIN-protected file on the USIM, concatenated with the current cell identifier and then executed. This causes the current cell identifier of the mobile to a program on the server listed on the USIM.

http://www.telecom.com /+16172903963/

provideLocalInformation?qualifier=0xFF&$cellID=$4

 select?fid=0x2000;

 readBinary?offset=0&bytes=24&$url=$1;

 transmitURL?url=concat(url,cellID)

	Byte
	Description

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

The command string returned in response to this URL transmission could be just the exit command or it could be a follow-on command string that uses the retrieve cellID in some manner.

9.0 Summary

A method to remotely access the capabilities of the USIM Application Toolkit functionality using two remote procedure call techniques has been described. The methods include an efficient encoding for transmission over the short message system and use the capabilities of the USAT Interpreter. The method is in line with other recent initiatives to treat smart cards in general and USIMs in particular as Internet-connected nodes [12, 13, 14, 15, 19].

In contradistinction to some of these proposals however, the current proposal does not require that the application programmer or Web page designer learn a new language nor does it require the addition of new transmission protocols to the mobile network.

Bibliography

[1] 3GPP TS 21.112: “USAT Interperter (Stage 1).”

[2] 3GPP TS 21.212: “USAT Interpreter Architecture Description (Stage 2).”

[3] 3GPP TS 21.312: “USAT Interpreter Byte Codes.”

[4] GSM 11.14: "Digital cellular telecommunications system (Phase 2+); Specification of the SIM Application Toolkit for the Subscriber Identity Module - Mobile Equipment (SIM-ME) interface."

[5] 3GPP TS 31.111: “Technical Specification Group Terminals: USIM Application Toolkit (USAT).”

[6] Birrel, A. D., and Nelson, B. J., "Implementing Remote Procedure Calls". XEROX CSL-83-7, October 1983.

[7] Sun Microsystems, "RPC: Remote Procedure Call Protocol Specification". IETF RFC 1050, April 1988.

[8] Rees, Jim and Peter Honeyman, “Webcard: a Java Card web server. CITI Technical Report 99-3, Center for Information Technology Integration”. University of Michigan. October 1999. http://www.citi.umich.edu/projects/sinciti/smart card/webcard/citi-tr-99-3.html

[9] Guthery, Scott and Joachim Posegga, "The WebSIM: Clever Cards Listen to Port 80". Omnicard 2000, Berlin, January 2000.

[10] Di Giorgio, Rinaldo, "An Introduction to the URL Programming Interface". Java World, September 1999.

[11] Di Giorgio, Rinaldo, and Mike Montgomery, "Use software components to deploy applications with Java Cards: A URL-base approach for deploying smart cards on different systems". Java World, November 1999.

[12] Urien, Pascal, “WO010139A1: METHOD FOR COMMUNICATION BETWEEN A USER STATION AND A NETWORK, IN PARTICULAR SUCH AS INTERNET, AND IMPLEMENTING ARCHITECTURE”. Bull CP8, February 24, 2000.

[13] Urien, Pascal, “Internet Card, a smart card as a true Internet node”. Computer Communications, to appear August, 2000.

[14] SIMalliance, “SIM @lliance Toolbox: Pulling STK and Internet Content Together”. June 2000. (See www.simalliance.org for additional technical documents.)

[15] Vaha-Sipila, Antti, “URLs for GSM Short Message Service”. Internet Draft, May, 1999.

[16] Vaha-Sipila, Antti, “URLs for Telephone Calls”. RFC 2806, April 2000

[17] Farah, M., “Encrypted Hypertext Transfer Protocol -- UGGC/1.0”. Internet Draft, April 2000.

[18] Berners-Lee, T., Masinter, L. and M. McCahill, "Uniform Resource Locators (URL)". RFC 1738, December 1994.

[19] Moore, Keith “On the use of HTTP as a Substrate for Other Protocols”. Internet-Draft, November 2000.

[20] Howes, Tim and Smith, Mark, “The LDAP URL Format”. Internet Draft, April 2000.

