3GPP T3 ad hoc meeting #22

Madrid, Spain, 13-14 Dec, 2000
Tdoc T3z00352

3G TS 21.XXX V0.0.8 (2000-10)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Terminals;

USAT Interpreter Byte Codes

(Release 2000)

[image: image1.png]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organisational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organisational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organisational Partners' Publications Offices.

Keywords

USIM, UICC, Interpreter

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2000, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA,TTC).

All rights reserved.

Contents

3Contents

Foreword
4
1
Scope
5
2
References
5
3
Definitions and abbreviations
6
3.1
Definitions
6
3.2
Abbreviations
6
4.0
MODEL OF COMPUTATION
7
4.1
Navigation
7
4.2
Activation
7
5
TLV FORMAT
7
5.1
Attribute TLV
8
5.2 Use Cases
9
6
VARIABLES
9
6.1
Variable Identifiers
12
6.2
Variable Values
13
6.3
Variable Substitution
13
6.4
Variable Scope and Lifetime and Value Sharing
13
7
TLV TEMPLATES
13
7.1
Page
13
7.2
Navigation Unit
15
7.3
Anchor
16
7.4
Variable Identifier List
17
7.5
Inline Value
18
7.6
Input List
18
7.7
Ordered Pair
19
7.8
URL Reference
20
7.9
Secure Message
21
8
USAT INTERPRETER BYTE CODES
22
8.1
Set Variable
24
8.2
Set Variable Selected
24
8.3
Concatenate
26
8.4
Extract
27
8.5
Encrypt
27
8.6
Decrypt
28
8.7
Go Back
29
8.8
Go Selected
30
8.9
Branch On Variable Value
31
8.10
Exit
32
8.11
Execute STK Command
32
8.11.1
Result of an STK Call
34
8.12
Execute Native Command
35
8.12.1
Result of a Native Function Call
36
9
Error Coding
37
Annex A (Informative): Native Commands
37
ConvertTextPhoneNumberToGSMPhoneNumber
37
Annex B (Informative): List of Tags
38

Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

1
Scope

The present document describes the byte codes that are recognised by a USAT Interpreter. The byte codes primary purpose is to provide efficient programmatic access to the SIM Toolkit commands.

The design objectives of the byte code set are:

· Compact representation for efficient transmission over the air interface.

· Minimisation of USAT Interpreter complexity to minimize SIM footprint and ease compliance testing.

· Easily configured and extended.

· Source language independent although XML-style mark-up languages are explicitly envisioned.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

For a non-specific reference, the latest version applies.

[1]
SCP TS 102221: UICC-Terminal Interface; Physical and Logical Characteristics

[2]
3G TS 31.102: Characteristics of the USIM Application

[3]
SCP TS 102220: Numbering system for telecommunication IC card applications

[4]
3G TS 31.111: USIM Application Toolkit (USAT)

[5]
GSM 03.38: Digital cellular telecommunications system (Phase 2+); Alphabets and language-specific information

[6]
GSM 11.11: Digital cellular telecommunications system (Phase 2+); Specification of the Subscriber Identity Module – Mobile Equipment (SIM – ME) interface

[7]
GSM 11.14: Digital cellular telecommunications system (Phase 2+); Specification of the SIM Application Toolkit for the Subscriber Identity Module – Mobile Equipment (SIM – ME) interface

[8]
GSM 03.48: Digital cellular telecommunications system (Phase 2+); Security Mechanisms for the SIM Application Toolkit; Stage 2

[9]
ISO/IEC 7816-4: Identification Cards - Integrated Circuit Cards(s) with contacts: Part 4: Inter-industry commands for interchange

[10]
ISO/IEC 8824: Information technology – Open Systems Interconnection – Specification of Abstract Syntax Notation One (ASN.1)

[11]
ISO/IEC 8825: Information technology – Open Systems Interconnection – Specification of Basic Encoding Rules for Abstract Syntax Notation One (ASN.1)

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the following terms and definitions apply:
Anchor
A named location on a page to which references can be made and at which rendering by the USAT Interpreter initiated.

Attribute

Attribute TLV
A simple TLV whose value field contains a bit packing of one or more values. The individual values can typically be represented in 4 or fewer bits.

Gateway
A network program that translates from a source language to the USAT Interpreter byte codes. The gateway sits between the content provider’s server that contains pages written in the source language and a SIM containing the USAT Interpreter that will render these pages.

Homepage
A locally stored default page that can be explicitly seleced, perhaps using a soft key, or branched to in exception conditions.

Navigation Unit A block of a service description that can be referenced (by its anchor) and hence independently activated.
Page
The context of a USAT Interpreter rendering, the scope of USAT Interpreter variables and the unit of transmission between the gateway and a SIM containing the USAT Interpreter. Pages exist in source code form expressed in a mark-up language and in compiled form as USAT Interperter byte codes.

Service
A collection of pages that define a unitary capability of the mobile equipment from the point of view of the user. Examples include remote database access, electronic mail, and alerts.

String Pool
3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply

AID

Application IDentifier

cHTML

Compact HyperText Markup Language

DCS

Data Coding Scheme

HDML

Handheld Device Markup Language

HTML

HyperText Markup Language

HTTP

HyperText Transfer Protocol

NU

Navigation Unit
OTP

One Time Password
PIX

Proprietary application Identifier extension

STK

SIM Application Toolkit

TLV

Tag Length Value

TTML

Tagged Text Markup Language

URL

Universal Resource Locator

UICC

Universal Integrated Circuit Card

USIM

Universal Subscriber Identity Module

WBML

Wireless Binary Markup Language

WML

Wireless Markup Language

XHTML

Extensible Hypertext Markup Language

XML

eXtensible Markup Language

4.0
MODEL OF COMPUTATION

A service is mobile phone functionality as seen by the user, for example e-mail, information access or order entry.

A service is composed of one or more pages. Pages describe information presented to the subscriber and elicit input from the subscriber. The unit of transmission to the mobile equipment as well as the unit of USAT Interpreter interpretation is the page. The set of all pages describing a service is called the service description.

Pages are composed of navigation units. Anchors reference the beginning of navigation units.. Therefore anchors are points in a service description that can be branched to from other points in the service description. Each page has an implicit anchor at the beginning of the page.

In some mark-up languages pages are known as decks and anchors are known as cards.

The USAT Interpreter renders pages and provides a way to navigate from within pages to anchors belonging to the same page or other pages. The requirements of the USAT Interpreter include a way to automatically go back to previously visited anchors.

The USAT Interpreter manages a stack of N last anchors visited. Each anchor visited is added to this history list, except if an appropriate flag is set in the anchor. The back operation is interpreted relative to this history list and means go to the preceding anchor in the list.

When reaching the last byte code of a page, the USAT Interpreter enters a state in which the user can interact directly with the USAT Interpreter including the possibility of selecting the homepage.

4.1
Navigation

A page expressed as compiled byte code instructions is stored as a unit in the USAT Interpreter. The page is the smallest unit that the gateway can send to the USAT Interpreter. A page is partitioned into one or more navigation units each of which can be referenced using anchors. In other words, navigation units and anchors are included in pages.

The anchor is defined as being the elementary browsing target. The USAT Interpreter can skip from one anchor to another, backwards and forwards based either on control flow constructs or user interaction.

Pages are stored in the USAT Interpreter. The structure is described later in this document. These pages are stored either permanently in the USIM or received and interpreted on the fly.

Pages and navigation units are referenced using anchor names (URLs) as described below.

To be able to create multiple-page services, URL references are used to fetch new pages or to link pages together.

4.2 Activation

The USAT Interpreter can be activated in four ways: locally from the ME using menu selection, locally from the ME as the result of an event, by an incoming page as a result of a previous URL request from the USAT Interpreter or by an incoming page initiated by an application system (“push”).

With respect to activation locally from the ME using menu selection, the SETUP MENU command as described in 31.111 can contain one or more references to local or remotely stored URLs. When one of these URL is selected, the USAT Interpreter is activated and renders the referenced page, local or remote.

5
TLV FORMAT

The Tag Length Value (TLV) is the basic data structure element. It is defined in ISO/IEC 8824 and ISO/IEC 8825. If the value part of a TLV contains other TLV elements it is called a compound TLV or a template. If not, it is called a simple TLV.

LENGTH
VALUE
DESCRIPTION
M/O

1
T
Tag
M

1-3
L
Length of following data.
M

L
V
The data value associated with the tag.
O

The value of a TLV is the content of its value field and therefore evaluation of a TLV yields its value

5.1
Attribute TLV

ToDo: Re-incorporate TLAV again.

The '0' value of an Attribute bit is always the default value which is to be used by the USAT Interpreter, if the Attribute is not available in the TLV.
Some of the TLV templates discussed in this document can have associated with them various conditions, special cases and attributes. Normally these would be represented simply as TLVs in the value field of the template. In the case that the attribute value could be represented in one or two or at most a small number of bits, this would entail an unacceptable administrative overhead for use in wireless applications.

Therefore, a specific TLV is introduced whose value field contains a bit-packed representation of the values of all such conditions, special cases and attributes. This attribute encapsulating TLV is called the attribute TLV because a single byte can carry the value for more than one attribute.

LENGTH
VALUE
DESCRIPTION
M/O

1
‘03’
Attribute Tag
M

1-3
L
Length
M

L
V
Bytes with bit-packed attribute values
M

Binary attributes (present/absent, on/off, left/right, forwards/backwards, etc.) are a frequent case. Up to eight of such binary attributes can be packed into a single byte in the value field of a TLV.

[image: image2.wmf]Bit#

7

6

5

4

3

2

1

0

Attribute #1

Attribute#2

Attribute#3

Attribute#4

Attribute#5

Attribute#6

Attribute#7

Attribute#8

Attribute TLVs also countenance more general bit packing, for example:

[image: image3.wmf]Bit#

7

6

5

4

3

2

1

0

Attribute#2

Attribute#3

Attribute#5

Attribute #1

Attribute#4

The context, namely the template tag, completely determines the order, span and semantics of the bit-packed attribute values. A multi-bit attribute value may span two bytes but this situation should be avoided if possible.

5.2 Use Cases

The details of the encoding of attributes into the template and byte code TLVs below are TBD.

6
VARIABLES

Variables are name-value pairs. The name is called the variable identifier (Variable ID) and the value is called the variable value. Operations are provided to refer to a variable value by using its variable identifier and for setting and resetting the value associated with a variable identifier.
Variables can be stored in the following usage areas:

- Environment variable area

- Permanent variable area

· Temporary variable area
· Page string element
Variables have one of the following variable types:

- Binary
- SMS Default Alphabet coded string

· UCS2 coded string
The list can be extended.
6.1 Usage areas
Variables are referred by using a unified one byte notation. Bit 7 and bit 6 of the variable reference are used to indicate the belonging of a variable to a certain usage area. The remaining 6 bits are used to reference a certain variable within the usage area.
The coding of the variable reference is as follows:

Bit#
7
6
5
4
3
2
1
0

0
0

belongs to Environment usage area

0
1

belongs to Permanent usage area

1
0

belongs to Temporary usage area

1
1

belongs to Page String Element usage area

x
x
x
x
x
x
Identifier within usage area

The size of the different usage areas is to be defined by the card issuer and configured during the personalisation process of the USIM.
6.1.1 Environment variable usage area
This usage area consists of 3 different partitions:

· USAT Interpreter system information partition

· USIM issuer information partition
· End user information partition

6.1.1.1 Write access

6.1.1.2.1 USAT Interpreter System Information partition
The USAT Interpreter area is preloaded during the manufacturing process of the USIM or during the runtime of the USAT Interpreter. This area shall not be updated by administrative means after the personalisation process. The variables in this area may be changed by the USAT interpreter itself, if e.g. the configuration of the USAT interpreter changes (e.g. addition of a new plug-in).
At least the following information shall be stored:

Variable Reference
Description
Coding

'00'
USAT Interpreter Version

'01'
USAT Interpreter Profile (Features)

'02'
USIM Issuer

'03'
Terminal Profile as got at runtime

'04'
Maximum page size

...
sizes (partition)

'06' ... '13'
RFU

6.1.1.2.2 USIM Issuer information partition
This area can be updated by the USIM issuer by administrative means. The USIM issuer is responsible to allocate variable references for his own purposes in the range from '14' to '28'. The used variable references shall be published to content providers.
6.1.1.2.3 End user information partition

This area can be updated locally by the end user by an user interface provided by the USAT interpreter. Most likely, the user interface will be realised by an locally stored application accessible by the end user.

If the user decides to store information in this area, the following variable references shall be used by the USIM interpreter:

Variable Reference
Description
Coding

'29'
User name

'2A'
User e-mail address

'2B'
???

'2C'
Input needed

'2D'

'2E' ... '3F'
RFU

6.1.1.2 Read access

The information stored in all 3 partitions can be freely accessed by any page executed by the USAT interpreter.
6.1.2 Permanent variable area
This area is used to store permanently variables which can be accessed even after the USIM was reset. This area is organised as a cyclic variable buffer. If the buffer is full, a new entry shall delete the most oldest entries until enough space is made available to store the new entry.

Each entry consists of the service id of the page storing the variable in this area, the variable reference and the content of the variable. For pages using this variable area, it is mandatory to provide the service id in the page TLV. The assignment of service id is up to the USAT gateway.
6.1.2.1 Write access

Any page which provides a service id may store permanent variables.

6.1.2.2 Read access

The information can be freely accessed by pages providing a service id within the page TLV which is contained in the list of permanently stored variables. A page shall have access to those variables only, which have the same service id as stored in the page TLV.
6.1.3 Temporary variable area
Temporary variables are used during the execution of the current page. They may be shared with the following page.
Temporary variables are used for 2 purposes:

As variables defined and used within the current page.

As variables to be shared between the current page and the following page.
The current page shall define, which variables are to be kept for access of the following page. To ensure, that only a dedicated following page can access the variables defined to be sharable, the current page may protect them with a One Time Password (OTP), which has to be presented by the following page in order to get access to the shared variables.

6.1.2.1 Write access
TBD: Problem with caching, go back. One solution to set dynamic attribute.
OTP to be secured with keys: migration path to be specified.
Only the current page can allocate temporary variables. The current page can allocate temporary variables as many as it is space available in this area.
To indicate how to provide variables to the next page, the KeepAll Flag in the attribute of the current page and the OTP TLV and the KeepAliveList TLV within the current page TLV is used according to the following table:

KeepAll Attribute
OTP TLV
KeepAlive TLV

set
present
present
not valid, if occurs KeepAll Attribute shall be ignored, variables listed in KeepAlive shall be kept for the following page and shall be protected by OTP

set
present
not present
all temporary variables shall be kept for the following page and shall be protected by OTP

set
not present
present
not valid, if occurs, variables listed in KeepAlive shall be kept for the following page and shall not be protected by OTP

set
not present
not present
all temporary variables shall be kept for the following page and shall not be protected by OTP

not set
present
present
variables listed in KeepAlive shall be kept for the following page and shall be protected by OTP

not set
present
not present
not valid, no variables to be kept for the following page

not set
not present
present
variables listed in KeepAlive shall be kept for the following page and shall not be protected by OTP

not set
not present
not present
no variables to be kept for the following page

6.1.2.2 Read access
A current page can freely access temporary variables stored by this current page. Protected variables of a previous page shall only be accessible after a successful verification of the One Time Password set by the previous page to protect temporary variables to be shared between these two pages.
In order to unlock the shared protected variables the PageUnblock TLV has to be present within the page TLV. If the OTP in the PageUnblock TLV matches the OTP stored with the protected variables, the protected variables are made available to the current page as regular temporary variables.
6.1.2.3 Lifetime of temporary variables

By default, all variables which are not kept explicitly to be shared by the following page are deleted, after the page is processed.

If there are protected variables, but the current page does not contain a matching OTP the protected variables are deleted before processing the current page.
6.1.4 Page string element
This area is provided optionally by the current page. It can be used to store e.g. strings that are used several times in the current page.
The first string element in the string pool TLV shall be identified by the variable reference 'C8', the next with 'C9' and so on.

6.1.4.1 Write access

These variables are read only.

6.1.4.2 Read access

The information can be accessed by the current page.

6.2
Variable Values

The value associated with a variable identifier is in turn a length-byte string pair. The length is BER-encoded and is followed immediately by a sequence of bytes this long comprising the variable value itself. The type of a variable value is determined by the usage context.
The length of the variable value is restricted to 65535 ('FFFF') bytes. If needed, the length of the variable value is BER encoded. Each variable has one of the following type:

Type of variable
coding (3 bits)

Binary
'000'

SMS Default Alphabet coded string
'001'

UCS2 coded string
'010'

....
RFU

The USAT interpreter shall keep track of the type of a variable.

6.3
Variable Substitution

Variable references may appear in fields explicitly labelled as containing a variable identification.
Variable substitution can take place in the following TLVs:

- Generic STK interface

- Inline
...
TBD: Check when concatenate macro to be used.
In the case of running text, the escape characters 'C0'...'C7' are used to signal that the next byte is a variable reference.
Variable references shall never use the values 'C0' to 'C7' as these values are used as escape characters.
If the text contains an escape character as a regular character, that character has to be doubled in the text. If for instance an UCS2 string contains a tag without it being a variable reference, the value is byte-stuffed by doubling the value, i.e. {'C0'} becomes {'C0', 'C0'}, {'C1'}becomes {'C1', 'C1'}. Whenever a variable reference is encountered it is replaced by its value or its length and value dependent on the current context.
A variable value shall not contain a variable reference, i.e. an inserted variable value is not rescanned for variable references.

7
TLV TEMPLATES

7.1
Page

A page is the unit of USAT Interpreter rendering and the name scope of the temporary variables defined in its anchors.

LENGTH
VALUE
DESCRIPTION
M/O

1
T (see below)
Page Tag
M

1-3
L
Length
M

TLV
Attributes
O

[image: image5.wmf]Bit#

7

6

5

4

3

2

1

0

DCS Attribute

Dynamic/Static

KeepAll

RFU

RFU

RFU

RFU

RFU

DCS Attribute:
- used, if no explicit type of text is available

0: SMS Default Alphabet

1: UCS2

Dynamic /Static

0: static, page may be cached by USAT Interpreter

1: dynamic, USAT Interpreter must not cache page
KeepAll

0: not set, see table t.bd.

1: set, see table t.b.d

T
Page Identification
M

1-3
L
Length
M

L
V
Unique identification of the page
M

T
Page Unlock Code
O

1
L
Length (up to 8 bytes)
M

L
V
Page unlock code (one time password of the previous page)
M

T
One Time Password
O

1
L
Length (up to 8 bytes)
M

L
V
One time password (random value generated by the Application System)
M

T
Keep Alive List
O

1
L
Length (number of temporary variable references, up to 64 variables)
M

L
V
Variable reference
M

T
Service ID
O

1
N
Length
M

N
V
Unique identification of a service
O

T
String Pool
O

1-3
N
Length
M

N
LV
LV values of each string element in the string pool
O

TLVs
Navigation Units
M

7.1.1
Explanation of used TLVs
7.1.1.1
Page Identification

The content of this TLV is a sequence of bytes generated by the USAT Gateway to uniquely identify the page. This identification may not contain a #-character (coded '23'). This reference can later on be used by the interpreter to reference the page (e.g. for caching mechanisms or accessing the page by the end-user from the menu structure).
7.1.1.2
String Pool

The content of this TLV is a list of strings coded in with the alphabet indicated in the DCS attribute used within the page. Within the page the strings are referenced by using their variable references within the page string element area.
7.2.3
Navigation Unit

A navigation unit is a component of a page. It is named using an anchor. A navigation unit is referenced using an anchor reference.

LENGTH
VALUE
DESCRIPTION
M/O

1
‘01’
Navigation Unit Tag
M

1-3
L
Length
M

TLV
Attributes
O

1

[image: image6.wmf]Bit#

7

6

5

4

3

2

1

0

ResetVar

DoNotHistorize

ChainNextNU

RFU

RFU

RFU

RFU

RFU

ResetVar Attribute:

0: Keep variables values from previous navigation unit(s) in this page

1: Reset all the temporary variables when entering the navigation unit

DoNotHistorize:

 0: Enter the navigation unit’s anchor in the history list

 1: Do not insert this navigation unit’s anchor reference in the history list.

ChainNextNU:

0: Wait for user interaction at the end of the navigation unit

1: Start rendering of the next navigation unit in the page after execution of the last byte code of this navigation unit.

T
Anchor (Navigation Unit Identification)
O

1
L
Length

L
V
Unique identification of navigation unit within the page. A sequence of bytes generated by the USAT Gateway to uniquely identify the Anchor.This identification may not contain a #-character (coded '23').

TLVs
USAT Interpreter Byte Codes
O

7.3
Anchor Reference
This tag is used to refer to a navigation unit in the current page or in another page.

LENGTH
VALUE
DESCRIPTION
M/O

Anchor Reference

1
‘02’
Anchor Reference Tag
M

1-3
L
Length
M

L
V
Anchor Reference Name
M

An anchor reference name is a page identification followed by a '23' (“#”) and the anchor (name of a navigation unit) within the page. Either the page identification or the anchor (but not both) can be omitted. If the page identificationis omitted the reference is to an anchor on the current page. If the anchor name is omitted the reference is to the beginning of the referenced page.

7.4
Variable Identifier List

This tag is used to assign names to an LV sequence.

LENGTH
VALUE
DESCRIPTION
M/O

Variable List

1
‘0A’
Variable List Tag
M

1-3
L
 Length
M

L
V
Variable IDs
M

7.5
Inline Value

This template inserts a byte array, which often is simply running text, at the point of its appearance. The template is thus simply a way to encapsulate an immediate value.

LENGTH
VALUE
DESCRIPTION
M/O

Inline value

1
‘04’
Inline Value Tag
M

1-3
L
Length
M

3
TLV
Attributes
O

[image: image7.wmf]Bit#

7

6

5

4

3

2

1

0

UCS2

SMS

RFU

RFU

RFU

RFU

RFU

RFU

UCS2 Attribute:

0: Not UCS2 coding

1: UCS2 coding

SMS Attribute:

0: Not SMS 7-bit default alphabet coding

1: SMS 7-bit coding

L-3
V
Inline value content
M

7.6
Input List

This element contains a list of other elements.

LENGTH
VALUE
DESCRIPTION
M/O

Input List

1
‘05’
Input List Tag
M

1-3
L
Length
M

L
TLVs
Variable Identifier Lists and Inline Values
M

7.7
Ordered Pair

This tag is used to associate two TLVs. A example usage is to associate a URL with a variable value or a key hit. The order of the two TLVs within an ordered pair is specified.

LENGTH
VALUE
DESCRIPTION
M/O

Ordered Pair

1
‘06’
Ordered Pair Tag
M

1-3
L
Length
M

TLV
First TLV
M

TLV
Second TLV
M

7.8
URL Reference

This tag can represent a page, an anchor within the current page, or an anchor within another page.

LENGTH
VALUE
DESCRIPTION
M/O

URL

1
‘09’
URL Tag
M

1-3
L
Length
M

TLV
Attributes
O

[image: image8.wmf]Bit#

7

6

5

4

3

2

1

0

POST/GET Method

Send Referer

Forced Resident

RFU

RFU

RFU

RFU

RFU

Post/Get Method Attribute:

0: Get Method

1: Post Method

SendReferer Attribute:

0: Page and Anchor identifiers not sent

1: Page and anchor identifiers sent

Forced Resident:

0: Page reference is not SIM-resident

1: Page reference is SIM-resident

TLV
Anchor Reference or Variable Identifier (containing the Anchor Reference)
M

TLV
URL Parameters

1-3
L
Length

V
URL parameters (text containing variable references)

ToDo: Insertion of variable references by USAT Interpreter
Insertion character indicates variable type indicated by 3 bits (e.g. 'C1' = SMS default alphabet string)

In this context the variables must be substituted by length and value.
7.9
Secure Message

This tag is used for end-to-end encrypted packets moved between the USIM and the content provider server.

The principle is that a structure is exchanged between an application server and the USAT Interpreter. In contrast to GSM 03.48 padding and sequence counters are not supported in the Secure Message template.

Kic and Kid are pointing to 16 bytes keys for Triple DES.

The MAC has a fixed length of 8 bytes and is part of the encrypted message. For this reason the following part of the SecMsg will be ciphered: <MAC value><DataBlock value><Padding>. The MAC calculation is done over <DataBlock value><Padding> and before encryption and after decryption.

The data block is organised as a list of LV corresponding each to a logical value.

The cryptographic byte code is then able to find the structure of data, and offers the service of allocating the values to a set of USAT Interpreter variables.

For message creation on the USAT Interpreter, a list of variable is concatenated prior to be ciphered and sent to the application server.

It is assumed that the maximum length of the Secure Message fits in a max variable length (255) in mobile terminated direction, and in one SMS in mobile originated direction.

1
‘08’
Secure Message Tag
M

1-3
L
Length
M

Key identification: Same coding as 3.48 (SPI Subset, Kic/Kid)
M

1
SPI
SPI value (00, 10, 100, 110 binary values allowed)

1
Kic
Kic: Cryptographic key index

1
Kid
Kid: Checksum key index

MAC element (8 bytes)
O

1
L
Length

L
V
Value

Enciphered or clear text data block
O

1
L
Length

L
V
Value structured as a series of LVs before ciphering

8
USAT INTERPRETER BYTE CODES

Each USAT Interpreter byte code is a compound TLV. Each byte code has its own tag value, an optional Attribute TLV and a list of argument TLVs. Argument TLVs if present must appear in the order given.

LENGTH
VALUE
DESCRIPTION
M/O

1
T
Byte Code Tag
M

1-3
L
Length
M

TLV
Attribute TLV
O

TLV
Argument TLVs
O

There are currently twelve USAT Interpreter byte codes. They make use of the USAT Interpreter templates as follows:

Attribute TLV
Variable Reference
Variable List
Inline Value
URL
Ordered Pair
Secure Message
Input List

SET VARIABLE

SET VARIABLE SELECTED

CONCATENATE

EXTRACT

ENCRYPT

DECRYPT

GO BACK
1

GO SELECTED

BRANCH ON VARIABLE VALUE
1

EXIT
1

EXECUTE STK COMMAND
1

EXECUTE NATIVE COMMAND

8.1
Set Variable

SET VARIABLE

Description
Sets one or more variables to constant values or variable references.

LENGTH
VALUE
DESCRIPTION
M/O

1
‘81’
Set Variable Byte Code
M

1-3
L
Length
M

Identifier/ Value – one or more instances of …
M

1
Variable ID
Identifier of the variable to set.

TLV
New Value for Variable

1
‘04’ or ‘0A’
Inline Value Tag or Variable Identifier List Tag

1-3
L
Length

L
V
Value to which variable is to be set.

ERROR CODES
DESCRIPTION
Action

No error
OK
Continue

Syntax error
Syntax error
Stop

Reference to undefined
Reference to undefined variable
Stop

Problem in memory management
Memory allocation problem
Stop

8.2
Set Variable Selected

SET VARIABLE SELECTED

Description
Display a menu on the ME and assigns a selected value to a variable.

LENGTH
VALUE
DESCRIPTION
M/O

1
‘82’
Set Variable Selected Byte Code
M

1-3
L
Length
M

Destination variable identifier
M

1
Variable ID
Identifier of the variable to set.

TLV
Select Item Title
O

1
‘04’ or ‘0A’
Inline Value Tag or Variable Identifier List Tag

1-3
L
Length

L
Value
Value

TLVs
Select Items – One or more of the following …
M

1
‘06’
Ordered Pair Tag

1-3
L
Length

TLV
Displayed Item

TLV
Value to be assigned to Variable ID

ERROR CODES
DESCRIPTION
Action

No error
OK
Continue

Reference to undefined
Reference to undefined
Stop

Problem in memory management
Memory allocation problem
Stop

Syntax error
Syntax error (for example: try to initialise a text element)
Stop

STK use failed
STK command embedded failed.(STK command not being built)
Stop

8.3
Concatenate

CONCATENATE

Description
Concatenates two or more values and stores the result in a variable.

LENGTH
VALUE
DESCRIPTION
M/O

1
‘83’
Concatenate Byte Code
M

1-3
L
Length
M

1
Variable ID
Variable to contain the resultant concatenation
M

TLVs
Parts - One or more of the following …
M

1
‘04’ or ‘0A’
Inline Value Tag or Variable Identifier List Tag

1-3
L
Length

L
V
Value

ERROR CODES
DESCRIPTION
Action

No error
OK
Continue

Syntax error
Syntax error
Stop

Problem in memory management
Memory allocation problem
Stop

Reference to undefined
Reference to undefined
Stop

Type mismatch
Incompatible DCS in variables
Stop

8.4
Extract

EXTRACT

Description
Extracts a byte array from a value and stores the result in a variable.

LENGTH
VALUE
DESCRIPTION
M/O

1
‘84’
Extract Byte Code
M

1-3
L
Length
M

1
Variable ID
Variable that will contain the result
M

1
Variable ID
Variable containing the source array
M

1
I
Start index in the byte array
M

1
N
Number of bytes to extract
M

ERROR CODES
DESCRIPTION
Action

No error
OK
Continue

Syntax error
Syntax error
Stop

Problem in memory management
Memory allocation problem
Stop

Reference to undefined
Reference to undefined variable
Stop

Out of range
Index out of range.
Stop

8.5
Encrypt

ENCRYPT

Description
Encrypts a set of values to a data block

If the length of the data to encrypt is not a multiple of 8 bytes(for DES), it is padded with NULL characters. In that case, the result variable is longer than the sum of the LVs of the plain text and rounded to the upper multiple of 8 (for DES).

LENGTH
VALUE
DESCRIPTION
M/O

1
‘85’
Encrypt Byte Code
M

1-3
L
Length
M

Key element reference for encrypt and sign
M

1
SPI
SPI

1
Kic
Kic

1
Kid
Kid

1
Variable ID
Variable to hold created Secure Message TLV
M

TLVs
Variable List for encryption
M

ERROR CODES
DESCRIPTION
Action

No error
OK
Continue

Syntax error
Syntax error (for example try to initialise a text element)
Stop

Problem in memory management
Memory allocation problem
Stop

Reference to undefined

Stop

Security problem

Stop

8.6
Decrypt

DECRYPT

Description
Decrypt a Secure Message, verify MAC and assign results to a variable list

LENGTH
VALUE
DESCRIPTION
M/O

1
‘86’
Decrypt Byte Code
M

1-3
L
Length
M

Input data block element in Secure Message template
M

1
‘04’ or ‘0B’
Inline Value Tag or Variable Identifier List Tag

1-3
L
Length

L
Value
Value

Output Variable List reference
M

1
‘0A’
Variable List

1-3
L
Length

L
Value
Value

ERROR CODES
DESCRIPTION
Action

No error
OK
Continue

Syntax error
Syntax error (for example try to initialise a text element)
Stop

Problem in memory management
Memory allocation problem
Stop

Reference to undefined
Reference to undefined
Stop

Security problem
MAC not verified
Stop

If both signature and encryption are used, then calculation of the signature to be checked must be done on the decrypted message

8.7
Go Back

GO BACK

Description
This byte code forces branching to the last anchor pushed on the history list.

No impact on the history.

LENGTH
VALUE
DESCRIPTION
M/O

1
‘87’
Go Back Byte Code
M

1-3
L
Length
M

TLV
Attributes
O

[image: image9.wmf]Bit#

7

6

5

4

3

2

1

0

Restart Current Anchor

RFU

RFU

RFU

RFU

RFU

RFU

RFU

 Restart Current Anchor Attribute:

0: Do not restart current anchor

1: Refresh

ERROR CODES
DESCRIPTION
Action

No error
OK
Continue

Jump to undefined
Reference to undefined (case of history empty)
Stop

8.8
Go Selected

GO SELECTED

Description
Jumps to URL depending on user input. If a single URL is provided, the byte code acts as a unconditional branch without user input to that URL.

LENGTH
VALUE
DESCRIPTION
M/O

1
‘88’
Go Selected Byte Code
M

1-3
L
Length
M

TLV
Select Item Title
O

1
‘04’ or ‘0A’
Inline Value Tag or Variable Identifier List Tag

1-3
L
Length

L
V
Value

TLVs
Sequence of Ordered Pairs or a single URL or anchor reference
M

ERROR CODES
DESCRIPTION
Action

No error
OK
Continue

Problem in memory management
Memory allocation problem
Stop

Reference to undefined

Stop

Jump to undefined
Reference anchor not found.
Stop

STK use failed
Case of command too big for the buffer
Stop

Out of range
Too long strings concatenated.
Stop

8.9
Branch On Variable Value

BRANCH ON VARIABLE VALUE

Description
Compares a variable to a list of values that have an associated URL and when a match is found, the associated URL is executed.

LENGTH
VALUE
DESCRIPTION
M/O

1
‘8’9
Branch On Variable Value Tag
M

1-3
L
Length
M

TLV
Attribute
O

[image: image10.wmf]Bit#

7

6

5

4

3

2

1

0

Case Sensitive

RFU

RFU

RFU

RFU

RFU

RFU

RFU

Case Sensitive Attribute:

0: Comparison is not case sensitive

1: Comparison is case sensitive

TLV
Variable Identifier List: Match Value
M

TLVs
Sequence of Ordered Pairs: If match value equals first value, to go second value which is assumed to be a URL.
M

TLV
URL: If no match is found, go to this URL
O

ERROR CODES
DESCRIPTION
Action

No error
OK
Continue

Reference to undefined

Stop

Jump to undefined
Reference anchor not found.
Stop

8.10
Exit

EXIT

Description
The Exit macro stops the USAT Interpreter.

In the case of USAT Interpreter launched by outside application, an output variable list can be provided to the caller.

LENGTH
VALUE
DESCRIPTION
M/O

1
‘8A
Exit Byte Code
M

1-3
L
Length
M

TLV
Attribute
O

[image: image11.wmf]Bit#

7

6

5

4

3

2

1

0

Zeroize Buffer

RFU

RFU

RFU

RFU

RFU

RFU

RFU

Zeroize Buffer Attribute:

0: Do not zeroize the execution buffer on exit

1: Zeroize the execution buffer on exit

TLV
Variable List of values returned by anchor.
O

1
‘0A’
Variable List Tag

1-3
L
Length

L
V
Value

ERROR CODES
DESCRIPTION
Action

No error
OK
Stop

Reference to undefined

Stop

8.11
Execute STK Command

EXECUTE STK COMMAND

Description
Execute an STK command using the provided arguments.

LENGTH
VALUE
DESCRIPTION
M/O

1
‘8B’
Execute STK Command Byte Code
M

1-3
L
Length
M

TLV
Attribute
O

[image: image12.wmf]Bit#

7

6

5

4

3

2

1

0

LV Encapsulation Required

RFU

RFU

RFU

RFU

RFU

RFU

RFU

LV Encapsulation Required Attribute:

0: TLV proactive command specific response data is stored as
 LV in the result variable.

1: Proactive command specific response data is encapsulated
 in a TLV.

Command type
M

1
Cmd type
Section 12.6 of the GSM 11.14 (Version 7.2)

Command qualifier value
M

1
Cmd qual.
Section 12.6 of the GSM 11.14 (Version 7.2)

Destination device
M

1
Dest dev.
Section 12.6 of the GSM 11.14 (Version 7.2)

Result value
M

1
Variable ID
Variable to hold the output of the STK command

TLV
Input List
O

ERROR CODES
DESCRIPTION
Action

No error
OK
Continue

Reference to undefined

Stop

Problem in memory management
Memory problem in the preparation of the STK command
Stop

Syntax error
Try to initialise a text element
Stop

STK use failed

Stop

To Do: Handling of UCS2 type variables to be explained:Alpha-Id,Item: '80'

TextString, USSD: DCS, substitution within parsing of generic command.
The Variable IDs in the Variable Identifier Lists are evaluated and the results concatenated together with the Inline Value to form the argument to the STK command. In a typical case each Inline Value and Variable ID in the Input List would evaluate to a complete TLV that was one of the arguments to the STK command. Due to the simple serial concatenation of the results of these evaluations however this need not necessarily be the case.
When executing an STK byte code, the USAT Interpreter issues a normal STK command to the mobile using the SIM Toolkit protocol. The translation procedure from the Execute STK Command TLV to an STK command can be visualized as follows:

[image: image13.wmf]

STK Bytecode

STK Command

+ 5

Len

Cmd type

Cmd qual

Dest dev

TLV n

TLV 1

D0

Len

01

Nb

Ty

Qual

03

02

02

Command tag

81

Dest

B

ytes

Bytes

More TLVs…

More Bytes…

Command

details tag

Device

identities tag

Source device tag

(SIM= 0x81)

Command

details length

Device

identities length

Translation of a STK byte code in a STK Commands

Var

8.11.1
Result of an STK Call

The result is of executing a STK command is a TLV as defined in the GSM 11.14. The environmental variable ErrorCode is set to the status word returned by the command.

The output value is the proactive command specific response data object (as defined in the GSM 11.14) produced by the execution of the command.

As some outputs from the proactive commands are organised as a suite of TLVs, when assigned to a variable, the output of this byte code is optionally encapsulated in a LV structure using the attribute TLV. The manipulation of such a variable is possible with the extract byte code. It can also be sent to the server as is.

8.12
Execute Native Command

This byte code is used to execute a operating system call, “plug-in” or application external to the USAT Interpreter.

EXECUTE NATIVE COMMAND

Description
This byte code starts the execution of an external function or application external to the USAT Interpreter. The attribute indicates if the execution returns to the USAT Interpreter or not.

Arguments are passed for input and output. The output is stored in a list of variables.

LENGTH
VALUE
DESCRIPTION
M/O

1
‘8C’
Execute Native Command Byte Code
M

1-3
L
Length
M

TLV
Attributes
O

[image: image14.wmf]Bit#

7

6

5

4

3

2

1

0

Exit

RFU

RFU

RFU

RFU

RFU

RFU

RFU

Exit Attribute:

0: Behaves as a function call to the native command

1: Behaves as a continuation; execution does not return to page.

1
L
Length of following AID

L

AID of application or plug-in

TLV
Input List of Arguments
O

TLV
Variable Identifier List for Output
O

ERROR CODES
DESCRIPTION
Action

No error
OK
Continue

Reference to undefined
Reference to undefined
Stop

Jump to undefined
Execute element does not exist
Stop

Problem in memory management
Memory problem in the preparation of the structure
Stop

User Abort
Execute was aborted by user
Stop

Syntax Error
Incorrect number of arguments passed to the execute element.
Stop

Execution Failure
Execute element generated an internal error.
Stop

8.12.1
Result of a Native Function Call

If the native function call returns, the values produced by the call are the values associated with the variable references in the output list.

9
Error Coding

For the indication of errors occurring during byte code processing error codes listed in the following table are defined. This information can be accessed using the Status Word variable.

 The coding of the error codes is in analogy to Execute command done in 2 bytes (selector and information byte)

Type of error
Coding

Successful Completion
‘0000’

Communication problem
‘6F01’

Syntax error
‘6F02’

STK command failed
‘6F03’

Jump to undefined
‘6F04’

Problem in memory management
‘6F05’

Security problem
‘6F06’

Reference to undefined
‘6F07’

Arithmetic failure
‘6F08’

Type mismatch
‘6F09’

Out of range
‘6F0A’

Temporary problem
‘6F0B’

User abort
‘6F0C’

Unknown tag
‘6F0D’

URL not found
‘6F0E’

Execute failed
‘6F0F’

General unspecific error
‘6FFF’

Annex A (Informative): Native Commands

Each native command or plug-in is identified by an AID. Where a plug-in is common across application providers, the 3GPP RID ('A000000087') shall be used together with a PIX from Appendix A of 31.111. The following is an example of a commonly used plug-in.

ConvertTextPhoneNumberToGSMPhoneNumber

Description: Allows converting a text string containing a phone number to a GSM 11.11 dialling number string, before using it in a Setup Call command (for example).

Attribute byte: Exit Attribute not set (call)
Input arguments:

Variable containing a text phone number (result of a user input for example)

Output arguments:

Variable to contain the new phone number format: Length + TON/NPI + swapped nibbles coded according EFADN of GSM 11.11

Errors:

EXECUTE tag will return “Execution Failure” in case of conversion error.

Remarks:

· The input variable must contain only digit characters and optionally “+”,.”*”, “#”, and “,” characters in SMS alphabet

· The ‘+’ sign or a double zero (“00”) as first part of the input variable indicates an international number (TON/NPI will be set to ‘91’), in the other case the TON/NPI will be set to national (‘81’).

· The resulting value contains the length in its first byte (the total number of following bytes, including the TON/NPI byte) and is composed of digit characters and “A”, “B”, “C” signs, as specified in GSM 11.11 (EFADN coding and extension 1).

Examples:

· The execution of the plug-in with an input variable containing the string “+33442365000” will produce in the resulting variable the bytes ‘07’ ‘91’ ‘33’ ‘44’ ‘32’ ‘56’ ‘00’ ‘F0’ and no error will be produced.

· The execution of the plug-in with an input variable containing the string “0442365000” will produce in the resulting variable the bytes ‘06’ ‘81’ ‘40’ ‘24’ ‘63’ ‘05’ ‘00’ and no error will be produced.

· The execution of the plug-in with an input variable containing the string “04Z42365000” will not produce anything in the resulting variable and the error “Execution failure” will be produced.

Annex B (Informative): List of Tags

Tag
Value

Data Structures

Anchor
‘A1’

Anchor Reference
‘A2’

Attribute
‘A3’

Inline Value
‘A4’

Input List
‘A5’

Ordered Pair
‘A6’

Page
‘A7’

Secure Message
‘A8’

URL
‘A9’

Variable Identifier List
‘AA’

Byte Codes

Set Variable
‘81’

Set Variable Selected
‘82’

Concatenate
‘83’

Extract
‘84’

Encrypt
‘85’

Decrypt
‘86’

Go Back
‘87’

Go Selected
‘88’

Branch On Variable Value
‘89’

Exit
‘80’

Execute STK Command
‘8A’

Execute Native Command
‘8B’

_1033269753.xls
Sheet1

		Bit#		7		6		5		4		3		2		1		0

				POST/GET Method		Send Referer		Forced Resident		RFU		RFU		RFU		RFU		RFU

_1033270344.xls
Sheet1

		Bit#		7		6		5		4		3		2		1		0

				LV Encapsulation Required		RFU		RFU		RFU		RFU		RFU		RFU		RFU

_1038241506.xls
Sheet1

		Bit#		7		6		5		4		3		2		1		0

				0																Application

				1																System

				-		0														Variable

				-		1														Constant

				-		-		x		x		x		x		x		x		Identifier

_1038256740.xls
Sheet1

		Bit#		7		6		5		4		3		2		1		0

				DCS Attribute		Dynamic/Static		KeepAll		RFU		RFU		RFU		RFU		RFU

_1034733510.xls
Sheet1

		Bit#		7		6		5		4		3		2		1		0

				ResetVar		DoNotHistorize		ChainNextNU		RFU		RFU		RFU		RFU		RFU

_1033336354.doc

Translation of a STK byte code in a STK Commands

Device identities length

Command details length

Source device tag (SIM= 0x81)

Device identities tag

Command details tag

More Bytes…

More TLVs…

Bytes

Bytes

Dest

81

Command tag

02

02

03

Qual

Ty

Nb

01

Len

D0

TLV 1

TLV n

Dest dev

Cmd qual

Cmd type

Len

+ 5

STK Command

STK Bytecode

Var

_1033270129.xls
Sheet1

		Bit#		7		6		5		4		3		2		1		0

				Case Sensitive		RFU		RFU		RFU		RFU		RFU		RFU		RFU

_1033270241.xls
Sheet1

		Bit#		7		6		5		4		3		2		1		0

				Zeroize Buffer		RFU		RFU		RFU		RFU		RFU		RFU		RFU

_1033269943.xls
Sheet1

		Bit#		7		6		5		4		3		2		1		0

				Restart Current Anchor		RFU		RFU		RFU		RFU		RFU		RFU		RFU

_1033050317.xls
Sheet1

		Bit#		7		6		5		4		3		2		1		0

				Attribute #1				Attribute#2		Attribute#3		Attribute#4						Attribute#5

_1033269227.xls
Sheet1

		Bit#		7		6		5		4		3		2		1		0

				UCS2		SMS		RFU		RFU		RFU		RFU		RFU		RFU

_1033051512.xls
Sheet1

		Bit#		7		6		5		4		3		2		1		0

				Exit		RFU		RFU		RFU		RFU		RFU		RFU		RFU

_1033050029.xls
Sheet1

		Bit#		7		6		5		4		3		2		1		0

				Attribute #1		Attribute#2		Attribute#3		Attribute#4		Attribute#5		Attribute#6		Attribute#7		Attribute#8

