3GPP T3 ad hoc meeting #15

Munich, Germany, 10 - 11 Oct, 2000
Tdoc T3z00224

Byte Codes for a SIM Toolkit Interpreter

3GPP T3 ad hoc Work Group

Protocol Standardization of a SIM Toolkit Interpreter
Requirements

As set forth in Tdoc T3z000068 of the 3GPP T3 ad hoc meeting #08 held in Munich, Germany, 26 - 27 July, 2000, the requirements for the byte codes are:

· To enable use of Web technique, the byte code shall include an instruction to fetch and execute the next script from a Web server on the Internet, “URL Request”.

· The byte code shall be compact in size to

· occupy low bandwidth when transmitted over the network.

· facilitate accommodation of the Interpreter on the limited computing resources on the SIM

· The byte code shall contain an instruction to call extension routines outside the Interpreter, “plug-ins”. This enables access to functions on the SIM that are not covered by the standard script language.

· The byte code shall include instructions corresponding to the following SIM Application Toolkit commands:

· DISPLAY TEXT

· GET INPUT

· SELECT ITEM

· PROVIDE LOCAL INFORMATION

· PLAY TONE

· SET UP IDLE MODE TEXT

· REFRESH

· SET UP CALL

· SEND USSD

· SEND SHORT MESSAGE

· The byte code shall include a branch instruction.

· It shall be possible to store input from SELECT ITEM and GET INPUT in variables.

· It shall be possible to use these variables for variable substitution in strings when issuing following proactive commands.

Two byte code sets have been proposed to satisfy these requirements; the SIMalliance byte codes and the Across Wireless byte codes.

INIT VARIABLES
Initialize a list of variables

INIT VARIABLE SELECTED
Display a menu on the ME

GETENV
Get the value of an environment variable

SET HELP
Set or reset a help reference variable

CONCATENATE
Concatenate two or more values and store result

EXTRACT
Extract a byte array from a value and store result

ENCRYPT
Encrypt a set of values into a data block

DECRYPT
Decrypt a data block, verify MAC, assign results

GO BACK
Go back to previous card

GO SELECTED
Go to a URL

SWITCH CASE
Go a URL based on a variable value

EXIT
Stop the browser

MANAGE CONTEXTUAL MENUITEM
Modify a menu item

STK GENERIC
Call an STK function

EXECUTE
Execute a function outside the browser

Table 1. The SIMalliance Byte Codes

Submit
Submit a server bound message

Display Text
Display text of informational nature

GetInput
Request multiple character input from user

Select Item
Request the user to select one option out of a list of options

Skip/GoTo
Branch and skip given number of commands

Exit
Stop the interpretation

PlugIn
Address a plug-in located in the client

Set
Set a variable to a specific value

Provide Local Information
Get location information from the mobile station

Play Tone
Makes the mobile station play a tone

Set Up Idle Mode Text
Sets a text on the idle screen of the mobile station

Refresh
Execute Proactive REFRESH command

Set Up Call
Execute proactive SET UP CALL command

Assign Version Information to Variable
Assigns Version Information EF (2700/6F07) to a specified variable

Assign Script Buffer Size to Variable
Assigns the current script buffer size of the browser to a specified variable

New context
Clears the variable table of the browser from all entries

Set return TAR
Makes sure that the next SUBMIT from the browser to the server has destination TAR address as defined in a specific record of EF

Send USSD
Sends a byte string by the Unstructured Supplementary Service

Send Text SM
Send a Text SM to a specific destination

Table 2. The Across Wireless Byte Codes

Both byte code sets fulfill the requirements.

Both access pages on the gateway:

SIMalliance
Across Wireless

GO SELECTED
SUBMIT

SWITCH CASE
SET RETURN TAR

Both interface to the SIM Application Toolkit functions:

SIMalliance
Across Wireless

STK GENERIC
DISPLAY TEXT

GETINPUT

SELECTITEM

PROVIDE LOCAL INFORMATION

PLAYTONE

SET UP IDLE MODE TEXT

REFRESH

SET UP CALL

SEND USSD

SEND TEXT SM

Both support the notion of local variables that set and used for value substitution in further commands:

SIMalliance
Across Wireless

INIT VARIABLES
SET

INIT VARIABLE SELECTED
Assign Version Information to Variable

GETENV
Assign Script Buffer Size to Variable

SET HELP
NEW CONTEXT

CONCATENATE

EXTRACT

Both have call-outs to native or script functions:

SIMalliance
Across Wireless

EXECUTE
PLUGIN

SWITCH CASE

Both support a branch instruction:

SIMalliance
Across Wireless

GO BACK
SKIP/GOTO

SWITCH CASE

and a termination instruction:

SIMalliance
Across Wireless

EXIT
EXIT

The SIMalliance interpreter has two cryptography byte codes:

SIMalliance
Across Wireless

ENCRYPT

DECRYPT

WBXML

Both of these byte code encodings of WML are less aggressive and therefore would be expected to create larger download files than the WML encoding specified by the WAP Forum, WBXML:

SWITCH_PAGE
Change the code page for the current token state. Followed by a single u_int8 indicating the new code page number.

END
Indicates the end of an attribute list or the end of an element.

ENTITY
A character entity. Followed by a mb_u_int32 encoding the character entity number.

STR_I
Inline string. Followed by a termstr.

LITERAL
An unknown attribute name, or unknown tag possessing no attributes or content. Followed by a mb_u_int32 that encodes an offset into the string table.

EXT_I_0
Inline string document-type-specific extension token. Token is followed by a termstr.

EXT_I_
Inline string document-type-specific extension token. Token is followed by a termstr.

EXT_I_2
Inline string document-type-specific extension token. Token is followed by a termstr.

PI
Processing instruction.

LITERAL_C
An unknown tag possessing content but no attributes.

EXT_T_0
Inline integer document-type-specific extension token. Token is followed by a mb_u_int32.

EXT_T_1
Inline integer document-type-specific extension token. Token is followed by a mb_u_int32.

EXT_T_2
Inline integer document-type-specific extension token. Token is followed by a mb_u_int32.

STR_T
String table reference. Followed by a mb_u_int32 encoding a byte offset from the beginning of the string table.

LITERAL_A
An unknown tag posessing attributes but no content.

EXT_0
Single-byte document-type-specific extension token.

EXT_1
Single-byte document-type-specific extension token.

EXT_2
Single-byte document-type-specific extension token.

OPAQUE
Opaque document-type-specific data.

LITERAL_AC
An unknown tag possessing both attributes and content.

The reason for this is that WBXML moves the interface to the operating system into WMLScript and its libraries and concentrates on encoding the content.

Functional Modularization

The WAP browser design clearly separates the layout component (WML) from the procedural component (WMLScript with libraries) of the application. The SIM Interpreter design proposals combine the two although both also allow for procedural scripting. The problem of course is that the SIM has rather course grain access to the handset, namely the SAT functions, and calls to these functions are the only way that the SIM Interpreter can render the layout. The result is that the line between procedural functionality and layout functionality is not as bright for the SIM Interpreter as it is for a WAP browser.

One of the SIM Interpreter proposals, that of Across Wireless, includes server as well as browser functionality. This is natural because the only essential difference between a server and a browser is who starts the conversation. The contents the conversation is a series of requests and responses wherein the request can originate at either end and of course the response is made by the other. This symmetry is an integral part of GSM 03.48 for example.

Decision Criteria

Since the byte code sets of both the proposals satisfy the requirements and are in fact functionally equivalent, the prudent decision would be to adopt as a standard the one that has been validated by current practice; i.e. the Across Wireless proposal. There are multiple inter-operating implementations of this SIM Interpreter with over 6 million instances of the interpreter in use in over 25 commercial settings.

Nevertheless, if one wants to evaluate the two proposals independently of current practice, there are some quantitative decision criteria that should be included:

Interpreter Size: How much space on the SIM does the interpreter occupy? For a fixed functionality the byte code set that can be interpreted by the smallest interpreter would leave the maximum room for applications to be interpreted. Interpreter size is measured in bytes of executable code.

Interpreter Speed: How fast does the interpreter run? Particularly in mobile phone settings, getting the most done for the least amount of time is critical. Since the semantic level of the byte codes is relatively fixed, interpreter speed can be reasonably measured in byte codes per second.

Application Size: How big are the byte code renderings of applications? Application size affects both SIM storage and transmission time as well as execution time. A byte code set that enables applications to be rendered in fewer total byte codes would generally be preferred to one that requires more byte codes. There is however a trade-off between interpreter size and application size. This is the well-known CISC versus RISC trade-off. Application size is measured in bytes of interpreted code.

While it is harder to measure, one should also take into account the range of applications and application programming languages that the byte code set enables. For example, it would be desirable to be able to cross-translate from other byte code sets into this one.

