3GPP T3 ad hoc meeting #15

Munich, Germany, 10 - 11 Oct, 2000
Tdoc T3z00221

Subject: S@T Byte Code - Structure of services
Source: Schlumberger, Gemplus, ORGA, Giesecke & Devrient, Oberthur Card System

The following document presents the proposal for Byte Code general structure from the SIM Alliance Toolbox.

Considering the above, the optimization design criteria should be:

-minimize bandwidth requirement

-keep the interpreter/browser footprint minimal and specifically under 24Ko

-maximize the capability to access WML content

 S@T v1.0.3 (2000-06)
Technical Specification

SBC

S@T Byte Code - Structure of Services

[image: image11.png]

TABLE OF CONTENTS

41
TERMINOLOGY

1.1
Abbreviations
4
2
LIST OF DOCUMENTS
4
3
OVERVIEW
5
4
GENERIC SIMPLE-TL[A]V FORMAT
5
5
STRUCTURE OF SERVICES
9
5.1
INTRODUCTION
9
5.2
NAVIGATION CONCEPTS
9
5.2.1
Default Behaviour
9
5.2.2
Navigation Elements
9
5.3
DECKS & CARDS
12
5.3.1
Rules and Limits
12
5.3.2
Decks
13
5.3.3
SPS Reference
14
5.3.4
Text Element Table
14
5.3.5
Cleanup Variable List
14
5.3.6
Cards
14
5.3.7
Card Template
16
5.3.8
Referencing Decks and Cards
16
5.3.8.1
Deck and Card Naming Convention : Address Reference
16
5.3.8.2
URL Reference
17
5.3.9
Execution of the Byte Code
18
5.4
VARIABLES, TEXT ELEMENTS & SERVICE PERMANENT STORE
19
5.4.1
Introduction
19
5.4.2
Temporary Variables
19
5.4.3
Text Elements
19
5.4.4
Service Permanent Store
19
5.4.5
Variable Types
20
5.4.6
Variable Identification
21
5.4.7
Variable Reference
21
5.4.8
Substitution Mechanism
21
5.5
GENERAL STRUCTURES
23
5.5.1
Variable Reference
23
5.5.2
Variable Reference List
23
5.5.3
Inline Value
23
5.5.4
Input List
25
5.5.5
Parameter
25
5.5.6
Constant Parameter
26
5.5.7
URL Reference
27
5.5.8
Couple
28
5.6
FLOW CONTROL OPERATIONS
29
5.6.1
Introduction
29
5.6.2
Go Selected
29
5.6.3
Switch Case on a Variable
29
5.7
Browser Link to Extensions (EXECUTE)
29
5.8
Resident and Temporary Decks
29

1 TERMINOLOGY

1.1 Abbreviations

HTTP
Hyper Text Transfer Protocol

S@T
SIM Alliance Toolbox

SBC
S@T Byte Code

SSP
S@T Session Protocol

S@TML
S@T Markup Language

STK
SIM Application Toolkit

STLS
S@T Transport Layer Security

TLV
Tag Length Value encoding

URL
Unified Resource Locator

2 LIST OF DOCUMENTS

/GSM 03.38/

GSM 03.38: "Digital cellular telecommunications system (Phase 2+); Alphabets and language-specific information".

/GSM 11.11/
 GSM 11.11. "Digital cellular telecommunications system (Phase 2+); Specification of the Subscriber Identity Module – Mobile Equipment (SIM – ME) interface".

/GSM 11.14/
GSM 11.14. "Digital cellular telecommunications system (Phase 2+); Specification of the SIM Application Toolkit for the Subscriber Identity Module – Mobile Equipment (SIM – ME) interface".

/GSM 03.48/

GSM 03.48. "Digital cellular telecommunications system (Phase 2+); Security Mechanisms for the SIM Application Toolkit; Stage 2".

/SSP/
SSP, S@T Session Protocol (Technical Specification S@T 01.20, V1.0.3, 2000-06)

/Admin/
S@T Administration Commands (Technical Specification S@T 01.21, V1.0.3, 2000-06)

/Operational/
S@T Operational Commands (Technical Specification S@T 01.22, V1.0.3, 2000-06)

3 OVERVIEW

This document describes the S@T byte code that is transported between the gateway and the browser. This byte code aims to describe applications running on a distributed system. It is executed on the client side (browser).

The byte code is focused on SIM Toolkit commands description used to perform user interaction with the Mobile Equipment.

It is containing also macros used to perform additional local processing or branching.

The objectives are :

· To have a compact byte code that will use efficiently the SMS (Short Messages Services) bandwidth.

· To keep the browser complexity as low as possible to minimise the code size in the SIM.

This byte code is inheriting some WML concepts like the deck and card organisation to match the WML mediation needs.

Some trade-offs have been made between the byte code efficiency and its ease of parsing. It has been taken into account the evolution too, in aim to allow an easy extension or an incomplete implementation for non mandatory elements.

4 GENERIC SIMPLE-TL[A]V FORMAT

This notation is placed at the beginning of this document as it is used everywhere in the data structures to simplify the byte code parsing.

The TL[A]V (standing for Tag Length [Attributes] Value) is the basic structure element. Each of these TL[A]Vs can have optional attributes. The Value part of a TL[A]V can itself contain TL[A]V types of elements.

Advantage of the TL[A]V structure is that each element is self explaining and that default values are used when TL[A]Vs are not specified, this is reducing the need to transmit every tag value each time.

The TL[A]Vs are coded of the following manner :

· TL[A]V format

LENGTH
VALUE
DESCRIPTION
M/O

1
Tag value
Tag (+ 1st attribute byte presence flag)

[image: image1.wmf]Bit#

7

6

5

4

3

2

1

0

Attributes presence flag

TAG VALUE on 7 bits

Attributes presence flag:

If Set : indicates that optional "Attribute bit field" is present after the "Length field". (see coding afterwards)

If not Set : indicates that optional " Attribute bit field" is not present.
M

1-3
L (Length value)
Length of subsequent data in BER-TLV format including the attribute bytes :

BER-TLV coding is specifying

· 1 byte coding for L in [0-127] ,

· 2 bytes coding for L in [128-255]

· 3 bytes coding for L in [256-65535]

L = 0 is allowed
M

N(0+)
Attribute bit field
Attribute bytes (see coding afterwards)
O

L-N
“bytestream”
Value
O

Note: In any case the length is coded in BER-TLV format. Every element tag can have one or more attributes. These attributes are defined for each tag in the following chapters.

· Coding of the attributes bits :

Each tag has a predefined set of attributes. Each attribute bit is corresponding to a predefined value. The default value is always 0.

For each of these attributes, one bit is reserved in a bit stream.

The bit stream is coded on a byte array, each byte containing up to 7 attribute bits.

Whenever a tag requires more than 7 attributes, the number of attribute bytes will be extended.

The order of attributes in the bit stream is from left to the right (attribute 1 to 2…) corresponding to the MSB -> LSB bits in the structure.

· For tags requiring attributes , we use the following structure :

[image: image2.wmf]Bit#

7

6

5

4

3

2

1

0

Follow Bit

Attribute#1

Attribute#2

Attribute#3

Attribute#4

Attribute#5

Attribute#6

Attribute#7

Each attribute byte is able to contain up to 7 predefined values of attributes. As the byte code is established today this is enough, but in aim to be more future proof a Follow Bit is present in this byte to allow one or more other byte(s) of attributes.

The previous coding is used for all the byte code.

Example: (the tag values are only defined for this example)

· Tag value 0x03 without specific attribute

LENGTH
VALUE
DESCRIPTION
M/O

1
0x03
Tag (optionally requiring attributes)

1
0x0A
Length of subsequent data

0x0A
“Teststring”
Value

· Tag value 0x03 with 2 attributes selected, and a longer string.

LENGTH
VALUE
DESCRIPTION
M/O

1
0x83
Tag (optionally requiring attributes) with attribute bit set

2
0x81,0x91
Length of subsequent data (bigger than 127)

1
0x50
Attribute indicator (here 0b01010000).

Attribute#1 and #3 set.

0x90
 “Teststring……”
Value (shorten for the example)

· Tag value 0x03 with 10 attributes defined, and a longer string.

LENGTH
VALUE
DESCRIPTION
M/O

1
0x83
Tag (optionally requiring attributes) with attribute bit set

3
0x82,0x0202
Length of subsequent data (bigger than 255)

2
0xD0,0x70
· Attribute follow bit set (more than 7 attributes)
attribute indicator (Here 0bx1010000)
attribute#1 and #3 set.

· Attribute indicator (Here 0b01110000)
attribute#8, #9 and #10 set.

0x0200
 “Teststring……”
Value (shortened for the example)

5 STRUCTURE OF SERVICES

5.1 INTRODUCTION

The purpose of the project is to offer a generic browsing tool embedded in a SIM card. The sources of information to browse are either WML or S@TML pages. They are located either on operator’s intranet or on the web.

A service can be seen as a set of pages that are browsed successively with interactions to the user. A service is expected to be provided by a Service Provider.

The service pages are converted to deck and card structures.

5.2 NAVIGATION CONCEPTS

5.2.1 Default Behaviour

The browser provides a way to navigate through cards belonging to one or more decks and services. The requirements of browsing include a way to go ahead to next card, to go back to previous card, to go to a new URL that can be resident or remote and to have contextual information.

By default, it is considered that the browser manages a stack of N last history cards. Each card successfully parsed is added to this history list, except if the flag DoNotHistorize is set in this card.

The Back operation is managed on logical back, not physical back, meaning that this is not dependent on the card location in the deck.

When reaching the last byte code of the last card of a deck, then the browser will switch to an implicit pause state. During the pause state, the user will be able to interact with the browser.

5.2.2 Navigation Elements

The service developer is able to specify his needs for the contextual menus.

The browser manages three logical menus for which it maps a physical key press.

The logical menus are contextual menus displayed on demand by the user pressing one of the mobile keys :

· Back Menu
(associated by default to the Back key)

· Help Menu
(associated by default to the Help key)

· Abort Menu
(associated by default to the Abort key)

The content of each contextual menu is predefined with so called “system elements”.

Each of them can be set visible or hidden by a specific byte code (Manage Contextual Menu Item).

It is also possible to add new “application elements” that allow to go to a new URL.

The byte code provides a way to add or remove menu items to contextual menus.

Actions on these menus could be :

· Add an item (used to show a system item or create a new application item)

· Remove an item (used to hide a system item or delete an application item)

In aim to reference the items during these add/remove operations, it is necessary to have a coding for them.

The specified encoding is :

[image: image3.wmf]Menu Id

System/Application Item

Card/Operator Item

MenuItem Id

The Menu Id is defined in the following table (value xx on 2 bits)

The System / Application Item bit is 0 if application, 1 if system item.

The Card/Operator Item bit is 0, if the update of the contextual menu item is done using the Manage Contextual Menu Item byte code inside a card, 1 if the update is done using the byte code inside an administrative command.

The Menu Item Id is a number used to identify uniquely an item.

For the application elements of these menus, the gateway generates dynamically a Menu Item Id. The Menu Id put in the structure will indicate where the application element is to be displayed. The System/Application bit is not set.

CODE
Default Visibility
Back Menu

xx=00
Help Menu

xx=01
Abort Menu

xx=10

Back to previous card
xx1 00001
(
(

Next (after a back)
xx1 00010
(
(

Restart the current deck
 (Start at the 1st card)
xx1 00011

(

Go to starting deck (resident deck home page)
xx1 00100
(
(

Display bookmarks (The bookmark entry is calling a browser specific function to display current bookmarks to the user). Implementation of bookmarks is optional.
xx1 00101

(

Display the current help string, if present
xx1 00110
(

(

Stop browser (always visible)
xx1 00111
(

(

Pause the session
xx101000

(

Service specific items allowing to go to a new URL.
xx0 yyyyy

(

(
(

This is corresponding to the following default menu :

· BACK Menu :

· Back to previous card.

· Go next card (after a back)

· HELP Menu :

· Display the current help string

· ABORT Menu :

· Stop the browser

The contextual menus are reset to their default at the exit of each card. It is possible to use a card template object to have the same contextual menus defined for several cards of a deck.

5.3 DECKS & CARDS

5.3.1 Rules and Limits

The card is defined as being the elementary browsing element, meaning that the user can skip from one card to another back and forward.

A deck is a set of cards that is stored as a unit in the browser.

The deck is the smallest unit that the S@T gateway can send to the browser using the SSP.

Decks and cards are stored together in the browser. The structure is described later in this document. These decks and cards are stored either permanently in the SIM card or received and interpreted on the fly.

They are referenced using URL as described in the next paragraphs.

To be able to create complex services, these URL references are used to fetch new decks or to link decks together.

In order to implement WML “templates”, a card template object type is available. It has the same structure as a card, but can only contain byte codes that do not require user interaction and have no branching. If a template is present in a deck, all cards will inherit this template except if the attribute “DoNotUseTemplate” is set for this card.

5.3.2 Decks

LENGTH
VALUE
DESCRIPTION
M/O

1
DeckTag
Deck tag (+ attribute byte presence flag)
M

1-3
L
Length of subsequent data (length coding in BER-TLV format)
M

Optional attributes bytes
O

0+

Attributes byte

[image: image4.wmf]Bit#

7

6

5

4

3

2

1

0

Follow Bit

DCS Attribute

Dynamic/Static

RFU

RFU

RFU

RFU

RFU

DCS Attribute :

Default Value : SMS Default Alphabet

If Set : this attribute means UCS2.

Dynamic /Static

Default Value : Static

If Set : Dynamic

This attribute gives the browser an indication wether to cache the deck (static) or not (dynamic).

Deck identification element
M

1
DeckIdTag
Deck identification tag

1-3
X
Deck identification value length

X

Deck identification value (Unique identification of the deck)

(Refer to Address Reference for coding)

 Service permanent store reference
O

1
SPSTag
SPS tag

1-3
A
Length (maximum length : 8)

A

SPS value

Cleanup variable list element (when exiting the deck)
O

1
VarRefListTag
Variable reference list tag

1-3
N
Length of the variables reference list (= number of variable references)

N

Variable ID

Text element table
O

1
TextElementTableTag
Text element table tag

1-3
N
Length of the text element table

N
LV
LV value of each element

Card template
O

3-x
TLV
Card template TLV structure

Card TLV
M(1-n)

3-x
TLV
Card element TLV structure

5.3.3 SPS Reference

Any deck must refer to a SPS reference prior to be able to use its variables. For SPS refer to 5.4.4 'Service Permanent Store'.

5.3.4 Text Element Table

The text element table contains a list of text elements that can be used by reference during the deck execution. Text elements are constant texts that cannot be modified by the byte code. The reference to text elements and variables is unified to ease the browser work.

The text reference identifier is the index of the text element in the deck prefixed with the 0xC0 mask to indicate that it is a text element. Elements are numbered sequentially starting with 0.

Text reference index is in the range 0 to 0x3F (see 5.4.6).

5.3.5 Cleanup Variable List

This list is an enumerated list of variables references that need to be cleared at the exit of the deck. References can be either permanent or temporary variables.

This mechanism is in complement with the card attribute allowing the cleanup of all the temporary variables at the entry of a card (new context).

For coding see 5.5.2 'Variable Reference List'.

5.3.6 Cards

The card element specifies one unit of navigation. It can contain several interactions. Note that back operation will refer to the first action of the previous card not to the previous action of the current card.

While designing decks, this notion of card can help to manage the granularity of parsing.

A card can contain display elements, select items, input fields, ...

LENGTH
VALUE
DESCRIPTION
M/O

1
CardTag
Card tag (+ attribute presence flag)
M

1-3
L
Length of subsequent data (length coded in BER-TLV)
M

Optional card attribute
O

1
0xXX
Attribute byte :

[image: image5.wmf]Bit#

7

6

5

4

3

2

1

0

Follow Bit

ResetVar Attribute

DoNotHistorize

DoNotUseTemplate

ChainNextCard

RFU

RFU

RFU

ResetVar Attribute :

Default Value : Keep variables context

If Set : Reset all the temporary variables when entering the card

DoNotHistorize :

 Default Value : Historize the card.

 If Set : Do not insert this card reference in the history.

DoNotUseTemplate :

Default Value : Use the template when entering the card.

If Set : Ignore the template.

ChainNextCard :

Default Value : Wait for user interaction at the end of the card (Browser idle mode), when the last byte code was executed and no branching was done .

If Set : Automatically start the next card after execution of the
 last byte code of this card.

Card ID Element
O

1
CardIdTag
Card ID tag

1-3
M
Card ID length

M
Value
Card ID in the deck (same coding as <CardName> in AddressReference)

Byte code element(s)
O(0-n)

1

1 – 3

X (0+)

D
0xYY

D+X

0xZZ

Value
Byte code tag (among predefined set) (+attribute presence flag)

Length

Attribute bytes

Byte code structure (associated to the tag)
M

M

O

M

5.3.7 Card Template

One card template element can be included in a deck. It will be stored at the beginning of a deck to simplify parsing.

When a deck contains a card template, all the cards of this deck will inherit from that template, meaning that the byte codes stored in the template are executed at each card start.

Optionally, one card can have an attribute to specify that it does not make use of the template.

User interaction and flow control byte codes are not allowed in the card template.

It is mainly used for the Contextual Menu management and Help String management.

LENGTH
VALUE
DESCRIPTION
M/O

1
CardTemplateTag
Card template tag (+ attribute presence flag)
M

1-3
L
Length of subsequent data (length coded in BER-TLV)
M

Byte code element(s)
M(1-n)

1

1 – 3

X (0+)

D
0xYY

D+X

0xZZ

Value
Byte code tag (among predefined set) (+attribute presence flag)

Length

Attribute bytes

Byte code structure (associated to the tag)
M

M

O

M

5.3.8 Referencing Decks and Cards

There are different levels of object referencing in the deck :

· Card to card in the same deck

· Card to another deck.

· Card to card in a different deck.

An unified coding for deck and card name is used. It is called address reference.

5.3.8.1 Deck and Card Naming Convention : Address Reference

Some decks can be preinstalled in the SIM during personalisation time. In order to reference these decks, management of long deck name is mandatory.

The grammar of an address reference string is the following :

AddressReference :==[(<LongDeckName> | <CodedDeckName>)] [# <CardName>]

The CardName is recommended to be an up to 2 characters string, but longer card names are managed for WML mediation.

The LongDeckName and CardName are strings coded in GSM 03.38 default alphabet.

is treated as a separator between the deck name and the card name.

The CodedDeckName is a byte array with the 1st most significant bit of the 1st byte set to 1. This value is computed by the gateway.
Constraint : the ‘#’ character is forbidden in the CodedDeckName and LongDeckName byte array to avoid the misinterpretation of this value.

The deck and card identifier found in the deck and card structure use the same coding rules.

When resident decks are stored during personalisation time, the reference is instantiated in a long name format.

It is assumed that the gateway can transform the long names references to coded deck references by an efficient mean to earn bandwidth.

On the server side, the long name is replaced by a coded name in the downloaded byte code and the back translation reuses this unique identifier prior to access the WML server.

5.3.8.2 URL Reference

For URL reference, a TLV structure has been chosen to encapsulate the address reference element.

This is providing the way to specify how the access to the page is done, and complement this reference with optional parameters.

5.3.9 Execution of the Byte Code

The byte code behaviour can be synthesised as follows :

[image: image6.wmf]BYTECODE

Process

Fixed Parameters

Get Params

VARIABLE

Store Result

VARIABLE

TEXT

Element

Each byte code takes parameters for input (fixed, variables or text elements) , processes them and provides an output that is stored in an output variable. Some byte codes may have no output (as switch case for example).

5.4 VARIABLES, TEXT ELEMENTS & SERVICE PERMANENT STORE

5.4.1 Introduction

Services are developed to display information, get inputs from the user, perform some computations or verifications. The need for variables is obvious.

The variable manipulation in the browser has been unified with the text element manipulation. Variable substitution mechanism is then unified and reused.

Text elements are part of the current deck. These elements are to be considered as constants and no update is allowed on them.

Two types of variables are defined : Service specific permanent variables, and temporary variables.

The variables can be used :

· To store the proactive command specific response data object of a byte code execution (Output value).

· To manipulate data in the browser.

· To replace a parameter in a byte code structure.

· To construct requests for the gateway

5.4.2 Temporary Variables

The temporary variables are defined as deck by deck by default, meaning that they are shared among the cards but can be reset at the entry of a card optionally.

Their scope can be enlarged to several decks if a card reset is not requested.

A set of variables (permanent or temporary) can be reset at the exit of a deck if specified in the deck structure.

5.4.3 Text Elements

These text elements are part of the deck structure. They need to be considered as constants and cannot be modified by the byte code.

The text element structure is LV (length + value).

The DCS of these elements is inherited from the deck level.

5.4.4 Service Permanent Store

A service is represented by a set of decks (WML jargon). The decks are able to interact with the user using STK commands, store values in variables, send requests to the gateway.

A persistent storage area for variables, is optionally provided in the SIM card, and shared by all decks of a given service. It is called the Service Permanent Store.

The store size and id are allocated by a dedicated administrative command.

It is expected that the service area is allocated by the operator or under his control.

Any deck must refer to a SPS reference prior to be able to use its variables.

[image: image7.wmf]Service #N

SERVICE PERMANENT

STORE

Service #K...

Service #1

CARD #1

DECK #1

CARD #....

CARD #M

SPS

Reference :

Service#K

CARD #1

DECK #2

CARD #....

CARD #P

SPS

Reference :

Service#K

The permanent variables stored in service permanent store can be remotely managed .

5.4.5 Variable Types

The variables are all defined as :

· LV meaning length + value : L is coded on 1 byte (0-254)

The advantage of this representation is that it is flexible for substitution, comparison and concatenation.

The variables are used to fill placeholders (see references later) in all the STK byte code where parameters in TLV are required.

Explicit Variable References or Variable Reference List structures are used to refer the variable in all other byte codes.

A variable can contain an address (Deck#Card) and any string as well.

This representation can also represent short variables like bytes or short integer used to perform minimal computation (loops, comparisons…)

Note: The individual type of the variable has to be managed by the browser to handle for example the DCS of the strings and apply a minimum type checking on them.

5.4.6 Variable Identification

Variables and text elements (constants of the deck) are referred by a common mechanism. They are accessed by an identifier coded in 1 byte.

The byte value range is split as follows to identify the types of variables/elements :

[image: image8.wmf]Bit#

7

6

5

4

3

2

1

0

0

Index

Temporary variable reference

1

0

Index

Permanent variable reference

1

1

Index

Deck text element reference

This allows a split of the reference of :

· Permanent variables :

64

variables

· Temporary variables :

128
variables

· Deck text element :

64

variables

Variable reference coding rule :

The permanent variables are referred in the SPS declared by the deck.

If a permanent variable is referenced in a deck not declaring a service permanent store, the access should be refused.

5.4.7 Variable Reference

Depending on the byte code context, 2 variable references are used :

· The simple reference, that is just the identification code of the variable (1 byte)

· The encapsulated reference, that is the same value contained in a TLV.

The first one is used mainly during the substitution mechanism, while the last one is used when it is necessary to specify the type of the reference.

5.4.8 Substitution Mechanism

 In the specific context of a STK generic byte code variable references are replaced by their values in the following way:

The reference are of the type :

· <TAG>

· <LEN=0xFF>

· <VAL = Variable Reference>

When the 1st byte of length is equal to 0xFF, it does mean that the value of the tag is containing a variable reference and that a substitution is required.

There is no conflict with the BER-TLV field as the 1st byte of a L is never 0xFF in this coding.

Note: Nested substitution will not be performed.

5.5 GENERAL STRUCTURES

5.5.1 Variable Reference

This tag is used to refer to a variable content when another parameter type is allowed. For example a SetHelp command can have both inline value and/or variable content.

LENGTH
VALUE
DESCRIPTION
M/O

Variable reference

1
VarRefTag
Variable reference tag
M

1-3
1
Variable ID length
M

1

Variable ID
M

5.5.2 Variable Reference List

This tag is used to refer to a variable list content when another TLV structure is allowed.

LENGTH
VALUE
DESCRIPTION
M/O

Variable reference list

1
VarRefListTag
Variable reference list tag
M

1-3
n
 Length (= number of variable references)
M

N

Variable ID
M(n)

5.5.3 Inline Value

This tag is used to indicate value presence when another parameter type is allowed. For example a Set Help command can have both inline value and/or variable content.

Text can be embedded directly in the byte code when no reference to variable is necessary.

It is just a TLV with the V containing a text or binary string.

LENGTH
VALUE
DESCRIPTION
M/O

Inline value

1
InlineValue Tag
Inline value tag
M

1-2
X
Inline value length (length <255)
M

Optional attributes
O

0+

[image: image9.wmf]Bit#

7

6

5

4

3

2

1

0

Follow Bit

UCS2

7 bit SMS default alphabet

RFU

RFU

RFU

RFU

RFU

· UCS2: If this attribute is set, then the variable is coded in UCS2 coding.
· 7 bit SMS default alphabet: If this attribute is set, then the variable is coded in 7 bit SMS default alphabet.
O

X

Inline value content (text or binary string)
M

The attribute coding is to be used in the constant parameter structure (parameter value) if DCS information for inline values is available for the browser. If the DCS information is unknown, the browser shall not set any of the two attributes (Bit 6, Bit 5).

For Gateway originated inline values the attribute may be used to indicate a dedicated DCS information for the value. A missing attribute byte (or both bits mentioned above set to zero) in this direction forces the browser to inherit the DCS information from the related deck. In general, the Gateway shall not use the optional type information for inline values to be sent to the browser at all.
Type information coding summary:

Type indicated in attribute

(Browser originated /

Gateway originated)
Bit 6

(UCS2)
Bit 5

(7-Bit)

Unknown / inherited from deck
-
-

Unknown / inherited from deck
0
0

UCS2 / UCS2
1
0

7-bit SMS default / 7-bit SMS default
0
1

Unknown / inherited from deck
1
1

5.5.4 Input List

This object is containing a composite list of other elements.

LENGTH
VALUE
DESCRIPTION
M/O

Input list

1
InpListTag
Input list tag
M

1-3
X
Length
M

X

Content (Variable Reference, Inline Value, ..). The content will be specified each time the input list is used.
M(1-n)

5.5.5 Parameter

This structure is used to refer to a variable content and an optional text association (named parameter).

LENGTH
VALUE
DESCRIPTION
M/O

Parameter element

1
ParTag
Parameter tag
M

1 or 2
X
Parameter length
M

1
0-255
Variable reference to get value from
M

X-1

Parameter name (text string)
O

5.5.6 Constant Parameter

This structure is used to refer to a constant parameter in an URL reference.

LENGTH
VALUE
DESCRIPTION
M/O

Constant parameter element
M

1
ConstParTag
Constant parameter tag

1 or 2
X
Constant parameter length

Parameter value
M

1
InlineValueTag
Inline value tag

1 or 2
Y
Length of parameter value

Y

Parameter value

Parameter name
O

1
InlineValueTag
Inline value tag

1 or 2
Z
Length of parameter name

Z

Parameter name

5.5.7 URL Reference

This tag is used everywhere an URL reference is needed. It can represent a card, a deck or card + deck reference.

LENGTH
VALUE
DESCRIPTION
M/O

1
URLTag
URL tag (+ attribute presence flag)
M

1 or 2
X
URL length
M

Optional URL attributes
O

0+

[image: image10.wmf]Bit#

7

6

5

4

3

2

1

0

Follow Bit

POST/GET method

SendReferer

Forced Resident

RFU

RFU

RFU

RFU

· Post/Get Method : If this attribute is set, then Post Method, else Get Method used.
This is useful for a temporary deck request for which the parameters have to be sent.

· SendReferer : By default, the SendReferer is not sent.
The deck/card caller is sent in the GET/POST message when Set.

· Forced Resident : If set: the deck reference is resident and if not found, generate an error, but do not go online.
If not set: the deck reference is not resident, meaning it must not be searched among the resident decks.
O

Address Reference or VarRef element
M

3+
AddrRefTLV
Address reference TLV

3
VarRefTLV
Variable reference TLV (contains an address reference string)

Parameters or Constant parameters.
O(0-n)

3+
ParTLV
Parameter element (TLV) structure

3+
ConstParTLV
Constant parameter element

5.5.8 Couple

This tag is used to encapsulate two items, and generally appears when a list is needed.

LENGTH
VALUE
DESCRIPTION
M/O

Couple

1
CoupleTag
Couple tag
M

1-3
X
Couple length
M

TLV Content 1 (for example Variable Reference Tag)

TLV

M

TLV Content 2 (for example URL Tag)

TLV

M

The Tag contents 1 & 2 are specified each time a couple is used (for example in Switch Case on Variable).

5.6 FLOW CONTROL OPERATIONS

5.6.1 Introduction

The flow control operations allow the deck to embed decision points to branch to one or another card depending on tests or comparison.

The generic branching byte code is the “Go Selected”. It is starting the execution of another card in a specified deck or the same deck.

5.6.2 Go Selected

The role of this macro is to display a list of items on the mobile and to branch to the card or deck linked to the selected item when the user presses OK. The same byte code has a deprecated behaviour allowing the go to a card without display .

5.6.3 Switch Case on a Variable

That is a well known structure in languages to branch to an address depending of the value of a variable.

5.7 Browser Link to Extensions (EXECUTE)

The execute byte code allows the execution of a piece of code that is not belonging to the browser, but as an external function (for example: cryptographic computation…)

It can also be used to launch another application after the exit of the browser.

5.8 Resident and Temporary Decks

As the browser engine is available in the SIM card, it can be used to execute online applications received over the air or start the execution of decks located permanently in the SIM memory (which means decks put in the SIM card during personalisation time).

The decks stored resident are managed by the gateway. They are callable by decks received on the fly.

The resident decks can be installed by a browser administrative command.

(SIMalliance Limited 2000. The use and disclosure of this document are subject to the terms and conditions of
SIMalliance Licence Agreement available at www.SIMalliance.org.

_1022915877.xls
Sheet1

		Bit#		7		6		5		4		3		2		1		0

				Menu Id				System/Application Item		Card/Operator Item				MenuItem Id

_1023522998.xls
Sheet1

		Bit#		7		6		5		4		3		2		1		0

				Follow Bit		ResetVar Attribute		DoNotHistorize		DoNotUseTemplate		ChainNextCard		RFU		RFU		RFU

_1023523011.xls
Sheet1

		Bit#		7		6		5		4		3		2		1		0

				Follow Bit		DCS Attribute		Dynamic/Static		RFU		RFU		RFU		RFU		RFU

_1023772950.xls
Sheet1

		Bit#		7		6		5		4		3		2		1		0

				Follow Bit		UCS2		7 bit SMS default alphabet		RFU		RFU		RFU		RFU		RFU

_1022916604.vsd

BYTECODE
Process�

Fixed Parameters�

TEXT�Element�

Store Result�

Get Params �

VARIABLE�

VARIABLE�

_1010129352.xls
Sheet1

		Bit#		7		6		5		4		3		2		1		0

				Attributes presence flag								TAG VALUE on 7 bits

_1010488927.xls
Sheet1

		Bit#		7		6		5		4		3		2		1		0

				0		Index														Temporary variable reference

				1		0		Index												Permanent variable reference

				1		1		Index												Deck text element reference

				Follow Bit		Attribute#1

_1020688059.xls
Sheet1

		Bit#		7		6		5		4		3		2		1		0

				Follow Bit		POST/GET method		SendReferer		Forced Resident		RFU		RFU		RFU		RFU

_1005497000.xls
Sheet1

		Bit#		7		6		5		4		3		2		1		0

				Follow Bit		Attribute#1		Attribute#2		Attribute#3		Attribute#4		Attribute#5		Attribute#6		Attribute#7

_1005472241.vsd
�

Service #1�

Service #N�

SERVICE PERMANENT STORE�

Service #K...�

CARD #1�

DECK #1�

CARD #....�

CARD #M�

SPS Reference :
Service#K�

CARD #1�

DECK #2�

CARD #....�

CARD #P�

SPS Reference :
Service#K�

