[image: image1.png]
WAP ForumTM Input Paper
Version 1.0
5 September 2000

Application Management EFI Class

Jonathan Main
Page 1 (1)

Application Management EFI Class

 Tdoc T3z000119

Abstract

This input paper proposes a WAP External Functionality Interface (EFI) class for the management of applications running in application environments other than the WAP application environment (WAE) or the WAP Telephony Application (WTA).

The class enables applications to be discovered, started, stopped and controlled from within WAE
.

Document information

Author(s)
Jonathan Main, Motorola

Document Version
1.0

Document Status*
Draft

*
Status is defined as:

Draft – Confidential to WAP. Represents the author’s views only.

WAG Draft – Confidential to WAP. Work in progress by WAG.

WAP Draft – Confidential to WAP. Work in progress by WAG. Published to all WAP members.

Public – Publicly available document.

Intellectual Property Notice

© Motorola Inc.
WAP Confidential – Disclosure to WAP members only

All intellectual property rights in this work belong to Motorola Inc. The information contained in this work is confidential and must not be reproduced, disclosed to non-WAP-members without the prior written permission of the author, or used except as expressly authorized in writing by the author.

Version History

Version 1.0
5 September 2000
Motorola
Initial version

Contents

31
Introduction

1.1
Affected Parties
3
2
References
3
3
Description of Class
3
3.1
Intent of Class
3
3.2
Scope of Class
4
3.3
Relation to EFI reference model
4
4
Attributes
4
4.1
Environment Name
4
4.2
Further attributes
5
5
Description of Services
5
5.1
Application Discovery
5
5.2
Starting an Application
5
5.3
Controlling an application
6
5.3.1
Stopping an application
7
5.3.2
Suspending an Application
7
5.3.3
Resume an Application
8
5.3.4
Additional control types
8
5.4
Exception codes
8
6
Implementation Notes
8
6.1
SIM Application Toolkit
8
6.2
SIM Application Toolkit Implementation Notes
8
6.2.1
Environment Name
8
6.2.2
getInfo
9
6.2.3
StartApp
9
6.2.4
Control application
9

Introduction

This paper proposes a class for the management of applications running in applications outside of the Wireless Application Environment (WAE) and Wireless Telephony Application (WTA). It is designed to allow WAP applications executing within WAE to start, stop and control external applications, and to discover what applications are available to it.

This input is based on papers which have been previously presented to the EFI drafting committee and to the WAP Interaction with SIM application toolkit group. These previous papers proposed an abstract for this class. This paper proposes a concrete interface based on the External Functionality Interface Framework [EFI9, EFI10]
.

The paper also goes on to give implementation notes for implementing the class for the GSM SIM Application toolkit as defined in GSM 11.14 [GSM1114].

This paper is proposed to form the basis of a specification for the class.

1.1 Affected Parties

This class is designed to operate within the framework defined by the EFI drafting committee. The use of this class to interface to SIM application toolkit is the topic of the WAP Interaction with SIM application toolkit group (WIS). These are the primary groups affected within the WAP Forum.

SIM application toolkit has been defined by ETSI SMG’9, and is currently managed by the 3GPP T3. This group has been addressed through a number of liaison statements and joint meetings with WIS.

2 References

[EFI9]
EFI Framework, WAG EFI DC, Draft Version 0.9 (5 July 2000)

[EFI10]
EFI Framework, WAG EFI DC, Draft Version 0.10 (1 September 2000)

[GSM1111]
GSM 11.11: Digital cellular telecommunications system (Phase 2+); Specification of the Subscriber Identity Module Mobile Equipment (SIM – ME) interface

[GSM1114]
GSM 11.14: Digital cellular telecommunications system (Phase 2+); Specification of the SIM Application Toolkit for the Subscriber Identity Module - Mobile Equipment (SIM - ME) interface

3 Description of Class

3.1 Intent of Class

There may be multiple execution environments associated with a WAP terminal in which applications may run. The WAP specifications define the Wireless Application Environment, WAE. Others include applications resident on the WAP terminal, for example a PDA, applications running on a SIM card, or applications running on a device external to the WAP terminal such as a PC which is attached to the WAP terminal. This class provides services that may be used by an application running in the WAE to interact with applications running in other execution environments (referred to as EFI applications).

The class is designed to allow a WAP application (that is, an application running in WAE) to query an execution environment to determine the EFI applications available to it to manage. The WAP application may then start, stop, suspend, resume and exchange data with the application it is managing. Note that the full extent of management capabilities that the are available to the WAP application depend on the particular EFI application and the application environment in which it is running. For example, not all EFI applications will be offer the ability to suspend and resume the application.

3.2 Scope of Class

This class is used to manage general applications. It is not designed to replace the access to specific classes of functionality offered through other EFI classes.

The class is restricted to managing EFI applications, that is, applications running outside of WAE or WTA.

3.3 Relation to EFI reference model

This section describes the structure of the class in relationship to the EFI reference architecture described in [EFI10].

The class is designed to treat each of the application environments as a unit. The EFI applications are managed using the services offered by each of the units.

The name of the application environment to which a unit corresponds may be determined from the attributes of the unit.

There are no specified class agent services for the class.

4 Attributes

4.1 Environment Name

The attribute envName is defined for units belonging to the application management class. This attribute provides the standard name for an application environment
, where such a standard name exists.

The standard name for an application environment is defined in the implementation specific to that environment
. For example, for the SIM application toolkit environment, the attribute envName = SAT.

If a standard environment name for the class has not been specified, then the envName should be of the form “_<string>”
to distinguish it from standard environment names. Standard names must not start with a “_”.

4.2 Further attributes

The implementation notes for an environment may define further attributes for a particular environment.

5 Description of Services

5.1 Application Discovery

SERVICE NAME:
getInfo

DESCRIPTION:
This service is used to determine what applications are available for control by the WAP device in a particular environment.

PARAMETERS:
None: The service is addressed to the specified unit.

RETURN VALUE:
EnvInfo:
 Mandatory

The string of information returned about the selected Environment. This has following format:

EnvInfo = <app_info>*
<app_info> = <app_ID>|<app_name>|
<app_ID> = string

<app_name> = string

This service returns the applications known which can be managed for the specified environment (unit).

For each application known in the specified environment the service returns an application ID (used to identify the application in other services) assigned by the class, and an application name. The application ID must be unique within an environment, but may not be unique across all environments. How the application name is assigned is implementation specific.

5.2 Starting an Application

SERVICE NAME:
startApp

DESCRIPTION:
This service is used to start an application in an available environment.

PARAMETERS:
AppId: Optional

Application ID string for the application as defined by getInfo

Mode: Mandatory

1 – Synchronous

2 – Asynchronous

appData: Optional

String of data to be provided to the application or environment. The format is application specific.

RETURN VALUE:
instance: Mandatory

appResp: Optional

String of data returned by the application on starting.

exception: Optional

Valid exception codes are:

Unknown application
Mode not allowed
Operation failed

The application may be identified by the application ID, as returned in the getInfo, or in some environments, the application may be identified by the application data passed to the environment.

The command must contain at least one of the optional parameters appId or appData. Where both appId and appData are specified, the meaning is that the appData will be passed as input parameters to the application identified by appId on startup.

The application may be started in one of two modes, synchronous or asynchronous. If the application is started in synchronous mode, the service startApp will complete after the application has completed executing. If the application is started in asynchronous mode, the service startApp will be complete after the application has been started, and the application will execute in parallel with WAE.

If the application returns any data (when it starts in the asynchronous mode or when it completes in the synchronous mode) this will be returned in appResp.

If the application ID specified is unknown in the specified environment, the exception Unknown application will be returned. Note that some environments may accept calls to applications which are not explicitly mentioned in environment info of the getInfo primitive.

If the application may not be started in the mode specified, the Mode not allowed exception will be returned.

If the application could not be started for reasons other than those mentioned above, the exception Operation failed will be returned.

5.3 Controlling an application

SERVICE NAME:
ctlApp

DESCRIPTION:
This service is used to control an application running in asynchronous mode.

PARAMETERS:
instance: Mandatory

The instance of the application returned when the application was started.

control: Mandatory

Type of control required.

stop: Stop the application
susp: Suspend the application
res: Resume a suspended application

Note that certain environments may add additional control features. These should be specified in the implementation notes for the environment.

appData: Optional

String of data to be provided to the application or environment. The format is application specific.

RETURN VALUE:
appResp: Optional

String of data returned by the application on starting.

exception: Optional

Valid exception codes are:

Incompatible state
Operation not available
Operation failed
Unknown control

5.3.1 Stopping an application

The stop control is used to stop an application which is running or suspended. Note that it is only possible to stop applications running in asynchronous mode, as in synchronous mode control does not return to WAE until the application has completed executing.

The application to stop is identified by the instance returned when the application was started. Any data returned by the application when it is stopped is returned in appResp.

If the application cannot be stopped because it is no longer running or suspended, the Incompatible state exception will be returned.

Not all applications will provide the means to stop the application, and an attempt to stop such an application will result in the Operation not available exception.

If the application could not be stopped for reasons other than those mentioned above, the exception Operation failed will be returned.
5.3.2 Suspending an Application

The suspend control is used to place an application in a suspended state. This application could later be resumed. Not all applications may make the suspend operation available.

The application to be suspended is identified by the environment and application ID.

If the application returns data upon being suspended, this is returned appData.

If the application cannot be suspended because it is no longer running or is already suspended, the Incompatible state exception will be returned.

Not all applications will provide the means to suspend the application, and an attempt to suspend such an application will result in the Operation not available exception.

If the application could not be suspended for reasons other than those mentioned above, the exception Operation failed will be returned.

5.3.3 Resume an Application

The resume control is used to resume an application that has previously been suspended.

The application is identified by the instance returned when the application was started.

Data may optionally be passed to the application on resumption in appData parameter. The format of the data passed to the application is specific to the application.

If the application returns data on being resumed, this data is returned appResp. The format of this data is application dependent.

If the application cannot be resumed because it is not in the suspended state, the Incompatible state exception will be returned.

If the application could not be resumed for reasons other than those mentioned above, the exception Operation failed will be returned.

5.3.4 Additional control types

Particular application environments may offer additional control modes to WAE in order to control and EFI application. These should be defined in the implementation notes of an environment. If an environment is passed a control code which it does not understand, it should return the Unknown control exception.

5.4 Exception codes

This section will define the numbers assigned to each of the exceptions.

6 Implementation Notes

6.1 SIM Application Toolkit

6.2 SIM Application Toolkit Implementation Notes

This section describes how the class shall behave when managing SIM application toolkit (SAT) applications. Note that SAT is specific to GSM WAP devices, and SAT is described in GSM 11.14, Specification of the SIM Application Toolkit for the Subscriber Identity Module - Mobile Equipment (SIM - ME) interface and the SIM is defined in GSM 11.11, Specification of the Subscriber Identity Module ‑Mobile Equipment (SIM ‑ ME) interface.

The class will be capable of managing the SAT applications declared to the ME by the SIM in the SET UP MENU command.

The class will ensure that an application is not started without the user’s confirmation.

6.2.1 Environment Name

The SAT environment is named SAT.

6.2.2 getInfo

The response to a getInfo shall contain the information provided to the Mobile Equipment (ME) by the SIM in the SET UP MENU command. For each of the available SAT applications, the command provides an Identifier of item field and a Text string of item field. The application management class shall assign an application ID associated with each Identifier of item, and the associated <app_name> string shall be the respective Text string of item. It is recommended, although not mandatory, that the <app_ID> field in the output of GetInfo be the same as the Identifier of item in the SET UP MENU command from the SIM.

If the SAT environment is requested, and the WAP terminal does not support starting a SAT application from WAP, then the exception Unknown environment shall be returned.

6.2.3 StartApp

The StartApp service shall initiate a SAT application by issuing an ENVELOPE command to the SIM containing a MENU SELECTION. Before issuing the ENVELOPE command, the ME must first display the associated Text string of item field to the user and request confirmation of the starting of the SAT application.

The Item identifier field of the ENVELOPE (MENU SELECTION) shall be set to Identifier of Item field associated with the appID specified in the StartApp service.

If the appID specified does not correspond to an Identifier of Item, then the exception Unknown application shall be returned.

If the mode is set to asynchronous, the StartApp service shall complete after the SIM sends the status bytes in response to the ENVELOPE command.

If the mode is set to synchronous, the StartApp service shall complete at the first instance after sending the ENVELOPE command in which the status bytes returned by the SIM are not equal to 9F XX, that is, when there are no proactive commands waiting.

If any application parameters are specified, these shall be ignored.

If the response to the ENVELOPE command is anything other than 90 00 or 9F XX then the exception Operation Failed shall be returned.

6.2.4 Control application

6.2.4.1 Stop

Stopping the application is not available for a SAT application, and the exception Operation Not Available shall be returned.

6.2.4.2 Suspend

Suspending an application is not available for a SAT application, and the exception Operation Not Available shall be returned.

6.2.4.3 Resume

Suspending an application is not available for a SAT application and in consequence, neither is Resumption. If an attempt is made to resume an application which has not been suspended, the Invalid State exception must be returned. Thus if any attempt is made to resume a SAT application, the Invalid State exception (not the Operation Not Available exception) shall be returned.

� Should there be a method of starting an application which returns WML? Or does this fall into a different class?

� Due to unresolved issues in the framework, there are a number of places where specified parameters may or may not be required. These are indicated in the footnotes.

� It would also be possible to reuse the standard Name attribute for identifying the environment. However, as this field is designed to be descriptive, rather than precise, it was felt it would be better to define a new attribute for this.

� It would also be possible to have environment names registered by WINA. However, the value of standard name is perhaps questionable without implementation notes for the environment, and hence this means of definition is suggested.

� This form has been chosen to avoid conflicts between future defined standard names.

� Note that this scheme has been suggested, however it would be better to reuse containers for the application information.

� Note that this parameter is only necessary if it is not contained in the in invoke function of the framework. [EFI9] includes the parameter in Invoke. [EFI10] precludes this.

� This parameter is only required if not returned by the Invoke command in the EFI framework. It is returned [EFI9], and the asynchronous option in [EFI10] returns the parameter, while the synchronous option in [EFI10] does not.

� If the Control function of [EFI9] is available, it may be possible to combine this service with the function. The control field for suspend and resume (and extensions) could be carried in the data field of the Control function.

WAP Confidential – Disclosure to WAP Members only
See copyright note at the top

[image: image1.png]_1000902572

