13 GSM 03.19 V7.1.0 Test Plan

3GPP TSG-T3 (USIM) ah #06

Navacerrada, Spain, 22 - 23 June, 2000
Tdoc T3z00035

GSM 03.19 V7.1.0 Test Plan

1. Scope

11.
Scope

2.
Introduction
4
3.
System Handlers Management Tests. Elements: length, simple TLVs list and Tag.
4
3.1.
Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler
4
3.1.1. getLength() method
4
3.1.2. copy (dstBuffer, dstOffset, dstLength) method
5
3.1.3. findTLV (tag, occurrence) method
6
3.1.4. getValueLength() method
7
3.1.5. getValueByte (offset) method
8
3.1.6. copyValue (valueOffset, dstBuffer, dstOffset, dstLength) method
8
3.1.7. compareValue (valueOffset, compareBuffer, compareOffset, compareLength) method
10
3.1.8. findAndCopyValue (tag, dstBuffer, dstOffset) method
12
3.1.9. findAndCopyValue (tag, ocurrence, valueOffset, dstBuffer, dstOffset, dstLength) method
13
3.1.10. findAndCompareValue (tag, compareBuffer, compareOffset) method
15
3.1.11. findAndCompareValue (tag, occurrence, valueOffset, compareBuffer, compareOffset, compareLength) method
16
3.2.
Tests of the common methods for ProactiveHandler and EnvelopeResponseHandler
19
3.2.1. clear() method
19
3.2.2. appendArray (buffer, offset, length) method
19
3.2.3. appendTLV (tag, value, valueOffset, valueLength) method
20
3.2.4. appendTLV (tag, value) method
21
3.2.5. appendTLV (tag, value1, value2) method
22
3.2.6. appendTLV(tag, value1, value2, value2Offset, value2Length) method
23
3.3.
ProactiveHandler tests
24
3.3.1. getTheHandler() method
24
3.3.2. init(type, qualifier, dstDevice) method
24
3.3.3. send() method
24
3.3.4. initDisplayText(qualifier, dcs, buffer, offset, length) method
24
3.3.5. initGetInkey(qualifier, dcs, buffer, offset, length) method
26
3.3.6. initGetInput(qualifier, dcs, buffer, offset, length, minRespLength, maxRespLength) method
27
3.3.7. clear() method
28
3.3.8. appendArray (buffer, offset, length) method
28
3.3.9. appendTLV (tag, value, valueOffset, valueLength) method
28
3.3.10. appendTLV (tag, value) method
28
3.3.11. appendTLV (tag, value1, value2) method
29
3.3.12. appendTLV(tag, value1, value2, value2Offset, value2Length) method
29
3.3.13. compareValue(valueOffset, compareBuffer, compareOffset, compareLength) method
29
3.3.14. copy(dstBuffer, dstOffset, dstLength) method
29
3.3.15. copyValue(valueOffset, dstBuffer, dstOffset, dstLength) method
29
3.3.16. findAndCompareValue(tag, occurence, valueOffset, compareBuffer, compareOffset, compareLength) method
29
3.3.17. findAndCompareValue(tag, compareBuffer, compareOffset) method
29
3.3.18. findAndCopyValue(tag, dstBuffer, dstOffset) method
29
3.3.19. findAndCopyValue(tag, occurence, valueOffset, dstBuffer, dstOffset, dstLength) method
29
3.3.20. findTLV (tag, occurrence) method
30
3.3.21. getLength() method
30
3.3.22. getValueByte(valueOffset) method
30
3.3.23. getValueLength() method
30
3.4.
ProactiveResponseHandler tests
30
3.4.1. getTheHandler() method
30
3.4.2. getGeneralResult() method
30
3.4.3. getAdditionalInformationLength() method
30
3.4.4. getAdditionalInformation(dstBuffer, dstOffset, dstLength) method
31
3.4.5. getItemIdentifier() method
32
3.4.6. getTextStringLength() method
32
3.4.7. getTextStringCodingScheme() method
32
3.4.8. copyTextString(dstBuffer, dstOffset) method
33
3.4.9. compareValue(valueOffset, compareBuffer, compareOffset, compareLength) method
33
3.4.10. copy(dstBuffer, dstOffset, dstLength) method
34
3.4.11. copyValue(valueOffset, dstBuffer, dstOffset, dstLength) method
34
3.4.12. findAndCompareValue(tag, occurence, valueOffset, compareBuffer, compareOffset, compareLength) method
34
3.4.13. findAndCompareValue(tag, compareBuffer, compareOffset) method
34
3.4.14. findAndCopyValue(tag, dstBuffer, dstOffset) method
34
3.4.15. findAndCopyValue(tag, occurence, valueOffset, dstBuffer, dstOffset, dstLength) method
34
3.4.16. findTLV (tag, occurrence) method
34
3.4.17. getLength() method
34
3.4.18. getValueByte(valueOffset) method
35
3.4.19. getValueLength() method
35
3.5.
EnvelopeHandler tests
35
3.5.1. getTheHandler() method
35
3.5.2. getEnvelopeTag() method
35
3.5.3. getTPUDLOffset() method
35
3.5.4. getSecuredDataOffset() method
35
3.5.5. getSecuredDataLength() method
36
3.5.6. getItemIdentifier() method
36
3.5.7. compareValue(valueOffset, compareBuffer, compareOffset, compareLength) method
37
3.5.8. copy(dstBuffer, dstOffset, dstLength) method
37
3.5.9. copyValue(valueOffset, dstBuffer, dstOffset, dstLength) method
37
3.5.10. findAndCompareValue(tag, occurence, valueOffset, compareBuffer, compareOffset, compareLength) method
37
3.5.11. findAndCompareValue(tag, compareBuffer, compareOffset) method
37
3.5.12. findAndCopyValue(tag, dstBuffer, dstOffset) method
37
3.5.13. findAndCopyValue(tag, occurence, valueOffset, dstBuffer, dstOffset, dstLength) method
37
3.5.14. findTLV (tag, occurrence) method
37
3.5.15. getLength() method
37
3.5.16. getValueByte(valueOffset) method
38
3.5.17. getValueLength() method
38
3.6.
EnvelopeResponseHandler tests
38
3.6.1. getTheHandler() method
38
3.6.2. post (statusType) method
38
3.6.3. postAsBERTLV (statusType, tag) method
38
3.6.4. clear() method
39
3.6.5. appendArray (buffer, offset, length) method
39
3.6.6. appendTLV (tag, value, valueOffset, valueLength) method
39
3.6.7. appendTLV (tag, value) method
39
3.6.8. appendTLV (tag, value1, value2) method
39
3.6.9. appendTLV(tag, value1, value2, value2Offset, value2Length) method
39
3.6.10. compareValue(valueOffset, compareBuffer, compareOffset, compareLength) method
39
3.6.11. copy(dstBuffer, dstOffset, dstLength) method
39
3.6.12. copyValue(valueOffset, dstBuffer, dstOffset, dstLength) method
40
3.6.13. findAndCompareValue(tag, occurence, valueOffset, compareBuffer, compareOffset, compareLength) method
40
3.6.14. findAndCompareValue(tag, compareBuffer, compareOffset) method
40
3.6.15. findAndCopyValue(tag, dstBuffer, dstOffset) method
40
3.6.16. findAndCopyValue(tag, occurence, valueOffset, dstBuffer, dstOffset, dstLength) method
40
3.6.17. findTLV (tag, occurrence) method
40
3.6.18. getLength() method
40
3.6.19. getValueByte(valueOffset) method
40
3.6.20. getValueLength() method
40
4.
System Handlers Management Tests. State
41
4.1.
ProactiveHandler tests
41
4.2.
Pruebas de ProactiveResponseHandler
42
4.3.
Pruebas de EnvelopeHandler
44
4.4.
Pruebas de EnvelopeResponseHandler
45
5.
Applet Triggering Tests
52
5.1.
Events tests
52
5.2.
Events management test
56
6.
Proactive Commands Sending Tests (send)
58
7.
Envelope Response Sending Tests (post)
65
8.
Toolkit Applets Installation Tests
68
9.
Toolkit Applets Registration Tests
69
9.1.
getEntry() method
69
9.2.
setEvent(event) method
69
9.3.
setEventList(eventList, offet, length) method
70
9.4.
clearEvent(event) method
71
9.5.
isEventSet(event) method
72
9.6.
disableMenuEntry(id) method
73
9.7.
enableMenuEntry(id) method
73
9.8.
initMenuEntry(menuEntry, offset, length, nextAction, helpSupported, iconQualifier, iconIdentifier) method
74
9.9.
changeMenuEntry(id, menuEntry, offset, length, nextAction, helpSupported, iconQualifier, iconIdentifier) method
75
9.10.
allocateTimer() method
76
9.11.
releaseTimer(timerIdentifier) method
76
9.12.
requestPollInterval(duration) method
76
9.13.
getPollInterval() method
78
10.
STF Initialization
78
11.
GSM Framework Tests
78
11.1.
SimView tests
78
11.2.
Access control tests
79

 EÍ "Scope"

2. Introduction

This document describes a test plan of the API defined in GSM 03.19. This test plan is divided in points according with the main functionalities, which API offers to toolkit applets

Tests are structured in the following way:

Test: it defines the criteria of the test.

Answer: it indicates the answer to the test.

Context: it defines the initial conditions to make the test.

Case n: it is optional and indicates different cases from the same test. The response in these cases should be how is indicated in the field 'answer'. In some cases the response is different to indicated answer. In these cases, the response is indicated.

3. System Handlers Management Tests. Elements: length, simple TLVs list and Tag.

In this tests group, some elements like length, lists of simple TLVs and Tag, composes each system handler, will be treated. These tests are basically white box tests of the methods implemented in the classes to prove.

3.1. Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler

3.1.1. getLength() method

C311a.

Test: handler is busy

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

C311b.

Test: the method returns TLVs list length

Answer: TLVs buffer length

Case 1: buffer length = 0

Case 2:buffer length > 255

Case 3:buffer length < 255

Case 4: buffer length = 255

3.1.2. copy (dstBuffer, dstOffset, dstLength) method

C312a.

Test: A null destination buffer is passed as parameter.

Answer: the method must throw a NullPointerException exception

Case 1: dstOffset = 0 y dstLength = 0

Case 2: dstOffset <> 0 y dstLength = 0

Case 3: dstOffset = 0 y dstLength <> 0

Case 4: dstOffset <> 0 y dstLength <> 0

C312b.

Test: dstOffset overcomes buffer size

Answer: the method must throw a IndexOutOfBoundsException exception

Context: length = 0

Case 1: dstOffset = buffer length

Case 2: dstOffset = buffer length – 1 (Exception is not thrown

C312c.

Test: dstLength overcomes buffer length

Answer: the method must throw a IndexOutOfBoundsException exception

Context: dstOffset = 0

Case 1: dstLength = buffer length (Exception is not thrown

Case 2: dstLength = buffer length + 1

C312d.

Test: (dstOffset + dstLength) overcomes buffer length

Answer: the method must throw a IndexOutOfBoundsException exception

Context: dstOffset <> 0 y dstLength <> 0

Case 1: (dstOffset + dstLength) = buffer length + 1

Case 2: (dstOffset + dstLength) = buffer length
(Exception is not thrown

Case 3; (dstOffset + dstLength) = buffer length – 1
(Exception is not thrown

C312e.

Test: requested length is bigger than simple TLVs list length

Answer: the method must throw a ToolkitException exception with the following reason code: OUT_OF_TLV_BOUNDARIES

Context: dstOffset = 0

Case 1: dstLength = simple TLVs list length + 1

Case 2: dstLength = simple TLVs list length (Exception is not thrown

Case 3; dstLength = simple TLVs list length – 1 (Exception is not thrown

C312f.

Test: handler is busy

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

C312g.

Test: simple TLVs list is copied in destination buffer

Answer: dstOffset + dstLength

Context:

Case 1: dstOffset = 0, dstLength = simple TLVs list length

Case 2: dstOffset <>0, (dstOffset + dstLength) = simple TLVs list length

Case 3; dstOffset <>0, (dstOffset + dstLength) < simple TLVs list length

Case 4: dstOffset = 0, (dstOffset + dstLength) < simple TLVs list length

3.1.3. findTLV (tag, occurrence) method

C313a.

Test: required TLV is not found in the list.

Answer: the method will return TLV_NOT_FOUND if no TLV is found in the list with the tag, which is passed as parameter, and an TLV should be selected.

Context: occurrence = 1, there is a selected TLV.

Case 1: tag without CR flag set.

Case 2: tag with CR flag set.

C313b.

Test: requested TLV is found in the list but occurrence does not corresponds.

Answer: the method will return TLV_NOT_FOUND

Context: there are 126 occurrences in the TLVs list

Case 1: occurrence = 127

C313c.

Test: invalid occurrence is passed as parameter

Answer: the method must throw a ToolkitException with the following reason code: BAD_INPUT_PARAMETER

Context:

Case 1: occurrence = 0

Case 2: occurrence < 0

C313d.

Test: handler is busy

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

C313e.

Test: required TLV is found in the list and its CR flag is 0

Answer: the method will return TLV_FOUND_CR_NOT_SET

Context: there are 127 occurrences of the requested TLV and tag parameter has not got CR flag set

Case 1: occurrence = 127

Case 2: occurrence = 1

C313f.

Test: required TLV is found in the list and its CR flag is 1.

Answer: the method will return TLV_FOUND_CR_SET

Context: there are 127 occurrences in the requested TLV and tag parameter has not got CR flag set

Case 1: occurrence = 127

Case 2: occurrence = 1

C313g.

Test: required TLV is found in the list and its CR flag is 0

Answer: the method will return TLV_FOUND_CR_NOT_SET

Context: there are 127 occurrences of the requested TLV and tag parameter has got CR flag set.

Case 1: occurrence = 127

Case 2: occurrence = 1

C313h.

Test: required TLV is found in the list and its CR flag is 1.

Answer: the method will return TLV_FOUND_CR_SET

Context: there are 127 occurrences in the requested TLV and tag parameter has got CR flag set

Case 1: occurrence = 127

Case 2: occurrence = 1

3.1.4. getValueLength() method

C314a.

Test: there is no selected TLV.

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT.

Context:

C314b.

Test: handler is busy

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

C314c.

Test: if there is a selected TLV

Answer: the method will return the length of the TLV value field.

Context:

Case 1: value field length = 0

Case 2: value field length = 1

Case 3: value field length = 127

Case 4: value field length = 128

Case 5: value field length = 255

3.1.5. getValueByte (offset) method

C315a.

Test: there is no selected TLV.

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT.

Context:

C315b.

Test: there is a selected TLV, and required offset overcomes the length of the TLV value field.

Answer: the method must throw a ToolkitException with the following reason code: OUT_OF_TLV_BOUNDARIES.

Context: value field length is 128 bytes

Case 1: offset = 128

C315c.

Test: handler is busy

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

C315d.

Test: there is a selected TLV, and required offset does not overcome the length of the TLV value field.

Answer: value of the required byte

Context: value field length is 129 bytes.

Case 1: offset = 0

Case 2: offset = 127

Case 3: offset = 128

3.1.6. copyValue (valueOffset, dstBuffer, dstOffset, dstLength) method

C316a.

Test: a null destination buffer is passed as parameter

Answer: the method must throw a NullPointerException exception

Context: there is selected TLV

Case 1: dstOffset = 0 y dstLength = 0

Case 2: dstOffset <> 0 y dstLength = 0

Case 3: dstOffset = 0 y dstLength <> 0

Case 4: dstOffset <> 0 y dstLength <> 0

C316b.

Test: dstOffset overcomes buffer size

Answer: the method must throw a IndexOutOfBoundsException exception

Context: dstlength = 0 , there is a selected TLV

Case 1: dstOffset = buffer length

Case 2: dstOffset = buffer length – 1 (exception is not thrown

C316c.

Test: dstlength overcomes destination buffer length

Answer: the method must throw a IndexOutOfBoundsException exception

Context: dstOffset = 0, there is a selected TLV

Case 1: dstlength = buffer length (exception is not thrown

Case 2: dstlength = buffer length + 1

C316d.

Test: (dstOffset + dstLength) overcomes destination buffer length

Answer: the method must throw a IndexOutOfBoundsException exception

Context: dstOffset <> 0 y dstLength <> 0, there is a selected TLV

Case 1: (dstOffset + dstLength) = buffer length + 1

Case 2: (dstOffset + dstLength) = buffer length
(exception is not thrown

Case 3; (dstOffset + dstLength) = buffer length – 1
(exception is not thrown

C316e.

Test: requested valueOffset overcomes the length of the value field

Answer: Answer: the method must throw a ToolkitException exception with the following reason code: OUT_OF_TLV_BOUNDARIES

Context: dstlength = 0, there is a selected TLV

Case 1: dstOffset = length of the value field

Case 2: dstOffset = length of the value field – 1 (exception is not thrown

C316f.

Test: dstlength overcomes the length of the value field of the selected TLV

Answer: the method must throw a ToolkitException exception with the following reason code: OUT_OF_TLV_BOUNDARIES

Context: valueOffset = 0, there is a selected TLV

Case 1: dstlength = length of the value field (exception is not thrown

Case 2: dstlength = length of the value field + 1

C316g.

Test: (valueOffset + dstLength) overcomes the length of the value field of the selected TLV

Answer: the method must throw a ToolkitException exception with the following reason code: OUT_OF_TLV_BOUNDARIES

Context: valueOffset <> 0 y dstLength <> 0, there is a selected TLV

Case 1: (valueOffset + dstLength) = length of the value field + 1

Case 2: (valueOffset + dstLength) = length of the value field
(exception is not thrown

Case 3; (valueOffset + dstLength) = length of the value field – 1
(exception is not thrown

C316h.

Test: there is no selected TLV

Answer: the method must throw a ToolkitException exception with the following reason code: UNAVAILABLE_ELEMENT

Context:

Case 1: there is no selected TLV

C316i.

Test: handler is busy

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

C316j.

Test: requested part of the selected TLV is copied to dstBuffer.

Answer: the method return: (dstOffset + dstLength)

Context: length of the value field > 127, there is a selected TLV

Case 1: valueOffset = 0, dstOffset = 0, dstLength = length of the value filed

Case 2: valueOffset = (length of the value filed –1), dstOffset=0, dstLength=1

Case 3; valueOffset <>0, dstOffsset >127 , dstLength <>0

Case 5: dstLength = 0

3.1.7. compareValue (valueOffset, compareBuffer, compareOffset, compareLength) method

C317a.

Test: a null compare buffer is passed as parameter

Answer: the method must throw a NullPointerException exception

Context: there is a selected TLV

Case 1: compareOffset = 0 y compareLength = 0

Case 2: compareOffset <> 0 y compareLength = 0

Case 3: compareOffset = 0 y compareLength <> 0

Case 4: compareOffset <> 0 y compareLength <> 0

C317b.

Test: compareOffset overcomes the size of the compareBuffer

Answer: the method must throw a IndexOutOfBoundsException exception

Context: comparelength = 0, there is a selected TLV

Case 1: compareOffset = buffer length

Case 2: compareOffset = buffer length – 1 (Exception is not thrown

C317c.

Test: compareLength overcomes the size of the compareBuffer

Answer: the method must throw a IndexOutOfBoundsException exception

Context: compareOffset = 0, there is a selected TLV

Case 1: compareLength = buffer length (Exception is not thrown

Case 2: compareLength = buffer length + 1

C317d.

Test: (compareOffset + compareLength) overcomes compareBuffer length

Answer: the method must throw a IndexOutOfBoundsException exception

Context: offset <> 0 y length <> 0, there is a selected TLV

Case 1: (compareOffset + compareLength) = buffer length + 1

Case 2: (compareOffset + compareLength) = buffer length
(Exception is not thrown

Case 3; (compareOffset + compareLength) = buffer length – 1
(Exception is not thrown

C317e.

Test: valueoffset overcomes the length of the value field

Answer: the method must throw a ToolkitException exception with the following reason code: OUT_OF_TLV_BOUNDARIES

Context: compareLength = 0, there is a selected TLV

Case 1: valueOffset = length of the value field

Case 2: valueOffset = length of the value field – 1 (Exception is not thrown

C317f.

Test: compareLength overcomes the length of the value field of the selected TLV

Answer: the method must throw a ToolkitException exception with the following reason code: OUT_OF_TLV_BOUNDARIES

Context: valueOffset = 0, there is a selected TLV

Case 1: compareLength = length of the value field (Exception is not thrown

Case 2: compareLength = length of the value field + 1

C317g.

Test: (valueOffset + compareLength) overcomes the length of the value field of the selected TLV

Answer: the method must throw a ToolkitException exception with the following reason code: OUT_OF_TLV_BOUNDARIES

Context: valueOffset <> 0 y compareLength <> 0, there is a selected TLV

Case 1: (valueOffset + compareLength) = length of the value field + 1

Case 2: (valueOffset + compareLength) = length of the value field
(Exception is not thrown

Case 3; (valueOffset + compareLength) = length of the value field – 1
(Exception is not thrown

C317h.

Test: there is no selected TLV

Answer: the method must throw a ToolkitException exception with the following reason code: UNAVAILABLE_ELEMENT

Context:

Case 1: there is no selected TLV

C317i.

Test: handler is busy

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

C317j.

Test: the method compares a part of selected TLV with a part of compareBuffer.

Answer: the method will return:

0 : if they are equal

1: if the first miscomparing byte in TLV element array is greater than in compare buffer.

-1: if the first miscomparing byte in TLV element array is lower than in compare buffer.

Context: length of the value field > 127 , there is a selected TLV

Case 1: valueOffset = 0, compareOffset = 0, compareLength = length of the value field, equal fields

Case 2: valueOffset = (length of the value field –1), compareOffset=0, compareLength=1, TLV element is greater than compare buffer

Case 3; valueOffset <>0, compareOffsset >127, compareLength <>0, TLV element is lower than compare buffer

Case 4: compareLength = 0

3.1.8. findAndCopyValue (tag, dstBuffer, dstOffset) method

C318a.

Test: required TLV is not found in the list.

Answer: the method must throw a ToolkitException exception with the following reason code: UNAVAILABLE_ELEMENT, and no TLV should be selected

Context: there is a selected TLV (to check there is no selected TLV at the end)

Case 1: required TLV is not in the TLV list

C318b.

Test: destination buffer is null

Answer: the method must throw a NullPointerException exception and no TLV should be selected

Context: there is a selected TLV and the requested TLV is found

 Case 1: dstOffset = 0

Case 2: dstOffset <> 0

C318c.

Test: dstOffset overcomes the size of the dstBuffer

Answer: the method must throw a IndexOutOfBoundsException exception and no TLV should be selected

Context: there is a selected TLV and the requested TLV is found

Case 2: dstOffset = buffer length – 1 (Exception is not thrown

C318d.

Test: length of the value field of the selected TLV overcomes dstBuffer length

Answer: the method must throw a IndexOutOfBoundsException exception, and no TLV should be selected

Context: there is a selected TLV and the requested TLV is found

Case 1: length = buffer length (Exception is not thrown

Case 2: length = buffer length + 1

C318e.

Test: (dstOffset + length of the value field of the selected TLV) overcomes dstBuffer length

Answer: the method must throw a IndexOutOfBoundsException exception, and no TLV should be selected

Context: there is a selected TLV and the requested TLV is found

offset <> 0 y length <> 0

Case 1: (dstOffset + length) = buffer length + 1

Case 2: (dstOffset + length) = buffer length
(Exception is not thrown

Case 3; (dstOffset + length) = buffer length – 1 (Exception is not thrown

C318f.

Test: handler is busy

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

C318g.

Test: first occurrence of a TLV element from the beginning of a TLV list is copied into a destination buffer

Answer: (dstOffset+ length of the copied value), and the selected TLV should be the found one

Context: there is a selected TLV and the requested TLV is found.

Required TLV is from offset 127 and there is another occurrence of the same TLV in the TLV list.

Case 1: dstOffset = 0

Case 2: dstOffset <>0

3.1.9. findAndCopyValue (tag, ocurrence, valueOffset, dstBuffer, dstOffset, dstLength) method

C319a.

Test: required TLV is not found in the TLV list.

Answer: the method must throw a ToolkitException exception with the following reason code: UNAVAILABLE_ELEMENT and no TLV should be selected Context: there is a selected TLV

Case 1: requested TLV is not in TLV list

C319b.

Test: requested TLV is found in the list but occurrence not corresponds

Answer: the method must throw a ToolkitException exception with the following reason code: UNAVAILABLE_ELEMENT and no TLV should be selected

Context: there are 127 occurrences of requested TLV and there is a selected TLV

Case 1: occurrence = 128

Case 2: occurrence = 127 (Exception is not thrown

C319c.

Test: invalid occurrence is passed as parameter

Answer: the method must throw a ToolkitException exception with the following reason code: BAD_INPUT_PARAMETER and no TLV should be selected

Context: There is a selected TLV.

 Case 1: occurrence = 0

Case 2: occurrence = 255

C319d.

Test: a null buffer is passed as parameter

Answer: the method must throw a NullPointerException exception and no TLV should be selected

Context: there is a selected TLV and the requested TLV is found

Case 1: dstOffset = 0 y dstLength = 0

Case 2: dstOffset <> 0 y dstLength = 0

Case 3: dstOffset = 0 y dstLength <> 0

Case 4: dstOffset <> 0 y dstLength <> 0

C319e.

Test: dstOffset overcomes buffer size

Answer: the method must throw a IndexOutOfBoundsException exception and no TLV should be selected

Context: dstLength = 0, there is a selected TLV and the requested TLV is found Case 1: offset = buffer length

Case 2: offset = buffer length – 1 (Exception is not thrown

C319f.

Test: dstlength overcomes destination buffer length

Answer: the method must throw a IndexOutOfBoundsException exception and no TLV should be selected

Context: dstOffset = 0, there is a selected TLV and the requested TLV is found

Case 1: dstlength = buffer length (Exception is not thrown

Case 2: dstlength = buffer length + 1

C319g.

Test: (dstOffset + dstLength) overcomes the length of the destination buffer

Answer: the method must throw a IndexOutOfBoundsException exception and no TLV should be selected

Context: dstOffset <> 0 y dstLength <> 0, there is a selected TLV and the requested TLV is found

Case 1: (dstOffset + dstLength) = buffer length + 1

Case 2: (dstOffset + dstLength) = buffer length
(Exception is not thrown

Case 3; (dstOffset + dstLength) = buffer length – 1
(Exception is not thrown

C319h.

Test: requested valueOffset overcomes the length of the value field

Answer: the method must throw a ToolkitException exception with the following reason code: OUT_OF_TLV_BOUNDARIES and no TLV should be selected

Context: dstLength = 0, there is a selected TLV and the requested TLV is found

Case 1: valueOffset = length of the value field

Case 2: valueOffset = length of the value field – 1 (Exception is not thrown

C319i.

Test: dstlength overcomes the length of the value field of the selected TLV

Answer: the method must throw a ToolkitException exception with the following reason code: OUT_OF_TLV_BOUNDARIES and no TLV should be selected

Context: valueOffset = 0, there is a selected TLV and the requested TLV is found Case 1: dstlength = length of the value field (Exception is not thrown

Case 2: dstlength = length of the value field + 1

C319j.

Test: (valueOffset + dstLength) overcomes the length of the value field of the selected TLV

Answer: the method must throw a ToolkitException exception with the following reason code: OUT_OF_TLV_BOUNDARIES and no TLV should be selected

Context: valueOffset <> 0 y dstLength <> 0, there is a selected TLV and the requested TLV is found

Case 1: (valueOffset + dstLength) = length of the value field + 1

Case 2: (valueOffset + dstLength) = length of the value field (Exception is not thrown

Case 3; (valueOffset + dstLength) = length of the value field – 1 (Exception is not thrown

C319k.

Test: handler is busy

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

C319l.

Test: the indicated occurrence of a TLV element is copied into a destination buffer Answer: the method will return: (dstOffset + dstLength), and the selected TLV should be the found one

Context: length of the value field > 127 , there is a selected TLV

Case 1: valueOffset = 0, dstOffset = 0, dstLength = length of the value field

Case 2: valueOffset = (length of the value field –1), dstOffset=0, dstLength=1

Case 3; valueOffset <>0, dstOffsset >127 , dstLength <>0

Case 5: dstLength = 0

3.1.10. findAndCompareValue (tag, compareBuffer, compareOffset) method

C3110a.

Test: required TLV is not found in the TLV list

Answer: the method must throw a ToolkitException exception with the following reason code: UNAVAILABLE_ELEMENT and no TLV should be selected

Context: there is a selected TLV

Case 1: required TLV is not found in the TLV list

C3110b.

Test: a null compare buffer is passed as parameter

Answer: the method must throw a NullPointerException exception and no TLV should be selected

Context: there is a selected TLV and the requested TLV is found

Case 1: compareOffset = 0

Case 2: compareOffset <> 0

C3110c.

Test: compareOffset overcomes the size of compareBuffer

Answer: the method must throw a IndexOutOfBoundsException exception and no TLV should be selected

Context: there is a selected TLV and the requested TLV is found

Case 1: compareOffset = buffer length

Case 2: compareOffset = buffer length – 1 (Exception is not thrown

C3110d.

Test: (compareOffset + length of the value field) overcomes the size of compareBuffer

Answer: the method must throw a IndexOutOfBoundsException exception and no TLV should be selected

Context: compareOffset <> 0 y length of the value field <> 0, there is a selected TLV and the requested TLV is found

Case 1: (compareOffset + length of the value field) = buffer length + 1

Case 2: (compareOffset + length of the value field) = buffer length (Exception is not thrown

Case 3; (compareOffset + length of the value field) = buffer length – 1(Exception is not thrown

C3110e.

Test: handler is busy

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

C3110f.

Test: the first occurrence of a TLV from beginning of a TLV list is compared with compareBuffer.

Answer: the method will return:

0 : if identical

1: if the first miscomparing byte in TLV element array is greater than in compare buffer.

-1: if the first miscomparing byte in TLV element array is less than in compare buffer.

Context: the requested TLV is found

Case 1: compareOffset = 0, length of the value field = compareBuffer length

Case 2: compareOffset <> 0, length of the value field < compareBuffer length

Case 3: compareOffset > 127

Case 4: length of the value field > 127

3.1.11. findAndCompareValue (tag, occurrence, valueOffset, compareBuffer, compareOffset, compareLength) method

C3111a.

Test: required TLV is not found in the TLV list

Answer: the method must throw a ToolkitException exception with the following reason code: UNAVAILABLE__ELEMENT and no TLV should be selected

Context: occurrence = 1, there is a selected TLV and the requested TLV is found

Case 1: tag without CR flag set.

Case 2: tag with CR flag set.

C3111b.

Test: requested TLV is found in the list but occurrence not corresponds

Answer: the method must throw a ToolkitException exception with the following reason code: UNAVAILABLE_ELEMENT and no TLV should be selected

Context: there are 127 occurrences of requested TLV and there is a selected TLV and the requested TLV is found

Case 1: occurrence = 128

C3111c.

Test: invalid occurrence is passed as parameter

Answer:the method must throw a ToolkitException exception with the following reason code: BAD_INPUT_PARAMETER and no TLV should be selected

Context: there is a selected TLV

Case 1: ocurrencia = 0

Case 2: ocurrencia = 255

C3111d.

Test: a null buffer is passed as parameter

Answer: the method must throw a NullPointerException exception and no TLV should be selected

Context: there is a selected TLV and the requested TLV is found

Case 1: compareOffset = 0 y compareLength = 0

Case 2: compareOffset <> 0 y compareLength = 0

Case 3: compareOffset = 0 y compareLength <> 0

Case 4: compareOffset <> 0 y compareLength <> 0

C3111e.

Test: compareOffset overcomes the length of the compareBuffer

Answer: the method must throw aIndexOutOfBoundsException exception and no TLV should be selected

Context: comparelength = 0, there is a selected TLV and the requested TLV is found

Case 1: compareOffset = buffer length

Case 2: compareOffset = buffer length – 1 (Exception is not thrown

C3111f.

Test: compareLength overcomes the length of the compareBuffer

Answer: the method must throw a IndexOutOfBoundsException exception and no TLV should be selected

Context: there is a selected TLV and the requested TLV is found

Case 1: compareLength = buffer length (Exception is not thrown

Case 2: compareLength = buffer length + 1

C3111g.

Test: (compareOffset + compareLength) overcomes the length of the compareBuffer

Answer: the method must throw a IndexOutOfBoundsException exception and no TLV should be selected

Context: offset <> 0 y length <> 0, there is a selected TLV and the requested TLV is found

Case 1: (compareOffset + compareLength) = buffer length + 1

Case 2: (compareOffset + compareLength) = buffer length
(Exception is not thrown

Case 3; (compareOffset + compareLength) = buffer length – 1 (Exception is not thrown

C3111h.

Test: the requested valueOffset overcomes the length of the value field

Answer: the method must throw a ToolkitException exception with the following reason code: OUT_OF_TLV_BOUNDARIES and no TLV should be selected

Context: compareLength = 0, there is a selected TLV and the requested TLV is found

Case 1: valueOffset = length of the value field

Case 2: valueOffset = length of the value field – 1 (Exception is not thrown

C3111i.

Test: compareLength overcomes the length of the value field of the selected TLV.

Answer: the method must throw a ToolkitException exception with the following reason code: OUT_OF_TLV_BOUNDARIES and no TLV should be selected

Context: valueOffset = 0, there is a selected TLV and the requested TLV is found

Case 1: compareLength = length of the value field (Exception is not thrown

Case 2: compareLength = length of the value field + 1

C3111j.

Test: (valueOffset + compareLength) overcomes the length of the value field of the selected TLV

Answer: the method must throw a ToolkitException exception with the following reason code: OUT_OF_TLV_BOUNDARIES and no TLV should be selected

Context: valueOffset <> 0 y compareLength <> 0, there is a selected TLV and the requested TLV is found

Case 1: (valueOffset + compareLength) = length of the value field + 1

Case 2: (valueOffset + compareLength) = length of the value field
(Exception is not thrown

Case 3; (valueOffset + compareLength) = length of the value field – 1
(Exception is not thrown

C3111k.

Test: handler is busy

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

C3111l.

Test: indicated occurrence of a TLV element from the beginning of a TLV list is compared with compareBuffer

Answer: the method will return:

0 : if identical

1: if the first miscomparing byte in TLV element array is greater than in compare buffer.

-1: if the first miscomparing byte in TLV element array is lower than in compare buffer.

Context: length of the value field > 127, the requested TLV is found

Case 1: valueOffset = 0, compareOffset = 0, compareLength = length of the value field, equal fields

Case 2: valueOffset = (length of the value field –1), compareOffset=0, compareLength=1 and TLV element is greater than compare buffer

Case 3; valueOffset <> 0, compareOffsset > 127, compareLength <>0 and TLV element is greater than compare buffer

Case 4: compareLength = 0, valueLength <> 0

Case 5: valueLength = 0, compareLength = 0

3.2. Tests of the common methods for ProactiveHandler and EnvelopeResponseHandler

3.2.1. clear() method

C321a.

Test: cleat the EditHandler buffer

Answer: After this method is executed, the EditHandler length should be zero

C321b.

Test: handler is busy

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

3.2.2. appendArray (buffer, offset, length) method

C322a.

Test: A null buffer is passed as parameter

Answer: the method must throw a NullPointerException exception

Context:

Case 1: offset = 0, length = 0

Case 2: offset = 0, length <> 0

Case 3: offset <> 0, length = 0

Case 4: offset <> 0, length <> 0

C322b.

Test: offset overcomes buffer size

Answer: the method must throw a ArrayIndexOutOfBoundsException exception

Context: length = 0

Case 1: offset = buffer length

Case 2: offset = buffer length + 1

C322c.

Test: length overcomes buffer length

Answer: the method must throw an ArrayIndexOutOfBoundsException exception

Context: offset = 0

Case 1: length = buffer length + 1

C322d.

Test: (offset + length) overcomes buffer length

Answer: the method must throw an ArrayIndexOutOfBoundsException exception

Context: offset <> 0 y length <> 0

Case 1: (offset + length) = buffer length + 1

C322e.

Test: EditHandler buffer is too small to add the required data

Answer: the method must throw a ToolkitException exception with the following reason code: HANDLER_OVERFLOW

Context:

Case 1: length of EditHandler buffer = 0, length <> 0

Case 2: length of EditHandler buffer <> 0, (length + EditHandler buffer length) = maximum length of EditHandler buffer. + 1

C322f.

Test: handler is busy

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

C322g.

Test: data, which are passed as parameter, are added to EditHandler buffer

Answer:

Context:

Case 1: (length + EditHandler buffer length) = maximum length of EditHandler buffer, length = 127

Case 2: (length + EditHandler buffer length) < maximum length of EditHandler buffer, EditHandler buffer length = 127

Case 3: length = 0, EditHandler buffer length = maximum length of EditHandler buffer, maximum length of EditHandler buffer = 256 or more.

3.2.3. appendTLV (tag, value, valueOffset, valueLength) method

C323a.

Test: A null buffer is passed as parameter (value)

Answer: the method must throw a NullPointerException exception.

Context:

Case 1: valueOffset = 0, valueLength = 0

Case 2: valueOffset = 0, valueLength <> 0

Case 3: valueOffset <> 0, valueLength = 0

Case 4: valueOffset <> 0, valueLength <> 0

C323b.

Test: valueOffset overcomes the size of the buffer.

Answer: the method must throw an ArrayIndexOutOfBoundsException exception.

Context: valueLength = 0

Case 1: valueOffset = buffer length

Case 2: valueOffset = buffer lenght + 1

C323c.

Test: valueLength overcomes the buffer length

Answer: the method must throw an ArrayIndexOutOfBoundsException exception.

Context: valueOffset = 0

Case 1: valueLength = buffer length + 1

C323d.

Test: valueLength is greater than 255

Answer: the method must throw a ToolkitException exception with the following reason code: BAD_INPUT_PARAMETER

Context: valueOffset = 0

Case 1: valueLength + EditHandler data lenght < maximum length of EditHandler buffer

C323e.

Test: (valueOffset + valueLength) overcomes the búffer length.

Answer: the method must throw an ArrayIndexOutOfBoundsException exception.

Context: valueOffset <> 0 y valueLength <> 0

Case 1: (valueOffset + valueLength) = buffer length + 1

C323f.

Test: EditHandler buffer is too small to add the requiered data

Answer: the method must throw a ToolkitException exception with the following reason code: HANDLER_OVERFLOW

Context:

Case 1: maximum length of EditHandler buffer = 0, valueLength <> 0

Case 2:maximum length of EditHandler buffer <> 0, (valueLength + EditHandler data length) = maximum length of EditHandler buffer + 1

C323g.

Test: handler is busy

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

C323h.

Test: data, which are passed as parameter, are added to EditHandler buffer.

Answer:

Context:

Case 1: (valueLength + EditHandler data lenght) = maximum length of EditHandler buffer, valueLength = 127

Case 2: (valueLength + EditHandler data lenght) < maximum length of EditHandler buffer, EditHandler data length = 127

Case 3: valueLength = 0, EditHandler data length = maximum length of EditHandler buffer, maximum length of EditHandler buffer = 256 or more.

3.2.4. appendTLV (tag, value) method

C324a.

Test: EditHandler buffer is too small to add the requiered data..

Answer: the method must throw a ToolkitException exception with the following reason code: HANDLER_OVERFLOW.

Context:

Case 1: EditHandler data lenght = maximum length of EditHandler buffer.

Case 2: maximum length of EditHandler buffer = 0.

C324b.

Test: handler is busy

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

C324c.

Test: data, wich are passed as parameter, are added to EditHandler buffer

Answer:

Context:

Case 1: EditHandler data lenghth= maximum length of EditHandler buffer – 1.

Case 2: EditHandler data lenghth < maximum length of EditHandler buffer, EditHandler data length = 127.

Case 3: EditHandler data length =maximum length of EditHandler buffer – 1, maximum length of EditHandler buffer = 256 or more.

3.2.5. appendTLV (tag, value1, value2) method

C325a.

Test: EditHandler buffer is too small to add the requiered data..

Answer: the method must throw a ToolkitException exception with the following reason code: HANDLER_OVERFLOW.

Context:

Case 1: EditHandler data lenght = maximum length of EditHandler buffer.

Case 1: EditHandler data lenght = maximum length of EditHandler buffer - 1.

Case 3: maximum length of EditHandler buffer = 1, EditHandler data lenght = 0.

Case 4: maximum length of EditHandler buffer = 0;

C325b.

Test: handler is busy

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

C325c.

Test: data, which are passed as parameter, are added to EditHandler buffer.

Answer:

Context:

Case 1: EditHandler data length = maximum length of EditHandler buffer – 1.

Case 2: EditHandler data length < maximum length of EditHandler buffer, EditHandler data length = 127.

Case 3: EditHandler data length =maximum length of EditHandler buffer – 1, maximum length of EditHandler buffer = 256 or more.

3.2.6. appendTLV(tag, value1, value2, value2Offset, value2Length) method

C326a.

Test: A null buffer is passed as parameter (value2)

Answer: the method must throw a NullPointerException exception.

Context:

Case 1: value2Offset = 0, value2Length = 0

Case 2: value2Offset = 0, value2Length <> 0

Case 3: value2Offset <> 0, value2Length = 0

Case 4: value2Offset <> 0, value2Length <> 0

C326b.

Test: data, which are passed, overcomes the size of the buffer.

Answer: the method must throw an ArrayIndexOutOfBoundsException exception.

Context: value2Length = 0

Case 1: value2Offset + 1(value)= buffer length

Case 2: value2Offset + 1(value)= buffer length +1

C326c.

Test: data, which are passed, overcomes the buffer length

Answer: the method must throw an ArrayIndexOutOfBoundsException exception.

Context: value2Offset = 0

Case 1: value2Length + 1 (value) = buffer length +1

C326d.

Test: (value2Offset + value2Length +1(value)) overcomes the buffer length.

Answer: the method must throw an ArrayIndexOutOfBoundsException exception.

Context: value2Offset <> 0 y value2Length <> 0

Case 1: (value2Offset + value2Length + 1(value)) = buffer length + 1

C326e.

Test: value2Length is greater than 254

Answer: the method must throw a ToolkitException exception with the following reason code: BAD_INPUT_PARAMETER

Context: valueOffset = 0

Case 1: valueLength + EditHandler data length +1 < maximum length of EditHandler buffer

C326f.

Test: EditHandler buffer is too small to add the required data.

Answer: the method must throw a ToolkitException exception with the following reason code: HANDLER_OVERFLOW.

Context:

Case 1: maximum length of EditHandler buffer = 0, value2Length <> 0

Case 2: maximum length of EditHandler buffer <> 0, (value2Length + EditHandler data length +1(value)) = maximum length of EditHandler buffer + 1

Case 3: maximum length of EditHandler buffer = 0, value2Length = 0.

Case 4: maximum length of EditHandler buffer = 1, value2Length = 1.

C326g.

Test: handler is busy

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

C326h.

Test: data, which are passed as parameter, are added to EditHandler buffer.

Answer:

Context:

Case 1: (value2Length + EditHandler data length + 1 (value)) = maximum length of EditHandler buffer, value2Length = 126

Case 2: (value2Length + EditHandler data length + 1 (value)) < maximum length of EditHandler buffer, EditHandler data length = 127

Case 3: value2Length = 0, EditHandler data length + 1 (value) = maximum length of EditHandler buffer, maximum length of EditHandler buffer = 256 or more.
3.3. ProactiveHandler tests

3.3.1. getTheHandler() method

see point 4(System Handlers Management Tests. State)

3.3.2. init(type, qualifier, dstDevice) method

C332a.

Test: the Proactive command with Command Details and Device Identities TLV is initialized

Answer: the proactive command must contain Command Details and Device Identities TLV.

Context: this method will be called after getTheHandler() method.

3.3.3. send() method

See 3. (Proactive Commands Sending Tests (send))

3.3.4. initDisplayText(qualifier, dcs, buffer, offset, length) method

Context: this method will be called after getTheHandler() method.

C334a.

Test: A null buffer is passed as parameter

Answer: the method must throw a NullPointerException exception.

Case 1: offset = 0, length = 0

Case 2: offset = 0, length <> 0

Case 3: offset <> 0, length = 0

Case 4: offset <> 0, length <> 0

C334b.

Test: offset overcomes the size of the buffer.

Answer: the method must throw an ArrayIndexOutOfBoundsException exception.

Context: length = 0

Case 1: offset = buffer length

Case 2: offset = buffer length + 1

C334c.

Test: length overcomes the buffer length

Answer: the method must throw an ArrayIndexOutOfBoundsException exception.

Context: offset = 0

Case 1: length = buffer length + 1

C334d.

Test: (offset + length) overcomes the buffer length.

Answer: the method must throw an ArrayIndexOutOfBoundsException exception.

Context: offset <> 0 y length <> 0

Case 1: (offset + length) = buffer length + 1

C334e.

Test: ProactiveHandler buffer is too small to add required data.

Answer: the method must throw a ToolkitException exception with the following reason code: HANDLER_OVERFLOW.

Context:

Case 1: (length + Proactive SIM command Tag + length field + Command details length + Device identities length) = maximum length of ProactiveHandler buffer + 1(257)

Case 2: (length + Proactive SIM command Tag + length field + Command details length + Device identities length) > maximum length of ProactiveHandler buffer.

C334f.

Test: data, which are passed as parameter, are added to ProactiveHandler buffer.

Answer:

Context:

Case 1: (length + Proactive SIM command Tag + length field + Command details length + Device identities length) = maximum length of ProactiveHandler buffer (256)

Case 2: (length + Proactive SIM command Tag + length field + Command details length + Device identities length) < maximum length of ProactiveHandler buffer (256)

Case 3: (length + Proactive SIM command Tag + length field + Command details length + Device identities length) < 127.

3.3.5. initGetInkey(qualifier, dcs, buffer, offset, length) method

Context: this method will be called after getTheHandler() method.

C335a.

Test: A null buffer is passed as parameter

Answer: the method must throw a NullPointerException exception.

Case 1: offset = 0, length = 0

Case 2: offset = 0, length <> 0

Case 3: offset <> 0, length = 0

Case 4: offset <> 0, length <> 0

C335b.

Test: offset overcomes the size of the buffer

Answer: the method must throw an ArrayIndexOutOfBoundsException exception

Context: length = 0

Case 1: offset = buffer length

Case 2: offset = buffer length + 1

C335c.

Test: length overcomes the buffer length

Answer: the method must throw an ArrayIndexOutOfBoundsException exception.

Context: offset = 0

Case 1: length = buffer length + 1

C335d.

Test: (offset + length) overcomes the buffer length.

Answer: the method must throw an ArrayIndexOutOfBoundsException exception.

Context: offset <> 0 y length <> 0

Case 1: (offset + length) = buffer length + 1

C335e.

Test: ProactiveHandler buffer is too small to add required data.

Answer: the method must throw a ToolkitException exception with the following reason code: HANDLER_OVERFLOW.

Context:

Case 1: (length + Proactive SIM command Tag + length field + Command details length + Device identities length) = maximum length of ProactiveHandler buffer + 1(257)

Case 2: (length + Proactive SIM command Tag + length field + Command details length + Device identities length) > maximum length of ProactiveHandler buffer.

C335f.

Test: data, which are passed as parameter, are added to ProactiveHandler buffer.

Answer:

Context:

Case 1: (length + Proactive SIM command Tag + length field + Command details length + Device identities length) = maximum length of ProactiveHandler buffer (256)

Case 2: (length + Proactive SIM command Tag + length field + Command details length + Device identities length) < maximum length of ProactiveHandler buffer (256)

Case 3: (length + Proactive SIM command Tag + length field + Command details length + Device identities length) < 127.

3.3.6. initGetInput(qualifier, dcs, buffer, offset, length, minRespLength, maxRespLength) method

Context: this method will be called after getTheHandler() method.

C336a.

Test: A null buffer is passed as parameter

Answer: the method must throw a NullPointerException exception.

Case 1: offset = 0, length = 0

Case 2: offset = 0, length <> 0

Case 3: offset <> 0, length = 0

Case 4: offset <> 0, length <> 0

C336b.

Test: offset overcomes the size of the buffer.

Answer: the method must throw an ArrayIndexOutOfBoundsException exception.

Context: length = 0

Case 1: offset = buffer length

Case 2: offset = buffer length + 1

C336c.

Test: length overcomes the buffer length

Answer: the method must throw an ArrayIndexOutOfBoundsException exception.

Context: offset = 0

Case 1: length = buffer length + 1

C336d.

Test: (offset + length) overcomes the buffer length.

Answer: the method must throw an ArrayIndexOutOfBoundsException exception.

Context: offset <> 0 y length <> 0

Case 1: (offset + length) = buffer length + 1

C336e.

Test: ProactiveHandler buffer is too small to add required data.

Answer: the method must throw a ToolkitException exception with the following reason code: HANDLER_OVERFLOW.

Context:

Case 1: (length + Proactive SIM command Tag + length field + Command details length + Device identities length + length of Response length field) = maximum length of ProactiveHandler buffer + 1(257)

Case 2: (length + Proactive SIM command Tag + length field + Command details length + Device identities length + length of Response length field) > maximum length of ProactiveHandler buffer.

C336f.

Test: data, which are passed as parameter, are added to ProactiveHandler buffer.

Answer:

Context:

Case 1: (length + Proactive SIM command Tag + length field + Command details length + Device identities length + length of Response length field) = maximum length of ProactiveHandler buffer (256)

Case 2: (length + Proactive SIM command Tag + length field + Command details length + Device identities length + length of Response length field) < maximum length of ProactiveHandler buffer (256)

Case 3: (length + Proactive SIM command Tag + length field + Command details length + Device identities length + length of Response length field) < 127.

3.3.7. clear() method

See 3.2. (Tests of the common methods for ProactiveHandler and EnvelopeResponseHandler)

3.3.8. appendArray (buffer, offset, length) method

See 3.2. (Tests of the common methods for ProactiveHandler and EnvelopeResponseHandler)

3.3.9. appendTLV (tag, value, valueOffset, valueLength) method

See 3.2. (Tests of the common methods for ProactiveHandler and EnvelopeResponseHandler)

3.3.10. appendTLV (tag, value) method

See 3.2. (Tests of the common methods for ProactiveHandler and EnvelopeResponseHandler)

3.3.11. appendTLV (tag, value1, value2) method

See 3.2. (Tests of the common methods for ProactiveHandler and EnvelopeResponseHandler)

3.3.12. appendTLV(tag, value1, value2, value2Offset, value2Length) method

See 3.2. (Tests of the common methods for ProactiveHandler and EnvelopeResponseHandler)

3.3.13. compareValue(valueOffset, compareBuffer, compareOffset, compareLength) method
See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.3.14. copy(dstBuffer, dstOffset, dstLength) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.3.15. copyValue(valueOffset, dstBuffer, dstOffset, dstLength) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.3.16. findAndCompareValue(tag, occurence, valueOffset, compareBuffer, compareOffset, compareLength) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.3.17. findAndCompareValue(tag, compareBuffer, compareOffset) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.3.18. findAndCopyValue(tag, dstBuffer, dstOffset) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.3.19. findAndCopyValue(tag, occurence, valueOffset, dstBuffer, dstOffset, dstLength) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.3.20. findTLV (tag, occurrence) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.3.21. getLength() method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.3.22. getValueByte(valueOffset) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.3.23. getValueLength() method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.4. ProactiveResponseHandler tests

3.4.1. getTheHandler() method

see point 4(System Handlers Management Tests. State)

3.4.2. getGeneralResult() method

C342a.

Test: there is not any Result TLV element

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

C342b.

Test: there is a Result TLV element in the Proactive handler

Answer: general result byte is obtained

3.4.3. getAdditionalInformationLength() method

C343a.

Test: there is not any Result TLV element

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

C343b.

Test: there is a Result TLV element in the Proactive handler

Answer: length of the additional information is obtained

3.4.4. getAdditionalInformation(dstBuffer, dstOffset, dstLength) method

C344a.

Test: A null destination buffer is passed as parameter.

Answer: the method must throw a NullPointerException exception

Case 1: dstOffset = 0 y dstLength = 0

Case 2: dstOffset <> 0 y dstLength = 0

Case 3: dstOffset = 0 y dstLength <> 0

Case 4: dstOffset <> 0 y dstLength <> 0

C344b.

Test: dstOffset overcomes buffer size

Answer: the method must throw a IndexOutOfBoundsException exception

Context: length = 0

Case 1: dstOffset = buffer length

Case 2: dstOffset = buffer length – 1 (Exception is not thrown

C344c.

Test: dstLength overcomes buffer length

Answer: the method must throw a IndexOutOfBoundsException exception

Context: dstOffset = 0

Case 1: dstLength = buffer length (Exception is not thrown

Case 2: dstLength = buffer length + 1

C344d.

Test: (dstOffset + dstLength) overcomes buffer length

Answer: the method must throw a IndexOutOfBoundsException exception

Context: dstOffset <> 0 y dstLength <> 0

Case 1: (dstOffset + dstLength) = buffer length + 1

Case 2: (dstOffset + dstLength) = buffer length
(Exception is not thrown

Case 3; (dstOffset + dstLength) = buffer length – 1
(Exception is not thrown

C344e.

Test: there is not any Result TLV element

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

C344f.

Test: dstLength is greater than the additional information length

Answer: the method must throw a ToolkitException with the following reason code: OUT_OF_TLV_BOUNDARIES

Context: dstOffset + dstLength < dstBuffer length

Case 1: dstLength > additional information length

C344g.

Test: simple TLVs list is copied in destination buffer

Answer: dstOffset + dstLength

Context:

Case 1: dstOffset = 0, dstLength = simple TLVs list length

Case 2: dstOffset <>0, (dstOffset + dstLength) = additional information length

Case 3; dstOffset <>0, (dstOffset + dstLength) < additional information length

Case 4: dstOffset = 0, (dstOffset + dstLength) < additional information length

3.4.5. getItemIdentifier() method

C345a.

Test: there is not any Item Identifier TLV element

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

C345b.

Test: there is a Item Identifier TLV element in the Proactive handler

Answer: Item Identifier is obtained

3.4.6. getTextStringLength() method

C346a.

Test: there is not any Text String TLV element

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

C346b.

Test: there is a Text String TLV element in the Proactive handler

Answer: Text String length is obtained

3.4.7. getTextStringCodingScheme() method

C347a.

Test: there is not any Text String TLV element

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

C347b.

Test: Text String TLV is present with a length of 0 (no DCS byte)

Answer: the method must throw a ToolkitException with the following reason code: OUT_OF_TLV_BOUNDARIES

C347c.

Test: there is a Text String TLV element in the Proactive handler

Answer: text string coding scheme is obtained

3.4.8. copyTextString(dstBuffer, dstOffset) method

C348a.

Test: A null destination buffer is passed as parameter.

Answer: the method must throw a NullPointerException exception

Case 1: dstOffset = 0 y dstLength = 0

Case 2: dstOffset <> 0 y dstLength = 0

Case 3: dstOffset = 0 y dstLength <> 0

Case 4: dstOffset <> 0 y dstLength <> 0

C348b.

Test: dstOffset overcomes buffer size

Answer: the method must throw an IndexOutOfBoundsException exception

Context: length = 0

Case 1: dstOffset = buffer length

Case 2: dstOffset = buffer length – 1 (Exception is not thrown

C348c.

Test: (dstOffset + Text String length) overcomes buffer length

Answer: the method must throw an IndexOutOfBoundsException exception

Context: Text String length <> 0

Case 1: (dstOffset + Text String length) = buffer length + 1

Case 2: (dstOffset + Text String length) = buffer length
(Exception is not thrown

Case 3: (dstOffset + Text String length) = buffer length – 1
(Exception is not thrown

C348d.

Test: there is not any Result TLV element

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

C348e.

Test: Text String TLV is copied in destination buffer

Answer: dstOffset + length of the copied value

Context:

Case 1: dstOffset = 0, dstBuffer length = Text String length

Case 2: dstOffset <>0, (dstOffset + dstBuffer length) = dstBuffer length

Case 3; dstOffset <>0, (dstOffset + Text String length) < dstBuffer length

Case 4: dstOffset = 0, (dstOffset + Text String length) < dstBuffer length

3.4.9. compareValue(valueOffset, compareBuffer, compareOffset, compareLength) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.4.10. copy(dstBuffer, dstOffset, dstLength) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.4.11. copyValue(valueOffset, dstBuffer, dstOffset, dstLength) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.4.12. findAndCompareValue(tag, occurence, valueOffset, compareBuffer, compareOffset, compareLength) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.4.13. findAndCompareValue(tag, compareBuffer, compareOffset) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.4.14. findAndCopyValue(tag, dstBuffer, dstOffset) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.4.15. findAndCopyValue(tag, occurence, valueOffset, dstBuffer, dstOffset, dstLength) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.4.16. findTLV (tag, occurrence) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.4.17. getLength() method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.4.18. getValueByte(valueOffset) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.4.19. getValueLength() method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.5. EnvelopeHandler tests

3.5.1. getTheHandler() method

see point 4(System Handlers Management Tests. State)

3.5.2. getEnvelopeTag() method

C352a.

Test: envelope BER_TLV tag is obtained

Answer: the method will return VER_TLV tag

3.5.3. getTPUDLOffset() method

C353a.

Test: there is not any available TPDU TLV element

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

C353b.

Test: TPUDL field does not exist

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

C353c.

Test: there is a TPUDL TLV element in the Envelope handler

Answer: TPUDL offset in the first TPDU TLV element is obtained

3.5.4. getSecuredDataOffset() method

C354a.

Test: there is not any available SMS TPDU TLV element

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

C354b.

Test: missing Secured Data

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

C354c.

Test: there is a TPUDL TLV element in the Envelope handler

Answer: offset of the secured Data first byte in the first SMS TPDU TLV element is obtained

3.5.5. getSecuredDataLength() method

C355a.

Test: there is not any available SMS TPDU TLV element

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

C355b.

Test: missing Secured Data

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

C355c.

Test: there is a TPUDL TLV element in the Envelope handler

Answer: length of the secured Data contained in the first SMS TPDU TLV element is obtained

3.5.6. getItemIdentifier() method

C356a.

Test: there is not any available TLV element

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

C356b.

Test: there is a TLV element in the Envelope handler

Answer: item identifier byte value from the first Item Identifier TLV element in the current Envelope data field is obtained

3.5.7. compareValue(valueOffset, compareBuffer, compareOffset, compareLength) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.5.8. copy(dstBuffer, dstOffset, dstLength) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.5.9. copyValue(valueOffset, dstBuffer, dstOffset, dstLength) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.5.10. findAndCompareValue(tag, occurence, valueOffset, compareBuffer, compareOffset, compareLength) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.5.11. findAndCompareValue(tag, compareBuffer, compareOffset) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.5.12. findAndCopyValue(tag, dstBuffer, dstOffset) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.5.13. findAndCopyValue(tag, occurence, valueOffset, dstBuffer, dstOffset, dstLength) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.5.14. findTLV (tag, occurrence) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.5.15. getLength() method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.5.16. getValueByte(valueOffset) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.5.17. getValueLength() method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.6. EnvelopeResponseHandler tests

3.6.1. getTheHandler() method

see point 4(System Handlers Management Tests. State)

3.6.2. post (statusType) method

C362a.

Test: EnvelopeResponseHandler is busy

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

C362b.

Test: EnvelopeResponseHandler is available

Answer: the Envelope response is sent to the ME.

3.6.3. postAsBERTLV (statusType, tag) method

C363a.

Test: EnvelopeResponseHandler is busy

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

C363b.

Test: EnvelopeResponseHandler is available

Answer: the Envelope response is sent to the ME

3.6.4. clear() method

See 3.2. (Tests of the common methods for ProactiveHandler and EnvelopeResponseHandler)

3.6.5. appendArray (buffer, offset, length) method

See 3.2. (Tests of the common methods for ProactiveHandler and EnvelopeResponseHandler)

3.6.6. appendTLV (tag, value, valueOffset, valueLength) method

See 3.2. (Tests of the common methods for ProactiveHandler and EnvelopeResponseHandler)

3.6.7. appendTLV (tag, value) method

See 3.2. (Tests of the common methods for ProactiveHandler and EnvelopeResponseHandler)

3.6.8. appendTLV (tag, value1, value2) method

See 3.2. (Tests of the common methods for ProactiveHandler and EnvelopeResponseHandler)

3.6.9. appendTLV(tag, value1, value2, value2Offset, value2Length) method

See 3.2. (Tests of the common methods for ProactiveHandler and EnvelopeResponseHandler)

3.6.10. compareValue(valueOffset, compareBuffer, compareOffset, compareLength) method
See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.6.11. copy(dstBuffer, dstOffset, dstLength) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.6.12. copyValue(valueOffset, dstBuffer, dstOffset, dstLength) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.6.13. findAndCompareValue(tag, occurence, valueOffset, compareBuffer, compareOffset, compareLength) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.6.14. findAndCompareValue(tag, compareBuffer, compareOffset) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.6.15. findAndCopyValue(tag, dstBuffer, dstOffset) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.6.16. findAndCopyValue(tag, occurence, valueOffset, dstBuffer, dstOffset, dstLength) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.6.17. findTLV (tag, occurrence) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.6.18. getLength() method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.6.19. getValueByte(valueOffset) method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

3.6.20. getValueLength() method

See 3.1 (Tests of the common methods for ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler)

4. System Handlers Management Tests. State
4.1. ProactiveHandler tests

C41a.

Test: a toolkit applet obtain the proactive handler (calling the getTheHandler method)

Answer: applet toolkit must get the handler and theTLV list must be empty

Context: proactive handler is not pending

Case 1: the applet toolkit is triggered upon FORMATTED_SMS_PP_ENV event

Case 2: the applet toolkit is triggered upon FORMATTED_SMS_PP_UPD event

Case 3: the applet toolkit is triggered upon UNFORMATTED_SMS_PP_ENV event

Case 4: the applet toolkit is triggered upon UNFORMATTED_SMS_PP_UDP event

Case 5: the applet toolkit is triggered upon UNFORMATTED_SMS_CB event

Case 6: the applet toolkit is triggered upon MENU_SELECTION event

Case 7: the applet toolkit is triggered upon MENU_SELECTION_HELP_REQUEST event

Case 8: the applet toolkit is triggered upon CALL_CONTROL event

Case 9: the applet toolkit is triggered upon SMS_MO_CONTROL event

Case 10: the applet toolkit is triggered upon TIMER_EXPIRATION event

Case 11: the applet toolkit is triggered upon EVENT_DOWNLOAD_MT_CALL event

Case 12: the applet toolkit is triggered upon EVENT_DOWNLOAD_CALL_CONNECTED event

Case 13: the applet toolkit is triggered upon EVENT_DOWNLOAD_CALL_DISCONNECTED event

Case 14: the applet toolkit is triggered upon EVENT_DOWNLOAD_LOCATION_STATUS event

Case 15: the applet toolkit is triggered upon EVENT_DOWNLOAD_USER_ACTIVITY event

Case 16: the applet toolkit is triggered upon EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE event

Case 17: the applet toolkit is triggered upon EVENT_DOWNLOAD_CARD_READER_STATUS event

Case 18: the applet toolkit is triggered upon UNRECOGNISED_ENVELOPE event

Case 19: the applet toolkit is triggered upon STATUS_COMMAND event

Case 20: the applet toolkit is triggered upon PROFILE_DOWNLOAD event

C41b

Test: a toolkit applet obtain the proactive handler (calling the getTheHandler method)

Answer: applet toolkit must not get the handler

Context: proactive handler is pending (other applet toolkit is sending a command toolkit)

Case 1: the applet toolkit is triggered upon CALL_CONTROL event

Case 2: the applet toolkit is triggered upon SMS_MO_CONTROL event

Case 3: the applet toolkit is triggered upon STATUS_COMMAND event

Case 4: the applet toolkit is triggered upon PROFILE_DOWNLOAD event

C41c

Test: init method is called twice

Answer: the content must be cleared and then initialized

C41d

Test: proactiveHandler.send method is called

Answer: the handler will remain unchanged

4.2. Pruebas de ProactiveResponseHandler

C42a

Test: a toolkit applet obtain the PoactiveResponse handler (calling the getTheHandler method)

Answer: applet toolkit may get the handler and theTLV list must be empty

Context: proactive handler is not pending

Case 1: the applet toolkit is triggered upon FORMATTED_SMS_PP_ENV event

Case 2: the applet toolkit is triggered upon FORMATTED_SMS_PP_UPD event

Case 3: the applet toolkit is triggered upon UNFORMATTED_SMS_PP_ENV event

Case 4: the applet toolkit is triggered upon UNFORMATTED_SMS_PP_UDP event

Case 5: the applet toolkit is triggered upon UNFORMATTED_SMS_CB event

Case 6: the applet toolkit is triggered upon MENU_SELECTION event

Case 7: the applet toolkit is triggered upon MENU_SELECTION_HELP_REQUEST event

Case 8: the applet toolkit is triggered upon CALL_CONTROL event

Case 9: the applet toolkit is triggered upon SMS_MO_CONTROL event

Case 10: the applet toolkit is triggered upon TIMER_EXPIRATION event

Case 11: the applet toolkit is triggered upon EVENT_DOWNLOAD_MT_CALL event

Case 12: the applet toolkit is triggered upon EVENT_DOWNLOAD_CALL_CONNECTED event

Case 13: the applet toolkit is triggered upon EVENT_DOWNLOAD_CALL_DISCONNECTED event

Case 14: the applet toolkit is triggered upon EVENT_DOWNLOAD_LOCATION_STATUS event

Case 15: the applet toolkit is triggered upon EVENT_DOWNLOAD_USER_ACTIVITY event

Case 16: the applet toolkit is triggered upon EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE event

Case 17: the applet toolkit is triggered upon EVENT_DOWNLOAD_CARD_READER_STATUS event

Case 18: the applet toolkit is triggered upon UNRECOGNISED_ENVELOPE event

Case 19: the applet toolkit is triggered upon STATUS_COMMAND event

Case 20: the applet toolkit is triggered upon PROFILE_DOWNLOAD event

C42b.

Test: a toolkit applet obtain the ProactiveResponse handler (calling the getTheHandler method)

Answer: applet toolkit must not get the handler

Context: proactive handler is pending (other applet toolkit is sending a command toolkit)

Case 1: the applet toolkit is triggered upon CALL_CONTROL event

Case 2: the applet toolkit is triggered upon SMS_MO_CONTROL event

Case 3: the applet toolkit is triggered upon STATUS_COMMAND event

Case 4: the applet toolkit is triggered upon PROFILE_DOWNLOAD event

C42c.

Test: the method copyAdditionalInformation is called

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

Context: the method is called before ProactiveHandler.send()

C42d.

Test: the method copyTextString is called

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

Context: the method is called before ProactiveHandler.send()

C42e.

Test: the method getAdditionalInformation is called

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

Context: the method is called before ProactiveHandler.send()

C42f.

Test: the method getGeneralResult is called

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

Context: the method is called before ProactiveHandler.send()

C42g.

Test: the method getItemIdentifier is called

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

Context: the method is called before ProactiveHandler.send()

C42h.

Test: the method getTextStringCodingScheme is called

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

Context: the method is called before ProactiveHandler.send()

C42i.

Test: the method getTextStringLength is called

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

Context: the method is called before ProactiveHandler.send()

C42j.

Test: the method compareValue is called

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

Context: the method is called before ProactiveHandler.send()

C42k.

Test: the method copyValue is called

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

Context: the method is called before ProactiveHandler.send()

C42l.

Test: the two methods findAndCompareValue are called

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

Context: the method is called before ProactiveHandler.send()

C42m.

Test: the two methods findAndCopyValue are called

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

Context: the method is called before ProactiveHandler.send()

C42n.

Test: the method findTLV is called

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

Context: the method is called before ProactiveHandler.send()

C42o.

Test: the method getValueByte is called

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

Context: the method is called before ProactiveHandler.send()

C42p.

Test: the method getValueLength is called

Answer: the method must throw a ToolkitException with the following reason code: UNAVAILABLE_ELEMENT

Context: the method is called before ProactiveHandler.send()

4.3. Pruebas de EnvelopeHandler

C43a.

Test: a toolkit applet obtain the Envelope handler (calling the getTheHandler method)

Answer: applet toolkit must get the handler

Context:

Case 1: the applet toolkit is triggered upon FORMATTED_SMS_PP_ENV event

Case 2: the applet toolkit is triggered upon FORMATTED_SMS_PP_UPD event

Case 3: the applet toolkit is triggered upon UNFORMATTED_SMS_PP_ENV event

Case 4: the applet toolkit is triggered upon UNFORMATTED_SMS_PP_UDP event

Case 5: the applet toolkit is triggered upon UNFORMATTED_SMS_CB event

Case 6: the applet toolkit is triggered upon MENU_SELECTION event

Case 7: the applet toolkit is triggered upon MENU_SELECTION_HELP_REQUEST event

Case 8: the applet toolkit is triggered upon CALL_CONTROL event

Case 9: the applet toolkit is triggered upon SMS_MO_CONTROL event

Case 10: the applet toolkit is triggered upon TIMER_EXPIRATION event

Case 11: the applet toolkit is triggered upon EVENT_DOWNLOAD_MT_CALL event

Case 12: the applet toolkit is triggered upon EVENT_DOWNLOAD_CALL_CONNECTED event

Case 13: the applet toolkit is triggered upon EVENT_DOWNLOAD_CALL_DISCONNECTED event

Case 14: the applet toolkit is triggered upon EVENT_DOWNLOAD_LOCATION_STATUS event

Case 15: the applet toolkit is triggered upon EVENT_DOWNLOAD_USER_ACTIVITY event

Case 16: the applet toolkit is triggered upon EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE event

Case 17: the applet toolkit is triggered upon EVENT_DOWNLOAD_CARD_READER_STATUS event

Case 18: the applet toolkit is triggered upon UNRECOGNISED_ENVELOPE event

C43b.

Test: a toolkit applet obtain the Envelope handler (calling the getTheHandler method)

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

Context:

Case 1: the applet toolkit is triggered upon STATUS_COMMAND event

Case 2: the applet toolkit is triggered upon PROFILE_DOWNLOAD event

4.4. Pruebas de EnvelopeResponseHandler

C44a.

Test: a toolkit applet obtain the Envelope handler (calling the getTheHandler method)

Answer: applet toolkit must get the handler

Context:

Case 1: the applet toolkit is triggered upon FORMATTED_SMS_PP_ENV event

Case 2: the applet toolkit is triggered upon UNFORMATTED_SMS_PP_ENV event

Case 3: the applet toolkit is triggered upon CALL_CONTROL event

Case 4: the applet toolkit is triggered upon SMS_MO_CONTROL event

Case 5: the applet toolkit is triggered upon UNRECOGNISED_ENVELOPE event

C44b.

Test: a toolkit applet obtain the Envelope handler (calling the getTheHandler method)

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

Context:

Case 1: the applet toolkit is triggered upon FORMATTED_SMS_PP_UPD event

Case 2: the applet toolkit is triggered upon UNFORMATTED_SMS_PP_UDP event

Case 3: the applet toolkit is triggered upon UNFORMATTED_SMS_CB event

Case 4: the applet toolkit is triggered upon MENU_SELECTION event

Case 5: the applet toolkit is triggered upon MENU_SELECTION_HELP_REQUEST event

Case 6: the applet toolkit is triggered upon TIMER_EXPIRATION event

Case 7: the applet toolkit is triggered upon EVENT_DOWNLOAD_MT_CALL event

Case 8 : the applet toolkit is triggered upon EVENT_DOWNLOAD_CALL_CONNECTED event

Case 9 : the applet toolkit is triggered upon EVENT_DOWNLOAD_CALL_DISCONNECTED event

Case 10 : the applet toolkit is triggered upon EVENT_DOWNLOAD_LOCATION_STATUS event

Case 11 : the applet toolkit is triggered upon EVENT_DOWNLOAD_USER_ACTIVITY event

Case 12 : the applet toolkit is triggered upon EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE event

Case 13 : the applet toolkit is triggered upon EVENT_DOWNLOAD_CARD_READER_STATUS event

Case 14: the applet toolkit is triggered upon STATUS_COMMAND event

Case 15: the applet toolkit is triggered upon PROFILE_DOWNLOAD event

C44c.

Test: post method is called

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

Context: the method is called after ProactiveHandler.send() method, EnvelopeResponseHandler.post or EnvelopeResponseHandler.postAsBERTLV

Case 1: the method is called after ProactiveHandler.send() method

Case 2: the method is called after EnvelopeResponseHandler.post() method

Case 3: the method is called after EnvelopeResponseHandler.postAsBERTLV() method

Case 4: the method is called by the second triggered applet and ProactiveHandler.send() method was called by the first triggered applet

Case 5: the method is called by the second triggered applet and EnvelopeResponseHandler.post() method was called by the first triggered applet

Case 6: the method is called by the second triggered applet and EnvelopeResponseHandler.postAsBERTLV() method was called by the first triggered applet

C44d.

Test: postAsBERTLV method is called

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

Context: the method is called after ProactiveHandler.send() method, EnvelopeResponseHandler.post or EnvelopeResponseHandler.postAsBERTLV

Case 1: the method is called after ProactiveHandler.send() method

Case 2: the method is called after EnvelopeResponseHandler.post() method

Case 3: the method is called after EnvelopeResponseHandler.postAsBERTLV() method

Case 4: the method is called by the second triggered applet and ProactiveHandler.send() method was called by the first triggered applet

Case 5: the method is called by the second triggered applet and EnvelopeResponseHandler.post() method was called by the first triggered applet

Case 6: the method is called by the second triggered applet and EnvelopeResponseHandler.postAsBERTLV() method was called by the first triggered applet

C44e.

Test: appendArray method inherited from class EditHandler is called

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

Context: the method is called after ProactiveHandler.send() method, EnvelopeResponseHandler.post or EnvelopeResponseHandler.postAsBERTLV

Case 1: the method is called after ProactiveHandler.send() method

Case 2: the method is called after EnvelopeResponseHandler.post() method

Case 3: the method is called after EnvelopeResponseHandler.postAsBERTLV() method

Case 4: the method is called by the second triggered applet and ProactiveHandler.send() method was called by the first triggered applet

Case 5: the method is called by the second triggered applet and EnvelopeResponseHandler.post() method was called by the first triggered applet

Case 6: the method is called by the second triggered applet and EnvelopeResponseHandler.postAsBERTLV() method was called by the first triggered applet

C44f.

Test: the four appendTLV methods inherited from class EditHandler are called

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

Context: the method is called after ProactiveHandler.send() method, EnvelopeResponseHandler.post or EnvelopeResponseHandler.postAsBERTLV

Case 1: the methods are called after ProactiveHandler.send() method

Case 2: the methods are called after EnvelopeResponseHandler.post() method

Case 3: the methods are called after EnvelopeResponseHandler.postAsBERTLV() method

Case 4: the method is called by the second triggered applet and ProactiveHandler.send() method was called by the first triggered applet

Case 5: the method is called by the second triggered applet and EnvelopeResponseHandler.post() method was called by the first triggered applet

Case 6: the method is called by the second triggered applet and EnvelopeResponseHandler.postAsBERTLV() method was called by the first triggered applet

C44g.

Test: clear method inherited from class EditHandler is called

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

Context: the method is called after ProactiveHandler.send() method, EnvelopeResponseHandler.post or EnvelopeResponseHandler.postAsBERTLV

Case 1: the method is called after ProactiveHandler.send() method

Case 2: the method is called after EnvelopeResponseHandler.post() method

Case 3: the method is called after EnvelopeResponseHandler.postAsBERTLV() method

Case 4: the method is called by the second triggered applet and ProactiveHandler.send() method was called by the first triggered applet

Case 5: the method is called by the second triggered applet and EnvelopeResponseHandler.post() method was called by the first triggered applet

Case 6: the method is called by the second triggered applet and EnvelopeResponseHandler.postAsBERTLV() method was called by the first triggered applet

C44h.

Test: compareValue method inherited from class ViewHandler is called

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

Context: the method is called after ProactiveHandler.send() method, EnvelopeResponseHandler.post or EnvelopeResponseHandler.postAsBERTLV

Case 1: the method is called after ProactiveHandler.send() method

Case 2: the method is called after EnvelopeResponseHandler.post() method

Case 3: the method is called after EnvelopeResponseHandler.postAsBERTLV() method

Case 4: the method is called by the second triggered applet and ProactiveHandler.send() method was called by the first triggered applet

Case 5: the method is called by the second triggered applet and EnvelopeResponseHandler.post() method was called by the first triggered applet

Case 6: the method is called by the second triggered applet and EnvelopeResponseHandler.postAsBERTLV() method was called by the first triggered applet

C44i.

Test: copy method inherited from class ViewHandler is called

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

Context: the method is called after ProactiveHandler.send() method, EnvelopeResponseHandler.post or EnvelopeResponseHandler.postAsBERTLV

Case 1: the method is called after ProactiveHandler.send() method

Case 2: the method is called after EnvelopeResponseHandler.post() method

Case 3: the method is called after EnvelopeResponseHandler.postAsBERTLV() method

Case 4: the method is called by the second triggered applet and ProactiveHandler.send() method was called by the first triggered applet

Case 5: the method is called by the second triggered applet and EnvelopeResponseHandler.post() method was called by the first triggered applet

Case 6: the method is called by the second triggered applet and EnvelopeResponseHandler.postAsBERTLV() method was called by the first triggered applet

C44j.

Test: copy value method inherited from class ViewHandler is called

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

Context: the method is called after ProactiveHandler.send() method, EnvelopeResponseHandler.post or EnvelopeResponseHandler.postAsBERTLV

Case 1: the method is called after ProactiveHandler.send() method

Case 2: the method is called after EnvelopeResponseHandler.post() method

Case 3: the method is called after EnvelopeResponseHandler.postAsBERTLV() method

Case 4: the method is called by the second triggered applet and ProactiveHandler.send() method was called by the first triggered applet

Case 5: the method is called by the second triggered applet and EnvelopeResponseHandler.post() method was called by the first triggered applet

Case 6: the method is called by the second triggered applet and EnvelopeResponseHandler.postAsBERTLV() method was called by the first triggered applet

C44k.

Test: the two findAndCompareValue methods inherited from class ViewHandler are called

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

Context: the method is called after ProactiveHandler.send() method, EnvelopeResponseHandler.post or EnvelopeResponseHandler.postAsBERTLV

Case 1: the method is called after ProactiveHandler.send() method

Case 2: the method is called after EnvelopeResponseHandler.post() method

Case 3: the method is called after EnvelopeResponseHandler.postAsBERTLV() method

Case 4: the method is called by the second triggered applet and ProactiveHandler.send() method was called by the first triggered applet

Case 5: the method is called by the second triggered applet and EnvelopeResponseHandler.post() method was called by the first triggered applet

Case 6: the method is called by the second triggered applet and EnvelopeResponseHandler.postAsBERTLV() method was called by the first triggered applet

C44l.

Test: the two findAndCopyValue method inherited from class ViewHandler are called

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

Context: the method is called after ProactiveHandler.send() method, EnvelopeResponseHandler.post or EnvelopeResponseHandler.postAsBERTLV

Case 1: the method is called after ProactiveHandler.send() method

Case 2: the method is called after EnvelopeResponseHandler.post() method

Case 3: the method is called after EnvelopeResponseHandler.postAsBERTLV() method

Case 4: the method is called by the second triggered applet and ProactiveHandler.send() method was called by the first triggered applet

Case 5: the method is called by the second triggered applet and EnvelopeResponseHandler.post() method was called by the first triggered applet

Case 6: the method is called by the second triggered applet and EnvelopeResponseHandler.postAsBERTLV() method was called by the first triggered applet

C44m.

Test: findTLV method inherited from class ViewHandler is called

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

Context: the method is called after ProactiveHandler.send() method, EnvelopeResponseHandler.post or EnvelopeResponseHandler.postAsBERTLV

Case 1: the method is called after ProactiveHandler.send() method

Case 2: the method is called after EnvelopeResponseHandler.post() method

Case 3: the method is called after EnvelopeResponseHandler.postAsBERTLV() method

Case 4: the method is called by the second triggered applet and ProactiveHandler.send() method was called by the first triggered applet

Case 5: the method is called by the second triggered applet and EnvelopeResponseHandler.post() method was called by the first triggered applet

Case 6: the method is called by the second triggered applet and EnvelopeResponseHandler.postAsBERTLV() method was called by the first triggered applet

C44n.

Test: getLength method inherited from class ViewHandler is called

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

Context: the method is called after ProactiveHandler.send() method, EnvelopeResponseHandler.post or EnvelopeResponseHandler.postAsBERTLV

Case 1: the method is called after ProactiveHandler.send() method

Case 2: the method is called after EnvelopeResponseHandler.post() method

Case 3: the method is called after EnvelopeResponseHandler.postAsBERTLV() method

Case 4: the method is called by the second triggered applet and ProactiveHandler.send() method was called by the first triggered applet

Case 5: the method is called by the second triggered applet and EnvelopeResponseHandler.post() method was called by the first triggered applet

Case 6: the method is called by the second triggered applet and EnvelopeResponseHandler.postAsBERTLV() method was called by the first triggered applet

C44o.

Test: getValueByte method inherited from class ViewHandler is called

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

Context: the method is called after ProactiveHandler.send() method, EnvelopeResponseHandler.post or EnvelopeResponseHandler.postAsBERTLV

Case 1: the method is called after ProactiveHandler.send() method

Case 2: the method is called after EnvelopeResponseHandler.post() method

Case 3: the method is called after EnvelopeResponseHandler.postAsBERTLV() method

Case 4: the method is called by the second triggered applet and ProactiveHandler.send() method was called by the first triggered applet

Case 5: the method is called by the second triggered applet and EnvelopeResponseHandler.post() method was called by the first triggered applet

Case 6: the method is called by the second triggered applet and EnvelopeResponseHandler.postAsBERTLV() method was called by the first triggered applet

C44p.

Test: getValueLength method inherited from class ViewHandler is called

Answer: the method must throw a ToolkitException with the following reason code: HANDLER_NOT_AVAILABLE

Context: the method is called after ProactiveHandler.send() method, EnvelopeResponseHandler.post or EnvelopeResponseHandler.postAsBERTLV

Case 1: the method is called after ProactiveHandler.send() method

Case 2: the method is called after EnvelopeResponseHandler.post() method

Case 3: the method is called after EnvelopeResponseHandler.postAsBERTLV() method

Case 4: the method is called by the second triggered applet and ProactiveHandler.send() method was called by the first triggered applet

Case 5: the method is called by the second triggered applet and EnvelopeResponseHandler.post() method was called by the first triggered applet

Case 6: the method is called by the second triggered applet and EnvelopeResponseHandler.postAsBERTLV() method was called by the first triggered applet

C44q.

Test: method ProactiveHandler.send() is called by applet toolkit triggered by FORMATTED_SMS_PP_ENVELOPE or UNFORMATTED_SMS_PP_ENVELOPE event

Answer: the SIM must response the command packet according GSM 3.48 without additional data

Context: post method is not called by applet toolkit

C44r.

Test: method ProactiveHandler.send() is called by applet toolkit triggered by CALL_CONTROL or SMS_MO_CONTROL event

Answer: the SIM must response with 91XX

Context: postAsBERTLV method is not called by applet toolkit

C44s.

Test: applet toolkit triggered by CALL_CONTROL or SMS_MO_CONTROL event do not call postAsBERTLV method

Answer: the SIM must response with 9000

Context: postAsBERTLV method is not called by applet toolkit

C44t.

Test: method postAsBERTLV() is called by applet toolkit triggered by FORMATTED_SMS_PP_ENVELOPE or UNFORMATTED_SMS_PP_ENVELOPE event

Answer: the SIM must ignore it and respond 9000

Context: post method is not called by applet toolkit

C44u.

Test: method post() is called by applet toolkit triggered by CALL_CONTROL or SMS_MO_CONTROL event

Answer: the SIM must ignore it and respond 9000

Context: postAsBERTLV method is not called by applet toolkit

5. Applet Triggering Tests

5.1. Events tests

C51a.

Test: a Terminal Profile command is sent to SIM

Answer: SIM Toolkit Framework has to trigger the toolkit applets, which are registered to EVENT_PROFILE_DOWNLOAD event. The toolkit applets must be triggered in order, following the priority level of each toolkit applet defined at its loading. If several toolkit applets have the same priority level, the last loaded toolkit applet takes precedence

Context:

C51b.

Test: a menu selection envelope is sent to SIM

Answer: SIM Toolkit Framework has to trigger the toolkit applet, which corresponds to item identifier of the envelope menu selection, with the EVENT_MENU_SELECTION event

Context:

C51c.

Test: a menu selection envelope with help request TLV is sent to SIM

Answer: SIM Toolkit Framework has to trigger the toolkit applet, which corresponds to item identifier of the envelope menu selection, with the EVENT_MENU_SELECTION_HELP_REQUEST event, even if the applet toolkit is not registered to the EVENT_MENU_SELECTION_HELP_REQUEST event

Context:

Case 1: applet toolkit is not registered to the EVENT_MENU_SELECTION_HELP_REQUEST event

Case 2: applet toolkit is registered to the EVENT_MENU_SELECTION_HELP_REQUEST event

C51d.

Test: a SMS-PP data download envelope is sent to SIM

Answer: SIM Toolkit Framework has to trigger the toolkit applet, which is registered with the corresponding TAR defined at applet loading, with the EVENT_FORMATTED_SMS_PP_ENV event

Context:

C51e.

Test: a SMS envelope is sent to SIM and only one triggered applet responds

Answer: SIM Toolkit Framework has to trigger the toolkit applets, which are registered to EVENT_UNFORMATTED_SMS_PP_ENV event. The toolkit applets must be triggered in order, following the priority level of each toolkit applet defined at its loading. If several toolkit applets have the same priority level, the last loaded toolkit applet takes precedence

Context:

C51f.

Test: a SMS envelope is sent to SIM and two triggered applet try to responds

Answer: when the second applet try to get the EnvelopeResponseHandler a ToolkitException is thrown with the following reason code: HANDLER_NOT_AVAILABLE

Context:

C51g.

Test: an Update Record EFsms with an SMS TP-UD field formatted according to GSM 03.48 is sent to SIM

Answer: SIM Toolkit Framework has to trigger the toolkit applet, which is registered with the corresponding TAR defined at applet loading, with the EVENT_FORMATTED_SMS_PP_UPD event

Context:

C51h.

Test: an Update Record EFsms is sent to SIM and only one triggered applet responds

Answer: SIM Toolkit Framework has to trigger the toolkit applets, which are registered to EVENT_UNFORMATTED_SMS_PP_UPD event. The toolkit applets must be triggered in order, following the priority level of each toolkit applet defined at its loading. If several toolkit applets have the same priority level, the last loaded toolkit applet takes precedence

Context:

C51i.

Test: an Update Record EFsms is sent to SIM and two triggered applet try to responds

Answer: when the second applet try to get the EnvelopeResponseHandler, a ToolkitException is thrown with the following reason code: HANDLER_NOT_AVAILABLE

Context

C51j.

Test: a Call Control envelope is sent to SIM

Answer: SIM Toolkit Framework has to trigger the toolkit applet, which is registered to EVENT_CALL_CONTROL event

Context:

C51k.

Test: a MO Short Message Control envelope is sent to SIM

Answer: SIM Toolkit Framework has to trigger the toolkit applet, which is registered to EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM event

Context:

C51l.

Test: a Timer Expiration envelope is sent to SIM

Answer: SIM Toolkit Framework has to trigger the toolkit applet, which manages this timer, with the EVENT_TIMER_EXPIRATION event

Context:

C51m.

Test: a Cell Broadcast Download envelope is sent to SIM

Answer: SIM Toolkit Framework has to trigger the toolkit applets, which are registered to EVENT_UNFORMATTED_SMS_CB event. The toolkit applets must be triggered in order, following the priority level of each toolkit applet defined at its loading. If several toolkit applets have the same priority level, the last loaded toolkit applet takes precedence

Context:

C51n.

Test: an Event Download-MT call envelope is sent to SIM

Answer: SIM Toolkit Framework has to trigger the toolkit applets, which are registered to EVENT_EVENT_DOWNLOAD_MT_CALL event. The toolkit applets must be triggered in order, following the priority level of each toolkit applet defined at its loading. If several toolkit applets have the same priority level, the last loaded toolkit applet takes precedence

Context:

C51o.

Test: an Event Download-call connected call envelope is sent to SIM

Answer: SIM Toolkit Framework has to trigger the toolkit applets, which are registered to EVENT_EVENT_DOWNLOAD_CALL_CONNECTED event. The toolkit applets must be triggered in order, following the priority level of each toolkit applet defined at its loading. If several toolkit applets have the same priority level, the last loaded toolkit applet takes precedence

Context:

C51p.

Test: an Event Download-call disconnected call envelope is sent to SIM

Answer: SIM Toolkit Framework has to trigger the toolkit applets, which are registered to EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED event. The toolkit applets must be triggered in order, following the priority level of each toolkit applet defined at its loading. If several toolkit applets have the same priority level, the last loaded toolkit applet takes precedence

Context:

C51q.

Test: an Event Download-location status envelope is sent to SIM

Answer: SIM Toolkit Framework has to trigger the toolkit applets, which are registered to EVENT_EVENT_DOWNLOAD_LOCATION_STATUS event. The toolkit applets must be triggered in order, following the priority level of each toolkit applet defined at its loading. If several toolkit applets have the same priority level, the last loaded toolkit applet takes precedence

Context:

C51r.

Test: an Event Download-user activity envelope is sent to SIM

Answer: SIM Toolkit Framework has to trigger the toolkit applets, which are registered to EVENT_EVENT_DOWNLOAD_USER_ACTIVITY event. The toolkit applets must be triggered in order, following the priority level of each toolkit applet defined at its loading. If several toolkit applets have the same priority level, the last loaded toolkit applet takes precedence

Context:

C51s.

Test: an Event Download-idle screen available envelope is sent to SIM

Answer: SIM Toolkit Framework has to trigger the toolkit applets, which are registered to EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE event. The toolkit applets must be triggered in order, following the priority level of each toolkit applet defined at its loading. If several toolkit applets have the same priority level, the last loaded toolkit applet takes precedence

Context:

C51t.

Test: an Event Download-card reader status envelope is sent to SIM

Answer: SIM Toolkit Framework has to trigger the toolkit applets, which are registered to EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS event. The toolkit applets must be triggered in order, following the priority level of each toolkit applet defined at its loading. If several toolkit applets have the same priority level, the last loaded toolkit applet takes precedence

Context:

C51u.

Test: an unrecognised envelope is sent to SIM

Answer: SIM Toolkit Framework has to trigger the toolkit applets, which are registered to EVENT_UNRECOGNIZED_ENVELOPE event. The toolkit applets must be triggered in order, following the priority level of each toolkit applet defined at its loading. If several toolkit applets have the same priority level, the last loaded toolkit applet takes precedence

Context:

C51v.

Test: a status command is sent to SIM

Answer: SIM Toolkit Framework has to trigger the toolkit applets, which are registered to EVENT_STATUS_COMMAND event and its poll interval is the appropriate. The toolkit applets must be triggered in order, following the priority level of each toolkit applet defined at its loading. If several toolkit applets have the same priority level, the last loaded toolkit applet takes precedence

Context:

5.2. Events management test

C52a.

Test: a Terminal Profile command is sent to SIM

Answer: SIM must not reply busy

Context: another event is being processed (proactive session is ongoing)

C52b.

Test: a menu selection envelope is sent to SIM

Answer: SIM can reply busy

Context: another event is being processed (proactive session is ongoing)

C52c.

Test: a menu selection envelope with help request TLV is sent to SIM

Answer: SIM can reply busy

Context: another event is being processed (proactive session is ongoing)

C52d.

Test: a SMS-PP data download envelope is sent to SIM

Answer: SIM can reply busy

Context: another event is being processed (proactive session is ongoing)

C52e.

Test: a SMS envelope is sent to SIM

Answer: SIM can reply busy

Context: another event is being processed (proactive session is ongoing)

C52f.

Test: an Update Record EFsms with a SMS TP-UD field formatted according to GSM 03.48 is sent to SIM

Answer: SIM must not reply busy but the applet toolkit is not going to be triggered

Context: another event is being processed (proactive session is ongoing)

C52g.

Test: an Update Record EFsms is sent to SIM

Answer: SIM must not reply busy but the applet toolkit is not going to be triggered

Context: another event is being processed (proactive session is ongoing)

C52h.

Test: a Call Control envelope is sent to SIM

Answer: SIM must not reply busy

Context: another event is being processed (proactive session is ongoing)

C52i.

Test: a MO Short Message Control envelope is sent to SIM

Answer: SIM must not reply busy

Context: another event is being processed (proactive session is ongoing)

C52j.

Test: a Timer Expiration envelope is sent to SIM

Answer: SIM can reply busy

Context: another event is being processed (proactive session is ongoing)

C52k.

Test: a Cell Broadcast Download envelope is sent to SIM

Answer: SIM can reply busy

Context: another event is being processed (proactive session is ongoing)

C52l.

Test: an Event Download-MT call envelope is sent to SIM

Answer: SIM can reply busy

Context: another event is being processed (proactive session is ongoing)

C52m.

Test: an Event Download-call connected call envelope is sent to SIM

Answer: SIM can reply busy

Context: another event is being processed (proactive session is ongoing)

C52n.

Test: an Event Download-call disconnected call envelope is sent to SIM

Answer: SIM can reply busy

Context: another event is being processed (proactive session is ongoing)

C52o.

Test: an Event Download-location status envelope is sent to SIM

Answer: SIM can reply busy

Context: another event is being processed (proactive session is ongoing)

C52p.

Test: an Event Download-user activity envelope is sent to SIM

Answer: SIM can reply busy

Context: another event is being processed (proactive session is ongoing)

C52q.

Test: an Event Download-idle screen available envelope is sent to SIM

Answer: SIM can reply busy

Context: another event is being processed (proactive session is ongoing)

C52r.

Test: an Event Download-card reader status envelope is sent to SIM

Answer: SIM can reply busy

Context: another event is being processed (proactive session is ongoing)

C52s.

Test: an unrecognised envelope is sent to SIM

Answer: SIM can reply busy

Context: another event is being processed (proactive session is ongoing)

C52t.

Test: a status command is sent to SIM

Answer: SIM must not reply busy

Context: another event is being processed (proactive session is ongoing)

6. Proactive Commands Sending Tests (send)

C6a.

Test: SMS_PP DOWNLOAD envelope is sent to SIM.

Answer: an applet toolkit is triggered, then sends a proactive command. SIM replies 9FXX and the applet toolkit is suspended

Context: command packet indicates that response shall be sent using SMS_DELIVER_REPORT and there is not any error in it.

Test: Get Response command is sent to SIM.

Answer: response packet without additional data must be sent with status 91XX

Test: Fetch command is sent to SIM

Answer: the proactive command must be sent with status 9000

Test: Terminal Response command is sent to SIM

Answer: the applet toolkit obtains the general result and it is resumed. SIM replies 9000

Context: the applet toolkit finishes

C6b.

Test: SMS_PP DOWNLOAD envelope is sent to SIM.

Answer: an applet toolkit is triggered, then sends a proactive command. SIM replies 91XX and the applet toolkit is suspended

 Context: command packet indicates that response shall be sent using SMS_SUBMIT.

Test: Fetch command is sent to SIM

Answer: Send Short Message proactive command containing the response packet without additional data must be sent with status 9000

Test: Terminal Response command is sent to SIM

Answer: SIM replies 91XX

Test: Fetch command is sent to SIM

Answer: the proactive command must be sent with status 9000

Test: Terminal Response command is sent to SIM

Answer: the applet toolkit obtains the general result and it is resumed. SIM replies 9000

Context: the applet toolkit finishes

C6c.

Test: SMS_PP DOWNLOAD envelope is sent to SIM.

Answer: an applet toolkit is triggered, then sends a proactive command. SIM replies 91XX and the applet toolkit is suspended

Context: command packet indicates that no reply must be sent

Test: Fetch command is sent to SIM

Answer: the proactive command must be sent with status 9000

Test: Terminal Response command is sent to SIM

Answer: the applet toolkit obtains the general result and it is resumed. SIM replies 9000

Context: the applet toolkit finishes

C6d.

Test: SMS_PP DOWNLOAD envelope is sent to SIM.

Answer: an applet toolkit is triggered, then sends a proactive command. SIM replies 91XX and the applet toolkit is suspended

Context: command packet indicates that only reply must be sent when an error has occurred and there is not any a error in it

Test: Fetch command is sent to SIM

Answer: the proactive command must be sent with status 9000

Test: Terminal Response command is sent to SIM

Answer: the applet toolkit obtains the general result and it is resumed. SIM replies 9000

Context: the applet toolkit finishes

C6e.

Test: any event is produced in the SIM.

Answer: an applet toolkit is triggered, then sends a proactive command. SIM replies 91XX and the applet toolkit is suspended

Test: a GSM11.11 command is sent to SIM

Answer: the command must to be processed according to GSM11.11

.

. the last status sent is 91XX

Test: Fetch command is sent to SIM

Answer: the proactive command must be sent with status 9000

Test: a GSM11.11 command is sent to SIM

Answer: the command must to be processed according to GSM11.11

.

. the last status sent is 9000

Test: Terminal Response command is sent to SIM

Answer: the applet toolkit obtains the general result and it is resumed. SIM replies 9000

Context: the applet toolkit finishes

C6f.

Test: any event is produced in the SIM.

Answer: an applet toolkit is triggered, then sends a proactive command. SIM replies 91XX and the applet toolkit is suspended

Test: a new event is produced

Answer: SIM replies 9300

Case 1: EVENT_FORMATTED_SMS_ENVELOPE

Case 2: EVENT_UNFORMATTED_SMS_ENVELOPE

Case 3: EVENT_UNFORMATTED_SMS_CB

Case 4: EVENT_MENU_SELECTION

Case 5: EVENT_MENU_SELECTION_HELP_REQUEST

Case 6: EVENT_TIMER_EXPIRATION

Case 7: EVENT_EVENT_DOWNLOAD_MT_CALL

Case 8: EVENT_EVENT_DOWNLOAD_CALL_CONNECTED

Case 9: EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED

Case 10: EVENT_EVENT_DOWNLOAD_LOCATION_STATUS

Case 11: EVENT_EVENT_DOWNLOAD_USER_ACTIVITY

Case 12: EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE

Case 13: EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS

Case 14: EVENT_UNRECOGNISED_ENVELOPE

Test: Fetch command is sent to SIM

Answer: the proactive command must be sent with status 9000

Test: a new event is produced

Answer: SIM replies 9300

Case 1: EVENT_FORMATTED_SMS_ENVELOPE

Case 2: EVENT_UNFORMATTED_SMS_ENVELOPE

Case 3: EVENT_UNFORMATTED_SMS_CB

Case 4: EVENT_MENU_SELECTION

Case 5: EVENT_MENU_SELECTION_HELP_REQUEST

Case 6: EVENT_TIMER_EXPIRATION

Case 7: EVENT_EVENT_DOWNLOAD_MT_CALL

Case 8: EVENT_EVENT_DOWNLOAD_CALL_CONNECTED

Case 9: EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED

Case 10: EVENT_EVENT_DOWNLOAD_LOCATION_STATUS

Case 11: EVENT_EVENT_DOWNLOAD_USER_ACTIVITY

Case 12: EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE

Case 13: EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS

Case 14: EVENT_UNRECOGNISED_ENVELOPE

Test: Terminal Response command is sent to SIM

Answer: the applet toolkit obtains the general result and it is resumed. SIM replies 9000

Context: the applet toolkit finishes

C6g.

Test: any event is produced in the SIM.

Answer: an applet toolkit is triggered, then sends a proactive command. SIM replies 91XX and the applet toolkit is suspended

Test: a Status command is sent

Answer: the EVENT_STATUS_COMAND event is processed and SIM replies 91XX

Test: Fetch command is sent to SIM

Answer: the proactive command must be sent with status 9000

Test: a Status command is sent

Answer: the EVENT_STATUS_COMAND event is processed and SIM replies 9100

Test: Terminal Response command is sent to SIM

Answer: the applet toolkit obtains the general result and it is resumed. SIM replies 9000

Context: the applet toolkit finishes

C6h.

Test: any event is produced in the SIM.

Answer: an applet toolkit is triggered, then sends a proactive command. SIM replies 91XX and the applet toolkit is suspended

Test: a Update Record command in EFsms is sent

Answer: the EVENT_FORMATTED_SMS_PP_UPD event or EVENT_UNFORMATTED_SMS_PP_UPD is processed and SIM replies 91XX

Test: Fetch command is sent to SIM

Answer: the proactive command must be sent with status 9000

Test: a Update Record command in EFsms is sent

Answer: the EVENT_FORMATTED_SMS_PP_UPD event or EVENT_UNFORMATTED_SMS_PP_UPD is processed and SIM replies 9000

Test: Terminal Response command is sent to SIM

Answer: the applet toolkit obtains the general result and it is resumed. SIM replies 9000

Context: the applet toolkit finishes

C6i.

Test: any event is produced in the SIM.

Answer: an applet toolkit is triggered, then sends a proactive command. SIM replies 91XX and the applet toolkit is suspended

Test: a Call Control envelope is sent

Answer: the applet toolkit is triggered and SIM replies 9FXX

Context: the applet toolkit calls to EnvelopeResponseHandler.postAsBERTLV method and it finishes

Test: a Get Response is sent to SIM

Answer: call control result is sent with the status 91XX

Test: Fetch command is sent to SIM

Answer: the proactive command must be sent with status 9000

Test: a Call Control envelope is sent

Answer: the applet toolkit is triggered and SIM replies 9FXX

Context: the applet toolkit calls to EnvelopeResponseHandler.postAsBERTLV method and it finishes

Test: a Get Response is sent to SIM

Answer: call control result is sent with the status 9000

Test: Terminal Response command is sent to SIM

Answer: the applet toolkit obtains the general result and it is resumed. SIM replies 9000

Context: the applet toolkit finishes

C6j.

Test: any event is produced in the SIM.

Answer: an applet toolkit is triggered, then sends a proactive command. SIM replies 91XX and the applet toolkit is suspended

Test: a MO Short Message Control envelope is sent

Answer: the applet toolkit is triggered and SIM replies 9FXX

Context: the applet toolkit calls to EnvelopeResponseHandler.postAsBERTLV method and it finishes

Test: a Get Response is sent to SIM

Answer: MO Short Message Control result is sent with the status 91XX

Test: Fetch command is sent to SIM

Answer: the proactive command must be sent with status 9000

Test: a MO Short Message Control envelope is sent

Answer: the applet toolkit is triggered and SIM replies 9FXX

Context: the applet toolkit calls to EnvelopeResponseHandler.postAsBERTLV method and it finishes

Test: a Get Response is sent to SIM

Answer: MO Short Message Control result is sent with the status 9000

Test: Terminal Response command is sent to SIM

Answer: the applet toolkit obtains the general result and it is resumed. SIM replies 9000

Context: the applet toolkit finishes

C6k.

Test: any event is produced in the SIM.

Answer: an applet toolkit is triggered, then sends a proactive command. SIM replies 91XX and the applet toolkit is suspended

Test: a Call Control envelope is sent

Answer: the applet toolkit is triggered and SIM replies 91XX

Context: the applet toolkit do not call to EnvelopeResponseHandler.postAsBERTLV method and it finishes

Test: Fetch command is sent to SIM

Answer: the proactive command must be sent with status 9000

Test: a Call Control envelope is sent

Answer: the applet toolkit is triggered and SIM replies 9000

Context: the applet toolkit do not call to EnvelopeResponseHandler.postAsBERTLV method and it finishes

Test: Terminal Response command is sent to SIM

Answer: the applet toolkit obtains the general result and it is resumed. SIM replies 9000

Context: the applet toolkit finishes

C6l.

Test: any event is produced in the SIM.

Answer: an applet toolkit is triggered, then sends a proactive command. SIM replies 91XX and the applet toolkit is suspended

Test: a MO Short Message Control envelope is sent

Answer: the applet toolkit is triggered and SIM replies 91XX

Context: the applet toolkit do not call to EnvelopeResponseHandler.postAsBERTLV method and it finishes

Test: Fetch command is sent to SIM

Answer: the proactive command must be sent with status 9000

Test: a MO Short Message Control envelope is sent

Answer: the applet toolkit is triggered and SIM replies 9000

Context: the applet toolkit do not call to EnvelopeResponseHandler.postAsBERTLV method and it finishes

Test: Terminal Response command is sent to SIM

Answer: the applet toolkit obtains the general result and it is resumed. SIM replies 9000

Context: the applet toolkit finishes

C6m.

Test: a process toolkit method sends a forbidden proactive command

Answer: proactive command must not be received by the ME

Case 1: process toolkit method sends a SET UP MENU proactive command

Case 2: process toolkit method sends a SET UP EVENT LIST proactive command

Case 3: process toolkit method sends a POLL INTERVAL proactive command

Case 4: process toolkit method sends a POLLING OFF proactive command

C6n.

Test: any event is produced in the SIM.

Answer: an applet toolkit is triggered, then sends a Refresh proactive command with command qualifier 00 (SIM initialization and full file change notification) . SIM replies 91XX and the applet toolkit is suspended

Test: Fetch command is sent to SIM

Answer: the proactive command must be sent with status 9000

Test: a Terminal Profile command is sent

Answer: SIM replies 9000

Test: Terminal Response command is sent to SIM

Answer: the applet toolkit obtains the general result and it is resumed. SIM replies 9000

Context: the applet toolkit finishes

C6o.

Test: any event is produced in the SIM.

Answer: an applet toolkit is triggered, then sends a Refresh proactive command with command qualifier 01 (file change notification). SIM replies 91XX and the applet toolkit is suspended

Test: Fetch command is sent to SIM

Answer: the proactive command must be sent with status 9000

Test: a Terminal Profile command is sent

Answer: SIM replies 9000

Test: Terminal Response command is sent to SIM

Answer: the applet toolkit obtains the general result and it is resumed. SIM replies 9000

Context: the applet toolkit finishes

C6p.

Test: any event is produced in the SIM.

Answer: an applet toolkit is triggered, then sends a Refresh proactive command with command qualifier 02 (SIM initialization and file change notification) . SIM replies 91XX and the applet toolkit is suspended

Test: Fetch command is sent to SIM

Answer: the proactive command must be sent with status 9000

Test: a Terminal Profile command is sent

Answer: SIM replies 9000

Test: Terminal Response command is sent to SIM

Answer: the applet toolkit obtains the general result and it is resumed. SIM replies 9000

Context: the applet toolkit finishes

C6q.

Test: any event is produced in the SIM.

Answer: an applet toolkit is triggered, then sends a Refresh proactive command with command qualifier 03 (SIM initialization) . SIM replies 91XX and the applet toolkit is suspended

Test: Fetch command is sent to SIM

Answer: the proactive command must be sent with status 9000

Test: a Terminal Profile command is sent

Answer: SIM replies 9000

Test: Terminal Response command is sent to SIM

Answer: the applet toolkit obtains the general result and it is resumed. SIM replies 9000

Context: the applet toolkit finishes

C6r.

Test: any event is produced in the SIM.

Answer: an applet toolkit is triggered, then sends a Refresh proactive command with command qualifier 04 (SIM reset). SIM replies 91XX and the applet toolkit is suspended

Test: Fetch command is sent to SIM

Answer: the proactive command must be sent with status 9000, and the session card is finished

7. Envelope Response Sending Tests (post)

7a.

Test: a Call Control envelope is sent to SIM

Answer: the applet toolkit, which is registered to EVENT_CALL_CONTROL_BY_SIM event, is triggered. It Make the response and call to postAsBERTLV method. SIM replies 9FXX

Test: a Get Response command is sent to SIM

Answer: SIM replies with call control response and the applet toolkit is resumed. SIM replies 9000

Context: the applet toolkit finishes

7b.

Test: a MO Short Message Control envelope is sent to SIM

Answer: the applet toolkit, which is registered to EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM event, is triggered. It Make the response and call to postAsBERTLV method. SIM replies 9FXX

Test: a Get Response command is sent to SIM

Answer: SIM replies with MO Short Message Control response and the applet toolkit is resumed. SIM replies 9000

Context: the applet toolkit finishes

7c.

Test: any event is produced in the SIM.

Answer: an applet toolkit is triggered, then sends a proactive command. SIM replies 91XX and the applet toolkit is suspended

Test: a Call Control envelope is sent to SIM

Answer: the applet toolkit, which is registered to EVENT_CALL_CONTROL_BY_SIM event, is triggered. It Make the response and call to postAsBERTLV method. SIM replies 9FXX

Test: a Get Response command is sent to SIM

Answer: SIM replies with call control response with status 91XX

Test: Fetch command is sent to SIM

Answer: the proactive command must be sent with status 9000

Test: Terminal Response command is sent to SIM

Answer: the applet toolkit obtains the general result and it is resumed. SIM replies 9000

Context: the applet toolkit finishes

7d.

Test: any event is produced in the SIM.

Answer: an applet toolkit is triggered, then sends a proactive command. SIM replies 91XX and the applet toolkit is suspended

Test: a MO Short Message Control envelope is sent to SIM

Answer: the applet toolkit, which is registered to EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM event, is triggered. It Make the response and call to postAsBERTLV method. SIM replies 9FXX

Test: a Get Response command is sent to SIM

Answer: SIM replies with MO Short Message Control response with status 91XX

Test: Fetch command is sent to SIM

Answer: the proactive command must be sent with status 9000

Test: Terminal Response command is sent to SIM

Answer: the applet toolkit obtains the general result and it is resumed. SIM replies 9000

Context: the applet toolkit finishes

7e.

Test: SMS_PP DOWNLOAD envelope is sent to SIM.

Case 1: Receiving Entity determines that there is an error in the command packet

Case 1.1: command packet indicates that no reply must be sent

Answer: SIM replies 9E00

Case 1.2: command packet indicates that reply must be sent using SMS_SUBMIT or that reply only must be sent if an error has occurred using SMS_SUBMIT

Answer: SIM replies 91XX.

Test: Fetch command is sent to SIM

Answer: Send Short Message proactive command containing the response packet with error response status must be sent with status 9000

Test: Terminal Response command is sent to SIM

Answer: SIM replies 9000

Case 1.3: command packet indicates that reply must be sent using SMS_DELIBER_REPORT or that reply only must be sent if an error has occurred using SMS_DELIBER_REPORT

Answer: SIM replies 9EXX

Test: Get Response command is sent to SIM.

Answer: response packet with error response status must be sent. SIM replies 9000

Case 2: Receiving Entity determines that there is not any error in the command packet

Case 2.1: command packet indicates that no reply must be sent

Case 2.1.1: Applet toolkit calls to post method with statusType parameter = ‘9E’

Answer: an applet toolkit is triggered, make the additional response data and call to post method. SIM replies 9E00 and the applet toolkit is suspended

Case 2.1.2: Applet toolkit calls to post method with statusType parameter = ‘9F’

Answer: an applet toolkit is triggered, make the additional response data and call to post method. SIM replies 9F00 and the applet toolkit is suspended

Case 2.2: command packet indicates that reply must be sent using SMS_SUBMIT

Case 2.2.1: Applet toolkit calls to post method with statusType parameter = ‘9E’ or ‘9F’

Answer: an applet toolkit is triggered, make the additional response data and call to post method. SIM replies 91XX and the applet toolkit is suspended

Test: Fetch command is sent to SIM

Answer: Send Short Message proactive command containing the response packet must be sent with status 9000

Test: Terminal Response command is sent to SIM

Answer: the applet toolkit is resumed. SIM replies 9000

Context: the applet toolkit finishes

Case 2.3: command packet indicates that reply must be sent using SMS_DELIBER_REPORT

Case 2.3.1: Applet toolkit calls to post method with statusType parameter = ‘9E’’

Answer: an applet toolkit is triggered, make the additional response data and call to post method. SIM replies 9EXX and the applet toolkit is suspended

Test: Get Response command is sent to SIM.

Answer: response packet must be sent and applet toolkit is resumed. SIM replies 9000

Context: the applet toolkit finishes

Case 2.3.2: Applet toolkit calls to post method with statusType parameter = ‘9F’’

Answer: an applet toolkit is triggered, make the additional response data and call to post method. SIM replies 9FXX and the applet toolkit is suspended

Test: Get Response command is sent to SIM.

Answer: response packet must be sent and applet toolkit is resumed. SIM replies 9000

Context: the applet toolkit finishes

Case 2.4: command packet indicates that reply must be sent, only when an error has occurred, using SMS_SUBMIT or SMS_DELIVER_REPORT

Case 2.4.1: Applet toolkit calls to post method with statusType parameter = ‘9E’

Answer: an applet toolkit is triggered, make the additional response data and call to post method. SIM replies 9E00 and the applet toolkit is suspended

Case 2.4.2: Applet toolkit calls to post method with statusType parameter = ‘9F’

Answer: an applet toolkit is triggered, make the additional response data and call to post method. SIM replies 9F00 and the applet toolkit is suspended

8. Toolkit Applets Installation Tests

The implementation of toolkit applets installation depends on designers but it should follow the next steps:

· A new registry entry is created by STF with the load parameters

· Install method of the toolkit applet is called:

· The constructor of the applet is called:

· The registry entry is obtained by the applet

· The menu entries, which were loaded, are initialised

· The toolkit applet registers to desired events

· The toolkit applet is registered in the JCRE by calling the register() method

9. Toolkit Applets Registration Tests

9.1. getEntry() method

C91a.

Test: the method is called

Answer: the method must throw a ToolkitException with the following reason code: REGISTRY_ERROR

Context: the registry entry has not been created

C91b.

Test: the method is called

Answer: return a reference to the applet ToolkitRegistry

Context: the registry entry has been created correctly

9.2. setEvent(event) method

C92a.

Test: the event is not supported

Answer: the method must throw a ToolkitException with the following reason code: EVENT_NOT_SUPPORTED

C92b.

Test: the event is limited

Answer: the method must throw a ToolkitException with the following reason code: EVENT_ALREADY_REGISTERED

Context: the event has already been registered

Case 1: the event is EVENT_CALL_CONTROL

Case 2: the event is EVENT_SMS_MO_CONTROL

C92c.

Test: the event is not allowed

Answer: the method must throw a ToolkitException with the following reason code: EVENT_NOT_ALLOWED

Case 1: the event is EVENT_MENU_SELECTION

Case 2: the event is EVENT_MENU_SELECTION_HELP_REQUEST

Case 3: the event is EVENT_TIMER_EXPIRATION

Case 4: the event is EVENT_STATUS_COMMAND

C92d.

Test: the toolkit applet is registered to event

Answer:

Case 1: the event is EVENT_FORMATTED_SMS_ENVELOPE

Case 2: the event is EVENT_FORMATTED_SMS_PP_UDP

Case 3: the event is EVENT_UNFORMATTED_SMS_ENVELOPE

Case 4: the event is EVENT_UNFORMATTED_SMS_PP_UDP

Case 5: the event is EVENT_UNFORMATTED_SMS_CB

Case 6: the event is EVENT_CALL_CONTROL

Case 7: the event is EVENT_SMS_MO_CONTROL

Case 8: the event is EVENT_EVENT_DOWNLOAD_MT_CALL

Case 9: the event is EVENT_EVENT_DOWNLOAD_CALL_CONNECTED

Case 10: the event is EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED

Case 11: the event is EVENT_EVENT_DOWNLOAD_LOCATION_STATUS

Case 12: the event is EVENT_EVENT_DOWNLOAD_USER_ACTIVITY

Case 13: the event is EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE

Case 14: the event is EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS

Case 15: the event is EVENT_UNRECOGNISED_ENVELOPE

Case 16: the event is EVENT_PROFILE_DOWNLOAD

9.3. setEventList(eventList, offet, length) method

C93a.

Test: A null eventList buffer is passed as parameter.

Answer: the method must throw a NullPointerException exception

Case 1: offset = 0 y length = 0

Case 2: offset <> 0 y length = 0

Case 3: offset = 0 y length <> 0

Case 4: offset <> 0 y length <> 0

C93b.

Test: offset overcomes buffer size

Answer: the method must throw an IndexOutOfBoundsException exception

Context: length = 0

Case 1: offset = buffer length

Case 2: offset = buffer length – 1 (Exception is not thrown

C93c.

Test: length overcomes buffer length

Answer: the method must throw an IndexOutOfBoundsException exception

Context: offset = 0

Case 1: length = buffer length (Exception is not thrown

Case 2: length = buffer length + 1

C93d.

Test: (offset + length) overcomes buffer length

Answer: the method must throw an IndexOutOfBoundsException exception

Context: offset <> 0 y length <> 0

Case 1: (offset + length) = buffer length + 1

Case 2: (offset + length) = buffer length
(Exception is not thrown

Case 3; (offset + length) = buffer length – 1
(Exception is not thrown

C93e.

Test: one event is not supported

Answer: the method must throw a ToolkitException with the following reason code: EVENT_NOT_SUPPORTED

C93f.

Test: one event is limited

Answer: the method must throw a ToolkitException with the following reason code: EVENT_ALREADY_REGISTERED

Context: limited event has already been registered

Case 1: one event is EVENT_CALL_CONTROL

Case 2: one event is EVENT_SMS_MO_CONTROL

C93g.

Test: the event is not allowed

Answer: the method must throw a ToolkitException with the following reason code: EVENT_NOT_ALLOWED

Case 1: one event is EVENT_MENU_SELECTION

Case 2: one event is EVENT_MENU_SELECTION_HELP_REQUEST

Case 3: one event is EVENT_TIMER_EXPIRATION

Case 4: one event is EVENT_STATUS_COMMAND

C93h.

Test: the toolkit applet is registered to events

Answer:

Case 1: the events are EVENT_FORMATTED_SMS_ENVELOPE, EVENT_FORMATTED_SMS_PP_UDP, EVENT_UNFORMATTED_SMS_ENVELOPE, EVENT_UNFORMATTED_SMS_PP_UDP,

EVENT_UNFORMATTED_SMS_CB,

EVENT_CALL_CONTROL,

EVENT_SMS_MO_CONTROL,

EVENT_EVENT_DOWNLOAD_MT_CALL,

EVENT_EVENT_DOWNLOAD_CALL_CONNECTED,

EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED,

EVENT_EVENT_DOWNLOAD_LOCATION_STATUS,

EVENT_EVENT_DOWNLOAD_USER_ACTIVITY,

EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE,

EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS,

EVENT_UNRECOGNISED_ENVELOPE,

EVENT_PROFILE_DOWNLOAD

9.4. clearEvent(event) method

C94a.

Test: the event is not allowed

Answer: the method must throw a ToolkitException with the following reason code: EVENT_NOT_ALLOWED

Case 1: the event is EVENT_MENU_SELECTION

Case 2: the event is EVENT_MENU_SELECTION_HELP_REQUEST

Case 3: the event is EVENT_TIMER_EXPIRATION

Case 4: the event is EVENT_STATUS_COMMAND

C94b.

Test: the event is cleared

Answer:

Context: the applet is registered for each event

Case 1: the cleared event is EVENT_FORMATTED_SMS_ENVELOPE

Case 2: the cleared event is EVENT_FORMATTED_SMS_PP_UDP

Case 3: the cleared event is EVENT_UNFORMATTED_SMS_ENVELOPE

Case 4: the cleared event is EVENT_UNFORMATTED_SMS_PP_UDP

Case 5: the cleared event is EVENT_UNFORMATTED_SMS_CB

Case 6: the cleared event is EVENT_CALL_CONTROL

Case 7: the cleared event is EVENT_SMS_MO_CONTROL

Case 8: the cleared event is EVENT_EVENT_DOWNLOAD_MT_CALL

Case 9: the cleared event is EVENT_EVENT_DOWNLOAD_CALL_CONNECTED

Case 10: the cleared event is EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED

Case 11: the cleared event is EVENT_EVENT_DOWNLOAD_LOCATION_STATUS

Case 12: the cleared event is EVENT_EVENT_DOWNLOAD_USER_ACTIVITY

Case 13: the cleared event is EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE

Case 14: the cleared event is EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS

Case 15: the cleared event is EVENT_UNRECOGNISED_ENVELOPE

Case 16: the cleared event is EVENT_PROFILE_DOWNLOAD

9.5. isEventSet(event) method

C95a.

Test: the method is called

Answer: true

Context: the events have already been registered

Case 1: the event is EVENT_FORMATTED_SMS_ENVELOPE

Case 2: the event is EVENT_FORMATTED_SMS_PP_UDP

Case 3: the event is EVENT_UNFORMATTED_SMS_ENVELOPE

Case 4: the event is EVENT_UNFORMATTED_SMS_PP_UDP

Case 5: the event is EVENT_UNFORMATTED_SMS_CB

Case 6: the event is EVENT_CALL_CONTROL

Case 7: the event is EVENT_SMS_MO_CONTROL

Case 8: the event is EVENT_EVENT_DOWNLOAD_MT_CALL

Case 9: the event is EVENT_EVENT_DOWNLOAD_CALL_CONNECTED

Case 10: the event is EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED

Case 11: the event is EVENT_EVENT_DOWNLOAD_LOCATION_STATUS

Case 12: the event is EVENT_EVENT_DOWNLOAD_USER_ACTIVITY

Case 13: the event is EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE

Case 14: the event is EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS

Case 15: the event is EVENT_UNRECOGNISED_ENVELOPE

Case 16: the event is EVENT_PROFILE_DOWNLOAD

C95b.

Test: the method is called

Answer: false

Context: the events have not been registered yet

Case 1: the event is EVENT_FORMATTED_SMS_ENVELOPE

Case 2: the event is EVENT_FORMATTED_SMS_PP_UDP

Case 3: the event is EVENT_UNFORMATTED_SMS_ENVELOPE

Case 4: the event is EVENT_UNFORMATTED_SMS_PP_UDP

Case 5: the event is EVENT_UNFORMATTED_SMS_CB

Case 6: the event is EVENT_CALL_CONTROL

Case 7: the event is EVENT_SMS_MO_CONTROL

Case 8: the event is EVENT_EVENT_DOWNLOAD_MT_CALL

Case 9: the event is EVENT_EVENT_DOWNLOAD_CALL_CONNECTED

Case 10: the event is EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED

Case 11: the event is EVENT_EVENT_DOWNLOAD_LOCATION_STATUS

Case 12: the event is EVENT_EVENT_DOWNLOAD_USER_ACTIVITY

Case 13: the event is EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE

Case 14: the event is EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS

Case 15: the event is EVENT_UNRECOGNISED_ENVELOPE

Case 16: the event is EVENT_PROFILE_DOWNLOAD

9.6. disableMenuEntry(id) method

C96a.

Test: id does not exist for this applet

Answer: the method must throw a ToolkitException with the following reason code: ENTRY_NOT_FOUND

C96b.

Test: disable a menu entry

Answer:

Context: menu entry exists and is enabled

9.7. enableMenuEntry(id) method

C97a.

Test: id does not exist for this applet

Answer: the method must throw a ToolkitException with the following reason code: ENTRY_NOT_FOUND

C97b.

Test: enable a menu entry

Answer:

Context: menu entry exists and is disabled

9.8. initMenuEntry(menuEntry, offset, length, nextAction, helpSupported, iconQualifier, iconIdentifier) method

C98a.

Test: A null buffer is passed as parameter.

Answer: the method must throw a NullPointerException exception

Case 1: offset = 0 y length = 0

Case 2: offset <> 0 y length = 0

Case 3: offset = 0 y length <> 0

Case 4: offset <> 0 y length <> 0

C98b.

Test: offset overcomes buffer size

Answer: the method must throw an IndexOutOfBoundsException exception

Context: length = 0

Case 1: offset = buffer length

Case 2: offset = buffer length – 1 (Exception is not thrown

C98c.

Test: length overcomes buffer length

Answer: the method must throw an IndexOutOfBoundsException exception

Context: offset = 0

Case 1: length = buffer length (Exception is not thrown

Case 2: length = buffer length + 1

C98d.

Test: (offset + length) overcomes buffer length

Answer: the method must throw an IndexOutOfBoundsException exception

Context: offset <> 0 y length <> 0

Case 1: (offset + length) = buffer length + 1

Case 2: (offset + length) = buffer length
(Exception is not thrown

Case 3; (offset + length) = buffer length – 1
(Exception is not thrown

C98e.

Test: the method is called

Answer: the method must throw a ToolkitException with the following reason code: ENTRY_NOT_FOUND

Context: there are no more menu entries to initialise

C98f.

Test: the method is called

Answer: the method must throw a ToolkitException with the following reason code: ALLOWED_LENGTH_EXCEEDED

Context: menu entry string is bigger than the allocated space

C98g.

Test: the method is called

Answer: the next menu entry allocate at loading is initialised

Context: this menu entry is not the last menu entry allocated at loading

C98h.

Test: the method is called

Answer: the last menu entry allocate at loading is initialised and the STF must send a Menu Selection proactive command to ME

Context: this menu entry is the last menu entry allocated at loading

9.9. changeMenuEntry(id, menuEntry, offset, length, nextAction, helpSupported, iconQualifier, iconIdentifier) method

C99a.

Test: A null buffer is passed as parameter.

Answer: the method must throw a NullPointerException exception

Case 1: offset = 0 y length = 0

Case 2: offset <> 0 y length = 0

Case 3: offset = 0 y length <> 0

Case 4: offset <> 0 y length <> 0

C99b.

Test: offset overcomes buffer size

Answer: the method must throw an IndexOutOfBoundsException exception

Context: length = 0

Case 1: offset = buffer length

Case 2: offset = buffer length – 1 (Exception is not thrown

C99c.

Test: length overcomes buffer length

Answer: the method must throw an IndexOutOfBoundsException exception

Context: offset = 0

Case 1: length = buffer length (Exception is not thrown

Case 2: length = buffer length + 1

C99d.

Test: (offset + length) overcomes buffer length

Answer: the method must throw an IndexOutOfBoundsException exception

Context: offset <> 0 y length <> 0

Case 1: (offset + length) = buffer length + 1

Case 2: (offset + length) = buffer length
(Exception is not thrown

Case 3; (offset + length) = buffer length – 1
(Exception is not thrown

C99e.

Test: the method is called

Answer: the method must throw a ToolkitException with the following reason code: ENTRY_NOT_FOUND

Context: menu entry does not exist for this applet

C99f.

Test: the method is called

Answer: the method must throw a ToolkitException with the following reason code: ALLOWED_LENGTH_EXCEEDED

Context: menu entry string is bigger than the allocated space

C99g.

Test: the method is called

Answer: the menu entry value is changed and the STF must send a Menu Selection proactive command to ME

9.10. allocateTimer() method

C910a.

Test: the method is called

Answer: the method must throw a ToolkitException with the following reason code:

NO_TIMER_AVAILABLE

Context: all the timers are allocated

C910b.

Test: the method is called

Answer: identifier of the timer allocated. The applet has to register to the EVENT_TIMER_EXPIRATION event. The STF must send a Timer Management proactive command to active the timer

Context:

Case 1: the applet were not registered to the EVENT_TIMER_EXPIRATION event

Case 2: only one timer was available

9.11. releaseTimer(timerIdentifier) method

C911a.

Test: the method is called

Answer: the method must throw a ToolkitException with the following reason code:

INVALID_TIMER_ID

Context: timer identifier is not allocated to this applet

C911b.

Test: the method is called

Answer: timer that has been allocated is released. The applet has to deregister of the EVENT_TIMER_EXPIRATION event for the indicated Timer Identifier. The STF must send a Timer Management proactive command to disable the timer

9.12. requestPollInterval(duration) method

C912a.

Test: the method is called with an invalid duration

Answer: the method must throw a ToolkitException with the following reason code:

REGISTRY_ERROR

Context:

C912b.

Test: the method is called with a valid duration

Answer: the toolkit applet must be registered to EVENT_STATUS_COMMAND event with the requested duration. The STF must send a Poll Interval proactive command to fix the maximum interval between two Status commands

Context: there is not any applet registered to EVENT_STATUS_COMMAND event

C912c.

Test: the method is called with a valid duration

Answer: the toolkit applet must be registered to EVENT_STATUS_COMMAND event with the requested duration. If it is necessary the STF can send a Poll Interval proactive command to fix the maximum interval between two Status commands

Context: the toolkit applet is not registered but there is other applets register to EVENT_STATUS_COMMAND event

C912d.

Test: the method is called with a valid duration

Answer: the toolkit applet must be registered to EVENT_STATUS_COMMAND event and its interval changes to the requested duration. If it is necessary the STF can send a Poll Interval proactive command to fix the maximum interval between two Status commands

Context: the toolkit applet is already registered

C912e.

Test: the method is called with a valid duration

Answer: the toolkit applet must be registered to EVENT_STATUS_COMMAND event and its interval changes to the requested duration. If it is necessary the STF can send a Poll Interval proactive command to fix the maximum interval between two Status commands

Context: the toolkit applet is already registered

C912f.

Test: the duration value is POLL_NO_DURATION

Answer: the toolkit applet must be deregistered to EVENT_STATUS_COMMAND event. If it is necessary the STF can send a Poll Interval proactive command to fix the maximum interval between two Status commands

Context: the toolkit applet is already registered, furthermore there are other registered toolkit applet

C912g.

Test: the duration value is POLL_NO_DURATION

Answer: the toolkit applet must be deregistered to EVENT_STATUS_COMMAND event. The STF must send a Polling Off proactive command to disable the polling

Context: only this toolkit applet is registered

C912h.

Test: the duration value is POLL_NO_DURATION

Answer: the toolkit applet is not registered to EVENT_STATUS_COMMAND event

Context: the toolkit applet is not registered yet

C912i.

Test: the duration value is POLL_SYSTEM_DURATION

Answer: the toolkit applet must be registered to EVENT_STATUS_COMMAND event with the duration that is preferred by the SIM Toolkit Framework. If it is necessary the STF can send a Poll Interval proactive command to fix the maximum interval between two Status commands

Context:

9.13. getPollInterval() method

C913a.

Test: the method is called

Answer: return the POLL_NO_DURATION value

Context: the toolkit applet is not registered to EVENT_STATUS_COMMAND event

C913b.

Test: the method is called

Answer: return the number of seconds of the adjusted duration

Context: the toolkit applet is registered to EVENT_STATUS_COMMAND event

10. STF Initialization

These tests depend of the STF implementation

11. GSM Framework Tests

11.1. SimView tests

These tests will be similar to previous tests

11.2. Access control tests

These tests will be similar to previous tests

