Page 1

3GPP TSG-T3 Meeting #29
Tdoc (T3-031026

Dallas, US, 18-21 November 2003

Revised T3-030927
	CR-Form-v7

	CHANGE REQUEST

	

	(

	51.013
	CR
	003
	(

rev
	-
	(

Current version:
	5.0.1
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	X
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	Essential corrections

	
	

	Source:
(

	T3

	
	

	Work item code:
(

	TEI
	
	Date: (

	21/11/2003

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	Rel-5

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	Essential changes in specification and in tests, and an essential correction in a test writing needed.

	
	

	Summary of change:
(

	· §6.3.2.3.3: test case 16 is redundant with test case 19. Suppress test case 19 and update test coverage table accordingly (§6.3.2.3.4)

· §6.3.8.6.3: test FWK_TIN_ACDO, testcase 5:

 point 1, the selected EF is changed to EF-CNR instead of EF-CNU

 point 5, the selected EF is changed to EF_CNU instead of EF-CNR

· §C.1: Replace EF_IM by EF_IMG

· Change ‘Applet 1’ by ‘Applet1’, ‘Applet 2’ by ‘Applet2’, ‘Applet 3’ by ‘Applet3’

· Change ‘ot’ by ‘to’

· Annex E, FWK_FWS_INDA.ldr: Suppress inserted lines between data and Satus Word.

· Annex E, FWK_TIN_PRLV_10A.java, line 123: Change ‘true’ to ‘false’.

· Annex E, FWK_PCS_PCCO.scr, FWK_APT_EPDW.scr, FWK_HIN_PRHD.scr: In TERMINAL RESPONSE commands , change "Type of command" value according to prior
FETCH command.

· Annex E, API_2_MEP_CHEC_BSS.java, line 67: call check(byte[] mask, short offset, short length) instead of check(byte index)

· Annex E, API_2_TKR_ATIM_1.par: change AppletClassName for instances 2 and 3.

· Annex E, API_2_PRH_CCHD_BSS_1.java: relocate ProactiveResponseHandler.getTheHandler() method call after the first send() method, in order to be in accordance with ProactiveResponseHandler definition.

· Annex E, FWK_HIN_ENHD.java: Correct the source file to be in accordance with CRRN1.

	
	

	Consequences if
(

not approved:
	Errors reside in specification and tests.

	
	

	Clauses affected:
(

	§6.3.2.3.3, §6.3.8.6.3, §C.1, Annex E FWK_FWS_INDA.ldr, Annex E FWK_TIN_PRLV_10A.java, Annex E FWK_PCS_PCCO.scr, Annex E FWK_APT_EPDW.scr, Annex E FWK_HIN_PRHD.scr, Annex E, API_2_MEP_CHEC_BSS.java, Annex E API_2_TKR_ATIM_1.par, Annex E API_2_PRH_CCHD_BSS_1.java, Annex E FWK_HIN_ENHD.java

	
	

	
	Y
	N
	
	

	Other specs
(

	
	
	 Other core specifications
(

	

	affected:
	
	
	 Test specifications
	

	
	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

6
API Test Plan

6.2.9
Class ToolkitRegistry

6.2.9.1
Method allocateTimer

Test Area Reference: API_2_TKR_ATIM

6.2.9.1.1
Conformance requirement:

The method with following header shall be compliant to its definition in the API.

public byte allocateTimer()
throws ToolkitException

6.2.9.1.1.1
Normal execution

· CRRN1: the returned timer identifier shall be between 01 and 08 inclusive.

· CRRN2: the returned timer identifier shall be different from a previously allocated but not released one.

· CRRN3: The SIM Toolkit Framework shall trigger the applet when receiving an ENVELOPE(TIMER EXPIRATION) command for the allocated timer.

· CRRN4: A call to isEventSet() method for EVENT_TIMER_EXPIRATION should return true if the applet has at least one timer allocated.

6.2.9.1.1.2
Parameters error

No requirements.

6.2.9.1.1.3
Context errors

· CRRC1: Shall throw a ToolkitException with reason NO_TIMER_AVAILABLE if all the timers are allocated.

· CRRC2: Shall throw a ToolkitException with reason NO_TIMER_AVAILABLE if the maximum number of timers have been allocated to this applet according to installation parameter.

6.2.9.1.2
Test suite files

Test Script:
API_2_TKR_ATIM_1.scr

Test Applet:
API_2_TKR_ATIM_1.java

API_2_TKR_ATIM_2.java

API_2_TKR_ATIM_3.java

· Installation parameters:

· For this test procedure the non-volatile memory of each instance is 200 (Hexa).

· The maximum timer parameter value is as follows for each applet:

-
applet1 (API_2_TKR_ATIM_1): 8 timers

-
applet2 (API_2_TKR_ATIM_2): 4 timers

-
applet3 (API_2_TKR_ATIM_3): 0 timer

Load Script:
API_2_TKR_ATIM_1.ldr

· The load script installs the 6 instances.

Cleanup Script:
API_2_TKR_ATIM_1.clr

Parameter File:
API_2_TKR_ATIM_1.par

6.2.9.1.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	Allocates up to 8 timers
(applet1)

8 * allocateTimer().
	No exception shall be thrown. Timer ID returned shall be between 01 and 08 inclusive. It shall be different after each call.
	

	2
	Allocate timers more than the maximum
(applet1)

The applet1 allocates 1 more timer.

	Shall throw a ToolkitException with reason NO_TIMER_AVAILABLE.
	

	3
	Check applet is Triggered by ENVELOPE(TIMER_EXPIRATION) command
(applet1)

Send ENVELOPE(TIMER EXPIRATION) with all timers id (not in an increase order).

Calls releaseTimer(id) each time a timer expires.
	Shall trigger each time an ENVELOPE(TIMER EXPIRATION) is sent to the SIM, for Timer ID = '01' to '08'.

	

	4
	Allocate up to 4 timers
(applet2)

4 * allocateTimer().

	No exception shall be thrown. Each time, the returned timer identifier shall be between '01' and '08' inclusive. It shall be different after each call.

	

	5
	Allocate timers more than the maximum
(applet3)

The applet3 allocates 1 more timer.

	Shall throw a ToolkitException with reason NO_TIMER_AVAILABLE.
	

6.2.9.1.4
Test Coverage

	CRR number
	Test case number

	N1
	1, 4

	N2
	1, 4

	N3
	3

	N4
	1

	C1
	2

	C2
	5

6.2.9.12
Method setEvent

Test Area Reference: API_2_TKR_SEVTB

6.2.9.12.1
Conformance Requirement:

The method with following header shall be compliant to its definition in the API.

 public void setEvent(byte id)

 throws ToolkitException,

 javacard.framework.TransactionException

6.2.9.12.1.1
Normal execution

· CRRN1: a following call to isEventSet() method with the same event id shall answer true for the applet.

· CRRN2: the SIM Toolkit Framework shall trigger the applet if an occurrence of the set event happens.

· CRRN3: the method shall accept all the events defined in 3GPP TS 43.019 [7] except: EVENT_MENU_SELECTION, EVENT_MENU_SELECTION_HELP_REQUEST, EVENT_TIMER_EXPIRATION , EVENT_STATUS_COMMAND

· CRRN4: no exception shall be thrown if the applet registers more than once to the same event.

· CRRN5: all updates in the ToolkitRegistry are atomic.

6.2.9.12.1.2
Parameters error

· CRRP1: shall throw a ToolkitException with EVENT_NOT_SUPPORTED reason if event is 0.

· CRRP2: shall throw a ToolkitException with EVENT_NOT_ALLOWED reason if event is EVENT_MENU_SELECTION.

· CRRP3: shall throw a ToolkitException with EVENT_NOT_ALLOWED reason if event is EVENT_MENU_SELECTION_HELP_REQUEST.

· CRRP4: shall throw a ToolkitException with EVENT_NOT_ALLOWED reason if event is EVENT_TIMER_EXPIRATION.

· CRRP5: shall throw a ToolkitException with EVENT_NOT_ALLOWED reason if event is EVENT_STATUS_COMMAND.

6.2.9.12.1.3
Context errors

· CRRC1: shall throw a ToolkitException with EVENT_ALREADY_REGISTERED if event is EVENT_CALL_CONTROL_BY_SIM but another applet is already registered to it.

· CRRC2: shall throw a ToolkitException with EVENT_ALREADY_REGISTERED if event is EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM but another applet is already registered to it.

· CRRC3: shall throw a ToolkitException with TAR_NOT_DEFINED if event is FORMATTED_SMS_PP_ENV and the applet has no TAR defined.

· CRRC4: shall throw a ToolkitException with TAR_NOT_DEFINED if event is FORMATTED_SMS_PP_UPD and the applet has no TAR defined.

· CRRC5: shall throw a ToolkitException with TAR_NOT_DEFINED if event is FORMATTED_SMS_CB_ENV and the applet has no TAR defined.

· CRRC6: shall throw javacard.framework.TransactionException - if the operation would cause the commit capacity to be exceeded.

6.2.9.12.2
Test suite files

Test Script:
API_2_TKR_SEVTB_1.scr

Test Applet:
API_2_TKR_SEVTB_1.java

API_2_TKR_SEVTB_2.java

API_2_TKR_SEVTB_3.java

API_2_TKR_SEVTB_4.java

Load Script:
API_2_TKR_SEVTB_1.ldr

The load script installs the 4 instances.

Cleanup script:
API_2_TKR_SEVTB_1.clr

Parameter File:
API_2_TKR_SEVTB_1.par

6.2.9.12.3
Test Procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	Applet1 is triggered by ENVELOPE(SMS_ PP_FORMATTED) command.

Send ENVELOPE(SMS_PP_FORMATTED)

	Applet1 shall be triggered
	

	2
	Setting ALLOWED and SUPPORTED events

1-
For all allowed events (-1, 1 to 24 and 127 excepted 7, 8, 11, 19) defined in TS 43.019 [7]*:
EVENT_PROFILE_DOWNLOAD, EVENT_FORMATTED_SMS_PP_ENV, EVENT_FORMATTED_SMS_PP_UPD, EVENT_FORMATTED_SMS_CB, EVENT_UNFORMATTED_SMS_PP_ENV, EVENT_UNFORMATTED_SMS_PP_UPD, EVENT_UNFORMATTED_SMS_CB, EVENT_CALL_CONTROL_BY_SIM, EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM, EVENT_EVENT_DOWNLOAD_MT_CALL, EVENT_EVENT_DOWNLOAD_CALL_CONNECTED, EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED, EVENT_EVENT_DOWNLOAD_LOCATION_STATUS, EVENT_EVENT_DOWNLOAD_USER_ACTIVITY, EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE, EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS, EVENT_EVENT_DOWNLOAD_LANGUAGE_SELECTION, EVENT_EVENT_DOWNLOAD_BROWSER_TERMINATION,

EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE,

EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS,

EVENT_FIRST_COMMAND_AFTER_SELECT,

EVENT_UNRECOGNIZED_ENVELOPE

1.1-
clearEvent(event)

1.2-
isEventSet(event)

1.3-
setEvent(event)

1.4-
isEventSet(event)

1.5-
clearEvent(event)

	1.1-
No exception shall be thrown.

1.2-
Shall return false.

1.3-
No exception shall be thrown.

1.4-
Shall return true.

1.5-
No exception shall be thrown.
	

	3
	Event 0

Call setEvent(0)
	Shall throw a ToolkitException with EVENT_NOT_SUPPORTED reason code.

	

	4
	Setting EVENT_MENU_SELECTION

Call setEvent(EVENT_MENU_SELECTION)
	Shall throw a ToolkitException with EVENT_NOT_ALLOWED reason code.

	

	5
	Setting EVENT_MENU_SELECTION_HELP_REQUEST

Call setEvent(EVENT_MENU_SELECTION_HELP_REQUEST)
	Shall throw a ToolkitException with EVENT_NOT_ALLOWED reason code.

	

	6
	Setting EVENT_TIMER_EXPIRATION

Call setEvent(EVENT_TIMER_EXPIRATION)
	Shall throw a ToolkitException with EVENT_NOT_ALLOWED reason code.

	

	7
	Setting EVENT_STATUS_COMMAND

Call setEvent(EVENT_STATUS_COMMAND)
	Shall throw a ToolkitException with EVENT_NOT_ALLOWED reason code.

	

	8
	Setting EVENT_CALL_CONTROL_BY_SIM

Call setEvent(EVENT_CALL_CONTROL_BY_SIM)
	No Exception shall be thrown

	

	9
	Setting EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

Call setEvent(EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM)
	No Exception shall be thrown

	

	10
	Check applet is triggered by an ENVELOPE(CALL_CONTROL_BY_SIM)

Trigger the applet
	Applet is trigged by an ENVELOPE(CALL_CONTROL_BY_SIM)
	

	11
	Check applet is triggered by an ENVELOPE(MO_SHORT_MESSAGE_CONTROL_BY_SIM)

Trigger the Applet
	Applet is trigged by an ENVELOPE(MO_SHORT_MESSAGE_CONTROL_BY_SIM)
	

	12
	Applet2 is triggered by ENVELOPE(SMS_ PP_DOWNLOAD) command.

Trigger the Applet2
	Applet2 is trigged by an ENVELOPE(SMS_ PP_DOWNLOAD) command
	

	13
	Applet2 registers to CALL_CONTROL_BY_SIM
but it is already assigned

SetEvent(EVENT_CALL_CONTROL_BY_SIM)
	Shall throw a ToolkitException with EVENT_ALREADY_REGISTERED reason code.

	

	14
	Applet2 registers to MO_MESSAGE_CONTROL_BY SIM
but it is already assigned

setEvent(EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM)
	Shall throw a ToolkitException with EVENT_ALREADY_REGISTERED reason code.

	

	15
	Applet3 with no TAR defined registers to EVENT_UNFORMATTED_SMS_CB

1- send ENVELOPE(CELL_BROADCAST_DATA_ DOWNLOAD)

2- setEvent(FORMATTED_SMS_PP_ENV)

3- setEvent(FORMATTED_SMS_PP_UPD)

4- setEvent(FORMATTED_SMS_CB_ENV)

	1- Applet3 shall be triggered

2- ToolkitException with reason code TAR_NOT_DEFINED should be thrown

3- ToolkitException with reason code TAR_NOT_DEFINED should be thrown

ToolkitException with reason code TAR_NOT_DEFINED should be thrown
	

	16
	Applet4 registers multiple to

EVENT_FORMATTED_SMS_PP_ENV

1- send ENVELOPE(EVENT_FORMATTED_ SMS_PP_ENV)

2- setEvent(EVENT_FORMATTED_SMS_PP_ UPD)

3- setEvent(EVENT_FORMATTED_SMS_PP_ UPD)

4- send ENVELOPE(EVENT_FORMATTED_ SMS_PP_UPD)

	1- Applet4 shall be triggered

2- no Exception shall be thrown

3- no Exception shall be thrown

4- Applet4 shall be triggered
	

NOTE:
Although the method setEvent is defined for a range from –128 to 127 only the allowed events are tested, because the range from -128 to –2 is reserved for propriatary use in TS TS 43.019 [7] chapter 6.2 and the range from 25 to 126 is omitted for compatibility with future releases of TS 43.019 [7]

6.2.9.12.4
Test Coverage

	CRR number
	Test case number

	N1
	2

	N2
	1,8,9,10,11,12

	N3
	2,4,5,6,7

	N4
	16

	N5
	not testable

	P1
	3

	P2
	4

	P3
	5

	P4
	6

	P5
	7

	C1
	13

	C2
	14

	C3
	15

	C4
	15

	C5
	15

	C6
	not testable

6.2.9.13
Method setEventList

Test Area Reference: API_2_TKR_SEVL_BSS

6.2.9.13.1
Conformance Requirement:

The method with following header shall be compliant to its definition in the API.

public void setEventList(byte[] eventList,

 short offset,

 short length)

throws java.lang.NullPointerException,

 java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException,

 javacard.framework.TransactionException
6.2.9.13.1.1
Normal execution

· CRRN1: for all events set successfully by this method, a call to isEventSet() method should return true.

· CRRN2: the SIM Toolkit Framework shall trigger the applet if an occurrence of one of the successfully registered events happens.

· CRRN3: this method shall accept all the events defined in 3GPP TS 43.019 [7] except: EVENT_MENU_SELECTION, EVENT_MENU_SELECTION_HELP_REQUEST, EVENT_TIMER_EXPIRATION , EVENT_STATUS_COMMAND.

· CRRN4: all updates on the ToolkitRegistry are atomic

· CRRN5: No exception shall be thrown if the applet registers more than once to the same event.

6.2.9.13.1.2
Parameters error

· CRRP1: shall throw a java.lang.NullPointerException if eventList is null.

· CRRP2: shall throw a java.lang.ArrayIndexOutOfBoundsException if offset would cause access outside array bounds.

· CRRP3: shall throw a java.lang.ArrayIndexOutOfBoundsException if length would cause access outside array bounds.

· CRRP4: shall throw a java.lang.ArrayIndexOutOfBoundsException if both offset and length would cause access outside array bounds.

· CRRP5: shall throw a ToolkitException with EVENT_NOT_SUPPORTED reason if event is 0.

· CRRP6: shall throw a ToolkitException with EVENT_NOT_ALLOWED reason if eventList contains EVENT_MENU_SELECTION.

· CRRP7: shall throw a ToolkitException with EVENT_NOT_ALLOWED reason if eventList contains EVENT_MENU_SELECTION_HELP_REQUEST.

· CRRP8: shall throw a ToolkitException with EVENT_NOT_ALLOWED reason if eventList contains EVENT_TIMER_EXPIRATION.

· CRRP9: shall throw a ToolkitException with EVENT_NOT_ALLOWED reason if eventList contains EVENT_STATUS_COMMAND.

6.2.9.13.1.3
Context errors

· CRRC1: shall throw a ToolkitException with EVENT_ALREADY_REGISTERED if eventList contains EVENT_CALL_CONTROL_BY_SIM but another applet is already registered to it.

· CRRC2: shall throw a ToolkitException with EVENT_ALREADY_REGISTERED if eventList contains EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM but another applet is already registered to it.

· CRRC3: shall throw a ToolkitException with TAR_NOT_DEFINED if event is FORMATTED_SMS_PP_ENV and the applet has no TAR defined.

· CRRC4: shall throw a ToolkitException with TAR_NOT_DEFINED if event is FORMATTED_SMS_PP_UPD and the applet has no TAR defined.

· CRRC5: shall throw a ToolkitException with TAR_NOT_DEFINED if event is FORMATTED_SMS_CB_ENV and the applet has no TAR defined.

· CRRC6: shall throw javacard.framework.TransactionException - if the operation would cause the commit capacity to be exceeded.

6.2.9.13.2
Test suite files

Test Script:
API_2_TKR_SEVL_BSS_1.scr

Test Applet:
API_2_TKR_SEVL_BSS_1.java

API_2_TKR_SEVL_BSS_2.java

API_2_TKR_SEVL_BSS_3.java

Load Script:
API_2_TKR_SEVL_BSS_1.ldr

The load script installs the 4 instances.

Cleanup script:
API_2_TKR_SEVL_BSS_1.clr

Parameter File:
API_2_TKR_SEVL_BSS_1.par

6.2.9.13.3
Test Procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	Applet1 Registering all eventList buffer

EventList = all allowed events (-1, 1 to 24 and 127 excepted 7, 8, 11, 19) defined in TS 43.019[7]:
EVENT_PROFILE_DOWNLOAD, EVENT_FORMATTED_SMS_PP_ENV, EVENT_FORMATTED_SMS_PP_UPD, EVENT_FORMATTED_SMS_CB, EVENT_UNFORMATTED_SMS_PP_ENV, EVENT_UNFORMATTED_SMS_PP_UPD, EVENT_UNFORMATTED_SMS_CB, EVENT_CALL_CONTROL_BY_SIM, EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM, EVENT_EVENT_DOWNLOAD_MT_CALL, EVENT_EVENT_DOWNLOAD_CALL_CONNECTED, EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED, EVENT_EVENT_DOWNLOAD_LOCATION_STATUS, EVENT_EVENT_DOWNLOAD_USER_ACTIVITY, EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE,

EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS, EVENT_EVENT_DOWNLOAD_LANGUAGE_SELECTION, EVENT_EVENT_DOWNLOAD_BROWSER_TERMINATION,

EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE,

EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS,

EVENT_FIRST_COMMAND_AFTER_SELECT,

EVENT_UNRECOGNIZED_ENVELOPE

1-
For each event in EventList clearEvent(event)

2-
setEventList(eventList)

Offset = 0

Length = eventList.lentgh

3-
For all events in eventList isEventSet(event)

4-
For each event in EventList clearEvent(event)

	1-
No exception shall be thrown.

2-
No exception shall be thrown.

3-
Each time shall return true.

4-
No exception shall be thrown.

	

	2
	Registering part of eventList buffer

EventList = all allowed events defined in TS 43.019[7] (see test case 1).

1-
For each event in EventList clearEvent(event)

2-
setEventList(eventList, offset, length)

Offset > 0

Length = eventList.lentgh – offset

3-
For all events in eventList:

isEventSet(event)

4-
For each event in EventList: clearEvent(event)

	1-
No exception shall be thrown.

2-
No exception shall be thrown.

3-
Each time shall return true for events ranging from offset to offset+length else shall return false.

4-
No exception shall be thrown.

	

	3
	Null buffer

EventList = null

	Shall throw a java.lang.NullPointerException Exception
	

	4
	Out of bounds offset

Offset = eventList.length

Length = 1

	Shall throw a java.lang.ArrayIndexOutOfBounds Exception
	

	5
	Out of bounds and big offset

Offset = 255

Length = 1

	Shall throw a java.lang.ArrayIndexOutOfBounds Exception
	

	6
	Offset < 0

Offset = -1

Length = 1

	Shall throw a java.lang.ArrayIndexOutOfBounds Exception
	

	7
	Out of bounds length

Offset = 0

Length = eventList.length + 1

	Shall throw a java.lang.ArrayIndexOutOfBounds Exception
	

	8
	Out of bounds and big length

Offset = 0

Length = 255

	Shall throw a java.lang.ArrayIndexOutOfBounds Exception
	

	9
	Length < 0

Offset = 0

Length = -1

	Shall throw a java.lang.ArrayIndexOutOfBounds Exception
	

	10
	Out of bounds offset + Length

Offset + length > eventList.length + 1

	Shall throw a java.lang.ArrayIndexOutOfBounds Exception
	

	11
	Event 0

Call setEventList(eventList) with eventList indicating event 0
	Shall throw a ToolkitException with EVENT_NOT_SUPPORTED reason code.

	

	12
	EVENT_MENU_SELECTION

Call setEventList(eventList) with eventList indicating EVENT_MENU_SELECTION
	Shall throw a ToolkitException with reason code EVENT_NOT_ALLOWED.

	

	13
	EVENT_MENU_SELECTION_HELP_REQUEST

Call setEventList(eventList) with eventList indicating EVENT_MENU_SELECTION_HELP_REQUEST
	Shall throw a ToolkitException with reason code EVENT_NOT_ALLOWED.

	

	14
	EVENT_TIMER_EXPIRATION

Call setEventList(eventList) with eventList indicating EVENT_TIMER_EXPIRATION
	Shall throw a ToolkitException with reason code EVENT_NOT_ALLOWED.

	

	15
	EVENT_STATUS_COMMAND

Call setEventList(eventList) with eventList indicating EVENT_STATUS_COMMAND
	Shall throw a ToolkitException with reason code EVENT_NOT_ALLOWED.

	

	16
	Setting EVENT_CALL_CONTROL_BY_SIM

setEventList(List, 0, 2) with List containing

EVENT_CALL_CONTROL_BY_SIM & EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM
	Shall not throw an exception

	

	17
	Check applet is triggered by an ENVELOPE(CALL_CONTROL_BY_SIM)

Reset and initialise the card

Trigger the applet
	Applet is trigged by an ENVELOPE(CALL_CONTROL_BY_SIM)
	

	18
	Check applet is triggered by an ENVELOPE(MO_SHORT_MESSAGE_CONTROL_BY_SIM)

Trigger the applet
	Applet is trigged by an ENVELOPE(MO_SHORT_MESSAGE_CONTROL_BY_SIM)
	

	19
	Applet2 registers to CALL_CONTROL_BY_SIM
but it is already assigned

setEventList(MonoEventList,0,1) with MonoEventList containing EVENT_CALL_CONTROL_BY_SIM

	Shall throw a ToolkitException with EVENT_ALREADY_REGISTERED reason code.

	

	20
	Applet2 registers to MO_SHORT_MESSAGE_CONTROL_BY_SIM
but it is already assigned setEventList(MonoEventList,0,1) with MonoEventList containing EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

	Shall throw a ToolkitException with EVENT_ALREADY_REGISTERED reason code.

	

	21
	Applet3 with no TAR defined registers to EVENT_UNFORMATTED_SMS_CB

1- send ENVELOPE(EVENT_UNFORMATTED_SMS_CB)

2- setEventList(EVENT_FORMATTED_SMS_PP_ENV, EVENT_UNFORMATTED_SMS_PP_ENV, EVENT_UNFORMATTED_SMS_PP_ENV)

3- setEventList(EVENT_UNFORMATTED_SMS_PP_ ENV, EVENT_FORMATTED_SMS_PP_UPD, EVENT_UNFORMATTED_SMS_PP_ENV)

4- setEventList(EVENT_UNFORMATTED_SMS_PP_ENV, EVENT_UNFORMATTED_SMS_PP_ENV, EVENT_FORMATTED_SMS_CB_ENV)

5- isEventSet(EVENT_UNFORMATTED_SMS_PP_ENV)

6- isEventSet(EVENT_UNFORMATTED_SMS_PP_UPD)

7- isEventSet(EVENT_FORMATTED_SMS_PP_ENV)

8- isEventSet(EVENT_FORMATTED_SMS_PP_UPD)

9- isEventSet(EVENT_FORMATTED_SMS_CB_ENV)
	1- Applet3 shall be triggered

2- ToolkitException with reason code TAR_NOT_DEFINED should be thrown

3- ToolkitException with reason code TAR_NOT_DEFINED should be thrown

4- ToolkitException with reason code TAR_NOT_DEFINED should be thrown

5- method should return FALSE

6- method should return FALSE

7- method should return FALSE

8- method should return FALSE

9- method should return FALSE

	

	22
	1- setEventList(EVENT_UNFORMATTED_SMS_PP_ENV, EVENT_UNFORMATTED_SMS_PP_ENV)

2- isEventSet(EVENT_UNFORMATTED_SMS_PP_ENV)

	1- no exception should be thrown

2- method should return true

	

6.2.9.13.4
Test Coverage

	CRR number
	Test case number

	N1
	1,2

	N2
	16,17,18

	N3
	1,2,11,12,13,14,15

	N4
	21

	N5
	22

	P1
	3

	P2
	4,5,6

	P3
	7,8,9

	P4
	10

	P5
	11

	P6
	12

	P7
	13

	P8
	14

	P9
	15

	C1
	19

	C2
	20

	C3
	21

	C4
	21

	C5
	21

	C6
	not testable

6.3
SIM Toolkit Framework

6.3.2
Handler Integrity

6.3.2.2
ProactiveResponseHandler

Test Area Reference: FWK_HIN_PRHD

6.3.2.2.1
Conformance Requirement

6.3.2.2.1.1
Normal Execution

· CRRN1: The ProactiveResponseHandler content is changed after the call to ProactiveHandler.send method and remains unchanged until next call to the ProactiveHandler.send method.

· CRRN2: The ProactiveResponseHandler may not be available before the first call to ProactiveHandler.send method, if available the content is cleared.

6.3.2.2.1.2
Parameters error

No requirements.

6.3.2.2.1.3
Context Errors

No requirements.

6.3.2.2.2
Test Suite Files

Test Script:
FWK_HIN_PRHD_1.scr

Test Applet:
FWK_HIN_PRHD_1.java

Load Script:
FWK_HIN_PRHD_1.ldr

Cleanup Script:
FWK_HIN_PRHD_1.clr

Parameter File:
FWK_HIN_PRHD_1.par

6.3.2.2.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Applet registration and ProactiveResponseHandler obtaining

1-Applet is registered to all events defined in [7].

Using the methods initMenuEntry for EVENT_MENU_SELECTION, requestPollInterval() for EVENT_STATUS_COMMAND, allocateTimer() for EVENT_TIMER_EXPIRATION and setEventList() for the rest of the events.

Terminal Profile command is sent to the SIM without the facilities of SET_EVENT_LIST ,SETUP_IDLE_MODE_TEXT, SETUP_MENU and POLL_INTERVAL.

For each event:

2-ProactiveResponseHandler.getTheHandler() is called

If handler is available, ProactiveResponseHandler.getLength() is called

	1- No exception is thrown

2- Applet is triggered.

3- Behaviour 1:

 Toolkit Exception HANDLER_NOT_AVAILABLE is thrown.

Behaviour 2:

 No exception is thrown, the return value is 0

	

	2
	The ProactiveResponseHandler remains unchanged after send method invocation until next send method invocation

1-Applet builds a proactive command ProactiveHandler.send() method is called

2-ProactiveResponseHandler.getLength() method is called

3-ProactiveHandler.init() method is called

4-ProactiveHandler.send() method is called

5-ProactiveResponseHandler.getLength() method is called

	1- The ProactiveResponseHandler contains the terminal response

3- The return value is 12

4- No exception is thrown and the Proactive Response Handler remains unchanged

5- The ProactiveResponseHandler contains the terminal response of the second proactive command

7- The return value is 15

	2- A proactive command is fetched

The terminal response is sent with length 12

6- A proactive command is fetched

The terminal response is sent with length 15

6.3.2.2.4
Test Coverage

	CRR Number
	Test Case Number

	CRRN1
	1, 2

	CRRN2
	1

6.3.2.3
EnvelopeHandler

Test Area Reference: FWK_HIN_ENHD

6.3.2.3.1
Conformance Requirement

6.3.2.3.1.1
Normal Execution

· CRRN1: The EnvelopeHandler and its content are available for all triggered toolkit applets, from the invocation to the termination of their processToolkit method

· CRRN2: The SIM Toolkit Framework guarantees that all triggered toolkit applets receive the data.

· CRRN3: The SIM Toolkit Framework shall convert the Update Record EFsms in the EnvelopeHandler TLV List containing Device Identities TLV, Address TLV and SMS TPDU TLV.

· CRRN4: The getEnvelopeTag() method shall return BTAG_SMS_PP_DOWNLOAD.

· CRRN5: The getLength() method shall return the Simple TLV list length.

· CRRN6 The Device Identity Simple TLV is used to store the information about the absolute record number in the EFsms file and the value of the EFsms record status byte.

6.3.2.3.1.2
Parameters error

No requirements.

6.3.2.3.1.3
Context Errors

No requirements.

6.3.2.3.2
Test Suite Files

Test Script:
FWK_HIN_ENHD_1.scr

Test Applet:
FWK_HIN_ENHD_1.java

Load Script:
FWK_HIN_ENHD_1.ldr

Cleanup Script:
FWK_HIN_ENHD_1.clr

Parameter File:
FWK_HIN_ENHD_1.par

6.3.2.3.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Applet initialization and Envelope Handler integrity checks with EVENT_MENU_SELECTION_HELP_REQUEST

1- Applet is registered to all events defined in TS 43.019 [7] except EVENT_PROFILE_DOWNLOAD and EVENT_STATUS_COMMAND.

Using the methods initMenuEntry() for EVENT_MENU_SELECTION, allocateTimer()for EVENT_TIMER_EXPIRATION, and setEventList() for the rest of the events.

Perform SIM initialization with all the facilities supported

2-Envelope menu selection with help request is sent to the SIM

3-EnvelopeHandler.getTheHandler() method is called

4-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_HELP_REQUEST

5-A proactive command DISPLAY TEXT is sent

6-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

7- It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

Check that the TAG_HELP_REQUEST is the TLV selected

8-The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()

	1-No exception is thrown

2- Applet is triggered

3- No exception is thrown.

4- No exception is thrown

6- Applet is triggered

7- No exception is thrown and the handler contains the envelope call control by SIM

8- The contents of the envelope handler shall be the same as stored in buffer 1
	5- 91 xx.

 A proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	2
	Envelope Handler integrity checks with EVENT_MENU_SELECTION

1-An envelope menu selection is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_ITEM_IDENTIFIER

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6- It’s checked the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_ITEM_IDENTIFIER is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()

	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	3
	Envelope Handler integrity checks with EVENT_FORMATTED_SMS_PP_ENV

1-A formatted sms pp envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_SMS_TPDU

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_SMS_TPDU is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	4
	Envelope Handler integrity checks with EVENT_UNFORMATTED_SMS_PP_ENV

1-A unformatted sms pp envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV method is called with TAG_DEVICE_IDENTITIES

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_DEVICE_IDENTITIES is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	5
	Envelope Handler integrity checks with EVENT_UNFORMATTED_SMS_CB

1-A unformatted cellbroadcast envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_CELLBROADCAST_PAGE

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_CELLBROADCAST_PAGE is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	6
	Envelope Handler integrity checks with EVENT_TIMER_EXPIRATION

1-A timer expiration envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

 3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_TIMER_ID

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_TIMER_ID is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	7
	Envelope Handler integrity checks with EVENT_CALL_CONTROL_BY_SIM

1-A call control envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

 3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_ADDRESS

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_ADDRESS is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	8
	Envelope Handler integrity checks with EVENT_ MO_SHORT_MESSAGE_CONTROL_BY_SIM

1-A mo short message control by sim envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

 3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_ADDRESS

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It's checked that the TAG_ADDRESS is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	9
	Envelope Handler integrity checks with EVENT_ EVENT_DOWNLOAD_MT_CALL

1-A event download mt call envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_ADDRESS

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_ADDRESS is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	10
	Envelope Handler integrity checks with EVENT_ EVENT_DOWNLOAD_CALL_CONNECTED

1-A event download call connected envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

 3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_ADDRESS

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_ADDRESS is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	11
	Envelope Handler integrity checks with EVENT_ EVENT_DOWNLOAD_CALL_DISCONNECTED

1-A event download call disconnected envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

 3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_ADDRESS

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_ADDRESS is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	12
	Envelope Handler integrity checks with EVENT_ EVENT_DOWNLOAD_LOCATION_STATUS

1-A event download location status envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_LOCATION_STATUS

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_LOCATION_STATUS is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4-91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	13
	Envelope Handler integrity checks with EVENT_ EVENT_DOWNLOAD_USER_ACTIVITY

1-A event download user activity envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It's checked that the TAG_DEVICE_IDENTITIES is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	14
	Envelope Handler integrity checks with EVENT_ EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE

1-A event download idle screen available envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_DEVICE_IDENTITIES is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	15
	Envelope Handler integrity checks with EVENT_ EVENT_DOWNLOAD_CARD_READER_STATUS

1-A event download card reader status envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_CARD_READER_STATUS

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

It’s checked that the TAG_CARD_READER_STATUS is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	16
	Envelope Handler integrity checks with UNRECOGNIZED_ENVELOPE

1-A unrecognized envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

The EnvelopeHandler.getValueLength() is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	17
	Envelope Handler integrity checks with EVENT_EVENT_DOWNLOAD_LANGUAGE_SELECTION
1-A event download language selection envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_EVENT_LIST

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It's checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It's checked that the TAG_EVENT_LIST is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2-No exception is thrown.

3-No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4-91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	18
	Envelope Handler integrity checks with EVENT_EVENT_DOWNLOAD_BROWSER_TERMINATION
1-A event download browser termination envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_EVENT_LIST

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It's checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It's checked that the TAG_EVENT_LIST is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2-No exception is thrown.

3-No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4-91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	
	

	

	

	19
	Envelope Handler integrity checks with EVENT_FORMATTED_SMS_PP_UPD

1-Update Record EFsms instruction single and formatted is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_SMS_TPDU

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare methods

The EnvelopeHandler.findTLV() method is called with TAG_SMS_TPDU

Call Control execution is finished.

It’s checked that the TAG_SMS_TPDU is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()

	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1

	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	20
	Envelope Handler integrity checks with EVENT_UNFORMATTED_SMS_PP_UPD

1- Update Record EFsms instruction single and unformatted is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV method is called with TAG_SMS_TPDU

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_DEVICE_IDENTITIES is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()

	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1.

	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	21
	Check the TLV list conversion for EVENT_FORMATTED_SMS_PP_UPD

1- An EVENT_FORMATTED_SMS_PP_UPD is sent to the SIM.

2- The findTLV(tag == device identities Tag) is called.

3- The getValueByte(offset == 0) is called.

4- The getValueByte(offset == 1) is called.

5- The findTLV(tag == address Tag) is called.

6- Check the content

7- The findTLV(tag == SMS TPDU Tag) is called.

8- Check the content

	1- Applet is triggered

2- No exception is thrown.

3- return the absolute record.

4- return the record status

5- No exception is thrown.

7- No exception is thrown.

	

	22
	Check TLV list conversion for EVENT_FORMATTED_SMS_PP_UPD

1- The getLength() method is called

	1. return the Simple TLV list length
	

	23
	Check TLV list conversion for EVENT_FORMATTED_SMS_PP_UPD

1- The getEnvelopeTag() method is called

	1- return BTAG_SMS_PP_DOWNLOAD
	

	24
	Check the TLV list conversion for EVENT_UNFORMATTED_SMS_PP_UPD

1- An EVENT_UNFORMATTED_SMS_PP_UPD is sent to the SIM.

2- The findTLV(tag == device identities Tag) is called.

3- The getValueByte(offset == 0) is called.

4- The getValueByte(offset == 1) is called.

5- The findTLV(tag == address Tag) is called.

6- Check the content

7- The findTLV(tag == SMS TPDU Tag) is called.

8- Check the content

	1- Applet is triggered

2- No exception is thrown.

3- return the absolute record.

4- return the record status

5- No exception is thrown.

7- No exception is thrown.

	

	25
	Check TLV list conversion for EVENT_UNFORMATTED_SMS_PP_UPD

1- The getLength() method is called

	1. return the Simple TLV list length
	

	26
	Check TLV list conversion for EVENT_UNFORMATTED_SMS_PP_UPD

1- The getEnvelopeTag() method is called

	1- return BTAG_SMS_PP_DOWNLOAD
	

6.3.2.3.4
Test Coverage

	CRR Number
	Test Case Number

	CRRN1
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

	CRRN2
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

	CRRN3
	21, 24

	CRRN4
	22, 25

	CRRN5
	23, 26

	CRRN6
	21, 24

6.3.3
Applet Triggering

6.3.3.6
EVENT_CALL_CONTROL_BY_SIM

Test Area Reference: FWK_APT_ECCN

6.3.3.6.1
Conformance Requirement

6.3.3.6.1.1
Normal Execution

· CRRN1: The applet is triggered by the EVENT_CALL_CONTROL_BY_SIM once it has registered to this event and an Envelope Call Control is received.

· CRRN2: The applet is not triggered by the EVENT_CALL_CONTROL_BY_SIM once it has deregistered from this event.

6.3.3.6.1.2
Parameters error

No requirements.

6.3.3.6.1.3
Context Errors

No requirements.

6.3.3.6.2
Test Suite Files

Test Script:
FWK_APT_ECCN_1.scr

Test Applet:
FWK_APT_ECCN_1.java

Load Script:
FWK_APT_ECCN_1.ldr

Cleanup Script:
FWK_APT_ECCN_1.clr

Parameter File:
FWK_APT_ECCN_1.par

6.3.3.6.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Applets registration to EVENT_CALL_CONTROL_BY_SIM and triggering

Applet1 is registered to EVENT_CALL_CONTROL_BY_SIM.

Applet2 is registered to EVENT_FORMATTED_SMS_PP_ENV

1-An Envelope Call control by SIM is sent to SIM

	1- Applet1 is triggered

	

	2
	Applet deregistration and registration of the third applet to EVENT_CALL-CONTROL_BY_SIM.

1-An Envelope Formatted SMS PP envelope is sent to SIM

Applet2 contructs a DISPLAY TEXT proactive command.

2-ProactiveHandler.send() method is called

3-An Envelope Call control by SIM envelope is sent to SIM

ToolkitRegistry.clearEvent() is called for EVENT_CALL_CONTROL_BY_SIM.

ToolkitRegistry.setEvent() method is called for EVENT_CALL_CONTROL_BY_SIM.

	1-Applet2 is triggered by EVENT_FORMATTED_SMS_PP_ENV.

3- Applet1 is triggered

Applet1 finalizes.

Applet2 finalizes
	2- A proactive command DISPLAY TEXT is sent and

 applet is suspended until the terminal response

TERMINAL RESPONSE of DISPLAY TEXT is sent to the SIM

	3
	Applet triggering

An Envelope Call control by SIM envelope is sent to SIM

	Applet2 is triggered.

(Applet1 is not triggered)
	

6.3.3.6.4
Test Coverage

	CRR Number
	Test Case Number

	CRRN1
	1, 2, 3

	CRRN2
	3

6.3.3.7
EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

Test Area Reference: FWK_APT_EMCN

6.3.3.7.1
Conformance Requirement

6.3.3.7.1.1
Normal Execution

· CRRN1: The applet is triggered by the EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM once it has registered to this event and an Envelope MO Short Message Control.

· CRRN2: The applet is not triggered by the EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM once it has deregistered from this event.

6.3.3.7.1.2
Parameters error

No requirements.

6.3.3.7.1.3
Context Errors

No requirements.

6.3.3.7.2
Test Suite Files

Test Script:
FWK_APT_EMCN_1.scr

Test Applet:
FWK_APT_EMCN_1.java

FWK_APT_EMCN_2.java

Load Script:
FWK_APT_EMCN_1.ldr

Cleanup Script:
FWK_APT_EMCN_1.clr

Parameter File:
FWK_APT_EMCN_1.par

6.3.3.7.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Applet registration to EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM and triggering

Applet1 is reggistered to EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM.

Applet2 is registered to EVENT_FORMATTED_SMS_PP_ENV.

1-An Envelope MO short message envelope is sent to SIM

	1- Applet1 is triggered.

	

	2
	Applet deregistration and registration of the third applet to EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM.

The STF shall not reply busy to a call control envelope

1-An Envelope formatted SMS PP envelope is sent to SIM.

Applet2 builds a DISPLAY TEXT proactive command.

2-ProactiveHandler.send() method is called.

3-An Envelope MO Short message envelope is sent to SIM

ToolkitRegistry.clearEvent() for EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM.

ToolkitRegistry.setEvent() method is called for EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM.

	1- Applet2 is triggered.

3- Applet1 is triggered.

Applet1 finalizes.

Applet2 finalizes.
	2- A Proactive command DISPLAY TEXT is sent and

applet is suspended until the terminal response

TERMINAL RESPONSE of DISPLAY TEXT is sent to the SIM

	3
	Applet3 triggering

An Envelope MO SMS control by SIM envelope is sent to SIM

	Applet2 is triggered.

(Applet1 is not triggered)

	

6.3.3.7.4
Test Coverage

	CRR Number
	Test Case Number

	CRRN1
	1, 2, 3

	CRRN2
	3

6.3.3.18
EVENT_STATUS_COMMAND

Test Area Reference: FWK_APT_ESTC

6.3.3.18.1
Conformance Requirement

6.3.3.18.1.1
Normal Execution

· CRRN1: The applet is triggered by the EVENT_STATUS_COMMAND once it has registered to this event and a Status Command is received.

· CRRN2: The applet is not triggered by the EVENT_STATUS_COMMAND once it has deregistered from this event.

6.3.3.18.1.2
Parameters error

No requirements.

6.3.3.18.1.3
Context Errors

No requirements.

6.3.3.18.2
Test Suite Files

Test Script:
FWK_APT_ESTC_1.scr

Test Applet:
FWK_APT_ESTC_1.java

FWK_APT_ESTC_2.java

FWK_APT_ESTC_3.java

Load Script:
FWK_APT_ESTC_1.ldr

Cleanup Script:
FWK_APT_ESTC_1.clr

Parameter File:
FWK_APT_ESTC_1.par

6.3.3.18.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Applets registration to EVENT_STATUS_COMMAND and triggering

Applet1 is registered to EVENT_STATUS_COMMAND using the

requestPollInterval() command.

Applet2 is registered to EVENT_STATUS_COMMAND using the

RequestPollInterval() command.

Applet3 is registered to EVENT_FORMATTED_SMS_PP_ENV.

1-A status command is sent to SIM

	1- Applet1 is triggered.

Applet1 finalizes

2- Applet2 is triggered.

Applet2 finalizes

3- Applet3 is not triggered
	

	2
	Applet deregistration and registration of the third applet to EVENT_STATUS_COMMAND.

The STF shall not reply busy to a call control envelope

1-A formatted sms pp envelope is sent to SIM

Applet3 builds a DISPLAY TEXT.

2- ProactiveHandler.send() is called

3-A status command is sent to SIM.

requestPollInteval with POLL_NO_DURATION is called

requestPollInteval with POLL_NO_DURATION is called

requestPollInterval() method is called.

	1- Applet3 is triggered.

3- Applet1 is triggered.

Applet1 finalizes

4- Applet2 is triggered.

Applet2 finalizes

Applet3 finalizes
	2- A proactive command DISPLAY TEXT is sent and

applet is suspended until the terminal response

5- TERMINAL RESPONSE of DISPLAY TEXT is sent to the SIM

	3
	Applet3 triggering

Perform SIM initialization with all the facilities supported

Status command is sent to SIM.

	Applet3 is triggered.

(Applet1 and Applet2 are not triggered)
	

6.3.3.18.4
Test Coverage

	CR Number
	Test Case Number

	CRRN1
	1, 2, 3

	CRRN2
	3

6.3.6
Framework Security Management

Security Parameters

The table that follows contains the security parameters that shall be used when the 3GPP TS 23.048 [8]security is required in the test cases developed in the current subclause.

	Parameter
	Value in hexadecimal

	KIC
	11

	KID
	11

	CNTR
	00 00 00 00 01

	Key for ciphering
	01 41 42 7F DA E8 91 A7

	Key for RC/CC/DS
	01 23 45 67 89 AB CD EF

If a parameter is not listed explicitly in the above table, the default values of subclause 4.7.3.1 apply.

6.3.6.1
Input Data

Test Area Reference: FWK_FWS_INDA

6.3.6.1.1
Conformance Requirements

6.3.6.1.1.1
Normal Execution

· CRRN1: If the SIM receives an envelope APDU containing an SMS_PP_DATADOWNLOAD BER TLV formatted according to 3GPP TS 23.048 [8], the SIM Toolkit Framework shall verify the security of the SMS TPDU.

· CRRN2: The toolkit applet will only be triggered if the TAR is known and the security verified.

· CRRN3: If the SIM receives an envelope APDU containing an SMS_CB_DATADOWNLOAD formatted according to 3GPP TS 23.048 [8], the SIM Toolkit Framework shall verify the security of the cell broadcast page.

· CRRN4: If the SIM receives an Update Record EFsms instruction formatted according to TS 23.048[8], the SIM Toolkit Framework shall verify the security of the SMS.

· CRRN5: The STF shall provide the input data deciphered.

6.3.6.1.1.2
Parameters error

No requirements.

6.3.6.1.1.3
Context Errors

No requirements.

6.3.6.1.2
Test Area Files

Test Script:
FWK_FWS_INDA_1.scr

Test Applet:
FWK_FWS_INDA_1.java

FWK_FWS_INDA_2.java

FWK_FWS_INDA_3.java

FWK_FWS_INDA_4.java

FWK_FWS_INDA_5.java

FWK_FWS_INDA_6.java

Load Script:
FWK_FWS_INDA_1.ldr

Cleanup Script:
FWK_FWS_INDA_1.clr

Parameter File:
FWK_FWS_INDA_1.par

6.3.6.1.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Framework checks the Cryptographic checksum and deciphers the data

Applet1 is loaded and installed

1-Envelope(SMS-PP) single and formatted is sent to the SIM with this features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet1;

Data = 01

2- Short Message concatenated and formatted is sent to the SIM by an Envelope (SMS PP)with these features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet1;

Data length is 150.

	1- Applet1 is triggered and the value integrity is checked.

2- Applet1 is triggered and the value integrity is checked

	1- The SIM answers to the Envelope with status words 9000

2- The SIM answers to the Envelope with status words 9000

	2
	Triggering two different applets with different security

Applet2 is installed

1-Envelope(SMS-PP) single and formatted is sent to the SIM with this features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet1

Data = 03

2- Short Message concatenated and formatted is sent to the SIM by an Envelope (SMS PP)with these features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet1

Data length = 150

3-Envelope(SMS-PP) single and formatted is sent to the SIM with this features:

No ciphering;

No cryptographic checksum;

No proof of receipt;

TAR of Applet2

Data = 05

4- Short Message concatenated and formatted is sent to the SIM by an Envelope (SMS PP)with these features:
No ciphering;

No cryptographic checksum;

No proof of receipt;

TAR of Applet2

Data length = 150.

	1- Applet1 is triggered and the value integrity is checked

2- Applet1 is triggered and the value integrity is checked

3- Applet2 is triggered and the value integrity is checked

4- Applet2 is triggered and the value integrity is checked

	1- The SIM answers to the Envelope with status words 9000

2- The SIM answers to the Envelope with status words 9000

3- The SIM answers to the Envelope with status words 9000

4- The SIM answers to the Envelope with status words 9000

	3
	Envelope(SMS-PP) formatted with wrong cryptographic checksum

1-Envelope 03.48 single and formatted is sent to the SIM with this features:

No ciphering;

Wrong cryptographic checksum;

No proof of receipt;

TAR of Applet1

Data = 07

2- Short Message concatenated and formatted is sent to the SIM by an Envelope (SMS PP)with these features:

No ciphering;

Wrong cryptographic checksum;

No proof of receipt;

TAR of Applet1

Data length = 150

	1- No applet is triggered.

2- No applet is triggered.

	1- The SIM answers to the Envelope with status words 9000

	4
	Framework checks the Cryptographic checksum and deciphers the data

Applet3 is loaded and installed

1-Envelope(SMS-CB) formatted is sent to the SIM with this features:
Ciphering;

Cryptographic checksum;

No proof of receipt;

Data = 01

	1- Applet3 is triggered and the value integrity is checked
	1- The SIM answers to the Envelope with status words 9000

	5
	Triggering two different applets with different security on Envelope(SMS-CB) formatted

Applet4 is installed

1-Envelope(SMS-CB) formatted is sent to the SIM with this features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet3
Data = 02

2-Envelope(SMS-CB) formatted is sent to the SIM with this features:

No ciphering;

No cryptographic checksum;

No proof of receipt;

TAR of Applet4
Data = 03

	1- Applet3 is triggered and the value integrity is checked

2- Applet4 is triggered and the value integrity is checked
	1- The SIM answers to the Envelope with status words 9000

2- The SIM answers to the Envelope with status words 9000

	6
	Envelope(SMS-CB) formatted with wrong cryptographic checksum

No ciphering;

Wrong Cryptographic checksum;

No proof of receipt;

TAR of Applet3
Data = 04
	No applet is triggered
	1- The SIM answers to the Envelope with status words 9000

	7
	Framework checks the Cryptographic checksum and deciphers the data

Applet5 is installed

1- Short Message single and formatted is sent to the SIM by Update Record EFsms instruction with these features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet5;

Data = 01

2- Short Message concatenated and formatted is sent to the SIM by Update Record EFsms instruction with these features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet5;

Data length = 150.

	1- Applet5 is triggered and the value integrity is checked.

2- Applet5 is triggered and the value integrity is checked

	1- The SIM answers to the Update Record EFsms instruction with status words 9000

2- The SIM answers to the Update Record EFsms instruction with status words 9000

	8
	Triggering two different applets with different security

Applet6 is installed

1- Short Message single and formatted is sent to the SIM by Update Record EFsms instruction with these features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet5

Data = 03

2- Short Message concatenated and formatted is sent to the SIM by Update Record EFsms instruction with these features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet5

Data length = 150.

3- Short Message single and formatted is sent to the SIM by Update Record EFsms instruction with these features:

No ciphering;

No cryptographic checksum;

No proof of receipt;

TAR of Applet6;

Data = 05

4- Short Message concatenated and formatted is sent to the SIM by Update Record EFsms instruction with these features:

No ciphering;

No cryptographic checksum;

No proof of receipt;

TAR of Applet6;

Data length = 150.

	1- Applet5 is triggered and the value integrity is checked.

2- Applet5 is triggered and the value integrity is checked.

3- Applet6 is triggered and the value integrity is checked.

4- Applet6 is triggered and the value integrity is checked.

	1- The SIM answers to the Update Record EFsms instruction with status words 9000

2- The SIM answers to the Update Record EFsms instruction with status words 9000

3- The SIM answers to the Update Record EFsms instruction with status words 9000

4- The SIM answers to the Update Record EFsms instruction with status words 9000

	9
	Update Record EFsms instruction formatted with wrong cryptographic checksum

1- Short Message single and formatted is sent to the SIM by Update Record EFsms instruction with these features:No ciphering;

Wrong Cryptographic checksum;

No proof of receipt;

TAR of Applet5

Data = 07

2- Short Message concatenated and formatted is sent to the SIM by Update Record EFsms instruction with these features:

No ciphering;

Wrong Cryptographic checksum;

No proof of receipt;

TAR of Applet5

Data length = 150

	1- No applet is triggered.

2- No applet is triggered.

	1- The SIM answers to the Update Record EFsms instruction with status words 9000

2- The SIM answers to the Update Record EFsms instruction with status words 9000

6.3.6.1.4
Test Coverage

	CRR Number
	Test Case Number

	CRRN1
	1, 2, 3

	CRRN2
	3,6,9

	CRRN3
	4, 5, 6

	CRRN4
	7,8,9

	CRRN5
	1,2,4,5,7,8

6.3.7
Envelope Response Posting

6.3.7.1
EVENT_CALL_CONTROL_BY_SIM

Test Area Reference: FWK_ERP_ECCN

6.3.7.1.1
Conformance Requirements

6.3.7.1.1.1
Normal Execution

· CRRN1: The SIM Toolkit Framework can't reply busy when an Envelope(Call Control) is sent to the SIM.

6.3.7.1.1.2
Parameters error

No requirements.

6.3.7.1.1.3
Context Errors

No requirements.

6.3.7.1.2
Test Area Files

Test Script:
FWK_ERP_ECCN_1.scr

Test Applet:
FWK_ERP_ECCN_1.java

FWK_ERP_ECCN_2.java

FWK_ERP_ECCN_3.java

Load Script:
FWK_ERP_ECCN_1.ldr

Cleanup Script:
FWK_ERP_ECCN_1.clr

Parameter File:
FWK_ERP_ECCN_1.par

6.3.7.1.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Applet1 is registered on the EVENT_CALL_CONTROL_BY_SIM, Applet2 is registered and triggered on the EVENT_MENU_SELECTION.

1-Applet2 invokes the method send()and no fetch is performed

2-Envelope(Call Control) is sent to the SIM

3-Applet1 calls the method EnvelopeResponseHandler.postASBERTLV() to change any incoming dialling number into +11 22 33 44.

4-A Fetch command is sent to the SIM

5-A Terminal Response command is sent to the SIM

6-Delete Applet1 & Applet2
7-Install Applet3

	Applet2 is suspended

Applet1 is triggered.

Applet2's execution shall continue.
	The SIM answer 9Fxx to the Envelope(Call Control)

The dialling number is retrieved with a GetResponse command.

The SIM answers to the Get Response command with status words 91xx.

	2
	Applet3 is registered on both the events EVENT_CALL_CONTROL_BY_SIM and EVENT_MENU_SELECTION.

1-Envelope Menu Selection is sent to the SIM.

2-Applet3 invokes the method send()and no fetch is performed)

3-Envelope(Call Control) is sent to the SIM

4-Applet3 calls the method EnvelopeResponseHandler.postASBERTLV() to change any incoming dialling number into +11 22 33 44.

5-A Fetch command is sent to the SIM

6-A Terminal Response command is sent to the SIM
	Applet3 is triggered on the EVENT_MENU_SELECTION

Applet3 is suspended on the send() method

Applet3 is triggered on the EVENT_CALL_CONTROL_BY_SIM.

The Applet3's execution shall continue.
	The SIM answer 9Fxx to the Envelope(Call Control)

The dialling number is retrieved with a GetResponse command.

The SIM answers to the Get Response command with status words 91xx.

6.3.7.1.4
Test Coverage

	CRR Number
	Test Case Number

	CRRN1
	1, 2

6.3.7.2
EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

Test Area Reference: FWK_ERP_EMCN

6.3.7.2.1
Conformance Requirements

6.3.7.2.1.1
Normal Execution

· CRRN1: The SIM Toolkit Framework can't reply busy when an Envelope(MO-Short Message Control) is sent to the SIM.

6.3.6.2.1.2
Parameters error

No requirements.

6.3.6.2.1.3
Context Errors

No requirements.

6.3.7.2.2
Test Area Files

Test Script:
FWK_ERP_EMCN_1.scr

Test Applet:
FWK_ERP_EMCN_1.java

FWK_ERP_EMCN_2.java

FWK_ERP_EMCN_3.java

Load Script:
FWK_ERP_EMCN_1.ldr

Cleanup Script:
FWK_ERP_EMCN_1.clr

Parameter File:
FWK_ERP_EMCN_1.par

6.3.7.2.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Applet1 is registered on the EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM; Applet2 is registered and triggered on the EVENT_MENU_SELECTION.

1-Applet2 invokes the method send()and no fetch is performed)

2-Envelope(MO-SM control) is sent to the SIM

3-Applet1 calls the method EnvelopeResponseHandler.postASBERTLV() to change any incoming TP_Destination_Address and any RP_Destination_Address of the Service Center into +11 22 33 44

4-A Fetch command is sent to the SIM

5-A Terminal Response command is sent to the SIM

6-Delete Applet1 & Applet2
7-Install Applet3
	Applet2 is suspended

Applet1 is triggered.

The Applet's execution shall continue.
	The SIM answers 9Fxx to the Envelope(MO-Short Message Control)

The TP_Destination_Address is retrieved with a GetResponse command.

The SIM answers to the Get Response command with status words 91xx.

	2
	Applet3 is registered on both the events EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM and EVENT_MENU_SELECTION.

1-Applet3 invokes the method send()and no fetch is performed)

2-Envelope(MO-SM control) is sent to the SIM

3-Applet3 calls the method EnvelopeResponseHandler.postASBERTLV() to change any incoming TP_Destination_Address and any RP_Destination_Address of the Service Center into +11 22 33 44.

4-A Fetch command is sent to the SIM

5-A Terminal Response command is sent to the SIM
	Applet3 is suspended on the send() method

Applet3 is triggered on the EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM.

The Applet3's execution shall continue.
	The SIM answers 9Fxx to the Envelope(MO-Short Message Control)

The TP_Destination_Address is retrieved with a GetResponse command.

The SIM answers to the Get Response command with status words 91xx.

6.3.7.2.4
Test Coverage

	CRR Number
	Test Case Number

	CRRN1
	1, 2

6.3.8
Toolkit Installation

6.3.8.6
Access Domain

Test Area Reference: FWK_TIN_ACDO

6.3.8.6.1
Conformance Requirements

6.3.8.6.1.1
Normal execution

· CRRN1: The Access Domain parameter indicates the mechanism used to control the applet instance access to the GSM file System ('00' means full access to the GSM File System, 'FF' means no access to the GSM File System).

6.3.8.6.1.2
Parameters errors

· CRRP1: If the Access Domain Parameter requested is not supported, the card shall return the Status Word '6A80', incorrect parameters in data field, to the Install(Install) command.

· CRRP2: If an applet with Access Domain Parameter 'FF' (i.e. No Access to the GSM File System) tries to access a GSM file (e.g. invoke the updateBinary(..) method) the framework shall throw a SIMViewException with a AC_NOT_FULFILLED reason.

6.3.8.6.1.3
Context errors

No requirements.

6.3.8.6.2
Test suite files

Test Script:
FWK_TIN_ACDO_1.scr

Test Applet:
FWK_TIN_ACDO_1.java

FWK_TIN_ACDO_2.java

FWK_TIN_ACDO_3.java

Load Script:
FWK_TIN_ACDO_1.ldr

Cleanup Script:
FWK_TIN_ACDO_1.clr

Parameter File:
FWK_TIN_ACDO_1.par

6.3.8.6.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	0
	Install (install) applet1 with:

- Length of Access Domain field value is '1'

- Access Domain Parameter value is '00' (full access to the GSM File System)

Install (install) applet2 with:

- Length of Access Domain field value is '1'

- Access Domain Parameter value is 'FF' (No access to the GSM File System)

Install (install) applet3 with:

- Length of Access Domain field value is '1'

- Access Domain Parameter value is '00' (full access to the GSM File System)

	
	

	1
	readBinary/readRecord method with full Access Domain Parameter

1- Select EF-TARU file whose Read access condition is ALWAYS

Perform the readBinary method:

fileOffset = 0

resp = abRead[]

respOffset = 0

respLength = 3

2- Select EF-SMS file whose Read access condition is CHV1

Perform the readRecord method:

recNumber = 1

mode = REC_ACC_MODE_ABSOLUTE_CURRENT

recOffset = 0

resp = abRead[]

respOffset = 0

respLength = 3

3- Select EF-TRAC file whose Read access condition is CHV2

Perform the readBinary method:

fileOffset = 0

resp = abRead[]

respOffset = 0

respLength = 3

4- Select EF-SUME file Read access condition is ADM0

Perform the readBinary method:

fileOffset = 0

resp = abRead[]

respOffset = 0

respLength = 3

5- Select EF-TNR file whose Read access condition is NEVER

Perform the readBinary method:

fileOffset = 0

resp = abRead[]

respOffset = 0

respLength = 3

	1 to 4- no exception is thrown

5- SIMViewException AC_NOT_FULFILLED is thrown
	

	2
	updateBinary/updateRecord method with full Access Domain Parameter

For each case, send an Envelope that triggers the applet with the EVENT_UNFORMATTED_SMS_PP_ENV event.

1- Select EF-TNR file whose Update access condition is ALWAYS

Perform the updateBinary method:

fileOffset = 0

resp = abUpdate[FFFFFF]

respOffset = 0

respLength = 3

2- Select EF-SMS file whose Update access condition is CHV1

Perform the updateRecord method:

recNumber = 1

mode = REC_ACC_MODE_ABSOLUTE_CURRENT

recOffset = 0resp = abUpdate[]

respOffset = 0

respLength = 3

3- Select EF-FDN file whose Update access condition is CHV2

Perform the updateBinary method:

recNumber = 1

mode = REC_ACC_MODE_ABSOLUTE_CURRENT

recOffset = 0

resp = abUpdate[]

respOffset = 0

respLength = 3

4- Select EF-SUME file Update access condition is ADM0

Perform the updateBinary method:

fileOffset = 0

resp = abUpdate[]

respOffset = 0

respLength = 3

5- Select EF-TNU file whose Update access condition is NEVER

Perform the updateBinary method:

fileOffset = 0

resp = abUpdate[]

respOffset = 0

respLength = 3

	1 to 4- no exception is thrown

5- SIMViewException AC_NOT_FULFILLED is thrown
	

	3
	invalidate method with full Access Domain Parameter

1- Select EF-TNR file whose Invalidate access condition is ALWAYS

Perform the invalidate method

2- Select EF-TIAC file whose Invalidate access condition is CHV1

Perform the invalidate method

3- Select EF-ADN file whose Invalidate access condition is CHV2

Perform the invalidate method

4- Select EF-SUME file Invalidate access condition is ADM0

Perform the invalidate method

5- Select EF-CNIV file whose Invalidate access condition is NEVER

Perform the invalidate method

	1 to 4- no exception is thrown

5- SIMViewException AC_NOT_FULFILLED is thrown
	

	4
	rehabilitate method with full Access Domain Parameter

1- Select EF-TNR file whose Rehabilitate access condition is ALWAYS

Perform the rehabilitate method

2- Select EF-IMSI file whose Rehabilitate access condition is CHV1

Perform the rehabilitate method

3- Select EF-ADN file whose Rehabilitate access condition is CHV2

Perform the rehabilitate method

4- Select EF-SUME file Rehabilitate access condition is ADM0

Perform the rehabilitate method

5- Select EF-CNRI file whose Rehabilitate access condition is NEVER

Perform the rehabilitate method

	1 to 4- no exception is thrown

5- SIMViewException AC_NOT_FULFILLED is thrown
	

	5
	increase method with full Access Domain Parameter

1- Select EF-CNR file whose Increase access condition is ALWAYS

Perform the increase method:

incr = abIncreaseValue[]

incrOffset = 0

resp = abRead[]

respOffset = 0

2- Select EF-ACM file whose Increase access condition is CHV1

Perform the increase method:

incr = abIncreaseValue[]

incrOffset = 0

resp = abRead[]

respOffset = 0

3- Select EF-CIAC file whose Increase access condition is CHV2

Perform the increase method:

incr = abIncreaseValue[]

incrOffset = 0

resp = abRead[]

respOffset = 0

4- Select EF-CIAA file Increase access condition is ADM0

Perform the increase method:

incr = abIncreaseValue[]

incrOffset = 0

resp = abRead[]

respOffset = 0

5- Select EF-CNU file whose Increase access condition is NEVER

Perform the increase method

	1 to 4- no exception is thrown

5- SIMViewException AC_NOT_FULFILLED is thrown
	

	6
	readBinary method with no Access Domain Parameter

Send an Envelope that triggers the applet with the EVENT_UNFORMATTED_SMS_PP_ENV event.

Select EF-TARU file whose Read access condition is ALWAYS

Perform the readBinary method:

fileOffset = 0

resp = abRead[]

respOffset = 0

respLength = 3

t
	SIMViewException AC_NOT_FULFILLED is thrown
	

	7
	updateRecord method with no Access Domain Parameter

Send an Envelope that triggers the applet with the EVENT_UNFORMATTED_SMS_PP_ENV event.

Select EF-SMS file whose Update access condition is CHV1

Perform the updateRecord method:

fileOffset = 0

resp = abUpdate[]

respOffset = 0

respLength = 3

	SIMViewException AC_NOT_FULFILLED is thrown
	

	8
	invalidate method with no Access Domain Parameter

Send an Envelope that triggers the applet with the EVENT_UNFORMATTED_SMS_PP_ENV event.

Select EF-ADN file whose Invalidate access condition is CHV2

Perform the invalidate method

	SIMViewException AC_NOT_FULFILLED is thrown
	

	9
	rehabilitate method with no Access Domain Parameter

Send an Envelope that triggers the applet with the EVENT_UNFORMATTED_SMS_PP_ENV event.

Select EF-SUME file Rehabilitate access condition is ADM0

Perform the rehabilitate method

	SIMViewException AC_NOT_FULFILLED is thrown
	

	10
	increase method with no Access Domain Parameter

Send an Envelope that triggers the applet with the EVENT_UNFORMATTED_SMS_PP_ENV event.

Select EF-CNR file whose Increase access condition is NEVER

Perform the increase method

	SIMViewException AC_NOT_FULFILLED is thrown

Applet2 finalizes

Applet3 restore EF-SUME
	

6.3.8.6.4
Test Coverage

NOTE:
As Item Position management is not fully specified in the 3GPP TS 43.019 [7] or 3GPP TS 23.048 [8] all possible tests cannot be performed.

	CRR number
	Test case number

	CRRN1
	1, 2, 3, 4, 5

	CRRP1
	Not tested

	CRRP2
	6, 7, 8, 9, 10

Annex C (normative):
Default Prepersonalization

C.1
General Default Prepersonalization

This table shows the default prepersonalization, the file system and the files' content, that the test SIM cards shall contain unless otherwise stated.

	Name
	Identifier
	Default Value
	Special Features

	EFICCID
	2FE2
	0F FF FF FF FF FF FF FF FF FF
	This value is not compliant with 3GPP TS 51.011 [3]

	EFIMSI
	6F07
	FF FF FF FF FF FF FF FF FF
	This value is not compliant with 3GPP TS 51.011 [3]

	EFLP
	6F05
	01 FF FF FF
	

	EFKc
	6F20
	FF FF FF FF FF FF FF FF 07
	

	EFPLMNsel
	6F30
	FF FF
	

	EFHPLMN
	6F31
	05
	

	EFACMmax
	6F37
	00 00 00
	Access condition UPDATE: CHV1

	EFSST
	6F38
	FF 3F C3 0F 0C 00 FF 0F 00 33
	

	EFACM
	6F39
	00 00 00
	Access condition UPDATE: CHV1

	EFPUCT
	6F41
	FF FF FF 00 00
	Access condition UPDATE: CHV1

	EFBCCH
	6F74
	FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
	

	EFACC
	6F78
	00 00
	

	EFFPLMN
	6F7B
	FF FF FF FF FF FF FF FF FF FF FF FF
	

	EFLOCI
	6F7E
	FF FF FF FF 00 F0 00 00 00 FF 01
	

	EFAD
	6FAD
	00 FF FF
	

	EFPhase
	6FAE
	03
	

	EFFDN
	6F3B
	Default value in all the records:

FF
	Records: 5

	EFSMSP
	6F42
	FF FF
	Records: 1

	EFLND
	6F44
	FF
	Records: 1

	EFSMSS
	6F43
	FF FF
	

	EFSMS
	6F3C
	1st record: 00 FF … FF(length 176)

2nd record:00 FF … FF(length 176)

3rd record: 00 FF … FF(length 176)
	Records: 3

	EFADN
	6F3A
	FF FF
	Records: 1

	EFCCP
	6F3D
	FF FF FF FF FF FF FF FF FF FF FF FF FF FF
	

	EFMSISDN
	6F40
	FF
	Records: 1

	EFSDN
	6F49
	FF
	Records: 1

	EFSUME
	6F54
	85 0C 54 4F 4F 4C 4B 49 54 20 54 45 53 54 FF FF FF FF
	

	EFCBMI
	6F45
	FF FF
	

	EFCBMID
	6F48
	10 80
	

	EFCBMIR
	6F50
	10 80 10 9F
	

	EFIMG
	4F20
	FF FF FF FF FF FF FF FF FF FF FF
	

The default value for the CHV1 shall be "0x31 0x31 0x31 0x31 0xFF 0xFF 0xFF 0xFF" and its state shall be 'disabled' during test applets execution.

�PAGE \# "'Page: '#'�'" �� � HYPERLINK "http://www.3gpp.org/ftp/Information/DocNum_FTP_structure_V3.zip" ��Document numbers� are allocated by the Working Group Secretary.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 2

