Page 4
Draft prETS 300 ???: Month YYYY

Error! No text of specified style in document.
2
Error! No text of specified style in document.

	3GPP TSG-T3 Meeting #26

Lisbon, Portugal, 11 – 14 February 2003
	T3-030038

	CR-Form-v3

	CHANGE REQUEST

	

	(

	11.13
	CR
	
	(

rev
	-
	(

Current version:
	8.1.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	X
	ME/UE
	
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	Update of 11.13 Specification for Release 4

	
	

	Source:
(

	3GPP adhoc Java API Testing

	
	

	Work item code:
(

	TEI
	
	Date: (

	27/01/03

	
	
	
	
	

	Category:
(

	D
	
	Release: (

	R99

	
	Use one of the following categories:
F (essential correction)
A (corresponds to a correction in an earlier release)
B (Addition of feature),
C (Functional modification of feature)
D (Editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	Creation of Rel 4, with good references.

	
	

	Summary of change:
(

	· Idem as CR for REL 99 (document T3-030009.zip)

· References in §1, 2, 3, 4

	
	

	Consequences if
(

not approved:
	No release 4 available.

	
	

	Clauses affected:
(

	1, 2, 3, 4, 6

	
	

	Other specs
(

	
	 Other core specifications
(

	

	Affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://www.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2000-09 contains the specifications resulting from the September 2000 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

1
Scope
The present document covers the minimum characteristics considered necessary in order to provide compliance to GSM 43.019 "SIM API for Java Card ™" [7].

The present document describes the technical characteristics and methods of test for testing the SIM API for Java Card (TM) [7] implemented in the subscriber identity modules (SIMs) for GSM. It specifies the following parts:

-
test applicability

-
test environment description

-
tests format

-
test area reference

-
conformance requirements

-
test auite files

-
test procedure

-
test coverage and,

-
a description of the associated testing tools that shall be used.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.


References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.


For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
(void)

[2]
(void)

[3]
3GPP TS 51.011: " Specification of the Subscriber Identity Module - Mobile Equipment (SIM - ME) interface".

[4]
3GPP TS 11.14: "
Specification of the SIM application toolkit for the Subscriber Identity Module – Mobile Equipment (SIM – ME) interface".

[5]
GSM 11.17: "Subscriber Identity Module" (SIM) conformance test specification".

[6]
(void)

[7]
GSM 43.019: " Subscriber Identity Module Application Programming Interface (SIM API); SIM API for Java Card™; Stage 2".

[8]
3GPP TS 23.048 Rel-4: " Security Mechanisms for the SIM application toolkit; Stage 2"

 [9]
ISO/IEC 7816-3 (1997) " Identification cards ‑ Integrated circuit(s) cards with contacts, Part 3: Electronic signals and transmission protocols".

[10]
3GPP TS 42.019: " Subscriber Identity Module Application Programming Interface (SIM API); Service description; Stage 1".

[11]
SUN Java Card Specification "Java Card 2.1 API Specification".

[12]
SUN Java Card Specification "Java Card 2.1 Runtime Environment Specification".

[13]
SUN Java Card Specification "Java Card 2.1 VM Architecture Specification".

SUN Java Card Specifications can be downloaded at http://java.sun.com/products/javacard
[14]
ETSI TS 101 220 "Integrated Circuit Cards (ICC); ETSI numbering system for telecommunication; Application providers (AID)".

[15]
GSM 11.10-1: "Digital cellular telecommunication system (Phase 2+); Mobile Station (MS) conformance specification; Part 1: Conformance specification".

3
Definitions and abbreviations

3.1
Definitions

The definitions specified in GSM 11.10-1 [15] clause 3.3 shall apply, unless otherwise specified in the present clause.

Applet: An Applet is an application built up using a number of classes which will run under the control of the Java Card virtual machine.
Applet installation parameters: Default values for applet installation parameters.

Applet loading script: File containing the APDU commands that will load and install the test applet in the card.

CleanUp Script file: File containing the APDU commands that will restore the Default Initial Conditions on the SIM
Conformance Requirement Reference: Description of the expected card behaviour according to 43.019 specification.

Expected state: the state in which the SIM is supposed to be after the execution of the test procedure applied on the relevant initial conditions
Security parameters: Minimum security requirements defined for the applet installation process.

Test Area: Set of Test Cases applicable to a specific part (class method, framework behaviour,…) of the 43.019 specification.

Test Case: Elementary test that checks for compliance with one or more Conformance Requirement References.

Test Output file: TBD.

Test procedure: the sequence of actions/commands to perform all the test cases defined in a test area.

Test Script file: File containing the APDU commands that will execute and verify the test results.

Test Toolkit Applet: Applet designed to test a specific functionality of the SIM API 43.019 specification.

4
Test Environment

This clause specifies requirements that shall be met and the testing rules that shall be followed during the test procedure.

4.1
Applicability

The tests defined in this specification shall be performed taking into account the services supported by the card as specified in the EFSST file.

This specification contains tests that test interoperability at the API level. This specification does not currently contain tests for interoperability at the SIM API framework and at the byte code level. These are for further study.

The test defined in this specification are applicable to cards implementing TS 43.019 [7] unless otherwise stated.

4.3.1.1
Conformance requirements

The conformance requirements are expressed in the following way:

-
Method prototype as listed in GSM 43.019 [7]specification.

-
Normal execution:

-
Contains normal execution and correct parameters limit values, each referenced as a Conformance Requirement Reference Normal (CRRN)
-
Parameters error:
-
Contains parameter errors and incorrect parameter limit values, each referenced as a Conformance Requirement Reference Parameter Error (CRRP)
-
Context error:
-
Contains errors due to the context the method is used in, each referenced as a Conformance Requirement Reference Context Error (CRRC)

4.5
Package name

Java packages integrating this Test Suite shall follow this naming convention:

sim.test.access.[Test Area Reference]: Java Card packages containing Test Area References for the GSM 43.019 sim.access package.

sim.test.framework.[Test Area Reference]: Java Card packages containing Test Area References for the GSM 43.019 framework.

sim.test.util: for the Test util package defined in this Test Suite.

sim.test.toolkit.[Test Area Reference]: Java Card packages containing Test Area References for the GSM 43.019[7] sim.toolkit package.

Example:
The package ../sim.test.access.[Test Area Reference] creates the following directory structure ../sim/test/access/[Test Area Reference]/API_1_..._[1..n].*, where 'API_1_..._[1..n].*' are the different test applets Java source files used in [Test Area Reference].

6
API Test Plan

6.1
Package sim.access:

6.1.1
Interface SIMView

6.1.1.2.3
Test Procedure

	Id
	Description
	API Expectation
	APDU Expectation

	0
	SIM Initialisation
	Responses ignored.
	

	1
	Select EFICCID in MF (Transparent EF)

fid = SIMView.FID_EF_ICCID

byte[] fci = new byte[34]

fciOffset = 0

fciLength = 20

select()
	No exception shall be thrown.

Shall return a value not greater than 20.

<Description of fci:

XX XX

XX XX

2F E2

04

>
	

	2
	Select EFICCID in MF (Transparent EF)

fid = SIMView.FID_EF_ICCID

fciOffset = 0

fciLength = 13

select()
	No exception shall be thrown.

Shall return 13.

fci shall contain the first 13 bytes of the FCI structure.
	

	3
	Select DFGSM in MF

fid = SIMView.FID_DF_GSM

fciOffset = 0

fciLength = 7

select()
	No exception shall be thrown.

Shall return 7.

fci shall contain the first 7 bytes of the FCI.

<Description of fci:

XX XX

XX XX

7F 20

02

>
	

	3
	Select DFGSM in MF

fid = SIMView.FID_DF_GSM

fciOffset = 0

fciLength = 7

select()
	No exception shall be thrown.

Shall return 7.

fci shall contain the entire FCI structure.

<Description of fci:

XX XX

XX XX

7F 20

02

>
	

	4
	Select EFACM in DFGSM (CyclicEF)

fid = SIMView.FID_EF_ACM

fciOffset = 0

fciLength = 20

select()
	No exception shall be thrown.

Shall return a value between 15 and 20. (Cyclic EF)

fci shall contain the first 15 or more bytes of the FCI structure.

fci[14] shall have the value 3 (length of record).
	

	5
	Select MF

fid = SIMView.FID_MF

fciOffset = 0

fciLength = 34

select()
	No exception shall be thrown.

Shall return a value between 22 and 34.

fci shall contain the entire FCI structure.
	

	6
	Select DFTELECOM in MF

fid = SIMView.FID_DF_TELECOM

fci[0] = fci[1] = '05'

fciOffset = 2

fciLength = 20

select()
	No exception shall be thrown.

Shall return 20.

fci shall contain the first 20 bytes of the FCI structure starting at index 2. The first two bytes shall (still) have the value '05'.
	

	7
	Select EFFDN in DFTELECOM (Linear FixedEF)

fid = SIMView.FID_EF_FDN

fciOffset = 0

fciLength = 15

select()
	No exception shall be thrown.

Shall return 15.

fci shall contain the first 15 bytes of the FCI structure.

fci[14] shall have the value 28 (length of record).
	

	8
	fci is null

fid = SIMView.FID_EF_FDN

byte[] nullBuffer = null

fciOffset = 0

fciLength = 15

select()
	Shall throw java.lang.NullPointerException.
	

	9
	fciOffset < 0

fid = SIMView.FID_EF_FDN

fciOffset = -1

fciLength = 15

select()
	Shall throw java.lang.ArrayIndexOutOfBoundsException.
	

	10
	fciLength < 0

fid = SIMView.FID_EF_FDN

fciOffset = 0

fciLength = -1

select()
	Shall throw java.lang.ArrayIndexOutOfBoundsException.
	

	11
	fciOffset + fciLength > fci.length

fid = SIMView.FID_EF_FDN

fciOffset = 20

fciLength = 15

select()
	Shall throw java.lang.ArrayIndexOutOfBoundsException.
	

	12
	fciOffset >= fci.length

fid = SIMView.FID_EF_FDN

fciOffset = 34

fciLength = 1

select()
	Shall throw java.lang.ArrayIndexOutOfBoundsException
	

	13
	Selection possibilities

1 - fid = SIMView.FID_MF

fciOffset = 0

fciLength = 15

select()

2 – fid = SIMView.FID_DF_TELECOM

select()

3 - fid = SIMView.FID_DF_GRAPHICS

select()

4 - fid = SIMView.FID_DF_TELECOM

select()

5 - fid = SIMView.FID_DF_GRAPHICS

select()

6 - fid = SIMView.FID_MF

select()

7 - fid = SIMView.FID_DF_GSM

select()

8 - fid = SIMView.FID_DF_TELECOM

select()

9 - fid = SIMView.FID_DF_TELECOM

select()

	1 – No exception shall be thrown.

2 – No exception shall be thrown.

3 – No exception shall be thrown.

4 – No exception shall be thrown.

5 – No exception shall be thrown.

6 – No exception shall be thrown.

7 – No exception shall be thrown.

8 – No exception shall be thrown.

9 – No exception shall be thrown.
	

	14
	EF not selected after MF/DF selection

1 - fid = SIMView.FID_MF

select()

fid = SIMView.FID_EF_ICCID

select()

2 - fid = SIMView.FID_MF

select()

readBinary()
	1 - No exception shall be thrown.

2 - Shall throw sim.access.SIMViewException with reason code NO_EF_SELECTED.
	

	15
	No selection of non-reachable file

1 - fid = SIMView.FID_MF

select()

2 - fid = SIMView.FID_EF_ACM

select()
	1 – No exception shall be thrown.

2 – Shall throw sim.access.SIMViewException with reason code FILE_NOT_FOUND.
	

	16
	No record is selected after selecting linear fixed EF

1 - fid = SIMView.FID_MF

select()

2 - fid = FID_DF_SIMTEST

select()

3 - fid = FID_EF_LARU

select()

4 – recNumber = 0

mode = REC_ACC_MODE_ABSOLUTE_CURRENT

readRecord()
	1 – No exception shall be thrown.

2 – No exception shall be thrown.

3 – No exception shall be thrown.

4 – Shall throw sim.access.SIMViewException with reason code RECORD_NUMBER_NOT_AVAILABLE.
	

	17
	Record pointer in selected cyclic EF

1 – fid = SIMView.FID_MF

select()

2 - fid = FID_DF_SIMTEST

select()

3 - fid = FID_EF_CARU

select()

4 – byte[] data1 = { 1,2,3 }

mode = REC_ACC_MODE_PREVIOUS

updateRecord(data1)

5 - fid = FID_EF_CARU

select()

readRecord(data2)

compare data1 to data2
	1 - No exception shall be thrown.

2 - No exception shall be thrown.

3 - No exception shall be thrown.

4 - No exception shall be thrown.

5 - The contents of data1 and data2 shall be identical.
	

6.1.1.3.3
Test Procedure

	Id
	Description
	API Expectation
	APDU Expectation

	0
	SIM Initialisation
	Responses ignored.
	

	1
	Select EFICCID in MF (Transparent EF)

fid = SIMView.FID_EF_ICCID

select()
	No exception shall be thrown.
	

	2
	EF not selected after MF/DF selection

1 - fid = SIMView.FID_MF

select()

fid = SIMView.FID_EF_ICCID

select()

2 - fid = SIMView.FID_MF

select()

readBinary()
	1 - No exception shall be thrown.

2 - Shall throw sim.access.SIMViewException with reason code NO_EF_SELECTED.
	

	3
	No record is selected after selecting linear fixed EF

1 - fid = SIMView.FID_MF

select()

2 - fid = FID_DF_SIMTEST

select()

3 - fid =FID_EF_LARU

select()

4 – recNumber = 0

mode = REC_ACC_MODE_ABSOLUTE_CURRENT

readRecord()
	1 – No exception shall be thrown.

2 – No exception shall be thrown.

3 – No exception shall be thrown.

4 – Shall throw sim.access.SIMViewException with reason code RECORD_NUMBER_NOT_AVAILABLE.
	

	4
	Record pointer in selected cyclic EF

1 – fid = SIMView.FID_MF

select()

2 - fid =FID_DF_SIMTEST

select()

3 - fid = FID_EF_CARU

select()

4 – byte[] data1 = { 1,2,3 }

updateRecord(data1)

5 - fid = FID_EF_CARU

select()

readRecord(data2)

compare data1 to data2
	1 - No exception shall be thrown.

2 - No exception shall be thrown.

3 - No exception shall be thrown.

4 - No exception shall be thrown.

5 - The contents of data1 and data2 shall be identical.
	

	5
	Selection possibilities

1 - fid = SIMView.FID_MF

select()

2 – fid = SIMView.FID_DF_TELECOM

select()

3 - fid = SIMView.FID_DF_GRAPHICS

select()

4 - fid = SIMView.FID_DF_TELECOM

select()

5 - fid = SIMView.FID_DF_GRAPHICS

select()

6 - fid = SIMView.FID_MF

select()

7 - fid = SIMView.FID_DF_GSM

select()

8 - fid = SIMView.FID_DF_TELECOM

select()

9 - fid = SIMView.FID_DF_TELECOM

select()
	1 – No exception shall be thrown.

2 – No exception shall be thrown.

3 – No exception shall be thrown.

4 – No exception shall be thrown.

5 – No exception shall be thrown.

6 – No exception shall be thrown.

7 – No exception shall be thrown.

8 – No exception shall be thrown.

9 – No exception shall be thrown.
	

	6
	No selection of unreachable file

1 - fid = SIMView.FID_MF

select()

2 - fid = SIMView.FID_EF_ACM

select()
	1 – No exception shall be thrown.

2 – Shall throw sim.access.SIMViewException with reason code FILE_NOT_FOUND.
	

6.1.1.4.3
Test Procedure

	Id
	Description
	API Expectation
	APDU Expectation

	0
	SIM Initialisation
	Responses ignored.
	

	1
	Status of MF

byte[] fci = new byte[34]

fciOffset = 0

fciLength = 7

status()
	No exception shall be thrown.

Shall return 7.

fci shall contain the entire FCI structure.

<Description of fci:

XX XX

XX XX

3F 00

01

>
	

	2
	Status after select EFICCID in MF

1 – fid = SIMView.FID_DF_GSM

fciOffset = 0

fciLength = 34

len = select()

2 – byte[] fci2 = new byte[34]

len2 = status()

3 – Compare len and len2

4 - Compare the len bytes of fci and fci2
	1 - No exception shall be thrown.

Shall return a value between 22 and 34.

2 - No exception shall be thrown.

Shall return 22 or more.
3 - len and len2 shall be identical

4 - fci and fci2 shall be identical
	

	3
	Status of DFTelecom
1 – fid = SIMView.FID_DF_TELECOM

select()

2 – fciOffset = 0

fciLength = 100

status()
	1 - No exception shall be thrown.

Shall return a value between 22 and 34.

2 - No exception shall be thrown.

Shall return a value between 22 and34.

fci shall contain the entire FCI structure (check that returned value is equal to 13 plus the "length of following data" - fci[12]).FID of the returned fci (fci[4:5]) is FID_DF_TELECOM.

	

	4
	Status DFTELECOM
fciOffset = 0

fciLength = 7

status()
	No exception shall be thrown.

Shall return 7.

fci shall contain the first 7 bytes of the FCI structure starting at index 0.

FID of the returned fci (fci[4:5]) is FID_DF_TELECOM.
	

	5
	fci is null

byte[] nullBuffer = null

fciOffset = 0

fciLength = 34

status()
	Shall throw java.lang.NullPointerException.
	

	6
	fciOffset < 0

fciOffset = -1

fciLength = 34

status()
	Shall throw java.lang.ArrayIndexOutOfBoundsException.
	

	7
	fciLength < 0

fciOffset = 0

fciLength = -1

status()
	Shall throw java.lang.ArrayIndexOutOfBoundsException.
	

	8
	fciOffset + fciLength > fci.length

fciOffset = 20

fciLength = 15

status()
	Shall throw java.lang.ArrayIndexOutOfBoundsException.
	

	9
	fciOffset >= fci.length

fciOffset = 34

fciLength = 1

status()
	Shall throw java.lang.ArrayIndexOutOfBoundsException.
	

6.1.1.5.3
Test Procedure

	Id
	Description
	API Expectation
	APDU Expectation

	0
	SIM Initialisation
	Responses ignored
	

	1
	Read from EFICCID in MF (Transparent EF)

1 – fid = SIMView.FID_EF_ICCID

select()

2 – fileOffset = 0

byte[] resp = new byte[20]

resp[0:19] = '55'

respOffset = 10

respLength = 10

readBinary()
	1 - No exception shall be thrown.

2 - No exception shall be thrown.

Shall return 20.

resp shall contain the entire contents of EFICCID starting at index 10.

<Description of resp:

55 55 55 55 55 55 55 55 55 55

0F FF FF FF FF FF FF FF FF FF

>
	

	2
	Read from EFICCID in MF

resp[0:19] = '55'

fileOffset = 5

respOffset = 10

respLength = 5

readBinary()
	No exception shall be thrown.

Shall return 15.

resp shall contain the last 5 bytes of EFICCID starting at index 10.

<Description of resp:

55 55 55 55 55 55 55 55 55 55

FF FF FF FF FF 55 55 55 55 55

>
	

	3
	Offset into File out of bounds

fileOffset = -1

respOffset = 0

respLength = 10

readBinary()
	Shall throw sim.access.SIMViewException with reason code OUT_OF_FILE_BOUNDARIES.
	

	4
	fileOffset + respLength > EF length

fileOffset = 9

respOffset = 0

respLength = 2

readBinary()
	Shall throw sim.access.SIMViewException with reason code OUT_OF_FILE_BOUNDARIES.
	

	5
	resp is null

byte[] nullBuffer = null

fileOffset = 0

respOffset = 0

respLength = 10

readBinary()
	Shall throw java.lang.NullPointerException.
	

	6
	respOffset < 0

fileOffset = 0

respOffset = -1

respLength = 10

readBinary()
	Shall throw

java.lang. ArrayIndexOutOfBoundsException.
	

	7
	respLength < 0

fileOffset = 0

respOffset = 0

respLength = -1

readBinary()
	Shall throw

java.lang. ArrayIndexOutOfBoundsException.
	

	8
	respOffset + respLength > resp.length

fileOffset = 0

respOffset = 10

respLength = 11

readBinary()
	Shall throw

java.lang. ArrayIndexOutOfBoundsException.
	

	9
	EF is not Transparent

1 - fid = FID_DF_SIMTEST

select()

2 - fid = FID_EF_LARU

select()

3 - fileOffset = 0

respOffset = 0

respLength = 1

readBinary()
	1 - No exception shall be thrown.

2 - No exception shall be thrown.

3 - Shall throw sim.access.SIMViewException with reason code FILE_INCONSISTENT.
	

	10
	Access condition not fulfilled

1 - fid = DFSIMTTEST

select()

2 - fid = EFTNR

select()

3 - fileOffset = 0

respOffset = 0

respLength = 1

readBinary()
	Shall throw sim.access.SIMViewException with reason code AC_NOT_FULFILLED.
	

	11
	EF is invalidated

1 - fid = EFTNU

invalidate()

2 - readBinary()

3 - rehabilitate()
	1 - No exception shall be thrown.

2 - Shall throw sim.access.SIMViewException with reason code INVALIDATION_STATUS_CONTRADICTION.

3 - No exception shall be thrown.
	

	12
	No EF selected

1 - fid = SIMView.FID_MF

select()

2 - readBinary()
	1 - No exception shall be thrown.

2 - Shall throw sim.access.SIMViewException with reason code NO_EF_SELECTED.
	

6.1.1.7.3
Test Procedure

	Id
	Description
	API Expectation
	APDU Expectation

	0
	SIM Initialisation
	Responses ignored.
	

	1
	No EF selected

recNumber = 1

mode = REC_ACC_MODE_ABSOLUTE_CURRENT

recOffset = 0

byte[] resp = new byte[20]

respOffset = 0

respLength = 10

readRecord()
	Shall throw sim.access.SIMViewException with reason code NO_EF_SELECTED.
	

	2
	Read Absolute and Current from Linear Fixed EF

1 - fid = DFSIMTEST

select()

2 - fid = EFLARU

select()

// Record pointer not set.

3 - recNumber = 0

mode = REC_ACC_MODE_NEXT

recOffset = 0

respOffset = 0

respLength = 4

readRecord()

4 – recNumber = 2

mode = REC_ACC_MODE_ABSOLUTE_CURRENT

readRecord()

5 - recNumber = 1

readRecord()

6 - recNumber = 0

resp[0] = resp[1] = resp[2] = resp[3] = '00'

readRecord()
	1 - No exception shall be thrown.

2 - No exception shall be thrown.

3 - No exception shall be thrown.

resp shall be:

resp[0] = '55'

resp[1] = '55'

resp[2] = '55'

resp[3] = '55'

4 - No exception shall be thrown.

resp shall be:

resp[0] = 'AA'

resp[1] = 'AA'

resp[2] = 'AA'

resp[3] = 'AA'

5 - No exception shall be thrown.

resp shall be:

resp[0] = '55'

resp[1] = '55'

resp[2] = '55'

resp[3] = '55'

6 - No exception shall be thrown.

resp shall be:

resp[0] = '55'

resp[1] = '55'

resp[2] = '55'

resp[3] = '55'
	

	3
	Read Next from Linear Fixed EF

recNumber = 0

mode = REC_ACC_MODE_NEXT

recOffset = 0

respOffset = 0

respLength = 4

readRecord()
	No exception shall be thrown.

resp shall be:

resp[0] = 'AA'

resp[1] = 'AA'

resp[2] = 'AA'

resp[3] = 'AA'

	

	4
	Read Next from Linear Fixed EF

recNumber = 0

mode = REC_ACC_MODE_NEXT

recOffset = 0

respOffset = 0

respLength = 4

readRecord()
	Shall throw sim.access.SIMViewException with reason code RECORD_NUMBER_NOT_AVAILABLE.
	

	5
	Read Previous from Linear Fixed EF

recNumber = 0

mode = REC_ACC_MODE_PREVIOUS

recOffset = 0

respOffset = 0

respLength = 4

readRecord()
	No exception shall be thrown.

resp shall be:

resp[0] = '55'

resp[1] = '55'

resp[2] = '55'

resp[3] = '55'

	

	6
	Read Previous from Linear Fixed EF

recNumber = 0

mode = REC_ACC_MODE_PREVIOUS

recOffset = 0

respOffset = 0

respLength = 4

readRecord()
	Shall throw sim.access.SIMViewException with reason code RECORD_NUMBER_NOT_AVAILABLE.
	

	7
	Read Absolute and Current from Cyclic EF

1 - fid = EFCARU

select()

2 - recNumber = 2

mode = REC_ACC_MODE_ABSOLUTE_CURRENT

recOffset = 0

respOffset = 0

respLength = 3

readRecord()

3 – recNumber = 1

readRecord()

4 – recNumber = 0

resp[0] = resp[1] = resp[2] = '00

readRecord()
	1 - No exception shall be thrown.

2 - No exception shall be thrown.

resp shall be:

resp[0] = ' AA'

resp[1] = ' AA'

resp[2] = ' AA'

3 - No exception shall be thrown.

resp shall be:

resp[0] = '55'

resp[1] = '55'

resp[2] = '55'

4 - No exception shall be thrown.

resp shall be:

resp[0] = '55'

resp[1] = '55'

resp[2] = '55'
	

	8
	Read Next from Cyclic EF

recNumber = 0

mode = REC_ACC_MODE_NEXT

recOffset = 0

respOffset = 0

respLength = 3

readRecord()
	No exception shall be thrown.

resp shall be:

resp[0] = 'AA'

resp[1] = 'AA'

resp[2] = 'AA'
	

	9
	Read Next from Cyclic EF

recNumber = 0

mode = REC_ACC_MODE_NEXT

recOffset = 0

respOffset = 0

respLength = 3

readRecord()
	No exception shall be thrown.

resp shall be:

resp[0] = '55'

resp[1] = '55'

resp[2] = '55'
	

	10
	Read Previous from Cyclic EF

recNumber = 0

mode = REC_ACC_MODE_PREVIOUS

recOffset = 0

respOffset = 0

respLength = 3

readRecord()
	No exception shall be thrown.

resp shall be:

resp[0] = 'AA'

resp[1] = 'AA'

resp[2] = 'AA'
	

	11
	Read Previous from Cyclic EF

recNumber = 0

mode = REC_ACC_MODE_PREVIOUS

recOffset = 0

respOffset = 0

respLength = 3

readRecord()
	No exception shall be thrown.

resp shall be:

resp[0] = '55'

resp[1] = '55'

resp[2] = '55'
	

	12
	Read Absolute from Linear Fixed EF beyond Records

1 - fid = EFLARU

select()

2 – recNumber = -1

mode = REC_ACC_MODE_ABSOLUTE_CURRENT

recOffset = 0

respOffset = 0

respLength = 4

readRecord()

3 – recNumber = 3

readRecord()
	1 – No exceptionshall be thrown.
2 - Shall throw sim.access.SIMViewException with reason code RECORD_NUMBER_NOT_AVAILABLE.

3 - Shall throw sim.access.SIMViewException with reason code RECORD_NUMBER_NOT_AVAILABLE.
	

	13
	No current record in linear fixed EF, read current

1 - fid = EFLARU

select() // No curr rec

2 – recNumber = 0 // curr rec

mode = REC_ACC_MODE_ABSOLUTE_CURRENT

recOffset = 0

respOffset = 0

respLength = 4

readRecord()
	1 - No exception shall be thrown.

2 - Shall throw sim.access.SIMViewException with reason code RECORD_NUMBER_NOT_AVAILABLE.
	

	14
	recOffset < 0

1 - fid = EFLARU

select()

2 - recNumber = 1 // rec 1

mode = REC_ACC_MODE_ABSOLUTE_CURRENT

recOffset = -1

respOffset = 0

respLength = 4

readRecord()
	1 - No exception shall be thrown.

2 - Shall throw sim.access.SIMViewException with reason code OUT_OF_RECORD_BOUNDARIES.
	

	15
	recOffset + respLength > Record Length

1 - fid = EFLARU

select()

2 - recNumber = 1

mode = REC_ACC_MODE_ABSOLUTE_CURRENT

recOffset = 2

respOffset = 0

respLength = 4

readRecord()
	1 - No exception shall be thrown.

2 - Shall throw sim.access.SIMViewException with reason code OUT_OF_RECORD_BOUNDARIES.

	

	16
	Reading with invalid mode

1 – fid = EFLARU

select()

2 – recNumber = 0

mode = 1

recOffset = 0

respOffset = 0

respLength = 4

readRecord()

3 – mode = 5

readRecord()
	1 - No exception shall be thrown.

2 - Shall throw sim.access.SIMViewException with reason code INVALID_MODE.

3 - Shall throw sim.access.SIMViewException with reason code INVALID_MODE.
	

	17
	resp is null

byte[] nullBuffer = null

mode = REC_ACC_MODE_ABSOLUTE_CURRENT

respOffset = 0

respLength = 10

readRecord()
	Shall throw java.lang.NullPointerException.
	

	18
	respOffset < 0

respOffset = -1

respLength = 10

readRecord ()
	Shall throw

java.lang. ArrayIndexOutOfBoundsException.
	

	19
	respLength < 0

respOffset = 0

respLength = -1

readRecord ()
	Shall throw

java.lang. ArrayIndexOutOfBoundsException.
	

	20
	respOffset + respLength > resp.length

respOffset = 10

respLength = 11

readRecord ()
	Shall throw

java.lang. ArrayIndexOutOfBoundsException.
	

	21
	EF is neither Cyclic nor Linear Fixed

1 - fid = DFSIMTEST

select()

2 - fid = EFTNU

select()

3 – respOffset = 0

respLength = 4

readRecord()
	1 - No exception shall be thrown.

2 - No exception shall be thrown.

3 - Shall throw sim.access.SIMViewException with reason code FILE_INCONSISTENT.
	

	22
	Access condition not fulfilled

1 - fid = EFCNR

select()

2 - respLength = 3

readRecord()
	1 - No exception shall be thrown.

2 - Shall throw sim.access.SIMViewException with reason code AC_NOT_FULFILLED.
	

	23
	EF is invalidated

1 - fid = EFCNU

invalidate()

2 – readRecord()

3 – rehabilitate()
	1 - No exception shall be thrown.

2 - Shall throw sim.access.SIMViewException with reason code INVALIDATION_STATUS_CONTRADICTION.

3 - No exception shall be thrown.
	

6.1.1.12.3
Test Procedure

	Id
	Description
	API Expectation
	APDU Expectation

	0
	SIM Initialisation
	Responses ignored.
	

	1
	No EF is selected

1 – rehabilitate()
	1 - Shall throw sim.access.SIMViewException with reason code NO_EF_SELECTED.
	

	2
	Rehabilitate invalidated File

1 – fid = DFSIMTEST

select()

2 - fid = EFCNR

select()

3 – invalidate()

4 – rehabilitate()

5 - byte[] incr = new byte[3] = {0,0,1}

incrOffset = 0

byte[] resp = new byte[1] = 1

respOffset = 0

increase()
	1 - No exception shall be thrown.

2 - No exception shall be thrown.

3 - No exception shall be thrown.

4 - No exception shall be thrown.

5 - No exception shall be thrown.

resp[] shall contain {0,0,1}.
	

	3
	Access condition not fulfilled

1 – fid = EFCNRH

select()

2 – rehabilitate()
	1 - No exception shall be thrown.

2 - Shall throw sim.access.SIMViewException with reason code AC_NOT_FULFILLED.
	

	4
	Rehabilitate validated File

1 - fid = EFCNR

select()

2 – rehabilitate()
	1 - No exception shall be thrown.

2 - Shall throw sim.access.SIMViewException with reason code INVALIDATION_STATUS_CONTRADICTION.
	

6.2
Package sim.toolkit

6.2.1
Interface ToolkitConstants

6.2.1.1.1
Conformance Requirement:

There is no API, only constants. This constants shall be compare to its definition in the API.

Normal execution

CRRN1: The Toolkit Constants shall all have the same name and value defined in the GSM03.19 normalization.

Parameters error

No requirements

Context errors

No requirements

6.2.2
Interface ToolkitInterface

6.2.2.1.1
Conformance Requirement:

The method with following prototype shall be compliant to its definition in the API.

public void processToolkit(byte event)

throws
ToolkitException
Normal execution

CRRN1: This interface must be implemented by a Toolkit applet (which extends the javacard.framework.Applet class) so that it can be triggered by the Toolkit Handler according to the registration information.

CRRN2: The Toolkit applet will have to implement the processToolkit shared method so that the following events can be notified:

	Event
	Description

	 EVENT_PROFILE_DOWNLOAD
	Terminal Profile command reception

	 EVENT_FORMATTED_SMS_PP_ENV
	Formatted envelope SMS-PP Data Download reception

	 EVENT_FORMATTED_SMS_PP_UPD
	Formatted Update Record EF SMS

	 EVENT_FORMATTED_SMS_CB
	Formatted envelope Cell Broadcast Data Download command reception

	 EVENT_UNFORMATTED_SMS_PP_ENV
	Unformatted Envelope SMS-PP Data Download reception

	 EVENT_UNFORMATTED_SMS_PP_UPD
	Unformatted Update Record EF SMS

	 EVENT_UNFORMATTED_SMS_CB
	Unformatted Cell Broadcast Data Download command reception

	 EVENT_MENU_SELECTION
	Envelope Menu Selection command reception

	 EVENT_MENU_SELECTION_HELP_REQUEST
	Envelope Menu Selection Help Request command reception

	 EVENT_CALL_CONTROL_BY_SIM
	Envelope Call Control by SIM command reception

	 EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM
	Envelope MO Short Message Control by SIM command reception

	 EVENT_TIMER_EXPIRATION
	Envelope Timer Expiration

	 EVENT_EVENT_DOWNLOAD_MT_CALL
	Envelope Event Download - MT call

	 EVENT_EVENT_DOWNLOAD_CALL_CONNECTED
	Envelope Event Download - Call connected

	 EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED
	Event Download - Call disconnected

	 EVENT_EVENT_DOWNLOAD_LOCATION_STATUS
	Envelope Event Download - Location status

	 EVENT_EVENT_DOWNLOAD_USER_ACTIVITY
	Envelope Event Download - User activity

	 EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE
	Envelope Event Download - Idle screen available

	 EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS
	Envelope Event Download - Card Reader Status

	 EVENT_EVENT_DOWNLOAD_LANGUAGE_SELECTION
	Envelope Event Download – Language Selection

	 EVENT_EVENT_DOWNLOAD_BROWSER_TERMINATION
	Envelope Event Download – Browser Termination

	 EVENT_STATUS_COMMAND
	Status APDU command event

	 EVENT_UNRECOGNIZED_ENVELOPE
	Unrecognized Envelope command reception

Parameters error

No requirements

Context errors

No requirements

6.2.4
Class EnvelopeHandler

6.2.4.6.2
Test suite files

Specific triggering:

-

FORMATTED SMS PP UPD

-

UNFORMATTED SMS PP UPD

-

UNFORMATTED SMS PP ENV

-

SMS CB

Test Script:

API_2_ENH_GTPO_1.scr

Test Applet:

API_2_ENH_GTPO_1.java

Load Script:

API_2_ENH_GTPO_1.ldr

Cleanup Script:

API_2_ENH_GTPO_1.clr

Parameter File:

API_2_ENH_GTPO_1.par
6.2.4.7.1
Conformance Requirement

The method with following header shall be compliant to its definition in the API.

public short getLength()

throws ToolkitException

Normal execution

CRRN1: returns the length in bytes of the TLV list.

Parameter Error

No requirements

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException.HANDLER_NOT_AVAILABLE.

6.2.4.7.3
Test Procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	Send an envelope SMS PP with BER length of 0x31
	Result of getLength() is 0x0031
	

	2
	Send an envelope SMS PP with BER length of 0x7F
	Result of getLength() is 0x007Fh
	

	3
	Send an envelope SMS PP with BER length of 81 80
	Result of getLength() is 0x0080h
	

	4
	Send an envelope SMS PP with BER length of 81 FC
	Result of getLength() is 0x00FCh
	

6.2.4.8.1
Conformance Requirement

The method with following header shall be compliant to its definition in the API.

public short copy(byte[] dstBuffer,

short dstOffset,

short dstLength)

 throws java.lang.NullPointerException,

 java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException

Normal execution

CRRN1: copies the simple TLV list contained in the handler to the destination byte array.

CRRN2: returns dstOffset + dstLength.

Parameter errors

CRRP1: if dstBuffer is null a NullPointerException is thrown.

CRRP2: if dstOffset or dstLength or both would cause access outside array bounds, or if dstLength is negative, an ArrayIndexOutOfBoundsException is thrown.

CRRP3: if dstLength is grater than the length of the simple TLV List, an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException. OUT_OF_TLV_BOUNDARIES.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

6.2.4.9.1
Conformance Requirement

The method with following header shall be compliant to its definition in the API.

public byte findTLV(byte tag, byte occurrence)

throws ToolkitException

Normal execution

Looks for the indicated occurrence of a TLV element from the beginning of the TLV list (handler buffer):

CRRN1: the method is successful if the required occurrence exists then the corresponding TLV becomes current.

CRRN2: if the method is successful then it returns TLV_FOUND_CR_SET when Comprehension Required flag is set.

CRRN3: if the method is successful then it returns TLV_FOUND_CR_NOT_SET when Comprehension Required flag is not set.

CRRN4: if the required occurrence of the TLV element does not exist, the current TLV is no longer defined and TLV_NOT_FOUND is returned.

CRRN5: The search method is comprehension required flag independent.

Parameter errors

CRRP1: if an input parameter is not valid (e.g. occurrence = 0) an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException BAD_INPUT_PARAMETER.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

6.2.4.11.2
Test Suite files

Specific triggering: None

Test Script:

API_2_ENH_GVBYS_1.scr

Test Applet:

API_2_ENH_GVBYS_1.java

Load Script:

API_2_ENH_GVBYS_l.dr

Cleanup Script:

API_2_ENH_GVBYS_1.clr

Parameter File:

API_2_ENH_GVBYS_1.par

6.2.4.15.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public short findAndCopyValue(byte tag,

 byte occurence,

 short valueOffset,

 byte[] dstBuffer,

 short dstOffset,

 short dstLength)

 throws java.lang.NullPointerException,

 java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException

Normal execution

CRRN1: looks for the indicated occurrence of a TLV element from the beginning of a TLV list and copy its value into a destination buffer.

CRRN2: if no TLV element is found, the UNAVAILABLE_ELEMENT exception is thrown and the current TLV is no longer defined.

CRRN3: if the method is successful then the corresponding TLV becomes current and dstOffset + dstLength is returned.

CRRN4: The search method is comprehension required flag independent.

Parameter errors

CRRP1: if dstBuffer is null NullPointerException shall be thrown.

CRRP2: if dstOffset or dstLength or both would cause access outside array bounds, or if dstLength is negative ArrayIndexOutOfBoundsException shall be thrown.

CRRP3: if valueOffset, dstLength or both are out of the current TLV an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException OUT_OF_TLV_BOUNDARIES.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

6.2.4.16.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public byte findAndCompareValue(byte tag,

 byte[] compareBuffer,

 short compareOffset)

throws
java.lang.NullPointerException,

java.lang.ArrayIndexOutOfBoundsException,

ToolkitException

Normal execution

Looks for the first occurrence of a TLV element from beginning of a TLV list and compare its value with a buffer:

CRRN1: if no TLV element is found, the UNAVAILABLE_ELEMENT exception is thrown and the current TLV is no longer defined.

CRRN2: if the method is successful then the corresponding TLV becomes current.

CRRN3: if identical returns 0.

CRRN4: if the first miscomparing byte in simple TLV is less than that in compareBuffer returns -1.

CRRN5: if the first miscomparing byte in simple TLV is greater than that in compareBuffer returns 1.

CRRN6: The search method is comprehension required flag independent.

Parameter errors

CRRP1: if compareBuffer is null NullPointerException shall be thrown.

CRRP2: if compareOffset would cause access outside array bounds ArrayIndexOutOfBoundsException shall be thrown.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

6.2.4.17.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public byte findAndCompareValue(byte tag,

 byte occurence,

 short valueOffset,

 byte[] compareBuffer,

 short compareOffset,

 short compareLength)

 throws java.lang.NullPointerException,

java.lang.ArrayIndexOutOfBoundsException,

ToolkitException

Normal execution

Looks for the indicated occurrence of a TLV element from the beginning of a TLV list and compare its value with a buffer:

CRRN1: if no TLV element is found, the UNAVAILABLE_ELEMENT exception is thrown and the current TLV is no longer defined.

CRRN2: if the method is successful then the corresponding TLV becomes current.

CRRN3: if identical 0 is returned.

CRRN4: if the first miscomparing byte in simple TLV is less than that in compareBuffer -1 is returned.

CRRN5: if the first miscomparing byte in simple TLV is greater than that in compareBuffer 1 is returned

CRRN6: The search method is comprehension required flag independent.

Parameter errors

CRRP1: if compareBuffer is null NullPointerException shall be thrown.

CRRP2: if compareOffset or compareLength or both would cause access outside array bounds, or if compareLength is negative ArrayIndexOutOfBoundsException shall be thrown.

CRRP3: if valueOffset, compareLength or both are out of the current TLV an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException OUT_OF_TLV_BOUNDARIES.

CRRP4: if an input parameter is not valid (e.g. occurence = 0) an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException BAD_INPUT_PARAMETER.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

6.2.5
Class EnvelopeResponseHandler

6.2.5.2.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	getTheHandler and then post

(the handler is empty)
	
	9000

	2
	Fill the handler (appendTLV to have bytes in it)and then post data with status 9F
	
	9FFD data are retrieved with GET RESPONSE command

	3
	Verify that after a post the handler is no more available

appendTLV, post and then appendTLV
	ToolkitException HANDLER_NOT_AVAILABLE is thrown on the second appendTLV
	

	4
	construct the response (appendTLV with 0x10 data) and post it with status 9E and then send a display text
	
	9E12 and posted data retrieved by a GET RESPONSE with status 9113 and display text retrieved by a FETCH

	5
	Verify that it is possible to send a proactive command after a post

getTheHandler and post , then send a display text
	
	91 13 and display text is retrieved by a FETCH

	6
	Verify it is not possible to post after a proactive command

getTheHandler, appendTLV, send a display text, post.
	ToolkitException HANDLER_NOT_AVAILABLE is thrown
	

	7
	Verify that the handler is no more available after a post

getTheHandler, appendTLV, post with status 9E, post with status 9F
	ToolkitException HANDLER_NOT_AVAILABLE is thrown
	9E12 and posted data retrieved by a GET RESPONSE

6.2.5.3.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	getTheHandler and then postAsBERTLV

(the handler is empty)
	
	9F02 data are retrieved with GET RESPONSE command, the tag shall be 33 and the length is 00

	2
	Fill the handler and then postAsBERTLV the data with status 9F, and tag 33
	
	9FFF data are retrieved with GET RESPONSE command, the tag shall be 33

	3
	appendTLV, postAsBERTLV and then appendTLV
	ToolkitException HANDLER_NOT_AVAILABLE is thrown on the second appendTLV
	

	4
	construct the response (appendTLV with 0x10 data) and postAsBERTLV it with status 9E, tag 75 and then send a display text
	
	9E14 and posted data retrieved by a GET RESPONSE the tag shall be 75 with status 9113 and display text retrieved by a FETCH

	5
	getTheHandler and postAsBERTLV, then send a display text
	
	9E02 and posted data retrieved by a GET RESPONSE the tag 33 (and the length 00) with status 9113 and display text is retrieved by a FETCH

	6
	Verify it is not possible to postAsBERTLV after a proactive command

getTheHandler, appendTLV, send a display text, postAsBERTLV.
	ToolkitException HANDLER_NOT_AVAILABLE is thrown on the postAsBERTLV
	

	7
	Verify that the handler is no more available after a postAsBERTLV

getTheHandler, appendTLV(with data length = 0x10, postAsBERTLV with status 9E, tag 56, postAsBERTLV with status 9F, tag 28
	ToolkitException HANDLER_NOT_AVAILABLE is thrown on the second postAsBERTLV
	9E14 and posted data retrieved by a GET RESPONSE the tag shall be 56 with status 9000

6.2.5.4.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public short getLength()

throws ToolkitException

Normal execution

CRRN1: returns the length in bytes of the TLV list.

Parameter errors

No requirements

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException.HANDLER_NOT_AVAILABLE.

6.2.5.5.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public short copy(byte[] dstBuffer,

 short dstOffset,

 short dstLength)

 throws java.lang.NullPointerException,

 java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException

Normal execution

CRRN1: copies the simple TLV list contained in the handler to the destination byte array.

CRRN2: returns dstOffset + dstLength.

Parameter errors

CRRP1: if dstBuffer is null a NullPointerException is thrown.

CRRP2: if dstOffset or dstLength or both would cause access outside array bounds, or if dstLength is negative, an ArrayIndexOutOfBoundsException is thrown.

CRRP3: if dstLength is greater than the length of the simple TLV List, an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException. OUT_OF_TLV_BOUNDARIES.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

6.2.5.6.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public byte findTLV(byte tag, byte occurrence)

throws ToolkitException

Normal execution

Looks for the indicated occurrence of a TLV element from the beginning of the TLV list (handler buffer):

CRRN1: the method is successful if the required occurrence exists then the corresponding TLV becomes current.

CRRN2: if the method is successful then it returns TLV_FOUND_CR_SET when Comprehension Required flag is set.

CRRN3: if the method is successful then it returns TLV_FOUND_CR_NOT_SET when Comprehension Required flag is not set.

CRRN4: if the required occurrence of the TLV element does not exist, the current TLV is no longer defined and TLV_NOT_FOUND is returned.

CRRN5: The search method is comprehension required flag independent.

Parameter errors

CRRP1: if an input parameter is not valid (e.g. occurrence = 0) an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException BAD_INPUT_PARAMETER.
Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

6.2.5.9.1
Conformance requirement

The method with following header shall be compliant with its definition in the API.

public short copyValue(short valueOffset,

byte[] dstBuffer,

short dstOffset,

short dstLength)

throws java.lang.NullPointerException,

java.lang.ArrayIndexOutOfBoundsException,

ToolkitException

Normal execution

CRRN1: copies a part of the last TLV element which has been found, into a destination. buffer.

CRRN2: returns dstOffset + dstLength.

Parameter errors

CRRP1: if dstBuffer is null NullPointerException is thrown.

CRRP2: if dstOffset or dstLength or both would cause access outside array bounds, or if dstLength is negative ArrayIndexOutOfBoundsException is thrown.

CRRP3: if valueOffset, dstLength or both are out of the current TLV an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException OUT_OF_TLV_BOUNDARIES.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

CRRC2: in case of unavailable TLV element an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException UNAVAILABLE_ELEMENT.

6.2.5.12.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public short findAndCopyValue(byte tag,

 byte occurrence,

 short valueOffset,

 byte[] dstBuffer,

 short dstOffset,

 short dstLength)

 throws java.lang.NullPointerException,

 java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException

Normal execution

CRRN1: looks for the indicated occurrence of a TLV element from the beginning of a TLV list and copy its value into a destination buffer.

CRRN2: if no TLV element is found, the UNAVAILABLE_ELEMENT exception is thrown and the current TLV is no longer defined.

 CRRN3: if the method is successful then the corresponding TLV becomes current and dstOffset + dstLength is returned.

CRRN4: The search method is comprehension required flag independent.

Parameter errors

CRRP1: if dstBuffer is null NullPointerException shall be thrown.

CRRP2: if dstOffset or dstLength or both would cause access outside array bounds, or if dstLength is negative ArrayIndexOutOfBoundsException shall be thrown.

CRRP3: if valueOffset, dstLength or both are out of the current TLV an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException OUT_OF_TLV_BOUNDARIES.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

6.2.5.13.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public byte findAndCompareValue(byte tag,

 byte[] compareBuffer,

 short compareOffset)

throws
java.lang.NullPointerException,

java.lang.ArrayIndexOutOfBoundsException,

ToolkitException

Normal execution

Looks for the first occurrence of a TLV element from beginning of a TLV list and compare its value with a buffer:

CRRN1: if no TLV element is found, the UNAVAILABLE_ELEMENT exception is thrown and the current TLV is no longer defined.

CRRN2: if the method is successful then the corresponding TLV becomes current.

CRRN3: if identical returns 0.

 CRRN4: if the first miscomparing byte in simple TLV is less than that in compareBuffer returns -1.

 CRRN5: if the first miscomparing byte in simple TLV is greater than that in compareBuffer returns 1.

CRRN6: The search method is comprehension required flag independent.

Parameter errors

CRRP1: if compareBuffer is null NullPointerException shall be thrown.

CRRP2: if compareOffset would cause access outside array bounds ArrayIndexOutOfBoundsException shall be thrown.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

6.2.5.14.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public byte findAndCompareValue(byte tag,

 byte occurrence,

 short valueOffset,

 byte[] compareBuffer,

 short compareOffset,

 short compareLength)

 throws java.lang.NullPointerException,

java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException

Normal execution

Looks for the indicated occurrence of a TLV element from the beginning of a TLV list and compare its value with a buffer:

CRRN1: if no TLV element is found, the UNAVAILABLE_ELEMENT exception is thrown and the current TLV is no longer defined.

CRRN2: if the method is successful then the corresponding TLV becomes current.

CRRN3: if identical 0 is returned.

CRRN4: if the first miscomparing byte in simple TLV is less than that in compareBuffer -1 is returned.

CRRN5: if the first miscomparing byte in simple TLV is greater than that in compareBuffer 1 is returned

CRRN6: The search method is comprehension required flag independent.

Parameter errors

CRRP1: if compareBuffer is null NullPointerException shall be thrown.

CRRP2: if compareOffset or compareLength or both would cause access outside array bounds, or if compareLength is negative ArrayIndexOutOfBoundsException shall be thrown.

CRRP3: if valueOffset, compareLength or both are out of the current TLV an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException OUT_OF_TLV_BOUNDARIES.

CRRP4: if an input parameter is not valid (e.g. occurrence = 0) an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException BAD_INPUT_PARAMETER.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

6.2.5.15.1
Conformance requirement:

The method with following header shall be compliant to its definition in the API.

void appendArray(byte[] buffer, short offset, short length)

throws
java.lang.NullPointerException,

java.lang.ArrayIndexOutOfBoundsException,

ToolkitException

Normal execution

CRRN1: appends a buffer into the EditHandler buffer

CRRN2: a successful append does not modify the TLV selected

Parameters error

CRRP1: if buffer is null, a java.lang.NullPointerException is thrown

CRRP2: if offset or length or both would cause access outside the array bounds, or if length is negative, a java.lang.ArrayIndexOutOfBoundsException is thrown.

Context errors

CRRC1: if the EditHandler buffer is too small to append the requested data, a ToolkitException is thrown with reason code HANDLER_OVERFLOW

CRRC2: if the EditHandler buffer is busy, a ToolkitException is thrown with reason code HANDLER_NOT_AVAILABLE

6.2.5.15.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	
	Initialize the envelope response handler with a TLV of length 1
	
	

	1
	Null buffer
	NullPointerException is thrown
	

	2
	offset (buffer.length

buffer.length = 5

offset = 5

length = 1
	ArrayIndexOutOfBoundsException is thrown
	

	3
	offset < 0

buffer.length = 5

offset = -1

length = 1
	ArrayIndexOutOfBoundsException is thrown
	

	4
	length > buffer.length

buffer.length = 5

offset = 0

length = 6
	ArrayIndexOutOfBoundsException is thrown
	

	5
	offset + length > buffer.length

buffer.length = 5

offset = 3

length = 3
	ArrayIndexOutOfBoundsException is thrown
	

	6
	length < 0

buffer.length = 5

offset = 0

length = -1
	ArrayIndexOutOfBoundsException is thrown
	

	7
	Handler overflow

buffer.length = 256

offset = 0

length = 256
	ToolkitException.HANDLER_OVERFLOW is thrown
	

	8
	append the handler with TLVs:

81 03 11 22 33

82 02 99 77
	
	

	
	findTLV 0x81
	
	

	
	Successful call

buffer = FF FE … F8

offset = 0

length = 8
	
	

	
	Verify Current TLV: Call getValueLength()
	Result is 03h
	

	9
	Clear the handler
	
	

	
	Successful call

buffer = FF FE … F8

offset = 0

length = 8
	
	

	
	Call copy() method
	
	

	
	Compare handler

compareBuffer = FF FE … F8
	Result is 00h
	

	10
	Successful call

buffer = 00 01 … 07

offset = 2

length = 6
	
	

	
	Call copy() method
	
	

	
	Compare handler

compareBuffer = FF FE … F8 02 03 … 07
	Result is 00h
	

	11
	Successful call

buffer = 11 22 … 88

offset = 2

length = 4
	
	

	
	Call copy() method
	
	

	
	Compare handler

compareBuffer = FF FE … F8 02 03 … 07 33 44 55 66
	Result is 00h
	

6.2.5.16.1
Conformance requirement:

The method with following header shall be compliant to its definition in the API.

void appendTLV
(byte tag, byte value)

throws ToolkitException

Normal execution

CRRN1: Appends a TLV element to the current TLV list (1-byte element).

CRRN2: A successful append does not modify the TLV selected.

Parameters error

No requirements

Context errors

CRRC1: if the EditHandler buffer is too small to append the requested data, a ToolkitException is thrown with reason code HANDLER_OVERFLOW

CRRC2: if the EditHandler buffer is busy, a ToolkitException is thrown with reason code HANDLER_NOT_AVAILABLE

6.2.5.17.1
Conformance requirements:

The method with following header shall be compliant to its definition in the API.

void appendTLV
(byte tag, byte value1,byte value2)

throws ToolkitException

Normal execution

CRRN1: Appends a TLV element to the current TLV list (2-byte element).

CRRN2: A successful append does not modify the TLV selected.

Parameters error

No requirements

Context errors

CRRC1: if the EditHandler buffer is too small to append the requested data, a ToolkitException is thrown with reason code HANDLER_OVERFLOW

CRRC2: if the EditHandler buffer is busy, a ToolkitException is thrown with reason code HANDLER_NOT_AVAILABLE

6.2.5.18.1
Conformance requirement:

The method with following header shall be compliant to its definition in the API.

void appendTLV
(byte tag,

 byte[] value,

 short valueoffset,

 short valuelength)

 throws java.lang.NullPointerException,

 java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException

Normal execution

CRRN1: Appends a TLV element to the current TLV list (byte-array element).

CRRN2: A successful append does not modify the TLV selected.

Parameters error
CRRP1: if value is null, a java.lang.NullPointerException is thrown

CRRP2: if valueoffset or valuelength or both would cause access outside the array bounds, or if length is negative, a java.lang.ArrayIndexOutOfBoundsException is thrown.

Context errors

CRRC1: if the EditHandler buffer is too small to append the requested data, a ToolkitException is thrown with reason code HANDLER_OVERFLOW

CRRC2: if the EditHandler buffer is busy, a ToolkitException is thrown with reason code HANDLER_NOT_AVAILABLE

CRRC3: if valuelength is greater than 255, a ToolkitException is thrown with reason code BAD_INPUT_PARAMETER

6.2.5.18.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	Null value
	NullPointerException is thrown
	

	2
	valueOffset (value.length

value.length = 5

valueOffset = 5

valueLength = 1
	ArrayIndexOutOfBoundsException is thrown
	

	3

	valueOffset < 0

value.length = 5

valueOffset = -1

valueLength = 1
	ArrayIndexOutOfBoundsException is thrown
	

	4
	valueLength > value.length

value.length = 5

valueOffset = 0

valueLength = 6
	ArrayIndexOutOfBoundsException is thrown
	

	5
	ValueOffset + valueLength > value.length

value.length = 5

valueOffset = 3

valueLength = 3
	ArrayIndexOutOfBoundsException is thrown
	

	6
	valueLength < 0

value.length = 5

valueOffset = 0

valueLength = -1
	ArrayIndexOutOfBoundsException is thrown
	

	7
	Handler overflow

value.length = 254

valueOffset = 0

valueLength = 254
	ToolkitException.HANDLER_OVERFLOW is thrown
	

	8
	Bad parameter

value.length = 256

valueOffset = 0

valueLength = 256
	ToolkitException.BAD_INPUT_PARAMETER is thrown
	

	9
	clear the handler, append the handler with TLVs:

81 03 11 22 33

82 02 99 77
	
	

	
	Select Command Details TLV
	
	

	
	Successful call

tag = 04

value = FF FE … F8

valueOffset = 0

valueLength = 8
	
	

	
	Verify Current TLV: Call getValueLength()
	Result is 03h
	

	10
	Clear the handler
	
	

	
	Successful call

tag = 04

value = FF FE … F8

valueOffset = 0

valueLength = 8
	
	

	
	Call copy() method
	
	

	
	Compare handler

CompareBuffer = 04 08 FF FE … F8
	Result is 00
	

	11
	Successful call

tag = 85h

value = 00 01 … 07

valueOffset = 2

valueLength = 6
	
	

	
	Call copy() method
	
	

	
	Compare handler

compareBuffer = 04 08 FF FE … F8 85 06 02 03 … 07
	Result is 00
	

	12
	Successful call

tag = 01

value = 11 22 … 88

valueOffset = 2

valueLength = 4
	
	

	
	Call copy() method
	
	

	
	Compare handler

compareBuffer = 04 08 FF FE … F8 85 06 02 03 … 07 01 04 33 44 55 66
	Result is 00
	

	13
	Clear the handler
	
	

	
	Successful call

tag = 04

value = 00 01 … 7F

valueOffset = 0

valueLength = 80h
	
	

	
	Call copy() method
	
	

	
	Compare handler

compareBuffer = 04 81 80 00 01…7F
	Result is 00
	

6.2.5.19.1
Conformance requirement:

The method with following header shall be compliant to its definition in the API.

void appendTLV
(byte tag,

 byte value1

 byte[] value2,

 short value2offset,

 short value2length)

 throws java.lang.NullPointerException,

 java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException

Normal execution

CRRN1: Appends a TLV element to the current TLV list (1 byte and a byte-array element).

CRRN2: A successful append does not modify the TLV selected.

Parameters error
CRRP1: if value2 is null, a java.lang.NullPointerException is thrown

CRRP2: if value2offset or value2length or both would cause access outside the array bounds, or if length is negative, a java.lang.ArrayIndexOutOfBoundsException is thrown.

Context errors

CRRC1: if the EditHandler buffer is too small to append the requested data, a ToolkitException is thrown with reason code HANDLER_OVERFLOW

CRRC2: if the EditHandler buffer is busy, a ToolkitException is thrown with reason code HANDLER_NOT_AVAILABLE

CRRC3: if valuelength is greater than 255, a ToolkitException is thrown with reason code BAD_INPUT_PARAMETER

6.2.5.19.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	Null value2
	NullPointerException is thrown
	

	2
	value2Offset (value2.length

value2.length = 5

value2Offset = 5

value2Length = 1
	ArrayIndexOutOfBoundsException is thrown
	

	3

	value2Offset < 0

value2.length = 5

value2Offset = -1

value2Length = 1
	ArrayIndexOutOfBoundsException is thrown
	

	4
	value2Length > value2.length

value2.length = 5

value2Offset = 0

value2Length = 6
	ArrayIndexOutOfBoundsException is thrown
	

	5
	value2Offset + value2Length > value2.length

value2.length = 5

value2Offset = 3

value2Length = 3
	ArrayIndexOutOfBoundsException is thrown
	

	6
	value2Length < 0

value2.length = 5

value2Offset = 0

value2Length = -1
	ArrayIndexOutOfBoundsException is thrown
	

	7
	Handler overflow

value2.length = 254

value2Offset = 0

value2Length = 254
	ToolkitException.HANDLER_OVERFLOW is thrown
	

	8
	Bad parameter

value2.length = 256

value2Offset = 0

value2Length = 256
	ToolkitException.BAD_INPUT_PARAMETER is thrown
	

	9
	clear the handler, append the handler with TLVs:

81 03 11 22 33

82 02 99 77
	
	

	
	Select Command Details TLV
	
	

	
	Successful call

tag = 04

value1 = 05

value2 = FF FE … F8

value2Offset = 0

value2Length = 8
	
	

	
	Verify Current TLV: Call getValueLength()
	Result is 03h
	

	10
	Clear the handler
	
	

	
	Successful call

tag = 04

value1 = 05

value2 = FF FE … F8

value2Offset = 0

value2Length = 8
	
	

	
	Call copy() method
	
	

	
	Compare handler

CompareBuffer = 04 09 05 FF FE … F8
	Result is 00
	

	11
	Successful call

tag = 85h

value1 = 55h

value2 = 00 01 … 07

value2Offset = 2

value2Length = 6
	
	

	
	Call copy() method
	
	

	
	Compare handler

compareBuffer =

04 09 05 FF FE … F8

85 07 55 02 03 … 07
	Result is 00
	

	12
	Successful call

tag = 01

value1 = 44h

value2 = 11 22 … 88

value2Offset = 2

value2Length = 4
	
	

	
	Call copy() method
	
	

	
	Compare handler

CompareBuffer =

04 09 05 FF FE … F8

85 07 55 02 03 … 07

01 05 44 33 44 55 66
	Result is 00
	

	13
	Clear the handler
	
	

	
	Successful call

tag = 04

value1 = 00

value2 = 01 … 7F

value2Offset = 0

value2Length = 7Fh
	
	

	
	Call copy() method
	
	

	
	Compare handler

compareBuffer = 04 81 80 00 01…7F
	Result is 00
	

6.2.6.2.1
Conformance requirement:

The method with following header shall compliant to its definition in the API.

public static boolean check(byte[] mask,

short offset,

short length)

throws
java.lang.NullPointerException,

java.lang.ArrayIndexOutOfBoundsException,

ToolkitException
Normal execution

CRRN1: The method checks all the facilities corresponding to bits set to 1 in the mask buffer: returns true if they are all supported and false if not.

CRRN2: The method returns true if the length to check is 0.

Parameters error

CRRP1: The method shall throw java.lang.NullPointerException if mask is null.

CRRP2: The method shall throw java.lang.ArrayIndexOutOfBoundsException if offset or length or both would cause access outside array bounds.

CRRP3: The method shall throw ME_PROFILE_NOT_AVAILABLE ToolkitException if Terminal Profile data are not available.

Context errors

No requirements

6.2.7.7.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public short getLength()

throws ToolkitException

Normal execution

CRRN1: returns the length in bytes of the TLV list.

Parameter errors

No requirements

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException.HANDLER_NOT_AVAILABLE.

6.2.7.8.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public short copy(byte[] dstBuffer,

short dstOffset,

short dstLength)

 throws java.lang.NullPointerException,

java.lang.ArrayIndexOutOfBoundsException,

ToolkitException

Normal execution

CRRN1: copies the simple TLV list contained in the handler to the destination byte array.

CRRN2: returns dstOffset + dstLength.

Parameter errors

CRRP1: if dstBuffer is null a NullPointerException is thrown.

CRRP2: if dstOffset or dstLength or both would cause access outside array bounds, or if dstLength is negative, an ArrayIndexOutOfBoundsException is thrown.

CRRP3: if dstLength is grater than the length of the simple TLV List, an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException. OUT_OF_TLV_BOUNDARIES.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

6.2.7.9.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public byte findTLV(byte tag, byte occurrence)

throws ToolkitException

Normal execution

Looks for the indicated occurrence of a TLV element from the beginning of the TLV list (handler buffer):

CRRN1: the method is successful if the required occurrence exists then the corresponding TLV becomes current.

CRRN2: if the method is successful then it returns TLV_FOUND_CR_SET when Comprehension Required flag is set.

CRRN3: if the method is successful then it returns TLV_FOUND_CR_NOT_SET when Comprehension Required flag is not set.

CRRN4: if the required occurrence of the TLV element does not exist, the current TLV is no longer defined and TLV_NOT_FOUND is returned.

CRRN5: The search method is comprehension required flag independent.

Parameter errors

CRRP1: if an input parameter is not valid (e.g. occurrence = 0) an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException BAD_INPUT_PARAMETER.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

6.2.7.15.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public short findAndCopyValue(byte tag,

 byte occurence,

 short valueOffset,

 byte[] dstBuffer,

 short dstOffset,

 short dstLength)

 throws java.lang.NullPointerException,

 java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException

Normal execution

CRRN1: looks for the indicated occurrence of a TLV element from the beginning of a TLV list and copy its value into a destination buffer.

CRRN2: if no TLV element is found, the UNAVAILABLE_ELEMENT exception is thrown and the current TLV is no longer defined.

CRRN3: if the method is successful then the corresponding TLV becomes current and dstOffset + dstLength is returned.

CRRN4: The search method is comprehension required flag independent.

Parameter errors

CRRP1: if dstBuffer is null NullPointerException shall be thrown.

CRRP2: if dstOffset or dstLength or both would cause access outside array bounds, or if dstLength is negative ArrayIndexOutOfBoundsException shall be thrown.

CRRP3: if valueOffset, dstLength or both are out of the current TLV an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException OUT_OF_TLV_BOUNDARIES.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

6.2.7.16.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public byte findAndCompareValue(byte tag,

 byte[] compareBuffer,

 short compareOffset)

throws
java.lang.NullPointerException,

java.lang.ArrayIndexOutOfBoundsException,

ToolkitException

Normal execution

Looks for the first occurrence of a TLV element from beginning of a TLV list and compare its value with a buffer:

CRRN1: if no TLV element is found, the UNAVAILABLE_ELEMENT exception is thrown and the current TLV is no longer defined.

CRRN2: if the method is successful then the corresponding TLV becomes current.

CRRN3: if identical returns 0.

CRRN4: if the first miscomparing byte in simple TLV is less than that in compareBuffer returns -1.

CRRN5: if the first miscomparing byte in simple TLV is greater than that in compareBuffer returns 1.

CRRN6: The search method is comprehension required flag independent.

Parameter errors

CRRP1: if compareBuffer is null NullPointerException shall be thrown.

CRRP2: if compareOffset would cause access outside array bounds ArrayIndexOutOfBoundsException shall be thrown.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

6.2.7.18.1
Conformance requirement:

The method with following header shall be compliant to its definition in the API.

void appendArray(byte[] buffer,

 short offset,

 short length)

 throws
 java.lang.NullPointerException,

 java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException

Normal execution

CRRN1: appends a buffer into the Edithandler buffer

CRRN2: a successful append does not modify the TLV selected

Parameters error

CRRP1: if buffer is null, a java.lang.NullPointerException is thrown

CRRP2: if offset or length or both would cause access outside the array bounds, or if length is negative, a java.lang.ArrayIndexOutOfBoundsException is thrown.

Context errors

CRRC1: if the EditHandler buffer is too small to append the requested data, a ToolkitException is thrown with reason code HANDLER_OVERFLOW

CRRC2: if the EditHandler buffer is busy, a ToolkitException is thrown with reason code HANDLER_NOT_AVAILABLE

6.2.7.18.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	Null buffer
	NullPointerException is thrown
	

	2
	offset > buffer.length

buffer.length = 5

offset = 6

length = 0
	ArrayIndexOutOfBoundsException is thrown
	

	3
	offset < 0

buffer.length = 5

offset = -1

length = 1
	ArrayIndexOutOfBoundsException is thrown
	

	4
	length > buffer.length

buffer.length = 5

offset = 0

length = 6
	ArrayIndexOutOfBoundsException is thrown
	

	5
	offset + length > buffer.length

buffer.length = 5

offset = 3

length = 3
	ArrayIndexOutOfBoundsException is thrown
	

	6
	length < 0

buffer.length = 5

offset = 0

length = -1
	ArrayIndexOutOfBoundsException is thrown
	

	7
	Handler overflow

buffer.length = 256

offset = 0

length = 256
	ToolkitException.HANDLER_OVERFLOW is thrown
	

	8
	Initialise handler
	
	

	
	Select Command Details TLV
	
	

	
	Successful call

buffer = FF FE … F8

offset = 0

length = 8
	
	

	
	Verify Current TLV: Call getValueLength()
	Result is 03h
	

	9
	Clear the handler
	
	

	
	Successful call

buffer = FF FE … F8

offset = 0

length = 8
	
	

	
	Call copy() method
	
	

	
	Compare the arrays

compareBuffer = FF FE … F8
	Result of javacard.framework.Util.arrayCompare() is 00h
	

	10
	Successful call

buffer = 00 01 … 07

offset = 2

length = 6
	
	

	
	Call copy() method
	
	

	
	Compare the arrays

compareBuffer = FF FE … F8 02 03 … 07
	Result of javacard.framework.Util.arrayCompare() is 00h
	

	11
	Successful call

buffer = 11 22 … 88

offset = 2

length = 4
	
	

	
	Call copy() method
	
	

	
	Compare the arrays

compareBuffer = FF FE … F8 02 03 … 07 33 44 55 66
	Result of javacard.framework.Util.arrayCompare() is 00h
	

	12
	Clear the handler
	
	

	
	Successful call
buffer = 00 01 … FC

offset = 0

length = 253
	
	

	
	Call getLength() method
	result = 253
	

	
	Call copy() method
	
	

	
	Compare handler

compareBuffer = 00 01 … FC
	Result of javacard.framework.Util.arrayCompare() is 00h
	

6.2.7.19.1
Conformance requirement:

The method with following header shall be compliant to its definition in the API.

void appendTLV
(byte tag, byte value)

throws ToolkitException

Normal execution

CRRN1: Appends a TLV element to the current TLV list (1-byte element).

CRRN2: A successful append does not modify the TLV selected.

Parameters error

No requirements

Context errors

CRRC1: if the EditHandler buffer is too small to append the requested data, a ToolkitException is thrown with reason code HANDLER_OVERFLOW

CRRC2: if the EditHandler buffer is busy, a ToolkitException is thrown with reason code HANDLER_NOT_AVAILABLE

6.2.7.20.1
Conformance requirements:

The method with following header shall be compliant to its definition in the API.

void appendTLV
(byte tag,

 byte value)

 throws ToolkitException

Normal execution

CRRN1: Appends a TLV element to the current TLV list (2-byte element).

CRRN2: A successful append does not modify the TLV selected.

Parameters error

No requirements

Context errors

CRRC1: if the EditHandler buffer is too small to append the requested data, a ToolkitException is thrown with reason code HANDLER_OVERFLOW

CRRC2: if the EditHandler buffer is busy, a ToolkitException is thrown with reason code HANDLER_NOT_AVAILABLE

6.2.7.21.1
Conformance requirement:

The method with following header shall be compliant to its definition in the API.

void appendTLV
(byte tag,

 byte[] value,

 short valueoffset,

 short valuelength)

 throws
 java.lang.NullPointerException,

 java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException

Normal execution

CRRN1: Appends a TLV element to the current TLV list (byte-array element).

CRRN2: A successful append does not modify the TLV selected.

Parameters error

CRRP1: if value is null, a java.lang.NullPointerException is thrown

CRRP2: if valueoffset or valuelength or both would cause access outside the array bounds, or if length is negative, a java.lang.ArrayIndexOutOfBoundsException is thrown.

Context errors

CRRC1: if the EditHandler buffer is too small to append the requested data, a ToolkitException is thrown with reason code HANDLER_OVERFLOW

CRRC2: if the EditHandler buffer is busy, a ToolkitException is thrown with reason code HANDLER_NOT_AVAILABLE

CRRC3: if valuelength is greater than 255, a ToolkitException is thrown with reason code BAD_INPUT_PARAMETER

6.2.7.21.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	Null value
	NullPointerException is thrown
	

	2
	valueOffset > value.length

value.length = 5

valueOffset = 6

valueLength = 0
	ArrayIndexOutOfBoundsException is thrown
	

	3

	valueOffset < 0

value.length = 5

valueOffset = -1

valueLength = 1
	ArrayIndexOutOfBoundsException is thrown
	

	4
	valueLength > value.length

value.length = 5

valueOffset = 0

valueLength = 6
	ArrayIndexOutOfBoundsException is thrown
	

	5
	valueOffset + valueLength > value.length

value.length = 5

valueOffset = 3

valueLength = 3
	ArrayIndexOutOfBoundsException is thrown
	

	6
	valueLength < 0

value.length = 5

valueOffset = 0

valueLength = -1
	ArrayIndexOutOfBoundsException is thrown
	

	7
	Handler overflow

value.length = 254

valueOffset = 0

valueLength = 254
	ToolkitException.HANDLER_OVERFLOW is thrown
	

	8
	Bad parameter

value.length = 256

valueOffset = 0

valueLength = 256
	ToolkitException.BAD_INPUT_PARAMETER is thrown
	

	9
	Initialise handler
	
	

	
	Select Command Details TLV
	
	

	
	Successful call

tag = 04

value = FF FE … F8

valueOffset = 0

valueLength = 8
	
	

	
	Verify Current TLV: Call getValueLength()
	Result is 03h
	

	10
	Clear the handler
	
	

	
	Successful call

tag = 04

value = FF FE … F8

valueOffset = 0

valueLength = 8
	
	

	
	Call copy() method
	
	

	
	Compare the arrays

compareBuffer = 04 08 FF FE … F8
	Result of javacard.framework.Util.arrayCompare() is 00h
	

	11
	Successful call

tag = 85h

value = 00 01 … 07

valueOffset = 2

valueLength = 6
	
	

	
	Call copy() method
	
	

	
	Compare the arrays

compareBuffer = 04 08 FF FE … F8 85 06 02 03 … 07
	Result of javacard.framework.Util.arrayCompare() is 00h
	

	12
	Successful call

tag = 01

value = 11 22 … 88

valueOffset = 2

valueLength = 4
	
	

	
	Call copy() method
	
	

	
	Compare the arrays

compareBuffer = 04 08 FF FE … F8 85 06 02 03 … 07 01 04 33 44 55 66
	Result of javacard.framework.Util.arrayCompare() is 00h
	

	13
	Clear the handler
	
	

	
	Successful call

tag = 04

value = 00 01 … 7F

valueOffset = 0

valueLength = 80h
	
	

	
	Call copy() method
	
	

	
	Compare the arrays

compareBuffer = 04 81 80 00 01…7F
	Result of javacard.framework.Util.arrayCompare() is 00h
	

	14
	Clear the handler
	
	

	
	Successful call

tag = 04

value = 00 01 … F9

valueOffset = 0

valueLength = 250
	
	

	
	Call getLength() method
	result = 253
	

	
	Call copy() method
	
	

	
	Compare handler

compareBuffer = 04 81 FA 00 01…F9
	Result of javacard.framework.Util.arrayCompare() is 00h
	

6.2.7.22.1
Conformance requirement:

The method with following header shall be compliant to its definition in the API.

void appendTLV
(byte tag,

 byte value1

 byte[] value2,

 short value2offset,

 short value2length)

 throws
 java.lang.NullPointerException,

 java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException

Normal execution

CRRN1: Appends a TLV element to the current TLV list (1 byte and a byte-array element).

CRRN2: A successful append does not modify the TLV selected.

Parameters error

CRRP1: if value2 is null, a java.lang.NullPointerException is thrown

CRRP2: if value2offset or value2length or both would cause access outside the array bounds, or if length is negative, a java.lang.ArrayIndexOutOfBoundsException is thrown.

Context errors

CRRC1: if the EditHandler buffer is too small to append the requested data, a ToolkitException is thrown with reason code HANDLER_OVERFLOW

CRRC2: if the EditHandler buffer is busy, a ToolkitException is thrown with reason code HANDLER_NOT_AVAILABLE

CRRC3: if valuelength is greater than 255, a ToolkitException is thrown with reason code BAD_INPUT_PARAMETER

6.2.7.22.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	Null value2
	NullPointerException is thrown
	

	2
	value2Offset > value2.length

value2.length = 5

value2Offset = 6

value2Length = 0
	ArrayIndexOutOfBoundsException is thrown
	

	3

	value2Offset < 0

value2.length = 5

value2Offset = -1

value2Length = 1
	ArrayIndexOutOfBoundsException is thrown
	

	4
	value2Length > value2.length

value2.length = 5

value2Offset = 0

value2Length = 6
	ArrayIndexOutOfBoundsException is thrown
	

	5
	value2Offset + value2Length > value2.length

value2.length = 5

value2Offset = 3

value2Length = 3
	ArrayIndexOutOfBoundsException is thrown
	

	6
	value2Length < 0

value2.length = 5

value2Offset = 0

value2Length = -1
	ArrayIndexOutOfBoundsException is thrown
	

	7
	Handler overflow

value2.length = 254

value2Offset = 0

value2Length = 254
	ToolkitException.HANDLER_OVERFLOW is thrown
	

	8
	Bad parameter

value2.length = 256

value2Offset = 0

value2Length = 256
	ToolkitException.BAD_INPUT_PARAMETER is thrown
	

	9
	Initialise handler
	
	

	
	Select Command Details TLV
	
	

	
	Successful call

tag = 04

value1 = 05

value2 = FF FE … F8

value2Offset = 0

value2Length = 8
	
	

	
	Verify Current TLV: Call getValueLength()
	Result is 03h
	

	10
	Clear the handler
	
	

	
	Successful call

tag = 04

value1 = 05

value2 = FF FE … F8

value2Offset = 0

value2Length = 8
	
	

	
	Call copy() method
	
	

	
	Compare the arrays

CompareBuffer = 04 09 05 FF FE … F8
	Result of javacard.framework.Util.arrayCompare() is 00h
	

	11
	Successful call

tag = 85h

value1 = 55h

value2 = 00 01 … 07

value2Offset = 2

value2Length = 6
	
	

	
	Call copy() method
	
	

	
	Compare the arrays

compareBuffer =

04 09 05 FF FE … F8

85 07 55 02 03 … 07
	Result of javacard.framework.Util.arrayCompare() is 00h
	

	12
	Successful call

tag = 01

value1 = 44h

value2 = 11 22 … 88

value2Offset = 2

value2Length = 4
	
	

	
	Call copy() method
	
	

	
	Compare the arrays

CompareBuffer =

04 09 05 FF FE … F8

85 07 55 02 03 … 07

01 05 44 33 44 55 66
	Result of javacard.framework.Util.arrayCompare() is 00h
	

	13
	Clear the handler
	
	

	
	Successful call

tag = 04

value1 = 00

value2 = 01 … 7F

value2Offset = 0

value2Length = 7Fh
	
	

	
	Call copy() method
	
	

	
	Compare the arrays

compareBuffer = 04 81 80 00 01…7F
	Result of javacard.framework.Util.arrayCompare() is 00h
	

	14
	Clear the handler
	
	

	
	Successful call

tag = 04

value1 = 00

value2 = 01 … F9

value2Offset = 0

value2Length = 249
	
	

	
	Call getLength() method
	result = 253
	

	
	Call copy() method
	
	

	
	Compare handler

compareBuffer = 04 81 FA 00 01…F9
	Result of javacard.framework.Util.arrayCompare() is 00h
	

6.2.8.1.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	Build and send a DISPLAY TEXT command

qualifier = 0

dcs = 4

buffer = "Text"
	
	DISPLAY TEXT Proactive command

	
	Terminal Response with 11 additional bytes

Result TLV = 03 0C 01 01 23 45 67 89 AB CD EF 01 23 45
	
	

	
	NULL as parameter to dstBuffer

dstBuffer = NULL
	NullPointerException is thrown
	

	2
	dstOffset > dstBuffer.length

dstBuffer.length = 10

dstOffset = 11

dstLength = 0
	ArrayIndexOutOfBoundsException is thrown
	

	3
	dstOffset < 0

dstBuffer.length = 10

dstOffset = -1

dstLength = 1
	ArrayIndexOutOfBoundsException is thrown
	

	4
	dstLength > dstBuffer.length

dstBuffer.length = 10

dstOffset = 0

dstLength = 11
	ArrayIndexOutOfBoundsException is thrown
	

	5
	dstOffset + dstLength > dstBuffer.length

dstBuffer.length = 10

dstOffset = 6

dstLength = 5
	ArrayIndexOutOfBoundsException is thrown
	

	6
	dstLength < 0

dstBuffer.length = 10

dstOffset = 6

dstLength = -1
	ArrayIndexOutOfBoundsException is thrown
	

	7
	Build and send a DISPLAY TEXT command
	
	DISPLAY TEXT Proactive command

	
	Terminal Response with 5 additional bytes

Result TLV = 03 06 01 01 23 45 67 89

	
	

	
	Successfull call, dstBuffer is the whole buffer

dstBuffer.length = 5

dstOffset = 0

dstLength = 5
	result of copyAdditionalInformation() is 05h.
	

	8
	Compare dstBuffer using arrayCompare()

src = {01, 23, 45, 67, 89}

srcOffset = 00

dest = dstBuffer

destOffset = 0

length = 5
	result of arrayCompare() is 00h.
	

	9
	Call the getValueLength() method

	Result is 06h.
	

	10
	Build and send a DISPLAY TEXT command
	
	DISPLAY TEXT Proactive command

	
	Terminal Response with 6 additional bytes

Result TLV = 03 07 01 AB CD EF FE DC BA
	
	

	
	Successfull call, dstBuffer is part of a buffer

dstBuffer.length = 7

dstOffset = 2

dstLength = 5
	result of copyAdditionalInformation() is 07h.
	

	11
	Compare dstBuffer using arrayCompare()

src = {AB, CD, EF, FE, DC}

srcOffset = 00

dest = dstBuffer

destOffset = 2

length = 5
	result of arrayCompare() is 00h.
	

	12
	Build and send a DISPLAY TEXT command
	
	DISPLAY TEXT Proactive command

	
	Terminal Response with 7 additional bytes

Result TLV = 03 08 01 FE DC BA 98 76 54 32
	
	

	
	Successfull call, dstBuffer is part of a buffer

dstBuffer.length = 7

dstOffset = 0

dstLength = 5
	result of copyAdditionalInformation() is 05h.
	

	13
	Compare dstBuffer using arrayCompare()

src = {FE, DC, BA, 98, 76}

srcOffset = 00

dest = dstBuffer

destOffset = 0

length = 5
	result of arrayCompare() is 00h.
	

	14
	Build and send a DISPLAY TEXT command
	
	DISPLAY TEXT Proactive command

	
	Terminal Response with 8 additional bytes

Result TLV = 03 09 01 00 11 22 33 44 55 66 77
	
	

	
	Successfull call, dstBuffer is the whole buffer

dstBuffer.length = 9

dstOffset = 2

dstLength = 5
	result of copyAdditionalInformation() is 07h.
	

	15
	Compare dstBuffer using arrayCompare()

src = {00, 11, 22, 33, 44}

srcOffset = 00

dest = dstBuffer

destOffset = 2

length = 5
	result of arrayCompare() is 00h.
	

	16
	Build and send a DISPLAY TEXT command
	
	DISPLAY TEXT Proactive command

	
	Terminal Response with F2h additional bytes

Result TLV = 03 81 F3 01 00 01 02 03…
	
	

	
	Successfull call to the method

dstBuffer.length = F2h

dstOffset = 0

dstLength = F2h
	result of copyAdditionalInformation() is F2h.
	

	17
	Compare dstBuffer using arrayCompare()

src = {00, 01, 02, 03, 04…}

srcOffset = 00

dest = dstBuffer

destOffset = 0

length = F2h
	result of arrayCompare() is 00h.
	

	18
	Call the getValueLength() method

	Result is F3h.
	

	19
	Build and send a DISPLAY TEXT command
	
	DISPLAY TEXT Proactive command

	
	Terminal Response with 5 additional bytes

Result TLV = 03 06 01 00 11 22 33 44

	
	

	
	dstLength > data available

dstBuffer.length = 6

dstOffset = 0

dstLength = 6
	OUT_OF_TLV_BOUNDARIES ToolkitException is thrown
	

	20
	Build and send a DISPLAY TEXT command
	
	DISPLAY TEXT Proactive command

	
	Terminal Response with 5 additional bytes

Result TLV = 03 06 01 00 11 22 33 44
	
	

	
	Initialise dstBuffer

dstBuffer = {00h, 01h, 02h, 03h…}
	
	

	
	Call the copyAdditionalInformation() method

dstBuffer.length = 20

dstOffset = 5

dstLength = 5
	
	

	
	Compare dstBuffer using arrayCompare()

src = {

00h, 01h, 02h, 03h, 04h,

00h, 11h, 22h, 33h, 44h,

0Ah, 0Bh, 0Ch, 0Dh, 0Eh,

0Fh, 10h, 11h, 12h, 13h}

srcOffset = 0

dest = dstBuffer

destOffset = 0

length = 20
	result of arrayCompare() is 00h
	

	21
	Build and send a DISPLAY TEXT command
	
	DISPLAY TEXT Proactive command

	
	Terminal Response with 2 Result TLV elements

1st Result TLV = 03 06 01 01 23 45 67 89

2nd Result TLV = 03 01 00
	
	

	
	Successfull call to copyAdditionalInformation()

dstBuffer.length = 5

dstOffset = 0

dstLength = 5
	result of copyAdditionalInformation() is 05h.
	

	22
	Compare dstBuffer using arrayCompare()

src = {01, 23, 45, 67, 89}

srcOffset = 00

dest = dstBuffer

destOffset = 0

length = 5
	result of arrayCompare() is 00h.
	

	23
	Call the getValueLength() method

	Result is 06h.
	

	24
	Build and send a DISPLAY TEXT command

	
	DISPLAY TEXT Proactive command

	
	Terminal Response without Result Simple TLV

	ToolkitException.UNAVAILABLE_ELEMENT is thrown by send()
	

	
	ProactiveResponseHandler, getTheHandler call copyAdditionalInformation()
	ToolkitException.UNAVAILABLE_ELEMENT is thrown
	

6.2.8.2.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	Build and send a GET INPUT command

qualifier = 00h

dcs = 04h

buffer = 'Text'

minRespLength = 00h

maxRespLength = FFh
	
	GET INPUT Proactive command

	
	Terminal Response

Text String TLV = 0D 02 04 41
	
	

	
	ProactiveResponseHandler.getTheHandler() ; call the copyTextString() method with a null dstBuffer

dstBuffer = null

dstOffset = 0
	NullPointerException is thrown
	

	2
	Build and send a GET INPUT command
	
	GET INPUT Proactive command

Proactive

	
	Terminal Response

Text String TLV = 0D 04 04 "ABC"
	
	

	
	dstOffset + text length > dstBuffer.length

dstBuffer.length = 04h

dstOffset = 02h
	ArrayIndexOutOfBoundsException is thrown
	

	3
	dstOffset < 0

dstBuffer.length = 04h

dstOffset = -1
	ArrayIndexOutOfBoundsException is thrown
	

	4
	Build and send a DISPLAY TEXT command

qualifier = 00h

dcs = 04h

buffer = 'Text'
	
	DISPLAY TEXT

Proactive command

	
	Terminal Response without Text String TLV

	
	

	
	ProactiveResponseHandler.getTheHandler() ; call the copyTextString() method

	UNAVAILABLE_ELEMENT ToolkitException is thrown
	

	5
	Build and send a GET INPUT command
	
	GET INPUT Proactive command

Proactive

	
	Terminal Response with a null Text String TLV

Text String TLV = 0D 00
	
	

	
	Initialise dstBuffer

dstBuffer = {F00h, F01h, F02h, F03h}
	
	

	
	Call the copyTextString() method

dstBuffer.length = 04h

dstOffset = 02h
	Result of copyTextString() is 02h
	

	6
	Compare dstBuffer using arrayCompare()

src = {0F0h, 0F1h, 0F2h, 0F3h}

srcOffset = 00h

dest = dstBuffer

destOffset = 00h

length = 04h
	Result of arrayCompare() is 00h
	

	7
	Build and send a GET INPUT command
	
	GET INPUT Proactive command

Proactive

	
	Terminal Response with text length = 01h

Text String TLV = 0D 02 04 41
	
	

	
	Initialise dstBuffer

dstBuffer = {00h, 01h, 02h, 03h}
	
	

	
	Call the copyTextString() method

dstBuffer.length = 04h

dstOffset = 00h
	Result of copyTextString() is 01h
	

	8
	Compare dstBuffer using arrayCompare()

src = {41h, 01h, 02h, 03h}

srcOffset = 00h

dest = dstBuffer

destOffset = 00h

length = 04h
	Result of arrayCompare() is 00h
	

	9
	Build and send a GET INPUT command
	
	GET INPUT Proactive command

Proactive

	
	Terminal Response with text length = 02h

Text String TLV = 0D 03 04 42 43
	
	

	
	Initialise dstBuffer

dstBuffer = {00h, 01h, 02h, 03h}
	
	

	
	Call the copyTextString() method

dstBuffer.length = 04h

dstOffset = 02h
	Result of copyTextString() is 04h
	

	10
	Compare dstBuffer using arrayCompare()

src = {00h, 01h, 42h, 43h}

srcOffset = 00h

dest = dstBuffer

destOffset = 00h

length = 04h
	Result of arrayCompare() is 00h
	

	11
	Call the getValueLength() method

	Result is 03h
	

	12
	Build and send a GET INPUT command
	
	GET INPUT Proactive command

	
	Terminal Response with text length = 7Eh

Text String TLV = 0D 7F 04 01 02 … 7E
	
	

	
	Initialise dstBuffer

dstBuffer = {00h, 00h … 00h}
	
	

	
	Call the copyTextString() method

dstBuffer.length = 7Eh

dstOffset = 00h
	Result of copyTextString() is 7Eh
	

	13
	Compare dstBuffer using arrayCompare()

src = {01h, …, 7Eh}

srcOffset = 00h

dest = dstBuffer

destOffset = 00h

length = 7Eh
	Result of arrayCompare() is 00h
	

	14
	Call the getValueLength() method

	Result is 7Fh
	

	15
	Build and send a GET INPUT command
	
	GET INPUT Proactive command

	
	Terminal Response with text length = 7Fh

Text String TLV = 0D 81 80 04 01 02 …7F
	
	

	
	Initialise dstBuffer

dstBuffer = {00h, 01h … FFh}
	
	

	
	Call the copyTextString() method

dstBuffer.length = FFh

dstOffset = 10h
	Result of copyTextString() is 8Fh
	

	16
	Compare dstBuffer using arrayCompare()

src = {00h, 01h,… 0Fh,

01h, …7Fh, 8Fh, … FFh}

srcOffset = 00h

dest = dstBuffer

destOffset = 00h

length = FFh
	Result of arrayCompare() is 00h
	

	17
	Build and send a GET INPUT command
	
	GET INPUT Proactive command

	
	Terminal Response with text length = EFh

Text String TLV = 0D 81 F0 04 01 02 … EF
	
	

	
	Initialise dstBuffer

dstBuffer = {00h, 00h … 00h}
	
	

	
	Call the copyTextString() method

dstBuffer.length = FFh

dstOffset = 00h
	Result of copyTextString() is EFh
	

	18
	Compare dstBuffer using arrayCompare()

src = {01h, …EFh, 00h … 00h }

srcOffset = 00h

dest = dstBuffer

destOffset = 00h

length = FFh
	Result of arrayCompare() is 00h
	

	19
	Build and send a GET INPUT command
	
	GET INPUT Proactive command

	
	Terminal Response with two Text String TLV

1st Text String TLV = 0D 03 04 42 43

2nd Text String TLV = 0D 02 04 44
	
	

	
	Initialise dstBuffer

dstBuffer = {00h, 01h, 02h, 03h}
	
	

	
	Call the copyTextString() method

dstBuffer.length = 04h

dstOffset = 02h
	Result of copyTextString() is 04h
	

	20
	Compare dstBuffer using arrayCompare()

src = {00h, 01h, 42h, 43h}

srcOffset = 00h

dest = dstBuffer

destOffset = 00h

length = 04h
	Result of arrayCompare() is 00h
	

	21
	Call the getValueLength() method

	Result is 03h
	

6.2.8.5.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	Build and send a DISPLAY TEXT command
	
	DISPLAY TEXT Proactive command

	
	Terminal Response (no Item Identifier TLV available)

	
	

	
	Call to getItemIdentifier() with unavailable Item Identifier TLV
	UNAVAILABLE_ELEMENT ToolkitException is thrown
	

	2
	Build and send a SELECT ITEM command with 2 items (ID=01, 02)

	
	SELECT ITEM Proactive command

	
	Terminal Response with Item 1 selected

Item Identifier TLV = 10 01 01
	
	

	
	Call the getItemIdentifier() method

	Result is 01h
	

	3
	Call the getValueByte() method

valueOffset = 00h
	Result is 01h
	

	4
	Build and send a SELECT ITEM command with 3 items (ID=03, 05, 07)

	
	SELECT ITEM Proactive command

	
	Terminal Response with Item 5 selected

Item Identifier TLV = 10 01 05
	
	

	
	Call the getItemIdentifier() method
	Result is 05h
	

	5
	Call the getValueByte() method

valueOffset = 00h
	Result is 05h
	

	6
	Build and send a SELECT ITEM command with 3 items (ID=FDh, FEh, FFh)

	
	SELECT ITEM Proactive command

	
	Terminal Response with Item FFh selected

Item Identifier TLV = 10 01 FF
	
	

	
	Call the getItemIdentifier() method
	Result is FFh
	

	7
	Call the getValueByte() method

valueOffset = 00h
	Result is FFh
	

	8
	Build and send a SELECT ITEM command with 3 items (ID=FDh, FEh, FFh)

	
	SELECT ITEM Proactive command

	
	Terminal Response with 2 Item Identifier TLV

1st Item Identifier TLV = 10 01 FFh

2nd Item Identifier TLV = 10 01 FEh
	
	

	
	Call the getItemIdentifier() method
	Result is FFh
	

	9
	Call the getValueByte() method

valueOffset = 00h
	Result is FFh
	

	10
	Build and send a DISPLAY TEXT command
	
	DISPLAY TEXT Proactive command

	
	Terminal Response without item identifier in the Item Identifier Simple TLV

Item Identifier TLV = 10 00
	
	

	
	Call to getItemIdentifier()
	OUT_OF_TLV_BOUNDARIES ToolkitException is thrown
	

6.2.8.6.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public byte getTextStringCodingScheme()

 throws ToolkitException

Normal execution

CRRN1: This method returns the data coding scheme from the first Text String TLV element.

CRRN2: if a Text String TLV element is available, it becomes the TLV selected.

Parameter errors

No requirements

Context errors

CRRC1: A ToolkitException.UNAVAILABLE_ELEMENT shall be thrown in case of unavailable Text String TLV element.

CRRC2: A ToolkitException.OUT_OF_TLV_BOUNDARIES shall be thrown if the Text String TLV is present with a length of 0.

6.2.8.6.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	Build and send a DISPLAY TEXT command

	
	DISPLAY TEXT Proactive command

	
	Terminal Response (no Text String TLV element available)

	
	

	
	Call to getTextStringCodingScheme() with unavailable Text String TLV
	UNAVAILABLE_ELEMENT ToolkitException is thrown
	

	2
	Build and send a GET INPUT command

	
	GET INPUT Proactive command

	
	Terminal Response with a null Text String TLV

Text String TLV = 0D 00
	
	

	
	Call the getTextStringCodingScheme() method

	OUT_OF_TLV_BOUNDARIES ToolkitException is thrown
	

	3
	Build and send a GET INPUT command

	
	GET INPUT Proactive command

	
	Terminal Response with text length = 01h, DCS = 04h

Text String TLV = 0D 02 04 "A"
	
	

	
	Call the getTextStringCodingScheme() method

	Result is 04h
	

	4
	Call the getValueLength() method

	Result is 02h
	

	5
	Build and send a GET INPUT command

	
	GET INPUT Proactive command

	
	Terminal Response with text length = 02h, DCS = 00h

Text String TLV = 0D 03 00 "BB"
	
	

	
	Call the getTextStringCodingScheme() method

	Result is 00h
	

	6
	Call the getValueLength() method

	Result is 03h
	

	7
	Build and send a GET INPUT command

	
	GET INPUT Proactive command

	
	Terminal Response with text length = 7Eh, DCS = 08h

Text String TLV = 0D 7F 08 01 02 … 7E
	
	

	
	Call the getTextStringCodingScheme() method

	Result is 08h
	

	8
	Call the getValueLength() method

	Result is 7Fh
	

	9
	Build and send a GET INPUT command

	
	GET INPUT Proactive command

	
	Terminal Response with text length = 7Fh, DCS = 04h

Text String TLV = 0D 81 80 04 01 02 … 7F
	
	

	
	Call the getTextStringCodingScheme() method

	Result is 04h
	

	10
	Call the getValueLength() method

	Result is 80h
	

	11
	Build and send a GET INPUT command

	
	GET INPUT Proactive command

	
	Terminal Response with text length = EFh, DCS = 08h

Text String TLV = 0D 81 F0 08 01 02 … EE EF
	
	

	
	Call the getTextStringCodingScheme() method

	Result is 08h
	

	12
	Call the getValueLength() method

	Result is F0h
	

	13
	Build and send a GET INPUT command

	
	GET INPUT Proactive command

	
	Terminal Response with 2 Text String TLV

1st Text String TLV = 0D 02 04 41

2nd Text String TLV = 0D 03 08 42 43

	
	

	
	Call the getTextStringCodingScheme() method

	Result is 04h
	

	14
	Call the getValueLength() method

	Result is 02h
	

6.2.8.7.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	Build and send a DISPLAY TEXT command

	
	DISPLAY TEXT Proactive command

	
	Terminal Response (no Text String TLV element available)

	
	

	
	Call to getTextStringLength() with unavailable Text String TLV
	UNAVAILABLE_ELEMENT ToolkitException is thrown
	

	2
	Build and send a GET INPUT command

	
	GET INPUT Proactive command

	
	Terminal Response with a null Text String TLV

Text String TLV = 0D 00
	
	

	
	Call the getTextStringLength() method

	Result is 00h
	

	3
	Call the getValueLength() method

	Result is 00h
	

	4
	Build and send a GET INPUT command

	
	GET INPUT Proactive command

	
	Terminal Response with text length = 01h, DCS = 04h

Text String TLV = 0D 02 04 "A"
	
	

	
	Call the getTextStringLength() method

	Result is 01h
	

	5
	Call the getValueLength() method

	Result is 02h
	

	6
	Build and send a GET INPUT command

	
	GET INPUT Proactive command

	
	Terminal Response with text length = 02h, DCS = 00h

Text String TLV = 0D 03 00 "BB"
	
	

	
	Call the getTextStringLength() method

	Result is 02h
	

	7
	Call the getValueLength() method

	Result is 03h
	

	8
	Build and send a GET INPUT command

	
	GET INPUT Proactive command

	
	Terminal Response with text length = 7Eh, DCS = 08h

Text String TLV = 0D 7F 08 01 02 … 7E
	
	

	
	Call the getTextStringLength() method

	Result is 7Eh
	

	9
	Call the getValueLength() method

	Result is 7Fh
	

	10
	Build and send a GET INPUT command

	
	GET INPUT Proactive command

	
	Terminal Response with text length = 7Fh, DCS = 04h

Text String TLV = 0D 81 80 04 01 02 … 7F
	
	

	
	Call the getTextStringLength() method

	Result is 7Fh
	

	11
	Call the getValueLength() method

	Result is 80h
	

	12
	Build and send a GET INPUT command

	
	GET INPUT Proactive command

	
	Terminal Response with text length = EFh, DCS = 04h

Text String TLV = 0D 81 F0 04 01 02 … EE EF
	
	

	
	Call the getTextStringLength() method

	Result is EFh
	

	13
	Call the getValueLength() method

	Result is F0h
	

	14
	Build and send a GET INPUT command

	
	GET INPUT Proactive command

	
	Terminal Response with 2 Text String TLV

1st Text String TLV = 0D 02 04 41

2nd Text String TLV = 0D 03 08 42 43
	
	

	
	Call the getTextStringLength() method

	Result is 01h
	

	15
	Call the getValueLength() method

	Result is 02h
	

6.2.8.9.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public short getLength()

throws ToolkitException

Normal execution

CRRN1: returns the length in bytes of the TLV list.

Parameter errors

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException.HANDLER_NOT_AVAILABLE.

6.2.8.9.4
Test Coverage

	CRR number
	Test case number

	N1
	1, 2

	C1
	Does not apply for Proactive Response Handler

6.2.8.10.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public short copy(byte[] dstBuffer,

short dstOffset,

short dstLength)

 throws
java.lang.NullPointerException,

 java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException

Normal execution

CRRN1: copies the simple TLV list contained in the handler to the destination byte array.

CRRN2: returns dstOffset + dstLength.

Parameter errors

CRRP1: if dstBuffer is null a NullPointerException is thrown.

CRRP2: if dstOffset or dstLength or both would cause access outside array bounds, or if dstLength is negative, an ArrayIndexOutOfBoundsException is thrown.

CRRP3: if dstLength is grater than the length of the simple TLV List, an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException. OUT_OF_TLV_BOUNDARIES.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

6.2.8.11.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public byte findTLV(byte tag, byte occurrence)

throws ToolkitException

Normal execution

Looks for the indicated occurrence of a TLV element from the beginning of the TLV list (handler buffer):

CRRN1: the method is successful if the required occurrence exists then the corresponding TLV becomes current.

CRRN2: if the method is successful then it returns TLV_FOUND_CR_SET when Comprehension Required flag is set.

CRRN3: if the method is successful then it returns TLV_FOUND_CR_NOT_SET when Comprehension Required flag is not set.

CRRN4: if the required occurrence of the TLV element does not exist, the current TLV is no longer defined and TLV_NOT_FOUND is returned.

CRRN5: The search method is comprehension required flag independent.

Parameter errors

CRRP1: if an input parameter is not valid (e.g. occurrence = 0) an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException BAD_INPUT_PARAMETER.
Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

6.2.8.14.1
Conformance requirement

The method with following header shall be compliant with its definition in the API.

public short copyValue(short valueOffset,

 byte[] dstBuffer,

 short dstOffset,

 short dstLength)

 throws java.lang.NullPointerException,

 java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException

Normal execution

CRRN1: copies a part of the last TLV element which has been found, into a destination. buffer.

CRRN2: returns dstOffset + dstLength.

Parameter errors

CRRP1: if dstBuffer is null NullPointerException is thrown.

CRRP2: if dstOffset or dstLength or both would cause access outside array bounds, or if dstLength is negative ArrayIndexOutOfBoundsException is thrown.

CRRP3: if valueOffset, dstLength or both are out of the current TLV an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException OUT_OF_TLV_BOUNDARIES.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

CRRC2: in case of unavailable TLV element an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException UNAVAILABLE_ELEMENT.

6.2.8.17.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public short findAndCopyValue(byte tag,

 byte occurence,

 short valueOffset,

 byte[] dstBuffer,

 short dstOffset,

 short dstLength)

 throws
 java.lang.NullPointerException,

 java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException

Normal execution

CRRN1: looks for the indicated occurrence of a TLV element from the beginning of a TLV list and copy its value into a destination buffer.

CRRN2: if no TLV element is found, the UNAVAILABLE_ELEMENT exception is thrown and the current TLV is no longer defined.

CRRN3: if the method is successful then the corresponding TLV becomes current and dstOffset + dstLength is returned.

CRRN4: The search method is comprehension required flag independent.

Parameter errors

CRRP1: if dstBuffer is null NullPointerException shall be thrown.

CRRP2: if dstOffset or dstLength or both would cause access outside array bounds, or if dstLength is negative ArrayIndexOutOfBoundsException shall be thrown.

CRRP3: if valueOffset, dstLength or both are out of the current TLV an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException OUT_OF_TLV_BOUNDARIES.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

6.2.8.18.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public byte findAndCompareValue(byte tag,

 byte[] compareBuffer,

 short compareOffset)

throws
java.lang.NullPointerException,

java.lang.ArrayIndexOutOfBoundsException,

ToolkitException

Normal execution

Looks for the first occurrence of a TLV element from beginning of a TLV list and compare its value with a buffer:

CRRN1: if no TLV element is found, the UNAVAILABLE_ELEMENT exception is thrown and the current TLV is no longer defined.

CRRN2: if the method is successful then the corresponding TLV becomes current.

CRRN3: if identical returns 0.

CRRN4: if the first miscomparing byte in simple TLV is less than that in compareBuffer returns -1.

CRRN5: if the first miscomparing byte in simple TLV is greater than that in compareBuffer returns 1.

CRRN6: The search method is comprehension required flag independent.

Parameter errors

CRRP1: if compareBuffer is null NullPointerException shall be thrown.

CRRP2: if compareOffset would cause access outside array bounds ArrayIndexOutOfBoundsException shall be thrown.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

6.2.8.19.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public byte findAndCompareValue(byte tag,

 byte occurence,

 short valueOffset,

 byte[] compareBuffer,

 short compareOffset,

 short compareLength)

 throws
java.lang.NullPointerException,

java.lang.ArrayIndexOutOfBoundsException,

ToolkitException

Normal execution

Looks for the indicated occurrence of a TLV element from the beginning of a TLV list and compare its value with a buffer:

CRRN1: if no TLV element is found, the UNAVAILABLE_ELEMENT exception is thrown and the current TLV is no longer defined.

CRRN2: if the method is successful then the corresponding TLV becomes current.

CRRN3: if identical 0 is returned.

CRRN4: if the first miscomparing byte in simple TLV is less than that in compareBuffer -1 is returned.

CRRN5: if the first miscomparing byte in simple TLV is greater than that in compareBuffer 1 is returned

CRRN6: The search method is comprehension required flag independent.

Parameter errors

CRRP1: if compareBuffer is null NullPointerException shall be thrown.

CRRP2: if compareOffset or compareLength or both would cause access outside array bounds, or if compareLength is negative ArrayIndexOutOfBoundsException shall be thrown.

CRRP3: if valueOffset, compareLength or both are out of the current TLV an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException OUT_OF_TLV_BOUNDARIES.

CRRP4: if an input parameter is not valid (e.g. occurence = 0) an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException BAD_INPUT_PARAMETER.

Context errors

CRRC1: if the handler is busy an instance of ToolkitException shall be thrown. The reason code shall be ToolkitException HANDLER_NOT_AVAILABLE.

6.2.9.1.1
Conformance requirement:

The method with following header shall be compliant to its definition in the API.

public byte allocateTimer()
throws ToolkitException

Normal execution

CRRN1: the returned timer identifier shall be between 01 and 08 inclusive.

CRRN2: the returned timer identifier shall be different from a previously allocated but not released one.

CRRN3: The SIM Toolkit Framework shall trigger the applet when receiving an ENVELOPE(TIMER EXPIRATION) command for the allocated timer.

CRRN4: A call to isEventSet() method for EVENT_TIMER_EXPIRATION should return true if the applet has at least one timer allocated.

Parameters error

No requirements

Context errors

CRRC1: Shall throw a ToolkitException with reason NO_TIMER_AVAILABLE if all the timers are allocated.

CRRC2: Shall throw a ToolkitException with reason NO_TIMER_AVAILABLE if the maximum number of timers have been allocated to this applet according to installation parameter.

6.2.9.2.1
Conformance requirement:

The method with following header shall be compliant to its definition in the API.

public void changeMenuEntry(byte id,

 byte[] menuEntry,

 short offset,

 short length,

 byte nextAction,

 boolean helpSupported,

 byte iconQualifier,

 short iconIdentifier)

 throws

java.lang.NullPointerException,

 java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException

Normal execution

CRRN1: The SIM Toolkit Framework shall dynamically update the menu stored in the ME by issuing a SET UP MENU proactive command.The later will reflect the changes done for the entry. The SIM Toolkit Framework shall use the data of the EF sume file in order to build the SET UP MENU command.

CRRN2: The default state of the changed menu entry is 'enabled'.

CRRN3: a call to isEventSet() method on EVENT_MENU_SELECTION shall return true before and after the call.

CRRN4: if helpSupported was true then a call to isEventSet() method on EVENT_MENU_SELECTION_HELP_REQUEST event shall return true.

CRRN5: if helpSupported was true then after the completion of the SETUP MENU command, if an ENVELOPE(MENU_SELECTION_HELP_REQUEST) command is received by the SIM for this entry, then the SIM Toolkit framework shall trigger the applet.

CRRN6: if help supported was true, the SIM Toolkit Framework shall issue a SETUP MENU command with command qualifier = '80'

CRRN7: if helpSupported was false and if no entries is supporting help then a call to isEventSet() method on EVENT_MENU_SELECTION_HELP_REQUEST event shall return false .

CRRN8: if helpSupported was false and if no entries is supporting help then after the completion of the SETUP MENU command, if an ENVELOPE(MENU_SELECTION_HELP_REQUEST) command is received by the SIM, then the SIM Toolkit framework shall not trigger the applet.

CRRN9: The SIM Toolkit Framework shall supply in the SET UP MENU command with the icon identifier provided in the icon identifier list within the item icon identifier list Simple TLV if all the applets registered to the EVENT_MENU_SELECTION provide it.

CRRN10: The SIM Toolkit Framework shall set in the SET UP MENU command with the Icon list qualifier transmitted to the ME as 'icon is not self explanatory' if one of the applet registered prefers this qualifier.

CRRN11: If Next Action Indicator was different from '00', the SIM Toolkit Framework shall issue a SETUP MENU proactive command containing an Items Next Action Indicator simple TLV with the comprehension flag set to 0 as defined in GSM 11.14 [4].

Parameters error

CRRP1: Shall throw java.lang.NullPointerException - if menuEntry is null

CRRP2: Shall throw java.lang.ArrayIndexOutOfBoundsException - if offset would cause access outside array bounds

CRRP3: Shall throw java.lang.ArrayIndexOutOfBoundsException - if length would cause access outside array bounds

CRRP4: Shall throw java.lang.ArrayIndexOutOfBoundsException - if both offset and length would cause access outside array bounds

Context errors

CRRC1: Shall throw a ToolkitException with MENU_ENTRY_NOT_FOUND reason if the Menu Identifier isn't associated to the calling applet instance.

CRRC2: Shall throw ALLOWED_LENGTH_EXCEEDED if the menu entry string is bigger than the allocated space.

6.2.9.2.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	Applet changes the entry's title by menuEntry buffer, with a greater length than the initial length

1-
ChangeMenuEntry()with parameters:

Id = '02'

MenuEntry = "UseAllBuffer"

Offset = 0

Length = menuEntry.length

NextAction = 0

HelpSupported = false

IconQualifier = 0

IconIdentifier = 0.

2-
isEventSet(EVENT_MENU_SELECTION).

3-
isEventSet(EVENT_MENU_SELECTION_HELP_REQUEST).

	1-
No exception shall be thrown.

2-
shall return true.

3-
shall return false.

	The SIM shall issue a SETUP MENU proactive command which contains the new text for entry ID '02'.

	2
	Changing the title with part of menuEntry buffer

1-
changeMenuEntry()with parameters:

Id = '01'

MenuEntry = "UsePartOfBuffer"

Offset = 3

Length = 12

NextAction = 0

HelpSupported = false

IconQualifier = 0

IconIdentifier = 0.

2-
isEventSet(EVENT_MENU_SELECTION).

3-
isEventSet(EVENT_MENU_SELECTION_HELP_REQUEST)

	1-
No exception shall be thrown.

2-
Shall return true.

3-
Shall return false.

	The SIM shall issue a SETUP MENU proactive command which contains the new text for entry ID '01'.

	3
	Length = 0

1-
changeMenuEntry() for entry '01' and entry '02', with parameters:

Id = '01'/'02'

MenuEntry = "LengthEquals0"

Offset = 0

Length = 0

NextAction = 0

HelpSupported = false

IconQualifier = 0

IconIdentifier = 0.

2-
isEventSet(EVENT_MENU_SELECTION).

3-
isEventSet(EVENT_MENU_SELECTION_HELP_REQUEST).

	1-
No exception shall be thrown.

2-
Shall return true.

3-
shall return false.

	The SIM shall issue a SETUP MENU proactive command which contains for entry '01'and entry '02', no text part.

	4
	Setting a next action indicator != 0

1-
changeMenuEntry()with parameters:

Id = '02'

MenuEntry = "NextActionIndic"

Offset = 0

Length = menuEntry.length

NextAction = '10' (SETUP CALL)

HelpSupported = false

IconQualifier = 0

IconIdentifier = 0

2-
isEventSet(EVENT_MENU_SELECTION).

3-
isEventSet(EVENT_MENU_SELECTION_HELP_REQUEST).

4- changeMenuEntry()with parameters:

Id = '02'

MenuEntry = "NextActionIndic"

Offset = 0

Length = menuEntry.length

NextAction = '10' (SETUP CALL)

HelpSupported = true

IconQualifier = 0

IconIdentifier = 0

	1-
No exception shall be thrown.

2-
Shall return true.

3-
Shall return false.
	The SIM shall issue a SETUP MENU proactive command which contains an Items Next Action Indicator list and which contains a command qualifier '80'.

	5
	Checking applet is triggered by a MENU_SELECTION_HELP_REQUEST

Send ENVELOPE(MENU_SELECTION_HELP_REQUEST) with Item Identifier = '02'
	Applet is trigged by a MENU_SELECTION_HELP_REQUEST and the Item Identifier is 02
	

	6
	help supported=true

1-
changeMenuEntry()with parameters:

Id = '01'

MenuEntry = "HelpSupported"

Offset = 0

Length = menuEntry.length

NextAction = 0

HelpSupported = true

IconQualifier = 0

IconIdentifier = 0

2-
isEventSet(EVENT_MENU_SELECTION).

3-
isEventSet(EVENT_MENU_SELECTION_HELP_REQUEST).

	1-
No exception shall be thrown.

2-
Shall return true.

3-
Shall return true.

	The SIM shall issue a SETUP MENU proactive command which contains a command qualifier '80'.

	7
	Checking applet is triggered by a MENU_SELECTION_HELP_REQUEST

Send ENVELOPE(MENU_SELECTION_HELP_REQUEST) with Item Identifier = '01'
	Applet is trigged by a MENU_SELECTION_HELP_REQUEST and the Item Identifier is 01
	

	8
	Setting icons, help supported = false

1-
changeMenuEntry() for entries '01','02', with parameters:

Id = '01'/'02'

MenuEntry = "IconQualifier"

Offset = 0

Length = menuEntry.length

NextAction = 0

HelpSupported = false

IconQualifier = '01'

IconIdentifier = '02' / '01'

2-
isEventSet(EVENT_MENU_SELECTION).

3-
isEventSet(EVENT_MENU_SELECTION_HELP_REQUEST).

	1-
No exception shall be thrown.

2-
Shall return true.

3-
Shall return false.
	The SIM shall issue a SETUP MENU proactive command which contains an Icon Identifier List.

	9
	MenuEntry is disabled

1-
disableMenuEntry('01').

2-
changeMenuEntry()with parameters:

Id = '01'

MenuEntry = "EnableEntry"

Offset = 0

Length = menuEntry.length

NextAction = 0

HelpSupported = false

IconQualifier = 0

IconIdentifier = 0

3-
isEventSet(EVENT_MENU_SELECTION).

4-
isEventSet(EVENT_MENU_SELECTION_HELP_REQUEST).

	1-
No exception shall be thrown.

2-
No exception shall be thrown.

3-
Shall return true.

4-
Shall return false.
	The SIM shall issue a SETUP MENU proactive command which contains the entry. Without Icon identifier List Simple TLV

	10
	MenuEntry is null

changeMenuEntry()with:

MenuEntry = NULL

	Shall throw java.lang.NullPointerException.
	

	11
	Offset causes access outside array bounds

Id = '01'

MenuEntry = "Violation"

Offset = menuEntry.length +1

Length = 0

NextAction = 0

HelpSupported = false

IconQualifier = 0

IconIdentifier = 0

	Shall throw java.lang.ArrayIndexOutOfBoundsException.

	

	12
	Big Offset causes access outside array bounds

Id = '01'

MenuEntry = "Violation"

Offset = 255

Length = 1

NextAction = 0

HelpSupported = false

IconQualifier = 0

IconIdentifier = 0

	Shall throw java.lang.ArrayIndexOutOfBoundsException.

	

	13
	Offset < 0 causes access outside array bounds

Id = '01'

MenuEntry = "Violation"

Offset = -1

Length = 1

NextAction = 0

HelpSupported = false

IconQualifier = 0

IconIdentifier = 0

	Shall throw java.lang.ArrayIndexOutOfBoundsException.

	

	14
	Length causes access outside array bounds

Id = '01'

MenuEntry = "Violation"

Offset = 0

Length = MenuEntry.length + 1

NextAction = 0

HelpSupported = false

IconQualifier = 0

IconIdentifier = 0.
	Shall throw java.lang.ArrayIndexOutOfBoundsException.

	

	15
	Length < 0 causes access outside array bounds

Id = '01'

MenuEntry = "Violation"

Offset = 0

Length = -1

NextAction = 0

HelpSupported = false

IconQualifier = 0

IconIdentifier = 0.

	Shall throw java.lang.ArrayIndexOutOfBoundsException.

	

	16
	Both offset and length causes access outside array bounds

Id = '01'

MenuEntry = "Violation"

Offset ([1, MenuEntry.length]

Length = MenuEntry.length

NextAction = 1

HelpSupported = false

IconQualifier = 0

IconIdentifier = 0

	Shall throw java.lang.ArrayIndexOutOfBoundsException.

.
	

	17
	Invalid ID used

Id = '00'

MenuEntry = contains text, != null

Offset = 0

Length = menuEntry.length < 16

NextAction = 0

HelpSupported = false

IconQualifier = 0

IconIdentifier = 0
	Shall throw a ToolkitException with MENU_ENTRY_NOT_FOUND reason code.
	

	18
	ID isn't allocated to a menu entry of this applet instance

Id = '0A'

MenuEntry = contains text, != null

Offset = 0

Length = menuEntry.length < 16

NextAction = 0

HelpSupported = false

IconQualifier = 0

IconIdentifier = 0

	Shall throw a ToolkitException with reason code: MENU_ENTRY_NOT_FOUND.
	

	19
	The text is bigger than the allocated space

Id = '02'

MenuEntry = contains text, != null

Offset = 0

Length = menuEntry.length > 15

NextAction = 0

HelpSupported = false

IconQualifier = 0

IconIdentifier = 0

	Shall throw a ToolkitException with reason code: ALLOWED_LENGTH_EXCEEDED.
	

	20
	With a smaller text length than the initial length

1.
changeMenuEntry()with parameters:

Id = '02'

MenuEntry = "Init"

Offset = 0

Length = menuEntry.length

NextAction = 0

HelpSupported = false

IconQualifier = 0

IconIdentifier = 0

2.
isEventSet(EVENT_MENU_SELECTION)

3.
isEventSet(EVENT_MENU_SELECTION_HELP_REQUEST)
	1.
No exception shall be thrown.

2. Shall return true.

3. Shall return false.

	The SIM shall issue a SETUP MENU proactive command which contains the new text for entry ID '02'.

6.2.9.5.1
Conformance requirement:

The method with following header shall be compliant to its definition in the API.

public void enableMenuEntry(byte id)

 throws ToolkitException

Normal execution

CRRN1: A call to isEventSet() method on EVENT_MENU_SELECTION shall return the same result before and after the call to enableMenuEntry() method.

CRRN2: A call to isEventSet() method on EVENT_MENU_SELECTION_HELP_REQUEST shall return the same result before and after the call to enableMenuEntry() method.

CRRN3:The SIM Toolkit Framework shall dynamically issue a SETUP MENU proactive command which does contain an ITEM SIMPLE TLV object for this entry.

Parameters error

No requirements

Context errors

CRRC1: shall throw a ToolkitException with reason = MENU_ENTRY_NOT_FOUND if the menu entry doesn't exist for this applet

6.2.9.5.2
Test suite files

Additional requirements for the GSM personalisation:

-
content of EF sume shall be:

- Title Alpha Identifier:
"TOOLKIT TEST"

Test Script:

API_2_TKR_EMETB_1.scr

Test Applet:

API_2_TKR_EMETB_1.java

Installation parameter:

Same as default applet but with:

-
Maximum text length for a menu entry:
15

-
Maximum number of menu entries:

2

-
Position / Identifier for each menu entry:
'01'/'01', '02'/'02'

Load Script:

API_2_TKR_EMETB_1.ldr

Cleanup script:

API_2_TKR_EMETB_1.clr

Parameter File:

API_2_TKR_EMETB_1.par

6.2.9.5.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	Check menu state before
enabling a previously disabled entry
not registered to EVENT_MENU_SELECTION_HELP_REQUEST

1-
isEventSet(EVENT_MENU_SELECTION)

2-
isEventSet(EVENT_MENU_SELECTION_HELP_REQUEST)

3-
disableMenuEntry('01')

	1-
Shall return true

2-
Shall return false

3-
No exception shall be thrown.

	3-
The SIM shall issue a SET UP MENU proactive command with entry '02' only.

	2
	Check menu state after
enabling a previously disabled entry
not registered to EVENT_MENU_SELECTION_HELP_REQUEST

1-
enableMenuEntry('01')

2-
isEventSet(EVENT_MENU_SELECTION)

3-
isEventSet(EVENT_MENU_SELECTION_HELP_REQUEST)

	1-
No exception shall be thrown.

2-
Shall return true.

3-
Shall return false.
	3-
The SIM shall issue a SET UP MENU proactive command with entry '01' and '02'.

	3
	Check menu state before
enabling a previously enabled entry
registered to EVENT_MENU_SELECTION_HELP_REQUEST

1-
change Menu Entry '02' to indicate help supported

2-
isEventSet(EVENT_MENU_SELECTION)

3-
isEventSet(EVENT_MENU_SELECTION_HELP_REQUEST)

4-
disableMenuEntry('02')

	2-
Shall return true

3-
Shall return true

4-
No exception shall be thrown
	4-
The SIM shall issue a SET UP MENU proactive command with entry '01'. The help information available flag.is not verified

	4
	Check menu state after
enabling a previously enabled entry
registered to EVENT_MENU_SELECTION_HELP_REQUEST

1-
enableMenuEntry('02').

2-
isEventSet(EVENT_MENU_SELECTION)

3-
isEventSet(EVENT_MENU_SELECTION_HELP_REQUEST)

	1-
No exception shall be thrown.

2-
Shall return true.

3-
Shall return true.
	3-
The SIM shall issue a SET UP MENU proactive command with entries '01' and '02' indicating help supported.

	5
	Enabling invalid entries

For ID ranging from '00' to 'FF' except '01' and '02', the applet calls enableMenuEntry(ID) method.

	Each time a Toolkit Exception with MENU_ENTRY_NOT_FOUND reason code shall be thrown.
	

6.2.9.8.2
Test suite files

Additional requirements for the GSM personalisation:

-
content of EF sume shall be:

-
Title Alpha Identifier:
"TOOLKIT TEST"

-
Test case trigger:
1- Applet instantiation

2- Menu selection

3- Menu selection Help Supported

Test Script:

API_2_TKR_IMET_BSSBZBS_1.scr

Test Applet:

API_2_TKR_IMET_BSSBZBS_1.java

Installation parameter:

Same as default applet but with:

-
Maximum text length for a menu entry:
15

-
Maximum number of menu entries:

6

-
Position / Identifier for each menu entry:
'01'/'01', '02'/'02', '03'/'03', '04'/'04', '05'/'05', and '06'/'06'

Load Script:

API_2_TKR_IMET_BSSBZBS_1.ldr

Cleanup script:

API_2_TKR_IMET_BSSBZBS_1.clr

Parameter File:

API_2_TKR_IMET_BSSBZBS_1.par

6.2.9.8.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	NULL as parameter to menuEntry

MenuEntry = NULL
	Shall throw a java.lang.NullPointerException.
	

	2
	Offset > menuEntry.length

MenuEntry = "ToolkitTest"

Offset = 12

Length = 0
	Shall throw java.lang.ArrayIndexOutOfBoundsException.
	

	3
	Offset < 0

MenuEntry = "ToolkitTest"

Offset = -1

Length = 11
	Shall throw java.lang.ArrayIndexOutOfBoundsException.
	

	4
	Offset = 255

MenuEntry = "ToolkitTest"

Offset = 255

Length = 11
	Shall throw java.lang.ArrayIndexOutOfBoundsException.

	

	5
	Length = menuEntry.length+1

MenuEntry = "ToolkitTest"

Offset = 0

Length = 12
	Shall throw java.lang.ArrayIndexOutOfBoundsException.
	

	6
	Length < 0

MenuEntry = "ToolkitTest"

Offset = 0

Length = -1
	Shall throw java.lang.ArrayIndexOutOfBoundsException.
	

	7
	Offset + length > menuEntry.length

MenuEntry = "ToolkitTest"

Offset = 11

Length = 1

	Shall throw java.lang.ArrayIndexOutOfBoundsException.
	

	8
	MenuEntry.length > size allocated at loading for each menu entry

MenuEntry = "ToolkitTest impossible"

Offset = 0

Length = 16

	ALLOWED_LENGTH_EXCEEDED ToolkitException is thrown.
	

	9
	Successful call,
menuEntry is the whole buffer

1-
initMenuEntry()

MenuEntry = "TOOLKIT TEST 1"

Offset = 0

Length = 14

NextAction = '00'

HelpSupported = false

IconQualifier = '00'

IconIdentifier = 0

2-
isEventSet(EVENT_MENU_SELECTION)

	1-
No exception shall be thrown, Shall return ID '01'.

2-
Shall return true.
	

	10
	Successful call,
menuEntry part of a buffer

1-
initMenuEntry()

MenuEntry = "1234567TOOLKIT TEST 2"

Offset = 7

Length = 14

NextAction = '00'

HelpSupported = false

IconQualifier = '00'

IconIdentifier = 0

2-
isEventSet(EVENT_MENU_SELECTION_HELP_REQUEST)

	1-
No exception shall be thrown,Shall return ID '02'.

2-
Shall return false.
	

	11
	Successful call,
menuEntry with help supported

1-
initMenuEntry()

MenuEntry = "TOOLKIT TEST 3"

Offset = 0

Length = 14

NextAction = '00'

HelpSupported = true

IconQualifier = '00'

IconIdentifier = 0

2-
isEventSet(EVENT_MENU_SELECTION_HELP_REQUEST)

	1-
No exception shall be thrown, Shall return ID '03'

2-
Shall return true.
	

	12
	Successful call,
menuEntry with an Icon

MenuEntry = "TOOLKIT TEST 4"

Offset = 0

Length = 14

NextAction = '00'

HelpSupported = false

IconQualifier = '01' [icon not self explanatory]

IconIdentifier = 1
	1-
No exception shall be thrown.

2-
Shall return ID '04'
	

	13
	Successful call,
menuEntry with a next action indication

MenuEntry = "TOOLKIT TEST 5"

Offset = 0

Length = 14

NextAction = '24' [Select Item]

HelpSupported = false

IconQualifier = '00'

IconIdentifier = 0
	1-
No exception shall be thrown.

2-
Shall return ID '05'
	

	14
	Successful call,
length = 0

initMenuEntry()

MenuEntry = "ToolkitTest"

Offset = 0

Length = 0

NextAction = '00'

HelpSupported = false

IconQualifier = '00'

IconIdentifier = 0

	No exception shall be thrown,Shall return ID '06'.
	

	15
	Initialize more entry than allocated at loading

MenuEntry = "ToolkitTest"

Offset = 0

Length = 11
	REGISTRY_ERROR
ToolkitException is thrown.
	

	16
	Dynamic update of the menu stored by the ME

Fetch
	
	Card shall Send a SetUpMenu Proactive command:

[CommandQualifier]=help supported

[AlphaId]="TOOLKIT TEST"

[ItemId=1] = "TOOLKIT TEST 1"

[ItemId=2] = "TOOLKIT TEST 2"

[ItemId=3] = "TOOLKIT TEST 3"

[ItemId=4] = "TOOLKIT TEST 4"

[ItemId=5] = "TOOLKIT TEST 5"
[ItemId=6] = ""
[ItemsNextAction]=06000000002400

	17
	Check Applet is triggered by ENVELOPE(MENU_SELECTION) command

Menu Entry ID = '01'

	Applet is trigged by an ENVELOPE(MENU_SELECTION) command & Menu Entry ID = '01'
	

	18
	Check Applet is triggered by ENVELOPE(MENU_SELECTION) command

Menu Entry ID = '02'

	Applet is trigged by an ENVELOPE(MENU_SELECTION) command & Menu Entry ID = '02'
	

	19
	Check Applet is triggered by ENVELOPE(MENU_SELECTION) command

Menu Entry ID = '03'

	Applet is trigged by an ENVELOPE(MENU_SELECTION) command & Menu Entry ID = '03'
	

	20
	Check Applet is triggered by ENVELOPE(MENU_SELECTION) command

Menu Entry ID = '04'

	Applet is trigged by an ENVELOPE(MENU_SELECTION) command & Menu Entry ID = '04'
	

	21
	Check Applet is triggered by ENVELOPE(MENU_SELECTION) command

Menu Entry ID = '05'

	Applet is trigged by an ENVELOPE(MENU_SELECTION) command & Menu Entry ID = '05'
	

	22
	Check Applet is triggered by ENVELOPE (MENU_SELECTION_HELP_REQUEST) command

Menu Entry ID = '03'
	Applet is trigged by an ENVELOPE(MENU_SELECTION_HELP_REQUEST) command & Menu Entry ID = '03'
	

	23
	Check Applet is triggered by ENVELOPE(MENU_SELECTION) command

Menu Entry ID = '06'

	Applet is trigged by an ENVELOPE(MENU_SELECTION) command & Menu Entry ID = '06'
	

6.2.9.9.3
Test procedure

	Id
	Description
	API Expectation
	APDU Expectation

	1
	Events aren't set

Applet calls isEventSet() for each events ranging from 1 to 127 excepted EVENT_FORMATTED_SMS_PP_ENV and EVENT_MENU_SELECTION.

	Shall return false each time.
	

	2
	For EVENT_FORMATTED_SMS_PP_ENV

isEventSet (EVENT_FORMATTED_SMS_PP_ENV)

	Shall return true.
	

	3
	For EVENT_MENU_SELECTION

isEventSet (EVENT_MENU_SELECTION)

	Shall return true
	

	4
	After clearing EVENT_FORMATTED_SMS_PP_ENV

1-
clearEvent(EVENT_FORMATTED_SMS_PP_ENV)

2-
isEventSet(EVENT_FORMATTED_SMS_PP_ENV)

	1-
No exception shall be thrown.

2-
Shall return false.
	

	5
	Setting events

1-
For each SUPPORTED and ALLOWED events for setEvent(), applet calls:

1.1-
setEvent() method

1.2-
isEventSet() method.

	1.1-
No exception shall be thrown.

1.2-
Shall return true each time.
	

	6
	For EVENT_MENU_SELECTION_HELP_REQUEST

1-
isEventSet (EVENT_MENU_SELECTION_HELP_REQUEST)

2-
call changeMenuEntry with help supported

3-
isEventSet (EVENT_MENU_SELECTION_HELP_REQUEST)

	1-
Shall return false.

3-
Shall return true
	

	7
	For EVENT_TIMER_EXPIRATION

1-
isEventSet(EVENT_TIMER_EXPIRATION)

2-
call allocateTimer()

3-
isEventSet(EVENT_TIMER_EXPIRATION)

	1-
Shall return false.

3-
Shall return true
	

	8
	For EVENT_STATUS_COMMAND

1-
isEventSet(EVENT_STATUS_COMMAND)

2-
call requestPollInterval(POLL_SYSTEM_DURATION)

3-
isEventSet(EVENT_STATUS_COMMAND)

	1-
Shall return false.

3-
Shall return true
	

6.2.9.10.2
Test suite files

Test Script:

API_2_TKR_RTIMB_1.scr

Test Applet:

API_2_TKR_RTIMB_1.java

Installation parameter:

As Default, except max timer which is set to 8.
Load Script:

API_2_TKR_RTIMB_1.ldr

Cleanup script:

API_2_TKR_RTIMB_1.clr

Parameter File:

API_2_TKR_RTIMB_1.par

6.2.9.12.1
Conformance Requirement:

The method with following header shall be compliant to its definition in the API.

public void setEvent(byte id)

 throws ToolkitException

Normal execution

CRRN1: a following call to isEventSet() method with the same event id shall answer true for the applet.

CRRN2: the SIM Toolkit Framework shall trigger the applet if an occurrence of the set event happens.

CRRN3: this method shall accept all the events defined in GSM 0319 excepted: EVENT_MENU_SELECTION, EVENT_MENU_SELECTION_HELP_REQUEST, EVENT_TIMER_EXPIRATION , EVENT_STATUS_COMMAND

Parameters error

CRRP1: shall throw a ToolkitException with EVENT_NOT_SUPPORTED reason if event is 0.

CRRP2: shall throw a ToolkitException with EVENT_NOT_ALLOWED reason if event is EVENT_MENU_SELECTION.

CRRP3: shall throw a ToolkitException with EVENT_NOT_ALLOWED reason if event is EVENT_MENU_SELECTION_HELP_REQUEST.

CRRP4: shall throw a ToolkitException with EVENT_NOT_ALLOWED reason if event is EVENT_TIMER_EXPIRATION.

CRRP5: shall throw a ToolkitException with EVENT_NOT_ALLOWED reason if event is EVENT_STATUS_COMMAND.

Context errors

CRRC1: shall throw a ToolkitException with EVENT_ALREADY_REGISTERED if event is EVENT_CALL_CONTROL_BY_SIM but another applet is already registered to it.

CRRC2: shall throw a ToolkitException with EVENT_ALREADY_REGISTERED if event is EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM but another applet is already registered to it.

6.2.9.13.1
Conformance Requirement:
The method with following header shall be compliant to its definition in the API.

public void setEventList(byte[] eventList,

 short offset,

 short length)

throws java.lang.NullPointerException,

 java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException

Normal execution

CRRN1: for all events set successfully by this method, a call to isEventSet() method should return true.

CRRN2: the SIM Toolkit Framework shall trigger the applet if an occurrence of one of the successfully registered events happens.

CRRN3: this method shall accept all the events defined in GSM 0319 excepted: EVENT_MENU_SELECTION, EVENT_MENU_SELECTION_HELP_REQUEST, EVENT_TIMER_EXPIRATION , EVENT_STATUS_COMMAND.

Parameters error
CRRP1: shall throw a java.lang.NullPointerException if eventList is null.

CRRP2: shall throw a java.lang.ArrayIndexOutOfBoundsException if offset would cause access outside array bounds.

CRRP3: shall throw a java.lang.ArrayIndexOutOfBoundsException if length would cause access outside array bounds.

CRRP4: shall throw a java.lang.ArrayIndexOutOfBoundsException if both offset and length would cause access outside array bounds.

CRRP5: shall throw a ToolkitException with EVENT_NOT_SUPPORTED reason if event is 0.

CRRP6: shall throw a ToolkitException with EVENT_NOT_ALLOWED reason if eventList contains EVENT_MENU_SELECTION.

CRRP7: shall throw a ToolkitException with EVENT_NOT_ALLOWED reason if eventList contains EVENT_MENU_SELECTION_HELP_REQUEST.

CRRP8: shall throw a ToolkitException with EVENT_NOT_ALLOWED reason if eventList contains EVENT_TIMER_EXPIRATION.

CRRP9: shall throw a ToolkitException with EVENT_NOT_ALLOWED reason if eventList contains EVENT_STATUS_COMMAND.

Context errors

CRRC1: shall throw a ToolkitException with EVENT_ALREADY_REGISTERED if eventList contains EVENT_CALL_CONTROL_BY_SIM but another applet is already registered to it.

CRRC2: shall throw a ToolkitException with EVENT_ALREADY_REGISTERED if eventList contains EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM but another applet is already registered to it.

6.2.11
Class ToolkitException

6.2.11.1.1
Conformance requirement:

There is no API, only constants.

Normal execution

CRRN1: The Constants of the class ToolkitException shall all have the same name and value defined in the GSM03.19 .

Parameters error

No requirements

Context errors

No requirements

6.2.11.3.2
Test suite files

No additional requirements for the GSM personalisation:

Test Script:

API_2_TKE_THITS_1.scr

Test Applet:

API_2_TKE_THITS_1.java

Load Script:

API_2_TKE_THITS_1.ldr

Cleanup Script:

API_2_TKE_THITS_1.clr
Parameter File:

API_2_TKE_THITS_1.par
6.3
SIM Toolkit Framework

6.3.1

Minimum Handler Availability

 This test area tests the rules that define the minimum requirements for the availability of the system handlers.

6.3.1.1
ProactiveHandler

Test Area Reference: FWK_MHA_PAHD

6.3.1.1.1
Conformance Requirement

Normal Execution

CRRN1: If a proactive session is not ongoing the ProactiveHandler is available from the invocation to the termination of the processToolkit method for the following events:

EVENT_FORMATTED_SMS_PP_ENV

EVENT_UNFORMATTED_SMS_PP_ENV

EVENT_FORMATTED_SMS_CB

EVENT_UNFORMATTED_SMS_CB

EVENT_MENU_SELECTION

EVENT_MENU_SELECTION_HELP_REQUEST

EVENT_TIMER_EXPIRATION

EVENT_EVENT_DOWNLOAD_MT_CALL

EVENT_EVENT_DOWNLOAD_CALL_CONNECTED

EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED

EVENT_EVENT_DOWNLOAD_LOCATION_STATUS

EVENT_EVENT_DOWNLOAD_USER_ACTIVITY

EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE

EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS

EVENT_EVENT_DOWNLOAD_LANGUAGE_SELECTION

EVENT_EVENT_DOWNLOAD_BROWSER_TERMINATION

EVENT_UNRECOGNIZED_ENVELOPE

EVENT_STATUS_COMMAND

EVENT_CALL_CONTROL

EVENT_SMS_MO_CONTROL

EVENT_PROFILE_DOWNLOAD

6.3.1.1.3 Test Procedure

	Id
	Description
	API /Framework Expectation
	APDU Expectation

	1
	Applets registration to all events and Proactive Handler availability with EVENT_PROFILE_DOWNLOAD

Applet1 is registered to all events defined in [7].

Using the methods initMenuEntry () for EVENT_MENU_SELECTION, requestPollInterval () for EVENT_STATUS_COMMAND, allocateTimer () for EVENT_TIMER_EXPIRATION and setEventList () for the rest of the events.

Applet2 is registered to all events defined in [7], except EVENT_CALL_CONTROL_BY_SIM and EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM.

Using the methods initMenuEntry () for EVENT_MENU_SELECTION, requestPollInterval () for EVENT_STATUS_COMMAND, allocateTimer () for EVENT_TIMER_EXPIRATION and setEventList () for the rest of the events.

The priority of applet1 is higher than priority of applet2

1-Terminal Profile command is sent to SIM without the facility of SET_EVENT_LIST, POLL_INTERVAL,SET UP IDLE MODE TEXT and SET UP MENU.

2-Applet1 gets the Proactive Handler

Applet1 is deregistered to EVENT_PROFILE_DOWNLOAD

3-Applet2 gets the Proactive Handler

Applet2 is deregistered to EVENT_PROFILE_DOWNLOAD
	1- Applet1 is triggered

2- No exception is thrown.

3- Applet2 is triggered

4- No exception is thrown

Applet1 finalizes

	

	2
	Proactive Handler availability with EVENT_MENU_SELECTION_HELP_REQUEST

Perform SIM initialization with all the facilities supported

1-Envelope menu selection with help request is sent to the SIM

2-Applet1 gets the Proactive Handler

3-Envelope menu selection with help request is sent to the SIM

4-Applet2 gets the Proactive Handler

	1- Applet1 is triggered

2- No exception is thrown

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown
	

	3
	Proactive Handler availability with EVENT_MENU_SELECTION

1-Envelope menu selection is sent to the SIM

2-Applet1 gets the Proactive Handler

3-Envelope menu selection is sent to the SIM

4-Applet2 gets the Proactive Handler
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown.
	

	4
	Proactive Handler availability with EVENT_FORMATTED_SMS_PP_ENV

1-Envelope dataDownLoad formatted is sent to the SIM

2-Applet1 gets the Proactive Handler

3-Envelope dataDownLoad formatted is sent to the SIM

4-Applet2 gets the Proactive Handler

	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown.
	

	5
	Proactive Handler availability with EVENT_UNFORMATTED_SMS_PP_ENV

1-Envelope dataDownLoad unformatted is sent to the SIM

2-Applet1 gets the Proactive Handler

3-Applet2 gets the Proactive Handler
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown.
	

	6
	Proactive Handler availability with EVENT_FORMATTED_CELL BROADCAST

1-Envelope cell broadcast formatted is sent to the SIM

2-Applet1 gets the Proactive Handler

3-Envelope cell broadcast formatted is sent to the SIM

4-Applet2 gets the Proactive Handler

	1- Applet1 is triggered

2-No exception is thrown

Applet1 finalizes

3-Applet2 is triggered

4-No exception is thrown
	

	7
	Proactive Handler availability with EVENT_UNFORMATTED_CELL BROADCAST

1-Envelope cell broadcast unformatted is sent to the SIM

2-Applet1 gets the Proactive Handler

3-Applet2 gets the Proactive Handler
	1- Applet1 is triggered

2- No exception is thrown

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown
	

	8
	Proactive Handler availability with EVENT_TIMER_EXPIRATION

1-Timer Id =1

Envelope Timer Expiration is sent to the SIM

2-Applet1 gets the Proactive Handler

3-Timer id=2

Envelope Timer Expiration is sent to the SIM

4- Applet2 gets the Proactive Handler
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes
3- Applet2 is triggered

4- No exception is thrown
	

	9
	Proactive Handler availability with EVENT_CALL_CONTROL_BY_SIM

1-Envelope call control by SIM is sent to the SIM

2-Applet1 gets the Proactive Handler
	1- Applet1 is triggered

2- No exception is thrown.
	

	10
	Proactive Handler availability with EVENT_MO_SHORT_MESSAGE_CONTROL

1-Envelope mo short message control by SIM is sent to the SIM

2-Applet1 gets the Proactive Handler
	1- Applet1 is triggered

2- No exception is thrown
	

	11
	Proactive Handler availability with EVENT_EVENT_DOWNLOAD_MT_CALL

1-Envelope event download mt call is sent to the SIM

2-Applet1 gets the Proactive Handler

3-Applet2 gets the Proactive Handler

	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown
	

	12
	Proactive Handler availability with EVENT_EVENT_DOWNLOAD_CALL_CONNECTED

1-Envelope event download call connected is sent to the SIM

2-Applet1 gets the Proactive Handler

3-Applet2 gets the Proactive Handler

	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown
	

	13
	Proactive Handler availability with EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED

1-Envelope event download call disconnected is sent to the SIM

2-Applet1 gets the Proactive Handler

3-Applet2 gets the Proactive Handler

	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown.
	

	14
	Applets triggering with EVENT_EVENT_LOCATION_STATUS

1-Envelope event download location status is sent to the SIM

2-Applet1 gets the Proactive Handler

3-Applet2 gets the Proactive Handler

	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown
	

	15
	Proactive Handler availability with EVENT_EVENT_DOWNLOAD_USER_ACTIVITY

1-Envelope event download user activity is sent to SIM

2-Applet1 gets the Proactive Handler

3-Applet2 gets the Proactive Handler
	1- Applet1 is triggered

2- No exception is thrown

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown
	

	16
	Proactive Handler availability with EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE

1-Envelope event download idle screen available is sent to the SIM

2-Applet1 gets the Proactive Handler

3- Applet2 gets the Proactive Handler
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown
	

	17
	Proactive Handler availability with EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS

1-Envelope event download card reader status is sent to the SIM

2-Applet1 gets the Proactive Handler

3-Applet2 gets the Proactive Handler
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown
	

	18
	Proactive Handler availability with EVENT_EVENT_DOWNLOAD_LANGUAGE_SELECTION

1-Envelope event download language selection is sent to the SIM

2-Applet1 gets the Proactive Handler

3-Applet2 gets the Proactive Handler
	1- Applet1 is triggered

2-No exception is thrown.

Applet1 finalizes

Applet2 is triggered

3-No exception is thrown
	

	19
	Proactive Handler availability with EVENT_EVENT_DOWNLOAD_BROWSER_TERMINATION

1-Envelope event download browser termination is sent to the SIM

2-Applet1 gets the Proactive Handler

3-Applet2 gets the Proactive Handler
	1- Applet1 is triggered

2-No exception is thrown.

Applet1 finalizes

Applet2 is triggered

3-No exception is thrown
	

	20
	Proactive Handler availability with EVENT_STATUS_COMMAND

1-Status command is sent to the SIM

2-Applet1 gets the Proactive Handler

3- Applet2 gets the Proactive Handler
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown.
	

	21
	Proactive Handler availability with UNRECOGNIZED_ENVELOPE

1-An unrecognized Envelope (BER TLV Tag unrecognized) is sent to the SIM

2-Applet1 gets the Proactive Handler

3-Applet2 gets the Proactive Handler
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown
	

6.3.1.2.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Applets registration to all events and Proactive Response Handler availability with EVENT_PROFILE_DOWNLOAD

1- Applet1 is registered to all events defined in [7], applet2 is registered to all events defined in [7] except EVENT_CALL_CONTROL_BY_SIM and EVENT_MO_SMS_CONTROL_BY_SIM.

Using the methods initMenuEntry() for EVENT_MENU_SELECTION, requestPollInterval() for EVENT_STATUS_COMMAND, allocateTimer() for EVENT_TIMER_EXPIRATION and setEventList() for the rest of the events.

1-Terminal Profile command is sent to the SIM without the facility of SET_EVENT_LIST and POLL_INTERVAL, ,SET UP IDLE MODE TEXT and SET UP MENU.

Applet1 builds a proactive command DISPLAY TEXT.

2- ProactiveHandler.send() method is called

3- ProactiveResponseHandler.getTheHandler() method is called

Applet1 is deregistered to EVENT_PROFILE_DOWNLOAD

Applet2 builds a proactive command DISPLAY TEXT.

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called

Applet1 is deregistered to EVENT_PROFILE_DOWNLOAD

	1-Applet1 is triggered

No exception is thrown

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown
	2- The proactive command

DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- The proactive command

DISPLAY TEXT is fetched

TERMINAL RESPONSE

	2
	Proactive Response Handler availability with EVENT_MENU_SELECTION_HELP_REQUEST

Perform SIM initialization with all the facilities supported

1-Envelope menu selection with help request is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2- ProactiveHandler.send() method is called

3- ProactiveResponseHandler.getTheHandler() method is called

Applet1 execution is finished

Envelope menu selection with help request is sent to the SIM

Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called
	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown

	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	3
	Proactive Response Handler availability with EVENT_MENU_SELECTION

1-Envelope menu selection is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2- ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called

4-Envelope menu selection is sent to the SIM

Applet2 builds a proactive command DISPLAY TEXT

5- ProactiveHandler.send() method is called

6-ProactiveResponseHandler.getTheHandler() method is called

	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown
	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	4
	Proactive Response Handler availability with EVENT_FORMATTED_SMS_PP_ENV

1-Envelope dataDownLoad formatted is sent to the SIM

Applet builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called

4-Envelope dataDownLoad formatted is sent to the SIM

Applet2 builds a proactive command DISPLAY TEXT

5-ProactiveHandler.send() method is called

6-ProactiveResponseHandler.getTheHandler() method is called
	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown
	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	5
	Proactive Response Handler availability with EVENT_UNFORMATTED_SMS_PP_ENV

1-Envelope dataDownLoad unformatted is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2- ProactiveHandler.send() method is called

3- ProactiveResponseHandler.getTheHandler() method is called

Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called

	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown
	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	6
	Proactive Response Handler availability with EVENT_UNFORMATTED_SMS_CB

1-Envelope call broadcast unformatted is

sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2- ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called.

Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called

	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown
	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	7
	Proactive Response Handler availability with EVENT_UNFORMATTED_SMS_CB

1-Envelope call broadcast unformatted is

sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2- ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called.

Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called

	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown
	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	8
	Proactive Response Handler availability with EVENT_TIMER_EXPIRATION

Timer id=1

1-Envelope Timer Expiration is sent to the SIM

Applet builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called

Timer id=2

Envelope Timer Expiration is sent to the SIM

Applet builds a proactive command DISPLAY TEXT

4-ProactiveHandler.send() method is called

5-ProactiveResponseHandler.getTheHandler() method is called

	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

5- No exception is thrown

	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

6- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	9
	Proactive Response Handler availability with EVENT_CALL_CONTROL_BY_SIM

1-Envelope call control by sim is sent to the SIM

Applet builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called

	1- Applet1 is triggered

3- No exception is thrown

	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	10
	Proactive Response Handler availability with _ MO_SHORT_MESSAGE_CONTROL_BY_SIM

1-Envelope mo short message control by sim is sent to the SIM

Applet builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called

	1- Applet1 is triggered

3- No exception is thrown

	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	11
	Proactive Response Handler availability with EVENT_EVENT_DOWNLOAD_MT_CALL

1-Envelope event download mt call is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called.

Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called
	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown
	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	12
	Proactive Response Handler availability with EVENT_EVENT_DOWNLOAD_CALL_CONNECTED

1-Envelope event download call connected is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called

Applet builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called
	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown
	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	13
	Proactive Response Handler availability with EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED

1-Envelope event download call disconnected is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called

Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called
	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown
	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	14
	Proactive Response Handler availability with EVENT_EVENT_DOWNLOAD_LOCATION_STATUS

1-Envelope event download location status is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called

Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called
	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown
	2-A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	15
	Proactive Response Handler availability with EVENT_EVENT_DOWNLOAD_USER_ACTIVITY

1-Envelope event download user activity is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called

Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called
	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown
	2-A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	16
	Proactive Response Handler availability with EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE

1-Envelope event download idle screen available is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called

Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called
	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown
	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	17
	Proactive Response Handler availability with EVENT_EVENT_DOWNLOAD_LANGUAGE_

SELECTION

1-Envelope event download language selection is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called
Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called
	1- Applet1 is triggered

3-No exception is thrown

Applet1 finalizes

Applet2 is triggered

5-No exception is thrown
	2-A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

4-A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	18
	Proactive Response Handler availability with EVENT_EVENT_DOWNLOAD_BROWSER_

TERMINATION

1-Envelope event download Browser termination is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called
Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called
	1- Applet1 is triggered

3-No exception is thrown

Applet1 finalizes

Applet2 is triggered

5-No exception is thrown
	2-A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

4-A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	19
	Proactive Response Handler availability with EVENT_STATUS_COMMAND

1-Status command is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called

Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called
	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown
	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	20
	Proactive Response Handler availability with UNRECOGNIZED_ENVELOPE

1-An unrecognized Envelope is sent to the SIM

Applet1 builds a proactive command DISPLAY TEXT

2-ProactiveHandler.send() method is called

3-ProactiveResponseHandler.getTheHandler() method is called

Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called
	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

4- Applet2 is triggered

6- No exception is thrown
	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

5- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

6.3.1.3.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Applet1 and Applet2 registration and Envelope Handler availability with EVENT_PROFILE_DOWNLOAD

1- Applet1 is registered to all events defined [7].

Using the methods initMenuEntry() for EVENT_MENU_SELECTION, requestPollInterval() for EVENT_STATUS_COMMAND, allocateTimer() for EVENT_TIMER_EXPIRATION and setEventList() for the rest of the events.

Applet2 is registered to all events defined [7] except EVENT_CALL_CONTROL_BY_SIM and EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM.

Using the methods initMenuEntry() for EVENT_MENU_SELECTION, requestPollInterval() for EVENT_STATUS_COMMAND, allocateTimer for EVENT_TIMER_EXPIRATION and setEventList for the rest of the events.

2-Terminal Profile command is sent to SIM without the facility of SET_EVENT_LIST ,SETUP_IDLE_MODE_TEXT ,POLL_INTERVAL and SETUP MENU

3-EnvelopeHandler.getTheHandler() method is called by Applet1

Applet1 is deregistered to EVENT_PROFILE_DOWNLOAD

4-EnvelopeHandler.getTheHandler() method is called by Applet2

Applet2 is deregistered to EVENT_PROFILE_DOWNLOAD

	1- No exception is thrown

2- Applet1 is triggered

3- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

4- Applet2 is triggered

5- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown
	

	2
	Envelope Handler availability with EVENT_MENU_SELECTION_HELP_REQUEST

Perform SIM initialization with all the facilities supported

Envelope menu selection with help request is sent to the SIM

1-EnvelopeHandler.getTheHandler() method is called by Applet1

2-Envelope menu selection with help request is sent to the SIM

3-EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown.
	

	3
	Envelope Handler availability with EVENT_MENU_SELECTION

1-Envelope menu selection is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3-Envelope menu selection is sent to the SIM
4-EnvelopeHandler.getTheHandler() method is called by Applet2

	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown.
	

	4
	Envelope Handler availability with EVENT_FORMATTED_SMS_PP_ENV

1-A EVENT_FORMATTED_SMS_PP_ENV envelope is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3-A EVENT_FORMATTED_SMS_PP_ENV envelope is sent to the SIM

4-EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown.
	

	5
	Envelope Handler availability with EVENT_UNFORMATTED_SMS_PP_ENV

1-An unformatted sms pp envelope is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3-EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered
4- No exception is thrown.
	

	6
	Envelope Handler availability with EVENT_FORMATTED_CB

1-Envelope cell broadcast formatted is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3- Envelope cell broadcast formatted is sent to the SIM

4-EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2-No exception is thrown

3- Applet2 is triggered

4-No exception is thrown
	

	7
	Envelope Handler availability with EVENT_UNFORMATTED_CB

1-Envelope cell broadcast unformatted is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3-EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown
	

	8
	Envelope Handler availability with EVENT_TIMER_EXPIRATION

Timer id=1

1-Envelope Timer Expiration is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

Timer id=2

3-Envelope Timer Expiration is sent to the SIM

4-EnvelopeHandler.getTheHandler() method is called by Applet2

	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown.

	

	9
	Envelope Handler availability with EVENT_CALL_CONTROL_BY_SIM

1-Envelope call control by sim is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered

2- No exception is thrown.

	

	10
	Envelope Handler availability with EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

1-Envelope mo short message control by sim is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1.
	1- Applet1 is triggered

2- No exception is throw

	

	11
	Envelope Handler availability with EVENT_EVENT_DOWNLOAD_MT_CALL

1-Envelope event download mt call is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3-EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown.
	

	12
	Envelope Handler availability with EVENT_EVENT_DOWNLOAD_CALL_CONNECTED

1-Envelope event download call connected is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3-EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown.
	

	13
	Envelope Handler availability with EVENT_EVENT_DOWNLOAD_CALL_DISCONECTTED

1-Envelope event download call disconnected is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3-EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered.

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown.
	

	14
	Envelope Handler availiability with EVENT_EVENT_DOWNLOAD_LOCATION_STATUS

1-Envelope event download location status is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3-EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown.
	

	15
	Envelope Handler availiability with EVENT_EVENT_DOWNLOAD_USER_ACTIVITY

1-Envelope event download user activity is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3-EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown
	

	16
	Envelope Handler availability with EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE

1-Envelope event download idle screen available is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3-EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown.
	

	17
	Envelope Handler availiability with EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS

1-Envelope event download card reader status is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3-EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown.
	

	18
	Envelope Handler availiability with EVENT_EVENT_DOWNLOAD_LANGUAGE_

SELECTION

1-Envelope event download language selection is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3-EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2-No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown.
	

	19
	Envelope Handler availiability with EVENT_EVENT_DOWNLOAD_BROWSER_

TERMINATION

1-Envelope event download browser termination is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3-EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2-No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown.
	

	20
	Envelope Handler availaibility with EVENT_STATUS_COMMAND

1-Status command is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1
3-EnvelopeHandler.getTheHandler() method is called by Applet2

	1- Applet1 is triggered

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes

3- Applet2 is triggered

4- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown
	

	21
	Envelope Handler availiability with EVENT_ UNRECOGNIZED_ENVELOPE

1-An unrecognized Envelope is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called by Applet1

3-EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown.

	

6.3.1.3.4
Test Coverage

	CRR Number
	Test Case Number

	CRRN1
	2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19

	
	

	CRRC1
	1,20

6.3.1.4.1
Conformance Requirement

Normal Execution

CRRN1: The handler is available for all triggered toolkit applets from the invocation of the processToolkit method of the toolkit applet until a toolkit applet has posted an envelope response or the first invocation of the ProactiveHandler.send method for the following events:.

EVENT_FORMATTED_SMS_PP_ENV

EVENT_UNFORMATTED_SMS_PP_ENV

EVENT_CALL_CONTROL

EVENT_SMS_MO_CONTROL

EVENT_UNRECOGNIZED_ENVELOPE

CRRN2: After a call to the post method the handler is not longer available

CRRN3: After a call to the send method the handler is not longer available

Context Errors
CRRC1: The handler is not available for the following events:

EVENT_UNFORMATTED_SMS_CB

EVENT_MENU_SELECTION

EVENT_MENU_SELECTION_HELP_REQUEST

EVENT_TIMER_EXPIRATION

EVENT_EVENT_DOWNLOAD_MT_CALL

EVENT_EVENT_DOWNLOAD_CALL_CONNECTED

EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED

EVENT_EVENT_DOWNLOAD_LOCATION_STATUS

EVENT_EVENT_DOWNLOAD_USER_ACTIVITY

EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE

EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS

EVENT_STATUS_COMMAND

EVENT_PROFILE_DOWNLOAD

6.3.1.4.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Toolkit Applet1 and Toolkit Applet2 registration and Envelope Response Handler availability with EVENT_PROFILE_DOWNLOAD

1- Applet1 Toolkit 1 is registered to all events defined in [7].

Using the methods initMenuEntry() for EVENT_MENU_SELECTION, requestPollInterval() for EVENT_STATUS_COMMAND, allocateTimer() for EVENT_TIMER_EXPIRATION and setEventList() for the rest of the events.

Applet2 Toolkit 2 is registered to

EVENT_UNFORMATTED_SMS_PP_ENV and EVENT_UNRECOGNIZED_ENVELOPE.

2-Terminal Profile command is sent to SIM without the facility of SET_EVENT_LIST ,SETUP_IDLE_MODE_TEXT, SETUP_MENU and POLL_INTERVAL.

Applet1 is triggered

32-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

Applet1 is deregistered to EVENT_PROFILE_DOWNLOAD

	1- No exception is thrown

2- Applet1 is triggered

3- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown
	

	2
	Envelope Response Handler availiability with EVENT_MENU_SELECTION_HELP_REQUEST

Perform SIM initialization with all the facilities supported

1-Envelope menu selection with help request is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered.

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	3
	Envelope Response Handler availiability with EVENT_MENU_SELECTION

1-A envelope menu selection is sent to the SIM

The Applet1 is triggered

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	4
	Envelope Response Handler availability with EVENT_UNFORMATTED_CB

1-Envelope cell broadcast unformatted is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered.

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	5
	Envelope Response Handler availiability with EVENT_TIMER_EXPIRATION

1-Envelope Timer Expiration is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered.

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	6
	Envelope Response Handler availiability with EVENT_EVENT_DOWNLOAD_MT_CALL

1-Envelope event download mt call is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered.

2 -A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	7
	Envelope Response Handler availability with EVENT_EVENT_DOWNLOAD_CALL_CONNECTED

1-Envelope event download call connected is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered.

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	8
	Envelope Response Handler availiability with EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED

1-Envelope event download call disconnected is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered.

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	9
	Envelope Response Handler availability with EVENT_EVENT_DOWNLOAD_LOCATION_STATUS

1-Envelope event download location status is sent to the SIM

2-Applet A obtains the Envelope Response Handler

	1- Applet1 is triggered.

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	10
	Envelope Response Handler availability with EVENT_EVENT_DOWNLOAD_USER_ACTIVITY

1-Envelope event download user activity is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered.

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	11
	Envelope Response Handler availability with EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE

1-Envelope event download idle screen available is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered.

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	12
	Envelope Response Handler availability with EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS

1-Envelope event download card reader status is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	13
	Envelope Response Handler availability with EVENT_STATUS_COMMAND

1-Status command is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered

2- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	

	14
	Envelope Response Handler availability with EVENT_FORMATTED_SMS_PP_ENV

1-A formatted sms pp envelope is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

3-Applet1 builds an additional information for response packet and it calls the post method

4-Applet1 calls all methods of the Envelope Response Handler (including the inherited method)

The Applet1 finalizes

5-A EVENT_FORMATTED_SMS_PP_ENV envelope is sent to the SIM

6-EnvelopeResponseHandler.getTheHandler() method is called by Applet1
7-Applet1 builds a proactive command and it calls the send() method

8-Applet1 calls all methods of the Envelope Response Handler (including the inherited method)

	1- Applet1 is triggered

2- No exception is thrown.

4- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown for each method

5- Applet1 is triggered

6- No Exception is thrown

8- Toolkit exception HANDLER_NOT_AVAILABLE is thrown for each method
	3- The response packet is sent

7- The proactive command is sent

	15
	Envelope Response Handler availability with EVENT_UNFORMATTED_SMS_PP_ENV

1-A unformatted sms pp envelope is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

3-Applet1 builds the envelope response and it calls the post() method

4- Applet1 calls all methods of the Envelope Response Handler (including the inherited method)

The Applet1 finalizes

5-EnvelopeResponseHandler.getTheHandler() method is called

Applet2 finalizes.

6-A unformatted sms pp envelope is sent to the SIM

7-EnvelopeResponseHandler.getTheHandler() method is called.

8-Applet1 builds a proactive command and it calls the send() method

9-Applet1 calls all methods of the Envelope Response Handler (including the inherited method)

10-EnvelopeResponseHandler.getTheHandler() method is called by Applet2

	1- Applet1 is triggered

2- No exception is thrown.

4- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown for each method

5- Applet2 is triggered.

6- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown.

7- Applet1 is triggered

8- No exception is thrown.

10- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown for each method

Applet1 finalizes

11- Applet2 is triggered

12- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown

	3- The envelope response is sent

9- The proactive command is fetched and the Terminal response is issued.

	16
	Envelope Response Handler availability with EVENT_CALL_CONTROL_BY_SIM

1-Envelope call control by sim is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

3-Applet1 builds the envelope response and it calls the postAsBERTLV() method

4-Applet1 calls all methods of the Envelope Response Handler (including the inherited method)

The Applet1 finalizes

5-Envelope call control by sim is sent to the SIM

6-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

7-Applet1 builds a proactive command and it calls the send() method

8-Applet1 calls all methods of the Envelope Response Handler (including the inherited method)
	1- Applet1 is triggered

2- No exception is thrown.

4- Toolkit exception HANDLER_NOT_AVAILABLE is thrown for each method

5- Applet1 is triggered

6- No Exception is thrown

8- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown for each method

	3- The envelope response is sent

7- The proactive command is fetched and the Terminal response is issued

	17
	Envelope Response Handler availability with EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

1-Envelope mo short message control by sim is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

3-Applet1 builds the envelope response and it calls the postAsBERTLV() method

4-Applet1 calls all methods of the Envelope Response Handler (including the inherited method)

The Applet1 finalizes

5-Envelope mo short message control by sim is sent to the SIM

6-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

7-Applet1 builds a proactive command and it calls the send method

8-Applet1 calls all methods of the Envelope Response Handler (including the inherited method)
	1- Applet1 is triggered

2- No exception is thrown.

4- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown for each method

5- Applet1 is triggered

6- No exception is thrown

8- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown for each method

	3-The envelope response is sent

7- The proactive command is fetched and the Terminal Response is issued

	18
	Envelope Response Handler availability with EVENT_UNRECOGNIZED_ENVELOPE

1-An unrecognized Envelope is sent to the SIM

2-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

3-Applet1 builds the envelope response and it calls the postAsBERTLV() or post method

4-Applet1 calls all methods of Envelope Response Handler (including the inherited method)

The Applet1 finalizes

54-EnvelopeResponseHandler.getTheHandler() method is called

Applet2 finalizes

6-An unrecognized Envelope is sent to the SIM

7-EnvelopeResponseHandler.getTheHandler() method is called

8-Applet1 builds a proactive command and it calls the send() method

9-Applet1 calls all methods of the Envelope Response Handler (including the inherited method)

10-EnvelopeResponseHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown.

4- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown for each method

5- Applet2 is triggered.

6- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown for each method

7- Applet1 is triggered.

8- No exception is thrown.

10- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown for each method

Applet1 finalizes

11- Applet2 is triggered

12- A Toolkit exception HANDLER_NOT_AVAILABLE is thrown for each method

	3- The envelope response is sent

9- The proactive command is fetched and the Terminal response is issued

	19
	The envelope response is sent when a proactive session is ongoing

1-A formatted SMS PP envelope is sent to the SIM.

2-Proactive command DISPLAY TEXT is built and it calls the send() method.

3-A call control by sim envelope is sent to the SIM.

4-EnvelopeResponseHandler.getTheHandler() method is called by Applet1

5-Applet1 builds the envelope response and it calls the postAsBERTLV

	1- Applet1 is triggered.

3- Applet1 is triggered

4- No exception is thrown

	2- 91 XX

5-The envelope response is sent

9F YY

GET RESPONSE

Data

 91 XX

Fetch DISPLAY TEXT

Terminal Response DISPLAY TEXT

Note: Due to an inconsistency in [7] specification it is not possible to cover the test case when an applet try to post data in multitriggering.

6.3.2.2.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Applet registration and ProactiveResponseHandler obtaining

1-Applet is registered to all events defined in [7].

Using the methods initMenuEntry for EVENT_MENU_SELECTION, requestPollInterval() for EVENT_STATUS_COMMAND, allocateTimer() for EVENT_TIMER_EXPIRATION and setEventList() for the rest of the events.

Terminal Profile command is sent to the SIM without the facilities of SET_EVENT_LIST ,SETUP_IDLE_MODE_TEXT, SETUP_MENU and POLL_INTERVAL.

For each event:

2-ProactiveResponseHandler.getTheHandler() is called

If handler is available, ProactiveResponseHandler.getLength() is called

	1- No exception is thrown

2- Applet is triggered.

3- Behaviour 1:

 Toolkit Exception HANDLER_NOT_AVAILABLE is thrown.

Behaviour 2:

 No exception is thrown, the return value is 0

	

	2
	The ProactiveResponseHandler remains unchanged after send method invocation until next send method invocation

1-Applet builds a proactive command ProactiveHandler.send() method is called

2-ProactiveResponseHandler.getLength() method is called

3-ProactiveHandler.init() method is called

4-ProactiveHandler.send() method is called

5-ProactiveResponseHandler.getLength() method is called

	1- The ProactiveResponseHandler contains the terminal response

3- The return value is 12

4- No exception is thrown and the Proactive Response Handler remains unchanged

5- The ProactiveResponseHandler contains the terminal response of the second proactive command

7- The return value is 15

	2- A proactive command is fetched

The terminal response is sent with length 12

6- A proactive command is fetched

The terminal response is sent with length 15

6.3.2.3.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Applet initialization and Envelope Handler integrity checks with EVENT_MENU_SELECTION_HELP_REQUEST

1- Applet is registered to all events defined in [7] except EVENT_PROFILE_DOWNLOAD and EVENT_STATUS_COMMAND.

Using the methods initMenuEntry() for EVENT_MENU_SELECTION, allocateTimer()for EVENT_TIMER_EXPIRATION, and setEventList() for the rest of the events.

Perform SIM initialization with all the facilities supported

2-Envelope menu selection with help request is sent to the SIM

3-EnvelopeHandler.getTheHandler() method is called

4-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_HELP_REQUEST

5-A proactive command DISPLAY TEXT is sent

6-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

7- It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

Check that the TAG_HELP_REQUEST is the TLV selected

8-The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()

	1-No exception is thrown

2- Applet is triggered

3- No exception is thrown.

4- No exception is thrown

6- Applet is triggered

7- No exception is thrown and the handler contains the envelope call control by SIM

8- The contents of the envelope handler shall be the same as stored in buffer 1
	5- 91 xx.

 A proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	2
	Envelope Handler integrity checks with EVENT_MENU_SELECTION

1-An envelope menu selection is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_ITEM_IDENTIFIER

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6- It’s checked the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_ITEM_IDENTIFIER is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()

	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	3
	Envelope Handler integrity checks with EVENT_FORMATTED_SMS_PP_ENV

1-A formatted sms pp envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_SMS_TPDU

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_SMS_TPDU is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	4
	Envelope Handler integrity checks with EVENT_FORMATTED_SMS_CB
1-An envelope SMS-CB formatted according to [8] is sent to the SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_CELL_BROADCAST_PAGE

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_CELL_BROADCAST_PAGE is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2-No exception is thrown.

3-No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4-91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	5
	Envelope Handler integrity checks with EVENT_UNFORMATTED_SMS_PP_ENV

1-A unformatted sms pp envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV method is called with TAG_DEVICE_IDENTITIES

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_DEVICE_IDENTITIES is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	6
	Envelope Handler integrity checks with EVENT_UNFORMATTED_SMS_CB

1-A unformatted cellbroadcast envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_CELLBROADCAST_PAGE

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_CELLBROADCAST_PAGE is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	7
	Envelope Handler integrity checks with EVENT_TIMER_EXPIRATION

1-A timer expiration envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

 3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_TIMER_ID

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_TIMER_IDE is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	8
	Envelope Handler integrity checks with EVENT_CALL_CONTROL_BY_SIM

1-A call control envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

 3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_ADDRESS

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_ADDRESS is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	9
	Envelope Handler integrity checks with EVENT_ MO_SHORT_MESSAGE_CONTROL_BY_SIM

1-A mo short message control by sim envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

 3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_ADDRESS

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It's checked that the TAG_ADDRESS is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	10
	Envelope Handler integrity checks with EVENT_ EVENT_DOWNLOAD_MT_CALL

1-A event download mt call envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_ADDRESS

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_ADDRESS is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	11
	Envelope Handler integrity checks with EVENT_ EVENT_DOWNLOAD_CALL_CONNECTED

1-A event download call connected envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

 3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_ADDRESS

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_ADDRESS is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	12
	Envelope Handler integrity checks with EVENT_ EVENT_DOWNLOAD_CALL_DISCONNECTED

1-A event download call disconnected envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

 3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_ADDRESS

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_ADDRESS is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	13
	Envelope Handler integrity checks with EVENT_ EVENT_DOWNLOAD_LOCATION_STATUS

1-A event download location status envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_LOCATION_STATUS

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_LOCATION_STATUS is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4-91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	14
	Envelope Handler integrity checks with EVENT_ EVENT_DOWNLOAD_USER_ACTIVITY

1-A event download user activity envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It's checked that the TAG_DEVICE_IDENTITIES is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	15
	Envelope Handler integrity checks with EVENT_ EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE

1-A event download idle screen available envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_DEVICE_IDENTITIES is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	16
	Envelope Handler integrity checks with EVENT_ EVENT_DOWNLOAD_CARD_READER_STATUS

1-A event download card reader status envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_CARD_READER_STATUS

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

It’s checked that the TAG_CARD_READER_STATUS is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	17
	Envelope Handler integrity checks with EVENT_EVENT_DOWNLOAD_LANGUAGE_SELECTION
1-A event download language selection envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_EVENT_LIST

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_EVENT_LIST is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2-No exception is thrown.

3-No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4-91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	18
	Envelope Handler integrity checks with EVENT_EVENT_DOWNLOAD_BROWSER_TERMINATION
1-A event download browser termination envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_EVENT_LIST

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

It’s checked that the TAG_EVENT_LIST is the TLV selected

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2-No exception is thrown.

3-No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4-91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

	19
	Envelope Handler integrity checks with UNRECOGNIZED_ENVELOPE

1-A unrecognized envelope is sent to SIM

2-EnvelopeHandler.getTheHandler() method is called

3-Copy the contents of the envelope handler in buffer 1 using EnvelopeHandler.copy()

4-A proactive command DISPLAY TEXT is sent

5-Envelope call control by sim is sent to SIM

EnvelopeHandler.getTheHandler() method is called

The EnvelopeHandler.getValueLength() is called

6-It’s checked that the contents of the envelope handler is the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

7- The contents of EnvelopeHandler are compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the envelope handler shall be the same as stored in buffer 1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the SIM

6.3.3.1.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Applets registration to EVENT_PROFILE_DOWNLOAD and triggering

Applet1 is registered to the EVENT_PROFILE_DOWNLOAD

Applet2 is registered to the EVENT_PROFILE_DOWNLOAD

Applet3 is not registered to the EVENT_PROFILE_DOWNLOAD and is registered to EVENT_FORMATTED_SMS_PP_ENV.

1-Terminal Profile command is sent to SIM

	1- Applet1 is triggered

Applet1 finalizes

2- Applet2 is triggered

Applet2 finalizes

3- Applet3 is not triggered
	

	2
	The STF shall not reply busy to a Terminal Profile command

1-Formatted sms pp envelope is sent to SIM

Applet3 builds a REFRESH proactive command in sim initialization mode

2-ProactiveHandler.send() method is called by applet3

3-Terminal Profile command is sent to SIM

Applet1 calls Toolkit Registry.clearEvent(EVENT_PROFILE_DOWNLOAD)

4-Applet2 calls Toolkit Registry.clearEvent(EVENT_PROFILE_DOWNLOAD)

ToolkitRegistry.setEvent(EVENT_PROFILE_DOWNLOAD) method is called

	1- Applet3 is triggered by the EVENT_FORMATTED_SMS_PP_ENV

Applet3 is suspended until the terminal response

3- Applet1 is triggered by EVENT_PROFILE_DOWNLOAD

Applet1 finalizes

4- Applet2 is triggered by EVENT_PROFILE_DOWNLOAD

Applet2 finalizes

Applet3 finalizes
	2- A proactive command is sent
The terminal Response of the proactive command is sent

	3
	Deregistered applets are not triggered

Terminal Profile command is sent to SIM

	Applet3 is triggered

(Applet1 and Applet2 are not triggered)
	

6.3.3.5.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Applet registration to EVENT_UNFORMATTED_SMS_PP_ENV and triggering

Applet is registered to the EVENT_UNFORMATTED_SMS_PP_ENV and ENVENT_FORMATTED_SMS_PP_ENV.

1-Toolkit Registry.isEventSet() method is called for EVENT_UNFORMATTED_SMS_PP_ENV

2-An Envelope UNFORMATTED_SMS_PP_ENV is sent to the SIM.

	1- The method returns true

2- Applet is triggered

	

	2
	Applet deregistration

Toolkit Registry.clearEvent()method is called for EVENT_UNFORMATTED_SMS_PP_ENV

1-An unformatted sms pp envelope is sent to the SIM.

A formatted sms pp envelope is sent to the sim

Toolkit Registry.setEvent() method is called for EVENT_UNFORMATTED_SMS_PP_ENV

2-An Envelope UNFORMATTED_SMS_PP_ENV is sent to the SIM

	1- Applet isn't triggered

2- Applet is triggered

	

6.3.3.7.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Applet registration to EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM and triggering

Applet1 is reggistered to EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM.

Applet2 is registered to EVENT_FORMATTED_SMS_PP_ENV.

1-An Envelope MO short message envelope is sent to SIM

	1- Applet1 is triggered.

	

	2
	Applet deregistration and registration of the third applet to EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM.

The STF shall not reply busy to a call control envelope

1-An Envelope formatted SMS PP envelope is sent to SIM.

Applet2 builds a DISPLAY TEXT proactive command.

2-ProactiveHandler.send() method is called.

3-An Envelope MO Short message envelope is sent to SIM

ToolkitRegistry.clearEvent() for EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM.

ToolkitRegistry.setEvent() method is called for EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM.

	1- Applet2 is triggered.

3- Applet1 is triggered.

Applet1 finalizes.

Applet2 finalizes.
	2- A Proactive command DISPLAY TEXT is sent and

applet is suspended until the terminal response

TERMINAL RESPONSE of DISPLAY TEXT is sent to the SIM

	3
	Applet3 triggering

An Envelope MO SMS control by SIM envelope is sent ot SIM

	Applet2 is triggered.

(Applet1 is not triggered)

	

6.3.3.8.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Applet registration to EVENT_TIMER_EXPIRATION and triggering

Applet is registered to the EVENT_TIMER_EXPIRATION using the allocateTimer() method and to EVENT_FORMATTED_SMS_PP_ENV.

event= EVENT_TIMER_EXPIRATION

1-Toolkit Registry.isEventSet() method is called.

2-An Envelope TIMER_EXPIRATION is sent to the SIM.

	1- The method returns true

2- Applet is triggered.

	

	2
	Applet deregistration

Timer id=1

Toolkit Registry.ReleaseTimer() method is called

1-An Envelope timer expiration is sent to the SIM.

An Envelope formated sms pp envelope is sent to the sim

Toolkit Registry.AllocateTimer() method is called

2-An Envelope TIMER_EXPIRATION is sent to the SIM.

	1- Applet isn't triggered

2- Applet is triggered
	

6.3.3.10.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Applet registration to EVENT_EVENT_DOWNLOAD_MT_CALL and triggering

Applet is registered to the EVENT_EVENT_DOWNLOAD_MT_CALL and to EVENT_FORMATTED_SMS_PP_ENV.

event= EVENT_EVENT_DOWNLOAD_MT_CALL

1-Toolkit Registry.isEventSet() method is called.

2-An Envelope EVENT_DOWNLOAD_MT_CALL is sent to the SIM.

	1- The method returns true

2- Applet is triggered

	

	2
	Applet deregistration

event= EVENT_EVENT_DOWNLOAD_MT_CALL

Toolkit Registry.clearEvent()method is called

Perform SIM initialization with all the facilities supported

1-An Envelope EVENT_DOWNLOAD_MT_CALL is sent to the SIM.

An Envelope formatted sms pp envelope is sent to the sim

event= EVENT_EVENT_DOWNLOAD_MT_CALL

Toolkit Registry.setEvent() method is called

Perform SIM initialization with all the facilities supported

2-An Envelope EVENT_DOWNLOAD_MT_CALL is sent to the SIM.

	1- Applet isn't triggered

2- Applet is triggered
	

6.3.3.11.2
Test Suite Files

Test Script:

FWK_APT_EDCC_1.scr

Test Applet:

FWK_APT_EDCC_1.java

Load Script:

FWK_APT_EDCC_1.ldr

Cleanup Script:

FWK_APT_EDCC_1.clr
Parameter File:

FWK_APT_EDCC_1.par
6.3.3.12.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Applet registration to EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED and triggering

Applet is registered to the EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED and to EVENT_FORMATTED_SMS_PP_ENV.

Event=EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED

1-Toolkit Registry.isEventSet() method is called.

2-An Envelope EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED is sent to the SIM.

	1- Method returns true

2- Applet is triggered.
	

	2
	Applet deregistration

Event= EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED

Toolkit Registry.clearEvent()method is called

Perform SIM initialization with all the facilities supported

1-An Envelope EVENT_DOWNLOAD_CALL_DISCONNECTED is sent to the SIM.

a formatted sms pp envelope is sent to the sim.

Event= EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED

Toolkit Registry.setEvent() method is called

Perform SIM initialization with all the facilities supported

2-An Envelope EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED is sent to the SIM.

	1- Applet isn't triggered

2- Applet is triggered

	

6.3.3.14.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Applet registration to EVENT_EVENT_DOWNLOAD_USER_ACTIVITY and triggering

Applet is registered to the EVENT_EVENT_DOWNLOAD_USER_ACTIVITY and to EVENT_FORMATTED_SMS_PP_ENV.

Event= EVENT_EVENT_DOWNLOAD_USER_ACTIVITY

1-Toolkit Registry.isEventSet() method is called.

2-An Envelope EVENT_DOWNLOAD_USER_ACTIVITY is sent to the SIM.

	1- Method returns true

2- Applet is triggered
	

	2
	Applet deregistration

Event= EVENT_EVENT_DOWNLOAD_USER_ACTIVITY

Toolkit Registry.clearEvent()method is called

Perform SIM initialization with all the facilities supported

1-An Envelope EVENT_DOWNLOAD_USER_ACTIVITY is sent to the SIM.

a formatted sms pp envelope is sent to the sim

Event= EVENT_EVENT_DOWNLOAD_USER_ACTIVITY

Toolkit Registry.setEvent() method is called

Perform SIM initialization with all the facilities supported

2-An Envelope EVENT_DOWNLOAD_USER_ACTIVITY is sent to the SIM.

	1- Applet isn't triggered

2- Applet is triggered
	

6.3.3.19.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Applet registration to EVENT_FORMATTED_SMS_CB and triggering

Applet is registered to EVENT_FORMATTED_SMS_CB and EVENT_FORMATTED_SMS_PP_ENV

1-An Envelope EVENT_FORMATTED_SMS_CB is sent to the SIM.

	1-Applet is triggered
	

	2
	Applet deregistration

ToolkitRegistry.clearEvent() method is called for EVENT_FORMATTED_SMS_CB

1-A formatted SMS CB envelope is sent to the SIM.

2-An envelope SMS-PP formatted is sent to the SIM

ToolkitRegistry.setEvent() method is called for EVENT_FORMATTED_SMS_CB

3-An Envelope FORMATTED_SMS_CB is sent to the SIM

	1- Applet is not triggered

2- Applet is triggered

3- Applet is triggered
	

6.3.3.20.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Applet registration to EVENT_EVENT_DOWNLOAD_LANGUAGE_SELECTION and triggering

Applet is registered to the EVENT_EVENT_DOWNLOAD_LANGUAGE_SELECTION and to EVENT_FORMATTED_SMS_PP_ENV.

Event= EVENT_EVENT_DOWNLOAD_LANGUAGE_SELECTION

1-Toolkit Registry.isEventSet() method is called.

2-An Envelope EVENT_DOWNLOAD_LANGUAGE_SELECTION is sent to the SIM.

	1-Method returns true

2- Applet is triggered
	

	2
	Applet deregistration

Event= EVENT_EVENT_DOWNLOAD_LANGUAGE_SELECTION

Toolkit Registry.clearEvent()method is called

Perform SIM initialization with Profile Download, SMS PP Data Download, Command Result and Language Selection facilities.

1-An Envelope EVENT_DOWNLOAD_LANGUAGE_SELECTION is sent to the SIM.

a formatted sms pp envelope is sent to the sim

Event= EVENT_EVENT_DOWNLOAD_LANGUAGE_SELECTION

Toolkit Registry.setEvent() method is called

Perform SIM initialization with Profile Download, SMS PP Data Download, Command Result and Language Selection facilities.

2-An Envelope EVENT_DOWNLOAD_LANGUAGE_SELECTION is sent to the SIM.

	1- Applet isn't triggered

2- Applet is triggered
	

6.3.3.21.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Applet registration to EVENT_EVENT_DOWNLOAD_ BROWSER_TERMINATION and triggering

Applet is registered to the EVENT_EVENT_DOWNLOAD_BROWSER_TERMINATION and to EVENT_FORMATTED_SMS_PP_ENV

Event=

EVENT_EVENT_DOWNLOAD_BROWSER_TERMINATION

1-Toolkit Registry.isEventSet() method is called.

2-An Envelope EVENT_DOWNLOAD_BROWSER_TERMINATION is sent to the SIM.

	1-Method returns true

2- Applet is triggered
	

	2
	Applet deregistration

Event= EVENT_EVENT_DOWNLOAD_BROWSER_TERMINATION

Toolkit Registry.clearEvent()method is called

Perform SIM initialization with Profile Download, SMS PP Data Download, Command Result and Browser Termination facilities.

1-An Envelope EVENT_DOWNLOAD_BROWSER_TERMINATION is sent to the SIM.

a formatted sms pp envelope is sent to the sim

Event= EVENT_EVENT_DOWNLOAD_BROWSER_TERMINATION

Toolkit Registry.setEvent() method is called

Perform SIM initialization with Profile Download, SMS PP Data Download, Command Result and Browser Termination facilities.

2-An Envelope EVENT_DOWNLOAD_BROWSER_TERMINATION is sent to the SIM.

	1- Applet isn't triggered

2- Applet is triggered

	

6.3.4.1.1
Conformance Requirements

Normal Execution

CRRN1: When a toolkit applet changes a menu entry of its registry object, the SIM Toolkit Framework shall dynamically* update the menu stored in the ME during the current card session

CRRN2: The STF shall use the data of the EFsume file when issuing the SET UP MENU proactive command.

CRRN3: For all EVENT_EVENT_DOWNLOAD_*: When a toolkit applet changes one or more of these requested events of its registry object, the STF shall dynamically* update the event list stored in the ME during the current card session by SET UP EVENT LIST proactive command.

*The STF shall send its system proactive command as soon as no proactive session is pending and all the applets registered to the current events have been triggered and have returned from the processToolkit method invocation.

6.3.4.1.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Install Applet 1, Registered to the EVENT_EVENT_DOWNLOAD_MT_CALL and EVENT_EVENT_DOWNLOAD_ LOCATION_STATUS

Perform SIM initialization with EVENT DOWNLOAD facilities supported
	
	setEventList proactive command

[Event list]= ‘19020003’ or ‘99020003’

	2
	Trigger the applet by ENVELOPE (SMS_FORMATTED_PP) command

Clear the events and build a display text command

	
	1. DISPLAY TEXT Proactive command

2. SET UP EVENT LIST Proactive command

[CommandQualifier]= 00h

6.3.6.1.3 Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Framework checks the Cryptographic checksum and deciphers the data

Applet1 is loaded and installed

1-Envelope(SMS-PP) formatted is sent to the SIM with this features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

Data = 01

	1- Applet1 is triggered.
	

	2
	Framework checks the Cryptographic checksum and deciphers the data

Applet2 is installed

1-Envelope(SMS-PP) formatted is sent to the SIM with this features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet 1

Data = 02

2-Envelope(SMS-PP) 03.48 formatted is sent to the SIM with this features:

No ciphering;

No cryptographic checksum;

No proof of receipt;

TAR of Applet 2

Data = 03

	1- Applet1 is triggered

3- Applet2 is triggered
	2- The SIM answers to the Envelope with status words 9000

The SIM answers to the Envelope with status words 9000

	
	
	
	

	3
	Envelope(SMS-PP) formatted with wrong cryptographic checksum

No ciphering;

Wrong Cryptographic checksum;

No proof of receipt;

TAR of Applet 1

Data = 04
	No applet is triggered
	1- The SIM answers to the Envelope with status words 9000

	4
	Framework checks the Cryptographic checksum and deciphers the data

Applet3 is loaded and installed

1-Envelope(SMS-CB) formatted is sent to the SIM with this features:
Ciphering;

Cryptographic checksum;

No proof of receipt;

Data = 01

	1- Applet3 is triggered.
	1- The SIM answers to the Envelope with status words 9000

	5
	Triggering two different applets with different security on Envelope(SMS-CB) formatted

Applet4 is installed

1-Envelope(SMS-CB) formatted is sent to the SIM with this features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet 3

Data = 02

2-Envelope(SMS-CB) formatted is sent to the SIM with this features:

No ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet 4

Data = 03

	1- Applet3 is triggered

3- Applet4 is triggered
	2- The SIM answers to the Envelope with status words 9000

4- The SIM answers to the Envelope with status words 9000

	6
	Envelope(SMS-CB) formatted with wrong cryptographic checksum

No ciphering;

Wrong Cryptographic checksum;

No proof of receipt;

TAR of Applet 3

Data = 04
	No applet is triggered
	1- The SIM answers to the Envelope with status words 9000

6.3.8.1.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	More than 8 timers at the instantiation of applet1: check that applet1 is not installed or that it is not possible to allocate more than 8 timers.
Install for install of applet1 with maximum 9 timers allocated.

applet1 is triggered: we allocate 9 timers

applet1 is selected
	Shall throw a ToolkitException with reason NO_TIMER_AVAILABLE only on the 9th allocateTimer()

	The SIM answers to the Envelope with status words 90 00
2 behaviours may be expected :

1. applet1 is not found, status word 6X XX

2. applet1 has been installed and only 8 timers are allocated

	
	Reset the card and delete instance of applet1
	
	

	2
	Good installation of applet2
Install for install of applet2 (maximum 4 timers allocated).

	
	The SIM answers to the Envelope with status words 90 00

	3
	Allocate 4 timers

Applet2

	No exception shall be thrown.

	

	4
	Allocate one more timer

Applet2

	Shall throw a ToolkitException with reason NO_TIMER_AVAILABLE
	

	5
	Good installation of applet3
Install for install of applet3 (maximum 8 timers allocated).

	
	The SIM answers to the Envelope with status words 90 00

	6
	Allocate 4 timers

Applet3

	No exception shall be thrown.

	

	7
	Allocate one more timer

Applet3

	Shall throw a ToolkitException with reason NO_TIMER_AVAILABLE
	

	8
	Check that each timerId (allocated by applet2 and applet3) is between 1 and 8 and is different from each other

	
	

6.3.8.2.3
Test Procedure
	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Bad installation of applet1
Install for install of applet1.The following parameters item Id equal to 128

applet1 is selected
	
	applet1 is not found, status word 6X XX

	2
	Good installation of applet1
Install for install of applet1. item Id = 1 for the first menu and 127 for the second one

A Terminal Profile is sent to the card with only PROFILE_DOWNLOAD, SMS_PP_DOWNLOAD, MENU_SELECTION, SET_UP_MENU and COMMAND_RESULT facilities.
	
	The SIM answers to the Envelope with status words 91xx to send back to the ME the 2 new menus.

The menus are

(position/itemId/text)

01/01/menu11

02/127/menu12

	3
	Bad installation of applet2

Item identifier already allocated
Install for install of applet2.

item Id = 127

applet2 is selected
	
	applet2 is not found, status word 6X XX

	4
	Good installation of applet2
Install for install of applet2.

item Id = 0

	
	The SIM answers to the Envelope with status words 91xx to send back to the ME the 3 menus.

The menus are

01/01/menu11

02/127/menu12

03/128/menu21

	5
	Good installation of applet3
Install for install of applet3.

item Id = 0

	
	The SIM answers to the Envelope with status words 91xx to send back to the ME the 4 menus.

The menus are

01/01/menu11

02/127/menu12

03/128/menu21

04/129/menu31

	6
	Good delete and installation of applet2
Delete instance of applet2

Perform a RESET and a Terminal Profile with the facilities of PROFILE_DOWNLOAD, SMS-PP_DATA_DOWNLOAD, MENU_SELECTION, COMMAND_RESULT and SET_UP_MENU

Install for install of applet2.

item Id = 0

	
	The SIM answers to the Terminal Profile with status words 91xx to send back to the ME the 3 menus.

The menus are

01/01/menu11

02/127/menu12

03/129/menu31

The SIM answers to the Envelope with status words 91xx to send back to the ME the 4 menus.

The menus are

01/01/menu11

02/127/menu12

03/128/menu21

04/129/menu31

6.3.8.4.3
Test Procedure

	Id
	Description
	API / Framework Expectation
	APDU Expectation

	1
	Installation of applet with 2 menus not exceeding the maximum text length

Install one applet with 2 menu entries allowed and max. text length equal to 10.

initMenuEntry defined at the install (install) command

MenuEntry = "MenuEntry1", “MenuEntry2”

Offset = 0

Length = 10

NextAction = '00'

HelpSupported = false

IconQualifier = '00'

IconIdentifier = 0
	
	

	2
	initMenuEntry with a too large length

initMenuEntry with length equal to 11

MenuEntry = " MenuEntry03"

Offset = 0

Length = 11

NextAction = '00'

HelpSupported = false

IconQualifier = '00'

IconIdentifier = 0

	ToolkitException ALLOWED_LENGTH_EXCEEDED is thrown
	

	3
	initMenuEntry with a right length

initMenuEntry with length parameter equal to 10

MenuEntry = " MenuEntry3"

Offset = 0

Length = 10

NextAction = '00'

HelpSupported = false

IconQualifier = '00'

IconIdentifier = 0

	
	a SET UP MENU (2 items) is issued with TLV item length equal to 11 (Identifier + Text string of item)

	4
	changeMenuEntry with a right length

Applet1 is triggered by a EVENT_MENU_SELECTION.

changeMenuEntry of menu 1, with length parameter equal to 10

Id = '01'

MenuEntry = "MenuEntry4"

Offset = 0

Length = menuEntry.length

NextAction = 0

HelpSupported = false

IconQualifier = 0

IconIdentifier = 0

Return from processToolkit
	
	a SET UP MENU (2 items) is issued with TLV item length equal to 11 (Identifier + Text string of item)

	5
	changeMenuEntry with a too large length

Applet1 is triggered by a EVENT_MENU_SELECTION.

ChangeMenuEntry of menu 1, with length parameter equal to 11

Id = '02'

MenuEntry = "MenuEntry05"

Offset = 0

Length = menuEntry.length

NextAction = 0

HelpSupported = false

IconQualifier = 0

IconIdentifier = 0

Return from processToolkit
	ToolkitException ALLOWED_LENGTH_EXCEEDED is thrown
	Shall not receive a SET UP MENU different from the previous one

6.3.8.5.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	1
	Installation of applet with 3 menus
Install (install) applet with max. number of menu entry is ‘3’, defined at the install (install) command.

initMenuEntry for each menu entry allowed (3 times)

MenuEntry = "menu1", "menu2", "menu3"

Offset = 0

Length = 5

NextAction = '00'

HelpSupported = false

IconQualifier = '00'

IconIdentifier = 0

	No Exception is thrown
	

	2
	init of a 4th menu

initMenuEntry one more time

MenuEntry = "menu4"

Offset = 0

Length = 5

NextAction = '00'

HelpSupported = false

IconQualifier = '00'

IconIdentifier = 0

	ToolkitException REGISTRY_ERROR is thrown
	SET UP MENU (3 items) is issued with TLV item length equal to 6 (Identifier + Text string of item)

	3
	Installation of 2nd applet with 0 menu
Install (install) another applet, with max. number of menu entry is ‘0’, defined at the install (install) command.

initMenuEntry once

MenuEntry = "menu1"

Offset = 0

Length = 5

NextAction = '00'

HelpSupported = false

IconQualifier = '00'

IconIdentifier = 0
	ToolkitException REGISTRY_ERROR is thrown
	Shall not receive a SET UP MENU different from the previous one

6.3.8.6.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	0
	Install (install) applet1 with:

- Length of Access Domain field value is ‘1’

- Access Domain Parameter value is ‘00’ (full access to the GSM File System)

Install (install) applet2 with:

- Length of Access Domain field value is ‘1’

- Access Domain Parameter value is ‘FF’ (No access to the GSM File System)

Install (install) applet3 with:

- Length of Access Domain field value is ‘1’

- Access Domain Parameter value is ‘00’ (full access to the GSM File System)

	
	

	1
	readBinary/readRecord method with full Access Domain Parameter

1- Select EF-TARU file whose Read access condition is ALWAYS

Perform the readBinary method:

fileOffset = 0

resp = abRead[]

respOffset = 0

respLength = 3

2- Select EF-SMS file whose Read access condition is CHV1

Perform the readRecord method:

recNumber = 1

mode = REC_ACC_MODE_ABSOLUTE_CURRENT

recOffset = 0

resp = abRead[]

respOffset = 0

respLength = 3

3- Select EF-TRAC file whose Read access condition is CHV2

Perform the readBinary method:

fileOffset = 0

resp = abRead[]

respOffset = 0

respLength = 3

4- Select EF-SUME file Read access condition is ADM0

Perform the readBinary method:

fileOffset = 0

resp = abRead[]

respOffset = 0

respLength = 3

5- Select EF-TNR file whose Read access condition is NEVER

Perform the readBinary method:

fileOffset = 0

resp = abRead[]

respOffset = 0

respLength = 3

	1 to 4- no exception is thrown

5- SIMViewException AC_NOT_FULFILLED is thrown
	

	2
	updateBinary/updateRecord method with full Access Domain Parameter

For each case, send an Envelope that triggers the applet with the EVENT_UNFORMATTED_SMS_PP_ENV event.

1- Select EF-TNR file whose Update access condition is ALWAYS

Perform the updateBinary method:

fileOffset = 0

resp = abUpdate[FFFFFF]

respOffset = 0

respLength = 3

2- Select EF-SMS file whose Update access condition is CHV1

Perform the updateRecord method:

recNumber = 1

mode = REC_ACC_MODE_ABSOLUTE_CURRENT

recOffset = 0resp = abUpdate[]

respOffset = 0

respLength = 3

3- Select EF-FDN file whose Update access condition is CHV2

Perform the updateBinary method:

recNumber = 1

mode = REC_ACC_MODE_ABSOLUTE_CURRENT

recOffset = 0

resp = abUpdate[]

respOffset = 0

respLength = 3

4- Select EF-SUME file Update access condition is ADM0

Perform the updateBinary method:

fileOffset = 0

resp = abUpdate[]

respOffset = 0

respLength = 3

5- Select EF-TNU file whose Update access condition is NEVER

Perform the updateBinary method:

fileOffset = 0

resp = abUpdate[]

respOffset = 0

respLength = 3

	1 to 4- no exception is thrown

5- SIMViewException AC_NOT_FULFILLED is thrown
	

	3
	invalidate method with full Access Domain Parameter

1- Select EF-TNR file whose Invalidate access condition is ALWAYS

Perform the invalidate method

2- Select EF-TIAC file whose Invalidate access condition is CHV1

Perform the invalidate method

3- Select EF-ADN file whose Invalidate access condition is CHV2

Perform the invalidate method

4- Select EF-SUME file Invalidate access condition is ADM0

Perform the invalidate method

5- Select EF-CNIV file whose Invalidate access condition is NEVER

Perform the invalidate method

	1 to 4- no exception is thrown

5- SIMViewException AC_NOT_FULFILLED is thrown
	

	4
	rehabilitate method with full Access Domain Parameter

1- Select EF-TNR file whose Rehabilitate access condition is ALWAYS

Perform the rehabilitate method

2- Select EF-IMSI file whose Rehabilitate access condition is CHV1

Perform the rehabilitate method

3- Select EF-ADN file whose Rehabilitate access condition is CHV2

Perform the rehabilitate method

4- Select EF-SUME file Rehabilitate access condition is ADM0

Perform the rehabilitate method

5- Select EF-CNRI file whose Rehabilitate access condition is NEVER

Perform the rehabilitate method

	1 to 4- no exception is thrown

5- SIMViewException AC_NOT_FULFILLED is thrown
	

	5
	increase method with full Access Domain Parameter

1- Select EF-CNU file whose Increase access condition is ALWAYS

Perform the increase method:

incr = abIncreaseValue[]

incrOffset = 0

resp = abRead[]

respOffset = 0

2- Select EF-ACM file whose Increase access condition is CHV1

Perform the increase method:

incr = abIncreaseValue[]

incrOffset = 0

resp = abRead[]

respOffset = 0

3- Select EF-CIAC file whose Increase access condition is CHV2

Perform the increase method:

incr = abIncreaseValue[]

incrOffset = 0

resp = abRead[]

respOffset = 0

4- Select EF-CIAA file Increase access condition is ADM0

Perform the increase method:

incr = abIncreaseValue[]

incrOffset = 0

resp = abRead[]

respOffset = 0

5- Select EF-CNR file whose Increase access condition is NEVER

Perform the increase method

	1 to 4- no exception is thrown

5- SIMViewException AC_NOT_FULFILLED is thrown
	

	6
	readBinary method with no Access Domain Parameter

Send an Envelope that triggers the applet with the EVENT_UNFORMATTED_SMS_PP_ENV event.

Select EF-TARU file whose Read access condition is ALWAYS

Perform the readBinary method:

fileOffset = 0

resp = abRead[]

respOffset = 0

respLength = 3

	SIMViewException AC_NOT_FULFILLED is thrown
	

	7
	updateRecord method with no Access Domain Parameter

Send an Envelope that triggers the applet with the EVENT_UNFORMATTED_SMS_PP_ENV event.

Select EF-SMS file whose Update access condition is CHV1

Perform the updateRecord method:

fileOffset = 0

resp = abUpdate[]

respOffset = 0

respLength = 3

	SIMViewException AC_NOT_FULFILLED is thrown
	

	8
	invalidate method with no Access Domain Parameter

Send an Envelope that triggers the applet with the EVENT_UNFORMATTED_SMS_PP_ENV event.

Select EF-ADN file whose Invalidate access condition is CHV2

Perform the invalidate method

	SIMViewException AC_NOT_FULFILLED is thrown
	

	9
	rehabilitate method with no Access Domain Parameter

Send an Envelope that triggers the applet with the EVENT_UNFORMATTED_SMS_PP_ENV event.

Select EF-SUME file Rehabilitate access condition is ADM0

Perform the rehabilitate method

	SIMViewException AC_NOT_FULFILLED is thrown
	

	10
	increase method with no Access Domain Parameter

Send an Envelope that triggers the applet with the EVENT_UNFORMATTED_SMS_PP_ENV event.

Select EF-CNR file whose Increase access condition is NEVER

Perform the increase method

	SIMViewException AC_NOT_FULFILLED is thrown

Applet2 finalizes

Applet3 restore EF-SUME
	

6.3.8.7.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	0
	All applets are registered on an EVENT_UNFORMATTED_SMS_PP_ENV event
	
	

	1
	Trigger 2 applets with 2 different maximum Priority Levels
Install (install) applet1 with priority level ‘2’ and applet2 with priority level ‘1’, from package fwk_tin_prlv_1.

Send an Envelope that triggers the 2 applets with the EVENT_UNFORMATTED_SMS_PP_ENV event.

Delete applets instances and packages
	A static variable is used to validate triggering order: applet2 is triggered before applet1

	

	2
	Trigger 2 applets with 2 different maximum Priority Levels
Install (install) applet1 with priority level ‘1’ and applet2 with priority level ‘2’, from package fwk_tin_prlv_2.

Send an Envelope that triggers the 2 applets with the EVENT_UNFORMATTED_SMS_PP_ENV event.

Delete applets instances and packages
	A static variable is used to validate triggering order: applet1 is triggered before applet2.
	

	3
	Trigger 2 applets with 2 different Priority Levels
Install (install) applet1 with priority level ‘80’ and applet2 with priority level ‘7F’, from package fwk_tin_prlv_3.

Send an Envelope that triggers the 2 applets with the EVENT_UNFORMATTED_SMS_PP_ENV event.

Delete applets instances and packages
	A static variable is used to validate triggering order: applet2 is triggered before applet1
	

	4
	Trigger 2 applets with 2 different Priority Levels

Install (install) applet1 with priority level ‘7F’ and applet2 with priority level ‘80’, from package fwk_tin_prlv_4.

Send an Envelope that triggers the 2 applets with the EVENT_UNFORMATTED_SMS_PP_ENV event.

Delete applets instances and packages
	A static variable is used to validate triggering order: applet2 is triggered before applet1
	

	5
	Trigger 3 applets with the same Priority Level

Install (install) applet 1, 2, 3 in this order with same priority level from package fwk_tin_prlv_5.

Send an Envelope that triggers the 3 applets with the EVENT_UNFORMATTED_SMS_PP_ENV event.

Delete applets instances and packages.
	A static variable is used to validate triggering order: applet3 is triggered before applet2, and applet2 is triggered before applet1.
	

	6
	Trigger 2 applets from 2 classes, with 2 different Priority Level

Install (install) applet1 from class A with priority level ‘2’

Install (install) applet2 from class B with priority level ‘1’

Send an Envelope that triggers the 2 applets with the EVENT_UNFORMATTED_SMS_PP_ENV event.

Delete applets instances and packages
	A static variable is used to validate triggering order: applet2 is triggered before applet1

	

	7
	Trigger 2 applets from 2 classes, with the same Priority Level

Install (install) applet1 from class A with priority level ‘1’

Install (install) applet2 from class B with priority level ‘1’

Send an Envelope that triggers the 2 applets with the EVENT_UNFORMATTED_SMS_PP_ENV event.

Delete applets instances and packages
	A static variable is used to validate triggering order: applet2 is triggered before applet1

	

	8
	Trigger 2 applets from 2 packages, with 2 different Priority Level

Install package fwk_tin_prlv_8.

Install (install) applet1 from package fwk_tin_prlv_8A with priority level ‘2’

Install (install) applet2 from package fwk_tin_prlv_8B with priority level ‘1’

Send an Envelope that triggers the 2 applets with the EVENT_UNFORMATTED_SMS_PP_ENV event.

Delete applets instances ad packages
	A static variable is used to validate triggering order: applet2 is triggered before applet1
	

	9
	Trigger 2 applets from 2 packages, with the same Priority Level

Install package fwk_tin_prlv_9.

Install (install) applets 1 from package fwk_tin_prlv_9A and applet2 from package fwk_tin_prlv_9B in this order, with same priority level

Send an Envelope that triggers the 2 applets with the EVENT_UNFORMATTED_SMS_PP_ENV event.

Delete applets instances and packages
	A static variable is used to validate triggering order: applet2 is triggered before applet1

	

	10
	 Trigger 4 applets from 2 packages

1-Install packages fwk_tin_prlv_10, fwk_tin_prlv_10A and fwk_tin_prlv_10B. Install (install) 2 applets 1 then 2 from package fwk_tin_prlv_10A, with respectively priority levels 1 and 2.

Send an Envelope that triggers the 2 applets with the EVENT_UNFORMATTED_SMS_PP_ENV event.

2- Install (install) 2 applets 3 then 4 from package fwk_tin_prlv_10B, with respectively priority levels 1 and 2.

Send an Envelope that triggers the 4 applets.

Delete applets instances and packages
	1- A static variable is used to validate triggering order: applet1 is triggered before applet2

2- Applet3 is triggered before applets 1, 4, then 2.
	

	11
	Trigger 4 applets with the same Priority Level then delete them one after another and trigger them each time

1- Install (install) applet1, 2, 3, 4 in this order with same priority level from package fwk_tin_prlv_11.

Send an Enveloppe that triggers the 4 applets with the EVENT_UNFORMATTED_SMS_PP_ENV event.

Delete applet instance 4

2- Send an Enveloppe that triggers the 3 applets with the EVENT_UNFORMATTED_SMS_PP_ENV event.

Delete applet instance 3

3- Send an Enveloppe that triggers the 2 applets with the EVENT_UNFORMATTED_SMS_PP_ENV event.

Delete remaining applet instances and packages
	1- A static variable is used to validate triggering order: applets are triggered in order 4, 3, 2, 1.

2- Applets are triggered in order 3, 2, 1.

3- Applets are triggered in order 2, 1.
	

	12
	Trigger 5 applets with different Priority Levels, alternating install and delete

1- Install (install) applets 1, 2, 3, 4 in this order with respective priority levels 1, 2, 1, 2

Send an Enveloppe that triggers the 4 applets with the EVENT_UNFORMATTED_SMS_PP_ENV event.

2- Delete applet instance 1 and install (install) applet5 with priority level 2

Send an Enveloppe that triggers the 4 applets with the EVENT_UNFORMATTED_SMS_PP_ENV event.

3- Re-install (install) applet1 with priority level 1

Send an Enveloppe that triggers the 5 applets with the EVENT_UNFORMATTED_SMS_PP_ENV event.

	1- A static variable is used to validate triggering order: applets are triggered in order 3, 1, 4, 2

2- Applets are triggered in order 3, 5, 4, 2

3- Applets are triggered in order 1, 3, 5, 4, 2
	

6.3.9.2.3
Test Procedure

	Id
	Description
	API/Framework Expectation
	APDU Expectation

	0
	SIM Initialisation
	Responses ignored.
	

	1
	No change to file context by another applet

Applet1 registers to EVENT_FORMATTED_SMS_PP_ENV.

Applet2 registers to EVENT_CALL_CONTROL_BY_SIM

1 - Applet 1:

- is triggered by a formatted SMS

- selects DF_SIMTEST and EF_TARU

- fileOffset = 0; dataLength = 2; dataOffset = 0;

- buffer = {0xCA, 0xFE }

- updateBinary (): first 2 bytes of EF_TARU are written as ‘CA FE’.

- issues a proactive command “Get Inkey”.

2 - An ENVELOPE APDU containing a CALL CONTROL BY SIM is issued to the SIM

Applet 2:

- is triggered by a CALL CONTROL BY SIM

- selects DF_TELECOM and EF_ADN.

3 - The terminal response for Get Inkey reactivates Applet 1:

- fileOffset = 0; respLength = 2; respOffset = 0;

- readBinary () info buffer2

	1 - No exception shall be thrown.

2 - No exception shall be thrown.

3 - No exception shall be thrown. The value of buffer2 is { 0xCA, 0xFE }

	A GET INKEY proactive command is fetched from the SIM

	2
	No change to file context by subscriber session

1 - Applet 1

- issues a proactive command “Get Inkey”.

2 - Subscriber session selects DF_TELECOM and EF_ADN.

3 - The terminal response for Get Inkey reactivates Applet 1:

- fileOffset = 0; respLength = 2; respOffset = 0;

- readBinary () info buffer2

	1 - No exception shall be thrown.

3 - No exception shall be thrown. The value of buffer2 is { 0xCA, 0xFE }

	1 - A GET INKEY proactive command is fetched from the SIM

	3
	No change by applet of subscriber session context

1 - Applet 1:

- selects DF_SIMTEST and EF_TNU

- issues a proactive command “Get Inkey”.

2 - subscriber session reads record 1 of current file (shall be EF_ADN)

3 - The terminal response for Get Inkey reactivates Applet 1, which terminates execution

	1 - No exception shall be thrown.

3 - No exception shall be thrown.
	1 - A GET INKEY proactive command is fetched from the SIM

2 - READ RECORD absolute number 1 shall read “FF FF” (from EFADN)

A.2.4
EnvelopeHandler methods

	Method Name
	Acronyms
	Numbering on 6 bits

	byte getEnvelopeTag()
	GENT
	000001

	byte getItemIdentifier()
	GIID
	000010

	short getSecuredDataLength()
	GSDL
	000011

	short getSecuredDataOffset()
	GSDO
	000100

	EnvelopeHandler getTheHandler()
	GTHD
	000101

	short getTPUDLOffset()
	GTPO
	000110

	
	
	

	Inherited Method Name: ViewHandler
	
	

	Byte

compareValue(short valueOffset,byte[] compareBuffer,short compareOffset, short compareLength)
	CPRVS_BSS
	000111

	Short

copy(byte[] dstBuffer,short dstOffset,short dstLength)
	COPY_BSS
	001000

	Short

copyValue(short valueOffset, byte[] dstBuffer,short dstOffset,short dstLength)

	CPYVS_BSS
	001001

	 Byte

findAndCompareValue(byte tag,byte[] compareBuffer,short compareOffset)

	FACRB_BS
	001010

	 Byte findAndCompareValue(byte tag,byte occurence, short valueOffset,byte[] compareBuffer,short compareOffset,short compareLength)
	FACRBBS_BSS
	001011

	 Short FindAndCopyValue(byte tag,byte occurence,short valueOffset, byte[] dstBuffer, short dstOffset, short dstLength)
	FACYBBS_BSS
	001100

	 Short findAndCopyValue(byte tag,byte[] dstBuffer,short dstOffset)
	FACYB_BS
	001101

	Byte

FindTLV(byte tag,byte occurrence)
	FINDBB
	001110

	Short

GetLength()
	GLEN
	001111

	 Byte

GetValueByte(short valueOffset)
	GVBYS
	010000

	 Short

GetValueLength()
	GVLE
	010001

A.2.5
EnvelopeResponseHandler methods

	Method Name
	Acronym
	Numbering on 6 bits

	EnvelopeResponseHandler getTheHandler()
	GTHD
	000001

	Void post(byte statusType)
	POSTB
	000010

	Void postAsBERTLV(byte statusType, byte tag)
	POSTBB
	000011

	
	
	

	Inherited Method Name: EditHandler
	
	

	Void appendArray(byte[] buffer, short offset, short length, short dstLength)
	APDA_BSS
	000100

	Void appendTLV(byte tag, byte value)
	APTLBB
	000101

	Void appendTLV(byte tag, byte[] value, short valueOffset, short valueLength)
	APTLB_BSS
	000110

	Void appendTLV(byte tag, byte value1, byte value2)
	APTLBBB
	000111

	Void appendTLV(byte tag, byte value1, byte[] value2, short value2Offset, short value2Length)
	APTLBB_BSS
	001000

	Void clear()
	CLER
	001001

	
	
	

	Inherited Method Name: ViewHandler
	
	

	Byte

compareValue(short valueOffset,byte[] compareBuffer,short compareOffset, short compareLength)
	CPRVS_BSS
	001010

	Short

Copy(byte[] dstBuffer,short dstOffset,short dstLength)
	COPY_BSS
	001011

	Short

CopyValue(short valueOffset, byte[] dstBuffer,short dstOffset,short dstLength)

	CPYVS_BSS
	001100

	 Byte

FindAndCompareValue(byte tag,byte[] compareBuffer,short compareOffset)

	FACRB_BS
	001101

	 Byte findAndCompareValue(byte tag,byte occurence, short valueOffset,byte[] compareBuffer,short compareOffset,short compareLength)
	FACRBBS_BSS
	001110

	 Short FindAndCopyValue(byte tag,byte occurence,short valueOffset, byte[] dstBuffer, short dstOffset, short dstLength)
	FACYBBS_BSS
	001111

	 Short findAndCopyValue(byte tag,byte[] dstBuffer,short dstOffset)
	FACYB_BS
	010000

	Byte

FindTLV(byte tag,byte occurrence)
	FINDBB
	010001

	Short

GetLength()
	GLEN
	010010

	 Byte

GetValueByte(short valueOffset)
	GVBYS
	010011

	 Short

GetValueLength()
	GVLE
	010100

A.2.7
ProactiveHandler methods

	Method Name
	Acronyms
	Numbering on 6 bits

	GetTheHandler()
	GTHD
	000001

	Init(byte type, byte qualifier, byte dstDevice)
	INITBBB
	000010

	InitDisplayText(byte qualifier, byte dcs, byte[] buffer, short offset, short length)
	INDTBB_BSS
	000011

	InitGetInkey(byte qualifier, byte dcs, byte[] buffer, short offset, short length)
	INGKBB_BSS
	000100

	InitGetInput(byte qualifier, byte dcs, byte[] buffer, short offset, short length, short minRespLength, short maxRespLength)
	INGPBB_BSSSS
	000101

	Byte send()
	SEND
	000110

	
	
	

	Inherited Method Name: EditHandler
	
	

	Void appendArray(byte[] buffer, short offset, short length, short dstLength)
	APDA_BSS
	000111

	Void appendTLV(byte tag, byte value)
	APTLBB
	001000

	Void appendTLV(byte tag, byte[] value, short valueOffset, short valueLength)
	APTLB_BSS
	001001

	Void appendTLV(byte tag, byte value1, byte value2)
	APTLBBB
	001010

	Void appendTLV(byte tag, byte value1, byte[] value2, short value2Offset, short value2Length)
	APTLBB_BSS
	001011

	Void clear()
	CLER
	001100

	
	
	

	Inherited Method Name: ViewHandler
	
	

	Byte

CompareValue(short valueOffset,byte[] compareBuffer,short compareOffset, short compareLength)
	CPRVS_BSS
	001101

	Short

Copy(byte[] dstBuffer,short dstOffset,short dstLength)
	COPY_BSS
	001110

	Short

CopyValue(short valueOffset, byte[] dstBuffer,short dstOffset,short dstLength)

	CPYVS_BSS
	001111

	 Byte

FindAndCompareValue(byte tag,byte[] compareBuffer,short compareOffset)

	FACRB_BS
	010000

	 Byte findAndCompareValue(byte tag,byte occurence, short valueOffset,byte[] compareBuffer,short compareOffset,short compareLength)
	FACRBBS_BSS
	010001

	 Short FindAndCopyValue(byte tag,byte occurence,short valueOffset, byte[] dstBuffer, short dstOffset, short dstLength)
	FACYBBS_BSS
	010010

	 Short findAndCopyValue(byte tag,byte[] dstBuffer,short dstOffset)
	FACYB_BS
	010011

	Byte

FindTLV(byte tag,byte occurrence)
	FINDBB
	010100

	Short

GetLength()
	GLEN
	010101

	 Byte

GetValueByte(short valueOffset)
	GVBYS
	010110

	 Short

GetValueLength()
	GVLE
	010111

A.2.8
ProactiveResponseHandler methods

	Method Name
	Acronyms
	Numbering on 6 bits

	Short CopyAdditionalInformation(byte[] dstBuffer, short dstOffset, short dstLength)
	CPAI_BSS
	000001

	Short copyTextString(byte[] dstBuffer, short dstOffset)
	CPTS_BS
	000010

	Short getAdditionalInformationLength()
	GTIL
	000011

	Byte getGeneralResult()
	GTGR
	000100

	Byte getItemIdentifier()
	GTII
	000101

	Byte getTextStringCodingScheme()
	GTCS
	000110

	Short getTextStringLength()
	GTTL
	000111

	GetTheHandler()
	GTHD
	001000

	
	
	

	Inherited Method Name: ViewHandler
	
	

	Byte

CompareValue(short valueOffset,byte[] compareBuffer,short compareOffset, short compareLength)
	CPRVS_BSS
	001001

	Short

Copy(byte[] dstBuffer,short dstOffset,short dstLength)
	COPY_BSS
	001010

	Short

CopyValue(short valueOffset, byte[] dstBuffer,short dstOffset,short dstLength)

	CPYVS_BSS
	001011

	 Byte

FindAndCompareValue(byte tag,byte[] compareBuffer,short compareOffset)

	FACRB_BS
	001100

	 Byte findAndCompareValue(byte tag,byte occurence, short valueOffset,byte[] compareBuffer,short compareOffset,short compareLength)
	FACRBBS_BSS
	001101

	 Short FindAndCopyValue(byte tag,byte occurence,short valueOffset, byte[] dstBuffer, short dstOffset, short dstLength)
	FACYBBS_BSS
	001110

	 Short findAndCopyValue(byte tag,byte[] dstBuffer,short dstOffset)
	FACYB_BS
	001111

	Byte

FindTLV(byte tag,byte occurrence)
	FINDBB
	010000

	Short

GetLength()
	GLEN
	010001

	 Byte

GetValueByte(short valueOffset)
	GVBYS
	010010

	 Short

GetValueLength()
	GVLE
	010011

B.2
Semantics

Following is the meaning of each of the statements :

CMD :
Sends an APDU Command to the card, including (optionally) the expected response data and also (optionally) the expected status words SW1, SW2.
RST :
Resets and powers on the card
INI :
Performs the terminal profile with the following data. Afterwards, it shall perform all the fetch and terminal response commands until there is no proactive session in progress.
REM :
Used for comments
SWI :
Activates a switch condition. Every labelled list represents a list of statements to be executed, if the label matches the SW resulting from the previously executed command.
Evaluation of expected response and status in the case of a CMD:

<response>
data within […] has to be checked, it needs to be present for an outgoing command. Bytes written as XX shall not be checked by the APDU tool.
<status>
status contained within (…) has to be checked; when several status are valid they shall be separated by commas. Nibble written as X shall not be checked by the APDU tool.
B.4
Style and formatting
In order to show a common appearance all the scripts shall follow those format rules:


start always with a 'RST' followed by an 'INI' command.


The command, data to be checked and status to be checked shall be presented in the following order:

CMD COMMAND [EXPECTED DATA] (EXPECTED STATUS)


APDU shall be presented with command (CLA INS P1 P2 P3) in one line and data (if present) in next line grouped 16 bytes per line (see example above).


The expected data (if present) shall be presented in 16 bytes groups per line (see example above).

G.1
Syntax

The general syntax for this file will be:

<file> ::= <section>+

<section> ::= <section heading> <line break> <section body>

<section heading> ::= ‘[’ <name> ‘]’
<section body> ::= <parameter assignment>+

<parameter assignment> ::= <name> ‘=’ <value> <line break>

Where ‘+’ indicates one or more repetitions of the previous syntax element.

Any text included between the symbol ‘;’ and the end of line is considered a comment and ignored by parsing tools.

Empty values are considered valid. They are used to indicate that an optional value is not present.

Names of sections, names of parameters and values are case-sensitive.

Blank spaces and Tabs between tokens are allowed and will be ignored by the parser.

When values represent a sequence of bytes, they are expressed in hexadecimal format, where every 2 digits represent one byte. Blank space between bytes is optional.

Example:

; comment

[Section1]

Parameter11 = 00 11 22 33

Parameter12 = 0101 ; another comment

[Section2]

Parameter21 = vvwwxxyyzz

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the lastest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. Work item acronyms are listed in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

3GPP

