3GPP T3 #23

Espoo, Finland, 21 - 24 May 2002
Tdoc T3-020308

CR-Form-v3

CHANGE REQUEST

(

31.113
CR

(

rev

(

Current version:
5.2.0
(

For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

Proposed change affects:
(

(U)SIM
X
ME/UE

Radio Access Network

Core Network

Title:
(

Addition of functionality for the security plug-ins

Source:
(

USAT Interpreter AdHoc group

Work item code:
(

USAT Interpreter

Date: (

2002-05-16

Category:
(

B

Release: (

REL-6

Use one of the following categories:
F (essential correction)
A (corresponds to a correction in an earlier release)
B (Addition of feature),
C (Functional modification of feature)
D (Editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

Reason for change:
(

The definition of functionality for security plug-ins is missing

Summary of change:
(

Technical functionality for PKI, Triple-DES and PIN-handling plug-ins are added

Consequences if
(

not approved:

Clauses affected:
(

9, 9.1, Annex D, E and F

Other specs
(

 Other core specifications
(

affected:

 Test specifications

 O&M Specifications

Other comments:
(

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TS 31.111: "USIM Application Toolkit (USAT)".

[2]
3GPP TS 31.114: "USAT Interpreter protocol and administration".

[3]
3GPP TS 23.038: "Alphabets and language‑specific information".

[4]
ETSI TS 102 221: "Smart cards; UICC-Terminal interface; Physical and logical characteristics".

[5]
ISO/IEC 7816‑6 (1995): "Identification cards – Integrated circuit(s) cards with contacts - Part 6: Inter-industry data elements".

[6]
ISO 8731-1 (1987): "Banking – Approved algorithms for message authentication – Part 1: DEA".

[7]
ISO/IEC 10116 (1997): "Information technology – Security techniques – Modes of operation for an n-bit block cipher".

[8]
Schneier, Bruce: "Applied Cryptography Second Edition: Protocols, Algorithms and Source code in C", John Wiley & Sons, 1996, ISBN 0-471-12845-7.

[9]
IETF RFC 1738: "Uniform Resource Locators (URL)"

[10]

RSA Laboratories: "PKCS #1 v2.0: RSA Cryptography Standard", www.rsasecurity.com/rsalabs/pkcs/
[11]
ISO/IEC 9797-1:1999(E): "Information technology – Security techniques – Message Authentication Codes (MACs)"

3
Definitions, abbreviations and symbols

3.1
Definitions

For the purposes of the present document, the following terms and definitions apply:
anchor: named location on a page to which references can be made and at which rendering by the USAT Interpreter is initiated

NOTE:
Anchors can be referenced by anchor reference TLVs.

attribute: A property assigned to a TLV. The attribute can consist of a single bit or of a sequence of consecutive bits within the attribute bytes of a TLV.

attribute byte(s): sequence of consecutive bytes in the value part of a TLV containing the attributes of that TLV

current page: page which is currently rendered by the USAT Interpreter

external system entity: any entity outside the USAT Interpreter, able to communicate with the USAT Interpreter (e.g. USAT Gateway, content/application system)

general result range: general result range is a range of general results in the terminal response of an USAT command (refer to 3GPP TS 31.111 [1])

navigation unit: block of a service description that can be referenced (by its anchor) and hence independently activated

page: context of an USAT Interpreter rendering, the default scope of USAT Interpreter variables and the unit of transmission between an external system entity and the USAT Interpreter

protected variable: shared variable, which is protected by an one time password

service: collection of pages that defines an unitary capability of the mobile equipment from the point of view of the user. Examples include remote database access, electronic mail, and alerts

service ID: unique ID to identify a service on the external system entity

shared variable: variable to be shared with the following page

NOTE:
Shared variables can be provided to the next page in a protected or non protected manner.

string pool: list of predefined variables provided by the current page within the page TLV

NOTE:
The string pool is mainly used for optimisation purposes.

variable ID: identifier to reference a variable within a variable usage area

wait state: state which is possibly entered by the USAT Interpreter to wait for a response from the external system entity after information has been submitted to the external system entity

3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

AKI
Asymmetric Key Index

C
Conditional

CA
Certificate Authority

CMS

Cryptographic Message Syntax

DCS
Data Coding Scheme

ICCID
Integrated Circuit Card IDentification

ID
IDentifier

KIc
Key and algorithm Identifier for ciphering

LSB
Least Significant Bit

M
Mandatory

MAC
Message Authentication Code

MSB
Most Significant Bit

NCI
Native Code Identifier

NU
Navigation Unit

O
Optional

OTP
One Time Password

PIN
Personal Identification Number

PKCS
Public-Key Cryptography Standards

PS
Plug-in Status Code

PUK

PIN Unblocking Key

RFU
Reserved for Future Use

RSA
Algorithm invented by Rivest, Adleman and Shamir

SHA
Secure Hash Algorithm 1

SMS
Short Message Service

SW1/SW2
Status Word 1 / Status Word 2

TLV
Tag Length Value

TTBS
Text To Be Signed

TR
Terminal Response

TS
Technical Specification

UCS2
Universal two byte coded Character Set

UE
User Equipment

URL
Uniform Resource Locators

USAT
USIM Application Toolkit

USIM
Universal Subscriber Identity Module

XML
eXtensible Markup Language
9
Native Commands

Native Commands or "plug-ins" shall be used to provide specific functionality not contained in the USAT Interpreter byte code set. This can be e.g. operating system calls, execution of specific security algorithms, calculation routines or conversion routines. All native commands are called using the Execute Native Command byte code.

Each native command shall have a Native Code Identifier. The Native Code Identifier has a size of 2 bytes and is binary coded, most significant byte first. The NCI values '0000' to '7FFF' are specified in this clause. Other values may be used for proprietary implementations.

Native Commands defined below are optionally to be supported by the USAT Interpreter. If any of these Native Commands are supported by the USAT Interpreter (which are specified within the present document using a NCI specified in the present document), they shall be implemented according to the present document.

Native commands specified by the present document:

NCI
Name
Chapter

'00 00'
RFU

'00 01'
P7 – PKCS#7 Signature Plug-In
9.1.2.1

'00 02'
FP – Fingerprint Plug-In
9.1.2.2

'00 03'
AD – Asymmetric Decryption Plug-In
9.1.2.3

'00 04'
DE – Triple DES Encryption Plug-In
9.1.3.1

'00 05'
DD – Triple DES Decryption Plug-In
9.1.3.2

'00 06'
DS – Triple DES Sign Plug-In
9.1.3.3

'00 07'
DU – Triple DES Unwrap Plug-In
9.1.3.4

'00 08'
CP – Change PIN Plug-In
9.1.4.1

'00 09'
RP – Reset PIN Plug-In
9.1.4.2

'00 0A'-'7F FF'
RFU

9.1
Security Plug-ins

9.1.1
Common Topics

9.1.1.1 Security Policy

Security policy related issues like

· principles of key management and key life cycle management

· practices and procedures to be followed when carrying out technical and administrative aspects of key management

· responsibilities and accountability of each party involved

· the types of records (i.e. audit trail information) to be kept

are all outside the scope of the present document.

9.1.1.2 Classification of PINs

The majority of plug-ins specified in subclause 9.1 normally (configuration dependent) include a PIN, and possibly also a PUK, verification step. This step is necessary to identify the user and obtain explicit authorization before certain sensitive operations can be performed. The PIN(s) required by the security plug-ins bear no relation to the UICC PINs [4] (e.g. the USIM application PINs), and shall be completely controlled by the USAT Interpreter.

Theoretically, there can be as many PINs as there are keys, even if this seems unwise from a practical point of view.

9.1.1.3
Key Diversification

Key diversification is a technical term that signifies the possibility to associate a key with conditions stating for what purpose(s) the key may be used. Normally key diversification is used to improve the security of a system by eliminating certain security threats and reducing system complexity.

This specification mandates that:

· key diversification shall be implemented for all keys accessible to the security plug-ins

· key usage enforcement shall be implemented in every security plug-in that requires a key for it's operation

9.1.1.4
Output Parameters

The security plug-ins defined in subclause 9.1 conform to a model whereby a plug-in always generate one, or at most two, output variables. The first variable, called the Plug-in Status Code, indicates the status of the plug-in upon termination.

The second variable, called the Functional Output, is used to hold the result from the primary function of the plug-in, whenever this is applicable (not all plug-ins have a defined output).

Obviously this only applies when the Error Code returned by the Execute Native Command byte code is "No error"', otherwise the USAT Interpreter would unconditionally stop.

9.1.2 PKI Plug-ins
9.1.2.1
P7 - PKCS#7 Signature Plug-In
9.1.2.1.1
Description

The P7 plug-in is used to provide a digital signature based on a private (RSA) key stored on the USIM card. The output of the plug-in is compliant with the WMLScript Crypto Library SignText function. As such, P7 will also be compliant with other important specifications like PKCS#1, PKCS#7 and CMS [10].

9.1.2.1.2
NCI

The NCI for this plug-in is '00 01'.

9.1.2.1.3
Arguments

The arguments (i.e. the value part of the Inline Value TLV within the Input List TLV) shall be according to the following table:

Length
Value
Description
M/O/C

1
‘00’/’01’/

’02’/’03’
Key identifier type. Indicates the type of the key identifier supplied in the next parameter:

· ‘00’ = No key identifier supplied. The plug-in shall choose a default key, if such a key exists, or abort with Plug-in Status Code "PS: No such key ".

· ’01' = User key hash. SHA-1 hash of the user public key is supplied in the next parameter. The plug-in shall use the private key that corresponds to the public key hash or, if this key is not available, abort with Plug-in Status Code "PS: No such key".

· ‘02’ = List of trusted key hashes. One or more SHA-1 hash values of trusted CA public key(s) are supplied in the next parameter. The plug-in shall use a signature key that is certified by the one of the indicated CAs or, if such a key is not available, abort with Plug-in Status Code "PS: No such key".

· ‘03’ = Index of RSA key.
M

1
Data
Index of RSA key (AKI).
C

20
Data
User key hash.
C

A
Data
List of trusted key hashes. The format of the field shall be LV, where the length is BER encoded onto 1, 2 or 3 bytes according ISO/IEC 7816-6 [5], and the value is the concatenation of all hash values.
C

1
‘04’/’08’
Character encoding scheme

· ‘04’ = GSM default (unpacked). See 3GPP TS 23.038 ([3]) for further reference

· ‘08’ = UCS2
M

B
Data
Options.
M

C
Data
Text to be signed (TTBS). Represented in the indicated character encoding scheme.
M

Malformed, out of range, or missing input parameters shall result in Error Code "Syntax Error"’ and plug-in termination.

Coding of the "Options" field:

b8
b7
b6
b5
b4
b3
b2
b1

Content flag

0: Do not include TTBS in the output

1: Include the TTBS in the output

Key hash flag

0: Do not include hash of the public key in the output

1: Include hash of the public key in the output

Certificate flag

0: Do not include a URL to the public key certificate in the output

1: Include a URL (or list of URLs) to the public key certificate(s)

 in the output

ICCID flag

0: Do not include the ICCID in the output

1: Include the ICCID in the output

Message digest flag

0: Do not include the message digest of the TTBS in the output

1: Include the message digest of the TTBS in the output

Key index flag

0: Do not include the index of the RSA key in the output

1: Include the index of the RSA key in the output

RFU

Follow bit

0: No more option bytes available

1: Another option byte available as next byte

9.1.2.1.4
Output Parameters

The following table describes the output of the plug-in:

Output Variable #
Contents

1
Plug-in Status Code (see subclause 9.1.2.1.6).

2
Functional Output. A SignedContent data structure as described in subclause D.5.2.3 or a textual error message.

9.1.2.1.5
Execution

The detailed execution of the plug-in is described in subclause D.5.1.

9.1.2.3.6
Errors

Possible Plug-in Status Codes (see 9.1.1.4 for additional information):

Plugin Status Code
Coding
Description

"PS: OK"
‘00’
There was no error.

"PS: User cancel"
‘21’
The user cancelled the operation.

"PS: No such key"
‘22’
The requested key is not available.

9.1.2.2 FP – Fingerprint Plug-In
9.1.2.2.1
Description

The FP plug-in is used to provide a digital signature based on a private (RSA) key stored on the USIM card. The plug-in output contains a PKCS#1 compliant digital signature and is as such in line with important specifications like PKCS#1, PKCS#7 and CMS [10].

The plug-in follows a principle whereby an (encoded) excerpt of the data is displayed to the user before it is signed. The data itself would in a sensible application be represented as a DER encoded value.

9.1.2.2.2
NCI

The NCI for this plug-in is '00 02'.

9.1.2.2.3
Arguments

The arguments (i.e. the value part of the Inline Value TLV within the Input List TLV) shall be according to the following table:

Length
Value
Description
M/O/C

1
‘00’/’01’/’03’
Key identifier type. Indicates the type of the key identifier supplied in the next parameter:

· ‘00’ = No key identifier supplied. The plug-in shall choose a default key, if such a key exists, or abort with Plug-in Status Code "PS: No such key".

· ’01' = User key hash. SHA-1 hash of the user public key is supplied in the next parameter. The plug-in shall use the private key that corresponds to the public key hash or, if this key is not available, abort with Plug-in Status Code "PS: No such key".

· ‘03’ = Index of RSA key.
M

1
Data
Index of RSA key (AKI).
C

20
Data
User key hash.
C

A
Data
Options.
M

B

Data
Data-to-be-signed. To be truly PKCS#1 compliant, this should be a DER encoded value of the DigestInfo ASN.1 type, as specified in PKCS#1. B shall be equal to or greater than 16.
M

Malformed, out of range, or missing input parameters shall result in Error Code "Syntax Error" and plug-in termination.

Coding of the "Options" field:

b8
b7
b6
b5
b4
b3
b2
b1

RFU

Key hash flag

0: Do not include hash of the public key in the output

1: Include hash of the public key in the output

Certificate flag

0: Do not include a URL to the public key certificate in the output

1: Include a URL (or list of URLs) to the public key certificate(s)

 in the output

ICCID flag

0: Do not include the ICCID in the output

1: Include the ICCID in the output

RFU

Key index flag

0: Do not include the index of the RSA key in the output

1: Include the index of the RSA key in the output

RFU

Follow bit

0: No more option bytes available

1: Another option byte available as next byte

9.1.2.2.4
Output Parameters

The following table describes the output of the plug-in:

Output Variable #
Contents

1
Plug-in Status Code (see subclause 9.1.2.2.6).

2
Functional Output. A WrappedContent data structure as described in subclause D.6.2.2 or a textual error message.

9.1.2.2.5
Execution

The detailed execution of the plug-in is described in subclause D.6.1.

9.1.2.2.6
Errors

Possible Plug-in Status Codes (see 9.1.1.4 for additional information):

Plugin Status Code
Coding
Description

"PS: OK"
‘00’
There was no error.

"PS: User cancel"
‘21’
The user cancelled the operation.

"PS: No such key"
‘22’
The requested key is not available.

9.1.2.3
AD – Asymmetric Decryption Plug-In

9.1.2.3.1
Description

This plug-in is used for application-level asymmetric (RSA) decryption.
It is crucial that the application utilizing this plug-in protects the output from the plug-in in some way, e.g. by using (cryptographic) blinding.
9.1.2.3.2
NCI

The NCI for this plug-in is '00 03'.

9.1.2.3.3
Arguments

The arguments (i.e. the value part of the Inline Value TLV within the Input List TLV) shall be according to the following table:

Length
Value
Description
M/O/C

1
‘00’/’01’/’03’
Key identifier type. Indicates the type of the key identifier supplied in the next parameter:

· ‘00’ = No key identifier supplied. The plug-in shall choose a default key, if such a key exists, or abort with Plug-in Status Code "PS: No such key".

· ’01' = User key hash. SHA-1 hash of the user public key is supplied in the next parameter. The plug-in shall use the private key that corresponds to the public key hash or, if this key is not available, abort with Plug-in Status Code "PS: No such key".

· ‘03’ = Index of RSA key.
M

1
Data
Index of RSA key (AKI).
C

20
Data
User key hash.
C

A
Data
Ciphertext. A byte string of the same (byte) length as the modulus of the decryption key. A shall be equal to or greater than 16.
M

Malformed, out of range, or missing input parameters shall result in Error Code "Syntax Error" and plug-in termination.

9.1.2.3.4
Output Parameters

The following table describes the output of the plug-in:

Output Variable #
Content

1
Plug-in Status Code (see subclause 9.1.2.3.6).

2
Functional Output. The plaintext as described in subclause D.7.2 or a textual error message.

9.1.2.3.5
Execution

The detailed execution of the plug-in is described in subclause D.7.1.

9.1.2.3.6
Errors

Possible Plug-in Status Codes (see 9.1.1.4 for additional information):

Plugin Status Code
Coding
Description

"PS: OK"
‘00’
There was no error.

"PS: User cancel"
‘21’
The user cancelled the operation.

"PS: No such key"
‘22’
The requested key is not available.

9.1.3Triple DES Plug-ins
9.1.3.1
DE – Triple DES Encryption Plug-In
9.1.3.1.1
Description

The DE plug-in is used to encrypt arbitrary application-level data. It is typically called from a page to encrypt data before it is transmitted to a network application.

9.1.3.1.2
NCI

The NCI for this plug-in is '00 04'.

9.1.3.1.3
Arguments

The arguments (i.e. the value part of the Inline Value TLV within the Input List TLV) shall be according to the following table:

Length
Value
Description
M/O/C

1
Data
Index of key.
M

A
Data
Options.
M

8
Data
IV (according to b1 of Options).
C

B
Data
Data to encrypt (plaintext).
M

Malformed, out of range, or missing input parameters shall result in Error Code "Syntax Error" and plug-in termination.

Coding of the "Options" field:

b8
b7
b6
b5
b4
b3
b2
b1

IV flag

0: IV not included and shall be set to ’00 … 00’

1: IV included

Cipher spec.

00: 3DES EDE ECB with two keys

01: 3DES EDE CBC with two keys

10: 3DES EDE ECB with three keys

11: 3DES EDE CBC with three keys

RFU

Follow bit

0: No more option bytes available

1: Another option byte available as next byte

ECB mode combined with IV shall be regarded as a "Syntax Error".

9.1.3.1.4
Output Parameters

The following table describes the output of the plug-in:

Output Variable #
Content

1
Plug-in Status Code (see subclause 9.1.3.1.6).

2
Functional Output. The encrypted plaintext (i.e. ciphertext). 1 to 8 bytes longer than the length of the plaintext.

9.1.3.1.59.2.1.5
Execution

The detailed execution of the plug-in is described in subclause F.5.1.

9.1.3.1.6
Errors

Possible Plug-in Status Codes (see 9.1.1.4 for additional information):

Plugin Status Code
Coding
Description

"PS: OK"
‘00’
There was no error.

"PS: User cancel"
‘21’
The user cancelled the operation.

"PS: No such key"
‘22’
The requested key is not available.

9.1.3.2
DD – Triple DES Decryption Plug-In

9.1.3.2.1
Description

The DD plug-in is used to decrypt arbitrary application-level data. It is typically called from a page to decrypt data that has been encrypted by a network application.

9.1.3.2.2
NCI

The NCI for this plug-in is '00 05'.

9.1.3.2.3
Arguments

The arguments (i.e. the value part of the Inline Value TLV within the Input List TLV) shall be according to the following table:

Length
Value
Description
M/O/C

1
Data
Index of key.
M

A
Data
Options.
M

8
Data
IV (according to b1 of Options).
C

B
Data
Data to decrypt (ciphertext).
M

Malformed, out of range, or missing input parameters shall result in Error Code "Syntax Error"' and plug-in termination.

Coding of the "Options" field:

b8
b7
b6
b5
b4
b3
b2
b1

IV flag

0: IV not included and shall be set to ’00 … 00’

1: IV included

Cipher spec.

00: 3DES EDE ECB with two keys

01: 3DES EDE CBC with two keys

10: 3DES EDE ECB with three keys

11: 3DES EDE CBC with three keys

RFU

Follow bit

0: No more option bytes available

1: Another option byte available as next byte

ECB mode combined with IV shall be regarded as a "Syntax Error".
9.1.3.2.4
Output Parameters

The following table describes the output of the plug-in:

Output Variable #
Content

1
Plug-in Status Code (see subclause 9.1.3.2.6).

2
Functional Output. The decrypted ciphertext (i.e. plaintext). 1 to 8 bytes shorter than the length of the ciphertext.

9.1.3.2.5
Execution

The detailed execution of the plug-in is described in subclause F.6.1.

9.1.3.2.6
Errors

Possible Plug-in Status Codes (see 9.1.1.4 for additional information):

Plugin Status Code
Coding
Description

"PS: OK"
‘00’
There was no error.

"PS: User cancel"
‘21’
The user cancelled the operation.

"PS: No such key"
‘22’
The requested key is not available.

9.1.3.3
DS – Triple DES Sign Plug-In

9.1.3.3.1
Description

The DS plug-in is used to calculate a message authentication code (MAC) for arbitrary application-level data. The MAC can be used as a data integrity mechanism to verify that data has not been altered in an unauthorised manner. It can also be used as a message authentication mechanism to provide assurance that a message has been originated by an entity in possession of the secret key.
The MAC is calculated according to ISO/IEC 9797 (algorithm 3, padding method 2) [11].
9.1.3.3.2
NCI

The NCI for this plug-in is '00 06'.

9.1.3.3.3
Arguments

The arguments (i.e. the value part of the Inline Value TLV within the Input List TLV) shall be according to the following table:

Length
Value
Description
M/O/C

1
Data
Index of key
M

A
Data
Options
M

1
‘04’/’08’
Character encoding scheme

· ‘04’ = GSM default (unpacked), see 3GPP TS 23.038 ([3])

· ‘08’ = UCS2
M

B
Data
Text to be signed (TTBS). Represented in the indicated character encoding scheme.
M

Malformed, out of range, or missing input parameters shall result in Error Code "Syntax Error" and plug-in termination.

Coding of the "Options" field:

b8
b7
b6
b5
b4
b3
b2
b1

Truncation flag

0: 4 byte output (most significant bytes)

1: 8 byte output

RFU

Follow bit

0: No more option bytes available

1: Another option byte available as next byte

9.1.3.3.4
Output Parameters

The following table describes the output of the plug-in:

Output Variable #
Content

1
Plug-in Status Code (see subclause 9.1.3.3.6).

2
Functional Output. The signature (MAC) on the text to be signed. The length of the signature is 4 or 8 bytes as indicated by the "Truncation flag".

9.1.3.3.5
Execution

The detailed execution of the plug-in is described in subclause F.7.1.

9.1.3.3.6
Errors

Possible Plug-in Status Codes (see 9.1.1.4 for additional information):

Plugin Status Code
Coding
Description

"PS: OK"
‘00’
There was no error.

"PS: User cancel"
‘21’
The user cancelled the operation.

"PS: No such key"
‘22’
The requested key is not available.

9.1.3.4
DU – Triple DES Unwrap Plug-In

9.1.3.4.1
Description

The DU plug-in is a key-management plug-in that enables a party in possession of a certain secret key, called a key encryption key, to replace an USAT Interpreter related key stored in the USIM at its own desire.

9.1.3.4.2
NCI

The NCI for this plug-in is '00 07'.

9.1.3.4.3
Arguments

The arguments (i.e. the value part of the inline value TLV within the input list TLV) shall be according to the following table:

Length
Value
Description
M/O/C

1
Data
Index of the key to be updated.
M

A
Data
Options.
M

B
Data
Encrypted key data.
M

Malformed, out of range, or missing input parameters shall result in Error Code "Syntax Error" and plug-in termination.

Coding of the "Options" field:

b8
b7
b6
b5
b4
b3
b2
b1

Algorithm ID

00: 3DES EDE CBC with three keys + ISO/IEC 9797 MAC

01: 3DES EDE CBC with two keys + SHA-1 MDC

10: 3DES EDE CBC with two keys + ISO/IEC 9797 MAC

11: 3DES EDE CBC with three keys + SHA-1 MDC

RFU

Wrapped key length:

00: 16 bytes

01: 24 bytes

10: RFU

11: RFU

RFU

Follow bit

0: No more option bytes available

1: Another option byte available as next byte

9.1.3.4.4
Output Parameters

The following table describes the output of the plug-in:

Output Variable #
Content

1
Plug-in Status Code (see subclause 9.1.3.4.6).

9.1.3.4.5
Execution

The detailed execution of the plug-in is described in subclause F.8.1.

9.1.3.4.6
Errors

Possible Plug-in Status Codes (see 9.1.1.4 for additional information):

Plugin Status Code
Coding
Description

"PS: OK"
‘00’
There was no error.

"PS: No such key"
‘22’
The requested key is not available.

9.1.4
PIN Management Plug-ins

These plug-ins shall be used to manage USAT Interpreter related PINs.

9.1.4.1
CP – Change PIN Plug-In

9.1.4.1.1
Description

The CP plug-in shall be used to change a PIN to a value specified by the user. The user is requested to enter first the old PIN and then the new PIN twice, before the PIN is changed.
9.1.4.1.2
NCI

The NCI for this plug-in is '00 08'.

9.1.4.1.3
Arguments

The arguments (i.e. the value part of the Inline Value TLV within the Input List TLV) shall be according to the following table:

Length
Value
Description
M/O/C

1
’01’/

’03’/’04’
Key identifier type. Indicates the type of the key identifier supplied in the next parameter:

· ’01' = User key hash. SHA-1 hash of the user public key is supplied in the next parameter. The plug-in shall use the private key that corresponds to the public key hash or, if this key is not available, abort with Plug-in Status Code "PS: No such key error".

· ‘03’ = Index of RSA key.

· ‘04’ = Index of secret key.
M

1
Data
Index of secret key.
C

1
Data
Index of RSA key.
C

20
Data
User key hash.
C

Malformed, out of range, or missing input parameters shall result in Error Code "Syntax Error" and plug-in termination.
9.1.4.1.4
Output Parameters

The following table describes the output of the plug-in:

Output Variable #
Content

1
Plug-in Status Code (see subclause 9.1.4.1.6).

9.1.4.1.5
Execution

The detailed execution of the plug-in is described in subclause E.5.1.
9.1.4.1.6
Errors

Possible Plug-in Status Codes (see 9.1.1.4 for additional information):

Plugin Status Code
Coding
Description

"PS: OK"
‘00’
There was no error.

"PS: User cancel"
‘21’
The user cancelled the operation.

"PS: No such key"
‘22’
The requested key is not available.

9.1.4.2
RP – Reset P
IN Plug-In

9.1.4.2.1
Description

The RP plug-in shall be used by a specially trusted party to set a PIN value OTA to a value of its own choice.
9.1.4.2.2
NCI

The NCI for this plug-in is '00 09'.

9.1.4.2.3
Arguments

The arguments (i.e. the value part of the Inline Value TLV within the Input List TLV) shall be according to the following table:

Length
Value
Description
M/O/C

1
’01’/

’03’/’04’
Key identifier type. Indicates the type of the key identifier supplied in the next parameter:

· ’01' = User key hash. SHA-1 hash of the user public key is supplied in the next parameter. The plug-in shall use the private key that corresponds to the public key hash or, if this key is not available, or abort with Plug-In Status Code "PS: No such key".

· ‘03’ = Index of RSA key.

· ‘04’ = Index of secret key.
M

1
Data
Index of secret key.
C

1
Data
Index of RSA key.
C

20
Data
User key hash.
C

A
Data
Options.
M

B
Data
Encrypted PIN data (EP).
M

Malformed, out of range, or missing input parameters shall result in Error Code "Syntax Error" and plug-in termination.

Coding of the "Options" field:

b8
b7
b6
b5
b4
b3
b2
b1

Algorithm identifier

000: RFU

001: RFU

010: RFU

011: 3DES EDE CBC with two keys + SHA-1 MDC

100: 3DES EDE CBC with two keys + ISO/IEC 9797 MAC

101: 3DES EDE CBC with three keys + SHA-1 MDC

110: 3DES EDE CBC with three keys + ISO/IEC 9797 MAC
111: RFU

RFU

Follow bit

0: No more option bytes available

1: Another option byte available as next byte

9.1.4.2.4
Output Parameters

The following table describes the output of the plug-in:

Output Variable #
Content

1
Plug-in Status Code (see subclause 9.1.4.2.6).

9.1.4.2.5
Execution

The detailed execution of the plug-in is described in subclause E.6.1.

9.1.4.2.6
 Errors

Possible Plug-in Status Codes (see 9.1.1.4 for additional information):

Plugin Status Code
Coding
Description

"PS: OK"
‘00’
There was no error.

"PS: No such key"
‘22’
The requested key is not available.

Annex D (normative):
PKI Plug-ins Implementation Specification

D.1
Scope

This annex provides a detailed description of the PKI plug-ins described in subclause 9.1.2.

D.2
References

[1]
RSA Laboratories: "PKCS #1 v2.0: RSA Cryptography Standard", http://www.rsasecurity.com/rsalabs/pkcs/

[2]
RSA Laboratories: "PKCS#9 v2.0: Selected Object Classes and Attribute Types", http://www.rsasecurity.com/rsalabs/pkcs/

[3]
FIPS PUB 180-1: "Secure Hash Standard (SHS)"

[4]
Wireless Application Forum: "Wireless Application Protocol – WMLScript Crypto Library Specification", Version 20-Jun-2001.

[5]
Wireless Application Forum: "Wireless Application Protocol – Wireless Transport Layer Security Specification", Version 18-Feb-2000.

[6]
IANA assigned character sets, http://www.iana.org/assignments/character-sets

D.3
Symbols

|| .||
Byte length operator.

X || Y
Concatenation of byte-strings X and Y (in that order).

bn
Individual bit in a byte. Range from bit 1 (least significant), denoted b1, to bit 8 (most significant), denoted b8.

Bn
Individual byte in a byte-string. Range from byte 1 (leftmost), denoted B1, to byte n (rightmost), denoted Bn.

c
Ciphertext representative. An integer between 0 and n-1.

C
Ciphertext. Input parameter to the AD plug-in.

DTBS
Data-to-be-signed. Input parameter to the FP plug-in.

EM
Encoded message, a byte string.

EMSA-PKCS1-v1_5-ENCODE
PKCS#1 encoding function. See [1] subclause 9.2.1 for further reference

I2OSP
Integer-to-Octet-String conversion primitive. See [1] subclause 4.1 for further reference.

ICCID
Raw ICCID. 10 bytes length.

k
Length in bytes of the modulus.

K
RSA private key.

KH
SHA-1 hash of the public key. The hash shall be computed from the unsigned modulus to be in line with WAP WTLS and WAP WIM.

m
Message representative. An integer between 0 and n-1.

M
Message, a byte string.

MD
SHA-1 hash of the TTBS.

N
Modulus. An integer.

OS2IP
Octet-String-to-Integer conversion primitive. See [1] clause 4.2 for further reference.

R
Random nonce. 8 bytes length.

RSADP
RSA decryption primitive. See [1] clause 5.1.2 for further reference.

RSASP1
RSA signature primitive. See [1] clause 5.2.1 for further reference.

RSASSA-PKCS1-v1_5-SIGN
PKCS#1 signature generation function. See [1] clause 8.1.1 for further reference.

S
Raw signature of byte length k.

SHA1
SHA-1 hash function. See [3] for further reference.

TTBS
Text-to-be-signed. Byte string. Input parameter to P7 plug-in.

D.4
Abbreviations

For the purposes of the present annex, following abbreviations apply:

AD
Asymmetric Decryption Plug-in

ASN.1

Abstract Syntax Notation One (1)

CMS

Cryptographic Message Syntax

DER

Distinguished Encoding Rules of ASN.1

FP
Fingerprint Plug-in

IANA

Internet Assigned Numbers Authority

OID

Object Identifier

P7
PKCS#7 Signature Plug-in

OTA

Over-the-Air

PIN

Personal Identification Number

PKCS

Public-Key Cryptography Standards

PUK

PIN Unblocking Key

RFU

Reserved for Future Use

RSA

Algorithm invented by Rivest, Adleman and Shamir

SHA-1
Secure Hash Algorithm 1

UCS2

Universal Character Set (2)

URL

Universal Resource Locator

WAP
Wireless Application Protocol

WTLS
Wireless Transport Layer Security

WIM
Wireless Identity Module

D.5
P7

D.5.1
Plug-in Execution

The flow diagram below illustrates briefly the different steps of the P7 execution.
ref SHAPE * MERGEFORMAT

ref SHAPE * MERGEFORMAT
ref SHAPE * MERGEFORMAT Figure D.1: P7 Flow diagram

The plug-in starts by showing the text-to-be-signed to the user and then awaits user confirmation. The user confirms by pressing a confirmation-button (any button resulting in a Terminal Response with a general result range '00 0F') or cancels by pressing a cancellation-button (any other general result value). If the user confirms, he shall be asked to enter his PIN and after that, if the PIN was valid, the plug-in calculates the signature.

The termination states shall be mapped to output variables according to:

State
Plug-in Status Code
Functional Output
Description

FINISHED
"PS: OK"
SignedContent data
Indicates success.

CANCEL
"PS: User cancel"
“error:userCancel”
The user aborted the operation.

NO KEY
"PS: No such key"
“error:noCert”
The requested key was not available.

In case of a serious error not listed above, an implementation may use any of the Error Codes listed in the error code table in subclause 8.8.

D.5.1.1
User Identification

The "User identification" procedure is rather complex since it involves many states as well as alternative execution paths. The remainder of this subclause illustrates, using a combination of flow diagrams and sequence diagrams, the general characteristics of the user identification process.

Figure D.2: User Identification Overview

If the execution stops in a "PIN TERMINATED" or "PIN BLOCKED" state, this shall lead to Error Code "Execution Error" and plug-in termination.

Figure D.3: Verify PIN

"Verify PIN" procedure is implemented according to the figure D.3.

The maximum and minimum length restrictions on the PIN value shall be included into the GET INPUT command and b3 of the command qualifier of the GET INPUT command shall be set to 1 (i.e. user input shall not be revealed in any way) in order to hide the PIN code entered by the user on the display of the UE.

If the PIN is entered incorrectly, the "Wrong PIN" (Prompt text nr 2) text shall be displayed concatenated with the number of attempts left. E.g. if the "Wrong PIN" message is "Wrong PIN. Attempts left: "and there are two attempts left before blocking, the message displayed on the screen shall be "Wrong PIN. Attempts left: 2".

Figure D.4: Verify PUK

"Verify PUK" procedure is implemented according to the figure D.4.

The maximum and minimum length restrictions on the PUK value shall be included into the GET INPUT command and b3 of the command qualifier of the GET INPUT command shall be set to 1 (i.e. user input shall not be revealed in any way) in order to hide the PUK code entered by the user on the display of the UE.

If the PUK is entered incorrectly, the "Wrong PUK" (prompt text nr 5) message shall be displayed concatenated with the number of attempts left. E.g. if the "Wrong PUK" message is "Wrong PUK. Attempts left: " and there are two attempts left before blocking, the message displayed on the screen shall be "Wrong PUK. Attempts left: 2".

PUK functionality is an optional feature of the present specification.

ref SHAPE * MERGEFORMAT
Figure D.5: Enter New PIN

"Enter New PIN" procedure is implemented according to the figure D.5.

The user is requested to enter the new PIN twice. If the two PIN entries does not match, the procedure shall restart. The use may abort the procedure (and the plug-in) at any time by pressing a cancellation-button (a button with a Terminal Response not in the general result range '00 0F'. If the user enters two identical PIN values, the plug-in shall modify the corresponding PIN value to the value entered.

Following prompt texts are used in the "User Identification" procedure:

Prompt Text #
Prompt Text example
Command type
Associated procedure

1
"Enter PIN:"
GET INPUT (digits only, hidden, max. and min. length set accordingly)
Verify PIN

2
"Wrong PIN. Attempts left: 2"
DISPLAY TEXT (high priority, wait for user to clear message)
Verify PIN

3
"PIN blocked"
DISPLAY TEXT (high priority, wait for user to clear message)
Verity PIN

4
"Enter PUK:"
GET INPUT (digits only, hidden, max. and min. length set accordingly)
Verify PUK

5
"Wrong PUK. Attempts left: 2"
DISPLAY TEXT (high priority, wait for user to clear message)
Verify PUK

6
"PIN terminated"
DISPLAY TEXT (high priority, wait for user to clear message)
Verify PUK

7
"Enter new PIN:"
GET INPUT (digits only, hidden, max. and min. length set accordingly)
Enter new PIN

8
"Confirm new PIN:"
GET INPUT (digits only, hidden, max. and min. length set accordingly)
Enter new PIN

9
"No match. Try again."
DISPLAY TEXT (high priority, wait for user to clear message)
Enter new PIN

D.5.2
Signature Calculation

The output from the P7 plug-in is a SignedContent data structure as specified in [4]. The (ordered) steps to produce this data structure are as follows:

1. Template expansion

2. Signing

3. Output formatting

Each step is described thoroughly in the following sections.

D.5.2.1
Template Expansion

The template expansion constructs the signer's authenticated attributes. These are:

Attribute
OID
Binary OID

contentType
pkcs-9 3
2A 86 48 86 F7 0D 01 09 03

messageDigest
pkcs-9 4
2A 86 48 86 F7 0D 01 09 04

signerNonce
pkcs-9 25 3
2A 86 48 86 F7 0D 01 09 19 03

See [2] for further information regarding these attributes.

First, construct the following 91-byte buffer ('xx' indicates an undefined value):

31 59

 30 18

 06 09 2a 86 48 86 f7 0d 01 09 03 -– contentType
 31 0B

 06 09 2a 86 48 86 f7 0d 01 07 01 -- data

 30 18

 06 0A 2a 86 48 86 f7 0d 01 09 19 03 –- signerNonce
 31 0A

 04 08 xx xx xx xx xx xx xx xx –- random nonce

 30 23

 06 09 2A 86 48 86 F7 0D 01 09 04 -– messageDigest

 31 16

 04 14 xx xx xx xx xx xx xx xx xx -- SHA-1 digest

 xx xx xx xx xx xx xx xx xx xx xx

The authenticated attributes are included in ascending order compared as byte strings.

Now perform the following steps.

1. Generate R, an 8 byte nonce, and replace B47 to B54 of the buffer with R. Recommended standards for implementing pseudorandom bit generators are ANSI X9.19 or FIPS 186.

NOTE:
The nonce should be a pseudorandom number generated securely in the USIM and of good quality.

2. Generate

 MD = SHA-1(TTBS).

Replace B72 to B91 of the buffer with MD.

The expanded buffer constitutes the input to the signature generation operation.

D.5.2.2
Signature Generation Operation

Generate the signature

 S = RSASSA-PKCS1-v1_5-SIGN(K, M)

where K is the selected private key and M is the output from the previous step.

The hash function required in EMSA-PKCS1-v1_5-ENCODE shall be SHA-1. See [1] section 9.2.1 for further details.

D.5.2.3
Output data formatting

The SignedContent data-structure may be encoded in a one-pass encoding operation. The pseudo-code below covers the required steps.

B := ‘01’

B := B || ‘01’

B := B || k || S

siLen := 0

IF key hash flag is set

siLen := siLen + 21

END

IF ICCID flag is set

siLen := siLen + 11

END

IF key index flag is set

siLen := siLen + 2

END

IF certificate flag is set

z := 0

FOR all certificate URLs

urlLen = ||URL||

z := z + urlLen + 2

END

siLen := siLen + z

END

B := B || siLen

IF ICCID flag is set

B := B || ‘80’ || ICCID

END

IF key index flag is set

B := B || ‘81’ || AKI

END

IF key hash flag is set

B := B || ‘01’ || KH

END

IF certificate flag is set

FOR all certificate URLs

urlLen = ||URL||

B := B || ‘05’ || urlLen || URL

END

END

B := B || ‘01’

IF character encoding scheme is UCS2

B := B || ‘03E8’

ELSE

B := B || ‘07D0’

END

IF content flag is set

ttbsLen = ||TTBS||

B := B || ‘01’ || ttbsLen || TTBS

ELSE

B := B || ‘00’

END

IF message digest flag is set

B := B || ‘1E’ || ‘80’ || MD

ELSE

B := B || ‘09’

END

B := B || ‘02’ || R

After the last step, the variable B contains the Functional Output.

k, siLen and ttbsLen shall all be encoded in two bytes, big endian.

NOTE:
Using ICCID as a SignerInfo has no equivalent in [4].

NOTE:
The value '07 D0' (2000 decimal) is used due to fact that IANA [6] has not assigned a character set number for the GSM default character set.

D.6
FP

D.6.1
Plug-in Execution

The flow diagram below illustrates briefly the different steps of the FP execution.
ref SHAPE * MERGEFORMAT

ref SHAPE * MERGEFORMAT
Figure D.6: FP Flow Diagramref SHAPE * MERGEFORMAT
The plug-in starts by displaying the authorization request to the user and the await user confirmation.

The authorization request itself consists of the authorization prompt concatenated with the authorization value, which is an excerpt of the data-to-be-signed (DTBS). The authorization value shall be displayed using a two-digit hexadecimal representation for every byte. The digits of the hexadecimal alphabet shall be "0123456789ABCDEF", i.e. lower-case letters are not allowed. If DTBS is longer than 16 bytes, only the 16 least significant bytes shall be shown, starting with the most significant byte. To improve readability, the hexadecimal digits shall be grouped 4‑and‑4, with space between the groups. Splitting a group over two consecutive lines should be avoided if possible.

After explicitly validating the authorization value with information received via some other channel, the user confirms by pressing a confirmation-button (any button resulting in a Terminal Response with general result range '00 0F') or cancels by pressing a cancellation-button (any other general result value). If the user confirms, he shall be asked to enter his PIN and after that, if the PIN was valid, the plug-in calculates the signature.

The "User identification" procedure is identical to the procedure described in subclause D.5.1.1.

The termination states shall be mapped to output variables according to:

State
Plug-in Status Code
Functional Output
Description

FINISHED
"PS: OK"
WrappedContent data
Indicates success.

CANCEL
"PS: User cancel"
“error:userCancel”
The user aborted the operation.

NO KEY
"PS: No such key"
“error:noCert”
The requested key was not available.

In case of a serious error not listed above, an implementation may use any of the Error Codes listed in the error code table in subclause 8.8.

D.6.2
Signature Calculation

The output from the FP plug-in is a WrappedContent data structure as specified in subclause D.6.3. The (ordered) steps to produce this data structure are as follows:

1. Signing

2. Output formatting

Each step is described thoroughly in the following subclauses.

D.6.2.1
Signature Generation Operation

Generate the signature

 S = RSASSA-PKCS1-v1_5-SIGN(K, DTBS)

where K is the selected private key and DTBS is supplied as an input parameter.

In EMSA-PKCS1-v1_5-ENCODE, only steps from (including) step 3 shall be executed. The following equality (using PKCS#1 terminology) apply for the computation of the remaining steps:

 T = DTBS and ||T|| = ||DTBS||
D.6.2.2
Output data formatting

The WrappedContent data-structure may be encoded in a one-pass encoding operation. The pseudo-code below covers the required steps.

B := ‘02’

B := B || k || S

siLen := 0

IF key hash flag is set

siLen := siLen + 21

END

IF ICCID flag is set

siLen := siLen + 11

END

IF key index flag is set

siLen := siLen + 2

END

IF certificate flag is set

z := 0

FOR all certificate URLs

urlLen = ||URL||

z := z + urlLen + 2

END

siLen := siLen + z

END

B := B || siLen

IF ICCID flag is set

B := B || ‘80’ || ICCID

END

IF key index flag is set

B := B || ‘81’ || AKI

END

IF key hash flag is set

B := B || ‘01’ || KH

END

IF certificate flag is set

FOR all certificate URLs

urlLen = ||URL||

B := B || ‘05’ || urlLen || URL

END

END

k and siLen shall be encoded in two bytes, big endian.

After the last step, the variable B contains the Functional Output.

D.6.3
Format of WrappedContent

For completeness, the formal definition of WrappedContent is included below (it is described using the same presentation language as used in [4]).

struct {

 opaque signature<0.. 2^16-1>;

} Signature;

enum {

 sha_key_hash(1),

 certificate_url(5),

 iccid (128),

 aki (129),

 (255)

} SignerInfoType;

Item
Description

sha_key_hash
The SHA-1 hash of the public key, encoded as specified in [5].

certificate_url
A URL where the certificate is located.

iccid
The (raw) ICCID.

aki
The Index of the used private key.

struct {

 SignerInfoType signer_info_type;

 switch (signer_info_type) {

 case sha_key_hash: opaque hash[20];

 case certificate_url: opaque url<0..255>;

 case iccid: opaque iccid[10];

 case aki: uint8;

 };

} SignerInfo;

struct {

 uint8 version;

 Signature signature;

 SignerInfo signer_infos<0..2^16-1>;

} WrappedContent;

Item
Description

version
Version of the WrappedContent structure. The current version is 2.

signature
Signature

signer_infos
Information about the signer. This may contain zero items (in case the signer is implicit). Also, there may be multiple items of SignerInfo present (public key hash and a certificate).

D.7
AD

D.7.1
Plug-in Execution

The flow diagram below illustrates briefly the different steps of the AD execution.

ref SHAPE * MERGEFORMAT

ref SHAPE * MERGEFORMAT
Figure D.7: AD Flow Diagram

The plug-in starts by displaying the authorization request to the user and the await user confirmation.

The authorization request itself consists of the authorization prompt concatenated with the authorization value, which is an excerpt of the ciphertext (C). The authorization value shall be displayed using a two-digit hexadecimal representation for every byte. The digits of the hexadecimal alphabet shall be "0123456789ABCDEF", i.e. lower-case letters are not allowed. If C is longer than 16 bytes, only the 16 least significant bytes shall be shown, starting with the most significant byte. To improve readability, the hexadecimal digits shall be grouped 4‑and‑4, with space between the groups. Splitting a group over two consecutive lines should be avoided if possible.

After explicitly validating the authorization value with information received via some other channel, the user confirms by pressing a confirmation-button (any button resulting in a Terminal Response with a general result range '00 0F') or cancels by pressing a cancellation-button (any other general result value). If the user confirms, he shall be asked to enter his PIN and after that, if the PIN was valid, the plug-in decrypts the data.

The "User identification" procedure is identical to the procedure described in subclause D.5.1.1.

The termination states shall be mapped to output variables according to:

State
Plug-in Status Code
Functional Output
Description

FINISHED
"PS: OK"
decrypted data
Indicates success.

CANCEL
"PS: User cancel"
“error:userCancel”
The user aborted the operation.

NO KEY
"PS: No such key"
“error:noCert”
The requested key was not available.

In case of a serious error not listed above, an implementation may use any of the Error Codes listed in the error code table in subclause 8.8.

D.7.2
Decryption calculation

The decrypted ciphertext (i.e. plaintext), is generated by computing the following steps.

1. Convert the ciphertext C to an integer ciphertext representative c:

 c = OS2IP(C)

2. Calculate the integer message representative m:

 m = RSADP (K, c)

where K is the selected private key.

3. Convert the message representative m to an encoded message M of length k bytes:

 M = I2OSP (m, k)

M represents the decrypted ciphertext, and hence the Functional Output.

D.8
Non-functional Requirements

D.8.1
Customisation Requirements

1. All customisation requirements with regard to PINs and PUKs listed in E.7.1 apply equally here.

2. It shall be possible to enable or disable the "Authorization request" and the subsequent user confirmation by performing an administrative task at personalization time.

3. The authorization prompt shall be configurable through an administrative task at personalization time. UCS2 and GSM default alphabets shall be supported.

4. It should be possible to configure the number of digits displayed in the authorization value through an administrative task at personalization time. The number of digits displayed shall be 4, 8, 12 or 16, with 16 as the default.

5. The list of URL(s) linked to a private key shall be updatable through an administrative task at personalization time.

6. The list of trusted key hashes linked to a private key shall be updatable through an administrative task at personalization time.

D.8.2
Architectural Requirements

1. All architectural requirements with regard to PINs and PUKs listed in E.7.2 apply equally here.

Annex E (normative):
PIN Management Plug-ins Implementation Specification

E.1
Scope

This annex provides a detailed description of the PIN management plug-ins defined in subclause 9.1.4.

E.2
References

[1]
B. Schneier: "Applied Cryptography: Protocols, Algorithms and Source Code in C", 2nd Edition.

[2]
ISO/IEC 9797-1:1999(E): "Information technology – Security techniques – Message Authentication Codes (MACs)"
[3]
FIPS PUB 180-1: "Secure Hash Standard (SHS)"

E.3
Symbols

<i..j>
Sub-string extraction operator. Extracts bytes i through j.
[image: image1.wmf]j

i

£

£

1

.

X || Y
Concatenation of byte-strings X and Y (in that order).

|| .||
Byte length operator.

bn
Individual bit in a byte. Range from bit 1 (least significant), denoted b1, to bit 8 (most significant), denoted b8.

Bn
Individual byte in a byte-string. Range from byte 1 (leftmost), denoted B1, to byte n (rightmost), denoted Bn.

DP
Decrypted PIN data.

EP
Encrypted PIN data.

ISO_IEC_9797_ALG3
ISO/IEC 9797 MAC algorithm 3. See [2] clause 7.3 for further reference.

ISO_IEC_9797_PAD2
ISO/IEC 9797 padding method 2. See [2] clause 6.1.2 for further reference.

K1, K2, K , K’
DES keys.

MD
A 20 byte SHA-1 MDC value.

PC
An 8 byte PIN checksum.

PM
A message padded with ISO/IEC 9797 padding method 2.

SHA1
SHA-1 hash function. See [3] for further reference.

TDEA_DECR
Triple DES decryption algorithm. See [1] clause 15.2 for details regarding the algorithm.

E.4
Abbreviations

For the purposes of the present annex, following abbreviations apply:

3DES
Triple DES

CBC
Cipher Block Chaining (Mode)

CHV

Cardholder Verification

CP
Change PIN Plug-in

DES

Data Encryption Standard

ECB
Electronic Code-book (mode)

EDE
Encrypt-Decrypt-Encrypt

IV
Initialization Vector

MAC
Message Authentication Code

MDC
Modification Detection Code

OTA

Over-the-Air

PIN

Personal Identification Number

PUK

PIN Unblocking Key

RFU

Reserved for Future Use

RP
Reset PIN Plug-in

SHA-1
Secure Hash Algorithm 1

UCS2

Universal Character Set (2)

E.5
CP

E.5.1
Plug-in Execution

The flow diagram below illustrates briefly the different steps of the CP execution.

Figure E.1: CP Flow Diagram

The plug-in execution starts with locating the PIN to be changed based on the key identifier input parameter.

After locating the target PIN, the user is requested to enter the PIN (if the PIN is not blocked) and thereafter prompted twice for a new PIN as described in subclause D.5.1.1.

If the user is subjected to a PUK verification due to blocked PIN, the "Enter new PIN" procedure shall only be executed once.

The termination states shall be mapped to output variables according to:

State
Plug-in Status Code
Functional Output
Description

FINISHED
"PS: OK"
-
Indicates success.

CANCEL
"PS: User cancel"
“error:userCancel”
The user aborted the operation.

NO KEY
"PS: No such key"
“error:noKey”
Can not locate target PIN.

In case of a serious error not listed above, an implementation may use any of the Error Codes listed in the error code table in subclause 8.8.

Sub procedures "User identification" and "Enter new PIN" are all described in detail in subclause D.5.1.1.

The maximum and minimum length restrictions on the PIN value shall be checked before PIN modification. If violated, the plug-in shall set the Error Code to "Execution Error" and terminate.

E.6
RP

E.6.1
Plug-in Execution

The flow diagram below illustrates briefly the different steps of the RP execution.

ref SHAPE * MERGEFORMAT
Figure ref SHAPE * MERGEFORMAT E.2: RP Flow Diagram

The termination states shall be mapped to output variables according to:

State
Plug-in Status Code
Functional Output
Description

FINISHED
"PS: OK"
-
Indicates success.

NO KEY
"PS: No such key"
“error:noKey”
Can not locate target PIN.

In case of a serious error not listed above, an implementation may use any of the Error Codes listed in the error code table in subclause 8.8.

Changing the PIN value is simply copying the new PIN value to the appropriate location, possibly stripping of the padding bytes and/or converting the PIN value to an internal format. The "remaining attempts" counter shall always be reset to its maximum value at the same time.

The maximum and minimum length restrictions on the PIN value shall be checked. If violated, the plug-in shall set the Error Code to "Execution Error" and terminate.

E.6.2
Decryption and Verification

This procedure includes decryption of the encrypted PIN data, as well as verification of it's authenticity.

To decrypt and verify the encrypted PIN data, select the correct algorithm based on the algorithm identifier and thereafter decrypt and verify according to the selected algorithm.

An implementation shall support at least one algorithm.

Algorithms employing SHA-1 are preferred prior to algorithms employing ISO/IEC 9797.

E.6.2.1
3DES EDE CBC with two keys + SHA-1 MDC

The decrypted PIN data shall be formatted according to the table below:

Bytes
Description
M/O
Length

1 – 8
Nonce. 8 bytes of random data.
M
8

9 – 16
PIN value. Each digit in the PIN shall be encoded with its corresponding GSM default alphabet value. All unused digits at the end shall be encoded as ‘FF’.
M
8

17 – 24
PIN checksum. Truncated SHA-1 MDC.
M
8

To decrypt and verify the PIN data, do the following:

1. Calculate the decrypted PIN data

 DP = TDEA_DECR(EP)

using the following cipher parameterisation:

Keys
K1, K2

Cipher mode
Outer CBC using two keys in EDE operation.

IV
’00 … 00’ (this is not a weakness since the nonce effectively becomes a randomly chosen IV).

a) Calculate

 MD = SHA1(unencrypted parameters || DP<1..16>).

The unencrypted parameters ("Key identifier type", "Key identifier" and "Options") shall be included in the checksum calculation to avoid certain replay attacks.

b) Calculate the PIN checksum

 PC = MD<1..8>
c) Compare PC with DP<17..24>. If identical, proceed to the next step. Otherwise, set Error Code to "Execution Error" and terminate.

d) Success. The new PIN is DP<9..16>.

E.6.2.2
3DES EDE CBC with two keys + ISO/IEC 9797 MAC

The decrypted PIN data shall be formatted according to the table below:

Bytes
Description
M/O
Length

1 – 8
Nonce. 8 bytes of random data.
M
8

9 – 16
PIN value. Each digit in the PIN shall be encoded with its corresponding GSM default alphabet value. All unused digits at the end shall be encoded as ‘FF’.
M
8

17 – 24
PIN checksum . ISO/IEC 9797 MAC.
M
8

To decrypt and verify the PIN data, do the following:

1. Calculate the decrypted PIN data

 DP = TDEA_DECR(EP)

using the following cipher parameterisation:

Keys
K1, K2

Cipher mode
Outer CBC using two keys in EDE operation.

IV
’00 … 00’ (this is not a weakness since the nonce effectively becomes a randomly chosen IV).

2. Calculate

 PM = ISO_IEC_9797_PAD2(unencrypted parameters || DP<1..16>).

The unencrypted parameters ('Key identifier type', 'Key identifier' and 'Options') shall be included in the checksum calculation to avoid certain replay attacks.

3. Calculate

 PC = ISO_IEC_9797_ALG3(PM).

Using terminology from [2], keys K and K’ shall be derived by complementing alternate sub-strings of four bits of K1 and K2 respectively, commencing with the four most significant bits.

8 bytes of output from the MAC calculation shall be used (i.e. m=64 using ISO/IEC 9797 terminology).

4. Compare PC with DP<17..24>. If identical, proceed to the next step. Otherwise, set the Error Code to 'Execution Error' and terminate.

5. Success. The new PIN is DP<9..16>.

E.6.2.3
3DES EDE CBC with three keys + SHA-1 MDC

This algorithm is identical to the algorithm described in E.6.2.1, except that the 3DES cipher shall be parameterized with three DES keys.

E.6.2.4
3DES EDE CBC with three keys + ISO/IEC 9797 MAC

This algorithm is identical to the algorithm described in E.6.2.2, except that the 3DES cipher shall be parameterized with three DES keys. For the MAC calculation, only K1 and K2 shall be used.

E.7
Non-functional Requirements

E.7.1
Customisation Requirements

1. Maximum number of attempts before blocking/termination for PINs and PUKs shall be configurable through an administrative task at personalisation time.

2. PIN and PUK values shall be configurable through administrative tasks at personalization time.

3. All prompts displayed to the user during PIN/PUK verification shall be configurable through an administrative task at personalization time. UCS2 and GSM default alphabets shall be supported.

4. All prompts displayed to the user during the PIN change procedure shall be configurable through an administrative task at personalization time. UCS2 and GSM default alphabets shall be supported.:

5. The possibility to use the "Reset PIN" plug-in to reset a PIN shall be configurable on a per PIN basis, using an administrative task at personalization time. I.e. some PINs may not be allowed to be reset via the "Reset PIN" plug-in, while others are.

6. Minimum and maximum PIN lengths shall be configurable using an administrative task at personalization time. The same boundaries shall be shared by all PINs.

E.7.2
Architectural Requirements

1. It shall be possible to associate every key (private or secret) with a unique PIN. It shall also be possible for keys to share PINs, if so desired. The associations between keys and PINs shall be configurable through an administrative task at personalization time. A key that is not linked to a PIN shall not be subjected to PIN verification before it is accessed.

2. Is shall be possible to associated a unique "Enter PIN" prompt (i.e. the first prompt displayed in the PIN verification procedure) to every PIN, and thereby to every key. This is to ensure that the user is given the possibility to recognize a key before using it. All other prompts may be shared between PINs.

3. It shall be possible to associate every PIN with a unique PUK.

4. PIN lengths between 4 and 8 digits shall be supported.

5. Successfully entering a PIN shall only grant access to the underlying key (private or secret) for the remaining duration of the plug-in execution. I.e. the next time the plug-in is executed, a new PIN verification is required.

6. A "terminated" PIN, i.e. a PIN who's PUK has be unsuccessfully exercised for the maximum allowed number of times, shall not be usable, changeable or reset-able by any means. In other words, it shall be unconditionally unrecoverable.

Annex F (normative):
Triple DES Plug-ins Implementation Specification

F.1
Scope

This annex provides a detailed description of the triple DES plug-ins outlined in subclause 9.1.3 of this document.

F.2
References

[1]
B. Schneier: "Applied Cryptography: Protocols, Algorithms and Source Code in C", 2nd Edition.

[2]
ISO/IEC 9797-1:1999(E): "Information technology – Security techniques – Message Authentication Codes (MACs)"

[3]
RSA Laboratories: "PKCS #5 v2.0: Password-Based Cryptography Standard", http://www.rsasecurity.com/rsalabs/pkcs/

[4]
FIPS PUB 180-: "Secure Hash Standard (SHS)"

F.3
Symbols

<i..j>
Sub-string extraction operator. Extracts bytes i through j, 1 ≤i ≤ j.

X || Y
Concatenation of byte-strings X and Y (in that order).

|| .||
Byte length operator.

bn
Individual bit in a byte. Range from bit 1 (least significant), denoted b1, to bit 8 (most significant), denoted b8.

Bn
Individual byte in a byte-string. Range from byte 1 (leftmost), denoted B1, to byte n (rightmost), denoted Bn.

EM
Encrypted message.

ISO_IEC_9797_ALG3
ISO/IEC 9797 MAC algorithm 3. See [2] clause 7.3 for further reference.

ISO_IEC_9797_PAD2
ISO/IEC 9797 padding method 2. See [2] clause 6.1.2 for further reference.

KC
An 8 byte key checksum.

K1, K2, K , K’
DES keys.

MD
A SHA-1 MDC value.

MAC
A ISO/IEC 9797 message authentication code

PKCS5_PAD
PKCS#5 padding function. See [3] clause 6.1.1 for further reference.

PKCS5_UNPAD
Inverse of PKCS5_PAD. See [3] clause 6.1.1 for further reference.

PM
A padded message.

SHA1
SHA-1 hash function. See [4] for further reference.

TDEA_DECR
Triple DES decryption algorithm. See [1] clause 15.2 for details regarding the algorithm.

TDEA_ENCR
Triple DES encryption algorithm. See [1] clause 15.2 for details regarding the algorithm.

F.4
Abbreviations

For the purposes of the present annex, following abbreviations apply:

3DES
Triple DES

CBC
Cipher Block Chaining (Mode)

CHV

Cardholder Verification

DD
Triple DES Decrypt Plug-in

DE
Triple DES Encrypt Plug-in

DES

Data Encryption Standard

DS
Triple DES Sign Plug-in

DU
Triple DES Unwrap Plug-in

ECB
Electronic Code-book (mode)

EDE
Encrypt-Decrypt-Encrypt

IV
Initialization Vector

MAC
Message Authentication Code

MDC
Modification Detection Code

OTA

Over-the-Air

PIN

Personal Identification Number

RFU

Reserved for Future Use

SHA-1
Secure Hash Algorithm 1

UCS2

Universal Character Set (2)

F.5
DE

F.5.1
Plug-in Execution

The flow diagram below illustrates briefly the different steps of the DE execution.

ref SHAPE * MERGEFORMAT
Figure F.1: DE Flow Diagram

The termination states shall be mapped to output variables according to:

State
Plug-in Status Code
Functional Output
Description

FINISHED
"PS: OK"
encrypted data
Indicates success.

CANCEL
"PS: User cancel"
“error:userCancel”
The user aborted the operation.

NO KEY
"PS: No such key"
“error:noKey”
The requested key was not available.

In case of a serious error not listed above, an implementation may use any of the Error Codes listed in the error code table in subclause 8.8.

The "User identification" procedure is identical to the procedure described in subclause D.5.1.1.

F.5.2
Encrypt Procedure

To encrypt the plaintext, do the following:

1. Calculate the padded message

 PM = PKCS5_PAD(Plaintext).

2. Calculate the encrypted message

 EM = TDEA_ENCR(PM)

using the following cipher parameterisation:

Keys
K1, K2 and possibly K3 as indicated by ‘Cipher spec’.

Cipher mode
ECB or CBC as indicated by "Cipher spec".

IV
Indicated by "IV flag".

3. EM is the Functional Output..

F.6
DD

F.6.1
Plug-in Execution

The flow diagram below illustrates briefly the different steps of the DD execution.

ref SHAPE * MERGEFORMAT
Figure F.2: DD Flow Diagram

The termination states shall be mapped to output variables according to:

State
Plug-in Status Code
Functional Output
Description

FINISHED
‘PS: OK’
decrypted data
Indicates success.

CANCEL
‘PS: User cancel’
“error:userCancel”
The user aborted the operation.

NO KEY
‘PS: No such key’
“error:noKey”
The requested key was not available.

In case of a serious error not listed above, an implementation may use any of the Error Codes listed in the error code table in subclause 8.8.

The "User identification" procedure is identical to the procedure described in subclause D.5.1.1.

F.6.2
Decrypt Procedure

To decrypt the ciphertext, do the following:

1. Calculate the padded plaintext message

 EM = TDEA_DECR(Ciphertext)

using the following cipher parameterisation:

Keys
K1, K2 and possibly K3 as indicated by "Cipher spec".

Cipher mode
ECB or CBC as indicated by "Cipher spec".

IV
Indicated by "IV flag".

2. Calculate the plaintext message

 M = PKCS5_UNPAD(EM).

3. M is the Functional Output..

F.7
DS

F.7.1
Plug-in Execution

The flow diagram below illustrates briefly the different steps of the DS execution.

ref SHAPE * MERGEFORMAT

ref SHAPE * MERGEFORMAT
Figure F.3: DS Flow Diagram

As the figure illustrates, the plug-in shall check if the selected key has an associated PIN, and in this case display the text-to-be-signed to the user using the indicated character encoding scheme, and await user confirmation. The user confirms by pressing a confirmation-button (any button resulting in a Terminal Response with a general result range '00 0F') or cancels by pressing a cancellation-button (any other general result value).

The termination states shall be mapped to output variables according to:

State
Plug-in Status Code
Functional Output
Description

FINISHED
"PS: OK"
signed data
Indicates success.

CANCEL
"PS: User cancel"
“error:userCancel”
The user aborted the operation.

NO KEY
"PS: No such key"
“error:noKey”
The requested key was not available.

In case of a serious error not listed above, an implementation may use any of the Error Codes listed in the error code table in subclause 8.8.

The "User identification" procedure is identical to the procedure described in subclause D.5.1.1.

F.7.2
MAC Calculation Procedure

To calculate the MAC, do the following:

1. Calculate the padded message

 PM = ISO_IEC_9797_PAD2(TTBS)
2. Calculate the MAC

 MAC = ISO_IEC_9797_ALG3(PM)

using the following cipher parameterisation:

Keys
K1, K2

Truncation
As indicated by "Truncation flag".

3. MAC is the Functional Output.

F.8
DU

F.8.1
Plug-in Execution

The flow diagram below illustrates briefly the different steps of the DU execution.

ref SHAPE * MERGEFORMAT
Figure F.4: DU Flow Diagram

The termination states shall be mapped to output variables according to:

State
Plug-in Status Code
Functional Output
Description

FINISHED
"PS: OK"
-
Indicates success.

NO KEY
"PS: No such key"
“error:noKey”
The requested key was not available.

In case of a serious error not listed above, an implementation may use any of the Error Codes listed in the error code table in subclause 8.8.

Installing the new key means simply copying the key material to the location referenced by key index input parameter.
F.8.2
Decryption and Verification Procedure

This procedure includes decryption of the encrypted key data, as well as verification of its authenticity.

To decrypt and verify the key data, select the correct algorithm based on the algorithm identifier field and thereafter proceed according to the selected algorithm.

An implementation shall support at least one algorithm.

Algorithms employing SHA-1 are preferred prior to algorithms employing ISO/IEC 9797.

F.8.2.1
3DES EDE CBC with two keys + SHA-1 MDC

The decrypted key data shall be formatted according to the table below.

Bytes
Description
M/O
Length

1 – 8
Random nonce.
M
8

9 – P
Key material
M
16 or 24

Q – R
Key checksum.
M
8

The values P,Q and R are calculated from wrapped key length according to the following table:

Wrapped key length
P
Q
R

16
24
25
32

24
32
33
40

To decrypt and verify the key data, do the following:

2. Select the key pointed to by the key index input parameter. This is the destination key ,KD.

a) Based on the key index parameter, locate the unwrap key, KU.
b) Calculate the decrypted key data

 DK = TDEA_DECR(Encrypted key data)

using the following cipher parameterisation:

Keys
K1 and K2 of KU.

Cipher mode
Outer CBC in EDE operation.

IV
’00 … 00’ (this is not a weakness since the nonce effectively becomes a randomly chosen IV).

a) Calculate the message digest

 MD = SHA1(unencrypted parameters || DK<1..P>)

The unencrypted parameters ('Index of secret key' and 'Options') shall be included in the checksum calculation to avoid certain replay attacks.

b) Calculate the key checksum

 KC = MD<1..8>
c) Compare KC with DK<Q..R>. If identical, proceed to the next step. Otherwise, the plug-in shall set the Error Code to 'Execution Error' and terminate.

d) Success.

F.8.2.2
3DES EDE CBC with two keys + ISO/IEC 9797 MAC

The format of the decrypted key data is the same as in the previous subclause (F.8.2.1).

To decrypt and verify the key data, do the following:

3. Select the key pointed to by the key index input parameter. This is the destination key, KD.

a) Based on the key index parameter, locate the unwrap key, KU.
b) Calculate the decrypted key data

 DK = TDEA_DECR(Encrypted key data)

using the following cipher parameterisation:

Keys
K1 and K2 of KU.

Cipher mode
Outer CBC in EDE operation.

IV
’00 … 00’ (this is not a weakness since the nonce effectively becomes a randomly chosen IV).

a) Calculate the padded message

 PM = ISO_IEC_9797_PAD2(unencrypted parameters || DK<1..P>)

The unencrypted parameters ('Index of secret key' and 'Options') shall be included in the checksum calculation to avoid certain replay attacks.

b) Calculate the key checksum

 KC = ISO_IEC_9797_ALG3(PM)

Using terminology from [2], keys K and K’ shall be derived by complementing alternate sub-strings of four bits of K1 and K2 respectively, commencing with the four most significant bits.

8 bytes of output from the MAC calculation shall be used (i.e. m=64 using ISO/IEC 9797 terminology).

c) Compare KC with DK<Q..R>. If identical, proceed to the next step. Otherwise, the plug-in shall set the Error Code to "Execution Error" and terminate.

d) Success.

F.8.2.3
3DES EDE CBC with three keys + SHA-1 MDC

This algorithm is identical to the algorithm described in F.8.2.1, except that the 3DES cipher shall be parameterized with three DES keys.

F.8.2.4
3DES EDE CBC with three keys + ISO/IEC 9797 MAC

This algorithm is identical to the algorithm described in F.8.2.2, except that the 3DES cipher shall be parameterized with three DES keys. For the MAC calculation, only K1 and K2 shall be used.

F.9
Non-functional Requirements

F.9.1
Customisation Requirements

1. All customisation requirements with regard to PINs and PUKs listed in E.7.1 apply equally here.

2. OTA modifiability of a key using the DU plug-in shall be configurable through an administrative task at personalization time.

F.9.2
Architectural Requirements

1. All architectural requirements with regard to PINs and PUKs listed in E.7.2 apply equally here.

PIN�terminated

USER

Exit plug-in:�"PS: User cancel"

PIN MODIFIED

Ack..

Cancel

Exit plug-in:�"PS: User cancel"

DISPLAY TEXT�"No match. Try again" (PT 9)

Cancel

New PIN again

GET INPUT �"Confirm new PIN:" (PT 8)

Exit plug-in:�"PS: User cancel"

Cancel

USAT�INTERPRETER

MODIFY PIN

New PIN

GET INPUT �"Enter new PIN:" (PT 7)

OPERATING�SYSTEM

CANCEL

OK

NO KEY

CANCEL

Generate�signature

User�identification

Select�key

Key�pressed?

Get�Response

Display�TTBS

FINISHED

START

Cancel

Exit plug-in:�"PS: User cancel"

NO

Cancel

USAT�INTERPRETER

PIN OK

Exit plug-in:�"Execution Error"

DISPLAY TEXT�"PIN blocked" (PT 3)

PIN blocked

Ack..

 DISPLAY TEXT� "Wrong PIN. Attempts left: 2" (PT 2)

PLUG-IN

Wrong PIN

VERIFY PIN

PIN

GET INPUT �"Enter PIN:" (PT 1)

Cancel

YES

PIN TERMINATED

Exit plug-in:�"PS: User cancel"

Cancel

PIN�terminated?

USAT�INTERPRETER

PUK OK

Exit plug-in:�"Execution Error"

DISPLAY TEXT�"PIN terminated" (PT 6)

PIN terminated

Ack..

DISPLAY TEXT�"Wrong PUK. Attempts left: 2" (PT 5)

Wrong PUK

VERIFY PUK

PUK

GET INPUT �"Enter PUK:" (PT 4)

OPERATING�SYSTEM

OPERATING�SYSTEM

YES

PLUG-IN

USER

Exit plug-in:�"PS: User cancel"

PLUG-IN

USER

Exit plug-in:�"PS: User cancel"

NO

PIN BLOCKED

PIN TERMINATED

PIN VERIFIED

Enter�new PIN

Verify�PUK

Verify�PIN

PIN�blocked?

START

CANCEL

OK

NO KEY

CANCEL

Generate�signature

User�identification

Select�key

Key�pressed?

Get�Response

Request�authorization

FINISHED

START

CANCEL

OK

NO KEY

CANCEL

Decrypt

User�identification

Select�key

Key�pressed?

Get�Response

Request�authorization

FINISHED

START

START

FINISHED

Select�target PIN

User�identification

Enter new�PIN

CANCEL

NO KEY

START

FINISHED

Select�key

Decrypt and�verify

Reset PIN�value

NO KEY

START

FINISHED

Select�key

User�identification

Encrypt

CANCEL

NO KEY

START

FINISHED

Select�key

User�identification

Decrypt

CANCEL

NO KEY

NO

YES

Need�PIN?

CANCEL

OK

NO KEY

CANCEL

Generate�signature

User�identification

Select�key

Key�pressed?

Get�Response

Display�TTBS

FINISHED

START

START

FINISHED

Select�keys

Decrypt and�verify

Install new�key

NO KEY

 Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

 Enter the CR number here. This number is allocated by the 3GPP support team.

 Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'PAGE: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'PAGE: '#'�'" �� Mark one or more of the boxes with an X.

 Enter a concise description of the subject matter of the CR. It should be no longer than one line.

 Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

 Enter the date on which the CR was last revised.

 Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

 Enter a single release code from the list below.

 Enter text which explains why the change is necessary.

�PAGE \# "'PAGE: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'PAGE: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

 Enter each the number of each clause which contains changes.

�PAGE \# "'PAGE: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'PAGE: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

3GPP

_1083056505.unknown

