1

3GPP T3 (USIM) Meeting #21

Kyoto, Japan, 5-7 November, 2001
Tdoc T3-010737

Source : Gemplus

Subject : 02.19 requirements to be fulfilled by C SIM API

Several important 02.19 requirements are currently not fulfilled by the C SIM API specification and must be considered to allow the C SIM API to provide the full 02.19 service :

· Common loader environment (02.19 clause 5.1) : the loader environment (compiler, optimizer, format of the data to be included in the applet loading commands, etc.) must be specified or a reference to an applicable loading environment added.

· Applet verification (02.19 clause 7.2.3) : the mechanism(s) used to perform the applet verification during loading must be specified or a reference to an applicable mechanism added.

· Applet linking (02.19 clause 7.2.4): the mechanism(s) used to perform the applet linking on the card must be specified or a reference to an applicable mechanism added.

· Data and Function sharing and access control (02.19 clauses 11.1 and 11.2) : the mechanism(s) used to share and protect data and functions between applets must be specified or a reference to an applicable mechanism added.

Additionally, the C SIM API does not currently provide byte code interoperability ; while this requirement may not appear clearly in the 02.19, it was nevertheless identified as the top requirement by the SMG9 during the initial definition of the SIM API (see joined file s9a98002.doc), so it is asked to the meeting whether this requirement is still valid, and if this is the case, how it will be fulfilled by the C SIM API.

See below attached document s9a98002.doc :

[image: image1.wmf]Document Microsoft

Word 6.0 - 7.0

3GPP

_1066543579.doc
ETSI SMG9 API Sub group #1					Tdoc SMG9 API 98a002

Bristol

26-27 February 1998

Source:		API Sub Group Chairman

Subject: 		Liaison and interworking between JCF and SMG9

At the recent JavaCard meeting in London, one of the biggest topics for debate was liaison with SMG9. Java Card Forum was aware of the SMG9 API working party, and there was a lot of discussion about how the two groups could interwork.

The following is a solution was agreed and had support from others interested in the GSM API.

SMG9 will handle the Stage 1 description, with reference to the top level JCF requirements. (See below)

JCF will produce an API definition based on the Stage 1, with input from SMG9 members.

SMG9 will use this output as the basis for the Stage 2 implementation of the GSM API. At This stage feedback will be required from SMG9, on any bugs/shortcomings identified.

The final specification will be owned and maintained by ETSI. Javasoft made it clear that they have no vested interest owning APIs. They can own and maintain them, and if they do the copyright rests with Sun, with the documents being freely available on the internet. However if ETSI wish to own and maintain the specification there is no problem with this. There is precedence for this scenario with the Visa API which was created and is now maintained by Visa.

It was agreed that other members of SMG9 who were not JCF members or Strategic Partners could attend JCF meetings as “observers” where their expertise in GSM 11.11 and 11.14 would benefit the production of the API definition.

The following points were fed into the JCF as important by the GSM strategic partners, and these should reflect the requirements of SMG9 in general.

Interoperability �This was the top requirement. The message was clear: one byte code, one loader

Security�There were a number of sub points: Downloading applets across industry segments, Applet certification, Add/Update/Remove/Reconfigure.

ETSI Compatibility

Openness to Extensions�In that Toolkit is evolving and there are possible requirements to interwork with WAP/MExE. RMI may be required in the future.

Object sharing and access control�App to App, App to Data, App to ME.

Clarification of key issues and trade-offs.�What are the technology limitations, how will these require API trade-offs?

