Error! No text of specified style in document.
5
Error! No text of specified style in document.

3GPP TSG-T3 (USIM) Meeting #12

Rome, Italy, 18 - 21 January, 2000
Tdoc T3-000035

3G CHANGE REQUEST
Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

TS 31.101
CR
2
Current Version:
V3.0.0

3G specification number (

(CR number as allocated by 3G support team

For submission to TSG
T 3
for approval
x
(only one box should

list TSG meeting no. here (
For information

be marked with an X)

Form: 3G CR cover sheet, version 1.0 The latest version of this form is available from: ftp://ftp.3gpp.org/Information/3GCRF-xx.rtf

Proposed change affects:
USIM
x
ME
x
UTRAN

Core Network

(at least one should be marked with an X)

Source:
 31.101 working group
Date:
21-01-00

Subject:
USAT

3G Work item:
USIM

Category:
F
Correction

A
Corresponds to a correction in a 2G specification

(only one category
B
Addition of feature
x

shall be marked
C
Functional modification of feature

with an X)
D
Editorial modification

Reason for
change:

Incorporation of the USAT features.

Clauses affected:
7.4.2 USAT Layer (new), 10.1.2 Coding of Instruction Byte, 11 Commands, 14 Application independent protocol

Other specs
Other 3G core specifications

(List of CRs:

affected:
Other 2G core specifications

(List of CRs:

MS test specifications

(List of CRs:

BSS test specifications

(List of CRs:

O&M specifications

(List of CRs:

Other
comments:

[image: image1.wmf]help.doc

 <--------- double-click here for help and instructions on how to create a CR.

7.4.2
USAT Layer

The USAT layer uses application status words to indicate:

· the availability of a proactive command for the Terminal ('91xx'),

· the usage of response data to an Envelope command by the Terminal (nominal '9000', warning '62xx' or '63xx'),

· the temporary unavailability of the USAT to handle an Envelope command ('9300'), see section 11.6.6.

7.4.2.1
Proactive Command

Where the status word SW1-SW2 is equal to '9000', the card can reply '91xx' to indicate that a proactive command is pending. The terminal uses the FETCH C-APDU to get the pending Proactive Command. The terminal sends to the UICC the response of the Proactive Command execution with the TERMINAL RESPONSE C-APDU.
The mechanism, described hereafter for a case 4 C-APDU, is independent from the transport protocol..

Terminal

UICC

C-APDU
CLA INS P1 P2 Lc [Lc DATA] Le
(
Command Processing

R-APDU
Luicc DATA||SW1='91'||SW2='xx'
(
Luicc DATA||SW1='91'||SW2='xx'

Any C-APDU/R-APDU
…

…

C-APDU = FETCH
CLA INS='12' P1 P2 Le='xx'
(
Command Processing

R-APDU
Le DATA=Proactive Command ||SW1='90'||SW2='00'
(
Le DATA=Proactive Command ||SW1='90'||SW2='00'

Any C-APDU/R-APDU
…

…

C-APDU =
TERMINAL RESPONSE
CLA INS='14' P1 P2 Lc [Lc DATA]
(
Command Processing

R-APDU
SW1||SW2
(
SW1||SW2'

7.4.2.2
ENVELOPE Commands

The ENVELOPE C-APDU is used to transmit data to the USAT. For some BER-TLV (e.g. SMS-PP Data Download) contained in the body of this command, the card may send back data to be transmitted by the Terminal on the acknowledgement channel (e.g. RP-ACK) or on the error channel (e.g. RP-ERROR). The BER-TLV objects are defined in TS 31.111[4].

This command is case 4 and is described here after for the two options.

Case 4 :
positive acknowledgement

Terminal

UICC

C-APDU = ENVELOPE
CLA INS='C2' P1 P2
Lc [Lc DATA] Le=00
(
Command Processing

R-APDU
Luicc DATA||SW1='90'||SW2='00'
(
Luicc DATA||SW1='90'||SW2='00'

The Terminal shall consider the data field received as a positive acknowledgement and use the normal acknowledgement channel (e.g. RP-ACK) when the Status Word present in the R-APDU is '9000'.

Case 4 :
negative acknowledgement

Terminal

UICC

C-APDU = ENVELOPE
CLA INS='C2' P1 P2
Lc [Lc DATA] Le=00
(
Command Processing

R-APDU
Luicc DATA
||SW1='62'or '63'||SW2='xx'
(
Luicc DATA
||SW1='62'or '63'||SW2='xx'

The Terminal shall consider the data field received as a negative acknowledgement and use the error acknowledgement channel (e.g. RP-ERROR), when the Status Word present in the R-APDU is either '62xx' or '63xx'.

[…]

10
Structure of commands and responses

This clause defines the command and response APDUs supported by the UICC.

10.1
Command APDU Structure

This clause states a generic structure of an application protocol data unit – APDU – that is used by the application protocol on the top of the transmission protocol for sending a command to the card.

A command APDU consists of a header and a body part. The contents of the command APDU are depicted in table10.1 where the header consists of the CLA, INS, P1 and P2 bytes that are mandatory for a command APDU and an optional body part that can contain the Lc, Data and Le. Parameters are further explained in the following subclauses.

Table 10.1: Contents of Command APDU

Code
Length
Description
Grouping

CLA
1
Class of instruction
Header

INS
1
Instruction code

P1
1
Instruction parameter 1

P2
1
Instruction parameter 2

Lc
0 or 1
Number of bytes in the command data field
Body

Data
Lc
Command data string

Le
0 or 1
Maximum number of data bytes expected in response of the command

Four cases of C‑APDU structure are possible as defined in table 10.2:

Table 10.2: Cases of C‑APDUs

Case
Structure

1
CLA INS P1 P2

2
CLA INS P1 P2 Le

3
CLA INS P1 P2 Lc Data

4
CLA INS P1 P2 Lc Data Le

10.1.1
Coding of Class Byte

The most significant nibble of the Class byte (b8-b5) codes the type of the command as stated in table 10.2. Bits b4 and b3 are used for indication of secure messaging format (see table 10.4). Bits b2 and b1 indicates the logical channel used. Logical channels are numbered from 0 to 3. If the card supports the logical channel mechanism, the maximum number of available logical channels is indicated in the card capabilities data object of historical bytes of an ATR (refer to ISO/IEC 7816‑4 [13]). If the card capabilities data object is missing, logical channel b2=b1=0 is supported only.

Table 10.3: Coding of Class Byte

b8
b7
b6
b5
b4
b3
b2
b1
Value
Meaning

0
0
0
0
-
-
-
-
'0X'
The coding is according to ISO/IEC 7816‑4 [13]

1
0
1
0
-
-
-
-
'AX'
Coded as ISO/IEC 7816‑4 [13] unless stated otherwise

1
0
0
0
-
-
-
-
'8X'
Structured as ISO/IEC 7816‑4 [13], coding and meaning is defined in this specification

-
-
-
-
X
X
-
-
-
Secure Messaging indication (see table 10.4)

-
-
-
-
-
-
X
X
-
Logical channel number (see clause 10.3)

Table 10.4: Coding of Security Messaging Indication

b4
b3
Meaning

0
0
No SM used between Terminal and card

0
1
Proprietary SM format

1
x
Secure messaging according to ISO/IEC 7816-4 [13] used

1
0
Command header not authenticated

1
1
Command header authenticated

By default no secure messaging is supported by the card, i.e. b4=b3=0, unless it is stated otherwise by an application.

10.1.2
Coding of Instruction Byte

Table 10.5 depicts coding of instruction byte of the commands.

Table 10.5: Coding of Instruction Byte of the Commands
for a telecom application

COMMAND
CLA
INS

Command APDUs

SELECT FILE
0X
'A4'

STATUS
8X
'F2'

READ BINARY
0X
'B0'

UPDATE BINARY
0X
'D6'

READ RECORD
0X
'B2'

UPDATE RECORD
0X
'DC'

SEARCH RECORD
0X
'A2'

INCREASE
8X
'32'

VERIFY
0X
'20'

CHANGE PIN
0X
'24'

DISABLE PIN
0X
'26'

ENABLE PIN
0X
'28'

UNBLOCK PIN
0X
'2C'

DEACTIVATE FILE
0X
'04'

ACTIVATE FILE
0X
'44'

AUTHENTICATE
0X
'88'

TERMINAL PROFILE
80
'10'

ENVELOPE
80
'C2'

FETCH
80
'12'

TERMINAL RESPONSE
80
'14'

MANAGE CHANNEL
0X
'70'

Transmission oriented APDUs

GET RESPONSE
0X
'C0'

10.1.3
Coding of Parameter Bytes

The value of the parameters P1 and P2 depends on the command. If the parameter is not used, the value is set to '00'. Coding of the parameter bytes is presented in the command definition sections.

10.1.4
Coding of Lc Byte

The number of data bytes present in the data field of the command APDU is presented in the parameter Lc. Lc is optional, in the command APDU, however if the Lc is present in the command APDU, data field consists of the Lc subsequent bytes. The terminal may send from 1 to 255 bytes of command data.

10.1.5
Coding of Data Part

When present in a command or response APDU the structure of the data field is specific to each command.

10.1.6
Coding of Le Byte

The maximum number of bytes expected in the data part of the response APDU is presented in the parameter Le, which is optional meaning that if the Terminal does not expect any data in the response APDU Le is absent from the command APDU. However, if Le is present in the command APDU, the data field of the response APDU is expected to consist of the Le bytes.

Le set to '00' indicates that the Terminal expects to receive at most the maximum number of bytes, i.e. 256, in the response ADPU. The UICC may return any number of bytes in the range 1 to 256.
10.2
Response APDU Structure

The response APDU consists of an optional data field and a mandatory status part divided into two bytes; SW1 and SW2. The number of bytes received in the response APDU is denoted Lr (length of the response data field). The structure of the response APDU is shown in table 10.6.

Table 10.6: Contents of Response APDU

Code
Length
Description

Data
Lr
Response data string

SW1
1
Status byte 1

SW2
1
Status byte 2

Coding of SW1 and SW2 is presented in 10.2.1.

10.2.1
Status Conditions Returned by the UICC

Status of the card after processing of the command is coded in the status bytes SW1 and SW2. This subclause specifies the coding of the status bytes.

10.2.1.1
Normal processing

Table 10.7: Status byte coding - normal processing

SW1
SW2
Description

'90'
'00'
‑
Normal ending of the command

'91'
'XX'
‑
Normal ending of the command, with extra information from the proactive UICC containing a command for the Terminal. Length 'XX' of the response data

10.2.1.2
Postponed processing

Table 10.8: Status byte coding - postponed processing

SW1
SW2
Error description

'93'
'00'
‑
SIM Application Toolkit is busy. Command cannot be executed at present, further normal commands are allowed.

10.2.1.3
Warnings

Table 10.9: Status byte coding - warnings

SW1
SW2
Description

'62'
'00'
‑
No information given, state of non volatile memory unchanged

'62'
'81'
‑
Part of returned data may be corrupted

'62'
'82'
‑
End of file/record reached before reading Le bytes

'62'
'83'
‑
Selected file invalidated

'62'
'84'
-
FCI not formatted according to chapter 11.1.3.1

'63'
'00'
‑
No information given, state of non volatile memory changed

'63'
'81'
‑
File filled up by the last write

'63'
'CX'
‑
Command successful but after using an internal update retry routine 'X' times

- Verification failed, 'X' retries remaining

10.2.1.4
Execution errors

Table 10.10: Status byte coding - execution errors

SW1
SW2
Description

'64'
'00'
‑
No information given, state of non-volatile memory unchanged

'65'
'00'
‑
No information given, state of non-volatile memory changed

'65'
'81'
‑
Memory problem

10.2.1.5
Checking errors

Table 10.11: Status byte coding - checking errors

SW1
SW2
Description

'67'
'XX'
‑
Wrong length

'6B'
'00'
‑
Wrong parameter(s) P1-P2

'6D'
'00'
‑
Instruction code not supported or invalid

'6E'
'00'
‑
Class not supported

'6F'
'XX'
‑
Technical problem, no precise diagnosis

10.2.1.5.1
Functions in CLA not supported

Table 10.12: Status byte coding - functions in CLA not supported

SW1
SW2
Description

'68'
'00'
‑
No information given

'68'
'81'
‑
Logical channel not supported

'68'
'82'
‑
Secure messaging not supported

10.2.1.5.2
Command not allowed

Table 10.13: Status byte coding - command not allowed

SW1
SW2
Description

'69'
'00'
‑
No information given

'69'
'81'
‑
Command incompatible with file structure

'69'
'82'
‑
Security status not satisfied

'69'
'83'
‑
Authentication method blocked

'69'
'84'
‑
Referenced data invalidated

'69'
'85'
‑
Conditions of used not satisfied

'69'
'86'
‑
Command not allowed (no EF selected)

10.2.1.5.3
Wrong parameters

Table 10.14: Status byte coding - wrong parameters

SW1
SW2
Description

'6A'
'80'
‑
Incorrect parameters in the data field

'6A'
'81'
‑
Function not supported

'6A'
'82'
‑
File not found

'6A'
'83'
‑
Record not found

'6A'
'84'
‑
Not enough memory space in the file

'6A'
'85'
‑
Lc inconsistent with TLV structure

'6A'
'86'
‑
Incorrect parameters P1-P2

'6A'
'87'
‑
Lc inconsistent with P1-P2

'6A'
'88'
‑
Referenced data not found

10.2.1.6
Application errors

Table 10.15: Status byte coding - application errors

SW1
SW2
Error description

'98'
'50'
‑
INCREASE cannot be performed, max value reached.

'98'
'62'
‑
Authentication error, application specific

NOTE:
Applications may define their own error codes.

10.2.2
Status Words of the Commands

The following table shows for each command the possible status conditions returned (marked by an asterisk *).

Table 10.16: Commands and status words

Status Words
SELECT
STATUS
UPDATE BINARY
UPDATE RECORD
READ BINARY
READ RECORD
SEARCH RECORD
INCREASE
VERIFY PIN
CHANGE PIN
DISABLE PIN
ENABLE PIN
UNBLOCK PIN
DEACTIVATE FILE
ACTIVATE FILE
AUTHENTICATE
TERMINAL PROFILE
ENVELOPE
FETCH
TERMINAL RESPONSE
MANAGE CHANNEL

90 00
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

91 XX
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*

93 00

*

98 50

*

98 62

*

62 00

*

62 81

*
*

62 82

*
*
*

62 83
*

62 84
*

63 00

*
*
*
*

63 CX

*
*

*

*
*
*
*

64 00

*

65 81

*
*

*

*
*
*
*

*

67 XX

*
*
*

*

*
*
*
*

69 81

*
*
*
*

*

69 82

*
*
*
*
*
*

*
*
*
*
*
*

69 83

*
*
*
*

69 84

*
*
*
*

*

69 85

*

69 86

*
*
*

*

6A 81
*

*
*
*
*

*

*
*
*
*
*

6A 82
*

*
*
*
*

*
*
*
*

6A 83

*

*

6A 84

*

6A 86
*

*
*
*
*

*

6A 87
*

6A 88

*
*
*
*

*

6B 00

*
*

*

*
*
*
*
*

6E 00
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

6F XX
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

The responses '91 XX', and '93 00' can only be given by a UICC to a Terminal supporting USAT (see 3G TS 31.111 [4]).

10.3
Logical channels

Only the basic channel is currently used.

11
Commands

11.1
Generic Commands

This clause lists the basic command and response APDU formats that are supported by applications residing on a UICC.

Commands used to manage an application are not defined in this standard.

In the subsequent subclauses only the response data is listed, for the coding of the status words, see subclause 10.2.

11.1.1
SELECT

11.1.1.1
Functional description

This function selects a file according to the methods described in clause 8.4. After a successful selection the record pointer is undefined.

Input:

‑
file ID, application ID, path or empty.

Output:

‑
if the selected file is the MF, a DF or an ADF:

file ID, total memory space available, PIN enabled/disabled indicator, PIN status and other application specific data;

‑
if the selected file is an EF:

file ID, file size, access conditions, invalidated/not invalidated indicator, structure of EF and length of the records in case of linear fixed structure or cyclic structure.

11.1.1.2
Command Parameters and Data

Code
Value

CLA
As specified in 10.1.1

INS
As specified in 10.1.2

P1
Selection control, see table 11.1

P2
Selection control, see table 11.2

Lc
Length of subsequent data field or empty

Data
AID, file ID, DF name, or path to file, according to P1

Le
Empty, '00', or maximum length of data expected in response

Table 11.1: Coding of P1

b8
b7
b6
b5
b4
b3
b2
b1
Meaning

0
0
0
0
0
0
0
0
Select DF, EF or MF by file id

0
0
0
0
0
0
0
1
Select child DF of the current DF

0
0
0
0
0
0
1
1
Select parent DF of the current DF

0
0
0
0
0
1
0
0
Selection by DF name – see NOTE

0
0
0
0
1
0
0
0
Select by path from MF

0
0
0
0
1
0
0
1
Select by path from current DF

NOTE: This is selection by AID

Table 11.2: Coding of P2

b8
b7
b6
b5
b4
b3
b2
b1
Meaning

0
0
0
0
0
0
0
0
Return FCI, optional template

NOTE:
Whether the FCI information is returned or not depend on the type of APDU

To avoid ambiguities when P1=P2='00' the following search order applies when selecting a file with a file ID (FID) as a parameter:

-
immediate children of the current DF

-
the parent DF

-
the immediate children of the parent DF

11.1.1.3
Response Data

Returns the File Control Information (FCI) template of the selected file. FCI are coded as a BER-TLV as defined in table 11.X.

[KV]
table 11.x ??
Table 11.3: Response data

Description
Section
Applies to
Length

FCI template tag = '6F'

1

Length of FCI template

1 or 2

File size
11.1.1.3.1
EFs
2

Total file size
11.1.1.3.2
Any file
2

File Descriptor
11.1.1.3.3
Any file
1 ‑ 6

File Identifier
11.1.1.3.4
Any file
2

DF name
11.1.1.3.5
ADFs
1 ‑ 16

Proprietary information
11.1.1.3.6
Any file
X

Security attributes
11.1.1.3.7
Any file
Y

Short file identifier
11.1.1.3.8
EFs
1

Other TLV objects may be present in the response data, ISO/IEC 7816-9 [17].

11.1.1.3.1
File size

Byte(s)
Description
Value
Length

1
Tag
'80'
1

2
Length
'01' or '02'
1

3 to 4
Number of data bytes in the file, excluding structural information

1 or 2

For a transparent EF, the file size is the length of the body part of the EF. For a linear fixed or cyclic EF, the file size is the record length multiplied by the number of records of the EF.

11.1.1.3.2
Total file size

Byte(s)
Description
Value
Length

1
Tag
'81'
1

2
Length
'01' or '02'
1

3 to 4
Number of data bytes in the file, including structural information if any

1 or 2

The total file size is the physical memory size occupied by the file on the card.

11.1.1.3.3
File Descriptor

Byte(s)
Description
Applies to
Value
Length

1
Tag

'82'
1

2
Length

'02' or '03'
1

3
File descriptor byte (see table 11.4)
Any file

1

4
RFU
Any file
RFU
1

5
Maximum record length
EFs with record structure

1

Table 11.4: File descriptor byte

b8
b7
b6
b5
b4
b3
b2
b1
Meaning

0
X
-
-
-
-
-
-
File accessibility

0
0
-
-
-
-
-
-
Not shareable file

0
1
-
-
-
-
-
-
Shareable file

0
-
X
X
X
-
-
-
File type

0
-
0
0
0
-
-
-
Working EF

0
-
0
0
1
-
-
-
Internal EF

0
-
0
1
0
-
-
-
RFU

0
-
0
1
1
-
-
-

0
-
1
0
0
-
-
-

0
-
1
0
1
-
-
-

0
-
1
1
0
-
-
-

0
-
1
1
1
-
-
-

0
-
-
-
-
X
X
X
EF structure

0
-
-
-
-
0
0
0
No information given

0
-
-
-
-
0
0
1
Transparent

0
-
-
-
-
0
1
0
Linear fixed

0
-
-
-
-
0
1
1
RFU

0
-
-
-
-
1
0
0

0
-
-
-
-
1
0
1

0
-
-
-
-
1
1
0
Cyclic

0
-
-
-
-
1
1
1
RFU

1
X
X
X
X
X
X
X
RFU

11.1.1.3.4
File identifier

Byte(s)
Description
Value
Length

1
Tag
'83'
1

2
Length
'02'
1

3 to 4
File identifier

2

11.1.1.3.5
DF name

Byte(s)
Description
Value
Length

1
Tag
'84'
1

2
Length
X
1

3 to 2+X
DF name

X

DF name is a string of bytes which is used to uniquely identify a dedicated file in the card.

11.1.1.3.6
Proprietary information

Byte(s)
Description
Value
Length

1
Tag
'85'
1

2
Length
X
1

3
UICC characteristics byte (see table 11.5)

1

4 to 2+X

Table 11.5: UICC characteristics byte

b8
b7
b6
b5
b4
b3
b2
b1
Meaning

-
-
-
-
X
X
-
1
Clock stop allowed

-
-
-
-
0
0
-
1
No preferred level

-
-
-
-
0
1
-
1
High level preferred

-
-
-
-
1
0
-
1
Low level preferred

-
-
-
-
1
1
-
1
RFU

-
-
-
-
X
X
-
0
Clock stop not allowed

-
-
-
-
0
0
-
0
Never

-
-
-
-
0
1
-
0
Unless at high level

-
-
-
-
1
0
-
0
Unless at low level

-
-
-
-
1
1
-
0
RFU

-
X
X
X
-
-
-
-
Supply voltage class (see section 6.2.1)

X
-
-
-
-
-
X
-
RFU (shall be set to 0)

If bit b1 is coded 1, stopping the clock is allowed at high or low level. In this case, bit b3 and b4 give information about the preferred level (high or low, respectively) at which the clock may be stopped.

If b1 is coded 0, the clock may be stopped only if the mandatory condition b3 = 1 (i.e. stop at high level) or b4 = 1 (i.e. stop at low level) is fulfilled. If all 3 bits are coded 0, then the clock shall not be stopped.

11.1.1.3.7
Security attributes

Byte(s)
Description
Value
Length

1
Tag
'86'
1

2
Length
X
1

3 to 2+X
TBD

X

11.1.1.3.8
Short file identifier

When this TLV is present in the template, it indicates that the file has a Short File Identifier (SFI). The value of the SFI depends on the length of the TLV (see below).

Byte(s)
Description
Value
Length

1
Tag
'88'
1

2
Length
'00' or '01'
1

3
Short file identifier

0 or 1

If the length of the TLV is 1, the SFI value is indicated in the 5 most significant bits (bits b8 to b4) of the TLV value field. In this case, bits b3 to b1 shall be set to 0.
11.1.2
STATUS

11.1.2.1
Functional description

This function returns information concerning the current directory. A current EF is not affected by the STATUS function. The STATUS command gives the UICC an opportunity to indicate that it wants to issue a USAT proactive command to the ME.
Input:

‑
none.

Output:

· ID of the current directory, total memory space available, PIN enabled/disabled indicator, PIN status and other system specific data (identical to SELECT).

11.1.2.2
Command parameters

Code
Value

CLA
As specified in 10.1.1

INS
As specified in 10.1.2

P1
00

P2
00

Le
Empty, '00', or maximum length of data expected in response

Response parameters and data are identical to the response parameters and data of the SELECT command in case of MF or DF.

11.1.3
READ BINARY

11.1.3.1
Functional description

This function reads a string of bytes from the current transparent EF. This function shall only be performed if the READ access condition for this EF is satisfied.

If the command is applied to an EF without transparent structure then the command shall be aborted.

Input:

‑
relative address and the length of the string.

Output:

‑
string of bytes.

11.1.3.2
Command parameters

Code
Value

CLA
As specified in 10.1.1

INS
As specified in 10.1.2

P1
See table 11.6

P2
Offset low

Lc
Not present

Data
Not present

Le
Number of bytes to be read

Table 11.6: Coding of P1

b8
B7
b6
b5
b4
b3
b2
b1
Meaning

0
X
X
X
X
X
X
X
b7-b1 is the offset to the first byte to read – P2 is the low part of the offset

1
0
0
X
X
X
X
X
SFI referencing used, b1-b5 are the SFI and P2 is the offset to the first byte to read

Response data:

Byte(s)
Description
Length

1 – Le
Data read
Le

11.1.4
UPDATE BINARY

11.1.4.1
Functional parameters

This function updates the current transparent EF with a string of bytes. This function shall only be performed if the UPDATE access condition for this EF is satisfied. An update can be considered as a replacement of the string already present in the EF by the string given in the update command.

Input:

‑
relative address and the length of the string;

‑
string of bytes.

Output:

‑
none.

11.1.4.2
Command parameters and data

Code
Value

CLA
As specified in 10.1.1

INS
As specified in 10.1.2

P1
See table 11.6

P2
Offset low

Lc
Length of the subsequent data field

Data
String of data to be updated

Le
Not present

Coding of parameter P1 and P2 are identical to the coding of P1 and P2 in the READ BINARY command.

11.1.5
READ RECORD

11.1.5.1
Functional description

This function reads one complete record in the current linear fixed or cyclic EF. The record to be read is described by the modes below. This function shall only be performed if the READ access condition for this EF is satisfied. The record pointer shall not be changed by an unsuccessful READ RECORD function.

Four modes are defined:

CURRENT: The current record is read. The record pointer is not affected.

ABSOLUTE: The record given by the record number is read. The record pointer is not affected.

NEXT: The record pointer is incremented before the READ RECORD function is performed and the pointed record is read. If the record pointer has not been previously set within the selected EF, then READ RECORD (next) shall read the first record and set the record pointer to this record.

If the record pointer addresses the last record in a linear fixed EF, READ RECORD (next) shall not cause the record pointer to be changed, and no data shall be read.

If the record pointer addresses the last record in a cyclic EF, READ RECORD (next) shall set the record pointer to the first record in this EF and this record shall be read.

PREVIOUS: The record pointer is decremented before the READ RECORD function is performed and the pointed record is read. If the record pointer has not been previously set within the selected EF, then READ RECORD (previous) shall read the last record and set the record pointer to this record.

If the record pointer addresses the first record in a linear fixed EF, READ RECORD (previous) shall not cause the record pointer to be changed, and no data shall be read.

If the record pointer addresses the first record in a cyclic EF, READ RECORD (previous) shall set the record pointer to the last record in this EF and this record shall be read.

Input:

‑
mode, record number (absolute mode only) and the length of the record.

Output:

‑
the record.

11.1.5.2
Command parameters

Code
Value

CLA
As specified in 10.1.1

INS
As specified in 10.1.2

P1
Record number

P2
Mode, see table 11.7

Lc
Not present

Data
Not present

Le
Number of bytes to be read

Table 11.7: Coding of P2

b8
b7
b6
b5
b4
b3
b2
b1
Meaning

0
0
0
0
0
-
-
-
Currently selected EF

X
X
X
X
X
-
-
-
Short File identifier (from 1 to 30)

-
-
-
-
-
0
1
0
Next record

-
-
-
-
-
0
1
1
Previous record

-
-
-
-
-
1
0
0
Absolute/ current mode, the record number is given in P1 with P1='00' denoting the current record

For the modes "next" and "previous" P1 has no significance within the scope of this specification and shall be set to '00' by the Terminal.

Response data:

Byte(s)
Description
Length

1 – Le
Data read
Le

11.1.6
UPDATE RECORD

11.1.6.1
Functional description

This function updates one specific, complete record in the current linear fixed or cyclic EF. This function shall only be performed if the UPDATE access condition for this EF is satisfied. The UPDATE can be considered as a replacement of the relevant record data of the EF by the record data given in the command. The record pointer shall not be changed by an unsuccessful UPDATE RECORD function.

The record to be updated is described by the modes below. Four modes are defined of which only PREVIOUS is allowed for cyclic files:

CURRENT: The current record is updated. The record pointer is not affected.

ABSOLUTE: The record given by the record number is updated. The record pointer is not affected.

NEXT: The record pointer is incremented before the UPDATE RECORD function is performed and the pointed record is updated. If the record pointer has not been previously set within the selected EF, then UPDATE RECORD (next) shall set the record pointer to the first record in this EF and this record shall be updated. If the record pointer addresses the last record in a linear fixed EF, UPDATE RECORD (next) shall not cause the record pointer to be changed, and no record shall be updated.

PREVIOUS: For a linear fixed EF the record pointer is decremented before the UPDATE RECORD function is performed and the pointed record is updated. If the record pointer has not been previously set within the selected EF, then UPDATE RECORD (previous) shall set the record pointer to the last record in this EF and this record shall be updated. If the record pointer addresses the first record in a linear fixed EF, UPDATE RECORD (previous) shall not cause the record pointer to be changed, and no record shall be updated.

For a cyclic EF the record containing the oldest data is updated, the record pointer is set to this record and this record becomes record number 1.

Input:

‑
mode, record number (absolute mode only) and the length of the record;

‑
the data used for updating the record.

Output:

‑
none.

11.1.6.2
Command parameters and data

Code
Value

CLA
As specified in 10.1.1

INS
As specified in 10.1.2

P1
Record number

P2
Mode, see table 11.7

Lc
Length of the subsequent data field

Data
String of data to be updated

Le
Not present

Coding of parameter P2 is identical to the coding of P2 in READ RECORD command.

For the modes "next" and "previous" P1 has no significance and shall be set to '00' by the Terminal. To ensure backward compatibility, the UICC shall not interpret the value given by the Terminal.

11.1.7
SEARCH RECORD

11.1.7.1
Functional description

This function searches through a linear fixed or cyclic EF to find record(s) containing a specific pattern. This function shall only be performed if the READ access condition for this EF is satisfied. The search starts:

-
either at the first byte of the record(s) (simple search), or

-
from a given offset in the record(s); or

-
from the first occurrence of a given byte in the record(s).

The response is either empty or contains the, up to the Le specified number of, record number(s) of the records that matches the search in the selected EF.

Input:

-
search mode (simple/enhanced);

-
offset;

-
pattern.

Output:

‑
either none, if Le is empty or no matches where found; or

‑
at most the number of record(s) number(s) defined in Le.

11.1.7.2
Command parameters and data

Code
Value

CLA
As specified in 10.1.1

INS
As specified in 10.1.2

P1
Record number

P2
See table 11.8

Lc
Length of the subsequent data field

Data
Offset indication followed by search string

Le
Empty or maximum length of response data

Table 11.8: Coding of P2

b8
b7
b6
b5
b4
b3
b2
b1
Meaning

0
0
0
0
0
-
-
-
Currently selected EF

X
X
X
X
X
-
-
-
Short File Identifier

1
1
1
1
1
-
-
-
RFU

-
-
-
-
-
0
X
X
RFU – see NOTE

-
-
-
-
-
1
X
X
Usage of P1 as a record number

-
-
-
-
-
1
0
0
Start forward search form record indicated in P1

-
-
-
-
-
1
0
1
Start backward search form record indicated in P1

-
-
-
-
-
1
1
0
Enhanced search – see table 11.9

-
-
-
-
-
1
1
1
Proprietary

NOTE: This value is reserved by ISO/IEC 7816-9 [17]

Table 11.9: Coding of the first byte in the data field in enhanced mode.

b8
B7
b6
b5
b4
b3
b2
b1
Meaning

0
0
0
0
-
-
-
-
RFU

-
-
-
-
0
-
-
-
Offset, the subsequent byte indicates the absolute position within the record form where the search starts

-
-
-
-
1
-
-
-
Offset, indicated as a character. The character (first occurrence) within the record after which the search starts is indicated in the subsequent byte

-
-
-
-
-
0
X
X
RFU – see NOTE

-
-
-
-
-
1
X
X
Usage of value of P1 as a record number

-
-
-
-
-
1
0
0
Start forward search form record indicated in P1

-
-
-
-
-
1
0
1
Start backward search form record indicated in P1

-
-
-
-
-
1
1
0
Start forward search from next record

-
-
-
-
-
1
1
1
Start backward search form previous record

NOTE:
This value is reserved by ISO/IEC 7816-9 [17]

Response data:

Byte(s)
Description
Length

0 – Le
Record number(s)
Le

NOTE:
If Le is empty no record numbers will be returned

11.1.8
INCREASE

11.1.8.1
Functional description

This function adds the value given by the Terminal to the value of the last increased/updated record of the current cyclic EF, and stores the result into the oldest record. The record pointer is set to this record and this record becomes record number 1. This function shall be used only if this EF has an INCREASE access condition assigned and this condition is fulfilled. The function does not perform the increase if the result would exceed the maximum value of the record (represented by all bytes set to 'FF').

Input:

‑
value to be added.

Output:

‑
value of the increased record;

‑
value which has been added.

11.1.8.2
Command parameters and data

Code
Value

CLA
As specified in 10.1.1

INS
As specified in 10.1.2

P1
See table 11.10

P2
'00'

Lc
Length of the subsequent data field

Data
Value to be added

Le
Length of the response data

Table 11.10: Coding of P1

b8
b7
b6
b5
b4
b3
b2
b1
Meaning

0
0
0
0
0
0
0
0
Increase the currently selected EF

1
0
0
X
X
X
X
X
SFI referencing used, b1-b5 are the SFI

NOTE:
All other values are RFU

Response data:

Byte(s)
Description
Length

1 – X
Value of the increased record
X

X+1 – X+Lc
Value which has been added
Lc

NOTE:
X denotes the length of the record.

11.1.9
VERIFY PIN

11.1.9.1
Functional description

The Verify PIN command initiates the comparison in the UICC of the PIN verification data sent from the Terminal with the PIN reference data stored in the card. The verification process is subject to the following conditions being fulfilled:

‑
PIN is not disabled;

‑
PIN is not blocked.

If the access condition for a function to be performed on the last selected file is PIN, then a successful verification of the relevant PIN is required prior to the use of the function on this file unless the PIN is disabled.

If the PIN presented is correct, the number of remaining PIN attempts for that PIN shall be reset to its initial value 3.

If the PIN presented is false, the number of remaining PIN attempts for that PIN shall be decremented. After 3 consecutive false PIN presentations, not necessarily in the same card session, the respective PIN shall be blocked and the access condition can never be fulfilled until the UNBLOCK PIN function has been successfully performed on the respective PIN.

Input:

‑
indication PIN.

Output:

‑
none.
11.1.9.2
Command parameters:

Code
Value

CLA
As specified in 10.1.1

INS
As specified in 10.1.2

P1
'00'

P2
Qualifier of the reference data, see table 11.11

Lc
Length of the subsequent data field = '08'

Data
PIN value

Le
Not present

Table 11.11: Coding of P2

b8
b7
b6
b5
b4
b3
b2
b1
Meaning

0
0
0
0
0
0
0
0
Not supported

0
-
-
-
-
-
-
-
Global reference data (e.g. MF specific PIN)

1
-
-
-
-
-
-
-
Specific reference data (e.g. DF specific/application dependent PIN)

-
X
X
-
-
-
-
-
'00' (other values are RFU)

-
-
-
X
X
X
X
X
Reference data number ('01' to '1F')

The five least significant bits of parameter P2 specify the PIN number.

Command data:

Byte(s)
Description
Length

1 ‑ 8
PIN value
8

11.1.10
CHANGE PIN

11.1.10.1
Functional description

The Change PIN command is used to initiate the comparison of the verification data with the PIN, and then to conditionally replace the existing PIN with the new PIN sent to the UICC in the command.

This function assigns a new value to the relevant PIN subject to the following conditions being fulfilled:

‑
PIN is not disabled;

‑
PIN is not blocked.

The old and new PIN shall be presented.

If the old PIN presented is correct, the number of remaining PIN attempts for that PIN shall be reset to its initial value 3 and the new value for the PIN becomes valid.

If the old PIN presented is false, the number of remaining PIN attempts for that PIN shall be decremented and the value of the PIN is unchanged. After 3 consecutive false PIN presentations, not necessarily in the same card session, the respective PIN shall be blocked and the access condition can never be fulfilled until the UNBLOCK PIN function has been performed successfully on the respective PIN.

Input:

‑
indication of PIN, old PIN, new PIN.

Output:

‑
none.

11.1.10.2
Command parameters

Code
Value

CLA
As specified in 10.1.1

INS
As specified in 10.1.2

P1
 '00'

P2
 As specified for the VERIFY PIN command, see 11.9

Lc
Length of the subsequent data field = '10'

Data
Old PIN value, new PIN value

Le
Not present

NOTE:
"Change PIN" is named "exchange reference data" in ISO/IEC 7816-8 [16].

Byte(s)
Description
Length

1 – 8
Old PIN value
8

9 – 16
New PIN value
8

11.1.11
DISABLE PIN

11.1.11.1
Functional description

The Disable PIN command is used to switch off the requirement to compare the PIN verification data with the PIN reference data.

The successful execution of this function has the effect that files protected by PIN are now accessible as if they were marked "ALWAYS". The function DISABLE PIN shall not be executed by the selected application when PIN is already disabled or blocked.

NOTE:
Every application must specify whether this function is applicable to all PINs defined for the application.

If the PIN presented is correct, the number of remaining PIN attempts shall be reset to its initial value 3 and PIN shall be disabled.

If the PIN presented is false, the number of remaining PIN attempts shall be decremented and PIN remains enabled. After 3 consecutive false PIN presentations, not necessarily in the same card session, the PIN shall be blocked and the access condition can never be fulfilled until the UNBLOCK PIN function has been successfully performed on PIN.

Input:

‑
PIN.

Output:

· none.

11.1.11.2
Command parameters

Code
Value

CLA
As specified in 10.1.1

INS
As specified in 10.1.2

P1
'00'

P2
 As specified for the VERIFY PIN command, see 11.9

Lc
Length of the subsequent data = '08'

Data
PIN value

Le
Not present

Command data:

Byte(s)
Description
Length

1 ‑ 8
PIN value
8

11.1.12
ENABLE PIN

11.1.12.1
Functional description

The Enable PIN command is used to switch on the requirement to compare the PIN verification data with the PIN reference data. It is the reverse function of DISABLE PIN.

The function ENABLE PIN shall not be executed by the selected application when PIN is already enabled or blocked.

Every application shall specify whether this function is applicable to all PINs defined for the application.

If the PIN presented is correct, the number of remaining PIN attempts shall be reset to its initial value 3 and PIN shall be enabled.

If the PIN presented is false, the number of remaining PIN attempts shall be decremented and PIN remains disabled. After 3 consecutive false PIN presentations, not necessarily in the same card session, PIN shall be blocked and may optionally be set to "enabled". Once blocked, the PIN can only be unblocked using the UNBLOCK PIN function. If the PIN is blocked and "disabled", the access condition shall remain granted. If the PIN is blocked and "enabled", the access condition can never be fulfilled until the UNBLOCK PIN function has been successfully performed on PIN.

Input:

‑
PIN.

Output:

‑
none.

11.1.12.2
Command parameters

Code
Value

CLA
As specified in 10.1.1

INS
As specified in 10.1.2

P1
'00'

P2
 As specified for the VERIFY PIN command, see 11.9

Lc
Length of the subsequent data = '08'

Data
PIN value

Le
Not present

Command data:

Byte(s)
Description
Length

1 ‑ 8
PIN value
8

11.1.13
UNBLOCK PIN

11.1.13.1
Functional description

The Unblock PIN command is used to reset the PIN retry counter to its initial value and then to conditionally set a new PIN value . This function may be performed whether or not the relevant PIN is blocked (e.g. by 3 consecutive wrong PIN presentations).

If the UNBLOCK PIN presented is correct, the value of the PIN, presented together with the UNBLOCK PIN, is assigned to that PIN, the number of remaining UNBLOCK PIN attempts for that UNBLOCK PIN is reset to its initial value 10 and the number of remaining PIN attempts for that PIN is reset to its initial value 3. After a successful unblocking attempt the PIN is enabled and the relevant access condition level is satisfied.

If the presented UNBLOCK PIN is false, the number of remaining UNBLOCK PIN attempts for that UNBLOCK PIN shall be decremented. After 10 consecutive false UNBLOCK PIN presentations, not necessarily in the same card session, the respective UNBLOCK PIN shall be blocked. A false UNBLOCK PIN shall have no effect on the status of the respective PIN itself.

Input:

‑
indication PIN, the UNBLOCK PIN and the new PIN.

Output:

‑
none.

11.1.13.2
Command parameters

Code
Value

CLA
As specified in 10.1.1

INS
As specified in 10.1.2

P1
'00'

P2
 As specified for the VERIFY PIN command (see 11.9)

Lc
Length of the subsequent data field = '10'

Data
UNBLOCK PIN value, new PIN value

Le
Not present

Command data:

Byte(s)
Description
Length

1 ‑ 8
UNBLOCK PIN value
8

9 ‑ 16
New PIN value
8

11.1.14
DEACTIVATE FILE

11.1.14.1
Functional description

This function initiates a reversible deactivation of an EF. After a DEACTIVATE FILE function the respective flag in the file status shall be changed accordingly. This function shall only be performed if the DEACTIVATE FILE access condition for the EF is satisfied.

An deactivated file shall no longer be available within the selected application for any function except for the SELECT and the ACTIVATE FILE functions.

Input:

‑
none.

Output:

‑
none.

11.1.14.2
Command parameters

Code
Value

CLA
As specified in 10.1.1

INS
As specified in 10.1.2

P1
As specified for the SELECT command (see 11.1)

P2
As specified for the SELECT command (see 11.1)

Lc
Length of subsequent data field or empty

Data
File ID, DF name (AID), or path to file, according to P1

Le
Not present

11.1.15
ACTIVATE FILE

11.1.15.1
Functional description

This function reactivates a deactivated EF. After an ACTIVATE FILE function the respective flag in the file status shall be changed accordingly. This function shall only be performed if the ACTIVATE FILE access condition for the current EF is satisfied

Input:

‑
none.

Output:

‑
none.

11.1.15.2
Command parameters

Code
Value

CLA
As specified in 10.1.1

INS
As specified in 10.1.2

P1
As specified for the SELECT command (see 11.1)

P2
As specified for the SELECT command (see 11.1)

Lc
Length of subsequent data field or empty

Data
File ID, DF name (AID), or path to file, according to P1

Le
Not present

11.1.16
AUTHENTICATE

11.1.16.1
Functional description

An appropriate application shall be selected in the UICC before issuing this command. The function initiates the computation of authentication data by the UICC using a challenge sent from the terminal and a secret stored in the UICC.

Input:

‑ challenge data.

Output:

‑ authentication and ciphering data.

11.1.16.2
Command parameters and data

Code
Value

CLA
As specified in 10.1.1

INS
As specified in 10.1.2

P1
'00'

P2
See table 11.12

Lc
Length of the subsequent data field

Data
Authentication related data

Le
Length of the response data

NOTE 1:
Parameter P1='00' indicates that no information on the algorithm is given. The algorithm is implicitly known in the context of the selected application.

Table 11.12: Coding of P2

b8
b7
b6
b5
b4
b3
b2
B1
Meaning

0
0
0
0
0
0
0
0
No information given

0
-
-
-
-
-
-
-
Global reference data (e.g. MF specific KEY)

1
-
-
-
-
-
-
-
Specific reference data (e.g. DF specific/application dependent KEY)

-
X
X
-
-
-
-
-
'00' (other values are RFU)

-
-
-
X
X
X
X
X
Reference data number ('01' to '1F')

NOTE 2:
Parameter P2='00' indicates that no information on the key is given. The key is implicitly known in the context of the selected application.

Command data:

Byte(s)
Description
Length

1 – Lc
Authentication related data (see NOTE)
Lc

NOTE: The command data must be specified by each application specific document.

Response data (generic):

Byte(s)
Description
Length

1 – Le
Authentication related data (see NOTE)
Le

NOTE: The response data must be specified by each application specific document.

11.1.17
MANAGE CHANNEL

The MANAGE CHANNEL command is for further study by 3GPP TSG-T WG3.

11.2
USAT Commands
11.2.1
TERMINAL PROFILE

11.2.1.1
Functional description

This function is used by the Terminal to transmit its USAT capabilities to the applications present on the UICC.

Input:

‑
terminal profile.

Output:

‑
none.

11.2.1.2
Command parameters and data

Code
Value

CLA
As specified in 10.1.1

INS
As specified in 10.1.2

P1
'00'

P2
'00'

Lc
Length of the subsequent data field

Data
Structure and coding defined in 3G TS 31.111 [4]

Le
Not present

11.2.2
ENVELOPE

11.2.2.1
Functional description

Thhis function is used to transfer USAT information from the UE to the UICC.

Input:

‑
The structure of the data is defined in 3G TS 31.111 [4].

Output:

-
the structure of the data is defined in 3G TS 31.111 [4].

11.2.2.2
Command parameters and data

Code
Value

CLA
As specified in 10.1.1

INS
As specified in 10.1.2

P1
'00'

P2
'00'

Lc
Length of the subsequent data field

Data
Structure and coding defined in 3G TS 31.111 [4]

Le
Empty or maximum length of response data

Response data:

Structure of the response data is defined in 3G TS 31.111 [4] for USAT applications.

11.2.3
FETCH

11.2.3.1
Functional description

This function is used to transfer a proactive command from the UICC to the Terminal (e.g. from a USAT application).
Input:

‑
none.

Output:

‑
data string containing a proactive command for the Terminal (e.g. a USAT command).

11.2.3.2
Command parameters and data

Code
Value

CLA
As specified in 10.1.1

INS
As specified in 10.1.2

P1
'00'

P2
'00'

Lc
Not present

Data
Not present

Le
Length of expected data

Response data:

Structure of the response data is defined in 3G TS 31.111 [4] for USAT applications.

11.2.4
TERMINAL RESPONSE

11.2.4.1
Functional description

This function is used to transfer from the Terminal to the UICC the response to a previously fetched proactive command (e.g. a USAT command).
Input:

‑
data string containing the response.

Output:

‑
none.

11.2.4.2
Command parameters and data

Code
Value

CLA
As specified in 10.1.1

INS
As specified in 10.1.2

P1
'00'

P2
'00'

Lc
Length of the subsequent data field

Data
Structure and coding defined in 3G TS 31.111 [4]

Le
Not present

[…]

14
Application independent protocol

14.1
File related procedures

14.1.1
Reading an EF

Reading of an EF can be done in two different ways.

If the short file identifiers are used the following procedure applies:

-
if short file identifiers are used, file EF of the Current Directory, that support the SFI, can be read without explicitly selecting the EF. The Terminal selects the DF or ADF and sends a READ command. This contains the short file identifier of the EF to be read and the location of the data to be read. If the access condition for READ is fulfilled, the application sends the requested data contained in the EF to the Terminal. If the access condition is not fulfilled, no data will be sent and an error code will be returned.

[KV]
if short file identifiers are used, file EF of the Current Directory [??], that support the SFI, can be
If the short file identifiers are not used the following procedure applies:

-
the Terminal selects the EF and sends a READ command. This contains the location of the data to be read. If the access condition for READ is fulfilled, the application sends the requested data contained in the EF to the Terminal. If the access condition is not fulfilled, no data will be sent and an error code will be returned.

14.1.2
Updating an EF

Updating of an EF can be done in two different ways:

If the short file identifiers are used the following procedure applies:

-
if short file identifiers are used , file EF of the Current Directory, that support the SFI, can be updated without explicitly selecting the EF. The Terminal selects the DF or ADF and sends an UPDATE command. This contains the short file identifier of the EF and the location of the data to be updated and the new data to be stored. If the access condition for UPDATE is fulfilled, the application updates the selected EF by replacing the existing data in the EF with that contained in the command. If the access condition is not fulfilled, the data existing in the EF will be unchanged, the new data will not be stored, and an error code will be returned.

[KV]
if short file identifiers are used , file EF of the Current Directory [wording ??] , that support
If the short file identifiers are not used the following procedure applies:

-
the Terminal selects the EF and sends an UPDATE command. This contains the location of the data to be updated and the new data to be stored. If the access condition for UPDATE is fulfilled, the application updates the selected EF by replacing the existing data in the EF with that contained in the command. If the access condition is not fulfilled, the data existing in the EF will be unchanged, the new data will not be stored, and an error code will be returned.

14.1.3
Increasing an EF

Increasing of an EF can be done in two different ways:

If the short file identifiers are used the following procedure applies:

-
If short file identifiers are used, file EF of the Current Directory, that support the SFI, can be increased without explicitly selecting the EF. The Terminal selects the DF or ADF and sends an INCREASE command. This contains the short file identifier of the EF and the value which has to be added to the contents of the last updated/increased record. If the access condition for INCREASE is fulfilled, the application increases the existing value of the EF by the data contained in the command, and stores the result. If the access condition is not fulfilled, the data existing in the EF will be unchanged and an error code will be returned.

[KV]
if short file identifiers are used, file EF of the Current Directory [wording ??], that support.......
If the short file identifiers are not used the following procedure applies:

-
The Terminal selects the EF and sends an INCREASE command. This contains the value which has to be added to the contents of the last updated/increased record. If the access condition for INCREASE is fulfilled, the application increases the existing value of the EF by the data contained in the command, and stores the result. If the access condition is not fulfilled, the data existing in the EF will be unchanged and an error code will be returned.

NOTE:
The identification of the data within an EF to be acted upon by the above procedures is specified within the command. For the procedures in subclauses 14.1.1 and 14.1.2 this data may have been previously identified using a SEARCH RECORD command, e.g. searching for an alphanumeric pattern.

14.2
PIN related procedures

NOTE:
This document specifies only the generic behaviour of a PIN. An application may create a set of PINs each with a specific behaviour.

A successful completion of one of the following procedures grants the access right of the corresponding PIN for an application session. This right is valid for all files within the application protected by this PIN.

After a third consecutive presentation of a wrong PIN to an application, not necessarily in the same application session, the PIN status becomes "blocked" and if the PIN is "enabled", the access right previously granted by this PIN is lost immediately.

An access right is not granted if any of the following procedures are unsuccessfully completed or aborted.

14.2.1
PIN verification

The Terminal checks the PIN status and the following procedure applies:

If the PIN status is "blocked" and PIN is "enabled", the procedure ends and is finished unsuccessfully.

If the PIN status is "blocked" but PIN is "disabled", the procedure ends and is finished successfully. The Terminal shall, however, accept applications which do not grant access rights when PIN is "blocked" and "disabled". In that case Terminal shall consider those applications as "blocked".

If the PIN status is not "blocked" and PIN is "disabled", the procedure is finished successfully.

If the PIN status is not "blocked" and PIN is "enabled", the Terminal uses the VERIFY PIN function. If the PIN presented by the Terminal is equal to the corresponding PIN stored in the application, the procedure is finished successfully. If the PIN presented by the Terminal is not equal to the PIN which protects the application, the procedure ends and is finished unsuccessfully.

14.2.3
PIN value substitution

The Terminal checks the PIN status. If the PIN status is "blocked" or "disabled", the procedure ends and is finished unsuccessfully.

If the PIN status is not "blocked" and the enabled/disabled indicator is set "enabled", the Terminal uses the CHANGE PIN function. If the old PIN presented by the Terminal is equal to the PIN which protects the application, the new PIN presented by the Terminal is stored instead of the old one and the procedure is finished successfully.

If the old PIN and the PIN in memory are not identical, the procedure ends and is finished unsuccessfully.

14.2.4
PIN disabling

PIN enabling and disabling may be disallowed by an application. If it is allowed then the following procedures shall be followed:

The Terminal checks the PIN status. If the PIN status is "blocked", the procedure ends and is finished unsuccessfully.

If the PIN status is not "blocked", the Terminal reads the PIN enabled/disabled indicator. If this is set "disabled", the procedure ends and is finished unsuccessfully.

If the PIN status is not "blocked" and the enabled/disabled indicator is set "enabled", the Terminal uses the DISABLE PIN function. If the PIN presented by the Terminal is equal to the PIN which protects the application, the status of PIN is set "disabled" and the procedure is finished successfully. If the PIN presented by the Terminal is not equal to the PIN which protects the application, the procedure ends and is finished unsuccessfully.

14.2.5
PIN enabling

PIN enabling and disabling may be disallowed by an application. If it is allowed then the following procedures shall be followed:
The Terminal checks the PIN status. If the PIN status is "blocked", the procedure ends and is finished unsuccessfully.

If the PIN status is not "blocked", the Terminal reads the PIN enabled/disabled indicator. If this is set "enabled", the procedure ends and is finished unsuccessfully.

If the PIN status is not "blocked" and the enabled/disabled indicator is set "disabled", the Terminal uses the ENABLE PIN function. If the PIN presented by the Terminal is equal to the PIN which protects the application, the status of PIN is set "enabled" and the procedure is finished successfully. If the PIN presented by the Terminal is not equal to the PIN which protects the application, the procedure ends and is finished unsuccessfully.

14.2.6
PIN unblocking

The execution of the PIN unblocking procedure is independent of the corresponding PIN status, i.e. being blocked or not.

The Terminal checks the UNBLOCK PIN status. If the UNBLOCK PIN status is "blocked", the procedure ends and is finished unsuccessfully.

If the UNBLOCK PIN status is not "blocked", the Terminal uses the UNBLOCK PIN function. If the UNBLOCK PIN presented by the Terminal is equal to the corresponding UNBLOCK PIN of the application, the relevant PIN status becomes "unblocked" and the procedure is finished successfully. If the UNBLOCK PIN presented by the Terminal is not equal to the corresponding UNBLOCK PIN of the application, the procedure ends and is finished unsuccessfully.

14.3 Application selection procedures

14.3.1
Application selection by use of the EFDIR file

Application selection by use of the EFDIR file is the procedure where the Terminal reads the content of the EFDIR file and presents the list of applications to the user whom can then make select one or more applications to activate.

The Terminal performs the read procedure with EFDIR and presents the applications that it supports to the user who may make a selection. If only one supported application is found this may be implicitly selected.

14.3.2
Direct application selection

An application may be selected, without reading the content of the EFDIR file, by performing the SELECT procedure with the AID of the application to be selected.

14.3.3
Direct application selection with partial AID

This is ffs.

14.4
General application related procedures

14.4.1
Application session activation

The Terminal performs the SELECT function with the AID of the selected application as a parameter.

If the SELECT function ends successfully the selected application's initialisation procedure is executed. If the initialisation procedure ends successfully the UICC enters the operation state. If the initialisation procedure does not end successfully, the UICC remains in the application management state and sends an indication to the user that it was not possible to activate the selected application.

14.4.2
UICC Application interrogation

The list of applications residing in the UICC can be read at anytime when the UICC is not inactive.

Request:
The Terminal performs the read procedure with EFDIR.

14.4.3
UICC application session termination

An application session can be terminated at any time when the UICC is not inactive.

14.5
Miscellaneous procedures

14.5.1
UICC activation

After activation of the UICC, as defined in subclause 4.5, the Terminal requests the Preferred Language (EFPL), if available, otherwise the Terminal's default language is selected. If the terminal supports USAT it shall perform the USAT initialization procedure.The Terminal then performs an application selection procedure according to clause 14.3.

14.5.2
UICC presence detection

To ensure that the UICC has not been removed during a card session, the Terminal sends, at frequent intervals, a STATUS command during each call. A STATUS command shall be issued within all 30 second periods of inactivity on the UICC‑Terminal interface during a call. Inactivity in this case is defined as starting at the end of the last communication or the last issued STATUS command. If no response data is received to this STATUS command, then the call shall be terminated as soon as possible but at least within 5 seconds after the STATUS command has been sent. If the DF indicated in response to a STATUS command is not the same as that which was indicated in the previous response, or accessed by the previous command, then the call shall be terminated as soon as possible but at least within 5 seconds after the response data has been received. This procedure shall be used in addition to a mechanical or other device used to detect the removal of a UICC.

14.5.3
UICC Preferred Language request

Request:
The Terminal performs the read procedure with EFPL.

Update:
The Terminal performs the update procedure with EFPL
14.6
USAT related procedures

The higher level procedures, and contents and coding of the commands, are given in TS 31.111 [4]. Procedures relating to the transmission of commands and responses across the Terminal-UICC interface are given in this section. A UICC or Terminal supporting USAT shall conform to the requirements given in this section.

14.6.1
USAT Initialization procedure

A UICC shall support the USAT initialization procedure.
An ME supporting USAT shall send the TERMINAL PROFILE C-APDU. The ME shall then start the proactive polling procedure with the default value.

14.6.2
Proactive polling

During idle mode the ME shall send STATUS commands to the UICC at intervals no longer than the interval negotiated with the UICC (see TS 31.111 [4]). During a call the UICC presence detection applies. The default value for the proactive polling is the same as for the presence detection procedure.
14.6.3
Support of commands

An ME supporting USAT shall support the commands TERMINAL PROFILE, ENVELOPE, FETCH and TERMINAL RESPONSE.

14.6.4
Support of response codes

An ME supporting USAT shall support the response status words (SW1 SW2) '91 XX' and '93 00'.

These responses shall never be used if the ME does not support USAT.

14.6.5
Independence of applicationsand USAT tasks

Application and USAT operation shall be logically independent, both in the UICC and in the ME.

Specifically, this means:

‑
The currently selected EF and current record pointer in any active application shall remain unchanged, if still valid, as seen by the ME, irrespective of any USAT activity.

‑
Between successive USAT related command‑response pairs, other application (e.g. USIM) and UICC related command‑response pairs can occur. The USAT task status shall remain unchanged by these command‑response pairs.

14.6.6
Use of BUSY status response

If for any reason the USAT task of the UICC cannot process an ENVELOPE command issued by the ME at present (e.g. other USAT processes are already running), the UICC can respond with a status response of '93 00'. The ME may re‑issue the command at a later stage.

The BUSY status response has no impact on USIM operation.

14.6.7
Additional processing time

The Transport Protocol provides a mechanism for the UICC to obtain additional processing time (i.e. NULL procedure byte for T=0 and Work Waiting time extension (WTX) for T=1) before supplying the response part of a command‑response pair, during which time the ME is unable to send further commands to the UICC.

If a USAT activity in the UICC runs for too long, this may prevent the ME from sending USIM commands which are time‑critical, e.g. INTERNAL AUTHENTICATE. A MORE TIME command is defined in TS 31.111 [4], which ensures that the USAT task in the UICC gets additional processing time, while at the same time freeing the UICC/ME interface. The MORE TIME command should be used in preference to the Transport Protocol specific mechanisms for optaining additional processing time.
[…]

3GPP

_989073752.doc
How to create a CR
Michael Sanders, 3GPP support team, (last updated 19/05/99)

1)
Open the CR cover sheet with MS Word 97. The lastest version of the CR coversheet can be found at:

ftp://ftp.3gpp.org/information/3gCRF-xyz.DOC

2)
Fill out all areas that are relevant on the CR cover sheet - only the areas that have yellow shading shall be filled out. See Annex A of these instructions for further detail.

3)
Open the specification to which you wish to make a change. It is very IMPORTANT to ensure that you are using the latest version of the specification to make the change. The latest versions of all approved 3G specifications is located at:

ftp://ftp.3gpp.org/specifications/

Do a "save as" using a file name related to the tdoc number (e.g. T3-99123.DOC).

4)
If the formatting looks incorrect (most easily noticed by the fact that there is no space between paragraphs), it may be because you do not have the correct document sheet in your MS Word style directory. All 3GPP specification use the style sheet 3GPP_70.DOT. This can be downloaded from:

ftp://ftp.3gpp.org/information/3gpp_70.dot

5)
Go to the beginning of the heading of the first subclause which you want to change. Press <CTRL><SHIFT><HOME> to select everything before that point and delete it.

6)
Switch to the window in MS word that contains your CR cover sheet and do a <CTRL>A <CTRL>C to select and copy the entire sheet (including the section break at the end). Switch back to the other window with the specification to be changed and paste it in.

7)
Between group of changed pages in the CR, insert a section break (insert / break / next page/)

8)
When all the changes have been made (using the "tools / track changes" feature of MS Word 97), the headers and page number need to be corrected other the headers will contain an error message like "error, reference not found". You can fix this by changing to page layout mode (view / page layout) to see the headers. Then, go to the menu item "view / header and footer", select the frame that contains the error message(s) ini the header and delete them (there are normally 2). Do not delete the page number in the middle. On the left side, write the spec name and current version number For example, "3G TS 21.111 version 3.0.0 (1999-04)". Go back to normal view.

9)
For each group of changes, insert the correct starting page number. The number should be that which is a clean unmodified specification. It is only a guide to the reader only and so they can be +/- 1 page number wrong. Insert the page number using the following method. Go to the line following the first section break in your CR. Choose the menu item insert / page number / format / start at and insert the correct starting page number for that group of changes. click "OK" and then "CLOSE" (don't press "OK" at this last step). Repeat this step for each section break.

10)
When you have finished making all changes, go to "tools / track changes / highlight changes" and uncheck the "track changes while editing" box, otherwise the page numbers in the headers will be difficult to read. Make sure that the two other options in this box (highlight changes on screen" and "highlight changes in printed document" are both maked "X".

Examples of expressions of prevision in 3GPP specifications

To ensure that everybody else understands your proposed chnaged the same way that you do, it is very important to keep to the following rules:

SHALL: To be used to indicate a requirement. e.g. "The ME shall reset the USIM" is correct Do not use "The ME resets the USIM" or "the ME must reset the USIM"

SHOULD: To be used to indicate recommendation. i.e. if, among several possibilities one is recommended as particularly suitable, without mentioning or excluding others, or that a certain course of action is preferred but not necessarily required, or that (in the negative form) a certain possibility or course of action is deprecated but not prohibited.

MAY: To be used to indicate permission. To be used instead of phrases such as "is permitted", "is allowed" or is permissible". The opposite of "may" is "need not".

CAN: To be used to indicate possibility and capability. To be used instead of phrases such as "be able to", "there is a possibility of" or "it is possible to".

A more detailed guide to the 3GPP drafting rules can be found on the 3GPP server at:

ftp://ftp.3gpp.org/information/drafting-rules.pdf

ANNEX A
The CR cover sheet

This annex provides further information on how to fill out the cover sheet of a CR.

The header:

a)
The header, including the TSG or Working Group, the tdoc number (normally obtinaed from the 3GPP support team) and the meeting location and date.

The title box:

b)
The change request number. This is a 3 digit number and is allocated by the 3GPP support team project manager of the relevant WG.

c)
The 3G specification number (e.g. 21.111).

d)
The TSG plenary meeting to which this CR will be submitted to if it gets agreed at the WG meeting.

e)
for approval/for information: one box only shall be marked with an "X"

Proposed change affects:

f)
At least one box shall be marked with an "X"

Source:

g)
The company name of the author of the CR. If the CR has already been agreed at a Working groups or sub working group, meeting, the subgroup name (and Tdoc number) should be used instead.

Subject:

h)
One line (only) of concise text that describes the subject of the CR. Details should be put under "reason for change"

good examples:
"Clarification to FETCH command"

"Alignment of operation and parameter names"

recently used

bad examples:
"correction"

"editorial correction"

"correction to TS xxx.yy"

"various improvements"

Work item:

h)
The name of the 3G work item for which the CR is relevant.

Category and release:

i)
Choose one category only

Reason:

j)
This should be 1 to 10 lines of text that describes in further detail the reasons why the change is necessary and how the change is done.

Clauses Affected:

m)
Each subclause that is affected by the change should be listed here. New subclause number can be followed by " (new) ".

Other specs affected:

n)
Other 3G core specifications: to be used if the CR is linked to a CR for another 3G specification.
Other 2G core specifications: to be used if a CR is also needed for a GSM or other 2G specification.

MS test specifications: to be used if a change is needed to the MS test specifications.

BSS test specifications: to be used if a change is needed to the base station test specifications.

O&M specifications: to be used if a change is needed to the 32 series specifications.

When listing other CRs in part n) use, for example, the form "21.111-CR001"

How to create a CR for 3G specifications.

File location: http://ftp.3gpp.org/information/3gCRF-xxx.rtf

