3GPP TSG-T3

Document T3-99167
Miami, June, 14th to 16th, 1999
Source: Gemplus

Phone book management with ISO 7816 part 7

1 Introduction

This paper presents a solution to implement the Phone book feature in the UICC.

This solution is compliant with the ISO/IEC 7816-7 standard. This standard describes the implementation of general purpose databases in a smartcard environment, called SCQL (Structured Card Query Language).

The SCQL database concept is of particular interest in the case of the phone book, for its inherent table-based management, its flexibility, its evolutivity and more than all its interface allowing to achieve complex operations with simple commands with full garanty of data coherence.

Important points to bear in mind are:

· The conformance of SCQL to SQL statements allows the interoperability of the phone book with general database environements using light adaptation layers.

· The presence of a generic database engine in the UICC allows to imagine a number of value added services using this feature.

2 General presentation of the usage of 7816-7 for the Usim phone book

2.1 SCQL database
A database in a card according to ISO/IEC 7816-7 is called a SCQL database (SCQL = Structured Card Query Language), since the com​mands for accessing are based on SQL-functionality (see ISO 9075) and coded accor​ding to the principles of interindustry com​mands as defined in ISO/IEC 7816-4. The da​tabase itself is a structured set of da​tabase ob​jects called a database file DBF. Under a DF there shall be not more than one DBF which is accessible after selection of the re​spective DF. A da​ta​base may be also directly attached to the MF.

Fig.1 shows an example for the embedding of a data​base in the card.

[image: image1.wmf]MF

DF

1

DBF

DF

2

Any

application

Application

with a

database

Database

 file

. . .

Internal elementary files

and/or

working elementary files

Figure 1 — Application with a database in a multiapplication card (example)

2.2 SCQL tables

A SCQL database contains objects called tables, views and dictionaries. Each ob​ject can be re​fe​ren​ced by a unique identifier.

A table is a structured data object with a uni​que name within a database. It consists of named co​lumns and a sequence of rows. The number of rows may be con​ceptually un​limited (i.e., only re​stricted by the available memory space in the card), or limited. The table and the main characteristics are shown in fig. 3.

[image: image2.wmf]Table name

Column

name 1

Column

name 2

Column

name 3

Row 1

Row 2

Row 3

Characteristics:

- Table name: unique, max. 8 characters

- No. of tables: not regulated by this standard

- Column name in table: unique, max. 8 char.

- No. of columns within a table: 1 - 15

- Max. no. of rows: not determined or fixed

- Column size: 0 - 254 bytes, if not specified

- Column data type: string

Figure 3 — SCQL table (example) and its main characteristics

After creation the table structure is persistent, i.e. neither an existing column can be with​drawn nor a new column can be inserted. On a table the following actions can be per​formed:

- read (select)

- insert

- update

- delete.

2.3 SCQL views

A view is a logical subset of a table, which defines the part of the table accessible. Two types of views are to be distinguished:

· a view (see fig. 4), which by defi​ni​tion fixes the accessable columns, is called in this context a static view and

-
a view (see fig. 5), which restricts the access to those rows whose contents matches de​fined con​ditions (e.g. to rows the value of which is greater ´20´), is called in this con​text a dynamic view.

[image: image3.wmf]T

a

b

l

e

n

a

m

e

C

o

l

u

m

n

n

a

m

e

1

C

o

l

u

m

n

n

a

m

e

2

C

o

l

u

m

n

n

a

m

e

3

V

i

e

w

n

a

m

e

C

o

l

u

m

n

n

a

m

e

3

C

o

l

u

m

n

n

a

m

e

2

S

t

a

t

i

c

v

i

e

w

w

i

t

h

a

c

c

e

s

s

r

e

s

t

r

i

c

t

e

d

t

o

t

h

e

2

n

d

a

n

d

3

r

d

c

o

l

u

m

n

Figure 4 — SCQL static view (example)

[image: image4.wmf]T

a

b

l

e

n

a

m

e

C

o

l

u

m

n

n

a

m

e

1

C

o

l

u

m

n

n

a

m

e

2

C

o

l

u

m

n

n

a

m

e

3

D

y

n

a

m

i

c

v

i

e

w

w

i

t

h

a

c

c

e

s

s

r

e

s

t

r

i

c

t

e

d

t

o

r

o

w

s

w

h

e

r

e

t

h

e

c

o

n

t

e

n

t

o

f

t

h

e

r

o

w

m

a

t

c

h

e

s

o

n

e

o

r

m

o

r

e

d

e

f

i

n

e

d

c

o

n

d

i

t

i

o

n

s

V

i

e

w

n

a

m

e

C

o

l

u

m

n

n

a

m

e

1

C

o

l

u

m

n

n

a

m

e

2

C

o

l

u

m

n

n

a

m

e

3

Figure 5 — SCQL dynamic view (example)

A combination of static view and dynamic view in the same view definition is al​so possible.

A view has like a table a unique name in a SCQL database. Several views may be de​fined on the same table.

On a view the following actions can be per​formed:

- read (select)

- update.

2.4 SCQL system tables and dictionaries

ISO 7816-7 defines system tables main​tained by the card that con​tain information necessary to manage the database structure and access. There are three system tables:

- the object description table (name *O)

- the user description table (name *U)

- the privilege description table (name *P)

The object description table contains infor​ma​tion about the tables and views stored in the database.

The user description table contains infor​mation about the users which have access to the da​tabase.

The privilege description table contains infor​mation about the privileges onto the database ta​​bles and views. Privileges describe which ta​bles and views can be accessed by which users, and which actions can be performed by those users on the respective table or view.

For access to the information contained in the system tables, views on these system tables can be created. A view on a system table is called a SCQL dictionary. The only action which a user can perform on a dic​tionary is rea​​​​ding (select).

2.5 SCQL APDUs

The ´Structured Card Query Lan​guage (SCQL)´ is based on the functionality of the stan​dardized ´Struc​tured Query Language (SQL)´. SQL statements are mapped onto SCQL operations within the PERFORM SCQL OPERATION command (see fig. 9 and table 2).

[image: image5.wmf]S

Q

L

s

t

a

t

e

m

e

n

t

S

C

Q

L

o

p

e

r

a

t

i

o

n

L

c

N

O

T

E

S

-

1

.

T

h

e

c

o

d

i

n

g

s

c

h

e

m

a

f

o

r

t

h

e

d

a

t

a

f

i

e

l

d

i

s

a

s

i

m

-

p

l

i

f

i

e

d

T

L

V

s

t

r

u

c

t

u

r

e

.

S

i

n

c

e

m

e

a

n

i

n

g

a

n

d

p

o

s

i

-

t

i

o

n

o

f

t

h

e

d

a

t

a

o

b

j

e

c

t

s

a

r

e

f

i

x

e

d

,

t

a

g

s

a

r

e

n

o

t

n

e

e

d

e

d

a

n

d

t

h

e

r

e

f

o

r

e

n

o

t

p

r

e

s

e

n

t

i

n

t

h

e

c

o

d

i

n

g

.

2

.

S

Q

L

w

o

r

d

s

a

r

e

n

o

t

e

n

c

o

d

e

d

i

n

t

h

e

d

a

t

a

f

i

e

l

d

.

3

.

I

f

s

e

v

e

r

a

l

i

t

e

m

s

a

r

e

g

r

o

u

p

e

d

,

t

h

e

n

t

h

e

d

i

m

e

n

s

i

o

n

h

a

s

t

o

b

e

p

r

e

s

e

n

t

b

e

f

o

r

e

t

h

e

g

r

o

u

p

e

d

i

t

e

m

s

.

´

1

0

´

=

P

E

R

F

O

R

M

S

C

Q

L

O

P

E

R

A

T

I

O

N

L

p

S

Q

L

s

t

a

t

e

-

m

e

n

t

S

Q

L

a

t

t

r

i

-

b

u

t

e

S

Q

L

w

o

r

d

S

Q

L

w

o

r

d

S

Q

L

a

t

t

r

i

-

b

u

t

e

.

.

.

o

p

e

r

a

-

t

i

o

n

t

a

g

L

p

C

L

A

I

N

S

L

c

P

a

r

a

-

m

e

t

e

r

.

.

.

L

p

L

p

P

1

P

2

P

a

r

a

-

m

e

t

e

r

Figure 9 — Mapping principle of a SQL state​ment onto a SCQL operation

The mandatory parameters of a command occurs al​ways in the sequence defined in the related com​mand table. Their tag is therefore not present. The optional parameters are - if not indicated otherwise - presented in TLV for​mat.

As well as the PERFORM SCQL OPERATION com​mand two other commands belong to the SCQL en​vironment, but may be used also out​side an SCQL en​vironment:

-
the PERFORM TRANSACTION OPERA​TION com​​mand (see fig. 10) and

-
the PERFORM USER OPERATION com​mand (see fig. 10).

The SCQL related commands can be grouped as shown in fig. 10.

[image: image6.wmf]SCQL Related Commands

PERFORM

SCQL

OPERATION

PERFORM

TRANS-

ACTION

OPERATION

PERFORM

USER

OPERATION

CREATE TABLE

CREATE VIEW

DROP TABLE

DROP VIEW

CREATE DICTIONARY

GRANT

REVOKE

DECLARE CURSOR

OPEN

NEXT

FETCH

FETCH NEXT

INSERT

UPDATE

DELETE

PRESENT USER

CREATE USER

DELETE USER

BEGIN

COMMIT

ROLLBACK

Figure 10 — SCQL related com​mands
Only a subset of these commands is necessary to operate the phone book. This is defined further in this document.

2.6 Security attributes

Security attributes associated to tables and views may be related to authentication pro​ce​dures to be per​​formed before access or de​scribe secure messa​ging mechanisms to be applied, if data manipulation operations are per​​formed (e.g. reading and writing in a con​fi​dential mode).

A security attribute attached to a user is related to user authentication.

2.7 Principles to access data in the database

The principle for the terminal, to access a record in a table or in a view is to:

· Declare a pointer to records fulfilling particular conditions

· Let the pointer find the first record

· Fetch or Update the record contents

· Jump to next or previous

3 building the phone book and mapping USIM requirements onTO ISO 7816-7

3.1 Operations to be supported in the phone book

· Query of fields available for items

· Creation of an item

· Query of an existingitem with research criteria (by name, by n°, by E-mail…matching a string)

· Update of fields in an item

· Filter and display

Grouping becomes a natural feature as it is basically a filtering operation on one field of the database.

3.2 Phone Book implementation

Only a part of the 7816-7 standard is needed in order to implement the phone book. Here are the principles for the implementation.

The Phone book shall consist of a dedicated Database in the DF TELECOM created at the personalisation stage.

3 users shall be declared:

User Id
User profile
Remark

ADMINISTRATOR
Database owner
Operator

CHOLDER
Object owner
Card Holder

PUBLIC
Database user
Temporary user

A unique table shall be created at the personalisation stage with the columns:

· Name

· Second name

· Telephone number (including extensions)

· Other telephone number (office, home, fax, mobile or pager)

· E-mail address

· Group

· Hidden/public flag

· Extension (as in GSM)

in a first stage, a unique dictionary (a view on the system table that describes the objects of the database) is necessary to describe the exact contents (i.e. the columns) of the table.

Looking in this dictionary, the terminal knows what are the data fields accessible to the user and can adapt its MMI accordingly.

The owner of the table shall be "CHOLDER" and shall have all rights on the table.

Views corresponding to the different values of "GROUP" shall be created, excluding those records whose Hidden flag is set. Only CHOLDER and ADMINISTRATOR are capable of creating views.

The user "PUBLIC" shall be granted rights to watch the views and possibly to update records.

The user "PUBLIC" shall not be granted rights to access data directly in the table.

Thus the hidden records can be seen only by the CHOLDER, directly in the table.

The identification of a user as "CHOLDER" or as "PUBLIC" shall be done using the command "PRESENT USER" during the general user authentication process of the USIM session. It shall be based on PIN codes. It shall be the responsibility of the terminal to send the right "PRESENT USER" command when recognising the quality of the current user.

The operation of retrieving data or updating the phone book shall be done using commands and sequences described in the subsequent paragraphs.

3.3 Coding

The fields shall be of string type, allowing all the particular coding already defined for names and phone numbers.

3.4 Implementation of the call detail feature

TBD

4 Administration of the phone Book

The administration of the phone book shall consist of creating new views if new groups are introduced, delete views, grant or revoke access rights to the temporary users.

In a further stage, creation of new users and new tables can be envisaged.

The following commands of the ISO/IEC 7816-7 shall be implemented.

4.1 CREATE VIEW

The SCQL operation CREATE VIEW defines a view on a table. The view definition is added in the object description table.

A view can only be created by the owner of the re​fe​renced table.

4.1.1 Command message

The SCQL operation is related to the following SQL statement:

CREATE VIEW <view name> AS <view de​fi​nition> [<security attribute>, ...]

<view name> = <identifier>

<view definition> ::= SELECT <select list> FROM <object name> [WHERE <search con​dition> [AND <search condition>, ...]]

<security attribute>::= <security related DO>

<select list> ::= * | <column name> [, <column name>]

<object name> ::= <table name>

<search condition> ::= <column name> <com​parison operator> <string>

<comparison operator> ::= = | < | > | (| (| (
<string> ::= ´<sequence of bytes>´

* = all columns

4.2 DROP VIEW
With the SCQL operation DROP VIEW a view can be dropped.

A view can only be dropped by its owner. The pri​vi​leges associated to the view should be automatically dropped.

4.3 GRANT
The SCQL operation GRANT allows to grant pri​vi​le​ges to a single user, to a user group or to all users.

The following pri​vileges may be granted:

a) Privileges for table access

- SELECT
- INSERT
- UPDATE
- DELETE

b) Privileges for view access

- SELECT
- UPDATE

c) Privileges for dictionary access

- SELECT.

NOTE - If in addition to a privilege an access au​tho​ri​zation by the cardholder shall be required (i.e. password pre​sentation) before the respective action can be per​formed, then this has to be defined in the security attributes defined for the respective table or view.

Only the owner of the table or view can grant or re​voke pri​vi​le​ges.

4.4 REVOKE
The SCQL operation REVOKE allows to re​voke pri​vileges granted be​fore (see 7.6).

Only the owner of the table or view can revoke pri​vi​le​ges.

5 DATA access commands

The commands needed to access the phonebook shall be:

· Declare cursor

· Open

· Next

· Fetch

· Fetch next

· Insert

· Update

· Delete

5.1 DECLARE CURSOR

5.1.1 Definition and scope

A cursor is used for pointing to a row in a table, view or dictionary. The SCQL operation DE​CLARE CUR​SOR is used for the declara​tion of a cursor.

5.1.2 Conditional usage and security

The declaration of the cursor is only accepted, if the actual user is authorized to access the re​ferenced table, view or dictionary. The user has to be the owner of the re​fe​renced object or at least one pri​vilege for access to the re​ferenced object (for com​parison of the current user id with the user id stored in the system table *P see 6.5).

Only one cursor can exist at a given time, i.e. if a new cursor is declared then the previous is no longer valid.

5.1.3 Command message

The SCQL operation is related to the following SQL statement:
DECLARE CURSOR FOR <selection>

<selection> ::= SELECT <select list> FROM <ob​ject name> [WHERE <search condition> [AND <search condition>, ...]

<select list> ::= * | <column name> [, <colum name>]

<object name> ::= <table name> | <view name> |
<dictionary name>

<search condition> ::= <column name> <comparison
 operator> <string>

<comparison operator> ::= = | < | > | (| (| (
<string> ::= ´<sequence of bytes>´

* = all columns

NOTE -
Since only one cursor at a time is pos​sible, no cur​sor name is used.

5.2 OPEN

5.2.1 Definition and scope

The SCQL operation OPEN opens a cursor, i.e. the cursor is postioned on the first row which satisfies the selection previously defined with the DECLARE
 CUR​SOR opera​tion.

5.2.2 Conditional usage and security

A cursor must be declared before.

5.2.3 Command message

The SCQL operation is related to the following SQL statement:

OPEN

5.3 NEXT

5.3.1 Definition and scope

The SCQL operation NEXT sets the cursor on the next row satisfying the cursor specification.

5.3.2 Conditional usage and security

A cursor must be opened before.

5.3.3 Command message

The SCQL operation is related to the following SQL statement:

NEXT

5.4 FETCH

5.4.1 Definition and scope

The SCQL operation FETCH allows to fetch a row or part of it. The cursor has to point on the row to be fetched.

5.4.2 Conditional usage and security

The operation can only be executed by the ob​ject owner or a user with the SELECT pri​vi​lege. A cursor must be opened before.

5.4.3 Command message

The SCQL operation is related to the following SQL statement:

FETCH
5.5 FETCH NEXT

5.5.1 Definition and scope

The SCQL operation FETCH NEXT has to be used for reading the logical next row from the cursor posi​tion. The cursor is set to the row fetched.

5.5.2 Conditional usage and security

The operation can only be executed by the ob​ject owner or a user with the SELECT pri​vi​lege. A cursor must be opened before.

5.5.3 Command message

The SCQL operation is related to the following SQL statement:

FETCH NEXT

5.6 INSERT

5.6.1 Definition and scope

The SCQL operation INSERT is used to insert a row in a table. A new row is always added at the end of a table. The cursor remains at its position.

5.6.2 Conditional usage and security

The command can only be executed by the table owner or a user with the INSERT pri​vi​lege.

The value for the special coulmn USER – if present – is inserted by the card, see 6.7.

5.6.3 Command message

The SCQL operation is related to the following SQL statement:

INSERT [INTO] <table name> VALUES (<string>
[,<string> ...])

<string> ::= ´<sequence of bytes>´

5.7 UPDATE

5.7.1 Definition and scope

The SCQL operation UPDATE updates one or more fields of a row in a table or view to which the cursor points.

5.7.2 Conditional usage and security

The command can only be executed by the table owner or a user with the UPDATE pri​vilege. A cursor must be opened before.

The value for the special coulmn USER – if present – is modified by the card, see 6.7.

5.7.3 Command message

The SCQL operation is related to the following SQL statement:

UPDATE SET <set clause list>

<set clause list> ::= <column name> = <string> [,<column name> = <string>...]

<string> ::= ´<sequence of bytes>´

5.8 DELETE

5.8.1 Definition and scope

With the SCQL operation DELETE a row in a table to which the cursor points, can be dele​ted. The cursor is moved to the logical next row.

5.8.2 Conditional usage and security

The command can only be executed by the table ow​ner or a user with the DELETE pri​vilege for the re​fe​renced table .

6 Compatibility with the GSM ADN feature

If the UICC contains a SIM application, This application shall offer a standard ADN interface to the external world through a built-in converter.

The converter shall convert standard requests to the ADN file into internal requests to the phone book database. Conversely, answers from the internal database shall be converted to ADN formatted responses.

The commands impacted by this requirement are:

Select ADN

Select Ext1

Read record (when ADN or Ext1 is selected)

Update record (when ADN or Ext1 is selected)

Seek (when ADN or Ext1 is selected)

7 Typical scenario

Here is outlined a typical scenario to read a mobile phone number in the phone book.

Select DF TELECOM

PRESENT USER (card holder certificate)

DECLARE CURSOR FOR SELECT * FROM ph_book WHERE name = 'Martin'

OPEN

Repeat:

FETCH (length)

NEXT

Until status(NEXT) = end of table

Scenario to find E-mail addresses containing 'org' in the view "personal".

Select DF TELECOM

PRESENT USER (card holder certificate)

DECLARE CURSOR FOR SELECT * FROM personal WHERE e-mail = *.org

OPEN

Repeat:

FETCH (length)

NEXT

Until status(NEXT) = end of table

