PAGE
DRAFT SIM API for MULTOS version 0.0.1

	3GPP T3 Meeting #16

Seoul, Korea, 13 - 15 November, 2000
	Tdoc T3-00 0584

Title:

SIM API for MULTOS - Draft stage 2 description v0.0.1

Source:
WI rapporteur

Introduction:

Document T3-000446, the “Work Item Description for the (U)SIM API for MULTOS”, scheduled the development of the “SIM API for MULTOS” specification, stage 2 description, as a new Work Item, which would be a MULTOS equivalent of the Java-specific GSM 03.19 SIM API for Java Card.

Additionally, document T3-000446 scheduled the development of the corresponding Test Specification for the “SIM API for MULTOS” specification.

A first draft of the SIM API for MULTOS specification is scheduled for presentation at T #11, with an aim to approve the specification by T #12. The Test Specification is scheduled to follow one meeting behind the API specification.

Document T3-000357, “SIM API for MULTOS - Draft stage 2 description v0.0.0”, represented a draft input to the SIM API for MULTOS Work Item.

It is proposed that this document be accepted as a revision of T3-000357, containing typographical and grammatical amendments and alterations to T3-000357, to serve as the further basis for developing the SIM API for MULTOS specification, and for the development of the corresponding Test Specification, as specified in document T3-000446.

Contents

2Contents

1
Scope
3
2
References
3
2.1
Normative references
3
3
Definitions and abbreviations
4
3.1
Definitions
4
3.2
Abbreviations
4
4
Description
5
4.1
MULTOS SIM Architecture
5
5
GSM Application
6
5.1
Overview
6
5.2
Description
6
5.3
GSM file access
6
5.4
GSM File Access control
7
6
SIM Toolkit Framework
7
6.1
Overview
7
6.2
Application Triggering
8
6.3
Registry Handler
12
6.4
Proactive command handling
12
6.5
Envelope Response Handler
12
6.6
Handler Availability
13
6.7
Public Buffer Sharing Scheme
14
6.7.1
Messages sent from the Toolkit Manager to a SIM Toolkit Application
14
6.7.2
Messages sent from a SIM Toolkit Application to the Toolkit manager
14
6.8
SIM Toolkit Framework behaviour
15
7
SIM Toolkit Application
16
7.1
Application Loading
16
Annex A (normative): SIM API for MULTOS
17
Annex B (informative): Toolkit Application example (in ‘C’)
18
History
22

1
Scope

The present document specifies a stage two description of the Subscriber Identity Module Application Programming Interface (SIM API) internal to the SIM. This document describes the functional capabilities and the information flow for the SIM API [6] implemented on a MULTOS card.

The present document includes information applicable to network operators, service providers and SIM, server and database manufacturers.

2
References

References may be made to:

a)
specific versions of publications (identified by date of publication, edition number, version number, etc.), in which case, subsequent revisions to the referenced document do not apply; or

b)
all versions up to and including the identified version (identified by "up to and including" before the version identity); or

c)
all versions subsequent to and including the identified version (identified by "onwards" following the version identity); or

d)
publications without mention of a specific version, in which case the latest version applies.

A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same number.

2.1
Normative references

[1]
GSM 01.04 “Digital cellular telecommunications system (Phase 2+); Abbreviations and acronyms”.

[2]
GSM 11.11 “Digital cellular telecommunications system (Phase 2+, Release 1998); Specification of the Subscriber Identity Module - Mobile Equipment (SIM - ME) interface”.

[3]
GSM 11.14 "Digital cellular telecommunication system (Phase 2+, Release 98); Specification of the SIM Application Toolkit for the Subscriber Identity Module - Mobile Equipment (SIM - ME) interface”.

[4]
GSM 03.48: "Digital cellular telecommunications system (Phase 2+); Security Mechanisms for the SIM application toolkit; Stage 2"

[5]
ISO/IEC 7816-3 (1997) " Identification cards ‑ Integrated circuit(s) cards with contacts, Part 3: Electronic signals and transmission protocols"

[6]
GSM 02.19 "Digital cellular telecommunications system (Phase 2+, Release 98); Subscriber Identity Module Application Programming Interface (SIM API); Service description; Stage 1"

[7]
MULTOS Application Developer Documentation : MULTOS Developers Reference Manual (MDRM)

[8]
MULTOS Application Developer Documentation : MULTOS Developers Guide (MDG)

[9]
MULTOS Application Developer Documentation : Guide to Loading & Deleting MULTOS applications (GLDA)

[10]
TS 101 220 "Integrated Circuit Cards (ICC); ETSI numbering system for telecommunication; Application providers (AID)"

MULTOS Application Developer documentation can be downloaded from the MULTOS website www.multostechnet.com.

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the following definitions apply:

Application: An Application is a MULTOS application written in MEL which is interpreted by the MULTOS Application Abstract Machine (AAM) during execution.

AAM: Application Abstract Machine. The part of the MULTOS Run-time environment responsible for interpreting MEL commands. This is sometimes referred to as a virtual machine or VM.

MEL: MULTOS Executable Language. Machine independent code generated either manually or by compiler and executed by the AAM.

MULTOS: Multi-application Operating System for Smart Cards.

MULTOS SIM: A MULTOS card loaded with the GSM Application.

GSM Application: A MULTOS application conforming to GSM 11.11[2] and GSM 11.14[3].

Toolkit Application: A MULTOS application which uses the API described within this document and which only runs under the control of the GSM Application.

3.2
Abbreviations

For the purpose of the present document, the following abbreviations apply, in addition to those listed in GSM 01.04[1]:

AAM
Abstract Application Machine

AID
Application Identifier

APDU
Application Protocol Data Unit

API
Application Programming Interface

CAD
Card Acceptance Device

DES
Data Encryption Standard

DF
Dedicated File

EF
Elementary File

FFS
For Further Study

IFD
Interface Device

ME
Mobile Equipment

MEL
MULTOS Executable Language

MF
Master File

MS
Mobile Station

OS
(MULTOS) Operating System

OTA
Over The Air

SIM
Subscriber Identity Module

SE
Sending Entity

SMS-CB
Short Message Service – Cell Broadcast

SMS-PP
Short Message Service – Point to Point

TPDU
Transport Protocol Data Unit

USSD
Unstructured Supplementary Services Data

VM
Virtual Machine

4
Description

This document describes the API between the GSM Application and Toolkit Applications. This API allows application programmers to access functions and data described in GSM 11.11[2] and GSM 11.14[3], such that SIM based services can be developed and loaded onto MULTOS SIMs. If required, Toolkit Applications this can be loaded or deleted remotely, after the card has been issued according to the MULTOS load and delete protocol GLDA[9].

This API is an extension to the standard MULTOS API [7] available to application programmers.

4.1
MULTOS SIM Architecture

The over all architecture of a MULTOS SIM based on MULTOS Version 4 and later versions is:

[image: image1.wmf]I/O

Crypto

Services

OS File

Handler

MULTOS Virtual Machine

MULTOS Virtual Machine

MEL API

MEL API

App

load/delete

Toolkit

Application

1

Toolkit

Application

1

Toolkit

Application

n

Toolkit

Application

n

MULTOS SIM API

Describes services

provided by GSM

Application to Toolkit

applications

…

GSM

Application

GSM

Application

Toolkit

Application

(Load & Delete

Handler)

Toolkit

Application

(Load & Delete

Handler)

MULTOS Operating System

Figure 1: GSM MULTOS Architecture

GSM Application:
This is a MULTOS shell application, as defined in the MDG [8]. It shall handle all GSM 11.11[2] and GSM 11.14[3] APDUs sent to the card from the ME.

Toolkit Application:
These are non-shell applications which comply with the SIM Toolkit Framework defined in this document and utilises the SIM API for MULTOS and the MEL API to provide functionality. These applications can only be executed under the control of the GSM Application. There may be one or more Toolkit Applications resident on a MULTOS SIM, subject to sufficient card resources (memory) being available.

Load/Delete Handler:
This is a Toolkit Application responsible for handling the loading and deleting of applications OTA. This application will receive ENVELOPE APDUs from the GSM Application and then call on the services of the MULTOS App Load/Delete handler.

Crypto Services:
The following cryptographic algorithms are supported and available to applications according to the MULTOS API defined in the MDRM [7]:

DES
Triple DES (3DES)
RSA
A3A8 (the API call is standard but the details of the algorithm are GSM Operator specific)

I/O:
All MULTOS Version 4 cards provide a standard protocol handler for T=0 according to ISO/IEC 7816-3[5]. Support for T=1 is optional and is supported by some MULTOS cards.

OS File Handler:
This manages the creation, deletion and updating of OS files (EFs and DFs). Any files (DFs or EFs) created by an application are managed by the application itself.

App Load/Delete:
This manages the load and delete protocol defined in the GLDA[9]. MULTOS treats an application as a DF and are created as children to the MF.

5
GSM Application

5.1
Overview

The GSM Application consists of the following:

-
GSM 11.11[3] APDU handlers,

-
GSM 11.11[3] File system and file access control,

-
SIM Toolkit Framework (see section 6.0).

5.2
Description

The GSM Application is the master application on the card, in that it is the only application visible to the ME. It handles all APDU’s that are sent to the card. It consists of a set of APDU handlers which deal with all commands, as defined in GSM 11.11[3] and GSM 11.14[4]. The application also includes the SIM Toolkit Framework, which is responsible for the management and execution of all Toolkit Applications based on events triggered. Section 6 lists the range of events for which Toolkit Applications can register.

5.3
GSM file access

The following functions shall be offered by the SIM API for MULTOS to Toolkit Applications, to allow access to the GSM file system data:

select
Select a file without changing the current file of any other application or of the subscriber session. At the invocation of the processToolkit() function within a Toolkit Application, the current file is the MF. The Toolkit Application file context remains unchanged during the whole execution of the processToolkit() function. The current record may be altered if the current file is a cyclic file and the content of the current file may be altered. This function returns the selected file’s file control information (FCI);

status
Read the file control information of the current DF;

readBinary
Read data bytes of the transparent EF currently selected by the application;

readRecord
Read data bytes of the linear fixed or cyclic EF currently selected by the application without changing the current record pointer of any other application / subscriber;

updateBinary
Modify data bytes of the transparent EF currently selected by the application. The Toolkit Application shall send the corresponding REFRESH;

updateRecord
Modify data bytes of the linear fixed or cyclic EF currently selected by the application. The current record pointer of other applications / subscriber shall not be changed in case of linear fixed EF but the record pointer of a cyclic EF shall be changed for all other applications / subscriber to the record number 1. The Toolkit Application shall send the corresponding refresh;

seek
Search a record of the linear fixed file currently selected by the application starting with a given pattern. The current record pointer of any other application or of the subscriber session shall not be changed;

increase
Increase the value of the last updated record of the cyclic EF currently selected. It becomes than record number 1 for every other application and subscriber session. This function returns the increased value. The Toolkit Application shall send the corresponding REFRESH;

rehabilitate
Rehabilitate the EF currently selected by the application with effect for all other applications / subscriber. The Toolkit Application shall send the corresponding REFRESH;

invalidate
Invalidate the EF currently selected by the application with effect for all other applications / subscriber. The Toolkit Application shall send the corresponding REFRESH.

These functions are described in the SIM access API, in Annex A.

5.4
GSM File Access control

When a Toolkit Application requests access to GSM or operator specific files, the SIM Toolkit Framework checks if this access is allowed by examination of the file control information stored within the file system. Toolkit Application will have the same security status as is applicable for the GSM Application at the time of the request, i.e. if CHV1 is satisfied for the current session, then the Toolkit Application will inherent that status.

If access is granted, the SIM Toolkit Framework will process the access request. If access is not granted, an error will be returned.
6
SIM Toolkit Framework

6.1
Overview

The SIM API for MULTOS shall consist of APIs for GSM 11.14 [3] (pro-active functions) and GSM 11.11 [2] (transport functions).
[image: image2.wmf]GSM

Application

MULTOS

MULTOS

Toolkit App 2

Toolkit App n

Load/Delete

Toolkit Handler

v

MULTOS

Load/Delete

APDUs

APDUs

TPDUs

ME

GSM

Files

APDU Handler

Pro-active

Command Handler

Envelope

Rsp

Handler

Registry

Handler

GSM File

Access

Application

Triggering

Toolkit

Registry

MULTOS SIM API

Toolkit App 1

Event Trigger,

Install

Proactive

 Cmds

/

Rsps

,

GSM Files Access

v

Registry Updates

SIM Toolkit

Framework

Figure 2: SIM Toolkit Framework functional description

APDU Handler:
This is responsible for dealing with all GSM APDUs sent to the card and subsequently indicating toolkit events to the Toolkit Application Triggering function.

Toolkit Application Triggering:
This is responsible for the activation of Toolkit Applications dependant on the incoming toolkit event. It shall stipulate the entry point function of the Toolkit Application upon its activation and in the case of a processToolkit() message shall also indicate the toolkit event.

GSM File Access:
This is responsible for allowing and controlling accesses to the GSM file system resident within the GSM Application. It shall carry out Toolkit Application file system requests and post response data and status words, as appropriate, such that the requesting Toolkit Application can access the responses.

GSM Files:
This represents the EFs specified in GSM 11.11[3].

Proactive Command Handler:
This is responsible for overseeing the proactive command cycle (ie 91xx, fetch, terminal response). Upon receipt of a proactive command posted by a Toolkit Application, it shall store this proactive command data and indicate to the ME that a proactive command is available. Upon receipt of the fetch command the handler shall return the proactive command data to the ME in order that it may carry out the command. If more than one Toolkit Application is activated as a result of a single APDU then the Proactive Command Handler will only remain available until one of the Toolkit Applications posts a proactive command, at which point the Proactive Command Handler will become unavailable.

Proactive Response Handler:
This is responsible for dealing with proactive command responses from the ME (i.e terminal response APDUs). Upon completion of execution of a proactive command by the ME, the ME will send a terminal response APDU indicating the status of the ME’s execution of the command. This response shall result in the originating Toolkit Application being triggered again to allow further execution. The terminal response data shall be available to the resuming Toolkit Application, if required.

Envelope Response Handler:
This is responsible for handling any response data that may be posted by a Toolkit Application, as a result of an ENVELOPE APDU-triggered event. If more than one Toolkit Application is activated as a result of the ENVELOPE APDU then the Envelope Response Handler will only remain available until one of the Toolkit Applications posts ENVELOPE response data, at which point the Envelope Response Handler will become unavailable.

Registry Handler:
This is responsible for controlling the information stored in the Toolkit Registry. It shall handle requests from Toolkit Applications to update their Toolkit Registry entries.

Toolkit Registry:
This is the store for Toolkit Application information. It shall contain information sufficient to allow the Toolkit Application to be triggered, including application priority and a list of events to be triggered upon. Toolkit Applications may update their Toolkit Registry entries at any point during their execution.

Load / Delete Toolkit Handler:
This shall take the form of a Toolkit Application that is always present on the card. It shall handle events relating to OTA downloads of Toolkit Applications using SMS-PP downloads. Other data bearers may be supported in the future.

6.2
Application Triggering

The application triggering function of the SIM Toolkit Framework is responsible for the activation of Toolkit Applications, based on the incoming APDU. On receipt of a toolkit event the framework shall refer to the Toolkit Registry and determine the Toolkit Applications that require to be triggered.

The ME should not be adversely affected by the presence of Toolkit Applications on the SIM card. For instance, a syntactically correct ENVELOPE shall not result in an error status word in case of a failure of a Toolkit Application. The only application as seen by the ME is the GSM Application. Therefore, a Toolkit Application may return an error, but this error shall not be sent to the ME.

The difference between the GSM Application and a Toolkit Application is that the latter does not handle APDUs directly. It handles messages sent by the GSM Application which take the form of a processToolkit() message with an event parameter or an install() message (see Annex B).

When the Toolkit Application is triggered by the GSM Application with a processToolkit() or install() message, the entry point of the application shall be the processToolkit() or install() function respectively.

Hereafter are the events that can trigger a Toolkit Application :

EVENT_PROFILE_DOWNLOAD

Upon reception of the Terminal Profile APDU by the SIM, the SIM Toolkit Framework triggers all registered Toolkit Application(s). A Toolkit Application may not be able to issue a proactive command at this time. When each Toolkit Application is triggered, the public buffer will contain the terminal profile command data, as described in GSM 11.11.

EVENT_MENU_SELECTION, EVENT_MENU_SELECTION_HELP_REQUEST

A Toolkit Application shall be activated upon selection in the ME’s menu by the user, or request help on this specific menu.

In order to allow the user to choose a Toolkit Application menu, the SIM Toolkit Framework shall have previously issued a SET UP MENU proactive command containing the menu entry of all present Toolkit Applications. If a Toolkit Application changes a menu entry in the Toolkit Registry, the SIM Toolkit Framework shall automatically update the menu stored in the ME by re-issuing the SET UP MENU proactive command.

The SIM Toolkit Framework shall use the data of the EFsume file when issuing the SET UP MENU proactive command.

If at least one Toolkit Application registers for the EVENT_MENU_SELECTION_HELP_REQUEST event, then the SET UP MENU proactive command sent by the SIM Toolkit Framework shall indicate to the ME that help information is available. A Toolkit Application registered for one or more menu entries, may be triggered by the EVENT_MENU_SELECTION_HELP_REQUEST event, even if it is not registered to this event.

A Toolkit Application shall only have one top-level menu entry associated with it, although it may update this entry at any point during its lifecycle.

EVENT_FORMATTED_SMS_PP_ENV, EVENT_UNFORMATTED_SMS_PP_ENV,
EVENT_FORMATTED_SMS_PP_UPD, EVENT_UNFORMATTED_SMS_PP_UPD

A Toolkit Application may be activated upon the reception of a short message.

There are two ways for a card to receive an SMS: via the ENVELOPE SMS-PP Data Download or the UPDATE RECORD EFsms instruction.

The reception of the SMS by the Toolkit Application cannot be guaranteed for the UPDATE RECORD EFsms instruction.

The received SMS may be:

-
formatted according to GSM 03.48[4], or another protocol, which explicitly identifies the Toolkit Application for which the message is to be sent;

-
unformatted, or using a Toolkit Application specific protocol, the SIM Toolkit Framework will pass this data to all Toolkit Applications registered for this event.

EVENT_FORMATTED_SMS_PP_ENV

This event is triggered by an ENVELOPE APDU containing an SMS_DATADOWNLOAD BER TLV with an SMS_TPDU simple TLV according to GSM 03.48[4].

The SIM Toolkit Framework shall:

-
verify the GSM 03.48[4] security of the SMS TPDU;

-
trigger the Toolkit Application registered with the corresponding TAR defined at application loading;

-
take the triggered Toolkit Applications response data (if any) and send the response to the ME.

The Toolkit Application will only be triggered by the SIM Toolkit Framework if the TAR matches a currently loaded Toolkit Application, otherwise an error shall be generated according to GSM 11.14 [3].

EVENT_UNFORMATTED_SMS_PP_ENV

All registered Toolkit Applications will be triggered by this event and will receive the data transmitted in the ENVELOPE SMS_DATADOWNLOAD APDU.

However, only one of the registered Toolkit Applications triggered by this event will be able to send back a response.

EVENT_FORMATTED_SMS_PP_UPD

This event is triggered by UPDATE RECORD EFsms with an SMS TP-UD field formatted according to GSM03.48[4].

The GSM Application shall:

-
update EFsms with the data received;

-
verify the GSM03.48[4] security conditions of the SMS TPDU;

-
convert the UPDATE RECORD EFsms into a TLV List;

-
trigger the appropriate Toolkit Application (with the corresponding TAR), defined at application loading.

The UPDATE RECORD EFsms APDU shall be converted into a TLV list as defined below:

	UPDATE RECORD APDU
	nb bytes
	Handler TLV LIST
	size

	CLA, INS
	2
	Specific event
	1

	P1,P2
	2
	device Identity rec-number
	1

	P3 = 176
	1
	
	1

	status
	1
	device Identity rec-status
	1

	TS-SCA (RP-OA)
	<= 18
	Address
	Y

	SMS TPDU
	var
	SMS TPDU
	Y

	padding bytes
	var
	
	Y

The order of the elements in the EnvelopeHandler TLV list:

	EnvelopeHandler TLV List

	SMS-PP download tag

	Length

	Device identities

	Address

	SMS TPDU

The Device Identity Simple TLV is used to store information about the absolute record number in EFsms and the value of the EFsms record status byte, and shall be formatted as defined below:

	Device identities Simple TLV

	Device identities tag

	length = 02

	Absolute Record Number

	Record Status

With the absolute record number the Toolkit Application can update EFsms in absolute mode to change the received SMS in a readable text.

EVENT_UNFORMATTED_SMS_PP_UPD

The GSM Application will first update EFsms, then convert the received APDU, as described above and will finally trigger all the registered Toolkit Applications. Any and all of them may modify the content of EFsms.

EVENT_UNFORMATTED_SMS_CB

When the ME receives a new cell broadcast message, the cell broadcast page shall be passed to the SIM using the ENVELOPE APDU. The triggered Toolkit Application may then, for example, read the message and extract a meaningful piece of information, which could be displayed to the user.

EVENT_CALL_CONTROL_BY_SIM

When the SIM has requested notification of CALL CONTROL events and a call is made, then the dialing number will be passed to the SIM, which mat then bar, modify or accept the call set up. Only one Toolkit Application shall be able to manage the response to this command.

EVENT_EVENT_DOWNLOAD_MT_CALL, EVENT_EVENT_DOWNLOAD_CALL_CONNECTED, EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED, EVENT_EVENT_DOWNLOAD_LOCATION_STATUS, EVENT_EVENT_DOWNLOAD_USER_ACTIVITY, EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE,
EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS

The Toolkit Application will be triggered by the registered event download trigger, upon receipt of the corresponding ENVELOPE command.

In order to allow the Toolkit Application to be triggered by these events, the SIM Toolkit Framework shall have previously issued a SET UP EVENT LIST proactive command. When a Toolkit Application changes one or more of the event requests within its Registry object, the SIM Toolkit Framework shall update the event list stored in the ME by re-issuing the SET UP EVENT LIST proactive command.

EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

Before sending an SMS MO, entered by the user, the SMS is submitted to the SIM. Only one Toolkit Application shall be able to manage the response to this command.

EVENT_TIMER_EXPIRATION

At the registration to this event, the Toolkit Application shall obtain a reference to its timer. The Toolkit Application may then manage the timer and the Toolkit Application can be triggered upon reception of the APDU ENVELOPE TIMER EXPIRATION.

EVENT_UNRECOGNIZED_ENVELOPE

The unrecognized ENVELOPE event will allow a Toolkit Application to handle the evolution of the GSM 11.14 specification.

EVENT_STATUS_COMMAND

At reception of a STATUS APDU command, the SIM Toolkit Framework shall trigger the registered Toolkit Application(s).

As the SIM Toolkit Framework has control of the EVENT_STATUS_COMMAND event, it shall decide how often to trigger the Toolkit Applications which are registered to this event. Consequently, Toolkit Applications may be triggered unexpectedly. It is recommended that Toolkit Application writers bear this in mind. Polling Interval cannot be used as an accurate timer.

A range of events is reserved for proprietary usage. The use of these events will make the Toolkit Application incompatible.

Toolkit Applications shall be triggered for registered events upon reception of the registered events, and shall be able to access to the data associated to the event using the functions provided by the EnvelopeHandler API.

The order for triggering registered Toolkit Application shall follow the priority level of each Toolkit Application defined, in the Toolkit Registry. If several Toolkit Applications have the same priority level, then the last loaded Toolkit Application takes precedence.

6.3
Registry Handler

Once a Toolkit Application has been successfully loaded, the SIM Toolkit Framework shall send that Toolkit Application an install() message, which gives the Toolkit Application the opportunity to initialize its Toolkit Registry entry. A Toolkit Application can change the events to which it is registered at any time during its life cycle.

The Toolkit Application will automatically be registered by the SIM Toolkit Framework for specific events when the following functions are called:

	Function
	Implicit Event Registration

	InitMenuEntry()
	EVENT_MENU_SELECTION

	SetupEventList(events)
	Dependent on the events parameter. Toolkit Application will automatically register for all events added into list.

These functions are described in the .ToolkitRegistry API, in Annex A.

6.4
Proactive command handling

The SIM Application Toolkit protocol is handled by the GSM Application and the Proactive Command Handler. The Toolkit Applications themselves shall not handle those events.

The SIM Toolkit Framework provides an implementation of the ProactiveHandler API so that when the Toolkit Application is triggered it can:

-
initialize the current proactive command with the proactiveInit() function;

-
append the necessary SIMPLE TLV items, as defined in GSM 11.14 [3], to the current proactive command with one of the append TLV functions;

-
request the SIM Toolkit Framework to send this proactive command to the ME and wait for the reply, using the send() function.

The GSM Application and the SIM Toolkit Framework shall handle the transmission of the proactive command to the ME and the reception of the response. The SIM Toolkit Framework will return control (resume) to the originating Toolkit Application immediately after the send() function. The ProactiveResponseHandler API allows the Toolkit Application to analyze the terminal response data from the ME.

The proactive command is sent to the ME as defined and constructed by the Toolkit Application without any additional checking performed by the SIM Toolkit Framework.

A Toolkit Application shall not issue the following proactive commands as they are system proactive commands that affect the services of the SIM Toolkit Framework:

-
SET UP MENU;

-
SET UP EVENT LIST;
-
POLL INTERVAL;
-
POLLING OFF.
6.5
Envelope Response Handler

To allow a Toolkit Application to respond to some specific events, e.g. EVENT_CALL_CONTROL_BY_SIM, the SIM Toolkit Framework shall provide an implementation of the EnvelopeResponseHandle API.

A Toolkit Application can post a response to a specific event with either the post() or the postAsBERTLV() function, then resume with normal operation, while the SIM Toolkit Framework returns the resulting response APDU.
6.6
Handler Availability

The SIM Toolkit Framework provides the following handlers: Proactive Handler, Proactive Response Handler, Envelope Handler and Envelope Response Handler. Each has it’s own API and a buffer associated with it. Not all buffers will be available at all times through the life of Toolkit Application processing. These buffers are shared via the MULTOS public buffer, so only one can be accessed (read from or written to) at any one time. Additionally, the public buffer is used to update the Toolkit Registry and to perform SIM View (file system) operations, so these operations cannot be intermixed with other handler operations.

It is important that when using a handlers’ functionality, that its appropriate termination function, i.e. send(), envelopeTerminate(), is invoked in order to free the buffer for use by another handler.
The following rules define the minimum requirements for the availability of the system handlers and the lifetime of their content.

Proactive Handler:

-
The Proactive Handler is valid from the invocation of any Toolkit Applications’ processToolkit() function, through to its completion;

-
If a proactive command is pending (from the same or another Toolkit Application) then the Proactive Handler shall not be available;

-
At the call to the proactiveInit() function, the content is cleared and initialised;

-
After a call to the Proactive Handler send() function, the handler will remain unchanged until the Proactive Handler proactiveInit() function or appendTLV() function is called.

Proactive Response Handler:

-
The Proactive Response Handler shall not be available before the first call to the Proactive Handler send() function;

-
The Proactive Response Handler is available after the first call to the Proactive Handler send() function, until the termination of the processToolkit() function, or until the Envelope Response Handler buffer is initialised;

-
If a proactive command is pending, then the Proactive Response Handler shall not be available;

-
The Proactive Response Handler content is changed after a call to the Proactive Handler send() function and remains unchanged until the next call to the Proactive Handler send() function, or until the Envelope Response Handler buffer is initialised.

Envelope Handler:

-
The Envelope Handler and its content is available for all triggered Toolkit Applications, from the invocation of the Toolkit Application’s processToolkit() function, until the termination of the processToolkit() function.

-
The SIM Toolkit Framework guarantees that all registered Toolkit Applications are triggered and receive the ENVELOPE data.

Envelope Response Handler:

-
The Envelope Response Handler is available for all triggered Toolkit Applications, until one of the Toolkit Applications posts an ENVELOPE response or sends a proactive command.

-
The Envelope Response Handler content must be posted before the first invocation of a Proactive Handler send() function and before the termination of the processToolkit() function, so that the GSM Application can offer this data to the ME (e.g. 9Fxx/9Exx). After the first invocation of the Proactive Handler send() function, the Envelope Response Handler shall no longer be available.

6.7
Public Buffer Sharing Scheme

All communications between the GSM Application and any Toolkit Application are performed through the MULTOS public buffer mechanism. The MULTOS public buffer can contain APDUs, representing commands from the ME, commands from the GSM Application, notifying a Toolkit Application that a certain event has occurred, or contain data in a proprietary format.

The public buffer shall be used for the following functions:

-
Management of the Envelope Response Buffer;

-
Management of the Proactive Command Buffer;

-
Management of the Proactive Response Buffer;

-
Notification of events to SIM Toolkit Applications;

-
Management of the Toolkit Registry;

-
Performing SIM View (GSM 11.11 filing system access) commands.

As the public buffer is shared, only one operation can be performed at a time. For example, it will not be possible to perform SIM View commands whilst building up a toolkit command in the proactive command buffer.

The public buffer is used by the SIM Toolkit Framework to send information to the Toolkit Application, and vice versa. The following scheme is implemented to identify the type of data in the buffer when either of these situations occurs.

6.7.1
Messages sent from the Toolkit Manager to a SIM Toolkit Application

These messages consist of requests to invoke either the install() function or the processToolkit() function.
	Message Type
	Parameter

	Run install function
	Not applicable

	Run processToolkit Function
	EVENT_FORMATTED_SMS_PP_ENV

	Run processToolkit Function
	EVENT_FORMATTED_SMS_PP_UPD

	Run processToolkit Function
	EVENT_UNFORMATTED_SMS_PP_ENV

	Run processToolkit Function
	EVENT_UNFORMATTED_SMS_PP_UPD

	Run processToolkit Function
	EVENT_UNFORMATTED_SMS_CB

	Run processToolkit Function
	EVENT_MENU_SELECTION

	Run processToolkit Function
	EVENT_MENU_SELECTION_HELP_REQUEST

	Run processToolkit Function
	EVENT_CALL_CONTROL

	Run processToolkit Function
	EVENT_SMS_MO_CONTROL

	Run processToolkit Function
	EVENT_TIMER_EXPIRATION

	Run processToolkit Function
	EVENT_DOWNLOAD MT_CALL

	Run processToolkit Function
	EVENT_DOWNLOAD CALL_CONNECTED

	Run processToolkit Function
	EVENT_DOWNLOAD CALL_DISCONNECTED

	Run processToolkit Function
	EVENT_DOWNLOAD LOCATION_STATUS

	Run processToolkit Function
	EVENT_DOWNLOAD USER_ACTIVITY

	Run processToolkit Function
	EVENT_DOWNLOAD IDLE_SCREEN_AVAILABLE

	Run processToolkit Function
	EVENT_DOWNLOAD CARD_READER_STATUS

	Run processToolkit Function
	EVENT_UNRECOGNISED_ENVELOPE

	Run processToolkit Function
	EVENT_STATUS_COMMAND

	Run processToolkit Function
	EVENT_PROFILE_DOWNLOAD

	
	

6.7.2
Messages sent from a SIM Toolkit Application to the Toolkit manager

A Toolkit Application can request a transfer of data between itself and the SIM Toolkit Framework within the GSM Application. It does this by placing the data in the public buffer, then setting the SW1 and SW2 bytes in the public buffer to indicate the meaning and length of that data. Context Switching will then occur, as described below. Upon resumption, the data in the public buffer may have been changed by the SIM toolkit manager.

	SW1
	SW2
	Meaning
	Public buffer at start of call
	Public buffer after call

	90
	Length of data starting at PB[0]
	Proactive Command
	Data starting at PB[0] is a proactive command BER TLV
	Unchanged

	91
	Length of data starting at PB[0]
	Envelope Response
	Data starting at PB[0] is the ENVELOPE response data
	Unchanged

	92
	Length of data starting at PB[0]
	SIM View Command
	CLA, INS, P1, P2, P3 and command data starting at PB[0] as described for corresponding command in GSM 11.11
	SW1, SW2 and PB[0] data as described for corresponding command in GSM 11.11

	93
	Length of data starting at PB[0]
	Registry Update
	Data starting at PB[0] is Registry update Structure [todo]
	Unchanged

6.8
SIM Toolkit Framework behaviour

The following rules define the SIM Toolkit Framework behaviour for:

-
Triggering a Toolkit Application (invocation of the processToolkit() function):

-
The current context shall be switched to the Toolkit Application;

-
Any pending Toolkit Application transaction shall be aborted;

-
Session data for the GSM Application shall be preserved;

-
The current file context of the Toolkit Application shall be the MF;

-
The current file context of the current selected application (e.g. GSM 11.11) shall remain unchanged;

-
The Toolkit Application shall be able to access the APDU data through the public data area, e.g. using the Envelope Handler.

-
Termination of a Toolkit Application (return from the processToolkit() function):

-
Execution switches back to the context of the currently selected application, the GSM Application;

-
Any pending Toolkit Application transaction shall be aborted;

-
The current file context of the Toolkit Application shall be lost;

-
The current file context of the GSM Application shall remain unchanged;

-
The GSM Application shall not rely on the APDU data content in the public buffer. The APDU content may be changed by the system.

-
Invocation of Proactive Handler send() function:

-
During the execution, there may be other context switches but, at the return of the send() function, the Toolkit Application context is restored;

-
Any pending Toolkit Application transaction at the function invocation shall be aborted;

-
The current file context of the Toolkit Application shall remain unchanged.
-
Invocation of any SIM View function:

-
During the execution, there might be other context switches, but at the return of the simview function the Toolkit Application context is restored.

-
Invocation of Registry update functionality:

-
During the execution, there might be other context switches, but at the return of the Registry update function the Toolkit Application context is restored.

7
SIM Toolkit Application

7.1
Application Loading

To guarantee interoperability, the SIM API for MULTOS card shall be compliant to Annex A.

The application loading mechanism, protocol and application life cycle is defined in GSM 03.48 [4]. This is used only insofar as transporting data to the SIM. After that, the MULTOS application download procedure is to be used. This is described in the MULTOS application developer documentation GLDA [9].

Annex A (normative): SIM API for MULTOS

The attached file “Annex-A.ZIP” contains source files for the SIM API for MULTOS.

[image: image3.wmf]"0319 Annex A.zip"

Annex B (informative): Toolkit Application example (in ‘C’)

/**

 * Example Application

 */

#include "applet.h"

#define MY_INSTRUCTION

0x46

#define SERVER_OPERATION

15

#define DT_CMD_QUAL

0x81
/* high priority, wait for user to clear */

#pragma melstatic

BYTE menuEntry[] = {'S','e','r','v','i','c','e','1'};

BYTE menuTitle[] = {'M','y','M','e','n','u'};

BYTE item1[] = {'I','T','E','M','1' };

BYTE item2[] = {'I','T','E','M','2' };

BYTE item3[] = {'I','T','E','M','3' };

BYTE item4[] = {'I','T','E','M','4' };

BYTE *itemList[] = { item1, item2, item3, item4 };

BYTE textDText[] = {'H','e','l','l','o',' ','w','o','r','l','d','2'};

BYTE textGInput[] = {'Y','o','u','r',' ','n','a','m','e','?'};

BYTE buffer[10];

BYTE itemId;

/*

** Function called at the installation of the application

**/

VOID install(VOID)

{

 itemId = initMenuEntry(menuEntry, 0, sizeof(menuEntry),PRO_CMD_DISPLAY_TEXT, FALSE, 0, 0);

 setEvent(EVENT_UNFORMATTED_SMS_PP_ENV);

}

/*

** Function called by the SIM Toolkit Framework

**/

VOID processToolkit(UINT32 event)

{

BYTE i, item;

UINT16 TPUDOffset;

BYTE *addr;

switch(event)

{

case EVENT_MENU_SELECTION:

/* send a select item command */

proactiveInit(PRO_CMD_SELECT_ITEM, 0, DEV_ID_ME);

proactiveAppendArray(TAG_ALPHA_IDENTIFIER|TAG_SET_CR, menuTitle, sizeof(menuTitle));

for (i=1 ; i<5 ; i++)

proactiveAppendArray(TAG_ITEM|TAG_SET_CR, itemList[i], sizeof(itemList[i]));

proactiveSend();

/* SelectItem response handling */

responseInit();

item = responseGetItemIdentifier();

responseTerminate();

switch (item)

{

case 1:

case 2:

case 3: /* DisplayText */

proactiveInitDisplayText(DT_CMD_QUAL, DCS_8_BIT_DATA, textDText, sizeof(textDText));

proactiveSend();

break;

case 4: /* GetInput followed by a DisplayText of the entered text */

proactiveInitGetInput(0x01,DCS_8_BIT_DATA,textGInput, sizeof(textGInput), 1, 2);

proactiveSend();

responseInit();

responseFind(TAG_TEXT_STRING,1);

responseCopyValue(0, textDText, 2);

responseTerminate();

proactiveInitDisplayText(DT_CMD_QUAL, DCS_8_BIT_DATA, textDText, sizeof(textDText));

proactiveSend();

break;

}

break;

case EVENT_UNFORMATTED_SMS_PP_ENV:

envelopeInit();

/* Calculate the offset in the Public Buffer to the TP User Data part, */

/* also include the offset to the requested server operation */

addr = envelopeGetTpUdl() + SERVER_OPERATION;

TPUDOffset = addr - publicBuffer.base;

/* start the action requested by the server */

switch (envelopeGetValueChar(TPUDOffset))

{

case 0x41 : /* Update of a gsm file */

/* get the data from the received SMS */

envelopeCopyValue(TPUDOffset,buffer,3);

simSelect(FID_DF_GSM);

simSelect(FID_EF_PUCT);

simUpdateBinary(0, 3);

break;

case 0x36 : /* change the MenuTitle for the SelectItem */

envelopeCopyValue(TPUDOffset, menuTitle, 6);

break;

}

envelopeTerminate();

break;

}

}

History

	Document history

	V0.0.0
	August 2000
	First draft for comment

	V0.0.1
	November 2000
	Revised first draft, containing typographical and grammatical amendments and alterations.

	
	
	

	
	
	

	
	
	

DRAFT

_1027344931/0319 Annex A.zip

Toolkit.h

#ifndef _TOOLKIT_H_
#define _TOOLKIT_H_
#include "tlv.h"
#include <setjmp.h>

#ifndef WIN32
	VOID startcode(VOID);
	VOID reexit(VOID);

	#define requestGsmAppFunction(_sw2)		{SW1 = GSM_APP_FUNCTION_REQUESTED; SW2 = _sw2; reexit(); }
#else
	jmp_buf	env;
	BOOL appletPaused;
	int jmpStatus;

	#define requestGsmAppFunction(_sw2)		{ SW1 = GSM_APP_FUNCTION_REQUESTED; SW2 = _sw2; reexit(); }
#define reexit()							{ appletPaused = TRUE; }
#define startcode()							{ appletPaused = FALSE; }
#endif

/***/
/* */
/* Proactive Command Building functions */
/* */
/***/
/*
** function: proactiveInit - Initializes the next Proactive command
** with Command Details and Device Identities TLV.
** parameters:
** buffer		[in]	memory where proactive command will be built, e.g. public base.
** len [in] length of proactive command buffer
** type
** qualifier
** dstDevice
** returns:
** ERR_OK if the function is successful
** ERR_HANDLER_NOT_AVAILABLE if the toolkit command handler is not available at present
*/
ERRCODE proactiveInit(BYTE type, BYTE qualifier, BYTE dstDevice);

/*
** function: proactiveInitDisplayText - Builds a Display Text Proactive command without sending
** the command. This is a Helper function for a frequently used toolkit command.
** parameters:
** buffer		[in]	memory where proactive command will be built, e.g. public base.
** len [in] length of proactive command buffer
** qualifier
** dcs
** text
** length
** returns:
** ERR_OK if the function is successful
** ERR_HANDLER_NOT_AVAILABLE if the toolkit command handler is not available at present
** ERR_HANDLER_OVERFLOW if the proactive command buffer is full
*/
ERRCODE proactiveInitDisplayText(BYTE qualifier, BYTE dcs, BYTE * buffer, short length);

/*
** function: proactiveInitGetInkey - Builds a Get Inkey Proactive command without sending the
** command. This is a Helper function for a frequently used toolkit command.
** parameters:
** qualifier
** dcs
** text
** length
** returns:
** ERR_OK if the function is successful
** ERR_HANDLER_NOT_AVAILABLE if the toolkit command handler is not available at present
** ERR_HANDLER_OVERFLOW if the proactive command buffer is full
*/
ERRCODE proactiveInitGetInkey(BYTE qualifier, BYTE dcs, BYTE * text, short length);

/*
** function: proactiveInitGetInput - Initialize the building of a Get Input Proactive command.
** This is a Helper function for a frequently used toolkit command.
** parameters:
** qualifier
** dcs
** text
** length
** minResponseLength
** maxResponseLength
** returns:
** ERR_OK if the function is successful
** ERR_HANDLER_NOT_AVAILABLE if the toolkit command handler is not available at present
** ERR_HANDLER_OVERFLOW if the proactive command buffer is full
*/
ERRCODE proactiveInitGetInput(BYTE qualifier, BYTE dcs, BYTE * text, short length, BYTE minRespLength, BYTE maxRespLength);

/*
** function: proactiveSend - Sends the Proactive command in the buffer created by a proactiveInit() call.
** Calling this function may lead to the contents of the Public Buffer being altered.
** parameters:
** returns:
** ERR_OK if the function is successful
** ERR_HANDLER_NOT_AVAILABLE if the toolkit command handler is not available at present
*/
ERRCODE proactiveSend();

/***/
/* */
/* Proactive Command Response Helper functions */
/* */
/***/

/*
** function: responseInit - Initializes the processing of a proactive command response
** with Command Details and Device Identities TLV.
** parameters:
** buffer		[in]	memory where proactive command will be built, e.g. public base.
** len [in] length of proactive command buffer
** type
** qualifier
** dstDevice
** returns:
** ERR_OK if the function is successful
** ERR_HANDLER_NOT_AVAILABLE if the toolkit command handler is not available at present
*/
ERRCODE responseInit();

/*
** function: resposneTerminate - terminates the processing of a proactive command response
** with Command Details and Device Identities TLV.
** parameters:
** buffer		[in]	memory where proactive command will be built, e.g. public base.
** len [in] length of proactive command buffer
** type
** qualifier
** dstDevice
** returns:
** ERR_OK if the function is successful
** ERR_HANDLER_NOT_AVAILABLE if the toolkit command handler is not available at present
*/
ERRCODE responseTerminate();

/*
** function: responseGetGeneralResult - get GSM 11,14 result code
** parameters:
** returns:
** result code as GSM 11.14. Varies depending on preceding toolkit command.
*/
BYTE responseGetGeneralResult();

/*
** function: responseGetAdditionalInformationLength - get length of additional information
** associated with the terminal response.
** parameters:
** returns:
** length of additional information associated with terminal response, zero if none.
*/
short responseGetAdditionalInformationLength();

/*
** function: responseGetAdditionalInformation - find start of additional information associated
** with the terminal response. Contents vary depending on preceeding toolkit command, as per
** GSM 11.14,
** parameters:
** returns:
** pointer to the start of the additional information associated with the terminal response.
*/
BYTE * responseGetAdditionalInformation();

/*
** function: responseGetItemIdentifier -
** parameters:
** returns:
*/
BYTE responseGetItemIdentifier();

/*
** function: responseGetTextStringLength -
** parameters:
** returns:
*/
short responseGetTextStringLength();

/*
** function: responseGetTextStringCodingScheme -
** parameters:
** returns:
** coding scheme of text string contained within the buffer.
*/
BYTE responseGetTextStringCodingScheme();

/*
** function: responseGetTextString -
** parameters:
** returns:
** pointer to start of text string contained within the buffer.
*/
BYTE * responseGetTextString();
 											

/* -------------------------- BER-TLV Constants ------------------------- */
/* BER-TLV : Proactive SIM command tag = 0xD0 */
#define BTAG_PROACTIVE_SIM_COMMAND 0xD0
/* BER-TLV : SMS-PP download tag = 0xD1 */
#define BTAG_SMS_PP_DOWNWLOAD 0xD1
/* BER-TLV : Cell Broadcast download tag = 0xD2 */
#define BTAG_CELL_BROADCAST_DOWNLOAD 0xD2
/* BER-TLV : Menu Selection tag = 0xD3 */
#define BTAG_MENU_SELECTION 0xD3
/* BER-TLV : Call Control tag = 0xD4 */
#define BTAG_CALL_CONTROL 0xD4
/* BER-TLV : MO short message control tag = 0xD5 */
#define BTAG_MO_SHORT_MESSAGE_CONTROL 0xD5
/* BER-TLV : Event download tag = 0xD6 */
#define BTAG_EVENT_DOWNLOAD 0xD6
/* BER-TLV : Timer Expiration tag = 0xD7 */
#define BTAG_TIMER_EXPIRATION 0xD7

/* ------------------------ Simple-TLV Constants ------------------------- */
/* Simple-TLV : Command Details tag = 0x01 */
#define TAG_COMMAND_DETAILS 0x01
/* Simple-TLV : Device Identities tag = 0x02 */
#define TAG_DEVICE_IDENTITIES 0x02
/* Simple-TLV : Result tag = 0x03 */
#define TAG_RESULT 0x03
/* Simple-TLV : Duration tag = 0x04 */
#define TAG_DURATION 0x04
/* Simple-TLV : Alpha Identifier tag = 0x05 */
#define TAG_ALPHA_IDENTIFIER 0x05
/* Simple-TLV : Address tag = 0x06 */
#define TAG_ADDRESS 0x06
/* Simple-TLV : Capability Configuration Parameters tag = 0x07 */
#define TAG_CAPABILITY_CONFIGURATION_PARAMETERS0x07
/* Simple-TLV : Called Party Subaddress tag = 0x08 */
#define TAG_CALLED_PARTY_SUBADDRESS 0x08
/* Simple-TLV : SS String tag = 0x09 */
#define TAG_SS_STRING 0x09
/* Simple-TLV : USSD String tag = 0x0A */
#define TAG_USSD_STRING 0x0A
/* Simple-TLV : SMS TPDU tag = 0x0B */
#define TAG_SMS_TPDU 0x0B
/* Simple-TLV : Cell Broadcast Page tag = 0x0C */
#define TAG_CELL_BROADCAST_PAGE 0x0C
/* Simple-TLV : Text String tag = 0x0D */
#define TAG_TEXT_STRING 0x0D
/* Simple-TLV : Tone tag = 0x0E */
#define TAG_TONE 0x0E
/* Simple-TLV : Item tag = 0x0F */
#define TAG_ITEM 0x0F
/* Simple-TLV : Item Identifier tag = 0x10 */
#define TAG_ITEM_IDENTIFIER 0x10
/* Simple-TLV : Response Length tag = 0x11 */
#define TAG_RESPONSE_LENGTH 0x11
/* Simple-TLV : File List tag = 0x12 */
#define TAG_FILE_LIST 0x12
/* Simple-TLV : Location Information tag = 0x13 */
#define TAG_LOCATION_INFORMATION 0x13
/* Simple-TLV : IMEI tag = 0x14 */
#define TAG_IMEI 0x14
/* Simple-TLV : Help Request tag = 0x15 */
#define TAG_HELP_REQUEST 0x15
/* Simple-TLV : Network Measurement Results tag = 0x16 */
#define TAG_NETWORK_MEASUREMENT_RESULTS 0x16
/* Simple-TLV : Default Text tag = 0x17 */
#define TAG_DEFAULT_TEXT 0x17
/* Simple-TLV : Items Next Action Indicator tag = 0x18 */
#define TAG_ITEMS_NEXT_ACTION_INDICATOR 0x18
/* Simple-TLV : Event List tag = 0x19 */
#define TAG_EVENT_LIST 0x19
/* Simple-TLV : Cause tag = 0x1A */
#define TAG_CAUSE 0x1A
/* Simple-TLV : Location Status tag = 0x1B */
#define TAG_LOCATION_STATUS 0x1B
/* Simple-TLV : Transaction Identifier tag = 0x1C */
#define TAG_TRANSACTION_IDENTIFIER 0x1C
/* Simple-TLV : BCCH Channel List tag = 0x1D */
#define TAG_BCCH_CHANNEL_LIST 0x1D
/* Simple-TLV : Icon Identifier tag = 0x1E */
#define TAG_ICON_IDENTIFIER 0x1E
/* Simple-TLV : Item Icon Identifier list tag = 0x1F */
#define TAG_ITEM_ICON_IDENTIFIER_LIST 0x1F
/* Simple-TLV : Card Reader status tag = 0x20 */
#define TAG_CARD_READER_STATUS 0x20
/* Simple-TLV : Card ATR tag = 0x21 */
#define TAG_CARD_ATR 0x21
/* Simple-TLV : C-APDU tag = 0x22 */
#define TAG_C_APDU 0x22
/* Simple-TLV : R-APDU tag = 0x23 */
#define TAG_R_APDU 0x23
/* Simple-TLV : Timer Identifier tag = 0x24 */
#define TAG_TIMER_IDENTIFIER 0x24
/* Simple-TLV : Timer Value tag = 0x25 */
#define TAG_TIMER_VALUE 0x25
/* Simple-TLV : Date-Time and Time Zone tag = 0x26 */
#define TAG_DATE_TIME_AND_TIME_ZONE 0x26
/* Simple-TLV : Call Control requested action tag = 0x27 */
#define TAG_CALL_CONTROL_REQUESTED_ACTION 0x27
/* Simple-TLV : AT Command tag = 0x28 */
#define TAG_AT_COMMAND 0x28
/* Simple-TLV : AT Response tag = 0x29 */
#define TAG_AT_RESPONSE 0x29
/* Simple-TLV : BC Repeat Indicator tag = 0x2A */
#define TAG_BC_REPEAT_INDICATOR 0x2A
/* Simple-TLV : Immediate response tag = 0x2B */
#define TAG_IMMEDIATE_RESPONSE 0x2B
/* Simple-TLV : DTMF string tag = 0x2C */
#define TAG_DTMF_STRING 0x2C

/* Simple-TLV : mask to set the CR flag of any Simple-TLV tag = 0x80 */
#define TAG_SET_CR 0x80

/* ---------------------- Constants for findTLV method -------------------- */
/* findTLV method result : if TLV is not found in the handler = 0x00 */
#define TLV_NOT_FOUND 0
/* findTLV method result : if TLV is found with CR set = 0x01 */
#define TLV_FOUND_CR_SET 1
/* findTLV method result : if TLV is found with CR not set = 0x02 */
#define TLV_FOUND_CR_NOT_SET 2

/* ------------------ Type of proactive command constants ----------------- */
/* Type of proactive command : REFRESH = 0x01 */
#define PRO_CMD_REFRESH 0x01
/* Type of proactive command : MORE TIME = 0x02 */
#define PRO_CMD_MORE_TIME 0x02
/* Type of proactive command : SET UP CALL = 0x10*/
#define PRO_CMD_SET_UP_CALL 0x10
/* Type of proactive command : SEND SS = 0x11 */
#define PRO_CMD_SEND_SS 0x11
/* Type of proactive command : SEND USSD = 0x12 */
#define PRO_CMD_SEND_USSD 0x12
/* Type of proactive command : SEND SHORT MESSAGE = 0x13 */
#define PRO_CMD_SEND_SHORT_MESSAGE 0x13
/* Type of proactive command : SEND DTMF = 0x14 */
#define PRO_CMD_SEND_DTMF 0x14
/* Type of proactive command : PLAY TONE = 0x20 */
#define PRO_CMD_PLAY_TONE 0x20
/* Type of proactive command : DISPLAY TEXT = 0x21 */
#define PRO_CMD_DISPLAY_TEXT 0x21
/* Type of proactive command : GET INKEY = 0x22 */
#define PRO_CMD_GET_INKEY 0x22
/* Type of proactive command : GET INPUT = 0x23 */
#define PRO_CMD_GET_INPUT 0x23
/* Type of proactive command : SELECT ITEM = 0x24 */
#define PRO_CMD_SELECT_ITEM 0x24
/* Type of proactive command : SETUP MENU						= 0x25 */
#define PRO_CMD_SETUP_MENU			0x25
/* Type of proactive command : PROVIDE LOCAL INFORMATION = 0x26 */
#define PRO_CMD_PROVIDE_LOCAL_INFORMATION 0x26
/* Type of proactive command : TIMER MANAGEMENT = 0x27 */
#define PRO_CMD_TIMER_MANAGEMENT 0x27
/* Type of proactive command : SET UP IDLE MODE TEXT = 0x28 */
#define PRO_CMD_SET_UP_IDLE_MODE_TEXT 0x28
/* Type of proactive command : PERFORM CARD APDU = 0x30 */
#define PRO_CMD_PERFORM_CARD_APDU 0x30
/* Type of proactive command : POWER ON CARD = 0x31 */
#define PRO_CMD_POWER_ON_CARD 0x31
/* Type of proactive command : POWER OFF CARD = 0x32 */
#define PRO_CMD_POWER_OFF_CARD 0x32
/* Type of proactive command : GET READER STATUS = 0x33 */
#define PRO_CMD_GET_READER_STATUS 0x33
/* Type of proactive command : RUN AT COMMAND = 0x34 */
#define PRO_CMD_RUN_AT_COMMAND 0x34

/* ----------------------- Device Identity constants ---------------------- */
/* Device Identity : Keypad = 0x01 */
#define DEV_ID_KEYPAD 0x01
/* Device Identity : Display = 0x02 */
#define DEV_ID_DISPLAY 0x02
/* Device Identity : Earpiece = 0x03 */
#define DEV_ID_EARPIECE 0x03
/* Device Identity : Additional Card Reader 0 = 0x10 */
#define DEV_ID_ADDITIONAL_CARD_READER_0 0x10
/* Device Identity : Additional Card Reader 1 = 0x11 */
#define DEV_ID_ADDITIONAL_CARD_READER_1 0x11
/* Device Identity : Additional Card Reader 2 = 0x12 */
#define DEV_ID_ADDITIONAL_CARD_READER_2 0x12
/* Device Identity : Additional Card Reader 3 = 0x13 */
#define DEV_ID_ADDITIONAL_CARD_READER_3 0x13
/* Device Identity : Additional Card Reader 4 = 0x14 */
#define DEV_ID_ADDITIONAL_CARD_READER_4 0x14
/* Device Identity : Additional Card Reader 5 = 0x15 */
#define DEV_ID_ADDITIONAL_CARD_READER_5 0x15
/* Device Identity : Additional Card Reader 6 = 0x16 */
#define DEV_ID_ADDITIONAL_CARD_READER_6 0x16
/* Device Identity : Additional Card Reader 7 = 0x17 */
#define DEV_ID_ADDITIONAL_CARD_READER_7 0x17
/* Device Identity : SIM = 0x81 */
#define DEV_ID_SIM 0x81
/* Device Identity : ME = 0x82 */
#define DEV_ID_ME 0x82
/* Device Identity : Network = 0x83 */
#define DEV_ID_NETWORK 0x83

/* ---------------- Data Coding Scheme (GSM03.38) constants --------------- */
/* Data Coding Scheme : GSM Default Aphabet = 0x00 */
#define DCS_DEFAULT_ALPHABET 0x00
/* Data Coding Scheme : GSM 8 bit Data = 0x04 */
#define DCS_8_BIT_DATA 0x04
/* Data Coding Scheme : UCS2 = 0x08 */
#define DCS_UCS2 0x08

/* -------------------- Status Word for SMS datadownload ----------------- */
/* Status Word 1 : use RP_ERROR channel = 0x9E */
#define SW1_RP_ERROR 						0x9E
/* Status Word 1 : use RP_ACK channel = 0x9F */
#define SW1_RP_ACK 						0x9F

/* -------------------------- Poll Interval Constants --------------------- */
/* Poll Interval : request to deregister from proactive polling = 0 */
#define POLL_NO_DURATION						 = 0
/* Poll Interval : request the system duration 				= -1 */
#define POLL_SYSTEM_DURATION 				 = -1

/* -------------------------- Event Constants --------------------- */
/* these are the events that a toolkit application can register for notification of and that it
 can process */

/* Terminal Profile command reception */
#define EVENT_PROFILE_DOWNLOAD							0	
#define EVENT_PROFILE_DOWNLOAD_MASK						0x01
/* 03.48 formatted Update Record EF SMS 	*/
#define EVENT_FORMATTED_SMS_PP_UPD						1
#define EVENT_FORMATTED_SMS_PP_UPD_MASK					0x02
/* Status APDU command event */
#define EVENT_STATUS_COMMAND							2	
#define EVENT_STATUS_COMMAND_MASK						0x04
/* Unformatted Update Record EF SMS */
#define EVENT_UNFORMATTED_SMS_PP_UPD					3
#define EVENT_UNFORMATTED_SMS_PP_UPD_MASK				0x08

/* Boundary for envelope events */
#define ENVELOPE_EVENT_BASE							4

/* Envelope Menu Selection command reception */	
#define EVENT_MENU_SELECTION							4
#define EVENT_MENU_SELECTION_MASK						0x0001
/* 03.48 formatted envelope SMS-PP Data Download reception */
#define EVENT_FORMATTED_SMS_PP_ENV						5
#define EVENT_FORMATTED_SMS_PP_ENV_MASK					0x0002
/* Unformatted Envelope SMS-PP Data Download reception */
#define EVENT_UNFORMATTED_SMS_PP_ENV					6	
#define EVENT_UNFORMATTED_SMS_PP_ENV_MASK				0x0004
/* Unformatted Cell Broadcast Data Download command reception */
#define EVENT_UNFORMATTED_SMS_CB						7
#define EVENT_UNFORMATTED_SMS_CB_MASK					0x0008
/* Envelope Menu Selection Help Request command reception */
#define EVENT_MENU_SELECTION_HELP_REQUEST				8
#define EVENT_MENU_SELECTION_HELP_REQUEST_MASK			0x0010	
/* Envelope Call Control by SIM command reception */
#define EVENT_CALL_CONTROL_BY_SIM						9	
#define EVENT_CALL_CONTROL_BY_SIM_MASK					0x0020
/* Envelope MO Short Message Control by SIM command reception */
#define EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM			10	
#define EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM_MASK		0x0040
/* Envelope Timer Expiration */
#define EVENT_TIMER_EXPIRATION							11	
#define EVENT_TIMER_EXPIRATION_MASK						0x0080
/* Envelope Event Download - MT call */
#define EVENT_EVENT_DOWNLOAD_MT_CALL					12
#define EVENT_EVENT_DOWNLOAD_MT_CALL_MASK				0x0100	
/* Envelope Event Download - Call connected */
#define EVENT_EVENT_DOWNLOAD_CALL_CONNECTED				13	
#define EVENT_EVENT_DOWNLOAD_CALL_CONNECTED_MASK		0x0200
/* Envelope Event Download - Call disconnected */
#define EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED			14	
#define EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED_MASK		0x0400
/* Envelope Event Download - Location status */
#define EVENT_EVENT_DOWNLOAD_LOCATION_STATUS			15
#define EVENT_EVENT_DOWNLOAD_LOCATION_STATUS_MASK		0x0800
/* Envelope Event Download - User activity */	
#define EVENT_EVENT_DOWNLOAD_USER_ACTIVITY				16
#define EVENT_EVENT_DOWNLOAD_USER_ACTIVITY_MASK			0x1000
/* Envelope Event Download - Idle screen available */
#define EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE		17	
#define EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE_MASK	0x2000
/* Envelope Event Download - Card Reader Status */
#define EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS			18	
#define EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS_MASK	0x4000
/* Unrecognized Envelope command reception */
#define EVENT_UNRECOGNIZED_ENVELOPE						19
#define EVENT_UNRECOGNIZED_ENVELOPE_MASK				0x8000

/* */
#define EVENT_TERMINAL_RESPONSE							20

/* No Error ocurred */
#define ERR_NONE					0
/* This reason code is used to indicate that data are to large than
 the storage space available in the handler. */
#define ERR_HANDLER_OVERFLOW 1
/* This reason code is used to indicate that the Handler is not
 available (e.g. busy). */
#define ERR_HANDLER_NOT_AVAILABLE 2
/* This reason code is used to indicate that the element is
 unavailable in the handler buffer. */
#define ERR_UNAVAILABLE_ELEMENT 3
/* This reason code is used to indicate that the requested menu entry
 is not define for the corresponding applet. */
#define ERR_ENTRY_NOT_FOUND 4
/* This reason code is used to indicate an error in the applet registry */
#define ERR_REGISTRY_ERROR 5
/* This reason code is used to indicate that the event code is not
 supported by the toolkit framework */
#define ERR_EVENT_NOT_SUPPORTED 6
/* This reason code is used to indicate that the event is already
 registered by number of possible applets (e.g Call Control) */
#define ERR_EVENT_ALREADY_REGISTERED 7
/* This reason code is used to indictae that either the offset, the
 length or both are out of current TLV boundaries */
#define ERR_OUT_OF_TLV_BOUNDARIES 8
/* This reason code is used to indicate that the Terminal Profile
 data are not available */
#define ERR_ME_PROFILE_NOT_AVAILABLE 9
/* This reason code is used to indicate that the provided menu
 entry string is bigger than the space alloacted space */
#define ERR_OUT_OF_ITEM_BOUNDARIES 10
/* This reason code is used to indicate that all the available timers
 or the maximum number of timers have been allocated to the applet */
#define ERR_NO_TIMER_AVAILABLE		11
/* This reason code is used to indicate that the indicated timer
 identifier is not allocated to this applet. */
#define ERR_INVALID_TIMER_ID 		12
/* This reason code is used to indicate that the registration to an
 indicated event can not be changed by the called method. */
#define ERR_EVENT_NOT_ALLOWED 		13
/* This reason code is used to indicate that the indicated Status Type
 is not supported by the SIM Toolkit Framework */
#define ERR_INVALID_STATUS_TYPE 	14
/* this reason code is used to indicate that an improper api function has been called */
#define ERR_HANDLER_WRONG_TYPE 15
/* development error */
#define ERR_NOT_IMPLEMENTED			100

	
#define GSM_APP_FUNCTION_REQUESTED	0xF0
#define APPLET_INSTALL				0x01
#define APPLET_PROCESS_TOOLKIT		0x02

#endif

simview.h

/*
** This API describes the interface between the GSM SIM File System
** and any SIM Toolkit application. It offers some functions to communicate
** with the GSM SIM File System without compromising the GSM file system integrity
** (e.g. ME file context, conflicting access to files ...).
** All the functions are based on the equivelent commands of the GSM 11.11 specification.
**
** Note that each Sim Toolkit Application has it's own file context (Current DF, EF etc.), but
** this does not extent to the current record in a cyclic file.
*/

/*
** function simSelect - GSM 11.11 Select Dedicated/Elementary file function
** fid					[in]	16 bit GSM ID of file to be selected
** Public Buffer		[in]	none
** Public Buffer		[out]	FCI (File Control Information) of file if selection is successful
** Status Words (SW12)	[out]
** 0x9000 File Selected
** 0x9404	File Not Found
*/
short simSelect(short fid);

/*
** function simStatus - GSM 11.11 Status of current Dedicated file function
** Public Buffer		[in]	none
** Public Buffer		[out]	FCI (File Control Information) of currently selected dedicated file
** Status Words (SW12)	[out]
** 0x9000 operation completed
*/
short simStatus();

/*
** function simReadBinary - GSM 11.11 read contents of currently selected transparent file
** fileOffset			[in]	index into file of first byte to be read
** length				[in]	number of bytes from offset to be read
** Public Buffer		[in]	none
** Public Buffer		[out]	requested file contents
** Status Words (SW12)	[out]
** 0x9000
** 0x9400
** 0x9408
** 0x9804
** 0x9810
*/
short simReadBinary(short fileOffset, char length);

/*
** function simUpdateBinary - GSM 11.11 update contents of currently selected transparent file
** fileOffset			[in]	index into file of first byte to be updated
** length				[in]	number of bytes from offset to be updated
** Public Buffer		[in]	new file contents
** Public Buffer		[out]	none
** Status Words (SW12)	[out]
** 0x9000
** 0x9400
** 0x9408
** 0x9804
** 0x9810
*/
short simUpdateBinary(short fileOffset, char length);

/*
** function simReadRecord - GSM 11.11 read record from currently selected Cyclic/Linear fixed file
** recNumber			[in]	number of record to access
** mode					[in]	mode for accessing record, as per GSM 11.11
** Public Buffer		[in]	requested record contents
** Public Buffer		[out]	none
** Status Words (SW12)	[out]
** 0x9000
** 0x9400
** 0x9402
** 0x9408
** 0x9804
** 0x9810
*/
short simReadRecord(short recNumber, char mode);

/*
** function simUpdateRecord - GSM 11.11 Update record from currently selected Cyclic/Linear fixed file
** recNumber			[in]	number of record to access
** mode					[in]	mode for accessing record, as per GSM 11.11
** Public Buffer		[in]	none
** Public Buffer		[out]	new record contents
** Status Words (SW12) [out]
** 0x9000
** 0x9400
** 0x9402
** 0x9408
** 0x9804
** 0x9810
*/
short simUpdateRecord(short recNumber, char mode);

/*
** function simSeek - GSM 11.11 function to find a pattern in the currenty selected file
** mode					[in]	seek mode, according to GSM 11.11 (no type information - always "2")
** Public Buffer		[in]	pattern to look for
** Public Buffer		[out]	record number if pattern found
** Status Words (SW12) [out]
** 0x9000
** 0x9400
** 0x9404
** 0x9408
** 0x9804
** 0x9810
*/
short simSeek(char mode);

/*
** function simIncrease - GSM 11.11 increase cyclic file record value
** Public Buffer		[in]	The value to add, on 3 bytes.	
** Public Buffer		[out]	Increased File value, followed by three bytes that were added.	
** Status Words (SW12)	[out]
** 0x9000
** 0x9400
** 0x9408
** 0x9804
** 0x9810
** 0x9850
*/
short simIncrease();

/*
** function simInvalidate - GSM 11.11 Invalidate currently selected file
** Public Buffer		[in]	none
** Public Buffer		[out]	none
** Status Words (SW12)	[out]
** 0x9000
** 0x9400
** 0x9804
** 0x9810
*/
short simInvalidate()

/*
** function simRehabilitate - GSM 11.11 Rehabilitate currently selected file
** Public Buffer		[in]	none
** Public Buffer		[out]	none
** Status Words (SW12)	[out]
** 0x9000
** 0x9400
** 0x9804
** 0x9810
*/
short simRehabilitate()

/* GSM 11.11 Files System Contents */

/* File identifier : MF = 0x3F00 */
#define FID_MF 0x3F00;

/* DF under MF */
#define FID_DF_TELECOM 0x7F10;
#define FID_DF_GSM 0x7F20;
#define FID_DF_DCS_1800 0x7F21;
#define FID_DF_IS_41 0x7F22;
#define FID_DF_FP_CTS 0x7F23;

/* DF under DF TELECOM */
#define FID_DF_Graphics 0x5F50;

/* DF under DF GSM */
#define FID_DF_IRIDIUM 0x5F30;
#define FID_DF_GLOBALSTAR 0x5F31;
#define FID_DF_ICO 0x5F32;
#define FID_DF_ACES 0x5F33;
#define FID_DF_PCS_1900 0x5F40;
#define FID_DF_CTS 0x5F60;
#define FID_DF_SOLSA 0x5F70;

/* EF under MF */
#define FID_EF_ICCID 0x2FE2;
#define FID_EF_ELP 0x2F05;

/* EF under DF TELECOM */
#define FID_EF_ADN 0x6F3A;
#define FID_EF_FDN 0x6F3B;
#define FID_EF_SMS 0x6F3C;
#define FID_EF_CCP 0x6F3D;
#define FID_EF_MSISDN 0x6F40;
#define FID_EF_SMSP 0x6F42;
#define FID_EF_SMSS 0x6F43;
#define FID_EF_LND 0x6F44;
#define FID_EF_SDN 0x6F49;
#define FID_EF_EXT1 0x6F4A;
#define FID_EF_EXT2 0x6F4B;
#define FID_EF_EXT3 0x6F4C;
#define FID_EF_BDN 0x6F4D;
#define FID_EF_EXT4 0x6F4E;
#define FID_EF_SMSR 0x6F47;

/* EF under DF Graphics under DF TELECOM */
#define FID_EF_IMG 0x4F20;

/* EF under DF GSM */
#define FID_EF_LP 0x6F05;
#define FID_EF_IMSI 0x6F07;
#define FID_EF_KC 0x6F20;
#define FID_EF_PLMNSEL 0x6F30;
#define FID_EF_HPLMN 0x6F31;
#define FID_EF_ACMMAX 0x6F37;
#define FID_EF_SST 0x6F38;
#define FID_EF_ACM 0x6F39;
#define FID_EF_GID1 0x6F3E;
#define FID_EF_GID2 0x6F3F;
#define FID_EF_SPN 0x6F46;
#define FID_EF_PUCT 0x6F41;
#define FID_EF_CBMI 0x6F45;
#define FID_EF_BCCH 0x6F74;
#define FID_EF_ACC 0x6F78;
#define FID_EF_FPLMN 0x6F7B;
#define FID_EF_LOCI 0x6F7E;
#define FID_EF_AD 0x6FAD;
#define FID_EF_PHASE 0x6FAE;
#define FID_EF_VGCS 0x6FB1;
#define FID_EF_VGCSS 0x6FB2;
#define FID_EF_VBS 0x6FB3;
#define FID_EF_VBSS 0x6FB4;
#define FID_EF_EMLPP 0x6FB5;
#define FID_EF_AAEM 0x6FB6;
#define FID_EF_CBMID 0x6F48;
#define FID_EF_ECC 0x6FB7;
#define FID_EF_CBMIR 0x6F50;
#define FID_EF_DCK 0x6F2C;
#define FID_EF_CNL 0x6F32;
#define FID_EF_NIA 0x6F51;
#define FID_EF_KCGPRS 0x6F52;
#define FID_EF_LOCIGPRS 0x6F53;
#define FID_EF_SUME 0x6F54;

/* EF under DF SoSA (under DF GSM) */
#define FID_EF_SAI 0x4F30;
#define FID_EF_SLL 0x4F31;

/* Record access mode */
#define REC_ACC_MODE_NEXT 0x02;
#define REC_ACC_MODE_PREVIOUS 0x03;
#define REC_ACC_MODE_ABSOLUTE_CURRENT 0x04;

/* Seek mode */
#define SEEK_FROM_BEGINNING_FORWARD 0x00;
#define SEEK_FROM_END_BACKWARD 0x01;
#define SEEK_FROM_NEXT_FORWARD 0x02;
#define SEEK_FROM_PREVIOUS_BACKWARD 0x03;

tlv.h

#ifndef _TLV_H_
#define _TLV_H_
/***/
/* */
/* TLV helper */
/* */
/***/

/*
** function: tlvCompareValue - Compares the last found TLV element with a buffer.
** paramenters:
** buffer			[in]	buffer holding a BER-TLV string
** valueOffset		[in]	start comparison of value field from here
** compareBuffer	[in] compare contents of valuefield + valueOffset to this
** compareLength	[in]	number of bytes to compare
** returns:
** as 'C' memcmp function
** 0 if identical
** -1 if the first miscomparing byte in TLV element array is less than that in destination array,
** 1 if the first miscomparing byte in TLV element array is greater than that in destination array.
*/
char tlvCompareValue(BUFFER * buffer, short valueOffset, char * compareBuffer, short compareLength);

/*
** function: tlvCopyValue - Copies a part of the last TLV element which has been found,
** onto a destination buffer.
** paramenters:
** buffer			[in]	buffer holding a BER-TLV string
** valueOffset		[in]	start copying value field from here
** dstBuffer		[in]	destination buffer for copy
** dstLength		[in]	number of bytes to copy
** returns:
**
*/
ERRCODE tlvCopyValue(BUFFER * buffer, short valueOffset, char * dstBuffer, short dstLength);

/*
** function: tlvFindAndCompareValue - Looks for the indicated occurence of a TLV element
** from the beginning of a TLV list and compare its value with a buffer.
** paramenters:
** buffer		[in]	points to the start (the tag) of a TLV of BER-TLV string
** tag			[in]
** occurence	[in]
** valueOffset	[in]
** compareBuffer	[in]
** compareLength	[in]
** returns:
** as 'C' memcmp function
** 0 if identical
** -1 if the first miscomparing byte in TLV element array is less than that in destination array,
** 1 if the first miscomparing byte in TLV element array is greater than that in destination array.
*/
char tlvFindAndCompareValue(BUFFER * buffer, char tag, char occurence, short valueOffset, char * compareBuffer, short compareLength);

/*
** function: tlvFindAndCopyValue - Looks for the indicated occurence of a TLV element from
** the beginning of a TLV list and copy its value into a destination buffer.
** paramenters:
** buffer		[in]	points to the start (the tag) of a TLV of BER-TLV string
** tag			[in]	
** occurence	[in]	
** valueOffset	[in]	
** dstBuffer	[in]	
** dstLength	[in]	
** returns:
** the number of bytes copied
*/
short tlvFindAndCopyValue(BUFFER * buffer, char tag, char occurence, short valueOffset, char * dstBuffer, short dstLength);

/*
** function: tlvFindTLV - Looks for the indicated occurence of a TLV element from the
** beginning of the TLV list (handler buffer).
** paramenters:
** buffer			[in]	buffer holding a BER-TLV string
** tag				[in]	look for this tag
** occurence		[in]	look for the nth occurance of this tag
** returns:
*/
ERRCODE tlvFind(BUFFER * buffer, BYTE tag, short occurrence);

/*
** function: tlvGetLength - Returns the length of the value field for the BER-TLV buffer.
** paramenters:
** buffer			[in]	buffer holding a BER-TLV string
** returns:
** the length of the data associated with the BER-TLV
*/
short tlvGetLength(BUFFER * buffer);

/*
** function: tlvGetValueChar - Gets a BUFFER *from the last TLV element which has been found
** in the handler.
** paramenters:
** buffer			[in]	buffer holding a BER-TLV string
** valueOffset		[in]	read the nth byte from the value field
** returns:
*/
BYTE tlvGetValueChar(BUFFER * buffer, short valueOffset);

/*
** function: tlvGetValue - gets the value field from the last TLV element which has been found
** in the handler.
** paramenters:
** buffer			[in]	buffer holding a BER-TLV string
** valueOffset		[in]	
** returns:
**	a pointer to the start of the value field for the current TLV
*/
BYTE * tlvGetValue(BUFFER * buffer, short valueOffset);

/*
** function: tlvGetValueLength - Gets the length of the value field for the last TLV
** paramenters:
** element which has been found in the handler.
** returns:
*/
short tlvGetValueLength(BUFFER * buffer);

/*
** function: tlvAppendRawArray - Appends a buffer into the buffer.
** parameters:
** buffer
** array
** length
** returns:
** ERR_OK if the function is successful
** ERR_HANDLER_NOT_AVAILABLE if the toolkit command handler is not available at present
** ERR_HANDLER_OVERFLOW if the proactive command buffer is full
*/
ERRCODE tlvAppendRawArray(BUFFER * buffer, BYTE * array, short length);

/*
** function: tlvAppendChar - Appends a TLV element to the current TLV list
** (1-char element) (useful to add single char elements as Item Identifier or Tone).
** parameters:
** buffer
** tag			[in]	tag of the tlv being appended
** value		[in]	value field
** returns:
** ERR_OK if the function is successful
** ERR_HANDLER_NOT_AVAILABLE if the toolkit command handler is not available at present
** ERR_HANDLER_OVERFLOW if the proactive command buffer is full
*/
ERRCODE tlvAppendChar(BUFFER * buffer, BYTE tag, BYTE value);

/*
** function: tlvAppendArray - Appends a TLV element to the current TLV list
** (char array format)
** parameters:
** buffer
** tag			[in]	tag of the tlv being appended
** value		[in]	value field as an array
** valueLength	[in]	length of value field
** returns:
** ERR_OK if the function is successful
** ERR_HANDLER_NOT_AVAILABLE if the toolkit command handler is not available at present
** ERR_HANDLER_OVERFLOW if the proactive command buffer is full
*/
ERRCODE tlvAppendArray(BUFFER * buffer, BYTE tag, BYTE * value, short valueLength);

/*
** function: tlvAppendTwoChars - Appends a TLV element to the current TLV list (2-char element)
** (useful to add double char elements as Device Identities, Duration or Response Length).
** parameters:
** buffer
** tag		 [in]	tag of the tlv being appended
** value1		[in]	first character value
** value2		[in]	second character value
** returns:
** ERR_OK if the function is successful
** ERR_HANDLER_NOT_AVAILABLE if the toolkit command handler is not available at present
** ERR_HANDLER_OVERFLOW if the proactive command buffer is full
*/
ERRCODE tlvAppendTwoChars(BUFFER * buffer, BYTE tag, BYTE value1, BYTE value2);

/*
** function: tlvAppendCharAndArray - Appends a TLV element to the current TLV list
** (1 char and a char array format).
** parameters:
** buffer			[in]
** tag				[in]	tag of tlv being appended
** value1			[in]	character value
** value2			[in]	array value
** value2Length	[in]	length of array value
** returns:
** ERR_OK if the function is successful
** ERR_HANDLER_NOT_AVAILABLE if the toolkit command handler is not available at present
** ERR_HANDLER_OVERFLOW if the proactive command buffer is full
*/
ERRCODE tlvAppendCharAndArray(BUFFER * buffer, BYTE tag, BYTE value1, BYTE * value2, short value2Length);

/*
** function: tlvClear - Clears the proactive command buffer.
** parameters:
** returns:
** ERR_OK if the function is successful
** ERR_HANDLER_NOT_AVAILABLE if the toolkit command handler is not available at present
*/
ERRCODE tlvClear();

ERRCODE tlvFinaliseOutput(BUFFER * buffer, BYTE tag);

ERRCODE tlvInitialiseInput(BUFFER * buffer);

ERRCODE bufferMoveData(BUFFER * buffer, char * address);

ERRCODE bufferLock(BUFFER * buffer);

ERRCODE bufferRelease(BUFFER * buffer);

#define TLV_LEN_MAX_SHORT_VALUE 128
#define TLV_TAG_LENGTH 1
#define TLV_LEN_SHORT_LENGTH 1
#define TLV_LEN_LONG_LENGTH 2
#define TLV_LEN_LONG_INDICATOR 128

#endif

envelopeHandler.h

/**
**
** The Envelope Handler API contains basic functions to handle the Envelope
** command and response data fields. This class will be used by the Toolkit applet
** in in addition to the toolkit API in order to have access to the current Envelope
** information.
*/

ERRCODE envelopeInit();
ERRCODE envelopeTerminate();

/*
** function: envelopeGetTag - Returns the Envelope BER-TLV tag.
** buffer	[in]	looks in here for the tag. NULL means use public buffer
** returns:
** Envelope BER-TLV tag
*/
BYTE envelopeGetTag();

/*
** function: envelopeGetTpUdl - Looks for the TP-UDL field in the first TPDU TLV element in the
** buffer. This method can be used on the events EVENT_FORMATTED_SMS_PP_ENV,
** EVENT_FORMATTED_SMS_PP_UPD, EVENT_UNFORMATTED_SMS_PP_ENV, EVENT_UNFORMATTED_SMS_PP_UPD.
** parameters:
** buffer	[in]	search starts from here. NULL means use public buffer
** returns:
** TPUDL offset in the first TPDU TLV element if TPUDL exists.
** The TPUD length can be recovered by using the tlvGetValueByte() function.
** or NULL in case of unavailable TPDU TLV element or if the TPUDL field does not exist
*/
BYTE * envelopeGetTpUdl();

/*
** function: envelopeGetSecuredData - Looks for the Secured Data from the Command Packet in
** the first SMS TPDU Simple TLV contained in the buffer. This can be used on an event
** EVENT_FORMATTED_SMS_PP_ENV, EVENT_FORMATTED_SMS_PP_UPD, if the SMS TP-UD is formatted
** according to GSM03.48 Single Short Message.
** parameters:
** buffer	[in]	search starts from here. NULL means use public buffer
** returns:
** the offset of the Secured Data first byte in the first SMS TPDU TLV element
**	or NULL in case of unavailable SMS TPDU TLV element or missing Secured Data
*/
BYTE * envelopeGetSecuredData();

/*
** function: envelopeGetSecuredDataLength - Looks for the length of the Secured Data from the
** Command Packet in the first SMS TPDU Simple TLV contained in the buffer
** This can be used on an event EVENT_FORMATTED_SMS_PP_ENV, EVENT_FORMATTED_SMS_PP_UPD,
** if the SMS TP-UD is formatted according to GSM03.48 Single Short Message.
** parameters:
** returns:
** the length of the Secured Data contained in the first SMS TPDU TLV element
** (without padding bytes)
** or NULL in case of unavailable SMS TPDU TLV element or missing Secured Data
*/
short envelopeGetSecuredDataLength();

/*
** function: envelopeGetItemIdentifier - Returns the item identifier byte value from the
** first Item Identifier TLV element in the buffer
** parameters:
** returns:
** item identifier
** or NULL in case of unavailable TLV element
*/
BYTE envelopeGetItemIdentifier();

/*
** function: envelopeResponseInit - Initialises the envelope response buffer
** with Command Details and Device Identities TLV.
** parameters:
** returns:
*/
ERRCODE envelopeResponseInit();

/*
** function: envelopePost - Pepares the Envelope response.
** Should be used with Envelope SMS-PP Data Download.
** Calling this function may lead to the contents of the Public Buffer being altered.
** parameters
** statusType 	[in]	the status to be sent to the ME (9Fxx or 9Exx)
** returns:
** ERR_INVALID_STATUS_TYPE if the statusType is not supported.
*/
ERRCODE envelopePost(char statusType);

/*
** function: EnvelopePostAsBerTlv - Prepare the Envelope response in a BER TLV structure.
** Should be used with Envelope Call Control by SIM or MO Short Message Control by SIM.
** The tag value is to be used to set the Result for Call Control and MO Short Message
** Control by the SIM.
** Calling this function may lead to the contents of the Public Buffer being altered.
** parameters:
** statusType	[in]	the status to be sent to the ME (9Fxx or 9Exx)
** tag			[in]	the BER Tag to be used at the beginning of the SIMPLE_TLV list.
** returns:
** ERR_INVALID_STATUS_TYPE if the statusType is not supported.
*/
ERRCODE envelopePostAsBerTlv(char statusType, char tag);

Example.c

/**
 * Example Application
 */

#include "applet.h"

#define MY_INSTRUCTION			0x46
#define SERVER_OPERATION		15
#define DT_CMD_QUAL			0x81	/* high priority, wait for user to clear */

#pragma melstatic
BYTE menuEntry[] = {'S','e','r','v','i','c','e','1'};
BYTE menuTitle[] = {'M','y','M','e','n','u'};

BYTE item1[] = {'I','T','E','M','1' };
BYTE item2[] = {'I','T','E','M','2' };
BYTE item3[] = {'I','T','E','M','3' };
BYTE item4[] = {'I','T','E','M','4' };
BYTE *itemList[] = { item1, item2, item3, item4 };

BYTE textDText[] = {'H','e','l','l','o',' ','w','o','r','l','d','2'};
BYTE textGInput[] = {'Y','o','u','r',' ','n','a','m','e','?'};

BYTE buffer[10];
BYTE itemId;

/*
** Function called at the installation of the application
**/
VOID install(VOID)
{
 itemId = initMenuEntry(menuEntry, 0, sizeof(menuEntry),PRO_CMD_DISPLAY_TEXT, FALSE, 0,
0);
 setEvent(EVENT_UNFORMATTED_SMS_PP_ENV);
}

/*
** Function called by the SIM Toolkit Framework
**/
VOID processToolkit(UINT32 event)
{
	BYTE i, item;
	UINT16 TPUDOffset;
	BYTE *addr;

	switch(event)
	{
		case EVENT_MENU_SELECTION:
			/* send a select item command */
			proactiveInit(PRO_CMD_SELECT_ITEM, 0, DEV_ID_ME);
			proactiveAppendArray(TAG_ALPHA_IDENTIFIER|TAG_SET_CR,
menuTitle, sizeof(menuTitle));

			for (i=1 ; i<5 ; i++)
				proactiveAppendArray(TAG_ITEM|TAG_SET_CR, itemList[i],
sizeof(itemList[i]));

			proactiveSend();

			/* SelectItem response handling */
			responseInit();
			item = responseGetItemIdentifier();
			responseTerminate();

			switch (item)
			{
				case 1:
				case 2:
				case 3: /* DisplayText */
					proactiveInitDisplayText(DT_CMD_QUAL,
DCS_8_BIT_DATA, textDText, sizeof(textDText));
					proactiveSend();
					break;
				case 4: /* GetInput followed by a DisplayText of the entered text */
					proactiveInitGetInput(0x01,DCS_8_BIT_DATA,textGInput,
sizeof(textGInput), 1, 2);
					proactiveSend();

					responseInit();
					responseFind(TAG_TEXT_STRING,1);
					responseCopyValue(0, textDText, 2);
					responseTerminate();

					proactiveInitDisplayText(DT_CMD_QUAL,
DCS_8_BIT_DATA, textDText, sizeof(textDText));
					proactiveSend();
					break;
			}
			break;

		case EVENT_UNFORMATTED_SMS_PP_ENV:
			envelopeInit();

			/* Calculate the offset in the Public Buffer to the TP User Data part, */
			/* also include the offset to the requested server operation */
			addr = envelopeGetTpUdl() + SERVER_OPERATION;
			TPUDOffset = addr - publicBuffer.base;

			/* start the action requested by the server */
			switch (envelopeGetValueChar(TPUDOffset))
			{
				case 0x41 : /* Update of a gsm file */
					/* get the data from the received SMS */
					envelopeCopyValue(TPUDOffset,buffer,3);

					simSelect(FID_DF_GSM);
					simSelect(FID_EF_PUCT);
					simUpdateBinary(0, 3);
					break;

				case 0x36 : /* change the MenuTitle for the SelectItem */
					envelopeCopyValue(TPUDOffset, menuTitle, 6);
					break;
			}
			envelopeTerminate();
			break;
		}

 }

