
TD <>
 3GPP 31.YY V0.1.0 (1999-04)
Technical Specification
3rd Generation Partnership Project (3GPP);
Technical Specification Group (TSG) Terminals;
UICC / UE interface;
Logical characteristics
UMTS 31.YY

(

�
Reference
<Workitem> (<Shortfilename>.PDF)
Keywords
<keyword[, keyword]>

3GPP
Postal address

Office address

Internet
Individual copies of this deliverable�can be downloaded from
http://www.3gpp.org

Copyright Notification
No part may be reproduced except as authorized by written permission.�The copyright and the foregoing restriction extend to reproduction in all media.

©
All rights reserved.

�Contents
� TOC \o �Intellectual Property Rights	� GOTOBUTTON _Toc448840691 � PAGEREF _Toc448840691 �6��
Foreword	� GOTOBUTTON _Toc448840692 � PAGEREF _Toc448840692 �6��
Introduction	� GOTOBUTTON _Toc448840693 � PAGEREF _Toc448840693 �6��
1	Scope	� GOTOBUTTON _Toc448840694 � PAGEREF _Toc448840694 �7��
2	References	� GOTOBUTTON _Toc448840695 � PAGEREF _Toc448840695 �7��
3	Definitions, symbols and abbreviations	� GOTOBUTTON _Toc448840696 � PAGEREF _Toc448840696 �7��
3.1	Definitions	� GOTOBUTTON _Toc448840697 � PAGEREF _Toc448840697 �7��
3.2	Symbols	� GOTOBUTTON _Toc448840698 � PAGEREF _Toc448840698 �7��
3.3	Abbreviations	� GOTOBUTTON _Toc448840699 � PAGEREF _Toc448840699 �7��
4	Transport protocols	� GOTOBUTTON _Toc448840700 � PAGEREF _Toc448840700 �8��
4.1	T=0 protocol	� GOTOBUTTON _Toc448840701 � PAGEREF _Toc448840701 �8��
4.1.1	 Timing and specific options for characters in T=0	� GOTOBUTTON _Toc448840702 � PAGEREF _Toc448840702 �8��
4.1.2	 UE command	� GOTOBUTTON _Toc448840703 � PAGEREF _Toc448840703 �8��
4.1.3	 UICC response	� GOTOBUTTON _Toc448840704 � PAGEREF _Toc448840704 �8��
4.1.3.1	 Procedure bytes and status bytes	� GOTOBUTTON _Toc448840705 � PAGEREF _Toc448840705 �8��
4.1.3.1.1	The NULL-byte	� GOTOBUTTON _Toc448840706 � PAGEREF _Toc448840706 �8��
4.1.3.1.2	The ACK-byte	� GOTOBUTTON _Toc448840707 � PAGEREF _Toc448840707 �8��
4.1.3.1.3	Status bytes	� GOTOBUTTON _Toc448840708 � PAGEREF _Toc448840708 �9��
4.1.4	 Error detection and correction	� GOTOBUTTON _Toc448840709 � PAGEREF _Toc448840709 �9��
4.2	T=1 protocol	� GOTOBUTTON _Toc448840710 � PAGEREF _Toc448840710 �9��
4.2.1	 Timing and specific options for blocks sent with T=1	� GOTOBUTTON _Toc448840711 � PAGEREF _Toc448840711 �9��
4.2.1.1	 Information field size	� GOTOBUTTON _Toc448840712 � PAGEREF _Toc448840712 �9��
4.2.1.2	Character waiting integer	� GOTOBUTTON _Toc448840713 � PAGEREF _Toc448840713 �10��
4.2.1.3	 Character waiting time	� GOTOBUTTON _Toc448840714 � PAGEREF _Toc448840714 �10��
4.2.1.4	 Block waiting time	� GOTOBUTTON _Toc448840715 � PAGEREF _Toc448840715 �10��
4.2.1.5	 Block guard time	� GOTOBUTTON _Toc448840716 � PAGEREF _Toc448840716 �10��
4.2.1.6	Waiting time extension	� GOTOBUTTON _Toc448840717 � PAGEREF _Toc448840717 �10��
4.2.1.7	 Error detection code	� GOTOBUTTON _Toc448840718 � PAGEREF _Toc448840718 �11��
4.2.2	 Block frame structure	� GOTOBUTTON _Toc448840719 � PAGEREF _Toc448840719 �11��
4.2.2.1	 Prologue field	� GOTOBUTTON _Toc448840720 � PAGEREF _Toc448840720 �11��
4.2.2.1.1	 Node address byte/	� GOTOBUTTON _Toc448840721 � PAGEREF _Toc448840721 �11��
4.2.2.1.2	 Protocol Control Byte	� GOTOBUTTON _Toc448840722 � PAGEREF _Toc448840722 �11��
4.2.2.1.3	 Length	� GOTOBUTTON _Toc448840723 � PAGEREF _Toc448840723 �12��
4.2.2.2	 Information field	� GOTOBUTTON _Toc448840724 � PAGEREF _Toc448840724 �12��
4.2.2.3	 Epilogue field	� GOTOBUTTON _Toc448840725 � PAGEREF _Toc448840725 �13��
4.2.2.4	Block notations	� GOTOBUTTON _Toc448840726 � PAGEREF _Toc448840726 �13��
4.2.2.4.1	I-block	� GOTOBUTTON _Toc448840727 � PAGEREF _Toc448840727 �13��
4.2.2.4.2	R-block	� GOTOBUTTON _Toc448840728 � PAGEREF _Toc448840728 �13��
4.2.2.4.3	S-block	� GOTOBUTTON _Toc448840729 � PAGEREF _Toc448840729 �13��
4.2.3	Error free operation	� GOTOBUTTON _Toc448840730 � PAGEREF _Toc448840730 �13��
4.2.4	Error handling for T=1	� GOTOBUTTON _Toc448840731 � PAGEREF _Toc448840731 �14��
4.2.4.1	Protocol initialisation	� GOTOBUTTON _Toc448840732 � PAGEREF _Toc448840732 �14��
4.2.4.2	Block dependent errors	� GOTOBUTTON _Toc448840733 � PAGEREF _Toc448840733 �14��
4.2.4.3	Chaining	� GOTOBUTTON _Toc448840734 � PAGEREF _Toc448840734 �14��
4.2.4.3.1	Rules for chaining	� GOTOBUTTON _Toc448840735 � PAGEREF _Toc448840735 �15��
5	Basic organisation	� GOTOBUTTON _Toc448840736 � PAGEREF _Toc448840736 �15��
5.1	General description	� GOTOBUTTON _Toc448840737 � PAGEREF _Toc448840737 �15��
5.2	File identifier	� GOTOBUTTON _Toc448840738 � PAGEREF _Toc448840738 �16��
5.3	File types	� GOTOBUTTON _Toc448840739 � PAGEREF _Toc448840739 �17��
5.3.1	Dedicated files	� GOTOBUTTON _Toc448840740 � PAGEREF _Toc448840740 �17��
5.3.2	Elementary files	� GOTOBUTTON _Toc448840741 � PAGEREF _Toc448840741 �17��
5.3.2.1	Transparent EF	� GOTOBUTTON _Toc448840742 � PAGEREF _Toc448840742 �17��
5.	3.2.2 Linear fixed EF	� GOTOBUTTON _Toc448840743 � PAGEREF _Toc448840743 �18��
5.	3.2.3 Linear variable EF	� GOTOBUTTON _Toc448840744 � PAGEREF _Toc448840744 �18��
5.	3.2.4 Cyclic EF	� GOTOBUTTON _Toc448840745 � PAGEREF _Toc448840745 �19��
5.5	Methods for selecting a file	� GOTOBUTTON _Toc448840746 � PAGEREF _Toc448840746 �20��
5.6	Reservation of file IDs	� GOTOBUTTON _Toc448840747 � PAGEREF _Toc448840747 �21��
6	Application security	� GOTOBUTTON _Toc448840748 � PAGEREF _Toc448840748 �21��
6.1	File access conditions	� GOTOBUTTON _Toc448840749 � PAGEREF _Toc448840749 �21��
6.2	Security Environment	� GOTOBUTTON _Toc448840750 � PAGEREF _Toc448840750 �22��
7	Application selection method	� GOTOBUTTON _Toc448840751 � PAGEREF _Toc448840751 �22��
7.1	GSM SIM application selection	� GOTOBUTTON _Toc448840752 � PAGEREF _Toc448840752 �22��
7.2	UICC application selection	� GOTOBUTTON _Toc448840753 � PAGEREF _Toc448840753 �22��
8	Coding of historical bytes	� GOTOBUTTON _Toc448840754 � PAGEREF _Toc448840754 �23��
9	Description of generic commands	� GOTOBUTTON _Toc448840755 � PAGEREF _Toc448840755 �23��
9.1	Definitions	� GOTOBUTTON _Toc448840756 � PAGEREF _Toc448840756 �23��
9.2	Command APDU Structure	� GOTOBUTTON _Toc448840757 � PAGEREF _Toc448840757 �23��
9.2.1	Coding of Class Byte	� GOTOBUTTON _Toc448840758 � PAGEREF _Toc448840758 �23��
9.2.2	Coding of Instruction Byte	� GOTOBUTTON _Toc448840759 � PAGEREF _Toc448840759 �24��
9.2.3	Coding of Parameter Bytes	� GOTOBUTTON _Toc448840760 � PAGEREF _Toc448840760 �25��
9.2.4	Coding of Lc Byte	� GOTOBUTTON _Toc448840761 � PAGEREF _Toc448840761 �25��
9.2.5	Coding of Data Part	� GOTOBUTTON _Toc448840762 � PAGEREF _Toc448840762 �26��
9.2.6	Coding of Le Byte	� GOTOBUTTON _Toc448840763 � PAGEREF _Toc448840763 �26��
9.3	Response APDU Structure	� GOTOBUTTON _Toc448840764 � PAGEREF _Toc448840764 �26��
9.3.1	Status Conditions Returned by the Card	� GOTOBUTTON _Toc448840765 � PAGEREF _Toc448840765 �26��
9.3.1.1	Responses to commands which are correctly executed	� GOTOBUTTON _Toc448840766 � PAGEREF _Toc448840766 �27��
9.3.1.2	Responses to commands which are postponed	� GOTOBUTTON _Toc448840767 � PAGEREF _Toc448840767 �27��
9.3.1.3	Memory management	� GOTOBUTTON _Toc448840768 � PAGEREF _Toc448840768 �27��
9.3.1.4	Referencing management	� GOTOBUTTON _Toc448840769 � PAGEREF _Toc448840769 �27��
9.3.1.5	Security management	� GOTOBUTTON _Toc448840770 � PAGEREF _Toc448840770 �27��
9.3.1.6	Additional Return Values of USIM Applications	� GOTOBUTTON _Toc448840771 � PAGEREF _Toc448840771 �28��
9.3.2	Status Words of the Commands	� GOTOBUTTON _Toc448840772 � PAGEREF _Toc448840772 �28��
9.4	Logical channels	� GOTOBUTTON _Toc448840773 � PAGEREF _Toc448840773 �30��
9.4.1	Logical channel basics	� GOTOBUTTON _Toc448840774 � PAGEREF _Toc448840774 �30��
9.4.2	Opening of logical channels	� GOTOBUTTON _Toc448840775 � PAGEREF _Toc448840775 �30��
9.4.3	Closing of logical channels	� GOTOBUTTON _Toc448840776 � PAGEREF _Toc448840776 �30��
9.5	Mapping of APDU’s to TPDU’s	� GOTOBUTTON _Toc448840777 � PAGEREF _Toc448840777 �31��
9.5.1	APDU messages with T=0	� GOTOBUTTON _Toc448840778 � PAGEREF _Toc448840778 �31��
9.5.1.1	Communication between UE and UICC no extra information from the UICC	� GOTOBUTTON _Toc448840779 � PAGEREF _Toc448840779 �31��
9.5.1.2	Communication between UE and UICC extra information from the UICC	� GOTOBUTTON _Toc448840780 � PAGEREF _Toc448840780 �32��
9.5.2	 APDU messages with T=1	� GOTOBUTTON _Toc448840781 � PAGEREF _Toc448840781 �34��
9.6	Basic Commands	� GOTOBUTTON _Toc448840782 � PAGEREF _Toc448840782 �38��
9.6.1	SELECT	� GOTOBUTTON _Toc448840783 � PAGEREF _Toc448840783 �38��
9.6.1.1	Command Parameters and Data	� GOTOBUTTON _Toc448840784 � PAGEREF _Toc448840784 �38��
9.6.1.1	Response Data in case of MF or DF	� GOTOBUTTON _Toc448840785 � PAGEREF _Toc448840785 �38��
9.6.1.2	Response Data in case of an EF	� GOTOBUTTON _Toc448840786 � PAGEREF _Toc448840786 �41��
9.6.2	STATUS	� GOTOBUTTON _Toc448840787 � PAGEREF _Toc448840787 �43��
9.6.3	READ BINARY	� GOTOBUTTON _Toc448840788 � PAGEREF _Toc448840788 �43��
9.6.4	UPDATE BINARY	� GOTOBUTTON _Toc448840789 � PAGEREF _Toc448840789 �43��
9.6.5	READ RECORD	� GOTOBUTTON _Toc448840790 � PAGEREF _Toc448840790 �44��
9.6.6	UPDATE RECORD	� GOTOBUTTON _Toc448840791 � PAGEREF _Toc448840791 �44��
9.6.7	SEEK	� GOTOBUTTON _Toc448840792 � PAGEREF _Toc448840792 �46��
9.6.8	INCREASE	� GOTOBUTTON _Toc448840793 � PAGEREF _Toc448840793 �46��
9.6.9	VERIFY CHV	� GOTOBUTTON _Toc448840794 � PAGEREF _Toc448840794 �47��
9.6.10	CHANGE CHV	� GOTOBUTTON _Toc448840795 � PAGEREF _Toc448840795 �47��
9.6.11	DISABLE CHV	� GOTOBUTTON _Toc448840796 � PAGEREF _Toc448840796 �48��
9.6.12	ENABLE CHV	� GOTOBUTTON _Toc448840797 � PAGEREF _Toc448840797 �48��
9.6.13	UNBLOCK CHV	� GOTOBUTTON _Toc448840798 � PAGEREF _Toc448840798 �49��
9.6.14	INVALIDATE	� GOTOBUTTON _Toc448840799 � PAGEREF _Toc448840799 �50��
9.6.15	REHABILITATE	� GOTOBUTTON _Toc448840800 � PAGEREF _Toc448840800 �50��
9.6.16	INTERNAL AUTHENTICATE	� GOTOBUTTON _Toc448840801 � PAGEREF _Toc448840801 �50��
9.6.17	TERMINAL PROFILE	� GOTOBUTTON _Toc448840802 � PAGEREF _Toc448840802 �51��
9.6.18	ENVELOPE	� GOTOBUTTON _Toc448840803 � PAGEREF _Toc448840803 �51��
9.6.19	FETCH	� GOTOBUTTON _Toc448840804 � PAGEREF _Toc448840804 �52��
9.6.20	TERMINAL RESPONSE	� GOTOBUTTON _Toc448840805 � PAGEREF _Toc448840805 �53��
9.6.21	MANAGE CHANNEL	� GOTOBUTTON _Toc448840806 � PAGEREF _Toc448840806 �53��
9.7	Transmission Oriented Commands	� GOTOBUTTON _Toc448840807 � PAGEREF _Toc448840807 �54��
9.7.1	GET RESPONSE	� GOTOBUTTON _Toc448840808 � PAGEREF _Toc448840808 �54��
9.8	Coding of telecom specific EF response data	� GOTOBUTTON _Toc448840809 � PAGEREF _Toc448840809 �54��
Annex A (informative):	Coding of BER-TLV data objects.	� GOTOBUTTON _Toc448840810 � PAGEREF _Toc448840810 �56��
History	� GOTOBUTTON _Toc448840811 � PAGEREF _Toc448840811 �57��
�
�Intellectual Property Rights

Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project, Technical Specification Group <TSG name>.
The contents of this TS may be subject to continuing work within the 3GPP and may change following formal TSG approval. Should the TSG modify the contents of this TS, it will be re-released with an identifying change of release date and an increase in version number as follows:
Version m.t.e
where:
m	indicates [major version number]
x	the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
y	the third digit is incremented when editorial only changes have been incorporated into the specification.

Introduction
�1	Scope
The present document …
2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
References are either specific (identified by date of publication, edition number, version number, etc.) or non�specific.
For a specific reference, subsequent revisions do not apply.
For a non-specific reference, the latest version applies.
A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same number.
3	Definitions, symbols and abbreviations
3.1	Definitions
For the purposes of the present document, the following terms and definitions apply.
<defined term>: <definition>.
3.2	Symbols
<symbol>	<Explanation>

3.3	Abbreviations
For the purposes of the present document, the following abbreviations apply:
APDU	Application Protocol Data Unit
ATR	Answer To Reset
BGT	Block Guard Time
BWT	Block Waiting Time
C-APDU	Command APDU
CWI	Character Waiting Integer
CWT	Character Waiting Time
IFSC	Information Field Size for the UICC
IFSD	Information Field Size for the UE
R-APDU	Response APDU
SE	Security Environment
UE	UMTS Equipment
UICC	Universal Integrated Circuit Card
UMTS
USIM	User Service Identification Module

�4	Transport protocols
This clause defines the transport protocols defined for exchange of data between the UE and the UICC. Two different protocols are defined, the character based protocol T=0 and the block based protocol T=1. The UE shall support both T=0 and T=1.
T=0 will be used if TD1 is absent in the ATR.
4.1	T=0 protocol
The T=0 is a half-duplex asynchronous character based transmission protocol. The UE initiates the protocol after a successful ATR or PPS exchange.
All commands using the T=0 are initiated from the UE by sending a five byte header, which informs the UICC what to do. The UE will always act as master and the UICC as a slave. It is assumed that both the UICC and the UE know the direction of the transmission.
4.1.1 	Timing and specific options for characters in T=0
The minimum interval between the leading edge of the start bits of two consecutive characters shall at least be between 12.
The maximum interval between the start leading edge of any character sent by the UICC and the start leading edge of the previous character sent by either by the UICC or the UE i.e. the WWT. The value of the WWT shall not exceed 960xWIxFi/f. WI is an integer received in the specific interface byte TC2. If no TC2 is available, default value of WI is 10.
4.1.2 	UE command
The UE sends a five-byte header to the UICC to inform the card what to do. After sending the five-byte header to the UICC, the UE must wait for a procedure byte from the UICC before new actions.
4.1.3 	UICC response
When the UICC has received the five-byte header a response contains a procedure byte or status bytes shall be sent back to the UE. Both the UE and the UICC shall be able to keep track of the direction of the data flow and who has the access to the I/O-line.
4.1.3.1 	Procedure bytes and status bytes
When the command header has been received in the UICC, the UICC shall respond with a procedure byte or status bytes to the UE. The procedure bytes can be a Null-byte or an Ack-byte.
4.1.3.1.1	The NULL-byte
The NULL-byte requests no further data transfer and the UE shall only wait for a character conveying a procedure byte. The value on the Null-byte is equal to 60.
4.1.3.1.2	The ACK-byte
 The ACK-byte is used to control data transfer. Below is a description of the bits in the Ack-byte:
B8�b7�b6�b5�B4�b3�b2�b1��Bits compared to same bits in the INS-byte���
Two possible scenarios:
If bit b8 to b2 is equal to the corresponding bits in the INS-byte this indicates that the remaining data bytes (if any) shall be transferred subsequently.
If bit b8 to b2 are complementary to the corresponding bits in the INS-byte, only the next data byte D(i) (if available) shall be transferred.
4.1.3.1.3	Status bytes
The status bytes SW1 SW2 form an end sequence indicating the status of the UICC at the end of a command. A normal ending of a command is indicated by SW1 SW2 = 90 00. For more information on the coding of the status bytes see chapter 9.3.1.
4.1.4 	Error detection and correction
The error detection and correction procedure is mandatory for the T=0 protocol except for during the ATR-procedure.
An error is defined by either an incorrect received character or a correct received character with incorrect parity. The error is indicated on the I/O-line, which is set in A-mode after (10.5 ±0.2) etus after the leading edge of the start bit for the character. The I/O line shall be in A-mode for a maximum of 2 etus and a minimum of 1 etu.
If the transmitter detects an error, the character shall be sent again after a maximum delay of 2 etus.
Editor’s note: Please note that the maximum times for resending a character shall be defined by the application specific document – I wonder if this is a good idea?
4.2	T=1 protocol
The T=1 protocol is a half-duplex asynchronous block based transmission protocol. The protocol may be initiated after ATR or a successful PPS exchange. �The communication starts with a block sent by the UE to the UICC. The right to send a block keeps alternating between the UE and the UICC. A block is the smallest data unit, which can be sent and can contain either application data or transmission control data. A check of the received data might be performed before further processing of the received data.
The protocol applies a layering principle of the OSI-reference model. The three layers used by the T=1 are:
The physical layer, transmits asynchronous characters
The data link layer, which contains a character component and a block component. The character component handles block identification and the block component send blocks, detect transmission and sequence errors, handle errors and synchronise the protocol
The application layer processes the commands and handles exchange of at least one block
4.2.1 	Timing and specific options for blocks sent with T=1
This chapter defines options regarding timing, information file sizes and error detection parameters for blocks sent with T=1.
4.2.1.1 	Information field size
The IFSC defines the maximum length of the information field of blocks that can be received by the UICC. IFSC is initialised to 354 during ATR.
The IFSD defines the maximum length of the information field of blocks that the UE can receive. IFDS is initiated to 254 after ATR and shall not be adjusted during the rest of the card session.
4.2.1.2	Character waiting integer
CWI is used to calculate CWT and shall be 0. The value is set in bit b4 to b1 in TB3.

4.2.1.3 	Character waiting time
CWT is the maximum delay between the leading edges of two consecutive characters in the block is defined as the character waiting time.
����������������������T<CWT�����������
Where C(n) is the first character of the two consecutive characters.
The value of CWT is 12 according to the formula below with CWI =0 as defined in 4.2.1.2.
CWT = (11 + 2CWI) etu
4.2.1.4 	Block waiting time
BWT is defined as the maximum delay between the leading edge of the last character of the block received by the card and the leading edge of the first character of the next block sent by the card.
����������������������<- Last character of a block sent by the UE��������������������������First character of next block sent by the UICC->������������BWT�����������
BWT is used to detect an unresponsive card.
4.2.1.5 	Block guard time
BGT is the minimum delay between the leading edge of two consecutive characters sent in opposite directions is defined as the block guard time BGT. BGT is set to 22 etu.
����������������������<- Last character of a block sent by the UE��������������������������First character of next block sent by the UICC->������������BGT�����������
The delay between the last character of a block received by the UICC and the first character of the next block sent from the UICC shall be in the interval:
BGT < delay < BWT
4.2.1.6	Waiting time extension
WTX is a parameter used to ask for more time to process a command.
4.2.1.7 	Error detection code
The parameter TC(i) in the ATR is used to define which error detection code to use. If b1=0 LRC will be used. All other bits in TC(i) are reserved for future usage and shall be set to 0.
Editor’s note: Support for CRC as well?
4.2.2 	Block frame structure
The protocol consists of blocks, which are transmitted between the UE and the UICC. Each block has the following structure:
Prologue field�Information field�Epilogue field��NAD�PCB�Len�INF�EDC��1 byte�1 byte�1 byte�0-254 bytes�1 or 2 bytes��
Where the prologue field and the epilogue field are mandatory and the Information field is optional.
4.2.2.1 	Prologue field
The prologue field is divided into the following three mandatory fields:
Node address byte (NAD), 1 byte
Protocol Control byte (PCB), 1 byte
Length (Len), 1 byte
4.2.2.1.1 	Node address byte/
The NAD-byte identifies the source and the intended destination of the block. The NAD may also be used to distinguish between different logical connections if they coexist. Below is the structure of the NAD-byte:
b8�b7�b6�b5�B4�b3�b2�b1��Unused �DAD�Unused �SAD��
Editor’s note: In the first block sent from the UE, a logical connection will be set up based on the addresses in SAD and DAD. Subsequent blocks with an NAD containing the same pair of addresses are associated with the same logical connection. Other logical connections with other pairs of addresses shall be possible to establish during information exchange.
In UMTS phase 1, only the default value SAD=DAD=0 shall be supported. All other combinations are not allowed.
4.2.2.1.2 	Protocol Control Byte
All information needed to control the transmission is transferred in the protocol control byte PCB. The coding of the PCB-byte specifies the type on the block. In the T=1 protocol the following three different types of block are supported:
Information block, I-block which is used to transfer command and response APDU’s
Receive-ready block, R-block, which is used to transfer acknowledgements
Supervisory block, S-block, that is used to send control information
The tables below present the coding of the PCB-byte for each block-type, starting with the I-block.
Table 4.1: Coding of PCB for an I-block
b8�b7�b6�b5�B4�b3�b2�b1��0
(msb)�Sequence number, N(S)�Chaining, more-data bit, M�Reserved for future usage��
Table 4.2 Coding of PCB for an R-block
b8�b7�b6�b5�B4�b3�b2�b1��1
(msb)�0�0�Sequence number
N(R)�See table 4.3��
Table 4.3 Bit b4-b1 in the PCB-byte for the R-block
b4�b3�b2�B1�Value�Meaning��0�0�0�0�‘0’�Error free��0�0�0�1�‘1’�EDC and/or parity error��0�0�1�0�‘2’�Other error��x�x�x�X�‘X’�Other values reserved for future usage��
Table 4.3 Coding of PCB for an S-block
b8�b7�b6�b5�B4�b3�b2�b1��1�1�X�See table 4.4��
Table 4.3 Bits b5-b1 of PCB for an S-block
b5�b4�b3�b2�b1�Value�Meaning��0�0�0�0�1�‘1’�Information field��0�0�0�1�0�‘2’�Abortion��0�0�0�1�1�‘3’�Extension of BWT��X�x�x�x�x�‘X’�Other values reserved for future usage��
The combination of b6 and b5-b1 contains information if there is a request (b6=0) or if there is a response (b6=1).
4.2.2.1.3 	Length
The length byte codes number of bytes in the Information field in the block. Number of bytes in the information field may vary in the range of 0 to 254 bytes, depending on the type of block.
The value 00 on the LEN-byte indicates that the information field is absent and the value FF is reserved for future usage.
4.2.2.2 		Information field
The information field, INF is optional and it depends on the type of the block what the field will be used for.
 Type of block�INF used for��I-block�Transfer command and response APDU’s.��R-block�Not used, shall be absent do we not use this??��S-block�Transfers non application related information:
INF shall be present (single byte) to adjust IFS with WTX
INF shall be absent to signal error on VPP, or managing chain abortion or resynchronisation��
4.2.2.3 	Epilogue field
The epilogue field contains the error detection code-byte (EDC), which transfers the error detection code of the transmitted block. Possible code is longitudinal redundancy check (LRC).
The LRC consists of one byte and the value is such that an exclusive-OR of all bytes starting with the NAD ending with the last byte of the INF, if present, shall be null.
4.2.2.4	Block notations
4.2.2.4.1	I-block
The I-blocks are denoted as follows: I(N(S), M) where:
N(S) is the send-sequence number of the block
M is the more-data bit used in the chaining function
4.2.2.4.2	R-block
The R-block is denoted as R(N(R), where
N(R) is the number of the expected I-block
4.2.2.4.3	S-block
S-blocks are always used in pairs. An S(request) is always followed by an S(response) block. The S-block is denoted as:
S(IFS request), an offering of a maximum size of the information field
S(IFS response), an acknowledge on the information field
S(ABORT request), a request to abort the chain function, not required in EMV
S(ABORT response), an acknowledge of the abortion of the chain function not required in EMV
S(WTX request), a request for an extension of the waiting time.
S(WTX response), an acknowledge of the extension of the waiting time
4.2.3	Error free operation
This chapter describes the rules for error free operation with T=1.
The UE sends the first block, which should be either an I-block with N(S)=0 or an S-block.
If a sender S sends I(Ns (S), 0), the block is acknowledged by the receiver R with a I(Nr (S), M). The contents of I(Nr (S) indicates data transfer data and that the receiver is ready to receive the next block from the sender.
If a sender S sends an I(Ns(S), 1) it should be acknowledged by the receiver R with R(Nr(R)), where Ns(S) ? Nr(R), to indicate that the received block was correct and that the receiver is ready to receive the next block.
The UICC might need more than BWT to process the previously received block, a S(WTX request) is sent by the UICC. The UE shall acknowledge with a S(WTX response). The new allocated time starts at the leading edge of the last character of the S(WTX response).
To change the initial value on IFSD, which was indicated during ATR the UE sends an S(IFS request). The request shall be acknowledged by the UICC with an S(IFS response) with the same INF. The new IFSD is assumed to be valid as long as no new S(IFS request) has been received in the UICC.
When the receiver has received the number of characters as indicated in the value of the LEN and EDC the receiver returns the right to send.
S-blocks are always used in pairs. A S(request) is always followed by a S(response) block.
4.2.4	Error handling for T=1
This subclause contains a description of the rules used to control the error handling for the T=1 protocol.
The block component shall of the data link layer shall be able to handle errors like: BWT time-out, receive an invalid block, i.e. a block with parity errors, EDC error, invalid PDC, invalid length, lost synchronisation or failure to receive relevant S(… response) after a S(… request).
4.2.4.1	Protocol initialisation
After a successful ATR or PPS procedure the communication between the UE and the UICC can be initiated. But if the UE fails to receive an error-free block, in the beginning of the protocol, a maximum of two more successive attempts to receive the block is allowed before resetting or a deactivation of the card takes place.
If the response on the first block sent by the UE not is sent within BWT, the UE will send a R(0).
When the protocol has been initiated and the first block received by the UICC is invalid, the UICC responses with a R(0).
4.2.4.2	Block dependent errors
When an I-block has been sent and a BWT time-out occurs or an invalid block has been received in the UE, a R-block is sent, which requests with its N(R) for the expected I-block with N(S)=N(R).
If an R-block was sent and an invalid block is received or BWT time-out, the R-block will be resent.
When an S(… request) has been sent and either a BWT time-out occurs (in the UE) or the received response not is a S(… response), the S(… response) will be resent. But if an S(… response) has been sent and either an invalid block is received or a BWT time-out occurs (in the UE), an R-block will be sent.
If the UICC sends an S(IFS request) and receives an invalid block, the S(IFS request) will be resent maximum one extra time to receive an S(IFS response). After the second failure to receive an S(IFS response), the UICC stays in reception mode.
4.2.4.3	Chaining
Chaining allows the UE or the UICC to transfer information, which is longer than IFSC or IFSD. If information longer than IFSC or IFSD is transferred the information should be divided into pieces, which each has a length < IFSC or IFSD respectively. Each piece should be sent in an I-block using the chaining function.
The value of the M-bit in the PCB–byte of the I-block controls the chaining function according to:
M = 0, the block is not chained to the next block
M = 1, the block is chained to the next block, which shall be an I-block
When a receiver receives a more-data I-block, a R(N(R)) shall be sent. N(R)= N(S) of the expected I-block. At least one chained block should follow.
A physical error in the UICC can cause an error in a chaining process. To abort a chain an S(ABORT request) can be sent by either the sender or the receiver. The request shall be answered with an S(ABORT response). When the S(ABORT response) has been received an R-block may be sent to either the UE or the UICC to give back the right to send to either.
4.2.4.3.1	Rules for chaining
When the UE is the receiver, the UE shall accept a sequence of chained I-blocks sent from the UICC. The length of each block is > IFSD
When the UICC is the receiver, the UICC shall accept a sequence of chained I-blocks sent from the UE. The length of each block shall be equal to the value of IFSC except for the last block whose length can be any value in the range of 1 to IFSC.
When the UE is the sender all I-blocks of a chain shall have LEN = IFSC bytes except for the last, which could have a value in the range of 1 to IFSC
When the UICC is the sender all I-blocks of a chain shall have LEN (IFSC bytes per block
If the UICC is the receiver and receives block with LEN> IFSC, the block shall be rejected and acknowledged with a R-block with bits b1-b4 in the PCB-byte having a value of 2.
5	Basic organisation
Editors note: This subclause should be updated according to TSGT3#2(99)046 and TSGT3#2(99)052.
This clause describes the logical structure for a applications residing on the UICC, the code associated with it, and the structure of files used.
5.1	General description
Figure 5.1 shows the general structural relationships, which may exist, between files. The files are organised in a hierarchical structure and are of one of three types as defined below. These files may be either administrative or application specific. The operating system handles the access to the data stored in different files.
MF������������������������DF2��������������������������EF������DF1����������������������DF11���������������������DF111�����EF��������DF12����������....����������EF�����������������������EF���EF��EF�����EF���....����������������������
Figure 5.1: Organisation of memory
Files are composed of a header, which is internally managed by the SIM, and optionally a body part. The information of the header is related to the structure and attributes of the file and may be obtained by using the commands GET RESPONSE or STATUS. This information is fixed during the administrative phase. The body part contains the data of the file.
Editors note: the figure 5.1 should be redrawn to highlight the new features that applies now, e.g. the DIR file and possibly also the fact that we can have a structure as listed in the picture below:

�EMBED Unknown���

Figure 5.2: Proposed new file structure
5.2	File identifier
A file ID is used to address or identify each specific file. The file ID consists of two bytes and shall be coded in hexadecimal notation. They are specified in clause 10.
The first byte identifies the type of file, and for GSM is:
�	'3F': Master File;
�	'7F': 1st level Dedicated File;
-	'5F': 2nd level Dedicated File;
�	'2F': Elementary File under the Master File;
�	'6F': Elementary File under a 1st level Dedicated File;
-	'4F': Elementary File under 2nd level Dedicated File.
File IDs shall be subject to the following conditions:
�	the file ID shall be assigned at the time of creation of the file concerned;
�	no two files under the same parent shall have the same ID;
�	a child and any parent, either immediate or remote in the hierarchy, e.g. grandparent, shall never have the same file ID.
In this way each file is uniquely identified.
Editors note: This subclause shall be updated to reflect the (proposed) new structure in the card - see figure 5.2.
5.3	File types
This subclause defines the file types that applies to applications complying to this standard
5.3.1	Dedicated files
A Dedicated File (DF) is a functional grouping of files consisting of itself and all those files which contain this DF in their parental hierarchy (that is to say it consists of the DF and its complete "subtree"). A DF "consists" only of a header part.
Three 1st level DFs are defined in this specification:
�	DFGSM which contains the applications for both GSM and/or DCS 1800;
�	DFIS41 which contains the applications for IS-41 as specified by ANSI T1P1;
�	DFTELECOM which contains telecom service features.
All three files are immediate children of the Master File (MF) and may coexist on a multi�application card.
2nd level DFs are defined in this specification under DFGSM.
All 2nd level DFs are immediate children of the DFGSM and may coexist on a multi-application card.
5.3.2	Elementary files
An Elementary File (EF) is composed of a header and a body part. The following three structures of an EF are used by GSM.
5.3.2.1	Transparent EF
An EF with a transparent structure consists of a sequence of bytes. When reading or updating, the sequence of bytes to be acted upon is referenced by a relative address (offset), which indicates the start position (in bytes), and the number of bytes to be read or updated. The first byte of a transparent EF has the relative address '00 00'. The total data length of the body of the EF is indicated in the header of the EF.
Header�����Body���Sequence�of bytes���
NOTE:	This structure was previously referred to as "binary" in GSM.

Figure 4: Structure of a transparent EF
5. 3.2.2	Linear fixed EF
An EF with linear fixed structure consists of a sequence of records all having the same (fixed) length. The first record is record number 1. The length of a record as well as this value multiplied by the number of records are indicated in the header of the EF.
Header����Body��Record 1����Record 2���� :���� :����Record n��
Figure 5: Structure of a linear fixed file
There are several methods to access records within an EF of this type:
�	absolutely using the record number;
�	when the record pointer is not set it shall be possible to perform an action on the first or the last record by using the NEXT or PREVIOUS mode;
�	when the record pointer is set it shall be possible to perform an action on this record, the next record (unless the record pointer is set to the last record) or the previous record (unless the record pointer is set to the first record);
�	by identifying a record using pattern seek starting:
�	forwards from the beginning of the file;
�	forwards from the record following the one at which the record pointer is set (unless the record pointer is set to the last record);
�	backwards from the end of the file;
�	backwards from the record preceding the one at which the record pointer is set (unless the record pointer is set to the first record).
If an action following selection of a record is aborted, then the record pointer shall remain set at the record at which it was set prior to the action.
NOTE 1:	It is not possible, at present, to have more than 255 records in a file of this type, and each record cannot be greater than 255 bytes.
NOTE 2:	This structure was previously referred to as "formatted" in GSM.
5. 3.2.3	Linear variable EF
An EF with linear variable structure consists of a sequence of records having a variable size. The first record is record number 1. The number of records are indicated in the header of the EF
(Editors note: how about the total size of the record is that indicated in the header as well??).
Header�
��Body�
Record 1���
Record 2���
���
���Record n
��
Figure 5: Structure of a linear variable file
There are several methods to access records within an EF of this type:
�	absolutely using the record number;
�	when the record pointer is not set it shall be possible to perform an action on the first or the last record by using the NEXT or PREVIOUS mode;
�	when the record pointer is set it shall be possible to perform an action on this record, the next record (unless the record pointer is set to the last record) or the previous record (unless the record pointer is set to the first record);
�	by identifying a record using pattern seek starting:
�	forwards from the beginning of the file;
�	forwards from the record following the one at which the record pointer is set (unless the record pointer is set to the last record);
�	backwards from the end of the file;
�	backwards from the record preceding the one at which the record pointer is set (unless the record pointer is set to the first record).
If an action following selection of a record is aborted, then the record pointer shall remain set at the record at which it was set prior to the action.
NOTE 1:	It is not possible, at present, to have more than 255 records in a file of this type, and each record cannot be greater than 255 bytes.
NOTE 2:	This structure was previously referred to as "formatted" in GSM.

5. 3.2.4	Cyclic EF
Cyclic files are used for storing records in chronological order. When all records have been used for storage, then the next storage of data shall overwrite the oldest information.
An EF with a cyclic structure consists of a fixed number of records with the same (fixed) length. In this file structure there is a link between the last record (n) and the first record. When the record pointer is set to the last record n, then the next record is record 1. Similarly, when the record pointer is set to record 1, then the previous record is record n. The last updated record containing the newest data is record number 1, and the oldest data is held in record number n.
Header������������Body��Record 1������Record 2������:������:������Record n����������
Figure 6: Structure of a cyclic file
For update operations only PREVIOUS record shall be used. For reading operations, the methods of addressing are Next, Previous, Current and Record Number.
After selection of a cyclic file (for either operation), the record pointer shall address the record updated or increased last. If an action following selection of a record is aborted, then the record pointer shall remain set at the record at which it was set prior to the action.
NOTE:	It is not possible, at present, to have more than 255 records in a file of this type, and each record cannot be greater than 255 bytes.
5.5	Methods for selecting a file
After the Answer To Reset (ATR), the Master File (MF) is implicitly selected and becomes the Current Directory. Each file may then be selected by using the SELECT function in accordance with the following rules.
Selecting a DF or the MF sets the Current Directory. After such a selection there is no current EF. Selecting an EF sets the current EF and the Current Directory remains the DF or MF, which is the parent of this EF. The current EF is always a child of the Current Directory.
Any application specific command shall only be operable if it is specific to the Current Directory.
The following files may be selected from the last selected file:
�	any file which is an immediate child of the Current Directory;
�	any DF which is an immediate child of the parent of the current DF;
�	the parent of the Current Directory;
�	the current DF;
the MF.
Editor’s note: new selection methods may be applied if appropriate, e.g. selection by path.
This means in particular that a DF shall be selected prior to the selection of any of its EFs. All selections are made using the file ID.
The following figure gives the logical structure for the GSM application. GSM defines only two levels of DFs under the MF.
�EMBED Designer���
Figure 7: Logical structure
The following table gives the valid selections for GSM for the logical structure in figure 7. Reselection of the last selected file is also allowed but not shown.
Table 6: File selection
Last selected file�Valid Selections��MF
DF1
DF2
DF3
EF1
EF2
EF3
EF4
EF5�DF1, DF2, EF1
MF, DF2, DF3, EF2
MF, DF1, EF3, EF4
MF, DF1, EF5
MF, DF1, DF2
MF, DF1, DF2, DF3
MF, DF1, DF2, EF4
MF, DF1, DF2, EF3
MF, DF1, DF3��5.6	Reservation of file IDs
In addition to the identifiers used for the files specified in the present document, the following file IDs are reserved for use by GSM.
Dedicated Files:
�	administrative use:
	'7F 4X', '5F1X', '5F2X'
�	operational use:
	'7F 10' (DFTELECOM), '7F 20' (DFGSM), '7F 21' (DFDCS1800), and '7F 2X', where X ranges from '2' to 'F'.
-	reserved under '7F10':
	'5F50' (DFGRAPHICS) $(Image)$
-	reserved under '7F20':
	'5F30' (DFIRIDIUM), '5F31' (DFGlobalstar), '5F32' (DFICO), '5F33' (DFACeS), ‘5F3X’, where X ranges from '4' to 'F' for other MSS.
	'5F40'(DFPCS-1900), '5F4Y' where Y ranges from '1' to 'F' and,
	'5FYX' where Y ranges from '5' to 'F'.
Elementary files:
�	administrative use:
	'6F XX' in the DFs '7F 4X'; '4F XX' in the DFs '5F 1X', '5F2X'
	'6F 1X' in the DFs '7F 10', '7F 20', '7F 21';
	'4F 1X' in all 2nd level DFs
	'2F 01', '2F EX' in the MF '3F 00';
�	operational use:
	'6F 2X', '6F 3X', '6F 4X' in '7F 10' and '7F 2X';
	'4F YX', where Y ranges from '2' to 'F' in all 2nd level DFs.
	'2F 1X' in the MF '3F 00'.
In all the above, X ranges, unless otherwise stated, from '0' to 'F'.

6	Application security
Editor’s note:	This chapter should be divided into two parts: one part that deals with the security of the individual EF’s and DF’s – this is basically a cut from GSM 11.11 Ch. 7
6.1	File access conditions
Editor’s note:	This chapter could more or less be copied from GSM 11.11 Ch. 7.
6.2	Security Environment
Editor’s note:	This chapter contains a SE definition that applies for an application – SE is defined in 7816-8 and is a container of security functions. It is not the intention to make a complete specification but rather define the relevant parts for phase 1. An example could be e.g. the MAC calculations to be used for message integrity check – at the last TSG-T3 meeting a Liaison Statement from the security group was handled on the MAC calculation issue.

7	Application selection method
Editor’s note: This chapter defines the different methods for selecting an application – this chapter must list the DIR file and the possible selection methods we intent to allow – it is proposed to use the methods listed in 7816-5 first ed. Ch. 6.3.1 and 6.3.2. However for backward compatibility with GSM it must also be possible to do the normal GSM start-up.
7.1	GSM SIM application selection
Editor’s note: To be filled.
7.2	UICC application selection
Editor’s note: To be filled.
�8 Coding of historical bytes
Editor’s note: This chapter should contain the coding of the historical bytes and include the information on e.g. the card capabilities. This should be made by the card manufactures. Card capabilities contain information on the short or extended coding!!!!!
9	Description of generic commands
This clause defines the command and response APDU’s supported by the UICC.
9.1	Definitions
The following definitions for the command and response APDU’s applies:
Coding
All lengths are presented in bytes, unless otherwise stated. Each byte is represented by bit b8 to b1, where b8 is the most significant bit (MSB) and b1 is the least significant bit (LSB). In each representation the leftmost bit is the MSB.
RFU
In UICC all bytes which are RFU shall be set to '00' and RFU bits to 0. Where the GSM and/or USIM application exists on an UICC or is built on a generic telecommunications card (e.g. TE9) then other values may apply for other than GSM or UMTS applications. The values will be defined in the appropriate specifications for such cards and applications. These bytes and bits shall not be interpreted by an ME in a GSM or UMTS session.
9.2	Command APDU Structure
This clause states a generic structure of an application protocol data unit – APDU – that is used by the application protocol on the top of the transmission protocol for sending a command to the card. The contents of the command APDU is depicted in table 9.1. Parameters are further explained in the following subclauses.
Table 9.1: Contents of Command APDU
Code�Length�Description��CLA�1�Class of instruction��INS�1�Instruction code��P1�1�Instruction parameter 1��P2�1�Instruction parameter 2��Lc�1 or 3�Number of bytes in the command data field��Data�Lc�Command data string��Le�1 or 3�Maximum number of data bytes expected in response of the command��
9.2.1	Coding of Class Byte
The most significant nibble of the Class byte (b8-b5) codes the type of the command as stated in table 9.2. Bits b4 and b3 are used for indication of secure messaging format (see table 9.3). Bits b2 and b1 indicates the logical channel used. Logical channels are numbered from 0 to 3. If the card supports the logical channel mechanism, the maximum number of available logical channels is indicated in the card capabilities data object of historical bytes of an ATR (refer to ISO/IEC 7816-4 [2]). If the card capabilities data object is missing, logical channel b2=b1=0 is supported only.
Table 9.2: Coding of Class Byte
b8�b7�b6�b5�b4�b3�b2�b1�Value�Meaning��0�0�0�0�-�-�-�-�‘0X’�The coding is according to 7816-4 [2]��1�0�1�0�-�-�-�-�‘AX’�Coded as 7816-4 [2] unless stated otherwise��-�-�-�-�x�x�-�-�-�Secure Messaging indication (see table 9.3)��-�-�-�-�-�-�x�x�-�Logical channel number (see 9.4)��
Table 9.3: Coding of Security Messaging Indication
b4�b3�Meaning��0�0�No SM used between ME and card��1�x�Secure messaging according to ISO/IEC 7816-4 [2] used��1�0�Command header not authenticated��1�1�Command header authenticated��
Editor's note: Is b4=0 and b3=1 needed (proprietary SM format)? Now it is RFU. It might not be wise to allow everything in this spec.
9.2.2	Coding of Instruction Byte
Table 9.4 depicts coding of instruction byte of the commands.
For telecom applications (e.g. GSM and USIM) the class byte shall always be coded as ‘AX’.
Editor's note: Is the last sentence valid, i.e. shall we mandate that the instruction byte is coded as ‘AX’ for telecom applications.?
Editor’s note: For USIM application the CLA can be also some other value. It might be better to leave the CLA column out of the following table, since it depends on the application. Another way is to add the application in the table, as follows:

Table 9.4: Coding of Instruction Byte of the Commands for a telecom application
COMMAND�CLA (GSM)�CLA (UMTS)�INS��SELECT FILE�AX�'AX' or '0x'�'A4'��STATUS�AX��'F2'�������READ BINARY�AX��'B0'��UPDATE BINARY�AX��'D6'��READ RECORD�AX��'B2'��UPDATE RECORD�AX��'DC'��SEEK�AX��'A2'��INCREASE�AX��'32'�������VERIFY�AX��'20'��CHANGE CHV�AX��'24'��DISABLE CHV�AX��'26'��ENABLE CHV�AX��'28'��UNBLOCK CHV�AX��'2C'�������INVALIDATE�AX��'04'��REHABILITATE�AX��'44'�������INTERNAL AUTHENTICATE�AX��'88'�������GET RESPONSE�AX��'C0'��TERMINAL PROFILE�AX��'10'��ENVELOPE�AX��'C2'��FETCH�AX��'12'��TERMINAL RESPONSE�AX��'14'�������MANAGE CHANNEL� -��70��

9.2.3	Coding of Parameter Bytes
The value of the parameters P1 and P2 depends on the command. If the parameter is not used, the value is set to '00'. Coding of the parameter bytes is presented in the command definition sections.
9.2.4	Coding of Lc Byte
The number of data bytes present in the data field of the command APDU is presented in the parameter Lc. Lc is optional, in the command APDU, however if the Lc is present in the command APDU, data field consists of the Lc subsequent bytes.
In the card capabilities information data object of in the historical characters of an ATR (refer to ISO/IEC 7816-4 [2]) the card indicates whether the Lc field contains length in short or extended format. As a consequence, the length of the parameter Lc may be 1 or 3 bytes, respectively. Coding of Lc byte is stated in the following table. If the Lc is in extended format, byte 1 of the Lc is valued to '00' and the value of the length is coded on the 2 following bytes. If the card capability information is missing, the default format of the Lc is short.
Editor’s note: Here we must make a references to a chapter on the card capability.
Table 9.5: Coding of Lc
Range�Byte 1 (MSB)�Byte 2�Byte 3 (LSB)��0 - 255�Binary value�-�-��0 – 65 535�'00'�Binary value��
9.2.5	Coding of Data Part
When present in a command or response APDU the data field consists of a string of proprietary or TLV coded data.
9.2.6	Coding of Le Byte
The maximum number of bytes expected in the data part of the response APDU is presented in the parameter Le, which is optional meaning that if the response APDU will not contain data - or the data is to be received with GET RESPONSE command - the Le is absent from the command APDU. However, if the Le is present in the command APDU, the data field of the response APDU is expected to consist of the Le bytes.
If short addressing is used and Le is set to ‘00’ the expected number of bytes in the response APDU is at most the maximum value, i.e. at most 256 bytes are expected, i.e. fewer than 256 bytes can be returned.
If extended addressing is used and all three Le bytes are set to ‘00’ the expected number of bytes in the response APDU is the maximum value, i.e. 65536 bytes are expected.
In the card capabilities data object of the historical characters of an ATR (refer to ISO/IEC 7816-4 [2]) the card indicates whether the Le field contains length in short or extended format. As a consequence, length of the parameter Le may be 1 or 3 bytes, respectively. Coding of Le byte is according to table 9.6. If the Le is in extended format, B1 of the Le is valued to '00' and the value of the length is coded on the 2 following bytes. If the card capability information is missing, the default format of the Le is short.
Editor’s note: Here we must make a references to a chapter on the card capability.

Table 9.6: Coding of Le
Range�Byte 1 (MSB)�Byte 2�Byte 3 (LSB)��1 – 256�Binary value�-�-��1 – 65 536�'00'�Binary value��
9.3	Response APDU Structure
The response APDU consists of an optional data field and a mandatory status part divided into two bytes; SW1 and SW2. The parameter Le of the command APDU indicates the length of the data part of the response APDU. The structure of the response APDU is shown in table 9.7.
Table 9.7: Contents of Response APDU
Code�Length�Description��Data�Le (in command APDU)�Response data string��SW1�1�Status byte 1��SW2�1�Status byte 2��
Coding of SW1 and SW2 is presented in 9.3.1.
9.3.1	Status Conditions Returned by the Card
Status of the card after processing of the command is coded in the status bytes SW1 and SW2. This subclause specifies coding of the status bytes in the following tables.
9.3.1.1	Responses to commands which are correctly executed
SW1�SW2�Description��'90'�'00'�� normal ending of the command��'91'�'XX'�� normal ending of the command, with extra information from the proactive UICC containing a command for the ME. Length 'XX' of the response data��'9E'�'XX'�� length 'XX' of the response data given in case of a UICC data download error��'9F'�'XX'�� length 'XX' of the response data, see NOTE1��9.3.1.2	Responses to commands which are postponed
SW1�SW2�Error description��'93'�'00'��	SIM Application Toolkit is busy. Command cannot be executed at present, further normal commands are allowed.��9.3.1.3	Memory management
SW1�SW2�Error description��'92'�'0X'��	command successful but after using an internal update retry routine 'X' times��'92'�'40'��	memory problem��9.3.1.4	Referencing management
SW1�SW2�Error description��'94'�'00'��	no EF selected��'94'�'02'��	out of range (invalid address)��'94'�'04'��	file ID not found
�	pattern not found��'94'�'08'��	file is inconsistent with the command��9.3.1.5	Security management
SW1�SW2�Error description��'98'�'02'��	no CHV initialised��'98'�'04'��	access condition not fulfilled
�	unsuccessful CHV verification, at least one attempt left
�	unsuccessful UNBLOCK CHV verification, at least one attempt left
�	authentication failed (see note)��'98'�'08'��	in contradiction with CHV status��'98'�'10'��	in contradiction with invalidation status��'98'�'40'��	unsuccessful CHV verification, no attempt left
�	unsuccessful UNBLOCK CHV verification, no attempt left
�	CHV blocked
�	UNBLOCK CHV blocked��'98'�'50'��	increase cannot be performed, Max value reached��
9.3.1.6	Additional Return Values of USIM Applications
SW1�SW2�Error description��'62'�'00'��	No information given, processing completed��'62'�'81'�-	Part of returned data may be corrupted��'62'�'82'�-	End of file/record reached before reading Le bytes��'62'�'83'�-	Selected file invalidated��'62'�'84'�-	FCI not formatted according to chapter 9.4.1��'63'�'CX'��	Successful writing, but only after using an internal retry routine.�'X' ('0' indicates number of retries; 'X' = '0' means that no counter is provided��'65'�'81'��	Memory failure, same as '9240'��'69'�'81'��	Command incompatible with the file organisation��'69'�'82'�-	Security status not satisfied��'69'�'84'�-	Referenced data invalidated��'69'�'85'�-	Conditions of use not satisfied��'69'�'86'�-	Command not allowed (no current EF)��'6A'�'81'�-	Function not supported��'6A'�'82'�-	File not found, same as '9404'��'6A'�'83'�-	Record not found��'6A'�'84'�-	Not enough memory space in the file��'6A'�'85'�-	Lc inconsistent with TLV structure��'6A'�'86'�-	Incorrect parameters P1-P2��'6A'�'87'�-	Lc inconsistent with P1-P2��'6A'�'88'�-	Referenced data not found��'6C'�'XX'��	Wrong length Le; SW2 indicates the proper length (see NOTE2)��
NOTE1:	Response '9FXX' is related to GET RESPONSE command, and is therefore used with T=0 protocol. With�T=1protocol it shall not be used.
NOTE2:	If the command is aborted with the SW1 as '6C', the SW2 indicates correct value to be given to the short Le�field (exact length of requested data) when re-issuing the same command before issuing any other command.
9.3.2	Status Words of the Commands
The following table shows for each command the possible status conditions returned (marked by an asterisk *). Status conditions of GSM and USIM applications are on the left and right sides of the table, respectively.
Table 11: Commands and status words
Status Words
(GSM)�SELECT�STATUS�UPDATE BINARY�UPDATE RECORD�READ BINARY�READ RECORD�SEEK�INCREASE�VERIFY CHV�CHANGE CHV�DISABLE CHV�ENABLE CHV�UNBLOCK CHV�INVALIDATE�REHABILITATE�INTERNAL AUTHENTICATE�GET RESPONSE�TERMINAL PROFILE�ENVELOPE�FETCH�TERMINAL RESPONSE�MANAGE CHANNEL�Status Words
(USIM)��90 00��*�*�*�*�*�*��*�*�*�*�*�*�*��*�*�*�*�*�*�90 00��91 XX��*�*�*�*�*���*�*�*�*�*�*�*��*�*�*��*��91 XX��9F XX�*������*�*��������*���*����9F XX
61 XX#��93 00�������������������*����93 00��92 0X���*�*����*�*�*�*�*�*�*�*���*�*��*��92 0X��92 40�*��65 81��94 00���*�*�*�*�*�*������*�*��������94 00��94 02����*��*�����������������94 02��94 04�*������*����������������94 04��94 08���*�*�*�*�*�*��������*�������94 08��98 02���������*�*�*�*�*����������98 02��98 04���*�*�*�*�*�*�*�*�*�*�*�*�*�*�������69 82��98 08���������*�*�*�*�*����������98 08��98 10���*�*�*�*�*�*������*�*��������98 10��98 40���������*�*�*�*�*����������98 40��98 50�����������������������98 50��67 XX�*�67 XX��6B XX�*�6B XX��6D XX�����������������������6D XX��6E XX�*�6E XX��6F XX�*�6F XX�������*�*�����������������62 81���*����������������������62 83�������*�*�����������������62 82���*����������������������62 84������������������������*�62 00�����*�*�������������������63 CX�����*�*�*�*�����������������69 81������������������*�������69 84������������������*�������69 85�����*�*�*������������������69 86���*��*�*�*�*�����������������6A 81���*��*�*�*�*�����������������6A 82��������*�����������������6A 83������*�������������������6A 84������*�������������������6A 85���*���������������*�������6A 86���*����������������������6A 87������������������*�������6A 88���*����*������������������6C XX��
Value '61XX' may be used instead of '9FXX' by USIM applications.
The responses '91 XX', and '93 00' and '9E XX' can only be given by an UICC supporting SIM Application Toolkit to an ME also supporting SIM Application Toolkit.
Following the SEEK command the UICC can give the response '91 XX' only after the GET RESPONSE command, if the protocol T=0 is used.
9.4	Logical channels
This clause defines the logical channel concept.
9.4.1	Logical channel basics
A logical channel works like a link between an application residing in the card and an application in the UE. Each logical channel is assigned a unique channel number, indicated in b1 and b2 of the class byte, that is used by the UE to identify to which application a command is directed.
A basic logical channel shall always exist this is implicitly selected after the ATR has finished.
If other than the basic logical channel exists the number (at most 4) is indicated in the card capabilities sent as part of the historical bytes in the ATR.
Editor’s note: a reference to the ATR chapter/standard is needed here!

There shall be independence between the activity on each logical channel.
There can be more than one logical channel between the UE and an application.
At any time there can only be one response pending for all logical channels, this implies that when one command has been send on one logical channel there can only be sent a command when the first command has received it’s response.
When a logical channel has been opened it remains open for the rest of the card session unless it is explicitly closed as defined in 9.4.3.
A logical channel number can only be assigned by an application residing in the UE.
Editor’s note: should it be stated that there is a relation between the logical channel (conceived as a link between applications residing in the UICC and the UE) and a CHV verification, i.e. the CHV status is set to not verified when the application residing in the UE sends a SELECT command to the UICC selecting another application (DF). As far as the editor knows there is no such requirement or definition in 7816-4!.
9.4.2	Opening of logical channels
A logical channel can be opened in one of the following ways:
by sending a SELECT command to the UICC indicating a logical channel, in b2 and b1, that is not yet opened.
By sending a MANAGE CHANNEL command to the UICC indicating that a new channel is to be opened.
NOTE: as the basic channel is always open it can never be opened or closed.
9.4.3	Closing of logical channels
A logical is closed by sending a MANAGE CHANNEL command to the UICC explicitly stating that a specific logical channel shall be closed.
9.5	Mapping of APDU’s to TPDU’s
9.5.1	APDU messages with T=0
An APDU is transported by the T=0 transmission protocol without any change.
The bytes have the following meaning:
�	CLA is the class of instruction (ISO/IEC 7816�3)
�	INS is the instruction code (ISO/IEC 7816�3)
�	P1, P2, P3 are parameters for the instruction. P3 gives the length of the data element. P3='00' introduces a 256 byte data transfer from the UICC in an outgoing data transfer command (response direction). In an ingoing data transfer command (command direction), P3='00' introduces no transfer of data.
�	SW1 and SW2 are the status words indicating the successful or unsuccessful outcome of the command.
If the length of the response data is not known beforehand, then its correct length may be obtained by applying the first command and interpreting the status words. SW1 shall be '9F' and SW2 shall give the total length of the data. Other status words may be present in case of an error.
9.5.1.1 Communication between UE and UICC no extra information from the UICC
The table below presents the possible cases:
Case�UE -> UICC�UICC -> UE��1�No data�No data��2�No Data�Data of known length��3�No data�Data of unknown length��4�Data�No data��5�Data�Data of known / unknown length��
Case 1:
UE -> UICC: No input data��UICC -> UE: No output��
CLA�INS�P1�P2�Lc�����SW1�SW2�������������������Lgth (=’00’)��‘90’�‘00’��
Case 2:
UE -> UICC: No input data��UICC -> UE: Output data of known length��
CLA�INS�P1�P2�Le���DATA with length lgth�SW1�SW2��������������������Lgth (=’00’)������‘90’�‘00’��
Case 3:
UE -> UICC: No input data��UICC -> UE: Output data of unknown length��
CLA�INS�P1�P2�Lc������SW1�SW2��������������������Lgth = ‘00’�����‘9F’�Lgth1��

GET RESPONSE�������������CLA�INS�P1�P2�Le���DATA with length lgth2 (lgth1�SW1�SW2��������������������Lgth2��������'90'�'00'��
Case 4:
UE -> UICC: Data input��UICC -> UE: No data output��
CLA�INS�P1�P2�Lc�DATA with length lgth���SW1�SW2���������������������Lgth��������‘90’�‘00’��
Case 5:
UE -> UICC: Data input��UICC -> UE: Output data of known or unknown length��
CLA�INS�P1�P2�Lc�DATA with length lgth��SW1�SW2��������������������Lgth�������‘9F’�lgth1��

GET RESPONSE�������������CLA�INS�P1�P2�P3���DATA with length lgth2 (lgth1�SW1�SW2��������������������Lgth2��������'90'�'00'��
For cases 3 and 5, when SW1/SW2 indicates there is response data (i.e. SW1/SW2 = '9FXX'), then, if the ME requires to get this response data, it shall send a GET RESPONSE command as described in the relevant case above.
For case 5, in case of an ENVELOPE for SIM data download, SW1/SW2 can also indicate that there is response data with the value '9EXX', and the ME shall then send a GET RESPONSE command to get this response data.
9.5.1.2 Communication between UE and UICC extra information from the UICC
The following diagrams show how the five cases of transmission protocol identified in the above diagrams can all be used to send pro�active UICC commands. For further information on the diagrams below see GSM 11.14.
Case�UE -> UICC�UICC -> UE��1�No data�Ok response with no data, plus additional command from UICC��2�No data�Ok response with data of known length, plus additional command from UICC��3�No data�Ok response with data of unknown length, plus additional command from UICC��4�Data�Ok response with no data, plus additional command from UICC��5�Data�Ok response with data of known / unknown length, plus additional command from UICC��
Case 1:
UE -> UICC: No input data��UICC -> UE:OK response with no output, plus additional command from UICC��
CLA�INS�P1�P2�Lc�����SW1�SW2�������������������Lgth (=’00’)��‘91’�lgth1��
[Possible "normal GSM operation" command/response pairs]

Fetch
CLA�INS�P1�P2�Lc���DATA with length lgth1�SW1�SW2�������������������Lgth1��‘90’�‘00’��
NOTE:	lgth1='00' causes a data transfer of 256 bytes (short format only).

Case 2:
UE -> UICC: No input data��UICC -> UE: Output data of known length plus additional command from UICC��
CLA�INS�P1�P2�Le���DATA with length lgth�SW1�SW2��������������������Lgth������‘91’�Lgth1��
[Possible "normal GSM operation" command/response pairs]

FETCH�������������CLA�INS�P1�P2�Lc���DATA with length lgth1�SW1�SW2�������������������Lgth1��‘90’�‘00’��
NOTE:	lgth='00' causes a data transfer of 256 bytes (short format) or 65 536 bytes (extended format). lgth1='00' causes a data transfer of 256 bytes (short format only).
Case 3:
UE -> UICC: No input data��UICC -> UE: Output data of unknown length plus additional command from UICC��
CLA�INS�P1�P2�Lc������SW1�SW2��������������������Lgth = ‘00’�����‘9F’�Lgth1��

GET RESPONSE�������������CLA�INS�P1�P2�Le���DATA with length lgth2 (lgth1�SW1�SW2��������������������lgth2�������'91'�Lgth3��
[Possible "normal GSM operation" command/response pairs]

FETCH�������������CLA�INS�P1�P2�Lc���DATA with length lgth3�SW1�SW2�������������������Lgth3��‘90’�‘00’��
Case 4:
UE -> UICC: Data input��UICC -> UE: No data output, plus additional command from UICC��
CLA�INS�P1�P2�Lc�DATA with length lgth���SW1�SW2���������������������lgth��������‘91’�Lgth1��
[Possible "normal GSM operation" command/response pairs]

Fetch
CLA�INS�P1�P2�Lc���DATA with length lgth3�SW1�SW2�������������������Lgth1��‘90’�‘00’��

Case 5:
UE -> UICC: Data input��UICC -> UE: Ok response, output data of known or unknown length, plus additional command from UICC��
CLA�INS�P1�P2�Lc�DATA with length lgth��SW1�SW2��������������������lgth�������‘9F’�lgth1��

GET RESPONSE�������������CLA�INS�P1�P2�P3���DATA with length lgth2 (lgth1�SW1�SW2��������������������lgth2������'91'�Lgth3��[Possible "normal GSM operation" command/response pairs]
Fetch
CLA�INS�P1�P2�Lc���DATA with length lgth3�SW1�SW2�������������������Lgth3��‘90’�‘00’��
9.5.2 	APDU messages with T=1
For T=1 the descriptions in 7816-4 annex B can be used as a basis.
The transportation of APDU messages with T=1 is mapped to the information field of an I-block according to the four different cases described below. Each case is described in detail in the following chapters.
Case�UE -> UICC�UICC -> UE��1�No data�No data��2�Data�No data��3�No data�Data��4�Data�Data��
Case 1:
UE -> UICC: No input data��UICC -> UE: No output��Command APDU is mapped to the information field of the I-block without any changes:
Command APDU:
�CLA�INS�P1�P2���Information field:
�CLA�INS�P1�P2���
The response received from the information field in the I-block is mapped unchanged to the response APDU according to:
Information field:
�����������������SW1�SW2���������������������'90'�'00'��Response APDU�����������������SW1�SW2���������������������'90'�'00'��Case 2:
UE -> UICC: Data input��UICC -> UE: No output��The C-APDU is mapped to the information field of an I-block without any changes.
Command APDU:
�CLA�INS�P1�P2�Le field���Information field:
�CLA�INS�P1�P2�Le field��
The response of the APDU consists of either the information field of the I-block or the concatenation of the information field of successive I-blocks all received in the same response. All the se blocks shall be chained.
Information field consisting of the information field of the I-block:
����������Data field�SW1�SW2������������������������
Information field consisting of the concatenation of successive I-blocks, which shall be chained:
�Data �…�…��������…�…�…��������Field�SW1�SW2��
R-APDU:
����������Data field�SW1�SW2������������������������
Case 3:
UE -> UICC: No input data��UICC -> UE: Data output��Command APDU: The C-APDU is mapped without any changes to either an information field or is concatenated onto several successive I-blocks, which all shall be chained.
�CLA�INS�P1�P2�Lc field�Data field��������������������������������������Information field (direct mapping of the C-APDU):
�CLA�INS�P1�P2�Lc field�Data field��������������������������������������
Information field (Concatenating of successive information fields):
�CLA�INS�P1�P2�Lc field�Data��������…�…�…��������…�…�field��
Response field: The information field of the I-block is mapped to the R-APDU without any changes
�����������������SW1�SW2������������������������
R-APDU:
�����������������SW1�SW2�����������������������
Case 4:
UE -> UICC: Input data��UICC -> UE: Output data ��
Command APDU: �The C-APDU is mapped unchanged to either the information field of an I-block or to the concatenation of information fields of successive blocks, which all shall be chained.
�CLA�INS�P1�P2�Lc field�Data field�Le field��Information field:
�CLA�INS�P1�P2�Lc field�Data field�Le field��������������������������������������
Concatenation of information fields:
�CLA�INS�P1�P2�Lc field�Data��������…�…�…��������…�field�Le field��
Response field: The response consists of either the information field of an I-block received in the response or the concatenation of information fields of successive I-blocks in response. All these blocks shall be chained.
�����������������SW1�SW2�����������������������
�Data�…�…��������…�…�…��������…�SW1�SW2��

R-APDU:
���������Data field�SW1�SW2�����������������������
�9.6	Basic Commands
This subclause lists the basic command and response APDU formats that are supported by applications residing on a UICC.
Commands used to manage an application are not defined in this standard.
In the subsequent subclauses only the response data is listed, for the coding of the status words see 9.3.
9.6.1	SELECT
9.6.1.1	Command Parameters and Data

Code�Value��CLA�As specified in 9.1.1��INS�As specified in 9.1.2��P1�Selection control, see table 9.8��P2�Selection control, see table 9.9��Lc�Length of subsequent data field��Data�AID, file ID, DF name, or path to file, according to P1��Le�Empty, '00', or length of data expected in response��
Table 9.8: Coding of P1
b8�b7�b6�B5�b4�b3�b2�b1�Meaning��0�0�0�0�0�0�0�0�Select DF, EF or MF��0�0�0�0�0�1�0�0�Selection by the DF name or the AID��0�0�0�0�1�0�0�0�Select from path from MF��
Table 9.9: Coding of P2
b8�b7�b6�B5�b4�b3�b2�b1�Meaning��0�0�0�0�0�0�0�0�Return FCI template (see ISO/IEC 7816-4 [2], table 9.10 and table 9.15)��0�0�0�0�1�1�0�0�No file control information to be returned (see table 9.11 and table 9.16)��
It is mandatory to include the FCI template in the response data of USIM applications.
9.6.1.1	Response Data in case of MF or DF
Editor’s note: To align with ISO/IEC 7816 the response information returned by the card can be TLV coded with tags according to 7816-4 table 2 [2]. In order to ensure backward compatibility, also proprietary coded response, as shown in table 9.11, is allowed.
Response of an USIM application shall be according to table 9.10. Response of a GSM application shall be according to table 9.11.
Table 9.10: Response with FCI Template
Byte(s)�Description��1�FCI template tag = '6F'��2�DF name tag = '84'��3�Length of the DF name ��4 – 19�DF name, see table 9.14��20�Proprietary information tag = '85' – see NOTE1��21�Length of response information��22 – X�Response information, see tables 9.12 and 9.13��X+1�Short File Identifier tag =‘88’��X+2�Length = 1��X+3�SFI value��NOTE1:Currently this Tag is used mostly as a wrapping of the GSM information into proprietary information TLV structure but the exact coding is ffs.
Editor’s note: it should be discussed whether the SFI information should be used or not – there are some inherent time optimisation aspects to be considered here because a lot of select commands can be saved with this feature.
Table 9.11: Response without File Control Information
Byte(s)�Description��1�RFU��2�RFU��3 – X�Response information, see tables 9.12 and 9.13A��
Table 9.12: Response Information
Byte(s)�Description�Length��1 – 2�Total amount of memory of the selected directory which is not allocated to any of the DFs or EFs under the selected directory�2��3 � 4�File ID�2��5�Type of file (see subclause 9.6)�1��6 – 10�RFU�5��11�Length of the following data (byte 12 to the end)�1��12 � X�Application specific data – see NOTE1�21��NOTE1: the coding of these bytes are application specific and must be defined in the appropriate documents.

Editor’s note: for GSM the application specific information is coded as in Table 9.13A – but this table and the accompanying text must/should be moved to a GSM 11.11 specific document. For USIM table 9.13B applies – this is identical to 9.13A except byte 16 that are used for indication of application power consumption.
Table 9.13A: GSM Specific Data
Byte(s)�Description�Length��12�File characteristics (see detail 1)�1��13�Number of DFs which are a direct child of the current directory�1��14�Number of EFs which are a direct child of the current directory�1��15�Number of CHVs, UNBLOCK CHVs and administrative codes�1��16�RFU�1��17�CHV1 status (see detail 2)�1��18�UNBLOCK CHV1 status (see detail 2)�1��19�CHV2 status (see detail 2)�1��20�UNBLOCK CHV2 status (see detail 2)�1��21�RFU�1��22 � 32�Reserved for the administrative management�0 (lgth (11��

Bytes 1 - 20 are mandatory and shall be returned by the UICC. Bytes 21 and following are optional and may not be returned by the UICC.
NOTE 1:	Byte 35 and following are RFU.
NOTE 2:	The STATUS information of the MF, DFGSM and DFTELECOM provide some identical application specific data, e.g. CHV status. On a multi�application card the MF should not contain any application specific data. Such data is obtained by terminals from the specific application directories. ME manufacturers should take this into account and therefore not use application specific data which may exist in the MF of a mono�application SIM.
	Similarly, the VERIFY CHV command should not be executed in the MF but in the relevant application directory (e.g. DFGSM).
Detail 1: File characteristics
��b8�b7�b6�b5�b4�b3�b2�b1������������Clock stop (see below)������������For running the authentication algorithm, or the ENVELOPE command for SIM Data Download, a frequency is required of at least 13/8 MHz if b2=0 and 13/4 MHz if b2=1������������Clock stop (see below)������������for coding (see GSM 11.12 [28])������������RFU������������b8=0: CHV1 enabled; b8=1: CHV1 disabled��
The coding of the conditions for stopping the clock is as follows:
Bit b1�Bit b3�Bit b4���1�0�0�clock stop allowed, no preferred level��1�1�0�clock stop allowed, high level preferred��1�0�1�clock stop allowed, low level preferred��0�0�0�clock stop not allowed��0�1�0�clock stop not allowed, unless at high level��0�0�1�clock stop not allowed, unless at low level��
	If bit b1 (column 1) is coded 1, stopping the clock is allowed at high or low level. In this case columns 2 (bit b3) and 3 (bit b4) give information about the preferred level (high or low, respectively) at which the clock may be stopped.
	If bit b1 is coded 0, the clock may be stopped only if the mandatory condition in column 2 (b3=1, i.e. stop at high level) or column 3 (b4=1, i.e. stop at low level) is fulfilled. If all 3 bits are coded 0, then the clock shall not be stopped.
Detail 2: Status byte of a secret code
��b8�b7�b6�b5�b4�b3�b2�b1������������Number of false presentations remaining �('0' means blocked)������������RFU������������b8=0: secret code not initialised,
b8=1: secret code initialised��
Table 9.13B: USIM Specific Data
Byte(s)�Description�Length��12�File characteristics (see detail 1)�1��13�Number of DFs which are a direct child of the current directory�1��14�Number of EFs which are a direct child of the current directory�1��15�Number of CHVs, UNBLOCK CHVs and administrative codes�1��16�Application power consumption�1��17�CHV1 status (see detail 2)�1��18�UNBLOCK CHV1 status (see detail 2)�1��19�CHV2 status (see detail 2)�1��20�UNBLOCK CHV2 status (see detail 2)�1��21�RFU�1��22 � 32�Reserved for the administrative management�0 (lgth (11��
Table 9.14: Coding of DF Name within FCI Template
Byte(s)�Description�Length��1�TAG = ‘84’�1��2�0 < X < 17�1��3 – X+3�DF-name�X��
9.6.1.2	Response Data in case of an EF
Editor’s note: To align with ISO/IEC 7816 the response information returned by the card can be TLV coded with tags according to 7816-4 table 2 [2]. In order to ensure backward compatibility, also proprietary coded response, as shown in table 9.16, is allowed.
Response of an USIM application shall be according to table 9.15. Response of a GSM application shall be according to table 9.16.
Table 9.15: Response with FCI Template
Byte(s)�Description��1�FCI template tag = '6F'��2�Proprietary information tag = '85'��3�Length of proprietary information��4 – X�Proprietary information, see table 9.17.
See NOTE below��X+1�Short File Identifier tag=‘88’��X+2�Length = 1��X+3�SFI value��NOTE:	Currently this is used mostly as a wrapping of the GSM information into proprietary information TLV structure but the exact coding is ffs.��

Table 9.16: Response without File Control Information
Byte(s)�Description��1�RFU��2�RFU��3 – X�Response information, see table 9.17��
Table 9.17: Response Information
Byte(s)�Description�Length��1 – 2�File size
(for transparent EF: the length of the body part of the EF)
(for linear fixed or cyclic EF: record length multiplied by the number of records of the EF)�2��3 � 4�File ID�2��5�Type of file (see 9.8)�1��6�see detail 3�1��7 – 9�Access conditions (see 9.8)�3��10�File status (see 9.8)�1��11�Length of the following data (byte 14 to the end)�1��12�Structure of EF (see 9.8)�1��13�Length of a record (see detail 4)�1��14 and following�RFU�-��
Bytes 1-12 are mandatory and shall be returned by the UICC.
Byte 13 is mandatory in case of linear fixed or cyclic EFs and shall be returned by the UICC.
Byte 13 is optional in case of transparent EFs and may not be returned by the UICC.
Byte 14 and following (when defined) are optional and may not be returned by the UICC.
Detail 3: Byte 6
	For transparent and linear fixed EFs this byte is RFU. For a cyclic EF all bits except bit 7 are RFU; b7=1 indicates that the INCREASE command is allowed on the selected cyclic file.
Detail 4: Byte 13
For cyclic and linear fixed EFs this byte denotes the length of a record. For a transparent EF, this byte shall be�coded '00', if this byte is sent by the UICC.
Editor’s note: check if detail 3 and 4 also applies for linear variable records.
�9.6.2	STATUS
Command parameters:
Parameters P1 and P2 are identical to the command parameters of the SELECT command in case of MF or DF.
Code�Value��CLA�As specified in 9.1.1��INS�As specified in 9.1.2��P1�Selection control, see table 9.8��P2�Selection control, see table 9.9��Le�'00', or length of data expected in response��
Response parameters and data are identical to the response parameters and data of the SELECT command in case of MF or DF.
9.6.3	READ BINARY
Command parameters:
Code�Value��CLA�As specified in 9.1.1��INS�As specified in 9.1.2��P1�See table 9.18��P2�Offset low��Lc�Not present��Data�Not present��Le�Number of bytes to be read��
Table 9.18: Coding of P1
b8�B7�b6�B5�b4�b3�b2�b1�Meaning��1�-�-�-�-�-�-�-�SFI referencing used – P2 is the offset to the first byte to read��0�x�x�x�x�x�x�x�b7-b1 is the offset to the first byte to read – P2 is the low part of the offset��-�0�0�-�-�-�-�-�RFU��-�-�-�x�x�x�x�x�Short EF identifier (from 1 to 30)��
Response data:
Byte(s)�Description�Length��1 – Le�Data to be read�Le��
9.6.4	UPDATE BINARY
Command parameters and data:
Code�Value��CLA�As specified in 9.1.1��INS�As specified in 9.1.2��P1�See table 9.18��P2�Offset low��Lc�Length of the subsequent data field��Data�String of data to be updated��Le�Not present��
Coding of parameter P1 and P2 are identical to the coding of P1 and P2 in the READ BINARY command.

9.6.5	READ RECORD
Command parameters:
Code�Value��CLA�As specified in 9.1.1��INS�As specified in 9.1.2��P1�Record number��P2�Mode, see table 9.19��Lc�Not present��Data�Not present��Le�Number of bytes to be read��
Table 9.19: Coding of P2
b8�b7�b6�B5�b4�b3�b2�b1�Meaning��0�0�0�0�0�-�-�-�Currently selected EF��x�x�x�x�x�-�-�-�Short EF identifier (from 1 to 30)��-�-�-�-�-�0�1�0�Next record��-�-�-�-�-�0�1�1�Previous record��-�-�-�-�-�1�0�0�Absolute/ current mode, the record number is given in P1 with P1='00' denoting the current record��
For the modes "next" and "previous" P1 has no significance and shall be set to '00' by the UE. To ensure backward compatibility, the UICC shall not interpret the value given by the UE.
Response data:
Byte(s)�Description�Length��1 – Le�Data to be read�Le��
9.6.6	UPDATE RECORD
Command parameters and data:
Code�Value��CLA�As specified in 9.1.1��INS�As specified in 9.1.2��P1�Record number��P2�Mode, see table 9.19��Lc�Length of the subsequent data field��Data�String of data to be updated��Le�Not present��
Coding of parameter P2 is identical to the coding of P2 in READ RECORD command.

For the modes "next" and "previous" P1 has no significance and shall be set to '00' by the ME. To ensure backward compatibility, the UICC shall not interpret the value given by the ME.
�9.6.7	SEEK
Editor’s note: this command will be updated according to the outcome of the 7816-9 voting currently ongoing. This is because there are some enhancement under discussion that may come into 7816-9.

Command parameters and data:
Code�Value��CLA�As specified in 9.1.1��INS�As specified in 9.1.2��P1�'00'��P2�Type / Mode��Lc�Length of the subsequent data field��Data�Pattern��Le�Length of record number = '01'��
Parameter P2 specifies type and mode:
�	'10' = from the beginning forward;
�	'11' = from the end backward;
�	'12' = from the next location forward;
�	'13' = from the previous location backward

Response data:
Byte(s)�Description�Length��1�Record number�1��
9.6.8	INCREASE
Command parameters and data:
Code�Value��CLA�As specified in 9.1.1��INS�As specified in 9.1.2��P1�'00'��P2�'00'��Lc�Length of the subsequent data field��Data�Value to be added��Le�Length of the response data��

Response data:
Byte(s)�Description�Length��1 – X�Value of the increased record�X��X+1 – X+Lc�Value which has been added�Lc��
NOTE:	X denotes length of the record. Le = X + Lc.
�9.6.9	VERIFY CHV
Command parameters:
Code�Value��CLA�As specified in 9.1.1��INS�As specified in 9.1.2��P1�'00'��P2�Qualifier, see table 9.20��Lc�Length of the subsequent data field = '08'��Data�CHV value��Le�Not present��
Table 9.20: Coding of P2
b8�b7�b6�b5�b4�b3�b2�b1�Meaning��0�0�0�-�-�-�-�-�Global reference data (e.g. card password)��1�0�0�-�-�-�-�-�Specific reference data (e.g. DF password)��-�0�0�x�x�x�x�x�CHV number��
Five least significant bits of parameter P2 specify the CHV number. The following values are reserved for backward compatibility:
�	'X1' = CHV1;
�	'X2' = CHV2.
For GSM application bit8 of parameter P2 shall be set to '0'.
Command data:
Byte(s)�Description�Length��1 � 8�CHV value�8��
9.6.10	CHANGE CHV
Command parameters:
Code�Value��CLA�As specified in 9.1.1��INS�As specified in 9.1.2��P1� ‘00’ = exchange CHV and
 ‘01’ = change CHV.��P2�Qualifier, see table 9.19��Lc�P1 = ‘00’:Lc = '10'
P1 = ‘00’: Lc = '08'��Data�P1 = ‘00’: Old CHV value,
P1 = ‘01’: new CHV value��Le�Not present��
Coding of P2 is identical to the P2 of VERIFY CHV command.
Command data in case P1 = ‘01’:
Byte(s)�Description�Length��1 � 8�Old CHV value�8��9 � 16�New CHV value�8��
Command data in case P1 = ‘00’:
Byte(s)�Description�Length��1 � 8�Old CHV value�8��
9.6.11	DISABLE CHV
Command parameters:
Code�Value��CLA�As specified in 9.1.1��INS�As specified in 9.1.2��P1�‘00’ = CHV present in the Data field and
‘01’ = CHV not present in the Data field
��P2�Qualifier, see table 9.21��Lc�P1= ‘00’: Lc = '08'
P1= ‘01’: Lc is absent.��Data�P1= ‘00’: Data field contains the CHV
P1= ‘01’: Data field empty
��Le�Not present��
Table 9.21: Coding of P2
b8�b7�b6�b5�b4�b3�b2�b1�Meaning��0�0�0�-�-�-�-�-�Global reference data (e.g. card password)��1�0�0�-�-�-�-�-�Specific reference data (e.g. DF password)��-�0�0�x�x�x�x�x�CHV number��Editor’s note: It is to be studied what CHV's can be disable
Command data in case P1 = ‘00’:
Byte(s)�Description�Length��1 � 8�CHV value�8��
9.6.12	ENABLE CHV
Command parameters:
Code�Value��CLA�As specified in 9.1.1��INS�As specified in 9.1.2��P1�'00'��P1�‘00’ = CHV present in the Data field and
‘01’ = CHV not present in the Data field��P2�Qualifier, see table 9.22��Lc�P1=’00’: Lc = ‘08’
P1=’00’: Lc is absent��Data�CHV value��Le�Not present��
Table 9.22: Coding of P2
b8�b7�b6�b5�b4�b3�b2�b1�Meaning��0�0�0�-�-�-�-�-�Global reference data (e.g. card password)��1�0�0�-�-�-�-�-�Specific reference data (e.g. DF password)��-�0�0�x�x�x�x�x�CHV number��Editor’s note: It is to be studied what CHV's can be disabled

Command data:
Byte(s)�Description�Length��1 � 8�CHV value�8��
9.6.13	UNBLOCK CHV
Command parameters:
Code�Value��CLA�As specified in 9.1.1��INS�As specified in 9.1.2��P1�'00'��P2�Qualifier, see table 9.20��Lc�Length of the subsequent data field = '10'��Data�UNBLOCK CHV value, new CHV value��Le�Not present��Editor’s note: do we need the new P1 options as defined in 7816-8?
Coding of P2 is identical to the P2 of VERIFY CHV command.
Coding of CHV number in parameter P2:
�	00 = CHV1;
�	02 = CHV2.
NOTE:	The coding '00' for CHV1 differs from the coding of CHV1 used for other commands.
Command data:
Byte(s)�Description�Length��1 � 8�UNBLOCK CHV value�8��9 � 16�New CHV value�8��
9.6.14	INVALIDATE
Command parameters:
Code�Value��CLA�As specified in 9.1.1��INS�As specified in 9.1.2��P1�'00'��P2�'00'��Lc�'00'��Data�Not present��Le�Not present��
9.6.15	REHABILITATE
Command parameters:
Code�Value��CLA�As specified in 9.1.1��INS�As specified in 9.1.2��P1�'00'��P2�'00'��Lc�'00'��Data�Not present��Le�Not present��
9.6.16	INTERNAL AUTHENTICATE
An appropriate application shall be selected in UICC before issuing this command.
Command parameters and data:
Code�Value��CLA�As specified in 9.1.1��INS�As specified in 9.1.2��P1�See table 9.23��P2�See table 9.23��Lc�Length of the subsequent data field��Data�Authentication related data��Le�Length of the response data��
Table 9.23: Coding of P1 and P2
P1�P2�Meaning��‘00’�‘00’�GSM authentication��‘01’�‘XX’�UMTS authentication��

Response data (generic):
Byte(s)�Description�Length��1 – Le�Authentication related data (see NOTE 2)�Le��
NOTE 2:	Response data of the command depends on the selected application and command parameters. Response data format other than for GSM or UMTS authentication is out of scope of this specification.

Response data (GSM):
Byte(s)�Description�Length��1 � 4�SRES�4��5 � 12�Cipher Key Kc�8��
The most significant bit of SRES is coded on bit 8 of byte 1. The most significant bit of Kc is coded on bit 8 of byte 5.
Editor’s note: the text below is just a copy of the GSM authentication it is certain that something new will be defined for UMTS and the document should be updated accordingly.
Response data (UMTS):
Byte(s)�Description�Length��1 � 4�SRES�4��5 � Le�Cipher Key Kcu�Le–4��
The most significant bit of SRES is coded on bit 8 of byte 1. The most significant bit of Kcu is coded on bit 8 of byte 5.
9.6.17	TERMINAL PROFILE
Command parameters and data:
Code�Value��CLA�As specified in 9.1.1��INS�As specified in 9.1.2��P1�'00'��P2�'00'��Lc�Length of the subsequent data field��Data�Terminal profile data defined in GSM 11.14��Le�Not present��
Editor’s note: Are there any needs to use this command for sending some other profile than SIM ATK profile to the card? The profile could be selected e.g. with parameter P1 or P2, so that P1='00' means SIM ATK profile, P1='01' means some other profile, etc.
9.6.18	ENVELOPE
Command parameters and data:
Code�Value��CLA�As specified in 9.1.1��INS�As specified in 9.1.2��P1�'00'��P2�'00'��Lc�Length of the subsequent data field��Data�Data string��Le�Length of expected data��
Response data:
Structure of the response data is defined in GSM 11.14
9.6.19	FETCH
Command parameters and data:
Code�Value��CLA�As specified in 9.1.1��INS�As specified in 9.1.2��P1�'00'��P2�'00'��Lc�Not present��Data�Not present��Le�Length of expected data��
Response data:
Structure of the response data is defined in GSM 11.14

�9.6.20	TERMINAL RESPONSE
Command parameters and data:
Code�Value��CLA�As specified in 9.1.1��INS�As specified in 9.1.2��P1�'00'��P2�'00'��Lc�Length of the subsequent data field��Data�Terminal response data defined in GSM 11.14��Le�Not present��
9.6.21	MANAGE CHANNEL
This command is used to manage other than basic logical channel '00' of the card. The basic channel is always available.
Command parameters and data:
Code�Value��CLA�As specified in 9.1.1��INS�As specified in 9.1.2��P1�Logical channel operation code��P2�Logical channel number, or '00'��Lc�Not present��Data�Not present��Le�Length of expected data (see NOTE)��
Values for parameter P1:�	- '00':	Open logical channel�	- '01':	Close logical channel
Parameter P2 indicates logical channel number: '01', '02' or '03'. Value '00' of P2 does not mean logical channel number, but advises the card internally assign the channel number and return it as a response. With other values of P2 the channel number is externally assigned.
Response data (see NOTE):
Byte(s)�Description�Length��1�Logical channel number�1��
NOTE:	Response data is available only if the value of the parameters P1-P2 is '0000'.
�9.7	Transmission Oriented Commands
9.7.1	GET RESPONSE
Command parameters:
Code�Value��CLA�As specified in 9.1.1��INS�As specified in 9.1.2��P1�'00'��P2�'00'��Lc�Not present��Data�Not present��Le�'00' or value of SW2 of the previous command��
Response parameters and data:
The response data is defined in each subclause of the corresponding command.

The response data depends on the preceding command. Response data is available after the commands INTERNAL AUTHENTICATE, SEEK (type 2), SELECT, INCREASE, ENVELOPE, and MANAGE CHANNEL. If the command GET RESPONSE is executed, it is required that it is executed immediately after the command it is related to (no other command shall come between the command/response pair and the command GET RESPONSE). If the sequence is not respected, the UICC shall send the status information "technical problem with no diagnostic given" as a reaction to the GET RESPONSE.
Since the MF is implicitly selected after activation of the UICC, GET RESPONSE is also allowed as the first command after activation.
Use of GET RESPONSE command depends on the underlying transmission protocol: With T=0 it is required with the previously specified commands, whereas with T=1 it shall not be used.
9.8	Coding of telecom specific EF response data
The following response coding applies for telecom applications are used in the response to SELECT command when a EF has been selected.
File status
��b8�b7�b6�b5�b4�b3�b2�b1������������b1=0: invalidated; b1=1: not invalidated������������RFU������������b3=0: not readable or updatable when invalidated
b3=1: readable and updatable when invalidated������������RFU��
Bit b3 may be set to 1 in special circumstances when it is required that the EF can be read and updated even if the EF is invalidated, e.g. reading and updating the EFADN when the FDN feature is enabled, or reading and updating the EFBDN when the BDN feature is disabled.
Structure of file
�	'00'	transparent;
�	'01'	linear fixed;
- ‘02’ linear variable;
�	'03'	cyclic.
Type of File
�	'00'	RFU;
�	'01'	MF;
�	'02'	DF;
�	'04'	EF.
Coding of CHVs and UNBLOCK CHVs
A CHV is coded on 8 bytes. Only (decimal) digits (0�9) shall be used, coded in CCITT T.50 [20] with bit 8 set to zero. The minimum number of digits is 4. If the number of digits presented by the user is less than 8 then the ME shall pad the presented CHV with 'FF' before sending it to the SIM.
The coding of the UNBLOCK CHVs is identical to the coding of the CHVs. However, the number of (decimal) digits is always 8.
Coding of Access Conditions
The access conditions for the commands are coded on bytes 9, 10 and 11 of the response data of the SELECT command. Each condition is coded on 4 bits as shown in table 10.
Table 9.24: Access conditions
ALW�	'0' *��CHV1�	'1' *��CHV2�	'2' *��RFU�	'3'��ADM�	'4'��.....�	..��ADM�	'E'��NEV�	'F' *��
Entries marked "*" in the table above, are also available for use as administrative codes in addition to the ADM access levels '4' to 'E' (refer to subclause 7.3 ?) if required by the appropriate administrative authority. If any of these access conditions are used, the code returned in the Access Condition bytes in the response data shall be the code applicable to that particular level.
Byte 9:
��b8�b7�b6�b5�b4�b3�b2�b1������������UPDATE������������READ; SEEK��
Byte 10:
��b8�b7�b6�b5�b4�b3�b2�b1������������RFU������������INCREASE��
Byte 11:
��b8�b7�b6�b5�b4�b3�b2�b1������������INVALIDATE������������REHABILITATE��
�Annex A (informative):�Coding of BER-TLV data objects.
Editor’s note: This Annex is a cut from GSM 11.14 and must be modified to reflect the coding used for e.g. FCI templates and such
BER-TLV data object�T�L��V�1..n SIMPLE-TLV objects����������������SIMPLE-TLV data object���T�L�V�1..m elements��T�L�V����������������Elements within the data object��������������
SIM Application Toolkit commands and responses are sent across the interface as BER-TLV data objects. Each APDU shall only contain one BER-TLV object.
The tag is a constant value, length one byte, indicating it is a SIM Application Toolkit command.
The length is coded onto 1,or 2 bytes according to ISO/IEC 7816�6 [17]. The following table details this coding:
Length�Byte 1�Byte 2��0�127�length ('00' to '7F')�not present��128�255�'81'�length ('80' to 'FF')��
Any length within the APDU limits (up to 255 bytes) can thus be encoded on two bytes. This coding is chosen to remain compatible with ISO/IEC 7816�6 [17].
Any values for byte 1 or byte 2 that are not shown above shall be treated as an error and the whole message shall be rejected.
The value part of the BER-TLV data object consists of SIMPLE-TLV data objects, as shown in the description of the SIMPLE-TLV data objects on individual commands. It is mandatory for SIMPLE-TLV data objects to be provided in the order given in the description of each command. New SIMPLE-TLV data objects can be added to the end of a command.
The M/O columns specify whether it is mandatory or optional for the sender to send that particular SIMPLE-TLV data object for compliance with the current version of this TS. The Min (Minimum Set) column describes whether it is necessary for the receiver to have received that particular SIMPLE-TLV data object to be able to attempt at least the most basic form of this command. The procedure for dealing with incomplete messages is described in subclause 6.10.
'00' and 'FF' are never used as tag values for BER-TLVs. This is in accordance with ISO/IEC 7816�6 [17]. Padding characters are not allowed.
See ISO/IEC 7816�6 [17] for more information on data objects.
�History
Document history��V0.1.0�April 1999�1ST draft version for comments before TSG T3 #4 meeting, 19-21 April, 1999.������������������

3GPP TSG-T3 meeting #3
Tokyo 19-21 April, 1999
�
Document T3-99107
 ��

3GPP

� styleref ZA �3GPP 31.YY V0.1.0 (1999-04)�
� PAGE �20�
� styleref ZGSM �UMTS 31.YY�

3GPP TSG-T3 meeting #3
Tokyo 19-21 April, 1999
�
Document T3-99105
 ��

3GPP

