	3GPP T3 SWG #11
Sophia Antipolis, France, 18 - 19 Feb, 2002
	T3a020007
revised SCP3-020006
revised T3a010232
revised SCP-010374

 TS 102.241 V1.3.0 (2002-2)
Technical Specification

UICC Application Programming Interface

(UICC API);

UICC API for Java Card™;

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organisational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organisational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organisational Partners' Publications Offices.

Keywords

 UICC, card, terminal

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2001, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA,TTC).

All rights reserved.

Contents

4Foreword

1
Scope
5
2
References
5
3
Definitions and abbreviations
5
3.1
Definitions
5
3.2
Abbreviations
6
4
Description
6
4.1
UICC Java Card Architecture
6
4.2
Java Card Selection Mechanism
8
5
UICC Framework
8
5.1
Overview
8
5.3
UICC file access
8
5.3
Access control
8
5.4
UICC low Level API
9
6
UICC Toolkit Framework
9
6.1
Overview
9
6.2
Applet Triggering
9
6.3
Registration
12
6.4
Proactive command handling
12
6.5
Envelope response handling
13
6.6
Handler availability
13
6.7
UICC Toolkit Framework behaviour
15
6.8
Usage of ViewHandler and EditHandler
15
7
UICC toolkit applet
16
7.1
Applet Loading
16
7.2
Object Sharing
16
Annex A (normative): Java Card UICC API
17
Annex B (normative): Java Card UICC API identifiers
18
Annex C (normative): UICC API package version management
19
Change history

20
History
21

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available free of charge from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification has been produced by the ETSI SCP project based on work originally done by the 3rd Generation Partnership Project (3GPP) and by the Special Mobile Group (SMG) in ETSI.

The present document details the stage 1 aspects (overall service description) for the support of a UICC Application Programming Interface (UICC API).

The contents of the present document are subject to continuing work within the ETSI SCP and may change following formal approval. Should ETSI SCP modify the contents of the present document, it will be re-released by the ETSI with an identifying change of release date and an increase in version number as follows:

Version 1.y

where:

x
the second digit is incremented for changes of substance, i.e. technical enhancements, corrections, updates, etc.

y
the third digit is incremented when editorial only changes have been incorporated in the specification;

1
Scope

The present document defines the stage two description of the UICC Application Programming Interface (UICC API) internal to the UICC.

This stage two describes the functional capabilities and the information flow for the UICC API implemented on the Java Card 2.1 specification [3][4][5].

The present document includes information applicable to network operators, service providers and UICC, server and database manufacturers.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

· A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same number.

[1]
3GPP TS GSM 03.48: "Digital cellular telecommunications system (Phase 2+); Security Mechanisms for the SIM application toolkit; Stage 2".

[2]
ISO/IEC 7816-3 (1997) " Identification cards ‑ Integrated circuit(s) cards with contacts, Part 3: Electronic signals and transmission protocols".

[3]
 Sun Microsystems Java Card™ Specification "Java Card 2.1 API Specification".

[4]
Sun Microsystems Java Card™ Specification "Java Card 2.1 Runtime Environment Specification".

[5]
Sun Microsystems Java Card™ Specification "Java Card 2.1 VM Architecture Specification".

SUN Java Card Specifications can be downloaded at http://java.sun.com/products/javacard
[6]
EG 201 220 "Integrated Circuit Cards (ICC); ETSI numbering system for telecommunication; Application providers (AID)".

[7]
ETSI TS 102.221 “UICC Terminal interface; Physical and logical characteristics”

[8]
ETSI TS 102.223 “Card Application Toolkit”

[9]
ETSI TS 101 220 "Integrated Circuit Cards (ICC); ETSI numbering system for telecommunication; Application providers (AID)".

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the following terms and definitions apply:

Applet : An Applet is an application built up using a number of classes which will run under the control of the Java Card virtual machine. Applets designed for smart cards are sometimes referred to as Cardlets.

Bytecode : Machine independent code generated by a Java compiler and executed by the Java interpreter.

Class : The Class is a type that defines the implementation of a particular kind of object. A Class definition defines instance and class variables and methods.

Framework : A framework defines a set of Application Programming Interface (API) classes for developing applications and for providing system services to those applications.

Java : An object oriented programming language developed by Sun Microsystems designed to be platform independent.

Method : A Method is a piece of executable code that can be invoked, possibly passing it certain values as arguments. Every Method definition belongs to some class.

Object : The principal building block of object oriented programs. Each object is a programming unit consisting of data (variables) and functionality (methods)

Package : A group of classes. Packages are declared when writing a Java Card program

Toolkit applet : Applet loaded onto the UICC card seen by the Mobile as being part of the UICC Toolkit application and containing only the code necessary to run the application. These applets might be downloaded via any type of network.

Virtual Machine : The part of the Run-time environment responsible for interpreting the bytecode.

3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply :

AC
Application Code

AID
Application Identifier

APDU
Application Protocol Data Unit

API
Application Programming Interface

CAD
Card Acceptance Device

FFS
For Further Study

IFD
Interface Device

JCRE
Java Card™ Run Time Environment

JVM
Java Virtual Machine

ME
Mobile Equipment

MS

Mobile Station

NAA

Network Access Application (e.g. SIM, USIM)

SE
Sending Entity

VM
Virtual Machine

4
Description

The present document describes an API for the UICC platform. This API allows application programmers to get access to the functions and data described in ETSI SCP TS 102.221[7] and ETSI SCP TS 102.223 [8] such that UICC based services can be developed and loaded onto a UICC, quickly and, if necessarily, remotely, after the card has been issued.

This API is an extension to the Java Card 2.1 API [3] based on the Java Card 2.1 Runtime Environment [4].

4.1
UICC Java Card Architecture

The over all architecture of the UICC API is based on Java Card 2.1 [3][4][5] is:

Figure 1: UICC Java Card Architecture

UICC Toolkit Framework: this is the UICC Java Card™ runtime environment, it is composed of the JCRE, the Toolkit Registry, the Toolkit Handler and the File Systems.

JCRE: this is specified in Java Card™ 2.1 Runtime Environment Specification [4] and is able to select any specific applet and transmit to it the process of its APDU.

Toolkit Registry: this is handling all the registration information of the toolkit applets, and their link to the JCRE registry.

Toolkit Handler: this is handling the availability of the system handler and the toolkit protocol (i.e. toolkit applet suspension).

UICC File System: it contains the File System of the UICC specified in TS 102.221 [7] (i.e. the files under the MF level and the DF Telecom) and handles its own file access control. It is a JCRE owned object implementing the shareable interface uicc.access.UICCView.

Applets: these derive from javacard.framework.Applet and provide the entry points : process, select, deselect, install as defined in the Java Card™ 2.1 Runtime Environment Specification [4].

Toolkit applets: these derive from javacard.framework.Applet, so provide the same entry points, and implement the shareable interface uicc.toolkit.ToolkitInterface so that these applets can be triggered by an invocation of their processToolkit method. These applets' AID is defined in TS 102 220 [9].
Loader applet: this is handling the installation and uninstallation of the applets as specified in the applet loading specification GSM 03.48[1].

Shareable interface: this is defined in the Java Card 2.1 specifications.

4.2
Java Card Selection Mechanism

The Java Card™ selection mechanism is defined in the Java Card™ Runtime Environment Specification [4].

5
UICC Framework

5.1
Overview

The UICC Framework consists of one or no applet and the JCRE File System Objects.

The UICC Framework is based on three packages:

-
The UICC low level package [FFS];

· The uicc.access package, which allows applets to access the filesystem of the UICC.

· The uicc.toolkit package, which allows applets to access the toolkit functionality of the UICC.

5.3 UICC file access

The following methods shall be offered by the API to card applets, to allow access to the UICC data:

activateFile
This function reactivates a deactivated EF. In case of successful execution of the command, the EF on which the command was applied becomes the current EF. After an unsuccessful execution, the current EF and current DF shall remain the same as prior to the execution.
deactivateFile
This function initiates a reversible deactivation of an EF. In case of successful execution of the command, the EF on which the command was applied becomes the current EF. After an unsuccessful execution, the current EF and current DF shall remain the same as prior to the execution.
increase
This function adds the value given in an array of bytes to the value of the last increased/updated record of the current cyclic EF, and stores the result into the oldest record. The record pointer is set to this record and this record becomes record number 1. The function does not perform the increase if the result would exceed the maximum value of the record (represented by all bytes set to 'FF').
readBinary
This function reads an array of bytes from the current transparent EF
readRecord
This function reads one complete record in the current linear fixed or cyclic EF into an array of bytes.
SearchRecord
This function searches through a linear fixed or cyclic EF to find record(s) containing a specific pattern
select
Select a file without changing the current file of any other applet or of the subscriber session.
status
This function returns information concerning the current directory.
updateBinary
This function updates the current transparent EF with an array of bytes.
updateRecord
This function updates one specific, complete record in the current linear fixed or cyclic EF with an array of bytes.

These methods are described in the uicc.access.UICCView interface in Annex A.

5.3
Access control

The Access Control privileges of the applet are granted during installation according to the level of trust. When an applet requests access to the UICC files, the UICC Toolkit Framework checks if this access is allowed by examination of the file control information stored on the card. If access is granted the UICC Toolkit Framework will process the access request, if access is not granted, an exception will be thrown. The access control mechanism is defined in 3GPP TS GSM 03.48 [1].

5.4
UICC low Level API

[FFS] This API allows the implementation of a NAA application (e.g. a SIM and USIM applet)

6
UICC Toolkit Framework

6.1
Overview

The UICC API consist of APIs for toolkit features TS 102.223 [8] and for file access TS 102.221 [7]

[image: image1.wmf]

Toolkit

Applet 1

Applet 2

Toolkit

Applet 3

Applet n

Proactive

Command handler

UICC Framework

Files

Toolkit Framework

Applet

install/uninstall

Securit

y

Applet

triggering

Applet security

manager

Activatio

n

Proactiv

e

command

s

P/C

response

s

Instal

l

Uninsta

ll

APD

U

JCR

E

APD

U

e.g.

Envelope

s

Proactive polling, 91XX,

Fetch,

Proactive

commands,

Terminal

Response

File

acces

s

File

ac

cess

…

 (

see NOTE 1)

NOTE 1:

The install /

uninstall

process is defined in

GSM

03.48 [4]

uicc.toolkit

uicc.access

Figure 2: UICC Toolkit Framework functional description

In this model the UICC data field structure is viewed as a series of data objects to the API. In the physical model of course, they may still be stored in elementary fields, but classes will access these data as part of the objects within those classes.

6.2
Applet Triggering

The application triggering portion of the UICC Toolkit Framework is responsible for the activation of toolkit applets, based on the APDU received by the UICC framework .

[image: image2.wmf]

APD

U

Applet Triggering

Menu

Selected

Terminal

Profile

...

Figure 3: toolkit applet triggering diagram

The terminal shall not be adversely affected by the presence of applets on the UICC card. For instance a syntactically correct Envelope shall not result in an error status word in case of a failure of an applet. The applications seen by the terminal are first level applications (e.g. SIM, USIM). A toolkit applet may throw an exception, but this error will not be sent to the terminal.

The difference between a Java Card™ applet and a Toolkit applet is that the latter does not handle APDUs directly. It will handle higher level messages. Furthermore the execution of a method could span over multiple APDUs, in particular, the proactive protocol commands (Fetch, Terminal Response).

As seen above, when a first level application is the selected application and when a toolkit applet is triggered the select() method of the toolkit applet shall not be launched since the toolkit applet itself is not really selected.

Here after are the events that can trigger a toolkit applet :

EVENT_FIRST_COMMAND_AFTER_SELECT

Upon reception of the first command received by an application after it has been selected or after the ATR if it is the default application, and after the command has been processed by the application, the toolkit framework shall trigger all the toolkit applets registered to this event.

If the first command received by the application is a toolkit applet triggering command (e.g. TERMINAL PROFILE), the toolkit applets registered on the EVENT_FIRST_COMMAND_AFTER_SELECT event shall be triggered first.

EVENT_PROFILE_DOWNLOAD

Upon reception of the Terminal Profile command by the UICC framework, the UICC Toolkit Framework stores the terminal profile and then triggers the registered toolkit applets that may want to change their registry. A toolkit applet may not be able to issue a proactive command.

EVENT_MENU_SELECTION, EVENT_MENU_SELECTION_HELP_REQUEST

A toolkit applet might be activated upon selection in the terminal menu by the user, or request help on this specific menu.

In order to allow the user to choose in a menu, the UICC Toolkit Framework shall have previously issued a SET UP MENU proactive command. When a toolkit applet changes a menu entry of its registry object, the UICC Toolkit Framework shall dynamically update the menu stored in the terminal during the current card session. The UICC Toolkit Framework shall use the data of the EFsume file when issuing the SET UP MENU proactive command.

The positions of the toolkit applet menu entries in the item list, the requested item identifiers and the associated limits (e.g. maximum length of item text string) are defined at the loading of the toolkit applet.

If at least one Menu Id of a toolkit applet registers to EVENT_MENU_SELECTION_HELP_REQUEST, the SET UP MENU proactive command sent by the UICC Toolkit Framework shall indicate to the ME that help information is available unless all the menus entries that support help are disabled.

A toolkit applet shall be triggered by the EVENT_MENU_SELECTION_HELP_REQUEST event only if the Menu Id corresponding to the Envelope Menu Selection Help Request received by the UICC Tookit framework was registered with the helpSupported value set to true.
EVENT_CALL_CONTROL

When the NAA is in call control mode and when the user dials a number, this number is passed to the NAA. Only one toolkit applet can handle the answer to this command: call barred, modified or accepted.

EVENT_EVENT_DOWNLOAD_MT_CALL, EVENT_EVENT_DOWNLOAD_CALL_CONNECTED, EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED, EVENT_EVENT_DOWNLOAD_LOCATION_STATUS, EVENT_EVENT_DOWNLOAD_USER_ACTIVITY, EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE,
EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS, EVENT_EVENT_DOWNLOAD_LANGUAGE_SELECTION, EVENT_EVENT_DOWNLOAD_BROWSER_TERMINATION, EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE,

EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS

The toolkit applet will be triggered by the registered event download trigger, upon reception of the corresponding Envelope command.

In order to allow the toolkit applet to be triggered by these events, the UICC Toolkit Framework shall have previously issued a SET UP EVENT LIST proactive command. When a toolkit applet changes one or more of these requested events of its registry object, the UICC Toolkit Framework shall dynamically update the event list stored in the ME during the current card session.

EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE ,
EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS

For EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE and EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS, the framework shall only trigger the applet registered to these events with the appropriate channel identifier.

The registration to the EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE and EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS is effective once the toolkit applet has issued a successful OPEN CHANNEL proactive command, and valid till the first successful CLOSE CHANNEL or a channel link is released by the ME or the card session.

When a Toolkit Applet has sent an OPEN CHANNEL proactive command and received a successful TERMINAL RESPONSE, the framework shall register the received channel identifier for the calling Toolkit Applet.

When a Toolkit Applet has sent a CLOSE CHANNEL proactive command and received a successful TERMINAL RESPONSE, the framework shall release the channel identifier contained in the command.

A successful TERMINAL RESPONSE means that the result of the proactive command execution belongs to command performed category (i.e. General Result ='0x').

EVENT_TIMER_EXPIRATION

At the registration to this event the toolkit applet gets the reference to its timer. The toolkit applet can then manage the timer, it will be triggered at the reception of the APDU Envelope TIMER EXPIRATION.

The UICC Toolkit Framework shall reply busy to this Envelope APDU if it cannot guaranty to trigger the corresponding toolkit applet.

EVENT_UNRECOGNIZED_ENVELOPE

The applet registered to this event shall be triggered by the framework if the BER-TLV tag contained in the ENVELOPE APDU is not defined in the associated release of TS 102.223[12] and if no corresponding constant is defined in the list of the ToolkitConstants interface. The unrecognized Envelope event will allow a toolkit applet to handle the evolution of the TS 102.223 specification.

Note : As a consequence of the EnvelopeResponseHandler availability rules specified in clause 6.6, only the first triggered toolkit applet is guaranteed to be able to send back a response.
EVENT_STATUS_COMMAND

At reception of a STATUS APDU command, the UICC Toolkit Framework shall trigger the registered toolkit applet.

A range of events is reserved for proprietary usage (from –128 to –1). The use of these events will make the toolkit applet incompatible.

The toolkit applet shall be triggered for the registered events upon reception, and shall be able to access to the data associated to the event using the methods provided by the uicc.toolkit.ViewHandler.EnvelopeHandler class.

The order of triggering the toolkit applet shall follow the priority level of each toolkit applet defined at its loading. If several toolkit applets have the same priority level, the last loaded toolkit applet takes precedence.

6.3
Registration

During it's installation the toolkit applet shall register to the JCRE and the UICC Toolkit Framework so that it can be triggered by both selection mechanisms.

The toolkit applet will have to call the getEntry() method to get a reference to it's registry and then to explicitly register to each event it requires.

The toolkit applet can change the events to which it is registered during its life cycle.

The toolkit applet will dynamically register itself to some event e.g. EVENT_MENU_SELECTION by calling the corresponding method e.g. initMenuEntry().

The API is described in the uicc.toolkit.ToolkitRegistry class in Annex A.

6.4
Proactive command handling

The toolkit applet shall not handle the toolkit protocol (i.e. 91xx, Fetch, Terminal Response).

The UICC Toolkit Framework shall provide a reference of the uicc.toolkit.ViewHandler.EditHandler.ProactiveHandler to the toolkit applet so that when the toolkit applet is triggered it can:

-
initialise the current proactive command with the init() method ;

-
append several Simple TLV as defined in TS 102.223 [12] to the current proactive command with the appendTLV() methods ;

-
ask the UICC Toolkit Framework to send this proactive command to the terminal and wait for the reply, with the send() method.

The UICC Toolkit Framework shall handle the transmission of the proactive command to the terminal, and the reception of the response. The UICC Toolkit Framework will then return to the toolkit applet just after the send() method. It shall provide to the toolkit applet the uicc.toolkit.ViewHandler.ProactiveResponseHandler, so that the toolkit applet can analyse the response.

The proactive command is sent to the terminal as defined and constructed by the toolkit applet without any check of the UICC Toolkit Framework.

The UICC Toolkit Framework shall prevent the toolkit applet to issue the following proactive commands: SET UP MENU, SET UP EVENT LIST, POLL INTERVAL, POLLING OFF. If an applet attempts to issue such a command, the UICC Toolkit Framework shall throw an exception.

The UICC Toolkit Framework shall prevent a toolkit applet to issue a TIMER MANAGEMENT proactive command using a timer identifier, which is not allocated to it. If an applet attempts to issue such a command, the UICC Toolkit Framework shall throw an exception.

The UICC Toolkit Framework shall prevent a toolkit applet to issue a SEND DATA, RECEIVE DATA and CLOSE CHANNEL proactive commands using a channel identifier, which is not allocated to it. If an applet attempts to issue such a command the UICC Toolkit Framework shall throw an exception.

The UICC Toolkit Framework shall prevent a toolkit applet to issue an OPEN CHANNEL proactive command if it exceeds the maximum number of channel allocated to this applet. If an applet attempts to issue such a command the UICC Toolkit Framework shall throw an exception
The UICC Toolkit Framework cannot guarantee that if the SET UP IDLE MODE TEXT proactive command is used by a toolkit applet, another toolkit applet will not overwrite this text at a later stage.

6.5
Envelope response handling

To allow a toolkit applet to answer to some specific events (e.g. EVENT_CALL_CONTROL) the UICC Toolkit Framework shall provide the uicc.toolkit.ViewHandler.EditHandler.EnvelopeResponseHandler.

The toolkit applet can then post a response to some events with the post() or the postAsBERTLV() methods, the toolkit applet can continue it's processing (e.g. prepare a proactive command) the UICC Toolkit Framework will return the response APDU defined by the toolkit applet (i.e. 9F xx or 9E xx).

6.6
Handler availability

The system handlers : ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler are Temporary JCRE Entry Point Object as defined in the Java Card Runtime Environment Specification [8].

The following rules define the availability of the system handlers and the lifetime of their content. They are generic rules and may vary with the event that triggers the toolkit applet.

ProactiveHandler:

-
The ProactiveHandler is valid from the invocation to the termination of the processToolkit method.

-
If a proactive command is pending the ProactiveHandler may not be available.

-
At the processToolkit method invocation the TLV-List is cleared.

-
At the call of it's init method the content is cleared and then initialised.

-
After a call to ProactiveHandler.send method the handler will remain unchanged (i.e. previously send proactive command) until the ProactiveHandler.init or appendTLV methods are called.

ProactiveResponseHandler:

-
The ProactiveResponseHandler may not be available before the first call to ProactiveHandler.send method, if available the content is cleared.

-
The ProactiveResponseHandler is available after the first call to the ProactiveHandler.send method to the termination of the processToolkit method.

-
If a proactive command is pending the ProactiveResponseHandler may not be available.

-
The ProactiveResponseHandler content is changed after the call to ProactiveHandler.send method and remains unchanged until next call to the ProactiveHandler.send method.

EnvelopeHandler:

-
The EnvelopeHandler and its content are available for all triggered toolkit applets (see Table1), from the invocation to the termination of their processToolkit method.

-
The SIM Toolkit Framework guarantees that all registered toolkit applet are triggered and receive the data.

EnvelopeResponseHandler:

· The EnvelopeResponseHandler is available for all triggered toolkit applets, until a toolkit applet has posted an envelope response or sent a proactive command. After a call to the post method the handler is no longer available.

· At the process Toolkit method invocation the TLV-List is cleared.

· The EnvelopeResponseHandler content must be posted before the first invocation of a ProactiveHandler.send method or before the termination of the processToolkit, so that the GSM applet can offer these data to the ME (eg 9Fxx/9Exx). After the first invocation of the ProactiveHandler.send method the EnvelopeResponseHandler is no more available.

The following diagram illustrates these rules.

	Applet
	
	Applet 1
	
	Applet 2

	method
	ProcessToolkit
	post
	init
	Termination
	Init
	init

	Invocation
	
	Init
	Send
	send
	ProcessToolkit
	Send
	

	Envelope Handler
	
	
	
	
	
	
	
	
	
	
	
	

	EnvelopeResponseHandler
	
	
	
	
	
	
	
	
	
	
	
	

	ProactiveHandler
	
	
	
	
	
	
	
	
	
	
	
	

	Proactive ResponseHandler
	
	
	
	
	
	
	
	
	
	
	
	

Figure 5: Typical handler availability for toolkit applets (see Table 1 for detail)

The following table describes the minimum availability of the handlers for all the events at the invocation of the processToolkit method of the toolkit applet.

Table 1: Handler availability for each event

	EVENT_
	Reply busy allowed
	
	EnvelopeHandler
	EnvelopeResponseHandler
	Nb of triggered / registrered Applet

	_MENU_SELECTION
	Y
	
	Y
	N
	1 / n (per Item Id)

	_MENU_SELECTION_HELP_REQUEST
	Y
	
	Y
	N
	1 / n (per Item Id)

	_CALL_CONTROL
	N
	
	Y
	Y
	1 / 1

	
	
	
	
	
	

	_TIMER_EXPIRATION
	Y
	
	Y
	N
	1/ 8 (per timer) (see Note 1)

	_EVENT_DOWNLOAD
	
	
	
	
	

	 _MT_CALL
	Y
	
	Y
	N
	n / n

	 _CALL_CONNECTED
	Y
	
	Y
	N
	n / n

	 _CALL_DISCONNECTED
	Y
	
	Y
	N
	n / n

	 _LOCATION_STATUS
	Y
	
	Y
	N
	n / n

	 _USER_ACTIVITY
	Y
	
	Y
	N
	n / n

	 _IDLE_SCREEN_AVAILABLE
	Y
	
	Y
	N
	n / n

	 _CARD_READER_STATUS
	Y
	
	Y
	N
	n / n

	…_LANGUAGE_SELECTION
	Y
	
	Y
	N
	n / n

	... _BROWSER_TERMINATION
	Y
	
	Y
	N
	n / n

	 _DATA_AVAILABLE
	Y
	
	Y
	N
	1/7 (per channel) (see NOTE 1)

	 _CHANNEL_STATUS
	Y
	
	Y
	N
	1/7 (per channel) (see NOTE 1)

	_UNRECOGNIZED_ENVELOPE
	Y
	
	Y
	Y
	n / n

	_STATUS_COMMAND
	N
	
	N
	N
	n / n

	_PROFILE_DOWNLOAD
	N
	
	N
	N
	n / n

	_FIRST_COMMAND_AFTER_SELECT
	N
	
	N
	N
	n / n

	

	NOTE 1:
One toolkit applet can register to several timers/channels, but a timer/channel can only be allocated to one toolkit applet.

6.7
UICC Toolkit Framework behaviour

The following rules define the UICC Toolkit Framework behaviour for :

-
Triggering of a toolkit applet (invocation of the processToolkit() method from the ToolkitInterface shareable interface) :

-
The current context is switched to the toolkit applet .

-
A pending transaction is aborted.

-
There is no invocation of the select() or the deselect() methods.

-
The CLEAR_ON_DESELECT transient object can not be accessed and not created as defined in Java Card 2.1 Runtime Environment Specification [8], as the current selected application is unchanged (eg GSM applet) and does not correspond to the current context which is the toolkit applet.

-
The current file context of the toolkit applet is the MF.

-
The current file context of the current selected applet is unchanged.

-
The toolkit applet cannot access the APDU object.

-
Termination of a toolkit applet (return from the processToolkit() method):

-
The JCRE switches back to the context of the current selected applet..

-
There is no invocation of the select() or the deselect() methods.

-
A pending toolkit applet transaction is aborted.

-
The transient data are unchanged.

-
The current file context of the toolkit applet is lost.

-
The current file context of the current selected applet is unchanged.

-
Invocation of ProactiveHandler.send() method :

-
During the execution there might be other context switches, but at the return of the send() method the toolkit applet context is restored.

-
There is no invocation of the select() or the deselect() methods.

-
A pending toolkit applet transaction at the method invocation is aborted.

-
The current file context of the toolkit applet is unchanged (see chapter 5.2).

-
Emission of system proactive commands (UICC Toolkit framework dynamic behaviour)

-
The UICC Toolkit Framework shall send its system proactive command as soon as no proactive session is pending and all the applets registered to the current events have been triggered and have returned from the processToolkit method invocation.

6.8
Usage of ViewHandler and EditHandler

The ViewHandler and EditHandler classes have been defined to group the properties of the system handler, and may be used in the future to provide a simple mechanism to the toolkit applet to handle TLV lists. The length of simple TLV present in a Handler TLV List shall be coded according to ISO/IEC 7816‑6 [2] (e.g. coded onto 1,or 2 or 3 bytes).

7
UICC toolkit applet

7.1
Applet Loading

The UICC API card shall be compliant to the Java Card 2.1 VM Architecture Specification [5] and to the Annex B to guarantee interoperability at byte code Level.

The applet loading mechanism, protocol and applet life cycle are defined in 3GPP TS 03.48 [1]

7.2
Object Sharing

The sharing mechanism defined in Java Card 2.1 API Specification [3] and Java Card 2.1 Runtime Environment Specification [4] shall be used by the applet to share data.

The byte parameter of the getShareableInterfaceObject() method shall be set to zero (i.e. '00') when the ToolkitInterface reference is required.

Annex A (normative):
Java Card UICC API

The attached files "Annex_A_java.zip" and "Annex_A_HTML.zip" contains source files for the Java Card UICC API.

Annex B (normative):
Java Card UICC API identifiers

The attached file "Annex_B_Export_files.zip" contains source files for the Java Card UICC API identifiers.

NOTE:
The export files in this annex have been generated with the following steps and tools :

-
Compilation from the API java source file (.java) to the API class files (.class) with the Java compiler from the Java Development Kit version 1.1.8.

-
Convertion from the API class files (.class) to the API export files (.exp) with the Java Card 2.1.2 Class File Converter (version 1.2) and the Java Development Kit 1.2.2

Annex C (normative):
UICC API package version management

The following table describes the relationship between each TS 102.XXX specification version and its UICC API packages AID and Major, Minor versions defined in the export files.

	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

The package AID coding is defined in EG 201 220 [10]. The UICC API packages' AID are not modified by changes to Major or Minor Version.

The Major Version shall be incremented if a change to the specification introduces byte code incompatibility with the previous version.

The Minor Version shall be incremented if a change to the specification does not introduce byte code incompatibility with the previous version.

Change history

This annex lists all change requests approved for the present document since the first version was approved.

	Meeting
	Plenary

tdoc
	WG

tdoc
	VERS
	CR
	REV
	REL
	CAT
	SUBJECT
	Resulting

Version

	
	
	
	
	
	
	
	
	
	

History

	Document history

	V0.9.0
	September 2001
	Presented

	V1.0.0
	November 2001
	Presented for information

	V1.1.0
	December 2001
	Presented during T3 SWG API #10 / SCP WG3 joint meeting

	V1.2.0
	Januar 2002
	Presented during SCP WG3 #2 meeting

	
	
	

	
	
	

NAA �(e.g. �GSMApplet and/or �USIMApplet)

JCRE entry point object

shareable interface

UICC Filesystem

Toolkit Handler

Toolkit Registry

Java Card™ JCRE

Toolkit�Applet

Loader Applet

Applets

UICC Framework

�PAGE \# "'Seite: '#'�'" ��Crosscheck with CAT speck

_1058867112.doc

Toolkit

Applet 1

Applet 2

Toolkit

Applet 3

Applet n

Proactive

Command handler

UICC Framework

Files

Toolkit Framework

Applet

install/uninstall

Security

Applet

triggering

Applet security

manager

Activation

Proactive

commands

P/C

responses

Install

Uninstall

APDU

JCRE

APDU

e.g.

Envelopes

Proactive polling, 91XX, Fetch,

Proactive commands,

Terminal Response

File

access

File access

…

 (

see NOTE 1)

NOTE 1:

The install /

uninstall

process is defined in

GSM

03.48 [4]

uicc.toolkit

uicc.access

_1058867205.doc

APDU

Applet Triggering

Menu Selected

Terminal Profile

...

