
	3GPP T3 SWG API Meeting #9

Marseille, France, 29 - 31 October, 2001
	Tdoc T3a010199

	CR-Form-v3

	CHANGE REQUEST

	

	(

	43.019
	CR
	CR-Num
	(

rev
	-
	(

Current version:
	4.0.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	X
	ME/UE
	
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	API for transmission of SM

	
	

	Source:
(

	Giesecke & Devrient, Incard

	
	

	Work item code:
(

	
	
	Date: (

	22/10/01

	
	
	
	
	

	Category:
(

	B
	
	Release: (

	REL-5

	
	Use one of the following categories:
F (essential correction)
A (corresponds to a correction in an earlier release)
B (Addition of feature),
C (Functional modification of feature)
D (Editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	No standardised API for transmission of SMS.

	
	

	Summary of change:
(

	We propose that an additional handler should be added for the transmission of short messages from the SIM. This handler will be able to send messages using SMS-DELIVER-REPORT or SMS-SUBMIT. This handler is referred to here as the SMS Transmission Handler.

	
	

	Consequences if
(

not approved:
	

	
	

	Clauses affected:
(

	5.2

	
	

	Other specs
(

	
	 Other core specifications
(

	

	Affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://www.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2000-09 contains the specifications resulting from the September 2000 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.
6.5
Envelope response handling

To allow a toolkit applet to answer to some specific events (e.g. EVENT_CALL_CONTROL_BY_SIM) the SIM Toolkit Framework shall provide the sim.toolkit.ViewHandler.EditHandler.EnvelopeResponseHandler.

The toolkit applet can then post a response to some events with the post() or the postAsBERTLV() methods, the toolkit applet can continue it's processing (e.g. prepare a proactive command) the SIM Toolkit Framework will return the response APDU defined by the toolkit applet (i.e. 9F xx or 9E xx).

6.6 Transmission of Short Messages

To allow a toolkit applet to send short messages and reply to received short messages the SIM Toolkit Framework shall provide the sim.toolkit.ViewHandler.EditHandler.SMTransmissionHandler.
When the applet receives a short message, it can :
· initialise the reply to a short message formatted according to TS 03.48 using the initResponsePacket() method ;
· append data using the appendArray() method ;
· ask the SIM Toolkit Framework to send this data in an SMS_DELIVER_REPORT or SMS-SUBMIT using the post() method.
Also, with this class the applet can :

· initialise a short message formatted according to TS 03.48 using the initCommandPacket() method ;

· append data using the appendArray() method ;
· ask the SIM Toolkit Framework to send thisdata in an SMS-SUBMIT using the send() method.
In the case where the data is sent using SMS-DELIVER-REPORT the applet can continue it's processing (e.g.prepare a proactive command)the SIM Toolkit Framework will return the response APDU defined by the toolkit applet (i.e. 9F xx or 9E xx).
In the case where the data is sent using SMS-SUBMIT, the SIM Toolkit Framework will handle the transmission of one or more SEND SHORT MESSAGE commands to the ME and the reception of the response(s).
If the UDH indicates a Command Packet for Concatenated short message (i.e. is coded as in TS 23.048[4]) the concatenation control header contains three null field and the value in UDL is meaningless as the SMTransmissionHandler may contain a Command Packet longer than 255 octets. It is responsibility of the SIM Toolkit Framework to split this Command Packet over a sequence of Short Message, build the corresponding concatenation control header and handle their transmission (the message reference is determined from the SMS status of the SIM as in GSM11.11[2]).

If the response indicates that the command was unsuccessful, then the SIM Toolkit Framework shall re-send the command, the number of times specified by the toolkit applet. After sending the last command, whether it is successful or not, the ProactiveHandler will contain the last transmitted command, and the ProactiveResponseHandler will contain the last response.
6.6
Handler availability

The system handlers : ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler, EnvelopeResponseHandler and SMTransmissionHandler are Temporary JCRE Entry Point Object as defined in the Java Card Runtime Environment Specification [8].

The following table describes the minimum availability of the handlers for all the events at the invocation of the processToolkit method of the toolkit applet, except the SMTransmissionHandler, which is always available
Table 1: Handler availability for each event

	EVENT_
	Reply busy
	ProactiveHandler
ProactiveResponseHandler
	EnvelopeHandler
	EnvelopeResponseHandler
	Nb of triggered / registrered Applet

	_FORMATTED_SMS_PP_ENV
	Y
	Y
	Y
	Y
	1 / n (per TAR)

	_FORMATTED_SMS_PP_UPD
	N
	Y
	Y
	N
	1 / n (per TAR)

	_UNFORMATTED_SMS_PP_ENV
	Y
	Y
	Y
	Y
	n / n

	_UNFORMATTED_SMS_PP_UPD
	N
	Y
	Y
	N
	n / n

	_FORMATTED_SMS_CB
	Y
	Y
	Y
	N
	1 / n (per TAR)

	_UNFORMATTED_SMS_CB
	Y
	Y
	Y
	N
	n / n

	_MENU_SELECTION
	Y
	Y
	Y
	N
	1 / n (per Item Id)

	_MENU_SELECTION_HELP_REQUEST
	Y
	Y
	Y
	N
	1 / n (per Item Id)

	_CALL_CONTROL
	N
	Y/N (see Note 2)
	Y
	Y
	1 / 1

	_SMS_MO_CONTROL
	N
	Y/N (see Note 2)
	Y
	Y
	1 / 1

	_TIMER_EXPIRATION
	Y
	Y
	Y
	N
	1/ 8 (per timer) (see Note 1)

	_EVENT_DOWNLOAD
	
	
	
	
	

	 _MT_CALL
	Y
	Y
	Y
	N
	n / n

	 _CALL_CONNECTED
	Y
	Y
	Y
	N
	n / n

	 _CALL_DISCONNECTED
	Y
	Y
	Y
	N
	n / n

	 _LOCATION_STATUS
	Y
	Y
	Y
	N
	n / n

	 _USER_ACTIVITY
	Y
	Y
	Y
	N
	n / n

	 _IDLE_SCREEN_AVAILABLE
	Y
	Y
	Y
	N
	n / n

	 _LANGUAGE_SELECTION
	Y
	Y
	Y
	N
	n / n

	 _BROWSER_TERMINATION
	Y
	Y
	Y
	N
	n / n

	 _CARD_READER_STATUS
	Y
	Y
	Y
	N
	n / n

	_UNRECOGNISED_ENVELOPE
	Y
	Y
	Y
	Y
	n / n

	_STATUS_COMMAND
	N
	Y/N (see Note 2)
	N
	N
	n / n

	_PROFILE_DOWNLOAD
	N
	Y/N (see Note 2)
	N
	N
	n / n

	

	NOTE 1:
One toolkit applet can register to several timers, but a timer can only be allocated to one toolkit applet.

NOTE 2:
Y/N means that handlers may / may not be available depending whether a proactive session is ongoing.

The following rules define the minimum requirement for the availability of the system handlers and the lifetime of their content.

ProactiveHandler:

-
The ProactiveHandler is valid from the invocation to the termination of the processToolkit method.

-
If a proactive command is pending the ProactiveHandler may not be available.

-
At the processToolkit method invocation the TLV-List is cleared.

-
At the call of it's init method the content is cleared and then initialised.

-
After a call to the ProactiveHandler.send or SMTransmissionHandler.post or send methods the handler will remain unchanged (i.e. previously send proactive command) until the ProactiveHandler.init, clear, appendArray or appendTLV or SMTransmissionHandler.post or send methods are called.

ProactiveResponseHandler:

-
The ProactiveResponseHandler may not be available before the first call to the ProactiveHandler.send or SMTransmissionHandler.post or send methods, if available the content is cleared.

-
The ProactiveResponseHandler is available after the first call to the ProactiveHandler.send or SMTransmissionHandler.post or send methods to the termination of the processToolkit method.

-
If a proactive command is pending the ProactiveResponseHandler may not be available.

-
The ProactiveResponseHandler content is changed after the call to the ProactiveHandler.send or SMTransmissionHandler.post or send methods and remains unchanged until next call to the ProactiveHandler.send method.

EnvelopeHandler:

-
The EnvelopeHandler and its content are available for all triggered toolkit applets (see Table1), from the invocation to the termination of their processToolkit method.

-
The SIM Toolkit Framework guarantees that all registered toolkit applet are triggered and receive the data.

EnvelopeResponseHandler:

-
The EnvelopeResponseHandler is available for all triggered toolkit applets, until a toolkit applet has posted an envelope response or sent a proactive command. After a call to the EnvelopeResponseHandler.post or SMTransmissionHandler.post methods the handler is no longer available.

-
Content must be posted using the EnvelopeResponseHandler or SMTransmissionHandler before the first invocation of a ProactiveHandler.send or SMTransmissionHandler.send method or before the termination of the processToolkit, so that the GSM applet can offer these data to the ME (eg 9Fxx/9Exx). After the first invocation of the ProactiveHandler.send or SMTransmissionHandler.send methods the EnvelopeResponseHandler is no more available.

SMTransmissionHandler:

· The SMTransmissionHandler is available from the invocation to the termination of the processToolkit method, however its functionality depends on the availability of other handlers. It is unable to send data using SMS-DELIVER-REPORT if the EnvelopeResponseHandler is not available and is unable to send data using SMS-SUBMIT if the ProactiveHandler is not available.
· At the processToolkit method invocation the TLV-list is cleared.
· At the call of its clear, initResponsePacket or initCommandPacket methods is content is cleared then initialised.
· After a call the SMTransmissionHandler.post or send methods the handler will remain unchanged (i.e. previously send data) until the SMTransmissionHandler.initResponsePacket, initCommandPacket, clear, appendArray or appendTLV methods are called.
The following diagram illustrates these rules. The area marked with diagonal lines indicates that the Proactive Response Handler may not be available after a call to the EnvelopeResponseHandler.post method but will be available after a call to SMTransmissionHandler.post method. The calls to the send method apply to both the ProactiveHandler.send and SMTransmissionHandler.send methods.
	Applet
	
	Applet 1
	
	Applet 2

	method
	processToolkit
	post
	init
	termination
	init
	init

	invocation
	
	init
	send
	send
	processToolkit
	send
	

	Envelope Handler
	
	
	
	
	
	
	
	
	
	
	
	

	EnvelopeResponseHandler
	
	
	
	
	
	
	
	
	
	
	
	

	ProactiveHandler
	
	
	
	
	
	
	
	
	
	
	
	

	Proactive ResponseHandler
	
	
	
	
	
	
	
	
	
	
	
	

	SM Transmission Handler
	
	
	
	
	
	
	
	
	
	
	
	

Figure 5: Typical handler availability for toolkit applets (see Table 1 for detail)

6.7
SIM Toolkit Framework behaviour

The following rules define the SIM Toolkit Framework behaviour for :

-
Triggering of a toolkit applet (invocation of the processToolkit() method from the ToolkitInterface shareable interface) :

-
The current context is switched to the toolkit applet .

-
A pending transaction is aborted.

-
There is no invocation of the select() or the deselect() methods.

-
The CLEAR_ON_DESELECT transient object can not be accessed and not created as defined in Java Card 2.1 Runtime Environment Specification [8], as the current selected application is unchanged (eg GSM applet) and does not correspond to the current context which is the toolkit applet.

-
The current file context of the toolkit applet is the MF.

-
The current file context of the current selected applet is unchanged.

-
The toolkit applet cannot access the APDU object.

-
Termination of a toolkit applet (return from the processToolkit() method):

-
The JCRE switches back to the context of the current selected applet, the GSM applet.

-
There is no invocation of the select() or the deselect() methods.

-
A pending toolkit applet transaction is aborted.

-
The transient data are unchanged.

-
The current file context of the toolkit applet is lost.

-
The current file context of the current selected applet is unchanged.

-
The GSM applet shall not rely on the APDU object content. The APDU content may be changed by the system [For Further Study as the interface between the toolkit system and the GSM applet is not defined yet]

-
Invocation of the ProactiveHandler.send(),SMTransmissionHandler.post() or send() methods :

-
During the execution there might be other context switches, but at the return of the post() or send() method the toolkit applet context is restored.

-
There is no invocation of the select() or the deselect() methods.

-
A pending toolkit applet transaction at the method invocation is aborted.

-
The current file context of the toolkit applet is unchanged (see chapter 5.2). The post() or send() method will never return if the GSM applet is deselected and another applet is explicitly selected.

-
Emission of system proactive commands (SIM Toolkit framework dynamic behaviour)

-
The SIM Toolkit Framework shall send its system proactive command as soon as no proactive session is pending and all the applets registered to the current events have been triggered and have returned from the processToolkit method invocation.

//---

// PACKAGE DEFINITION

//---

package sim.toolkit;

/**

 *

 * This class enahnces the behaviour of the EnvelopeResponseHandler and

 * ProactiveHandler to allow the transmission of Short Messages. Methods such

 * as <code>appendTLV()</code> can be used to create the Short Message, then

 * <code>post()</code> or <code>send()</code> can be used to transmit the

 * Short Message. The SMTransmissionHandler class is a Temporary JCRE Entry

 * Point Object. The Toolkit applets, which need to send Short Messages,

 * shall call the <code>getTheHandler()</code> static method to get the

 * reference of this system instance.<p>

 *

 * Example of use:<pre><code>

 *

 * // parameters used, setting of these parameters is not shown.

 * byte[] additionalResponseData;

 * short additionalResponseDataLength;

 * byte responseStatusCode;

 *

 * byte[] TPHeaders;

 * short TPHeadersLength;

 * short commandSPI;

 * byte commandKIC;

 * byte commandKID;

 * byte[] commandTARBuffer;

 * byte[] commandData;

 * short commandDataLength;

 *

 * SMTransmissionHandler SMTransHdlr; // get the system instance

 * SMTransHdlr = SMTransmissionHandler.getTheHandler();

 *

 * // build and send a response packet using SMS-DELIVER-REPORT or SMS-SUBMIT

 * SMTransHdlr.initResponsePacket();

 * SMTransHdlr.appendArray(responsePacket, responsePacketLength, (short)0);

 * byte result = SMTransHdlr.post();

 *

 * // build and send a command packet using SMS-SUBMIT

 * SMTransHdlr.initCommandPacket(commandSPI, commandKIC, commandKID,

 * commandTARBuffer, (short)0);

 * SMTransHdlr.appendArray(commandPacket, commandPacketLength, (short)0);

 * result = SMTransHdlr.send(TPHeaders, TPHeadersLength, (short)0);

 * </code></pre>

 *

 * @version x.x.x

 * @author

 *

 * @see ViewHandler

 * @see EditHandler

 * @see EnvelopeResponseHandler

 * @see ProactiveHandler

 * @see ProactiveResponseHandler

 * @see ToolkitException

 */

package sim.toolkit;

public class SMTransmissionHandler extends EditHandler {
 /**

 * Returns the single system instance of the SMTransmissionHandler class.

 * The applet shall get the reference of the handler at its triggering,

 * the beginning of the processToolkit method.

 *

 * @return reference of the system instance

 *

 * @exception ToolkitException with the following reason codes:

 * <code>HANDLER_NOT_AVAILABLE</code> if the handler is busy.

 */

 public static SMTransmissionHandler getTheHandler() throws ToolkitException { }

 /**

 * Returns the Available Length of the handler.

 * It defines the length available for data to be transmitted with concatenated short messages.

 * @return the Available Length of the handler.

 *
 * @exception ToolkitException with the following reason codes:

 * <code>HANDLER_NOT_AVAILABLE</code> if the handler is busy.

 */

 public short getAvailableLength() throws ToolkitException { }

 /**

 * Initialize the building of a Response Packet in the format described in

 * TS 03.48. The TAR value is copied from the incoming command packet (in

 * the Envelope Handler), the counter and padding counter are set to zero

 * and no RC/CC/DS is included.

 *

 * @param statusCode response status code

 *

 * @exception NullPointerException if <code>TARbuffer</code> is <code>null</code>

 * @exception ArrayIndexOutOfBoundsException if <code>TARoffset</code> or <code>TARoffset + 3</code> or both would cause access outside array bounds

 * @exception ToolkitException with reason code HANDLER_NOT_AVAILABLE if

 * the applet was not triggered with the <code>EVENT_FORMATTED_SMS_PP_ENV

 * </code> or <code>EVENT_FORMATTED_SMS_PP_UPD</code> event.

 */

 public void initResponsePacket() throws NullPointerException, ArrayIndexOutOfBoundsException, ToolkitException { }

 /**

 * Initialize the build of a Command Packet in the format described in

 * TS 03.48.

 *

 * @param SPI security parameter indicator

 * @param KIC ciphering key identifier

 * @param KIC key identifier

 * @param TARBuffer buffer coutaining the TAR value

 * @param TAROffset offset of the TAR in the buffer

 *

 * @note the TAR is always three bytes in length.

 *

 * @exception NullPointerException if <code>TARbuffer</code> is <code>null</code>

 * @exception ArrayIndexOutOfBoundsException if <code>TARoffset</code> or <code>TARoffset + 3</code> or both would cause access outside array bounds

 */

 public void initCommandPacket(short SPI,

 byte KIC,

 byte KID,

 byte[] TARBuffer,

 short TAROffset) throws NullPointerException, ArrayIndexOutOfBoundsException {

 }

 /**

 * Post the response data to be secured and then returned with the response APDU, or

 * sends the response Short Message using aSEND SHORT MESSAGE

 * command.

 *

 * If the applet was triggered with the <code>EVENT_UNFORMATTED_SMS_PP_ENV

 * </code> event, then this method prepares the response data

 * using the data currently contained the SMTransmissionHandler, without

 * modification. The ME should return this data to the network in an

 * SMS-DELIVER-REPORT SM.

 *

 * If the applet was triggered with the <code>EVENT_FORMATTED_SMS_PP_ENV

 * </code> or <code>EVENT_FORMATTED_SMS_PP_UPD</code> events, then the

 * following applies:

 * if the SPI in the received command packet indicates that a PoR

 * is not required then no action is performed.

 * if the SPI in the received command packet indicates that a PoR

 * is required using SMS-DELIVER-REPORT, then this method post the

 * additional response data
 * to be secured as specified in the received SPI.

 * if the SPI in the received command packet indicates that a PoR

 * is required using SMS-SUBMIT, then this method sends one
 * SEND SHORT MESSAGE proactive command containing a single Short

 * Message, using the data

 * currently contained in the SMTransmissionHandler, secured as specified

 * in the received SPI, KIC and KID. The TP Headers in the outgoing Short

 * Message(s) are determined from the incoming Short Message(s).

 *

 * @param statusWord status word SW1 to be returned to the ME in the case

 * where the response Short Message is transmitted

 *

 * @param retries the number of times to re-send each proactive command if

 * the Terminal Response indicates an error, in the case where the response

 * Short Message is transmitted in a SEND SHORT MESSAGE proactive command.

 *

 * @note in the case where the response data is secured, the SIM Toolkit

 * Framework sets the correct value for the counter and padding counter,

 * adds the RC/CC/DS if necessary and encrypts the data if necessary. The

 * other parameters must be set by the applet.

 *

 * @return 0, in the case where no Short Message was transmitted or

 * a Short Message was trasmitted as a SMS_DELIVER_REPORT The

 * general result of the command (first byte of Result TLV in

 * Terminal Response), in the case where a SEND SHORT MESSAGE proactive

 * command was transmitted.

 *

 * @exception ToolkitException with reason code HANDLER_NOT_AVAILABLE if

 * the Short Message should be sent as SMS_DELIVER_REPORT and the

 * EnvelopeResponseHandler is not available, or the Short Message should be

 * sent as a SEND SHORT MESSAGE proactive command and the ProactiveHandler

 * is not available, or if the applet was not triggered with the

 * <code>EVENT_UNFORMATTED_SMS_PP_ENV</code>, <code>EVENT_FORMATTED_SMS_PP_ENV

 * </code> or <code>EVENT_FORMATTED_SMS_PP_UPD</code> event.

 */

 public byte post(byte statusWord, byte retries) throws ToolkitException {

 }

 /**

 * Sends a Short Message.

 *

 * This method sends one or more SEND SHORT MESSAGE proactive commands

 * containing a single Short Message, or concatenated Short

 * Messages, using the data currently contained in the

 * SMTransmissionHandler. If the formatted flag is set and the data

 * is correctly formatted according to GSM3.48, then it is secured as

 * specified in the received SPI, KIC and KID. The TP Headers are set

 * according to the input data, except for the message reference which is

 * determined from the SMS status of the SIM (see GSM11.11).

 *

 * @param TPHdrBuffer the buffer containing the TP Headers

 * @param TPHdrOffset the offset of the TP Headers in the buffer

 * @param TPHdrLength the length of the TP Headers

 *

 * @para formatted boolean flag indicating if the Short Message is formatted

 * according to GSM03.48.

 *

 * @param retries the number of times to re-send each proactive command if

 * the Terminal Response indicates an error, in the case where the response

 * Short Message is transmitted in a SEND SHORT MESSAGE proactive command.

 *

 * @note in the case where the data is secured, the SIM Toolkit Framework

 * sets the correct value for the counter and padding counter, adds the

 * RC/CC/DS if necesary and encrypts the data if necessary. The other

 * parameters must be set by the applet.

 *

 * @return the general result of the last comamnd (first byte of Result TLV

 * in Terminal Response)

 *

 * @exception ToolkitException with reason code HANDLER_NOT_AVAILABLE if

 * the ProactiveHandler is not available.

 */

 public byte send(byte[] TPHdrBuffer,

 short TPHdrOffset,

 short TPHdrLength,

 byte formatted,

 byte retries)

 throws ToolkitException {

 }

}

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the lastest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. Work item acronyms are listed in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

3GPP

