[image: image2.wmf]

3GPP T3 SWG-API Meeting #9

Marseille, 29 October 2001
Tdoc T3a010171

Title:

‘C’-language binding to (U)SIM API - Draft stage 2 description v 0.1.2

Source:
WI Rapporteur

Introduction:

The document is the third draft of a platform-independent ‘C’-language binding to GSM 02.19 SIM API.

This work has been done under work item Tdoc T3-010370. The functions are reorganised to be in line with the split in the Java API between UICC and USIM.

ETSI TS 102 xyz V5.0.0 (2001-11)
Technical Specification

Smart Cards;

C Programming Language Interface

Card Application Toolkit (CAT)

(Release 5)

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/
If you find errors in the present document, send your comment to:
editor@etsi.fr
Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2001.

ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Reference

DTS/SCP-03001

Keywords

smart card

All rights reserved.

Contents

71.
Scope

2.
References
8
2.1.
Normative references
8
3.
Definitions and abbreviations
9
3.1.
Definitions
9
3.2.
Abbreviations
9
4.
Description
10
4.1.
Overview
10
4.2.
Design Rationale and Upward Compatibility
10
5.
‘C’-language binding for (U)SIM API
12
5.1.
Overview
12
5.2.
Toolkit Version
13
5.3.
Toolkit Application Functions
13
5.3.1.
main
13
5.3.2.
CatGetFrameworkEvent
14
5.3.3.
CatExit
14
5.4.
Registry
15
5.4.1.
CatSetMenuString
15
5.4.2.
CatNotifyOnFrameworkEvent
15
5.4.3.
CatNotifyOnEnvelope
16
5.4.4.
CatNotifyOnEvent
16
5.5.
Man-Machine Interface
16
5.5.1.
CatAddItem
16
5.5.2.
CatSelectItem
16
5.5.3.
CatEndSelectItem
17
5.5.4.
CatDisplayText
17
5.5.5.
CatGetInKey
17
5.5.6.
CatGetInput
17
5.5.7.
CatSetupIdleModeText
19
5.5.8.
CatPlayTone
19
5.6.
Timers
20
5.6.1.
CatGetTimer
20
5.6.2.
CatFreeTimer
20
5.6.3.
CatStartTimer
20
5.6.4.
CatGetTimerValue
21
5.7.
Supplementary Card Reader Management
21
5.7.1.
CatPowerOnCard
21
5.7.2.
CatPowerOffCard
21
5.7.3.
CatPerformCardAPDU
21
5.7.4.
CatGetReaderStatus
22
5.8.
GSMUICC File Store Access
22
5.8.1.
CatSelect
23
5.8.2.
CatStatus
23
5.8.3.
CatGetCHVStatus
23
5.8.4.
CatReadBinary
23
5.8.5.
CatUpdateBinary
24
5.8.6.
CatReadRecord
24
5.8.7.
CatUpdateRecord
24
5.8.8.
CatSeek
25
5.8.9.
CatIncrease
25
5.8.10.
CatInvalidate
26
5.8.11.
CatRehabilitate
26
5.9.
Miscellaneous
26
5.9.1.
CatGetTerminalProfile
26
5.9.2.
CatMoreTime
26
5.9.3.
CatPollingOff
26
5.9.4.
CatPollInterval
27
5.9.5.
CatRefresh
27
5.9.6.
CatLanguageNotification
27
5.9.7.
CatLaunchBrowser
28
5.10.
Low-level Interface
29
5.10.1.
CatResetBuffer
30
5.10.2.
CatStartProactiveCommand
30
5.10.3.
CatSendProactiveCommand
30
5.10.4.
CatOpenEnvelope
30
5.10.5.
CatSendEnvelopeResponse
30
5.10.6.
CatSendEnvelopeErrorResponse
31
5.10.7.
CatPutData
31
5.10.8.
CatPutByte
31
5.10.9.
CatPutTLV
31
5.10.10.
CatPutBytePrefixedTLV
31
5.10.11.
CatPutOneByteTLV
32
5.10.12.
CatPutTwoByteTLV
32
5.10.13.
CatGetByte
32
5.10.14.
CatGetData
32
5.10.15.
CatFindNthTLV
33
5.10.16.
CatFindNthTLVInUserBuffer
33
5.11.
Network Services
33
5.11.1.
CatGetLocationInformation
33
5.11.2.
CatGetTimingAdvance
34
5.11.3.
CatGetIMEI
34
5.11.4.
CatGetNetworkMeasurementResults
34
5.11.5.
CatGetDateTimeAndTimeZone
34
5.11.6.
CatGetLanguage
35
5.11.7.
CatSetupCall
35
5.11.8.
CatSendShortMessage
37
5.11.9.
CatSendSS
37
5.11.10.
CatSendUSSD
38
5.11.11.
CatOpenCSChannel
38
5.11.12.
CatOpenGPRSChannel
40
5.11.13.
CatCloseChannel
42
5.11.14.
CatReceiveData
43
5.11.15.
CatSendData
43
5.11.16.
CatGetChannelStatus
44
5.11.17.
catServiceSearch
44
5.11.18.
catGetServiceInformation
44
5.11.19.
catDeclareService
45
5.11.20.
CatRunATCommand
45
5.11.21.
CatSendDTMFCommand
46
5.12.
Supporting Data Types
46
5.12.1.
CatFrameworkEventType
46
5.12.2.
CatEnvelopeTagType
46
5.12.3.
CatEventType
47
5.12.4.
CatTextString
47
5.12.5.
CatAlphaString
47
5.12.6.
CatIconIdentifier
47
5.12.7.
CatIconOption
48
5.12.8.
CatDCSValue
48
5.12.9.
CatDisplayTextOptions
48
5.12.10.
CatGetInKeyOptions
48
5.12.11.
CatGetInputOptions
48
5.12.12.
CatSelectItemOptions
49
5.12.13.
CatTimeUnit
49
5.12.14.
CatTone
49
5.12.15.
CatRefreshOptions
49
5.12.16.
CatGetReaderStatusOptions
49
5.12.17.
CatDevice
50
5.12.18.
CatGeneralResult
50
5.12.19.
CatTimerValue
51
5.12.20.
CatTimeInterval
51
5.12.21.
CatFileStatus
51
5.12.22.
CatLanguageNotificationOptions
52
5.12.23.
CatLocationInformation
52
5.12.24.
CatTimingAdvance
52
5.12.25.
CatLaunchBrowserOptions
52
5.12.26.
CatSetupCallOptions
52
5.12.27.
CatTypeOfNumberAndNumberingPlanIdentifier
53
5.12.28.
CatSendShortMessageOptions
53
5.12.29.
CatSendDataOptions
53
5.12.30.
CatSIM_MEInterfaceTransportLevelType
54
5.12.31.
CatBearer
54
5.12.32.
CatOpenChannelOptions
54
5.12.33.
CatAddressType
54
History
55

1. Scope

A Subscriber Identity Module Application Programming Interface (SIM API) has been defined elsewhere [5] as a technology-independent API specification of how SIM Toolkit applications and (U)SIMs co-operate. That specification aims to be independent of both the underlying platform and the programming language technologies.

The main body of the document specifies ‘C’ language binding for the (U)SIM API but remains independent of the underlying platform. Assumptions about the platform are those carried over from 02.19 [5] which are:

· There shall be a virtual machine through which the Toolkit applications execute.

· The platform shall provide context switching between applications.

The present document includes information applicable to SIM Toolkit application developers programming in ‘C’ and an annex showing how an example STK application can be written in a platform-independent manner. It specifies a stage two description of the (U)SIM API internal to the (U)SIM.

The API for loading and deleting toolkit application is specified in GSM 03.48 [4] and is not part of the (U)SIM API 02.19 [5]. Therefore, C-bindings for loading and deleting Toolkit application are not included in this document.

2. References

References may be made to:

a)
specific versions of publications (identified by date of publication, edition number, version number, etc.), in which case, subsequent revisions to the referenced document do not apply; or

b)
all versions up to and including the identified version (identified by "up to and including" before the version identity); or

c)
all versions subsequent to and including the identified version (identified by "onwards" following the version identity); or

d)
publications without mention of a specific version, in which case the latest version applies.

A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same number.

2.1. Normative references

[1]
GSM 01.04 “Digital cellular telecommunications system (Phase 2+); Abbreviations and acronyms”.

[2]
3GPP TS 11.11 V8.4.0: “3rd Generation Partnership Project; Technical Specification Group Terminals Specification of the Subscriber Identity Module – Mobile Equipment (SIM-ME) interface (Release 1999)”.

[3]

ETSI TS 101 223 Card Application Toolkit release 4

[4]
3GPP TS 23.48 V8.4.0: “3rd Generation Partnership Project; Technical Specification Group Terminals; Security Mechanisms for the SIM application toolkit; Release 5”.

[5]
ETSI TS 22.19 V5: “Digitial cellular telecommunications system (Phase 2+); Subscriber Identity Module Application Programming Interface (SIM API); Service description;

[6]
ISO 639 (1988): “Code for the representation of names of languages”.

[7]
GSM 03.38: “Digital cellular telecommunications system (Phase 2+); Alphabets and language-specific information”.

3. Definitions and abbreviations

3.1. Definitions

For the purposes of the present document, the following definitions apply:

Application: A smart card application.

Framework : A framework defines a set of Application Programming Interface (API) functions for developing applications and for providing system services to those applications.

GSM application: Functionality conforming to GSM 11.11[2] and GSM 11.14[3]. This may be an application executing through a virtual machine, or it may be implemented in native code if the underlying technology requires.

Toolkit Application: An application which uses the API [5] for which the ‘C’-language binding is described within this document and which only runs under the control of the GSM Application.

3.2. Abbreviations

For the purpose of the present document, the following abbreviations apply, in addition to those listed in GSM 01.04[1]:

APDU
Application Protocol Data Unit

API
Application Programming Interface

DCS
Digital Cellular System

DF
Dedicated File

DTMF
Dual Tone Multiple Frequency

EF
Elementary File

FFS
For Further Study

FID
File Identifier

GSM
Global System for Mobile communications

ME
Mobile Equipment

OTA
Over The Air

SIM
Subscriber Identity Module

SMS
Short Message Service

STK
SIM ToolKit

TBD
To be determined

TLV
Tag, Length, Value

TPDU
Transport Protocol Data Unit

URL
Uniform Resource Locator

USIM
Universal SIM

USSD
Unstructured Supplementary Services Data

4. Description

The GSMSIM Application consists of the following:

-
GSM 11.11[3] APDU handlers for communicating with the mobile equipment,

-
GSM 11.11[3] File system and file access control,

-
SIM Toolkit Framework which provides services to Toolkit applications.

This document describes the ‘C’ language bindings for the API [5] between the GSM(U)SIM Application and Toolkit Applications. This API allows application ‘C’ programmers to access functions and data described in GSM 11.11[2] and GSM 11.14[3], such that the GSM(U)SIM based services can be developed and loaded onto SIMUICCs. If required and supported by the underlying smart card technology, Toolkit Applications can be loaded or deleted remotely, after the card has been issued.

From the STK application programmer’s point of view, this API [5] is an extension to any existing platform API available.

4.1. Overview

The ‘C’-binding for (U)SIM API shall provide function calls for GSM 11.14 [3] (pro-active functions) and GSM 11.11 [2] (transport functions). The figure below shows the interactions between a typical Toolkit application (shown in blue) and the various functional blocks (shown in orange) of the SIM [3]. The C-bindings for these APIs are presented in section 4.2.

[image: image1.wmf]Registered

event

or install

Update

Information

Request

Toolkit

application

Proactive

command

handler

Proactive

response

handler

APDU

handler

Toolkit

application

triggering

Load/delete Toolkit

Application 03.48

New Toolkit

application

Registry handler

NAA

file

access

Mobile

Equipment

APDU

Toolkit

event

Terminal response

Envelope response

handler

Terminal

response data

Proactive command

91

xx

Proactive command

Fetch command

Response data

Registry

File access

Request

File data

NAA File system

File data

Allowed Access/

Command

Toolkit application

information

Create new Toolkit

application from SMS-PP

4.2. Design Rationale and Upward Compatibility

This C SIM API is intended to be general enough for many purposes. Some functions that implement proactive commands take parameters that correspond to optional TLVs in GSM 11.14. If the actual parameter value passed to the function is NULL, the corresponding TLV is not passed to the mobile equipment; an example of an optional parameter is CatIconIdentifier that corresponds to the ICON IDENTIFIER TLV.

Some proactive commands have a very large number of optional TLVs, such as SETUP CALL. Therefore, this API offers two variants that address this aspect, CatSetupCall and CatSetupCallEx. The first function, CatSetupCall, takes as parameters everything that is necessary to issue a successful SETUP CALL proactive command (i.e. everything required to construct the mandatory TLVs as required by GSM 11.14) and also includes optional user interface TLVs (title and icon) for ease of use.

The second function, CatSetupCallEx, takes a parameter block that can be extended in future versions of this standard. The parameter block contains members that correspond to all mandatory and optional TLVs for the SETUP CALL proactive command.

The reason for introducing the “…Ex” variants are threefold:

· Rather than extend the parameter list of a function to take a large number of optional parameters for each call, it is sometimes preferable to set up the parameters using named structure members before issuing the call to the function.

· If a future version of GSM 11.14 extends the optional parameters for a proactive command, the corresponding parameter block can be extended to encompass these parameters without changing the function prototype.

· Any source code written for an older version of this C SIM API can be recompiled with a later version without change and will remain upwardly compatible at the source as long as the suggested coding standards are adhered to. No claim is made as to binary compatibility between implementations or different releases of this standard.

5. ‘C’-language binding for (U)SIM API
5.1. Overview

This section presents the ‘C’-language binding to (U)SIM API. It is divided into sections as follows:

· Toolkit application entry and exit

· Man-Machine Interface

· Timers

· Supplementary card reader

· GSM UICC file store access

· Registry

· Miscellaneous

· Low-level functions

· Network services

· Supporting data types

For each function, the prototype is given followed by a table describing the parameters and whether they are input [in] or output [out] parameters. There is explanatory text which explains the function’s purpose and whether it is a proactive command or not.

The function names begin with “Cat” in order to avoid clashing with other function names perhaps being used within STK application.
Toolkit Version

The version of the API that is implemented by a SIM is defined by the preprocessor symbol “SIM_TOOLKIT_VERSION”. This preprocessor symbol can be used by toolkit applications to conditionally compile applets that add or remove functionality depending upon the toolkit version they are compiled for.

5.2. Toolkit Application Functions

Toolkit applications will start by executing the application-defined function main. There are no arguments to main, nor are there any return results. The application can find out why it was invoked using the CatGetFrameworkEvent function. The Framework events that can cause an application to be invoked can be split into the following groups

· Command monitoring

· ME monitor events

· Applet lifecycle change

· Framework fabricated events

Command monitoring enables applets to be invoked when the framework receives commands from the ME. Currently supported commands that can be monitored are

· TERMINAL PROFILE – monitoring this command enables an applet to be invoked when the ME is powered on.

· STATUS – monitoring this command enables an applet to be invoked when the ME polls for proactive commands.

· ENVELOPE – monitoring this command enables the applet to be informed of specific envelope type arrival for example call control envelopes can be monitored.

ME monitor events are events that the framework can ask the ME to monitor; for example an event can be sent on call connection. ME monitored events are delivered to the application in the EVENT DOWNLOAD envelope as received from the ME.

The applet lifecycle event enables the framework to invoke an applet when the applet status has changed. This is mainly to enable an applet to be run at installation time so that it can set up its registry entries. The precise details of the applet lifecycle event are not defined in this document.

Framework fabricated events enable the framework to invoke an applet when some state in the SIM has changed. An example of this is to invoke an applet when the EFsms file has been updated. The set of framework fabricated events are not defined in this document.

5.2.1. main

void
main (void);

The main function is the application entry point. The application should not return from main; it must call the CatExit function.

An example main function is given below

 void main(void)
 {
 switch (CatGetFrameworkEvent())
 {
 case EVENT_APPLET_LIFECYCLE_INSTALL:
 // set up registry for this applet
 CatSetMenuString(…..
 CatNotifyOnEnvelope(SMS_PP_DOWNLOAD_TAG,1);
 CatNotifyOnEvent(CARD_READER_STATUS,1);
 break;
 case EVENT_ENVELOPE_COMMAND:
 {
 BYTE length;
 switch (CatOpenEnvelope(&length))
 {
 case MENU_SELECTION_TAG:
 // search for help request …..
 break;
 case SMS_PP_DOWNLOAD_TAG:
 …..
 break;
 case EVENT_DOWNLOAD_TAG:
 // search for card reader status event …..
 break;
 default:
 CatExit(SIM_EXIT_FAILURE);
 }
 }
 break;
 default:
 CatExit(SIM_EXIT_FAILURE);
 break;
 }
 CatExit(SIM_EXIT_SUCCESS);
 }

5.2.2. CatGetFrameworkEvent

CatFrameworkEventType
CatGetFrameworkEvent(void);

RETURN

Framework event type that caused the application to run; see CatFrameworkEventType for details.

CatGetFrameworkEvent returns the framework event that caused the application to run.

5.2.3. CatExit

void
CatExit (UINT16 code void);

Code
[in]
The implementation defined macros SIM_EXIT_SUCCESS or SIM_EXIT_FAILURE should be used to indicate success or failure.

CatExit causes the application to terminate execution and return control to the framework. When the application is restarted, it enters at main.

5.3. Registry

The menu entry(ies) of the application, together with the set of framework events that the application is interested in, may be registered using the functions defined in this section.

5.3.1. CatSetMenuString

void
CatSetMenuString (BYTE MenuID,
 BYTE MenuStringLength, const void *MenuString,
 const CatIconIdentifier *IconIdentifier,
 BYTE HelpAvailable,
 BYTE NextAction);

MenuID
[in]
The menu ID by which this entry is known.

MenuStringLength
[in]
The length, in bytes, of MenuString.

MenuString
[in]
The menu entry to be placed in the registry. If MenuString is NULL or MenuStringLength is zero, any existing menu entry associated with MenuID is removed and is not displayed by the ME.

IconIdentifier
[in]
Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

HelpAvailable
[in]
If non zero the application can supply help.

NextAction
[in]
The (optional) next action value

CatSetMenuString allows the application to define a menu entry together with an icon. A non-zero value can be supplied if a next action indicator is required. This function will implicitly request that the applet be notified of menu selection envelopes i.e. there is no requirement to call the CatNotifiyOnEnvelope function. An application can have several menu entries and must examine the menu selection envelope to decide which menu selection caused it to be invoked.

The ordering of menu entries within a menu presented by the ME is based on increasing integer values of identifiers selected by the application. Note that any applet’s menu item ordering may be further overridden by an external source, e.g. card issuer, via a request to the SIM Toolkit framework—this mechanism is beyond the scope of this document.

5.3.2. CatNotifyOnFrameworkEvent

void
CatNotifyOnFrameworkEvent(CatFrameworkEventType Event, BYTE Enabled);

Event
[in]
A framework event the application is interested in, see CatFrameworkEventType for details.

Enabled
[in]
If non-zero the framework event is monitored otherwise the framework event isn’t monitored. By default only applet lifecycle events are monitored.

CatNotifyOnFrameworkEvent enables the application to add/remove a framework event to/from the set of framework events that it is interested in.

5.3.3. CatNotifyOnEnvelope

void
CatNotifyOnEnvelope(CatEnvelopeTagType Tag, BYTE Enabled);

Tag
[in]
The particular envelope type to monitor; see CatEnvelopeTagType for details.

Enabled
[in]
If non-zero the envelope type is monitored otherwise the envelope type isn’t monitored.

CatNotifyOnEnvelope enables the application to add/remove an envelope monitoring event to/from the set of the envelope monitoring events it is interested in. Note that the monitoring of MENU SELECTION, TIMER EXPIRATION and EVENT DOWNLOAD envelopes is handled by the framework.

5.3.4. CatNotifyOnEvent

void
CatNotifyOnEnvelopent(CatEventType EventType, BYTE Enabled);

EventType
[in]
The particular event type to monitor; see CatEventType for details.

Enabled
[in]
If non-zero the event type is monitored otherwise the event isn’t monitored.

CatNotifyOnEvent enables the application to add/remove an ME monitored event to/from the set of ME monitored events it is interested in.

5.4. Man-Machine Interface

5.4.1. CatAddItem

void
CatAddItem(BYTE ItemTextLength, const void *ItemText, BYTE ItemIdentifier);

PRIVATE
ItemTextLength
[in]
The length in bytes of ItemText.

ItemText
[in]
Text associated with item.

ItemIdentifier
[in]
Specifies a unique identifier to be associated with this selection. This value is returned in the SelectedItem parameter of CatSelectItem if this item is selected from the menu.

CatAddItem adds an item to a list for the user to select. It is not a proactive command.

To display a list of items for the user to choose from, at least three calls that must be issued with no intervening global services for mobile commmunications (GSM) proactive commands in between them. This application programming interface (API) call is the second call. CatAdditem must be called after CatSelectItem and before CatEndSelectItem. CatAddItem may be called multiple times consecutively add items to a selection list.

5.4.2. CatSelectItem

void
CatSelectItem (BYTE TitleLength, const void *Title,
 CatSelectItemOptions Options);

TitlePRIVATE
Length
[in]
The length in bytes of Title.

Title
[in]
Title of the list of choices.

Options
[in]
Acceptable values for this parameter are listed in CatSelectItemOptions.

CatSelectItem displays a list of items on the mobile equipment for the user to choose from. Even though this function, by name, maps to a GSM proactive command, this API does not itself issue a proactive command. CatEndSelectItem must be called for an actual proactive command to be issued.

To display a list of items for the user to choose from, at least three calls must be issued with no intervening GSM proactive commands between them. This API call is the first. The other two APIs required are CatAddItem and CatEndSelectItem.

5.4.3. CatEndSelectItem

CatGeneralResult
CatEndSelectItem (BYTE *SelectedItem,
 const CatIconIdentifier *IconIdentifier);

PRIVATE
SelectedItem
[out]
Index of item selected by user.

IconIdentifier
[in]
Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

RETURN

The GeneralResult code of the SELECT ITEM proactive command.

CatEndSelectItem issues the proactive command SELECT ITEM that displays on the mobile equipment a list of items for the user to choose from. The terminal response is parsed and if successful the SelectedItem parameter is updated.

To display a list of items for the user to choose from, at least three calls must be issued with no intervening global services for mobile communications (GSM) proactive commands in between them. This function call is the last. The other two APIs required are CatSelectItem and CatAddItem.

5.4.4. CatDisplayText

CatGeneralResult
CatDisplayText (CatDCSValue TextDCS, BYTE TextLength, const void *Text,
 CatDisplayTextOptions Options,
 const CatIconIdentifier *IconIdentifier,
 BYTE ImmediateResponse);

PRIVATE
TextDCS
[in]
The data coding scheme for Text. Acceptable values for this parameter are listed in CatDCSValue.

TextLength
[in]
The length in bytes of Text.

Text
[in]
String to display on ME.

Options
[in]
Acceptable values for this parameter are listed in CatDisplayTextOptions.

IconIdentifier
[in]
Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

ImmediateResponse
[in]
True—program continues execution as soon as ME receives instruction.
False—program waits until text is cleared on the mobile equipment before continuing, and the Immediate Response TLV is not passed to the mobile equipment.

RETURN

The GeneralResult code of the DISPLAY TEXT proactive command.

CatDisplayText issues a proactive command that displays text on the display of the mobile equipment.

5.4.5. CatGetInKey

CatGeneralResult
CatGetInKey (CatDCSValue TitleDCS, BYTE TitleLength, const void *Title,
 CatGetInKeyOptions Options,
 const CatIconIdentifier *IconIdentifier,
 CatDCSValue *DCSOut, void *KeyOut);

PRIVATE
TitleDCS
[in]
The data coding scheme for Title. Acceptable values for this parameter are listed in CatDCSValue

.

TitleLength
[in]
The length in bytes of Title.

Title
[in]
String to display on ME.

Options
[in]
Acceptable values for this parameter are listed in CatGetInKeyOptions.

IconIdentifier
[in]
Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

DcsOut
[out]
The packing type of the returned key. This parameter is set to one of the values listed in CatDCSValue

.

KeyOut
[out]
The key pressed.

RETURN

The GeneralResult code of the GET INKEY proactive command.

CatGetInKey issues the proactive command GET INKEY. The terminal response is parsed and if successful the DCSOut and KeyOut parameters are updated

5.4.6. CatGetInput

CatGeneralResult
CatGetInput(CatDCSValue TitleDCS, BYTE TitleLength, const void *Title,
 CatGetInputOptions Options,
 CatDCSValue DefaultReplyDCS,
 BYTE DefaultReplyLength, const void *DefaultReply,
 BYTE MinimumResponseLength,
 BYTE MaximumResponseLength,
 const CatIconIdentifier *IconIdentifier,
 CatDCSValue *MsgOutDCS, BYTE *MsgOutLength, void *MsgOut);

PRIVATE
TitleDCS
[in]
The data-coding scheme for Title. Acceptable values for this parameter are listed in CatDCSValue

.

TitleLength
[in]
The length in bytes of Title.

Title
[in]
String to display on ME while waiting for the user to press a key.

Options
[in]
Acceptable values for this parameter are listed in CatGetInputOptions.

DefaultReplyDCS
[in]
The data coding scheme for DefaultReply. Acceptable values for this parameter are listed in CatDCSValue

.

DefaultReplyLength
[in]
The length in bytes of DefaultReply.

DefaultReply
[in]
Default response string; use NULL for "no reply"—no Default Reply tag length value (TLV) is sent to the ME.

MinimumResponseLength
[in]
Minimum allowed length for the response, in either characters or digits.

MaximumResponseLength
[in]
Maximum allowed length for the response, in either characters or digits.

IconIdentifier
[in]
Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

MsgOutDCS
[out]
Packing type of the returned data. This parameter is set to one of the values listed in CatDCSValue

.

MsgOutLength
[out]
Length of the returned message in bytes.

MsgOut
[out]
A pointer to where the returned string or message is placed.

RETURN

The GeneralResult code of the GET INPUT proactive command.

CatGetInput issues the proactive command GET INPUT. The terminal response is parsed and if successful MsgOutDCS, MsgOutLength, MsgOut parameters are updated.

5.4.7. CatSetupIdleModeText

CatGeneralResult
CatSetupIdleModeText (CatDCSValue TextDCS, BYTE TextLength, const void *Text,
 const CatIconIdentifier *IconIdentifier);

PRIVATE
TextDCS
[in]
The data-coding scheme for Text. Acceptable values for this parameter are listed in CatDCSValue

.

TextLength
[in]
The length in bytes of Text.

Text
[in]
String to display while mobile equipment is idle.

IconIdentifier
[in]
Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

RETURN

The GeneralResult code of the SETUP IDLE MODE TEXT proactive command.

CatSetupIdleModeText issues the proactive command SET UP IDLE MODE TEXT that sets the mobile equipment's default text string.

5.4.8. CatPlayTone

CatGeneralResult
CatPlayTone (BYTE TextLength, const void *Text,
 CatTone Tone,
 CatTimeUnit Units, BYTE Duration,
 const CatIconIdentifier *IconIdentifier);

PRIVATE
TextLength
[in]
The length in bytes of the string Text to display on the ME.

Text
[in]
String to display on ME while sound is being played.

Tone
[in]
Specifies tone to play. Acceptable values for this parameter are listed in CatTone.

Units
[in]
Unit of time specified for duration parameter. Acceptable values for this parameter are listed in CatTimeUnit.

Duration
[in]
Amount of time to play the tone, in units specified in the Units parameter

IconIdentifier
[in]
Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

RETURN

The GeneralResult code of the PLAY TONE proactive command.

CatPlayTone issues the proactive command PLAY TONE.

5.5. Timers

5.5.1. CatGetTimer

BYTE
CatGetTimer (void);

RETURN

The identifier of the timer.

CatGetTimer returns the ID of an available timer. If no timer is available, this function returns zero. Timer identifiers are apportioned by the framework.

5.5.2. CatFreeTimer

void
CatFreeTimer (BYTE TimerID);

PRIVATE
TimerID
[in]
ID of timer to free; obtained from CatGetTimer.

CatFreeTimer frees the handle to the specified timer, making it available for the next request. It is not a proactive command. No information is passed to the mobile equipment by this function.

The value returned is zero if the TimerID is valid and is freed, otherwise a non-zero value is received.

5.5.3. CatStartTimer

void
CatStartTimer (BYTE TimerID, CatTimerValue *TimerValue);

PRIVATE
TimerID
[in]
ID of the timer to initialize; obtained from CatGetTimer.

TimerValue
[in]
Initial value of the timer. The value is specified in a structure of type CatTimerValue.

CatStartTimer issues a proactive TIMER MANAGEMENT command to initializ a timer to the parameter values.

5.5.4. CatGetTimerValue

void
CatGetTimerValue (BYTE TimerID, CatTimerValue *TimerValue);

PRIVATE
TimerID
[in]
ID of the timer from which to obtain values; obtained from CatGetTimer

TimerValue
[out]
The time remaining to run of timer TimerID. The value is returned in a structure of type CatTimerValue.

CatGetTimerValue issues a proactive TIMER MANAGEMENT command to obtain the timer's current value.

5.6. Supplementary Card Reader Management

5.6.1. CatPowerOnCard

CatGeneralResult
CatPowerOnCard (CatDevice DeviceID, void *ATR, BYTE *ATRLength, void *ATR);

PRIVATE
DeviceID
[in]
The device to power on. An acceptable value for this parameter is a card reader device selected from CatDevice.

ATR
[out]
Pointer to where answer to reset (ATR) will be stored.

ATRLength
[out]
Number of bytes returned by the card as the ATR.

RETURN

The GeneralResult code of the POWER ON CARD proactive command.

CatPowerOnCard issues the proactive command POWER ON CARD that powers on a supplementary card reader. The terminal response is parsed and if successful the ATR and ATRLength parameters are.

5.6.2. CatPowerOffCard

CatGeneralResult
CatPowerOffCard (CatDevice DeviceID);

PRIVATE
DeviceID
[in]
The device to power off. An acceptable value for this parameter is a card reader device selected from CatDevice.

RETURN

The GeneralResult code of the POWER OFF CARD proactive command.

CatPowerOffCard issues the proactive command POWER OFF CARD that turns off the supplementary card reader.

5.6.3. CatPerformCardAPDU

CatGeneralResult
CatPerformCardAPDU (CatDevice DeviceID,

BYTE CAPDULength,const void *CAPDU, BYTE CAPDULength,
 BYTE *RAPDULength, void *RAPDU, BYTE *RAPDULength);

PRIVATE
DeviceID
[in]
The device to send the command APDU (C-APDU) to. An acceptable value for this parameter is a card reader device selected from CatDevice.

CAPDU
[in]
Pointer to the command C-APDU to be sent to the additional card device.

CAPDULength
[in]
The number of bytes in the C-APDU.

RAPDU
[out]
Pointer to the buffer that will contain the response APDU (R-APDU) returned by the card in the additional card reader. You must allocate enough space to hold the R-APDU sent by the card.

RAPDULength
[out]
The number of bytes returned by the card in the additional card reader.

RETURN

The GeneralResult code of the PERFORM CARD APDU proactive command.

CatPerformCardAPDU issues the proactive command PERFORM CARD APDU that sends application program data units (APDU) to the supplementary card reader. The terminal response is parsed and if successful the RAPDU and RAPDULength parameters are updated.

5.6.4. CatGetReaderStatus

CatGeneralResult
CatGetReaderStatus (CatDevice DeviceID, CatReaderStatusOptions Options,
 BYTE *Status);

PRIVATE
DeviceID
[in]
Device to detect status of. An acceptable value for this parameter is a card reader device selected from CatDevice.

Options
[in]
Selects what type of status information to return. An acceptable value for this parameter is selected from CatGetReaderStatusOptions.

Status
[out]
Status of additional card reader.

RETURN

The GeneralResult code of the GET READER STATUS proactive command.

CatGetReaderStatus issues the proactive command GET READER STATUS that retrieves the status of the additional card readers on the mobile equipment. The terminal response is parsed and if successful the Status parameter is updated.

5.7. GSMUICC File Store Access

The abstract type FID is used to denote the file and a set of pre-processor macros are defined that enumerate all of the standard files of a GSM 11.11NAA file store. A FID could be implemented as an unsigned 16 bit number as follows

typedef unsigned short FID;

#define FID_MF
 0x3F00

The starting file-context of a Toolkit Application is the MF. When a Tooolkit Application exits, the file-context is lost.

The Access Control privileges of the applet are granted during installation according to the level of trust. When an applet requests access to UICC or operator specific files, the Card Application Toolkit Framework checks if this access is allowed by examination of the file control information stored on the card. If access is granted the CAT Framework will process the access request, if access is not granted, an exception will be thrown.

[Contents and coding of the file(s) containing access control information will be defined in ETSI TS 101.221]

All GSMUICC functions return the status bytes according to ETSI TS 101 221 GSM11.11., where 90 00 represents “success.”

5.7.1. CatSelect

UINT16
CatSelect (FID FileIdentifier, CatFileStatus *status);

PRIVATE
FileIdentifier
[in]
The file to select.

RETURN

The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatSelect selects the specified file as the current working file.

5.7.2. CatStatus

UINT16
CatStatus (CatFileStatus *status);

PRIVATE
NumBytes
[out]
The number of bytes written.

Buffer
[out]
The status of the currently selected file.

RETURN

The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatStatus returns the file status of the currently selected file as specified in ETSI TS 101 221 GSM11.11.

5.7.3. CatGetCHVStatus

void
CatGetCHVStatus (BYTE CHV[4]);

CHVType
[out]
Updates the CHV array with CHV1, CHV2, UNBLOCKCHV1,
and UNBLOCKCHV2 with CHV1 at array element zero.

CatGetCHVStatus returns the current CHV values. The format of the returned bytes is specified in ETSI TS 101 221 GSM11.11..

5.7.4. CatReadBinary

UINT16
CatReadBinary (unsigned short Offset,
 void *NumBytes,
 void *Buffer);

Offset
[in]
The offset into the file.

PRIVATE
NumBytes
[in]
The number of bytes to read.

Buffer
[out]
The buffer into which the data is written.

RETURN

The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatReadBinary reads NumBytes from position Offset in the currently selected file into Buffer.

5.7.5. CatUpdateBinary

UINT16
CatUpdateBinary (unsigned short Offset,
 BYTE *NumBytes,
 const void *Buffer);

Offset
[in]
The offset into the file.

PRIVATE
NumBytes
[in]
The number of bytes to write.

Buffer
[in]
The buffer containing the data to write to the file.

RETURN

The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatUpdateBinary writes NumBytes contained in Buffer to position Offset in the currently selected file.

5.7.6. CatReadRecord

UINT16
CatReadRecord (BYTE RecordNumber,
 CatRecordAccessModes Mode,
 BYTE NumBytes,
 void *Buffer);

RecordNumber
[in]
The record number to read from.

Mode
[in]
How to interpret the RecordNumber. One of
REC_ACC_MODE_NEXT,
REC_ACC_MODE_PREVIOUS, REC_ACC_MODE_ABSOLUTE_CURRENT.

PRIVATE
NumBytes
[in]
The number of bytes to read from the record.

Buffer
[out]
The buffer into which the data is written.

RETURN

The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatReadRecord reads NumBytes from the record RecordNumber of the currently selected file into Buffer.

5.7.7. CatUpdateRecord

UINT16
CatUpdateRecord (BYTE RecordNumber,
 CatRecordAccessModes Mode,
 BYTE NumBytes,
 const void *Buffer);

RecordNumber
[in]
The record number to write into.

Mode
[in]
How to interpret the RecordNumber. One of
REC_ACC_MODE_NEXT,
REC_ACC_MODE_PREVIOUS, REC_ACC_MODE_ABSOLUTE_CURRENT.

PRIVATE
NumBytes
[in]
The number of bytes to write into the record.

Buffer
[out]
The buffer containing the data to write to the file.

RETURN

The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatUpdateRecord writes NumBytes into the record RecordNumber of the currently selected file from Buffer.

5.7.8. CatSeek

UINT16
CatSeek (CatSeekModes Mode,
 BYTE PatternLength,
 const void *Pattern);

Mode
[in]
Defines the seek method, One of
SEEK_FROM_BEGINNING_FORWARD,
SEEK_FROM_END_BACKWARD,
SEEK_FROM_NEXT_FORWARD,
SEEK_FROM_PREVIOUS_BACKWARD

PRIVATE
PatternLength
[in]
The size in bytes of the pattern to search for.

Pattern
[in]
The buffer containing the pattern to search for.

RETURN

The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatSeek searches the currently selected file for a pattern of length patternLength contained in Pattern. If the pattern is found the current record is set appropriately.

5.7.9. CatIncrease

UINT16
CatIncrease(unsigned long Increment,
 unsigned long *Value);

Increment
[in]
The value to increase by.

PRIVATE
Value
[out]
The new value.

RETURN

The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatIncrease adds Increment to the current record of the selected cylic file and returns the new Value. The most significant byte of Increment is ignored.

5.7.10. CatInvalidate

UINT16
CatInvalidate (void);

RETURN

The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatInvalidate invalidates the selected file.

5.7.11. CatRehabilitate

UINT16
CatRehabilitate (void);

RETURN

The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatRehabilitate rehabilitates the selected file.

5.8. Miscellaneous

5.8.1. CatGetTerminalProfile

void
CatGetTerminalProfile (BYTE *Profile,
 BYTE *ProfileOutLength, BYTE *Profile);

Profile
[out]
Where the terminal profile is written.

ProfileOutLength
[out]
The number of bytes written to Profile.

CatGetTerminalProfile returns the stored terminal profile in Profile.

5.8.2. CatMoreTime

CatGeneralResult
CatMoreTime (void);

RETURN

The GeneralResult code of the MORE TIME proactive command.

CatMoreTime issues the proactive command MORE TIME to the mobile equipment that it needs more time to process an application.

5.8.3. CatPollingOff

CatGeneralResult
CatPollingOff (void);

RETURN

The GeneralResult code of the POLLING OFF proactive command.

CatPollingOff issues the proactive command POLLING OFF that disables proactive polling; this essentially turns off CatPollInterval.

5.8.4. CatPollInterval

CatGeneralResult
CatPollInterval (CatTimeUnit Unit, BYTE Interval,
 CatTimeInterval *ActualIntervalOut);

PRIVATE
Unit
[in]
Desired time interval. Acceptable values for this parameter are listed in CatTimeUnit

.

Interval
[in]
Interval in units.

ActualIntervalOut
[out]
Response from mobile equipment negotiating the interval. This may or may not be the same as Unit and Interval. The value returned is in a structure of type CatTimeInterval.

RETURN

The GeneralResult code of the POLL INTERVAL proactive command.

CatPollInterval issues the proactive command POLL INTERVAL that requests the mobile equipment to set a time interval between status application program data units (APDU) that the mobile equipment sends to the subscriber identity module (SIM)UICC. The mobile equipment responds with a time interval of its own that most closely matches the application programming interface (API) request.

Polling can be disabled by using CatPollingOff.

5.8.5. CatRefresh

CatGeneralResult
CatRefresh (CatRefreshOptions Options);

CatGeneralResult
CatRefreshWithFileList (CatRefreshOptions Options
 BYTE FileListLength,
 const void *FileList);

OptionsPRIVATE

[in]
Informs the ME of what needs refreshing. Acceptable values for this parameter are listed in CatRefreshOptions.

FileListLength
[in]
The length, in bytes, of FileList.

FileList
[in]
The file identifiers of the files that have changed.

RETURN

The GeneralResult code of the SIM REFRESH proactive command.

CatRefresh issues the proactive command REFRESH that informs mobile equipment that the SIMNAA has changed configuration due to SIMUICC activity (such as an application running).

5.8.6. CatLanguageNotification

void
CatLanguagenotification (CatLanguageNotificationOptions Options,
 const void *Language);

Options
[in]
Language options. An acceptable value for this parameter is a card reader device selected from CatLanguageNotificationOptions.

LanguagePRIVATE

[in]
The 2-character language code as defined by ISO 639 [6], encoded using SMS default 7-bit coded alphabet as defined by GSM 03.38 [7].

RETURN

The GeneralResult code of the LANGUAGE NOTIFICATION proactive command.

CatLanguageNotification issues the proactive command LANGUAGE NOTIFICATION that notifies the mobile equipment about the language currently used for any text string within proactive commands or envelope command responses.

5.8.7. CatLaunchBrowser

CatGeneralResult
CatLaunchBrowser (CatLaunchBrowserOptions Options,
 BYTE TitleLength, const void *Title,
 BYTE URLLength, const void *URL,
 const CatIconIdentifier *IconIdentifier);

Options
[in]
Options used to launch the browser. Acceptable values for this parameter are listed in CatLaunchBrowserOptions.

PRIVATE
TitleLength
[in]
The length in bytes of the string Title

Title
[in]
String to display on the ME during the user confirmation phase.

PRIVATE
URLLength
[in]
The length in bytes of URL.

URL
[in]
The URL to open the browser at.

IconIdentifier
[in]
Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

RETURN

The GeneralResult code of the LAUNCH BROWSER proactive command.

CatLaunchBrowser and CatLaunchBrowserEx issue the proactive command LAUNCH BROWSER that launches a browser on the ME.

CatGeneralResult
CatLaunchBrowserEx (const CatLaunchBrowserExParams *params);

The structure CatLaunchBrowserExParams has the following members:

typedef struct
{
 // Mandatory fields
 CatLaunchBrowserOptions Options,
 BYTE URLLength;
 const void *URL;

 // Optional fields
 BYTE BrowserIdentityLength;
 const void *BrowserIdentity;
 BYTE BearerLength;
 const BYTE *Bearer;
 BYTE NumProvisioningFileReferences;
 BYTE *ProvisioningFileReferenceLengths;
 const BYTE **ProvisioningFileReferences;
 BYTE GatewayProxyIdLength;
 const void * GatewayProxyId;
 CatAlphaString Title;
 CatIconIdentifier IconIdentifier;
} CatLaunchBrowerExParams;
with the following members:

PRIVATE
URLLength
[in]
The length in bytes of URL.

URL
[in]
The URL to open the browser at.

BrowserIdentityLength
[in]
Length in bytes of BrowserIdentity.

BrowserIdentity
[in]
The browser identity. If BrowserIdentity is NULL, no BROWSER IDENTITY TLV is sent to the ME.

BearerLength
[in]
Length in bytes of Bearer.

Bearer
[in]
The list of bearers in order of priority requested. The type CatBearer defines the values acceptable. If Bearer is NULL, no BEARER TLV is sent to the ME.

NumProvisioningFileReferences
[in]
The number of Provisioning File References.

ProvisioningFileReferenceLengths
[in]
A pointer to the array of Provisioning File References lengths.

ProvisioningFileReferences
[in]
A pointer to the array of Provisioning File References.

GatewayProxyIdLength
[in]
Length in bytes of GatewayProxyId.

GatewayProxyId
[in]
The gateway or proxy identity. If GatewayProxyId is NULL, no TEXT STRING TLV describing the gateway/proxy is sent to the ME.

Title
[in]
String to display on the ME; see CatAlphaString.

IconIdentifier
[in]
Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

5.9. Low-level Interface

This section presents a low-level programming interface which allows you to

· Construct proactive commands and send them to the mobile equipment.

· Access the terminal response from the mobile equipment.

· Search the terminal response and contents of envelopes for specified TLVs.

· Unpack the contents of envelopes from the ME and send responses.

These functions are provided so that functionality that is not provided in the high level API is still accessible. All of these functions work on a single data buffer that has a single data pointer and can only be accessed sequentially. The high-level proactive functions may make use of the data buffer so consequently the high-level proactive functions should not be used whilst using the low-level functions.

5.9.1. CatResetBuffer

void
CatResetBuffer(void);

This function resets the data pointer to the beginning of the buffer.

5.9.2. CatStartProactiveCommand

void
CatStartProactiveCommand(BYTE Command,
 BYTE Options,
 BYTE To);

PRIVATE
Command
[in]
Command byte of proactive command.

Options
[in]
Command options of proactive command.

To
[in]
The destination device identity.

CatStartProactiveCommand resets the data pointer and starts the construction of a proactive command by writing the command tag, command details and device identities to the data buffer. The data pointer is left pointing after the device identities so that proactive command specific data can be written.

5.9.3. CatSendProactiveCommand

CatGeneralResult
CatSendProactiveCommand (BYTE *Length);

Length
[out]
Pointer that is updated with the length of the terminal response

RETURN
[out]
The general result byte of the terminal response

CatSendProactiveCommand sends the contents of the data buffer as a proactive command and updates the data buffer with the terminal response. The general result byte of the terminal response is returned by this function. The length of the terminal response is written to *Length. The data pointer is set to point to the additional information of the terminal response.

5.9.4. CatOpenEnvelope

CatEnvelopeTagType
CatOpenEnvelope(BYTE *Length);

Length
[out]
Pointer that is updated with the length of the envelope

RETURN
[out]
The envelope tag

CatOpenEnvelope returns the envelope tag of the data buffer and the length of the envelope data. The data pointer is set to point to the envelope data.

5.9.5. CatSendEnvelopeResponse

void
CatSendEnvelopeResponse (void);

CatSendEnvelopeResponse sends the contents of the data buffer as a successful envelope response.

5.9.6. CatSendEnvelopeErrorResponse

void
CatSendEnvelopeErrorResponse (void);

This function sends the contents of the data buffer as an unsuccessful envelope response.

5.9.7. CatPutData

void
CatPutData(BYTE Length,
 const void *Data)

PRIVATE
Length
[in]
Length of Data

Data
[in]
Pointer to Data.

CatPutData appends Length bytes of data to the data buffer

5.9.8. CatPutByte

void
CatPutByte (BYTE Data)

Data
[in]
Data byte.

CatPutByte appends the supplied data byte to the data buffer.

5.9.9. CatPutTLV

void
CatPutTLV (BYTE Tag,
 BYTE Length,
 const void *Value);

PRIVATE
Tag
[in]
Tag byte.

Length
[in]
Length of value.

Value
[in]
A pointer to the value.

CatPutTLV appends a general TLV to the data buffer.

5.9.10. CatPutBytePrefixedTLV

void
CatPutBytePrefixedTLV (BYTE Tag,
 BYTE Prefix,
 BYTE Length,
 const void *Value);

PRIVATE
Tag
[in]
Tag byte.

Prefix
[in]
Prefix byte.

Length
[in]
Length of value.

Value
[in]
A pointer to the value.

CatPutBytePrefixedTLV appends a TLV to the data buffer with a single byte placed before the Value.

5.9.11. CatPutOneByteTLV

void
CatPutOneByteTLV (BYTE Tag,
 BYTE Value);

PRIVATE
Tag
[in]
Tag byte.

Value
[in]
Value byte.

CatPutOneByteTLV appends a single byte valued TLV to the data buffer.

5.9.12. CatPutTwoByteTLV

void
CatPutTwoByteTLV (BYTE Tag,
 BYTE Value1,
 BYTE Value2);

PRIVATE
Tag
[in]
Tag byte.

Value1
[in]
First Value byte.

Value2
[in]
Second Value byte.

CatPutTwoByteTLV appends a two byte valued TLV to the data buffer.

5.9.13. CatGetByte

BYTE
CatGetByte (void)

RETURN
[out]
Data byte.

CatGetByte returns the byte at the current data pointer and increments the data pointer by one.

5.9.14. CatGetData

const void *
CatGetData (BYTE Length)

PRIVATE
Length
[in]
Length of Data

RETURN
[out]
Pointer to Data.

CatGetData returns the current data pointer and increments the data pointer by Length bytes.

5.9.15. CatFindNthTLV

const void *
CatFindNthTLV (BYTE Tag,
 BYTE Occurrence,
 BYTE *Length);

Tag
[in]
Tag to find.

Occurrence
[in]
Occurrence of Tag to find with “1” being the first.

Length
[out]
Length of found TLV.

RETURN
[out]
Pointer to data of found TLV

CatFindNthTLV finds the nth TLV that matches Tag in the data buffer, where nth is specified by the Occurrence parameter. If a match is found the data pointer is updated to the found TLV, the function returns a pointer to the found value and updates Length with the data length. If no match was found the function returns the null pointer and the data pointer is left unchanged.

5.9.16. CatFindNthTLVInUserBuffer

const void *
CatFindNthTLVInUserBuffer (BYTE BufferLen,
 const void *Buffer,
 BYTE Tag,
 BYTE Occurrence,
 BYTE *Length);

BufferLen
[in]
Length of buffer

Buffer
[in]
Buffer to search

Tag
[in]
Tag to find.

Occurrence
[in]
Occurrence of Tag to find with “1” being the first.

Length
[out]
Length of found TLV.

RETURN
[out]
Pointer to data of found TLV

CatFindNthTLVInUserBuffer finds the nth TLV that matches Tag is the supplied buffer. The function returns a pointer to the found value and updates Length with the data length. If no match was found the function returns the null pointer.

5.10. Network Services

5.10.1. CatGetLocationInformation

CatGeneralResult
CatGetLocationInformation (CatLocationInformation *LocationInformation);

LocationInformation
[out]
A pointer to where the location information from the mobile equipment is placed. Refer to the CatLocalInformation section for member details.

RETURN

The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

The GeneralResult code of the DISPLAY TEXT proactive command.

CatProvideLocationInformation requests the mobile equipment to send location information to the SIM using the PROVIDE LOCAL INFORMATION proactive command.

5.10.2. CatGetTimingAdvance

CatGeneralResult
CatGetTimingAdvance (CatTimingAdvance *TimingAdvance);

TimingAdvance
[out]
A pointer to where the timing advance information from the mobile equipment is placed. Refer to the CatTimingAdvance section for member details.

RETURN

The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

CatProvideTimingAdvance requests the mobile equipment to send timing advance information to the SIM using the PROVIDE LOCAL INFORMATION proactive command.

5.10.3. CatGetIMEI

CatGeneralResult
CatGetIMEI (BYTE IMEI[8]);

IMEI
[out]
A pointer to where the IMEI of the mobile equipment is placed.

RETURN

The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

CatGetIMEI requests the mobile equipment to send the IMEI to the SIM using the PROVIDE LOCAL INFORMATION proactive command.

5.10.4. CatGetNetworkMeasurementResults

CatGeneralResult
CatGetNetworkMeasurementResults (BYTE MeasurementResults[10]);

MeasurementResults
[out]
A pointer to where the network measurement results from the mobile equipment is placed.

RETURN

The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

CatGetNetworkMeasurementResults requests the mobile equipment to send the network measurement results to the SIM using the PROVIDE LOCAL INFORMATION proactive command.

5.10.5. CatGetDateTimeAndTimeZone

CatGeneralResult
CatGetDateTimeAndTimeZone (BYTE DateTimeAndTimeZone[7]);

DateTimeAndTimeZone
[out]
A pointer to where the date, time, and time zone from the mobile equipment is placed.

RETURN

The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

CatGetDateTimeAndTimeZones requests the mobile equipment to send the date, time, and time zone information to the SIM using the PROVIDE LOCAL INFORMATION proactive command.

5.10.6. CatGetLanguage

CatGeneralResult
CatGetLanguage (BYTE Language[2]);

DateTimeAndTimeZone
[out]
A pointer to where the language from the mobile equipment is placed.

RETURN

The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

CatGetLanguage requests the mobile equipment to send the language information to the SIM using the PROVIDE LOCAL INFORMATION proactive command.

5.10.7. CatSetupCall

CatGeneralResult
CatSetupCall (BYTE CallSetupMessageLength, const void *CallSetupMessage,
 CatTypeOfNumberAndNumberingPlanIdentifier TONandNPI,
 BYTE DiallingNumberLength, const void *DiallingNumber,
 CatSetupCallOptions Options,
 const CatIconIdentifier *UserConfirmationIconIdentifier,
 BYTE CallSetupMessageLength, const void *CallSetupMessage,
 const CatIconIdentifier *CallSeupIconIdentifier);
PRIVATE
UserConfirmationMessageLength
[in]
Length in bytes of UserConfirmationMessage.

UserConfirmationMessage
[in]
Message to display for user confirmation or NULL.

TONandNPI
[in]
Acceptable values for this parameter are listed in CatTypeOfNumberAndNumberingPlanIdentifier.

DiallingNumberLength
[in]
Length in bytes of DiallingNumber.

DialingNumber
[in]
Number to call is coded as binary-coded decimal.

Options
[in]
Acceptable values for this parameter are listed in CatSetupCallOptions.

UserConfirmationIconIdentifier
[in]
Optional icon identifier to use during the user confirmation phase; see CatIconIdentifier for member details. If UserConfirmationIconIdentifier is NULL or if UserConfirmationIconIdentifier.UseIcon is zero, no user confirmation phase icon identifier is sent to the ME.

PRIVATE
CallSetupMessageLength
[in]
Length in bytes of CallSetupMessage.

CallSetupMessage
[in]
Message to display for call set up or NULL.

CallSetupIconIdentifier
[in]
Optional icon identifier to use during the call setup phase; see CatIconIdentifier for member details. If CallSetupIconIdentifier is NULL or if CallSetupIconIdentifier.UseIcon is zero, no call setup phase icon identifier is sent to the ME.

RETURN

The GeneralResult code of the SET UP CALL proactive command.

CatSetupCall and CatSetupCallEx issue the SET UP CALL proactive command to the ME.

CatGeneralResult
CatSetupCallEx (const CatSetupCallExParams *Params);

The type CatSetupCallExParams is defined as follows:

typedef struct
{
 // Mandatory fields
 CatSetupCallOptions Options;
 CatTypeOfNumberAndNumberingPlanIdentifier TONandNPI;
 BYTE DiallingNumberLength;
 const void *DialingNumber;

 // Optional fields
 CatAlphaString UserConfirmationMessage;
 BYTE CapabilityConfigParamsLength;
 const void *CapabilityConfigParams;
 BYTE CalledPartySubaddressLength;
 const void *CalledPartySubaddress;
 CatTimeInterval RedialMaximumDuration;
 CatIconOption UserConfirmationIcon;
 CatAlphaString CallSetupMessage;
 CatIconOptions CallSetupIcon;
} CatSetupCallExParams;

with the following members:

Options
Acceptable values for this parameter are listed in CatSetupCallOptions.

TONandNPI
Acceptable values for this parameter are listed in CatTypeOfNumberAndNumberingPlanIdentifier.

DiallingNumberLength
Length in bytes of DiallingNumber.

DialingNumber
Number to call is coded as binary-coded decimal.

UserConfirmationPRIVATE
Message
String to display during the user confirmation phase; see CatAlphaString. If this parameter is null, no user confirmation message TLV is passed to the ME.

CapabilityConfigParamsLength
Length in bytes of CapabilityConfigParams.

CapabilityConfigParams
A pointer to the capability configuration parameters as coded for EFCCP.

CalledPartySubaddressLength
Length in bytes of CalledPartySubaddress.

CalledPartySubaddress
The called party subaddress.

RedialMaximumDuration
An optional maximum duration for the redial mechanism. If the timeInterval member of this structure is zero, no duration TLV is sent to the ME.

UserConfirmationIcon
The icon to display during the user confirmation phase. If the UseIcon member of this structure is zero, no user confirmation icon TLV is sent to the ME.

CallSetupPRIVATE
Message
String to display during the call set up phase; see CatAlphaString.

CallSetupIcon
The icon to display during the call setup phase.

Optional parameters are specifically chosen to use an all-zero binary representation. This means that it is simple to set up only the required members of the SetupCallExParams structure by zeroing the whole structure using memset, filling in the required members, and sending the result to CatSetupCallEx. As all optional parameters use a zero binary representation, the memset serves to initialise them all to the “not present” status.

5.10.8. CatSendShortMessage

CatGeneralResult
CatSendShortMessage (BYTE TitleLength, const void *Title,
 CatTypeOfNumberAndNumberingPlanIdentifier TONandNPI,
 BYTE AddressLength, const void *Address,
 BYTE SmsTPDULength, const void *SmsTPDU,
 CatSendShortMessageOptions Options,
 const CatIconIdentifier *IconIdentifier);

PRIVATE
TitleLength
[in]
Length in bytes of Title.

Title
[in]
String to display while mobile equipment is sending a message.

TONandNPI
[in]
Acceptable values for this parameter are listed in CatTypeOfNumberAndNumberingPlanIdentifier

.

AddressLength
[in]
Length in bytes of Address.

Address
[in]
Address of the service center where message is being sent.

SmsTPDULength
[in]
Length in bytes of SmsTPDU.

SmTPDU
[in]
Formatted short message service (SMS) message to send.

Options
[in]
Specifies who packs the message. Acceptable values for this parameter are listed in CatSendShortMessageOptions.

IconIdentifier
[in]
Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

RETURN

The GeneralResult code of the SEND SHORT MESSAGE proactive command.

CatSendShortMessage issues the SEND SHORT MESSAGE proactive.

5.10.9. CatSendSS

CatGeneralResult
CatSendSS (BYTE TitleLength, const void *Title,
 CatTypeOfNumberAndNumberingPlanIdentifier TONandNPI,
 BYTE SSStringLength, const void *SSString,
 const CatIconIdentifier *IconIdentifier);

PRIVATE
TitleLength
[in]
Length in bytes of Title.

Title
[in]
String to display while mobile equipment is sending a message.

TONandNPI
[in]
Acceptable values for this parameter are listed CatTypeOfNumberAndNumberingPlanIdentifier

.

SSStringLength
[in]
Length in bytes of SSString.

SSString
[in]
SS string to mobile equipment.

IconIdentifier
[in]
Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

RETURN

The GeneralResult code of the SEND SS proactive command.

CatSendSS issues the SEND SS proactive command to the mobile equipment.

5.10.10. CatSendUSSD

CatGeneralResult
CatSendUSSD (BYTE TitleLength, const void *Title,
 CatDCSValue MessageDCS, BYTE MessageLength, const void *Message,
 CatDCSValue *MsgOutDCS, BYTE *MsgOutLength, void *MsgOut,
 const CatIconIdentifier *IconIdentifier);

PRIVATE
TitleLength
[in]
The length in bytes of Title.

Title
[in]
String to display while mobile equipment is sending a message.

MessageDCS
[in]
The data-coding scheme for Message. Acceptable values for this parameter are listed in CatDCSValue

.

MessageLength
[in]
The length in bytes of Message.

Message
[in]
Message to send.

MsgOutDCS
[out]
Identifies type of DCS for the returned message.

MsgOutLength
[out]
Length of the returned message in bytes.

MsgOut
[out]
Returned string or message.

IconIdentifier
[in]
Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

RETURN

The GeneralResult code of the SEND USSD proactive command.

CatSendUSSD issues the SEND USSD proactive command. The terminal response is parsed and if successful the MsgOutDCS, MsgOutLength and MsgOut parameters are updated.

5.10.11. CatOpenCSChannel

CatGeneralResult
CatOpenCSChannel(CatOpenChannelOptions Options,
 BYTE UserConfirmationLength, const void *UserConfirmation,
 const CatIconIdentifier *UserConfimationIconIdentifier,
 CatTypeOfNumberAndNumberingPlanIdentifier TONandNPI,
 BYTE DiallingNumberLength, const void *DiallingNumber,
 BYTE BearerDescription[3],
 UINT16 *BufferSize,
 CatDevice *ChannelIdentifier);

Options
[in]
Acceptable values for this parameter are listed in CatOpenChannelOptions.

PRIVATE
UserConfirmationLength
[in]
Length in bytes of UserConfirmation.

UserConfirmation
[in]
String to display when ME alerts user that channel is to be opened.

UserConfirmationIconIdentifier
[in]
Optional icon identifier to use during the user confirmation phase; see CatIconIdentifier for member details. If UserConfirmationIconIdentifier is NULL or if UserConfirmationIconIdentifier.UseIcon is zero, no user confirmation phase icon identifier is sent to the ME.

TONandNPI
[in]
Acceptable values for this parameter are listed in CatTypeOfNumberAndNumberingPlanIdentifier.

DiallingNumberLength
[in]
Length in bytes of DiallingNumber.

DialingNumber
[in]
Number to call is coded as binary-coded decimal.

BearerDescription
[in/out]
Initially contains the bearer description parameters (data rate, bearer service and connection element) and is modified to the actual bearer description as allocated by the ME.

BufferSize
[in/out]
Initially contains the desired buffer size and is modified to the actual buffer size as allocated by the ME.

ChannelIdentifier
[out]
The channel identifier that has been allocated by the ME.

RETURN

The GeneralResult code of the OPEN CHANNEL proactive command.

CatGeneralResult
CatOpenCSChannelEx(const CatOpenCSChannelExParams *Params,
 CatDevice *ChannelIdentifier,
 BYTE BearerDescription[3],
 UINT16 *BufferSize);

PRIVATE
Params
[in]
Constant parameter set as defined below.

ChannelIdentifier
[out]
The channel identifier that has been allocated by the ME.

BearerDescription
[out]
An array to which the actual bearer description allocated by the ME will be written.

BufferSize
[out]
The actual buffer size allocated by the ME.

RETURN

The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

CatOpenCSChannel and CatOpenCSChannelEx issue the proactive command OPEN CHANNEL related to a CS bearer. The terminal response is parsed and if the command was successful the BearerDescription, BufferSize and ChannelIdentifier parameters are updated.

The type CatOpenCSChannelExParams is defined as follows:

typedef struct
{
 // Mandatory fields
 CatOpenChannelOptions Options;
 BYTE AddressLength;
 const BYTE *Address;
 BYTE BearerDescription[3];
 UINT16 BufferSize;

 // Optional fields
 CatAlphaString UserConfirmationMessage;
 CatIconIdentifier UserConfirmationIconIdentifier;
 BYTE SubAddressLength;
 const BYTE *SubAddress;
 BYTE Duration1Defined;
 CatTimeInterval Duration1;
 BYTE Duration2Defined;
 CatTimeInterval Duration2;
 CatAddressType LocalAddress;
 CatTextString UserLogin;
 CatTextString UserPassword;
 CatSIM_MEInterfaceTransportLevelType SIM_MEInterfaceTransportLevel;
 CatAddressType DataDestinationAddress;
} CatOpenCSChannelExParams;

With the following members:

Options
Acceptable values for this parameter are listed in CatOpenChannelOptions. This field is mandatory.

AddressLength
Length in bytes of Address. This field is mandatory.

Address
The address to call. This field is mandatory.

BearerDescription
The desired bearer parameters (data rate, bearer service and connection element). This field is mandatory.

BufferSize
The desired buffer size. This field is mandatory.

UserConfirmationPRIVATE
Message
String to display during the user confirmation phase; see CatAlphaString. If this parameter is null, no user confirmation message TLV is passed to the ME. If UserConfirmationPRIVATE
Message is not null but UserConfirmationPRIVATE
MessageLength is zero, a user confirmation message TLV is passed to the ME with the length component set to zero.

UserConfirmationIconIdentifier
The icon to display during the user confirmation phase. If the UseIcon member of this structure is zero, no user confirmation icon TLV is sent to the ME.

SubAddressLengthPRIVATE

Length in bytes of SubAddress.

SubAddress
The subaddress to call.

Duration1Defined
Set to nonzero if Duration1 is defined.

Duration1
Duration of reconnect tries; see CatTimeInterval.

Duration2Defined
Set to nonzero if Duration2 is defined.

Duration2
Duration of timeout; see CatTimeInterval.

LocalAddress
The LocalAddress; see CatAddressType.

UserLogin
The user login string.

UserPassword
The user password string.

SIM_MEInterfaceTransportLevel
See CatSIM_MEInterfaceTransportLevelType.

DataDestinationAddress
The DataDestinationAddress; see CatAddressType.

5.10.12. CatOpenGPRSChannel

CatGeneralResult
CatOpenGPRSChannel(CatOpenChannelOptions Options,
 BYTE UserConfirmationLength, const void *UserConfirmation,
 const CatIconIdentifier *UserConfirmationIconIdentifier,
 BYTE BearerDescription[8],
 UINT16 *BufferSize,
 CatDevice *ChannelIdentifier);

Options
[in]
Acceptable values for this parameter are listed in CatOpenChannelOptions.

PRIVATE
UserConfirmationLength
[in]
Length in bytes of UserConfirmation.

UserConfirmation
[in]
String to display when ME alerts user that channel is to be opened.

UserConfirmationIconIdentifier
[in]
Optional icon identifier to use during the user confirmation phase; see CatIconIdentifier for member details. If UserConfirmationIconIdentifier is NULL or if UserConfirmationIconIdentifier.UseIcon is zero, no user confirmation phase icon identifier is sent to the ME.

BearerDescription
[in/out]
Initially contains the bearer description and is modified to the actual bearer description as allocated by the ME.

BufferSize
[in/out]
Initially contains the desired buffer size and is modified to the actual buffer size as allocated by the ME.

ChannelIdentifier
[out]
The channel identifier that has been allocated by the ME.

RETURN

The GeneralResult code of the OPEN CHANNEL proactive command.

CatGeneralResult
CatOpenGPRSChannelEx(const CatOpenGPRSChannelExParams *Params,
 CatDevice *ChannelIdentifier,
 BYTE ActualBearerDescription[8],
 UINT16 *ActualBufferSize);

PRIVATE
Params
[in]
Constant parameter set as defined below.

ChannelIdentifier
[out]
The channel identifier that has been allocated by the ME.

ActualBearerDescription
[out]
An array to which the actual bearer description allocated by the ME will be written.

ActualBufferSize
[out]
The actual buffer size allocated by the ME.

RETURN

The GeneralResult code of the OPEN CHANNEL proactive command.

CatOpenGPRSChannel and CatOpenGPRSChannelEx issues the proactive command OPEN CHANNEL related to a GPRS bearer. The terminal response is parsed and if the command was successful the BearerDescription, BufferSize and ChannelIdentifier parameters are updated.

The type CatOpenGPRSChannelExParams is defined as follows:

typedef struct
{
 // Mandatory fields
 GsmOpenChannelOptions Options;
 BYTE AddressLength;
 const BYTE *Address;
 BYTE BearerDescription[8];
 UINT16 BufferSize;

 // Optional fields
 CatAlphaString UserConfirmationMessage;
 CatIconIdentifier UserConfirmationIconIdentifier;
 BYTE AccessPointNameLength;
 const BYTE *AccessPointName;
 CatAddressType LocalAddress;
 Cat_SIM_ME_InterfaceTransportLevelType SIM_ME_InterfaceTransportLevel;
 CatAddressType DataDestinationAddress;
} GsmOpenGPRSChannelExParams;

With the following members:

Options
Acceptable values for this parameter are listed in CatOpenChannelOptions. This field is mandatory.

AddressLength
Length in bytes of Address. This field is mandatory.

Address
The address to call. This field is mandatory.

BearerDescription
The desired bearer. This field is mandatory.

BufferSize
The desired buffer size. This field is mandatory.

UserConfirmationPRIVATE
Message
String to display during the user confirmation phase; see CatAlphaString. If this parameter is null, no user confirmation message TLV is passed to the ME. If UserConfirmationPRIVATE
Message is not null but UserConfirmationPRIVATE
MessageLength is zero, a user confirmation message TLV is passed to the ME with the length component set to zero.

UserConfirmationIconIdentifier
The icon to display during the user confirmation phase. If the UseIcon member of this structure is zero, no user confirmation icon TLV is sent to the ME.

AccessPointNameLength
The length in bytes of AccessPoint.

AccessPointName
The Access Point Name.

LocalAddress
See CatAddressType.

SIM_ME_InterfaceTransportLevel
See CatSIM_MEInterfaceTransportLevelType.

DataDestinationAddress
See CatAddressType.

5.10.13. CatCloseChannel

CatGeneralResult
CatCloseChannel (CatDevice ChannelIdentifier,
 BYTE TitleLength, const void *Title,
 const CatIconIdentifier *IconIdentifier);

ChannelIdentifier
[in]
The channel identifier as returned from one of the open commands

PRIVATE
TitleLength
[in]
The length in bytes of Title.

Title
[in]
String to display while mobile equipment is closing the channel.

IconIdentifier
[in]
Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

RETURN

The GeneralResult code of the CLOSE CHANNEL proactive command.

CatCloseChannel issues a CLOSE CHANNEL proactive command that closes an open channel.

5.10.14. CatReceiveData

CatGeneralResult
CatReceiveData (CatDevice ChannelIdentifier,
 BYTE TitleLength, const void *Title,
 BYTE RequestedChannelDataLength,
 const CatIconIdentifier *IconIdentifier,
 BYTE *ChannelData,
 BYTE *NumChannelBytesRead,
 BYTE *NumChannelBytesLeft);

ChannelIdentifier
[in]
The channel identifier as returned from one of the open commands

PRIVATE
TitleLength
[in]
The length in bytes of Title.

Title
[in]
String to display while mobile equipment is receiving data.

RequestedChannelDataLength
[in]
The number of bytes requested to be read.

IconIdentifier
[in]
Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

ChannelData
[out]
Received channel data.

NumChannelBytesRead
[out]
The number of bytes received as channel data.

NumChannelBytesLeft
[out]
The number of bytes remaining to be read from the channel buffer, or 255 if there are more than 255 bytes left to be read.

RETURN

The GeneralResult code of the RECEIVE DATA proactive command.

CatReceiveData issues a RECEIVE DATA proactive command that receives data from an open channel. The terminal response is parsed and if the command is successful the received data is copied into the ChannelData array and the NumChannelBytesRead and NumChannelBytesLeft parameters are updated.

5.10.15. CatSendData

CatGeneralResult
CatSendData (CatDevice ChannelIdentifier,
 CatSendDataOptions Options,
 BYTE TitleLength, const void *Title,
 BYTE ChannelDataLength
 const void *ChannelData,
 const CatIconIdentifier *IconIdentifier,
 BYTE *ActualBytesSent);

ChannelIdentifier
[in]
The channel identifier as returned from one of the open commands

PRIVATE
TitleLength
[in]
The length in bytes of Title.

Title
[in]
String to display while mobile equipment is receiving data.

Options
[in]
Specifies who packs the message. Acceptable values for this parameter are listed in CatSendDataOptions.

ChannelDataLength
[in]
The number of bytes to be sent from ChannelData.

ChannelData
[in]
The data to be sent.

IconIdentifier
[in]
Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

ActualBytesSent
[out]
The number of bytes sent (derived from the CHANNEL DATA LENGTH TLV in the TERMINAL RESPONSE).

RETURN

The GeneralResult code of the SEND DATA proactive command.

CatSendData issues the proactive command SEND DATA that sends data to an open channel.

5.10.16. CatGetChannelStatus

CatGeneralResult
CatGetChannelStatus (CatDevice ChannelIdentifier, void *ChannelStatus);

ChannelIdentifier
[in]
The channel identifier.

PRIVATE
ChannelStatus
[out]
Returned channel status bytes.

RETURN

The GeneralResult code of the GET CHANNEL STATUS proactive command.

CatGetChannelStatus issues a proactive command GET CHANNEL STATUS. The terminal response is parsed if the command is successful to find the status of the supplied channel.

5.10.17. catServiceSearch

catGeneralResult
catReceiveData (catBearer BearerId,
 BYTE AttributeLength, void *Attributes,
 void *ServiceAvailability);

PRIVATE
BearerId
[in]
The identifier of the bearer whose services will be searched.

AttributeLength
[in]
The length of the following attribute array.

Attributes
[in]
Attributes which describe bearer services, typically in a bearer specific format.

ServiceAvailability
[in]
List of services offered by the bearer that satisfy the attributes, typically in a bearer specific format.

Search for a particular service on a bearer.

5.10.18. catGetServiceInformation

catGeneralResult
catReceiveData (BYTE TitleLength, const BYTE *Title,
 const catIconIdentifier *IconIdentifier,
 BYTE BearerId,
 BYTE *AttributeLength, void *Attributes,
 void *ServiceInformation);

PRIVATE
TitleLength
[in]
The length in bytes of Title.

Title
[in]
String to display acquiring service information.

IconIdentifier
[in]
Optional icon identifier; see catIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

BearerId
[in]
The identifier of the bearer whose service information is requested.

AttributeLength
[in]
The number of bytes in the following attribute array.

Attributes
[in]
Attributes describing the service information requested.

ServiceInformation
[out]
The requested information.

Retrieve information about a particular service on a bearer.

5.10.19. catDeclareService

catGeneralResult
catReceiveData (BYTE BearerId, BYTE ServiceId,
 catTransportProtocol TransportProtocol,
 WORD *PortNumber,
 BYTE ServiceRecordLength,
 void *ServiceRecord);

PRIVATE
BearerId
[in]
The identifier of the bearer for which this service is being offered.

TransportProtocol
[in]
The transport protocol on which the service is provided.

PortNumberh
[in]
The port on which the service is provided.

ServiceRecordLength
[in]
The number of bytes in the following service record.

ServiceRecord
[in]
The service record describing the service.

Describe a new service.
5.10.20. CatRunATCommand

CatGeneralResult
CatRunATCommand (BYTE TitleLength, const void *Title,
 BYTE CommandLength, const void *Command,
 const CatIconIdentifier *IconIdentifier,
 void *Response, BYTE *ResponseLength);

PRIVATE
TitleLength
[in]
Length in bytes of Title.

Title
[in]
String to display on mobile equipment while command is executing.

CommandLength
[in]
Length in bytes of Command.

Command
[in]
AT command string

IconIdentifier
[in]
Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

Response
[out]
Mobile equipment response string.

ResponseLength
[out]
Length in bytes of mobile equipment response string.

RETURN

The GeneralResult code of the RUN AT COMMAND proactive command.

CatRunATCommand issues the proactive command RUN AT COMMAND that sends an AT command to the mobile equipment. The terminal response is parsed and if successful the parameters Response and ResponseLength are updated.

5.10.21. CatSendDTMFCommand

CatGeneralResult
CatSendDTMFCommand (BYTE TitleLength, const void *Title,
 BYTE DTMFCodeLength, const void *DTMFCode,
 const CatIconIdentifier *IconIdentifier);
PRIVATE
TitleLength
[in]
The length in bytes of Title.

Title
[in]
Title displayed while the DTMF string is sent to the network.

DTMFCodeLength
[in]
The length in bytes of DTMFCode.

DTMFCode
[in]
DTMF string sent to the network.

IconIdentifier
[in]
Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

RETURN

The GeneralResult code of the SEND DTMF COMMAND proactive command.

CatSendDTMF issues the SEND DTMF COMMAND proactive command that sends a dual tone multiple frequency (DTMF) string to the network.

5.11. Supporting Data Types

5.11.1. CatFrameworkEventType

typedef enum
{
 // Command monitoring events
 EVENT_TERMINAL_PROFILE_COMMAND,
 EVENT_STATUS_COMMAND
 EVENT_ENVELOPE_COMMAND,
 // Applet lifecycle events start here
 EVENT_APPLET_LIFECYCLE_INSTALL = 0x20
 // Framework fabricated events start here
 EVENT_UPDATE_EF_SMS = 0x40
} GsmFrameworkEventType;

5.11.2. CatEnvelopeTagType
typedef enum {
 SMS_PP_DOWNLOAD_TAG = 0xD1,
 CELL_BROADCAST_TAG = 0xD2,
 MENU_SELECTION_TAG = 0xD3,
 CALL_CONTROL_TAG = 0xD4,
 MO_SHORT_MESSAGE_CONTROL_TAG = 0xD5,
 EVENT_DOWNLOAD_TAG = 0xD6,
 TIMER_EXPIRATION = 0xD7
} CatEnvelopeTagType;

5.11.3. CatEventType

typedef enum {
 MT_CALL_EVENT = 0x00,
 CALL_CONNECTED_EVENT = 0x01,
 CALL_DISCONNECTED_EVENT = 0x02,
 LOCATION_STATUS_EVENT = 0x03,
 USER_ACTIVITY_EVENT = 0x04,
 IDLE_SCREEN_AVAILABLE = 0x05,
 CARD_READER_STATUS = 0x06,
 LANGUAGE_SELECTION = 0x07,
 BROWSER_TERMINATION = 0x08,
 DATA_AVAILABLE = 0x09,
 CHANNEL_STATUS = 0x0A
} CatEventType;

5.11.4. CatTextString

typedef struct

{

 CatDCSValue DCSValue;
 BYTE TextStringLength;
 const void *TextString;
} CatTextString;

5.11.5. CatAlphaString

typedef struct

{
 BYTE AlphaStringLength;
 const void *AlphaString;
} CatTextString;

5.11.6. CatIconIdentifier

typedef struct

{

 BYTE UseIcon;

 BYTE IconIdentifier;
 BYTE IconOptions;

} CatIconIdentifier;

The CatIconIdentifier structure is defined as follows:

UseIcon
If zero, the icon identifier is not used in the proactive command. If non-zero, the IconIdentifier and IconOption members are used in the proactive command.

IconIdentifier
Index of the icon to display.

IconOptions
Options with which to display the icon selected from CatIconOption. This is specified as a BYTE rather than CatIconOptios as, in C, an enumeration uses the same storage as an int which is at least 16 bits, whereas the proactive commands that use these identifiers use 8-bit quantities.

5.11.7. CatIconOption

typedef enum

{

 SHOW_WITHOUT_TEXT = 0x00,

 SHOW_WITH_TEXT = 0x01

} CatIconOption;

5.11.8. CatDCSValue

typedef enum

{

 DCS_SMS_PACKED = 0x00,

 DCS_SMS_UNPACKED = 0x04,

 DCS_SMS_UNICODE = 0x08

} CatDCSValue;

5.11.9. CatDisplayTextOptions

typedef enum

{

 NORMAL_PRIORITY_AUTO_CLEAR = 0x00,

 NORMAL_PRIORITY_USER_CLEAR = 0x80,

 HIGH_PRIORITY_AUTO_CLEAR = 0x01,

 HIGH_PRIORITY_USER_CLEAR = 0x81

} CatDisplayTextOptions;

5.11.10. CatGetInKeyOptions

typedef enum

{

 YES_NO_OPTION_NO_HELP = 0x04,

 YES_NO_OPTION_WITH_HELP = 0x84,

 DIGITS_ONLY_NO_HELP = 0x00,

 DIGITS_ONLY_WITH_HELP = 0x80,

 SMS_CHARACTER_NO_HELP = 0x01,

 SMS_CHARACTER_WITH_HELP = 0x81,

 UCS2_CHARACTER_NO_HELP = 0x03,

 UCS2_CHARACTER_WITH_HELP = 0x83

} CatGetInKeyOptions;

5.11.11. CatGetInputOptions

typedef enum

{

 PACKED_DIGITS_ONLY_NO_HELP = 0x08,

 PACKED_DIGITS_ONLY_WITH_HELP = 0x88,

 PACKED_DIGITS_ONLY_NO_ECHO_NO_HELP = 0x0C,

 PACKED_DIGITS_ONLY_NO_ECHO_WITH_HELP = 0x8C,

 UNPACKED_DIGITS_ONLY_NO_HELP = 0x00,

 UNPACKED_DIGITS_ONLY_WITH_HELP = 0x80,

 UNPACKED_DIGITS_ONLY_NO_ECHO_NO_HELP = 0x04,

 UNPACKED_DIGITS_ONLY_NO_ECHO_WITH_HELP = 0x84,

 PACKED_SMS_ALPHABET_NO_HELP = 0x09,

 PACKED_SMS_ALPHABET_WITH_HELP = 0x89,

 PACKED_SMS_ALPHABET_NO_ECHO_NO_HELP = 0x0D,

 PACKED_SMS_ALPHABET_NO_ECHO_HELP = 0x8D,

 UNPACKED_SMS_ALPHABET_NO_HELP = 0x01,

 UNPACKED_SMS_ALPHABET_WITH_HELP = 0x81,

 UNPACKED_SMS_ALPHABET_NO_ECHO_NO_HELP = 0x05,

 UNPACKED_SMS_ALPHABET_NO_ECHO_WITH_HELP = 0x85,

 UCS2_ALPHABET_NO_HELP = 0x03,

 UCS2_ALPHABET_WITH_HELP = 0x83,

 UCS2_ALPHABET_NO_ECHO_NO_HELP = 0x07,

 UCS2_ALPHABET_NO_ECHO_WITH_HELP = 0x87

} CatGetInputOptions;

5.11.12. CatSelectItemOptions

typedef enum

{

 PRESENT_AS_DATA_VALUES_NO_HELP = 0x01,

 PRESENT_AS_DATA_VALUES_WITH_HELP = 0x81,

 PRESENT_AS_NAVIGATION_OPTIONS_NO_HELP = 0x03,

 PRESENT_AS_NAVIGATION_OPTIONS_WITH_HELP = 0x83,

 DEFAULT_STYLE_NO_HELP = 0x00,

 DEFAULT_STYLE_WITH_HELP = 0x80

} CatSelectItemOptions;

5.11.13. CatTimeUnit

typedef enum

{

 GSM_MINUTES = 0x00,

 GSM_SECONDS = 0x01,

 GSM_TENTHS_OF_SECONDS = 0x02

} CatTimeUnit;

5.11.14. CatTone

typedef enum

{

 DIAL_TONE = 0x01,

 CALLER_BUSY = 0x02,

 CONGESTION = 0x03,

 RADIO_PATH_ACKNOWLEDGE = 0x04,

 CALL_DROPPED = 0x05,

 SPECIAL_INFORMATION_OR_ERROR = 0x06,

 CALL_WAITING_TONE = 0x07,

 RINGING_TONE = 0x08,

 GENERAL_BEEP = 0x10,

 POSITIVE_ACKNOWLEDGE_TONE = 0x11,

 NEGATIVE_ACKNOWLEDGE_TONE = 0x12

} CatTone;

5.11.15. CatRefreshOptions

typedef enum

{

 REFRESH_SIM_INIT_AND_FULL_FILE_CHANGE_NOTIFICATION = 0x00,
 REFRESH_FILE_CHANGE_NOTIFICATION = 0x01,

 REFRESH_SIM_INIT_AND_FILE_CHANGE_NOTIFICATION = 0x02,

 REFRESH_SIM_INIT = 0x03,
 REFRESH_SIM_RESET = 0x04

} CatRefreshOptions;

5.11.16. CatGetReaderStatusOptions

typedef enum

{

 CARD_READER_STATUS = 0x00,
 CARD_READER_IDENTIFIER = 0x01
} CatGetReaderStatusOptions;

5.11.17. CatDevice

typedef enum

{

 DEVICE_KEPYAD = 0x01,

 DEVICE_DISPLAY = 0x02,

 DEVICE_EARPIECE = 0x03,

 DEVICE_CARD_READER_0 = 0x10,

 DEVICE_CARD_READER_1 = 0x11,

 DEVICE_CARD_READER_2 = 0x12,

 DEVICE_CARD_READER_3 = 0x13,

 DEVICE_CARD_READER_4 = 0x14,

 DEVICE_CARD_READER_5 = 0x15,

 DEVICE_CARD_READER_6 = 0x16,

 DEVICE_CARD_READER_7 = 0x17,

 DEVICE_CHANNEL_1 = 0x21,

 DEVICE_CHANNEL_2 = 0x22,

 DEVICE_CHANNEL_3 = 0x23,

 DEVICE_CHANNEL_4 = 0x24,

 DEVICE_CHANNEL_5 = 0x25,

 DEVICE_CHANNEL_6 = 0x26,

 DEVICE_CHANNEL_7 = 0x27,

 DEVICE_SIM = 0x81,

 DEVICE_ME = 0x82,

 DEVICE_NETWORK = 0x83

} CatDevice;

5.11.18. CatGeneralResult

typedef enum

{

 SIM_COMMAND_SUCCESSFUL = 0x00,

 SIM_COMMAND_SUCCESSFUL_WITH_PARTIAL_COMPREHENSION = 0x01,

 SIM_COMMAND_SUCCESSFUL_WITH_MISSING_INFORMATION = 0x02,

 SIM_REFRESH_SUCCESSFUL_WITH_ADDITIONAL_EFS_READ = 0x03,

 SIM_COMMAND_SUCCESSFUL_BUT_ICON_NOT_FOUND = 0x04,

 SIM_COMMAND_SUCCESSFUL_BUT_MODIFIED_BY_CALL_CONTROL = 0x05,

 SIM_COMMAND_SUCCESSFUL_BUT_LIMITED_SERVICE = 0x06,

 SIM_COMMAND_SUCCESSFUL_WITH_MODIFICATION = 0x07,

 SIM_ABORTED_BY_USER = 0x10,

 SIM_BACKWARD = 0x11,

 SIM_NO_RESPONSE = 0x12,

 SIM_HELP_REQUIRED = 0x13,

 SIM_USSD_ABORTED_BY_USER = 0x14,

 SIM_ME_UNABLE_TO_PROCESS_COMMAND = 0x20,

 SIM_NETWORK_UNABLE_TO_PROCESS_COMMAND = 0x21,

 SIM_USER_REJECTED_SETUP_CALL = 0x22,

 SIM_USER_CLEARED_BEFORE_RELEASE = 0x23,

 SIM_ACTION_CONTRADICT_TIMER_STATE = 0x24,

 SIM_TEMP_PROBLEM_IN_CALL_CONTROL = 0x25,

 SIM_LAUNCH_BROWSER_ERROR = 0x26,

 SIM_COMMAND_BEYOND_ME_CAPABILITIES = 0x30,

 SIM_COMMAND_TYPE_NOT_UNDERSTOOD = 0x31,

 SIM_COMMAND_DATA_NOT_UNDERSTOOD = 0x32,

 SIM_COMMAND_NUMBER_NOT_KNOWN = 0x33,

 SIM_SS_RETURN_ERROR = 0x34,

 SIM_SMS_RP_ERROR = 0x35,

 SIM_REQUIRED_VALUES_MISSING = 0x36,

 SIM_USSD_RETURN_ERROR = 0x37,

 SIM_MULTIPLE_CARD_COMMAND_ERROR = 0x38,

 SIM_PERMANENT_PROBLEM_IN_SMS_OR_CALL_CONTROL = 0x39,

 SIM_BEARER_INDEPENDENT_PROTOCOL_ERROR = 0x3A

} CatGeneralResult;

5.11.19. CatTimerValue

typedef struct

{

 BYTE hour;

 BYTE minute;

 BYTE second;

} CatTimerValue;

The CatTimerValue data type has three one-byte values:

hourPRIVATE

Hours part of timer.

minute
Minutes part of timer.

second
Seconds part of timer.

5.11.20. CatTimeInterval

typedef struct

{

 BYTE timeUnit;

 BYTE timeInterval;

} CatTimeInterval;

The CatTimInterval data type has two one-byte values:

timeUnit
One of the CatTimeUnit enumeration values. This is specified as a BYTE rather than CatTimeUnit as, in C, an enumeration uses the same storage as an int which is at least 16 bits, whereas the proactive commands that use these identifiers use 8-bit quantities.

timeInterval
The number of timeUnits.

5.11.21. CatFileStatus

typedef struct

{

 BYTE increaseAllowed;

 BYTE accessConditions[3];

 BYTE fileStatus; // 00=transparent, 01=linear, 03=cyclic
 BYTE lengthOfTrailer;

 BYTE structureOfEF;

 BYTE recordLength;
 BYTE trailer[36]; // Not 36, need to figure out how big this actually is

} CatEFStatus;

typedef struct

{

 BYTE rfu1[4];

 BYTE lengthOfTrailer;

 BYTE fileCharacteristics;
 BYTE numberOfDFs;
 BYTE numberofCHVs;
 BYTE rfu2;

 BYTE CHV1Status;

 BYTE unblockCHV1Status;

 BYTE CHV2Status;

 BYTE unblockCHV2Status;

 BYTE rfu3;

 BYTE adminReserved[10];

} CatDFStatus;

typedef struct

{

 BYTE rfu[2];

 UINT16 fileSize;

 UINT16 fileID;

 BYTE fileType; // 00=RFU, 01=MF, 02=DF, 04=EF

 union
 {

 CatEFStatus ef;
 CatDFStatus df;
 } u;

} CatFileStatus;

5.11.22. CatLanguageNotificationOptions

typedef enum

{

 LANGUAGE_NON_SPECIFIC_NOTIFICATION = 0x00,
 LANGUAGE_SPECIFIC_NOTIFICATION = 0x01
} CatLanguageNotificationOptions;

5.11.23. CatLocationInformation

typedef struct

{

 BYTE mobileCountryNetworkCodes[3];
 BYTE LAC[2];
 BYTE cellID[2];
} CatLocationInformation;

5.11.24. CatTimingAdvance

typedef struct

{

 BYTE MEStatus;
 BYTE timingAdvance;
} CatTimingAdvance;
5.11.25. CatLaunchBrowserOptions

typedef enum

{

 LAUNCH_BROWSER_IF_NOT_ALREADY_LAUNCHED = 0x00,

 USE_EXISTING_BROWSER = 0x02,

 CLOSE_EXISTING_BROWSER_AND_LAUNCH_NEW_BROWSER = 0x03

} CatLaunchBrowserOptions;

5.11.26. CatSetupCallOptions

typedef enum

{

 CALL_ONLY_IF_NOT_BUSY = 0x00,

 CALL_ONLY_IF_NOT_BUSY_WITH_REDIAL = 0x01,

 CALL_AND_PUT_ALL_OTHER_CALLS_ON_HOLD = 0x02,

 CALL_AND_PUT_ALL_OTHER_CALLS_ON_HOLD_WITH_REDIAL = 0x03,

 CALL_AND_DISCONNECT_ALL_OTHER_CALLS = 0x04,

 CALL_AND_DISCONNECT_ALL_OTHER_CALLS_WITH_REDIAL = 0x05

} CatSetupCallOptions;

5.11.27. CatTypeOfNumberAndNumberingPlanIdentifier

typedef enum

{

 TON_UNKNOWN_AND_NPI_UNKNOWN = 0x80,

 TON_INTERNATIONAL_AND_NPI_UNKNOWN = 0x90,

 TON_NATIONAL_AND_NPI_UNKNOWN = 0xA0,

 TON_NETWORK_AND_NPI_UNKNOWN = 0xB0,

 TON_SUBSCRIBER_AND_NPI_UNKNOWN = 0xC0,

 TON_UNKNOWN_AND_NPI_TELEPHONE = 0x81,

 TON_INTERNATIONAL_AND_NPI_TELEPHONE = 0x91,

 TON_NATIONAL_AND_NPI_TELEPHONE = 0xA1,

 TON_NETWORK_AND_NPI_TELEPHONE = 0xB1,

 TON_SUBSCRIBER_AND_NPI_TELEPHONE = 0xC1,

 TON_UNKNOWN_AND_NPI_DATA = 0x83,

 TON_INTERNATIONAL_AND_NPI_DATA = 0x93,

 TON_NATIONAL_AND_NPI_DATA = 0xA3,

 TON_NETWORK_AND_NPI_DATA = 0xB3,

 TON_SUBSCRIBER_AND_NPI_DATA = 0xC3,

 TON_UNKNOWN_AND_NPI_TELEX = 0x84,

 TON_INTERNATIONAL_AND_NPI_TELEX = 0x94,

 TON_NATIONAL_AND_NPI_TELEX = 0xA4,

 TON_NETWORK_AND_NPI_TELEX = 0xB4,

 TON_SUBSCRIBER_AND_NPI_TELEX = 0xC4,

 TON_UNKNOWN_AND_NPI_NATIONAL = 0x88,

 TON_INTERNATIONAL_AND_NPI_NATIONAL = 0x98,

 TON_NATIONAL_AND_NPI_NATIONAL = 0xA8,

 TON_NETWORK_AND_NPI_NATIONAL = 0xB8,

 TON_SUBSCRIBER_AND_NPI_NATIONAL = 0xC8,

 TON_UNKNOWN_AND_NPI_PRIVATE = 0x89,

 TON_INTERNATIONAL_AND_NPI_PRIVATE = 0x99,

 TON_NATIONAL_AND_NPI_PRIVATE = 0xA9,

 TON_NETWORK_AND_NPI_PRIVATE = 0xB9,

 TON_SUBSCRIBER_AND_NPI_PRIVATE = 0xC9,

 TON_UNKNOWN_AND_NPI_ERMES = 0x8A,

 TON_INTERNATIONAL_AND_NPI_ERMES = 0x9A,

 TON_NATIONAL_AND_NPI_ERMES = 0xAA,

 TON_NETWORK_AND_NPI_ERMES = 0xBA,

 TON_SUBSCRIBER_AND_NPI_ERMES = 0xCA

} CatTypeOfNumberAndNumberingPlanIdentifier;

5.11.28. CatSendShortMessageOptions

typedef enum

{

 PACKING_NOT_REQUIRED = 0x00,

 PACKING_BY_THE_ME_REQUIRED = 0x01

} CatSendShortMessageOptions;

5.11.29. CatSendDataOptions

typedef enum

{

 STORE_DATA_IN_TX_BUFFER = 0x00,
 SEND_DATA_IMMEDIATELY = 0x01

} CatSendDataOptions;

5.11.30. CatSIM_MEInterfaceTransportLevelType

typedef struct
{
 enum
 {
 UDP = 0x01,
 TCP = 0x02
 } TransportProtocolType;
 UINT16 SIM_ME_PortNumber;
} CatSIM_MEInterfaceTransportLevelType;

5.11.31. CatBearer

typedef enum

{

 BEARER_SMS = 0x00,
 BEARER_CSD = 0x01,
 BEARER_USSD = 0x02,
 BEARER_GPRS = 0x03

} CatBearer;

5.11.32. CatOpenChannelOptions

typedef enum

{

 ON_DEMAND_LINK_ESTABLISHMENT = 0x00,
 IMMEDIATE_LINK_ESTABLISHMENT = 0x01
} CatOpenChannelOptions;

5.11.33. CatAddressType

typedef struct
{
 enum

 {

 IPV4 = 0x21,

 IPV6 = 0x97

 } AddressType;
 BYTE AddressLength;
 const void *Address;
} CatAddressType;

History

Document history

V0.0.0
August 2000
First draft for comment

V0.0.1
November 2000
Revised first draft, containing typographical and grammatical amendments and alterations.

V0.0.2
January 2001
Revised to present a ‘C’-language bindings as the main document. MULTOS implementation detail moved to Annex.

V0.1.0
March 2001
Significant restructuring and changes to make the C binding completely platform independent.

V0.1.1
May 2001
Reworked after meeting T3 ad hoc #34, Edinburgh, according to the meeting report.

V0.1.2
October 2001
Reorganisation, removed example, reworked towards 3G , changed Sim to Cat, changed order of some function-parameters so all are in the order ‘length, value’

�PAGE \# "'Page: '#'�'" ��

We need to define the values that this symbol can take such that upward compatibility is assured. For example, code such as

#if SIM_TOOLKIT_VERSION >= SIM_TOOLKIT_R99

should be allowed. We need to enumerate the various flavours of SIM_TOOLKIT_xxx (e.g. SIM_TOOLKIT_GSM, SIM_TOOLKIT_R98, SIM_TOOLKIT_R99, SIM_TOOLKIT_USIM or whatever).

[image: image2.wmf]_1065016905.doc

Registered

event

or install

Update

Information

Request

Toolkit

application

Proactive

command

handler

Proactive

response

handler

APDU

handler

Toolkit

application

triggering

Load/delete Toolkit

Application 03.48

New Toolkit

application

Registry handler

NAA

file

access

Mobile

Equipment

APDU

Toolkit

event

Terminal response

Envelope response

handler

Terminal

response data

Proactive command

91

xx

Proactive command

Fetch command

Response data

Registry

File access

Request

File data

NAA File system

File data

Allowed Access/

Command

Toolkit application

information

Create new Toolkit

application from SMS-PP

_1001833466.doc
������

