Page 4
Draft prETS 300 ???: Month YYYY

	3GPP T3 SWG API Meeting #9

Marseille, France, 29 - 31 October, 2001
	Tdoc T3a010157

DRAFT Report from ETSI SCP WG3 # 1
hosted by ETSI
in Sophia Antipolis, 17 - 18 October 2001

Convenor: Sebastian Hans (Sun Microsystems)

Secretary: Sebastian Hans (Sun Microsystems)

List of participants:
Annex A

List of documents:
Annex B

E-mail discussion group
Annex C

Opening of Meeting

Opening of the meeting at 09:00 AM.

Roll Call of Delegates

A list of participants can be found in the Annex A.

Notification of IPR responsibilities

The Chairman drew the attention of the delegates to the fact that ETSI Individual Members have the obligation under the IPR Policies of their respective Organisational Partners to inform their respective Organisational Partners of essential IPRs they become aware of. They were asked to take note that they had been invited to:

· investigate in their company whether their company does own IPRs which are, or are likely to become essential in respect of the work of the Technical Specification Group

· notify the Chairman or the Director General of their respective Organisational Partners, of all potential IPRs that their company may own, by means of the IPR Statement and the Licensing declaration form

Input Documents

A list of documents discussed can be found at the end of the report in Annex B.

TOR of WG3

No new input regarding the TOR.

UICC API

No new input regarding the service description of the UICC API.

UICC API for Java Card™

uicc.access and usim.access relationships

We make the proposal to make the classes uicc.access.UICCSystem and usim.acces.USIMSystem independent from each other. At the moment usim.access.USIMSystem is inherited from uicc.access.UICCSystem. With this contruct it is possible to retrieve a uicc.access.UICCView object also via the usim.acces.USIMSystem class, because it inherits this functionality from its superclass. We think that it is better to have a clear split between these two systems. That a uicc.access.UICCView object can only be retrieved from a uicc.access.UICCSystem class.

We propose also to make the two exception classes independent, usim.access.USIMException is not inherited from uicc.access.UICCException. Both are derived from javacard.framework.CardRuntimeException.

For the class usim.access.USIMSystem we discussed the parameters of the static method get USIMView, weather we are passing the AID as a javacard.framework.AID object or as a bytearray to the method. Both scenarios are usefully, in case the AID is storred in an bytearray the creation of the AID object would create an extra overhead an we would have the same information twice, however the toolkit applet can also get the AID object as a paramter via the getShareableInterfaceObject method. So we see that there is a usecase to have both methods in the class.

We also discusses the need of the getUSIMView() method without anny parameter. The question that came is this method maybe misleading, because we don’t have something like a default USIM application in the card that is always selected ? It is also possible that the GSM application is selected, and no USIM is selected, for this case we would need a new exception code. So there is the proposal to delete this method.

The following UML diagram reflects all the proposed changes:

[image: image1.wmf]UICCSystem

UICCSystem()

getTheUICCView()

(from access)

UICCView

select()

select()

status()

readBinary()

updateBinary()

readRecord()

updateRecord()

searchRecord()

increase()

deactivateFile()

activateFile()

(from access)

<<Interface>>

UICCConstants

(from access)

<<Interface>>

USIMSystem

getTheUSIMView(aid : javacard.framework.AID) : USIMView

getTheUSIMView(buffer : byte[], bOffset : short, bLength : short) : USIMView

(from access)

UICCException

UICCException()

throwIt()

(from access)

USIMView

(from access)

<<Interface>>

USIMConstants

(from access)

<<Interface>>

Shareable

(from framework)

CardRuntimeException

(from framework)

USIMException

USIMException()

throwIt()

(from access)

One question regarding the number of available SIMView, USIMView and UICCView objects cames up during the meeting. The question is: if it is necessary to restrict the number of filesystem context’s available during one proactive session or do we simple throw an exception if the system has not enough resources to provide another filesystem type object.

Is it maybe interesting to have a view for the USIM filesystem and maybe a view on the UICC filesystem to get access to specific files. Or is maybe a system conceivable where we also whant ot have access to the filesystem of a e.g. WIM, or ISIM application (to do some fance PKI stuff)?

Sun’s opinion is to explicitly say in the spec there shall only one filesystem context object available is to restrictive, I would prefer to say there is at least one object available, if the card has enough resources it can provide more.

uicc.toolkit

The uicc.toolkit package as it is proposed today is essentially the same package as the existing sim.toolkit package. In this package we have two abstract public classes (ViewHandler, EditHandeler) from these two superclasses are all Systemhandler derived. The problem with this construct is we can not introduce new methods into the two abstract superclasses. If we do this we would hit one of the three exeption for the Java Card™ to the binary compatibility rules of the Java language. That means we can not extend the functionality of the existing sim.toolkit.ViewHandler and sim.toolkit.EditHandler classes. There is basically no reason to define these classes as abstract classes, normally you are using this conctruct to provide a default beahaviour of the class, but currently we are no doing this in the sim.toolkit package.

To solve this issue in the future we propose to change the whole handler hirarchy to interfaces. And to have for every systemhandler a Singleton class to retrieve the single system wide instance of an object implementing the respective Interface.

e.g.

public interface ProactiveHandler {

…

}

public final class ProactiveHandlerSystem{

public static ProactiveHandler getTheHandler(){…}

}

To change existing source code only a few steps where needed:

Today this is the way to retrieve the Proactive Handler instance

 ProactiveHandler proHdlr = ProactiveHandler.getTheHandler();

The red underlined part marks the change

 ProactiveHandler proHdlr = ProactiveHandlerSystem.getTheHandler();

We also discussed the alternativ to have one class and to request the different handler types via a parameter, but we think that the proposed way is the easiest way for existing application to be migrated to the new API.

This proposed change would give us much more freedom for future evolution of the handler system. It is basically the same architecture as in the javacard.security package for the interfaces defining the different types of cryptographic keys.

The following shows the package hierarchy in a first draft version:

Class Hierarchy

· class java.lang.Object

· class uicc.toolkit.EnvelopeHandlerSystem
· class uicc.toolkit.EnvelopeResponseHandlerSystem
· class uicc.toolkit.ProactiveHandlerSystem
· class uicc.toolkit.ProactiveResponseHandlerSystem
· class uicc.toolkit.TerminalProfile
· class java.lang.Throwable

· class java.lang.Exception

· class java.lang.RuntimeException

· class javacard.framework.CardRuntimeException

· class uicc.toolkit.ToolkitException
· class uicc.toolkit.ToolkitRegistry
Interface Hierarchy

· interface javacard.framework.Shareable

· interface uicc.toolkit.ToolkitInterface
· interface uicc.toolkit.ToolkitConstants
· interface uicc.toolkit.ViewHandler
· interface uicc.toolkit.EditHandler
· interface uicc.toolkit.EnvelopeResponseHandler
· interface uicc.toolkit.ProactiveHandler
· interface uicc.toolkit.EnvelopeHandler
· interface uicc.toolkit.ProactiveResponseHandler
For the split between uicc.toolkit and usim.toolkit package we propose to introduce a third package sms.toolkit. This package would persist of all the necessary classes and interface for the SMS protocol. This package could be used for the GSM and the 3G environments and would allow in a leter stage to deprecate the whole sim.toolkit packge and have only the uicc.toolkit, usim.toolkit, sms.toolkit system on a card. However this card could still work in both networks.

It could be interesting to introduce a new event EVENT_EVENT_COMMAND_AFTER_SELECTION, this event will be used to inform toolkit applets that a new network access application is selected and to trigger toolkit applets before the shareable interface object is requested. This would give the toolkit applet the chance to do some housekeeping stuff.

Any other Business

No issues here.

Closing of the Meeting

The meeting was closed on the 17. at 05:30 PM

Meeting Plan

	Meeting
	Date
	Host
	Location

	T3 SWG API #9
	29-31 October
	Gemplus
	Marseille

	T3 adhoc Java API testing
	29-31 October
	Gemplus
	Marseille

	T3 #21
	10 – 12 November 2001
	DNP, Toshiba, Fujitsu and Hitachi
	Kyoto, Japan

	EP SCP #8
	12 – 14 November 2001
	DNP, Toshiba, Fujitsu and Hitachi
	Kyoto, Japan

Annex A

List of Participants

	Name
	Company
	e-mail
	3GPP Member

	Mr.
	Pascal
	Dumas
	Gemplus
	Pascal.Dumas@gemplus.com
	ETSI
	FR

	Mr.
	Christophe
	Heulot
	Gemplus
	Christophe.heulot@gemplus.com
	ETSI
	FR

	Mr.
	Sebastian
	Hans
	Sun Microsystems Ltd.
	sebastian.hans@sun.com
	ETSI
	UK

Annex B Document List

	
	Tdoc
	Title
	Source
	Status

	1
	SCP-010003
	Draft Agenda
	Convenor
	Agreed

	2
	SCP-010215
	TOR of WG3
	EP SCP
	

	3
	SCP-010001
	UICC Application Programming Interface (UICC API) service description
	
	Discussed

	4
	SCP-010002
	UICC Application Programming Interface (UICC API); UICC API for Java Card™;
	
	Discussed

Annex C

E-mail discussion groups

ETSI SCP WG3 mailinglist

http://list.etsi.fr/archives/scp_wg3.html
1

