	3GPP TSG-T2 SWG2#22

Cambridge, UK

25-28 August 2003
	T2-030422

Agenda Item:
3.1

Source:
TeliaSonera

Title:
Proposed Changes to 23.241 chapter 6 and 7
Document for:
Discussion

The subject tdoc contains some proposed changes to TS23.241v040, for discussion and Approval by T2-SWG2.

6
Data Description Method (DDM)

6.1
Introduction

Section 6 of this document describes the DDM, which defines how to organize GUP data in a standardized manner. The description of the users' services configuration and personalization data using the DDM may result in manipulating and accessing these data in a structured, and standardized way. The DDM will help to overcome some of the challenges associated with the introduction of sophisticated user terminals and services with widely varying capabilities, hybrid combinations of mobile network domains, the advent of downloadable applications, and the desire of users to customise potentially complex services to individual preferences and needs. The Data Description Method (DDM) for GUP is based on XML Schema. XML-schema is a Schema definition language. The W3C Recommendation consists of three parts: XML Schema Part 0 that is a non-normative document intended to provide an easily readable description of the XML Schema facilities, XML Schema Part 1that describes Structures, and XML Schema Part 2 that describes Datatypes. The XML Schema functionality is above and beyond what is provided by DDM. The needed restriction is done through derivation of complex types, by guidelines, and templates.
The Data Description Method can be viewed as a template for constructing the data description. The template (set of rules) enables the standardization of the data description such that it and the described data can be shared (used) by many applications. The data descriptions are abstract in the sense that the data are described independently of data formats specific to data storage, transport protocols or application technologies. Abstraction of data descriptions simplifies the mapping between different data formats, and facilitates future extensions.

The common use of the Data Description Method will avoid incompatibilities and inconsistencies between different Profile Components.

Editor’s Note: The concepts abstract syntax and concrete syntax are introduced.

6.2 Profile Component Description

A Profile Component Description is an XML Schema and is called the Profile Component Schema.

As illustrated in the figure X a Profile Component Schema is defined as a specialisation of a generic Schema the Profile Component Master Schema. Furthermore the Profile Component Schema may contain Datatype definitions and or include one or more Datatype Definition Schemas containing Datatype definitions.

Editor’s Note: Whether the specialisation is implemented using the XML Schema redefine, extension or some other mechanism is FFSffs.

Editor’s Note: Whether the inclusion is implemented using the XML Schema include, import or some other mechanism is FFSffs.

[image: image1.wmf]«

XML

-

schema

»

GUP Profile Component Master Schema

«

XML

-

schema

»

(Specific) Profile Component Schema

«

specialisation

»

«

XML

-

schema

»

Datatype

Definition Schema

«

i

nclude

»

Datatype

Definition

(see

DtDM

)

0..*

1

..*

1

1

Figure X

Editor’s Note: Need to link the figure number and create a title.

Editor’s Note: UML diagrams need to be checked for consistency with UML practices.

The Profile Component Master Schema is defined by the XML Schema below:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<xs:element name=”profileComponentInstance” minOccurs="1" maxOccurs="1”>

 <complexType>

 <xs:sequence>

 <xs:element name=”payload” minOccurs="1" maxOccurs="1”/>

.

.

.

 </xs:sequence>

 </complexType>

</xs:element>

</xs:schema>

Figure X: Profile Component Master Schema.

Editor’s Note: How Profile Component properties and Profile Component identities etc. are included in the Profile Component Master Schema is FFS.

Editor’s Note: Whether and how namespaces are used if FFS.

6.2.1
Profile Component Type Definition

Synopsis:

<component

path? = {componentPath}

datatypeRef = {compositeDatatype}

propertyRef? = {propertyRef}

minInstances? = {minOccur}

maxInstances? = {maxOccur}

>

Content: {optSemantic}
</component>

Synopsis:

{minOccur} ::= {xsi:unsignedShort}

{maxOccur} ::= {minOccur} | unbounded

6.2.2
Profile Component Semantics

Profile Component Semantics:

<label xml:lang = {language} >

Content: {xsi:string maxLength = 30}
</label>

Profile Component Comments:

<comment xml:prof_comp="Profile Component">

Content: {xsi:string maxLength = 30}
</comment>

Comments elements are used to give comments to the Data Description. It is given in the English language.

6.2.3
Profile Component Payload Datatype

6.2.4
Profile Component Properties

Synopsis:

<property

name = {propertyName}

>

Content: [TBD]
</property>

6.2.4.1
Security Policy

Editor’s Note : Support for Security functions. Authorization control policies and rules data described here. Align with SA3 Security specs

6.2.4.2
Authorization and Access Control Policies

Editor’s Note: Support for Security functions. Authorization control policies and rules described here. Align with SA3 Security specs.

6.2.4.3
Privacy Policies

Editor’s Note:Privacy control policies and rules described here

6.3
Description Versions and Versioning Rules

6.4
Data Description Usage

Editor’s Note: Things like Distributed Work, Data Description Lifecycle, Common Objects, Data Description files and tools are introduced.

Editor’s note: should be similar to 7.4 (Data Definition Guidelines) but for data description

7
Datatype Definition Method (DtDM)

Editor’s Note: Abstract and Concrete Interpretation of XML Schema is introduced.

7.1
Introduction

Editor’s Note: will contain a Prose Description of Datatype Definition Method, and how to use

Section 7 describes the Datatype Definition Method, DtDM, a method describing how to define the new datatypes contained in the Generic User Profile, including an initial set of built-in datatypes. It is used to describe datatypes, which define the possible values a data item can have.

7.2 Examples of Datatype Definitions

Following examples will illustrate the description of a number of datatype definitions using DtDM.

Example 7.2.1

Editor’s Note: Text will be included to describe this example.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:simpleType name="CoordinateX">

<xs:restriction base="xs:int">

<xs:minInclusive value="0"/>

<xs:maxInclusive value="60"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="CoordinateY">

<xs:restriction base="xs:int">

<xs:minInclusive value="0"/>

<xs:maxInclusive value="30"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="Point">

<xs:sequence>

<xs:element name="x" type="CoordinateX">

</xs:element>

<xs:element name="y" type="CoordinateY">

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Line">

<xs:sequence>

<xs:element name="startPoint" type="Point">

</xs:element>

<xs:element name="endPoint" type="Point">

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Triangle">

<xs:sequence>

<xs:element name="point" type="Point" minOccurs="3" maxOccurs="3">

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:complexType name="LinePathOpen">

<xs:sequence>

<xs:element name="point" type="Point" minOccurs="2" maxOccurs="unbounded">

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:complexType name="LinePathClosed">

<xs:sequence>

<xs:element name="point" type="Point" minOccurs="3" maxOccurs="unbounded">

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="Radius">

<xs:restriction base="xs:int">

<xs:minInclusive value="0"/>

<xs:maxInclusive value="70"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="Circle">

<xs:sequence>

<xs:element name="midPoint" type="Point">

</xs:element>

<xs:element name="radius" type="Radius">

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="Angle">

<xs:restriction base="xs:int">

<xs:minInclusive value="0"/>

<xs:maxExclusive value="360"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="PointPolar">

<xs:sequence>

<xs:element name="radius" type="xs:int">

</xs:element>

<xs:element name="angle" type="xs:int">

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:complexType name="PointCartOrPolar">

<xs:choice>

<xs:element name="cartesianCoordinate" type="Point">

</xs:element>

<xs:element name="polarCordinate" type="PointPolar">

</xs:element>

</xs:choice>

</xs:complexType>

</xs:element>
</xs:schema>
7.3
XML Schema Usage for Datatype Definitions

Editor’s Note: Will describe what is allowed, and state that everything which is not allowed will be considered forbidden. (although the restrictions are needed, they do not need to be always followed, i.e. they are not obligatory. If there is some other concrete mechanisms, then the restrictions do not need to be followed.)

7.3.1
Introduction

This clause defines how different abstract syntax constructions such as atomic types and composite datatypes are represented using XML Schema.

The vocabulary for the abstract syntax constructions is fetched from ISO/IEC 11404 “Information technology -- Programming languages, their environments and system software interfaces Language-independent datatypes”.

Editor’s Note: The vocabulary used must be made aligned with the ISO/IEC 11404.

7.3.2
Atomic Datatypes

Editor’s Note: describe list of built-in datatypes and derivation rules for new datatypes

7.3.2.1 Introduction

Atomic datatypes are those having values, which are regarded by as being indivisible or not further decomposable.

There are predefined atomic datatypes and derived atomic datatypes. Derived datatypes can be defined by restricting a predefined atomic datatype or by defining a union datatype.

7.3.2.2 Predefined Atomic Datatypes

Predefined atomic datatypes can only be added by revisions to this specification.

The XML-schema primitive datatypes are: string, boolean, decimal, float, double, duration, dateTime, time, date, gYearMonth, gYear, gMonthDay, gDay, gMonth, hexBinary, base64Binary, anyURI, QName, and NOTATION.

The XML-schema primitive derived datatypes are: normalizedString, token, language, NMTOKEN, NMTOKENS, Name, NCName, ID, IDREF, IDREFS, ENTITY, ENTITIES, integer, nonPositiveInteger, negativeInteger, long, int, short, byte, nonNegativeInteger, unsignedLong, unsignedInt, unsignedShort, unsignedByte, positiveInteger.

The predefined atomic datatypes are a subset of the XML-schema primitive datatypes. The dataypes from the XML-schema which are excluded are below in comments “{* … *}”.

{predefinedAtomicDatatype} ::=

string | boolean

{*| decimal | float | double*}

| duration | dateTime | time | date

{*| gYearMonth | gYear | gMonthDay | gDay | gMonth*}

{*| hexBinary | base64Binary*}

| anyURI

{*| QName | NOTATION*}

| normalizedString

{*| token *}

| language

{*| NMTOKEN | NMTOKENS | Name | NCName*}

| ID | IDREF

{*| IDREFS | ENTITY | ENTITIES*}

{*| integer | nonPositiveInteger | negativeInteger | long*}

| int | short | byte

{*| nonNegativeInteger | unsignedLong*}

| unsignedInt | unsignedShort | unsignedByte

{*| positiveInteger*}

7.3.2.3 Derived Atomic Datatypes

Derived atomic datatypes can be defined by restricting a predefined atomic datatype or by defining a union datatype.

7.3.2.4 Atomic Datatypes Derived by Restriction

[From XML-schema specification] A datatype is said to be derived by restriction from another datatype when values for zero or more constraining facets are specified that serve to constrain its value space and/or its lexical space to a subset of those of its base type. A constraining facet is an optional property that can be applied to a datatype to constrain its value space.

<xs:simpleType name="{datatypeName}">

<xs:restriction base="{datatypeName}">

<xs:{facet} value="{value}"/>*

</xs:restriction>

</xs:simpleType>
7.3.2.5 Constraining Facets

Constraining Facets in XML–schema are: length, minLength, maxLength, pattern, enumeration, whiteSpace, maxInclusive, maxExclusive, minExclusive, minInclusive, totalDigits, and fractionDigits.

[Issue: Which XML-schema Constraining Facets to select to be used]

{facet} ::= minExclusive | minInclusive | maxExclusive|maxInclusive

| totalDigits | fractionDigits | length | minLength | maxLength

| enumeration | pattern
7.3.2.6 Union Datatype

A union type enables an attribute value to be one instance of one type draw from the union of multiple atomic.

[From XML-schema specification] Union datatypes are those whose value spaces and lexical spaces are the union of the value spaces and lexical spaces of one or more other datatypes.

The datatypes that participate in the definition of a union datatype are called member types of that union datatype.

<xs:simpleType name=”{datatypeName}”>

<xs:union memberTypes=”{simpleDatatypeName}*”/>

</xs:simpleType>
7.3.3
Composite Datatypes

Editor’s Note: describe derivation rules for new datatypes.

7.3.3.1 Introduction

A composite datatype contains a number of name items each with a defined datatype. A field can be simple or a vector. A simple field can contain one element and a vector field a number of elements of the specified datatype.

7.3.3.2
Field and Data Element Names

A Composite datatype has a number of fields each with a local name {fieldName}, which must be unique within the datatype.

An instance of a Composite Datatype is a composite data element containing a number of sub elements corresponding to the fields. The local name of a sub element is a {elementName}. The {elementPath} is used to identify a sub element or a sub-sub element and so on.

7.3.3.3
Record Datatype

A record datatype contains a number of named items called fields each with a defined datatype. The field names must be unique with a record datatype. The datatype of a field can be any atomic data type or composite datatype.

<xs:complexType name="{datatypeName}">

<xs:sequence>

{field}*

</xs:sequence>

</xs:complexType>
7.3.3.4 Selection Datatype

A selection datatype defines a number of named items called fields each with a defined datatype. For a selection datatype only one of its fields can be stored at the same time.

The field names must be unique within a selection datatype. The datatype of a field can be any atomic data type or composite datatype.

<xs:complexType name="{datatypeName}">

<xs:choice>

{field}*

</xs:choice>

</xs:complexType>
7.3.3.5 Field

{field} ::= {fieldSimple} | {fieldSimpleOptional} | {fieldVector}

Simple field:

{fieldSimple} ::=

<xs:element name="{elementName}" type="{datatypeName}"
/>*
Simple optional field:

{fieldSimpleOptional} ::=

<xs:element name="{elementName}" type="{datatypeName}"

minOccurs="0" maxOccurs="1"
/>*
Vector field:

{fieldVector} ::=

<xs:element name="{elementName}" type="{datatypeName}"

minOccurs="{min}" maxOccurs="{max}"

/>*
7.3.3
Identification of Attributes/Data Elements

7.3.4
Semantics and Comments

Comment elements are used to give comments in English to the Data Description itself.

Semantic is used to define the meaning of the thing defined in a Data Description Examples of things given meaning are: Profile Component, Datatype, item in Datatype and specific value (in enumerations).

The semantic is given using normal language. It is possible to give it in several different languages.

Synopsis:

{semantic} ::= comment? semantic
{optSemantic} ::= comment? semantic?

12.1
Element comment

Synopsis:

<comment xml:lang="en">

Content: {xsi:string}
</comment>

Comments elements are used to give comments to the Data Description. It is given in the English language.

12.2
Element semantic

Synopsis:

<semantic>

Content: label+ definition? description?

</semantic>

The information in the semantic elements is used by the interpretation and usage of the described content. The semantic can be given in three different levels of detail:

· Label
A human-readable label.

· Definition
A statement that describes the essential nature of the element been described.

· Description
Additional information (optional).

Synopsis:

<label xml:lang = {language} >

Content: {xsi:string maxLength = 30}
</label>

Examples:

<label xml:lang="en">Understandable label</label>

<label xml:lang="se">Tolkbar etikett</label>

Synopsis:

<definition xml:lang = {language} >

Content: {xsi:string maxLength = 1000}
</definition>

Examples:

<definition xml:lang="en">

A short definition</definition>

<definition xml:lang="se">

En kort definition</definition>

Synopsis:

<description xml:lang = {language} >

Content: [TBD]
</description>

Examples:

<description xml:lang="en">

A longer description ...

</description>

<description xml:lang="se">

En längre beskrivning ...

</description>

Synopsis:

{languageId} ::= {xsi:language}

Language represents natural language identifiers as defined by [RFC 1766].

7.3.5
Extensions of Datatypes

7.4
Datatype Definition Guidelines

Following guidelines are defined:

1. Each data element shall be defined as an XML element of a suitable type.

2. XML attributes shall be used only to qualify the data element defined as XML elements and not contain the actual data values.

3. An XML element either contains other XML elements or actual data value. An XML element shall not have both a value and other XML elements as subelements.

4. All elements shall be defined as global elements. When elements with complex type are defined references to global elements are used. Note: needs further work to validate that this is future proof extensible beyond rel 6.
Example: The guideline states that it is defined as follows:

<xs:element name="Element">

<xs:complexType>

<xs:sequence>

<xs:element ref="SubElement1"/>

<xs:element ref="SubElement2"/>

</xs:sequence>

</xs:complexType>

</xs:element>
where SubElement1 and SubElement2 are defined as global elements.

The reason for the guideline is that the XML Schema now not only define the (abstract) syntax of the profile components but also the (abstract) transfer syntax.

5. The names should be meaningful, but as short as possible.

6. If a name consist of more than one word or abbreviated word, capitalization shall be used to keep the long names readable. Each new word after the first word in a name shall start with a capital letter. Also the first word shall start with a capital letter for names of XML elements and types (e.g. ElementName, TypeName).

7. The attribute names shall start with a lower case letter (e.g. attributeName).

8. When abbreviations which take the first letter of each word are used, the whole abbreviation is capitalized (e.g. GSMPhone). When the abbreviation is few characters from a word like addr for address, the abbreviation is handled like a word, i.e. sometime the first letter shall be capitalized and sometimes not (e.g. HomeAddr for element containing home address and addrType for attribute containing the address type information qualifying the data element).

9. The type definitions provided by the XML schema shall be used, when they cover the requirements.
7.5
Datatype Definition Versions and Versioning Rules

Editor’s Note: Revision control rules

 Annex x
Notation used in this Specification

x.1
Rules

In this document an informal “Extended Backus-Naur Form (EBNF)” like notation is used.

EBNF rules are used in the document. The syntax of a rule is:

 {symbol} ::= expression.

The rule is describing the {symbol} using an expression (or some text).

The special symbols used in the expression are:

	{symbol}
	{symbol} is explained in a rule with {symbol} as its right side ({symbol}::= …). It can be regarded as a placeholder for the thing described in the rule.

	(expression)
	Expression is treated as a unit when combined as described in the following 5 rows.

	A?
	Zero or one occurrences of A; optional A

	A B
	A followed by B (Concatenation). This operator has higher precedence than alternation; thus A B | C D is identical to (A B) | (C D).

	A | B
	A or B but not both (Alternation).

	A+
	One or more occurrences of A. Concatenation has higher precedence than alternation; thus A+ | B+ is identical to (A+) | (B+).

	A*
	Zero or more occurrences of A. Concatenation has higher precedence than alternation; thus A* | B* is identical to (A*) | (B*).

	{* comment *}
	A comment in the expression.

	{xsi:datatype}
	Data of a simple type defined in “XML Schema Part 2: Datatypes” [5].

	elementName
	Used in XML-element content models.

x.2
XML-element

The following layout is used in the description of XML-elements:

Synopsis:

<tag

attributeName

attributeType = {xsi:datatype}

optionalAttribute?

enumAttribute = (large | medium | small) : medium

>

Content: expression

</tag>

In the start tag there is a list of attribute names (attributeName, attributeType, optionalAttribute and enumAttribute).

Optional attributes has a “?” after its name.

Attribute of a simple type defined in “XML Schema Part 2: Datatypes” [5] is indicated with {xsi:datatype} as for the attributeType above.
Where an attribute is of an enumerated datatype, the possible values are shown separated by vertical bars, as for the enumAttribute above; if there is a default value, it is shown following a colon.

The expression following “Content:” is an expression describing the allowed content of the element. Name not surrounded by {}, used in the expression is the name of an element, which may appear as a child element. The optional character following a name or sub-expression, governs whether the element or the sub-expression may occur one or more (+), zero or more (*), or zero or one times (?). The absence of such an operator means that the element or content particle must appear exactly once.

Example:

<example

count = {xsi:integer}

size? = (large | medium | small) : medium

>

Content: (all | any*)

</example>

x.2.1
Headlines used in XML-element descriptions

The following headlines are used in the description of XML-elements:

Synopsis:

Indicating the syntax in the description of datatype.

Example:

Contains an example of a (part) of a datatype description.

Example data in XML-format:

Contains an example of a data in XML-format conforming to the datatype description.

3GPP

