3GPP TSG-T2 #18

Velen, Germany

12 -16 August 2002
T2-020697

Agenda Item:

Title:
Discussion of the GUP Schema Mechanism and the GUP Data Declaration Process
Source:
Nokia

Document for:
Discussion

1
Introduction
Nokia proposed for SA2 a GUP Schema Mechanism for defining Profile Structures (Prifile Schemas) in the contribution S2-021806. The S2-021806 is attached in the LS T2-020619 sent from SA2 to T2.
This contribution discusses the GUP Schema Mechanism at a more general level than S2-021806. This contribution tries also to clarify the reasons for proposing such a GUP Schema Mechanism.
The contribution also discusses the questions raised in the LS T2-020619 - i.e. whether a separate DDF is needed as part of the GUP Data Declaration Process.

2
Discussion

2.1 Background

The TS 23.240 (GUP Architecture) defines the basic functionalities to be provided by a GUP Architecture.

The propably most primary one of all the functionalities is the Harmonised Access Interface:

"The GUP harmonized access interface is the interface which can be used by the GUP suppliers and GUP consumers to access, manage and transfer the profile data. This application layer interface is independent of the profile structure. "

Other functionalities to be provided by the GUP Architecture include

- Single Point of Access

- Authentication of profile access
- Authorisation of profile access

- Privacy Control

- Synchronisation of data storage

- Access of profile from visited network

- Location of Profile Components

The purpose of the Harmonised Access Interface is to standardise one Interface for managing the User Profile. On top of that interface it is possible to implement several kinds of Clients, e.g. Management Applications, SIP Applications etc.

A design principle for the Harmonised Access Interface is to separate the definitions of the Access Interface itself and the Profile Structure. For the definition of the Profile Structure a Schema Mechanism is needed.
The separation has the benefit that it makes the evolution of the Profile Structure more flexible: Addition of new data elements in the User Profile does not change the Access Interface - only the Profile Schema.
If a machine understandable schema mechanism such as XML Schema is used to define the Profile Schemas, it is then possible to implement Dynamic Clients which have not to be changed every time the Profile Schema evolves.
For example Management Applications acting as Dynamic Clients can remain unchanged if proprietary extensions are added in the Profile Schema. Because of the use of a machine understandable schema the Management Application can validate even the values of the extra data elements.

Other applications using a predefined set of profile data elements can act as Static Clients.

As another design goal for the interface we see that the Harmonised Access Interface nterface should be based on standard main-stream Web mechanisms such as WSDL and SOAP - XML Schema should be used for the Profile Structure.

The Access Interface should in the extent possible be even compliant with existing or coming Profile Access Interfaces used by Web Services - to make it possible for Web Services to access the 3GPP User Profile.

For the same purpose at least some Profile Component Schemas could be made compliant with the Profile Schemas defined in Web. For example the Profile Component Schema defining the Personal Profile as name, address, language could reuse a Profile Schema of Web Services.
2.2 GUP Schema Mechanism
The proposed GUP Schema Mechanism is based on the idea of using XML Schema for defining the Profile Component Structures.

The ideal solution would be that the GUP Schema Mechanism would reuse some Profile Schema Mechanism of Web Services. Some Profile Components could even reuse or extend the existing Profile Schemas defined for Web Services.

The initial version of the GUP Schema Mechanism proposed in the S2-021806 has been designed in a way that it can propably easily be made compliant with Profile Schema Mechanisms to be defined in e.g. Open Mobile Architecture.

Technically the GUP Schema Mechanism is based on a predefined GUP XML Schema which defines an "Absract Profile Component" type which only includes the common elements of all Profile Components. The XML Schema extension mechanism is used to define the "Concrete Profile Components" as extensions of the "Abstract Profile Component".
Using XML Schema to define Profile Schemas has sevaral benefits besides XML Schema being machine-understandable:

Being a main-stream schema mechanism XML and XML Schema have a rich set of tools available i.e. for

a) XML schema validation,

b) XML schema binding for implementing Static Clients

c) XML document access - standardised as XPATH and XQUERY at W3C

d) XML document access control and privacy - to be standardised at OASIS as XACL

e) tools for accessing database data in XML format - even native XML databases

f) tools for accesing directory data in XML format - standardised as DSML at OASIS
The tools and standards can be reused when providing the required functionalities of GUP like Profile Access, Profile Access Control, Privacy. The tools also support implementation of both Dynamic and Static Clients.
2.3 The Data Declaration Process
The proposed GUP Schema Mechanism is not in conflict with the work done on GUP DDF - see TS 23.241 - but has some implications on the GUP DDF work.

The Data Declaration Process - as seen in the TS 23.241 - concists typically of two phases:

1. The declaration of data using DDF

2. A transformation of the declaration to for example the default transport format (based on XML Schema)

If a GUP Schema Mechanism - such as the mechanism proposed in contribution S2-021806 - is defined, a transformation is propably needed also to a "default Profile Schema".
But a two-phase data declaration process concisting of the DDF declaration and the Profile Component Schema definition has sevaral drawbacks:

1. The data declaration process becomes complicated.

2. Everyone participating in the data declaration process must have expertice on the DDF.

3. In every group using the DDF there must exist expertice on the transformation of the DDF to whatever transport format or profile schema mechanism used.

Even if an automatic transformation is used the transformation must be understood.
Otherwise the group involved in the data declaration process loses the control of the second phase of the process.

4. The DDF framework (language) must be developed and maintained for a long time.

At the time being the expressive power of the DDF language is too restricted to implement more then the most basic constructs. To implement the more advanced features still much development work is needed.
5. Tools for supporting the DDF framework must be developed and maintained.

6. DDF is a 3GPP specific framework and the expert group size is minimal.
One clear benefit of the proposed two-phase data declaration process is that when data is declared on an abstract level - independent on the concrete mechanisms such as SyncML, LDAP, XML Schema - the quality of the data declaration process is better.
The benefit is certainly notable. Still we see the drawbacks exceeding the benefits.
We see that using a one phase data declaration process is enough.
A two-phased process can optionally be utilized by using some main-stream modelling language such like UML Class Diagrams to define data on an abstract level and then transforming the UML Class Diagrams to XML Schema. Standard tools and methods can then be utilized for the transformation.
Two-phased process is especially useful when same data shall be accessed by for example the GUP Harmonised Access Interface and SyncML. The UML Class Diagram is then utilized as an implementation independent data model.

3
Conclusion
We do not see a need for continuing the work on the Data Declaration Framework.

Instead XML Schema should be used to define the Profile Component Structures. The GUP Common Objects (used by several Profile Components) should be defined using the XML Schema Data Type mechanism.

A guidline for defining the Profile Components and Common Objects is propably still needed. Also the use of the XML Schema can be restricted for example as defined in the S2-021806 - i.e. each Profile Component is defined as an extension of an "Abstract Profile Component" which is defined as an XML Schema Data Type.
It is also possible to utilize an implementation independent modelling language such as UML Class Diagrams for data modelling and define default transformations from the UML Class Diagrams to XML Schema and/or other implementation dependent data models.

