	
	 Required Client API
	
	Issue 0.1
	13/08/2002
	Page 1

	3GPP TSG-T2 #18

Velen, Germany

12 -16 August 2002
	T2-020666

Agenda Item:
T2-SWG1 Agenda Item 12

Source:
emc2
Title:
File System API Specification For adding file management support
Document for:
Consideration

	Client Enabling API
	

	
	
	

	
	Document Version
	0.1
	

	
	
	
	

	
	Project Name
	C-API
	

Table of Contents
61.
Introduction

72.
Client API

7ClientInitApplication

7ClientProcessMessage

83.
Device Events

8 CLIENT_SMSReceived

8 CLIENT_PlayNewMessage

8 CLIENT_KeyPressed

8 CLIENT_CharEntered

9 CLIENT_BackSpace

9 CLIENT_OK

9 CLIENT_Cancel

9 CLIENT_CancelLong

9 CLIENT_ScrollUp

10 CLIENT_ScrollDown

10 CLIENT_TimerComplete

10 CLIENT_OpCompleteSuccess

10 CLIENT_OpCompleteFail

11 CLIENT_StoreContext

11 CLIENT_RestoreContext

11 CLIENT_InvokeMenu

11 CLIENT_ExitApplication

124.
Device Layer API

124.1.
UI Metrics

12DeviceGetScreenMetrics

12DeviceGetMaximimumNumberOfColours

12DeviceGetMaximimumBitsPerPixel

12DeviceGetClientRect

134.2.
Localisation

13DeviceGetCurrentLanguage

134.3.
Textual Input

13DeviceEnableSmartTextInput

13DeviceDisableSmartTextInput

13DeviceEnableNumericOnlyEntry

14DeviceDisableNumericOnlyEntry

14DeviceGetKeyTimerInterval

14DeviceGetNextChar

144.4.
Screen

14DeviceClearOffscreenBuffer

15DeviceClearRegion

15DeviceInvertRegion

154.5.
Textual Output

15DeviceTextNextBreak

15DeviceTextMeasure

16DeviceDrawText

164.6.
Graphical Output

16DeviceSetNewMessageIndication

17DeviceMemToScreen

17DeviceDrawGUIComponent

17DeviceDrawPixel

17DeviceSetPixel

18DeviceDrawLine

18DeviceDrawLineTo

18DeviceDrawRawBits

19DeviceRefreshScreen

19DeviceReleaseDisplay

19DeviceRequestDisplay

194.7.
Sound Output

19DevicePlayNote

19DeviceCancelNote

20DeviceOverwriteDynamicRingTone

20DeviceSetDynamicRingToneActive

204.8.
Memory & Persistence

20DevicePersistMemoryAsync

20DeviceReadMemoryAsync

21DeviceEraseMemoryAsync

214.9.
Time & Timer

21DeviceGetTime

21DeviceCreateTimer

21DeviceKillTimer

224.10.
Cell Broadcast

22DeviceGetActiveCell

224.11.
Phonebook

22DevicePhoneBookFindFirstNumber

22DevicePhoneBookFindFirstName

22DevicePhoneBookFindNext

23DeviceLaunchPhoneBook

234.12.
Encryption

23DeviceGetEncryptionKey

234.13.
Miscellaneous

23DeviceGetGSMVersion

23DeviceGetNextMsgRef

24DeviceGetNextMsgRef16

24DeviceSubmitSmsTpdu

24DeviceGetIMSI

24DeviceGetIMEI

25DeviceGetPhoneNumber

25DeviceVibrate

25DeviceUpdateLogo

254.14.
Colour

25DeviceSetColour

25DeviceGetColour

264.15.
Softkeys

26DeviceDrawSoftKey

26DeviceSetSoftKeyState

275.
Types

275.1.
COLOUR

275.2.
KEYID

275.3.
MBool

275.4.
MByte

275.5.
MDword

275.6.
MESSAGE_PARAM

275.7.
MUint

275.8.
TPDU_PTR

275.9.
UCS2

286.
Structures

286.1.
CELL_GLOBAL_ID

286.2.
Mpoint

286.3.
MRect

296.4.
MRegion

Revision history

	Version
	Author
	Date
	Comments

	0.1
	Barry Jones
	13/08//2002
	Updated and reformatted

The object of this document is to outline a low level API which will enable third party vendors to integrate effectively into multiple handsets.

By exposing a common API layer to 3rd software companies the handset manufacturers provide an initial step on the road to having an effective cross platform development environment which will reduce time of integration of new features and reduce the resources required to manage development of outsourced or third party applications

This provides a firm foundation for the development of applications and services in the mobile environment

The examples provided are indicative of a typical integration utilizing many of the common attributes required for integration a generic client solution.

The list is intended to be informative and is not exhaustive and the function names are at this point descriptive

1. Introduction

This document describes in detail the interface between a messaging client and the mobile equipment.

The mobile equipment must tell the Messaging client about certain events, such as the arrival of an SMS, MMS or the completion of a flash write. This is achieved using the public API described in the first part of this specification, the client API.

The Messaging client needs to use some facilities of the handset, e.g. to access the screen. It does this by calling a number of functions that must be implemented during the integration process. These functions are outlined in the second part of this document, the device layer API.

The integration process consists of the following stages

Call the ClientInitApplication function at the appropriate point

Inform the client of the appropriate events using ClientProcessMessage

Implement the functions in the device layer

2. Client API

The device calls the functions defined in this section to inform the client of the occurrence of certain events.

	ClientInitApplication

	ESTATUS ClientInitApplication(const MDword dwFlashSize, MByte *pFlashBase,

 const MDword dwCacheSize, MByte *pCacheBase,

const MDword dwHeapSize, MByte *pHeapBase)

	Description

The device must call this function to initialise the client, passing a pointer to the base of a RAM cache containing the persistent memory and the maximum size of the available EEPROM or NVRAM. The client initialises its file system and reads its initialisation data. If no data are available the client creates a default .ini file and writes it to the permanent memory location.

	Arguments

dwFlashSize, size of flash memory

pFlashBase, pointer to base of flash memory

dwCacheSize, size of flash ram cache

pCacheBase, pointer to base of flash ram cache

dwHeapSize, size of ram memory heap

pHeapBase, pointer to base of memory heap

	Returns

EnoError

	ClientProcessMessage

	ESTATUS ClientProcessMessage(const EVENT_ID id, const EVENT_TYPE type, const MESSAGE_PARAM param)

	Description

This is the only external API for the client after initialisation. This is the client API message passing function. The client handles each event it receives in turn and control returns to the calling process.

We do not, at this time, envisage a period of greater than 50ms will be required for any client activity.

The section on device events below describes all the possible values of the event id, and the associated parameters.

	Arguments

id,The event identifier
type, should always be CLIENT_Type_DeviceEvent for events posted by the device.

param, Parameter associated with the event.

	Return Value

ENoError if successful

See descriptions of the appropriate device event below for a description of the error codes that can be returned for that event.

3. Device Events

The following events should be sent to the client using ClientProcessMessage to indicate that certain events have happened. These events can only receive one parameter, via the MESSAGE_PARAM parameter of the ClientProcessMessage function call.

_SMSReceived

Description

The device should call this function to pass an SMS containing either a message or an EMS to the client. The device should pass across the complete TPDU structure received.

Parameters

TPDU_PTR * - pointer to the received SMS message

Return Values

ENoError
EPduError – The message received was not a valid message.

_PlayNewMessage

Description

This message tells the client to play the most recent message.

Parameters

None

Return Values

ENoError

_KeyPressed

Description

This message is called to inform the client of a key press on the device, if the key press cannot be resolved to a higher level event. Note that key code is ultimately passed through to the device layer function DeviceGetNextChar for conversion to a character, so the actual values of the key codes are not defined by the client.

Parameters

MUint key code

Return Values

ENoError
_CharEntered

Description

This function is called to indicate that a character has been entered.

Parameters

Mbyte char ASCII character that has been entered.

Return Values

ENoError
_BackSpace

Description

This event tells the client that the user has pressed the backspace key.

Parameters

None

Return Values

ENoError

_OK

Description

This event tells the client that the user has pressed the OK key.

Parameters

None

Return Values

ENoError

_Cancel

Description

This event tells the client that the user has pressed the Cancel key.

Parameters

None

Return Values

ENoError

_CancelLong

Description

This message tells the client that the cancel key has been held down for an extended period. This is generally used to exit from the application.

Parameters

None

Return Values

ENoError

_ScrollUp

Description

This message tells the client that the scroll up key has been pressed.

Parameters

None

Return Values

ENoError

_ScrollDown

Description

This message tells the client that the scroll down key has been pressed.

Parameters

None

Return Values

ENoError

_TimerComplete

Description

This message is used to inform the client that a one-shot timer has expired.

Parameters

MDword handle – The handle of the timer that has expired.

Return Values

ENoError

See Also

DeviceCreateTimer
 CLIENT_OpCompleteSuccess

Description

Use this event to inform the client that an outstanding asynchronous action has completed successfully. There are no parameters – the client is only ever waiting on one outstanding operation. The operations that the client waits to complete are non-volatile memory accesses and TPDU transmissions.

Parameters

None

Return Values

ENoError

See Also

DevicePersistMemoryAsync, DeviceReadMemoryAsync, DeviceEraseMemoryAsync, DeviceSubmitSmsTpdu

 CLIENT_OpCompleteFail

Description

Use this event to inform the client that an outstanding asynchronous action has failed.

Parameters

None

Return Values

ENoError

See Also

DevicePersistMemoryAsync, DeviceReadMemoryAsync, DeviceEraseMemoryAsync, DeviceSubmitSmsTpdu
 CLIENT_StoreContext

Description

The device should send this event when a higher priority task requires that the client release GUI or system resources. For example an incoming phone call typically generates the event. The client will stop any timers, save its status if necessary, and then return.

Parameters

None

Return Values

ENoError

See Also

 CLIENT_RestoreContext
 CLIENT_RestoreContext

Description

Restores the context saved by a CLIENT_StoreContext event, allowing the client to continue the interrupted activity, if appropriate.

Parameters

None

Return Values

ENoError

 CLIENT_InvokeMenu

Description

This message is used to bring the client to the foreground, displaying its top-level menu.

Parameters

None

Return Values

ENoError

 CLIENT_ExitApplication

Description

The device should send this message to initiate the shutdown of the client. The client will flush its cache to the non-volatile storage.

Parameters

None

Return Values

ENoError

4. Device Layer API

The functions in this section are called by the client to access various device resources. The functions should be implemented as part of the integration process.

4.1. UI Metrics

	DeviceGetScreenMetrics

	void DeviceGetScreenMetrics(MUint *width, MUint
 *height)

	This client calls this function to find out the size in pixels of the display surface. It sets the size of the screen in pixels into the two passed in integer pointers.

	Arguments

width, pointer to width of the screen in pixels

height, pointer to the height of the screen in pixels

	Return Value

None

	DeviceGetMaximimumNumberOfColours

	MUint
 DeviceGetMaximimumNumberOfColours(void)

	This function indicates to the client the maximum number of colours that may be displayed on the handset’s display.

	Arguments

None

	Return Value

The number of supported colours, 2 for a black and white display.

	DeviceGetMaximimumBitsPerPixel

	MUint
 DeviceGetMaximimumBitsPerPixel(void)

	This function indicates to the client the maximum number of bits per pixel that may be displayed on the handset’s display.

	Arguments

None

	Return Value

The bits per pixel supported by the display device, 1= black & white, 2= 4 grey scales, 6= 64 colour display.

	DeviceGetClientRect

	void DeviceGetClientRect(MRect *clientRect)

	This function indicates to the client the ‘usable’ size in pixels of the display surface. This can be different to DeviceGetScreenMetrics() if ‘Soft keys’ or ‘Scroll bars’ are present. The ‘TopLeft’ and ‘BottomRight’ coordinates are stored in the referenced MRect structure.

	Arguments

clientRect, pointer to a structure where the the coordinates of the available screen area should be written.

	Return Value

None

4.2. Localisation
	DeviceGetCurrentLanguage

	void DeviceGetCurrentLanguage(MByte *pLocale)

	This function indicates to the client the language currently selected by the user if the device supports more that a single language or character set. The client will load appropriate string resources as required after making this call. The function returns an ISO 639-1988
 language reference string.

	Arguments

pLocale, is a pointer to the country locale buffer into which the function should write a two-byte NULL terminated string, as defined by the ISO standard above.

	Return Value

None

4.3. Textual Input

	DeviceEnableSmartTextInput

	MBool
 DeviceEnableSmartTextInput (void)

	This function allows the client to enable a predictive text input mode, if available on the device. This function is not currently called by the client, and does not need to be implemented.

	Arguments

None

	Return Value

Etrue if Smart Input is available,

Efalse if not

	DeviceDisableSmartTextInput

	void DeviceDisableSmartTextInput (void)

	This function disables predictive text input processing if available on the device.

	Arguments

None

	Return Value

None

	DeviceEnableNumericOnlyEntry

	MBool
 DeviceEnableNumericOnlyEntry (void)

	This function enables numeric only data entry. Note that if the device uses forms, then this function must be implemented and return true. The functions allows keys “0-9” and “+-.” to be sent to the client.

	Arguments

None

	Return Value

Etrue if numeric only input is supported by the device.

Efalse otherwise

	DeviceDisableNumericOnlyEntry

	void DeviceDisableNumericOnlyEntry (void)

	This function disables numeric only data entry, if supported by the device.

	Arguments

None

	Return Value

None

	DeviceGetKeyTimerInterval

	MDword DeviceGetKeyTimerInterval (void)

	This function is used to determine how long a handset key is pressed before it cycles

	Arguments

None

	Return Value

The cycle time in milliseconds.

	DeviceGetNextChar

	UCS2 DeviceGetNextChar (const KEYID id, const MBool
 bfirst)

	This function is used to convert key presses into characters. This function needs to be implemented to store the currently selected index for the key between function calls, so that the client can cycle through the key sequence by calling this function repeatedly.

	Arguments

id, is the value of a specific key

bfirst, defines if the id is the keycode to use (ETrue) or cycle to the next (EFalse)

	Return Value

A fully specified UCS2 character for the specified key press.

4.4. Screen

	DeviceClearOffscreenBuffer

	void DeviceClearOffscreenBuffer (void)

	This function enables the client to clear the whole display area. It sets all data in the off-screen buffer to zero values i.e. empty. Erases the off-screen buffer, setting all elements to zero.

	Arguments

None

	Return Value

None

	DeviceClearRegion

	void DeviceClearRegion(const MRegion *region, const MClearStyle style)

	This function allows the client to clear a given area of the off screen buffer such that all bits are clear or all bits are set. It sets all data in the region of the off screen buffer according to the MClearStyle parameter. MClearStyle and MRegion are defined in “ Clienttypes.h” as outlined below:

	Arguments

region, pointer to the region details to be erased

style, method in which elements within the region are to be set

 CLIENT_Normal – All bits should be cleared

 CLIENT_Reverse – All bits should be set

	Return Value

None

	DeviceInvertRegion

	void DeviceInvertRegion (const MRegion *region)

	This function is used to invert the state of all pixels within the bounds of the specified rectangular region. All set pixels will be reset and vice versa. If the specified region is invalid then no pixels shall be inverted. If the bounds of the specified region extends beyond the bound of the visible display, only those pixels within the region which are visible shall be inverted.

	Arguments

region, specifies the rectangular display region that is to be inverted

	Return Value

None

4.5. Textual Output

	DeviceTextNextBreak

	MInt16 DeviceTextNextBreak(const MByte *pText, const MTextMode mode)

	The function returns the next possible text break offset in a string, in the current language or character set.

	Arguments

pText, pointer to a NULL terminated string.

mode, format of text, one of

 CLIENT_TEXT_GSM (NULL terminated ASCII string)

 CLIENT_TEXT_UCS2

	Return Value

The offset in characters of the first possible text break in the string. A return value of –1 indicates no break before the end of the string.

	DeviceTextMeasure

	void DeviceTextMeasure(const MByte *pText, const TextMode mode, const MUint
 numchars, const FONT_MAP style, MUint
 *width, MUint
 *height)

	The function returns the size of a block of text from the pointer containing nuMBytes bytes. The parameter height contains the height difference, in pixels, between the highest ascender and the lowest descender of the rendered text.

	Arguments

pTexT is a pointer to a null terminated text string to display

mode is the text display mode, one of

 CLIENT_TEXT_GSM (NULL terminated ASCII string)

 CLIENT_TEXT_UCS2

numchars is number of characters to display

style is the font to use:

 CLIENT_FontDefault

 CLIENT_FontSmall

 CLIENT_FontLarge

 CLIENT_FontDefaultItalic

 CLIENT_FontSmallItalic

 CLIENT_FontLargeItalic

 CLIENT_FontDefaultBold

 CLIENT_FontSmallBold

 CLIENT_FontLargeBold

 CLIENT_FontDefaultBoldItalic

 CLIENT_FontSmallBoldItalic

 CLIENT_FontLargeBoldItalic

width is the width of the text string in pixels

height is the height of the text string in pixels

	Return Value

None

	DeviceDrawText

	Mint16 DeviceDrawText(const MPoint *point, const MByte *pText, const MUint
 numchars, const FONT_MAP style, const MTextMode mode)

	This function writes the specified text string at the desired location in the off-screen buffer. The point position represents the upper left corner of the text cell for the selected style. The client will ensure that all text passed to the function will fit into the display area, so this function does not need to perform clipping.

	Arguments

point, is the position on the top left corner of the text string

pText, is a pointer to the text string

numchars, is number of characters to display

style, is the font to use

 CLIENT_FontDefault

 CLIENT_FontSmall

 CLIENT_FontLarge

 CLIENT_FontDefaultItalic

 CLIENT_FontSmallItalic

 CLIENT_FontLargeItalic

 CLIENT_FontDefaultBold

 CLIENT_FontSmallBold

 CLIENT_FontLargeBold

 CLIENT_FontDefaultBoldItalic

 CLIENT_FontSmallBoldItalic

 CLIENT_FontLargeBoldItalic

mode, is the text display mode

 CLIENT_TEXT_GSM (NULL terminated ASCII string)

 CLIENT_TEXT_UCS2

	Returns

The function returns the number of characters written

4.6. Graphical Output

	DeviceSetNewMessageIndication

	void DeviceSetNewMessageIndication(const MBool
 display)

	The client calls this function to indicate to the device that a new message has arrived, to allow the device to indicate to the user that a message has arrived, and to indicate when the client has displayed all new messages, so that the indicator can be turned off. The device may play the new message by calling ClientProcessMessage() with the event id CLIENT_PlayNewMessage.

	Arguments

display

ETrue indicates that a new message has arrived

EFalse indicates that no new messages remain

	Return Value

None

	DeviceMemToScreen

	void DeviceMemToScreen (const MByte pMemBuffer, const int buffsize, const MRegion * pScreen)

	This function is called in order to flush a region of the client’s off-screen buffer to the device off-screen buffer, assuming that the device implements an off-screen buffer in the case where the device layer does not implement an additional off-screen buffer, this function need not be implemented.

	Arguments

pMemBuffer, is a pointer to the memory buffer to transfer to screen

buffsize, is the size of buffer to transfer in bytes

pScreen, is the screen region to map the memory onto

	Return Value

None

	DeviceDrawGUIComponent

	void DeviceDrawGUIComponent (const T_COMP_TYPE comp_type, void* pAttr)

	The device should call this function when drawing titlebars, icons, pickers, softkeys (DeviceDrawSoftkey () may also be used for softkeys).

	Arguments

comp_type – Specifies the type of GUI component to draw.

pAttr - Attributes of specified component.

	Return Value

None

	DeviceDrawPixel

	void DeviceDrawPixel (MPoint *)

	This function sets the specified screen pixel to the current pen colour. The new position of the cursor is set the point specified, unless the point specified is outside the displayable screen area then the cursor position remains unchanged.

	Arguments

point, is the screen coordinates of the pixel to set

	Return Value

None

	DeviceSetPixel

	void DeviceSetPixel (const MPoint *point, const MByte colour)

	This function sets the specified screen pixel to the specified colour. The new position of the cursor is set the point specified, unless the point specified is outside the displayable screen area then the cursor position remains unchanged.

	Arguments

point, is the screen coordinates of the pixel to set

colour, is the colour to set the pixel

	Return Value

None

	DeviceDrawLine

	void DeviceDrawLine (const MPoint *point1, const MPoint *point2)

	This function draws a line between the two specified points in the current drawing colour and moves the cursor to point p2 in the off-screen buffer. If the position specified by ‘point2’ is outside the visible region of the screen then the current cursor position will remain unchanged.

	Arguments

point1, is the coordinates of the start point of the line.

point2, is the coordinates of the end point of the line.

	Return Value

None

	DeviceDrawLineTo

	void DeviceDrawLine (const MPoint *point)

	This function draws a line from the current graphics cursor position to the specified point. The line is drawn in the current pen colour and moves the cursor to point. If the position specified by point is outside the visible region of the screen then the current cursor position will remain unchanged.

	Arguments

point, is the coordinates of the end point of the line.

	Return Value

None

	DeviceDrawRawBits

	void DeviceDrawRawBits(const MPoint *point, const MBitStruct *pBits)

	This function draws the bit-field into the passed in region of the off-screen buffer. Any extraneous data is clipped.

	Arguments

point, is the coordinates of the top left of the draw area

pBits, is the bit pattern to draw.

Please note that values will be interpreted as the EMS r5 specification such that :-

 BitsPerPixel
Meaning of Bits

1

0=White, 1=Black

2

11=White, 10=Light Grey, 01=Dark Grey, 00=Black

6

111111=White, 110000=Red, 001100=Green, 000011=Blue, 000000=Black

	Return Value

None

	DeviceRefreshScreen

	void DeviceRefreshScreen (void)

	This function indicates that the client has finished a section of drawing, and that it is convenient point for the devices display driver to flush it’s off-screen buffer to the display.

	Arguments

None

	Return Value

None

	DeviceReleaseDisplay

	void DeviceReleaseDisplay (void)

	This function frees a display’s resources and clears the off screen buffer. This function needs to be called whenever the client software has finished using the device’s display resource. This function will only be called after a previous call to DeviceRequestDisplay().

	Arguments

None

	

	DeviceRequestDisplay

	void DeviceRequestDisplay (void)

	This function allows the device’s display to be updated with the current contents of the off screen buffer. This call must be made before any updates are made to the device’s display since this function ensures exclusive access to the display resources.

	Arguments

None

	Return Value

None

4.7. Sound Output

	DevicePlayNote

	void DevicePlayNote (const MDword frequency, const MDword duration)

	This function plays a single note at the specified frequency and duration (in milliseconds). If the frequency that is supplied to this function does not match exactly to a known note frequency, it will be an implementation issue to either try and play the frequency exactly or to map the frequency to the nearest known note.

	Arguments

frequency, (in Hertz) of the note to be played

duration, (in 10 millisecond units) of the note to be played

	Return Value

None

	DeviceCancelNote

	void DeviceCancelNote (void)

	This function resets the buzzer and cancels playing of current note.

	Arguments

None

	Return Value

None

	DeviceOverwriteDynamicRingTone

	MBool
 DeviceOverwriteDynamicRingTone (const NOTE_ARRAY pRingTone)

	This function overwrites the current ring tone in the handset with the specified sequence of notes. Its definition will reflect the devices internal handling of ringing tones and may be device specific.

It shall be assumed that the last note in the NOTE_ARRAY shall have a frequency and duration of zero, and this shall be used as the end of note array indicator.

	Arguments

pRingtone, is a pointer to an array of note definitions that specify the new handset ringtone

	Return Value

None

	DeviceSetDynamicRingToneActive

	MBool
 DeviceSetDynamicRingToneActive (void)

	This function sets any ring tone currently written to the persistent storage for a dynamic ring tone to be the active tone.

	Arguments

None

	Return Value

ETrue if successful

EFalse if unsuccessful

4.8. Memory & Persistence

	DevicePersistMemoryAsync

	MBool
 DevicePersistMemoryAsync (MByte *pMemory, const MDword size, const MSword bank)

	The function writes the specified number of bytes from the given buffer to the permanent memory. The client will call this function to ask the device to persist the client file system cache upon close down or interrupts. The call returns a Boolean indicating successful initiation of the flash write. However, the device MUST call ClientProcessMessage with an CLIENT_OpCompleteSuccess or CLIENT_OpCompleteFail to signal the end of the flash write.

	Arguments

pMemory, is the address of the memory buffer

size, is the size of the buffer

bank, memory page index, first bank is zero

	Return Values

ETrue if the write operation was accepted (successfully initiated)

EFalse otherwise

	DeviceReadMemoryAsync

	MBool
 DeviceReadMemoryAsynch (MByte *pMemory, const MDword size, const MSword bank)

	The function reads the specified number of bytes from the given permanent memory to the buffer. The client will call this function to ask the device to read the client file system cache upon startup or interrupts. Call returns a Boolean indicating successful initiation of the flash read. However, the device MUST call ClientProcessMessage with an CLIENT_OpCompleteSuccess or CLIENT_OpCompleteFail to signal the end of the flash read.

	Arguments

pMemory, is the address of the memory buffer

size is the size of the buffer

bank, memory page index, first bank is zero

	Return Values

ETrue if the read operation was accepted (successfully initiated)

EFalse otherwise

	DeviceEraseMemoryAsync

	MBool

DeviceEraseMemoryAsync(const MSword bank)

	The function erases the specified page of flash memory. Call returns a Boolean indicating successful initiation of the flash erase. However, the device MUST call ClientProcessMessage with an CLIENT_OpCompleteSuccess or CLIENT_OpCompleteFail to signal the end of the flash read.

	Arguments

bank, flash memory page index to erase, first bank is zero

	Return Values

ETrue if the read operation was accepted (successfully initiated)

EFalse otherwise

4.9. Time & Timer

	DeviceGetTime

	TIMESTAMP DeviceGetTime(void)

	This function returns the number of seconds elapsed since 00:00:00 am January 1st 1970.

	Arguments

None

	Return Value

The number of seconds elapsed since 00:00:00 am January 1st 1970.

	DeviceCreateTimer

	MDword DeviceCreateTimer (const MDword period, const MBool
 bPeriodic)

	This function creates a system timer, which posts a timer event into our message queue every “period” milliseconds.

	Arguments

period, timer duration in milliseconds

bPeriodic, If TRUE then a periodic timer is created, otherwise a one-shot timer is created.

	Return value

A unique identifier for the timer created, or 0 if a timer could not be allocated.

	DeviceKillTimer

	void DeviceKillTimer (const MDword processID)

	This function destroys the timer with the specified process ID.

	Arguments

processID, is the handle to the previously created timer

	Return Value

None

4.10. Cell Broadcast

	DeviceGetActiveCell

	void DeviceGetActiveCell (CELL_GLOBAL_ID *pCellID)

	This function retrieves the ID of the current network cell. This functionality is only required if forms is included in the client.

	Arguments

pCellID, is a pointer to the current cell identification data

	Returns

None

4.11. Phonebook

	DevicePhoneBookFindFirstNumber

	MBool
 DevicePhoneBookFindFirstNumber (const MByte *pName, MByte *pData)

	This function searches the number entries in the phone book for the specified text pName. If any matching records are found the first number is returned in pData, otherwise NULL is returned.

	Arguments

pName – Pointer to a NULL-terminated search string

pData – Address of storage buffer for any matching data. A NULL terminated string containing any matching data should be written here

	Return Value

ETrue if matching data is found

EFalse otherwise

	DevicePhoneBookFindFirstName

	MBool
 DevicePhoneBookFindFirstName (const MByte *pNumber, MByte *pData)

	This function searches the name entries in the phone book for the specified text pNumber. If any matching records are found the first name is returned in pData, otherwise NULL is returned.

	Arguments

pNumber – Pointer to a NULL-terminated search string

pData – Address of storage buffer where any matching data should be written, as a NULL terminated string. The data written should be no more than MAX_PHONE_NAME_SIZE bytes in length, including the terminating NULL.

	Return Value

ETrue if matching data is found

EFalse otherwise

	DevicePhoneBookFindNext

	MBool
 DevicePhoneBookFindNext (MByte *pData);

	This function re-applies the last search criteria to retrieve the next piece of matching data. The function utilises the search patterns from DevicePhoneBookFindFirstNumber & DevicePhoneBookFindFirstName

	Arguments

pData – Address of strorage buffer for any matching data. Note that any matching data is NULL terminated. The data written should be no more than MAX_PHONE_NAME_SIZE bytes in length, including the terminating NULL.

	Returns

ETrue if another piece of matching data is found

EFalse if no more matches were found

	DeviceLaunchPhoneBook

	MBool
 DeviceLaunchPhoneBook (MByte *pName, MByte *pNumber);

	This function launches the handset Phonebook Application, to allow the user to select a name and number from the phonebook.

	Arguments

pName – Pointer to a NULL-terminated string containing the name selected

pNumber – Pointer to a NULL-terminated string containing the number selected

	Return Value

ETrue if a phonebook entry was selected.

EFalse if no entry was selected, or the function is not supported.

4.12. Encryption

	DeviceGetEncryptionKey

	void DeviceGetEncryptionKey (E_CHALLENGE challenge, E_KEY *key)

	This function retrieves the encryption key as a result of issuing the challenge provided.

	Arguments

challenge, is 16 byte value used to generate the key

key, is a pointer to the unique response from the challenge

	Return Value

None

4.13. Miscellaneous

	DeviceGetGSMVersion

	MByte DeviceGetGSMVersion (MByte *pVersion)

	This function returns the current supported GSM version number as a NULL-terminated string of characters. The length and format of this string is determined by the method which the device represents the GSM version number.

	Arguments

pVersion, is a buffer into which the GSM version currently active in the phone should be written

	Return Value

Tthe length of the string written into pVersion.

	DeviceGetNextMsgRef

	MByte DeviceGetNextMsgRef(void)

	This function reads the next available 8 bit message reference for a SMS_SUBMIT TPDU header and returns it to the client.

	Arguments

None

	Returns

The next available message reference

	DeviceGetNextMsgRef16

	MUint
 DeviceGetNextMsgRef16(void)

	This function reads the next available 16 bit message reference for a SMS_SUBMIT TPDU header and returns it to the client.

	Arguments

None

	Returns

The next available message reference

	DeviceSubmitSmsTpdu

	MBool
 DeviceSubmitSmsTpdu (const TPDU_PTR * pTpdu, const MUint
 length)

	This function submits the SMS TPDU to the device for transmission. The device must guarantee to transmit a submitted TPDU. submitted by this function call and signal the client through an CLIENT_OpCompleteSuccess event if the TPDU is successfully sent, or CLIENT_OpCompleteFail if the send fails.

	Arguments

Ptpdu – Pointer to a buffer containing the TPDU

Length – The length of the TPDU

	Return Value

ETrue if the request to send was accepted

EFalse otherwise

	DeviceGetIMSI

	void DeviceGetIMSI (MByte *pImsiNumber)

	This function returns a pointer to a NULL terminated string containing the currently inserted SIM’s IMSI number.

	Arguments

pImsiNumber, is a pointer to a buffer where the IMSI. This function should write an empty string if the IMSI is unavailable.

	Return Value

None

	DeviceGetIMEI

	void DeviceGetIMEI (MByte *pImeiNumber)

	The function sets a pointer to a NULL terminated string containing the IMEI number. This function may return a length of zero if the IMEI number is unavailable.

	Arguments

pImeiNumber, is a pointer to a buffer where the handset IMEI should be written. This function should write an empty string if the IMEI is unavailable.

	Return Values

None

	DeviceGetPhoneNumber

	MUint
 DeviceGetPhoneNumber (MByte *pPhoneNumber)

	This function is used to retrieve the phone number of the handset. The length of the phone number string, in bytes, is returned from this function. This function may return a length of zero if the phone number is unavailable.

	Arguments

pPhoneNumber, points to a buffer that should be filled in with the number of the handset. The number written should be no larger than MAX_FORM_LINE_SIZE.

	Return Values

The length of the retrieved number in bytes.

	DeviceVibrate

	void DeviceVibrate (const MBool
 bState)

	This function is used to start and stop the handset vibrator. The function may be ignored if a vibrator is not supported.

	Arguments

BState ETrue for vibrator on and EFalse for vibrator off

	Return Values

None

	DeviceUpdateLogo

	void DeviceUpdateLogo (const MByte* Stream)

	This function is used set the handset banner logo. The function may be ignored if a logo replacement is not allowed on the handset.

	Arguments

Stream, is a pointer to an image byte stream

	Return Value

None

4.14. Colour

	DeviceSetColour

	void DeviceSetColour (const COLOUR aColour)

	This function sets the current pen colour for all following drawing operations until the colour is changed. This function may be ignored if colour or greyscale is not supported.

	Arguments

aColour, is a value of type COLOUR specifying the colour required.

	Return Value

Void

	DeviceGetColour

	COLOUR DeviceGetColour (void)

	This functions retrieves the current pen colour. This function may be ignored if colour or greyscale is not supported.

	Arguments

None

	Return Value

The current pen colour.

4.15. Softkeys

	DeviceDrawSoftKey

	void DeviceDrawSoftKey (const T_SWKEY_ATTR *SoftKey)

	This function sets the softkeys of the phone display to the text and attributes supplied. This function may be ignored if softkeys are not supported.

	Arguments

Softkey, is a pointer to a structure which defines the type, position, caption and attributes required to display the soft key.

	Return Value

None

	DeviceSetSoftKeyState

	void DeviceSetSoftKeyState (const T_SWKEY_ATTR *SoftKey, const MBool
 bState)

	This function determines whether the specified softkey is enabled or disabled. This function may be ignored if softkeys are not supported.

	Arguments

Softkey, is a pointer to a structure characteristics of a softkey

BState - ETrue, indicates the softkey is enabled and visible, EFalse indicates the softkey is disabled and invisible

	Return Value

None

5. Types

5.1. COLOUR

typedef MByte

COLOUR;

Type large enough to hold a colour value: The following colours are defined:

COLOUR_BLACK

COLOUR_WHITE

COLOUR_LIGHTGREY

COLOUR_DARKGREY

COLOUR_RED

COLOUR_GREEN

COLOUR_BLUE

5.2. KEYID

typedef Mdword KEYID;

5.3. MBool

typedef MByte
 MBool;

 ’s Boolean variable type, which can be used to store the following values:

ETrue

EFalse

5.4. MByte

typedef unsigned char MByte;

5.5. MDword

typedef unsigned long MDword;

5.6. MESSAGE_PARAM

typedef MDword

 MESSAGE_PARAM;

5.7. MUint

typedef unsigned short MUint;

5.8. TPDU_PTR

typedef MByte*
TPDU_PTR;

5.9. UCS2

typedef Muint UCS2;

6. Structures

6.1. CELL_GLOBAL_ID

typedef struct _cell_global_id

{

MByte
byMCC[3];

MByte
byMNC[3];

MByte
byLIC[2];

MByte byCellId[2];

} CELL_GLOBAL_ID;

Members

	byMCC
	Mobile country code

	byMNC
	Mobile network code

	byLIC
	Location identity code

	byCellId
	Cell Identification string

6.2. Mpoint

typedef struct tagPoint

{

MUint
 uX;

MUint
 uY;

} MPoint;

Members

	uX
	X coordinate of the point

	uY
	Y coordinate of the point

6.3. MRect
typedef struct tagRect

{

MPoint
topLeft;

MPoint
bottomRight;

} MRect;

Members

	topLeft
	top left corner of the rectangle.

	bottomRight
	bottom right corner of the rectangle.

6.4. MRegion

typedef struct tagRegion

{

MPoint
pTopLeft;

MUint
uHeight;

MUint
uWidth;

} MRegion;

Members

	PTopLeft
	co-ordinates of the top left corner of the region

	uHeight
	Height of the region

	uWidth
	Width of the region

� Technical contents of ISO 639-1988 (E/F), “Code for the representation of names of languages”

	[image: image1.png]
	(2002
	

	All rights are reserved. Reproduction in whole or in parts is prohibited without the written consent of the copyright owner.

[image: image1.png]