3GPP TSG-T2 #17

Vancouver, BC, Canada

13 -17 May 2002�
TP-020403�
�

ETSI STC SMG PT mexe	Tdoc 97M046

Windsor, UK

24-25th September 1997

Mobile Station Execution Environment Feasibility Study��PT mexe, 24-25 September 1997

�

�

Table of Contents

� TOC \o "1-3" �1. Requirements	� GOTOBUTTON _Toc401128641 � PAGEREF _Toc401128641 �4��

2. Service Aspects	� GOTOBUTTON _Toc401128642 � PAGEREF _Toc401128642 �5��

2.1 WAP Overview and Status	� GOTOBUTTON _Toc401128643 � PAGEREF _Toc401128643 �5��

2.1.1 Scope	� GOTOBUTTON _Toc401128644 � PAGEREF _Toc401128644 �5��

2.1.2 Driving Factors	� GOTOBUTTON _Toc401128645 � PAGEREF _Toc401128645 �5��

2.1.3 Generic Features	� GOTOBUTTON _Toc401128646 � PAGEREF _Toc401128646 �6��

2.1.4 Legal Aspects	� GOTOBUTTON _Toc401128647 � PAGEREF _Toc401128647 �6��

2.1.5 Availability	� GOTOBUTTON _Toc401128648 � PAGEREF _Toc401128648 �7��

2.2 Java Overview and Status	� GOTOBUTTON _Toc401128649 � PAGEREF _Toc401128649 �7��

2.2.1 Overview	� GOTOBUTTON _Toc401128650 � PAGEREF _Toc401128650 �7��

2.2.2 Platform Independence	� GOTOBUTTON _Toc401128651 � PAGEREF _Toc401128651 �7��

2.2.3 Applets	� GOTOBUTTON _Toc401128652 � PAGEREF _Toc401128652 �8��

2.2.4 Network Awareness	� GOTOBUTTON _Toc401128653 � PAGEREF _Toc401128653 �8��

2.2.5 Security	� GOTOBUTTON _Toc401128654 � PAGEREF _Toc401128654 �8��

2.2.6 Commercial Availability and Status of Java Platforms	� GOTOBUTTON _Toc401128655 � PAGEREF _Toc401128655 �8��

2.2.7 Legal Aspects	� GOTOBUTTON _Toc401128656 � PAGEREF _Toc401128656 �10��

3. Technical Aspects	� GOTOBUTTON _Toc401128657 � PAGEREF _Toc401128657 �11��

3.1 WAP Technical Overview	� GOTOBUTTON _Toc401128658 � PAGEREF _Toc401128658 �11��

3.1.1 The WAP Architecture	� GOTOBUTTON _Toc401128659 � PAGEREF _Toc401128659 �11��

3.1.2 Application Services	� GOTOBUTTON _Toc401128660 � PAGEREF _Toc401128660 �12��

3.1.3 Common Application Services	� GOTOBUTTON _Toc401128661 � PAGEREF _Toc401128661 �13��

3.1.4 Device Capabilities	� GOTOBUTTON _Toc401128662 � PAGEREF _Toc401128662 �13��

3.1.5 Other Content Formats	� GOTOBUTTON _Toc401128663 � PAGEREF _Toc401128663 �13��

3.1.6 Transport Mechanisms	� GOTOBUTTON _Toc401128664 � PAGEREF _Toc401128664 �14��

3.1.7 Compliance	� GOTOBUTTON _Toc401128665 � PAGEREF _Toc401128665 �15��

3.1.8 JAVA Aspects	� GOTOBUTTON _Toc401128666 � PAGEREF _Toc401128666 �15��

3.2 Necessary Java extensions for a GSM environment	� GOTOBUTTON _Toc401128667 � PAGEREF _Toc401128667 �15��

3.2.1 Network Connectivity	� GOTOBUTTON _Toc401128668 � PAGEREF _Toc401128668 �16��

3.2.2 Downloading and Managing Applications	� GOTOBUTTON _Toc401128669 � PAGEREF _Toc401128669 �16��

3.2.3 Type approval	� GOTOBUTTON _Toc401128670 � PAGEREF _Toc401128670 �17��

3.2.4 Security	� GOTOBUTTON _Toc401128671 � PAGEREF _Toc401128671 �17��

3.2.5 Commercial Aspects	� GOTOBUTTON _Toc401128672 � PAGEREF _Toc401128672 �17��

3.2.6 Roaming	� GOTOBUTTON _Toc401128673 � PAGEREF _Toc401128673 �17��

3.2.7 Other areas	� GOTOBUTTON _Toc401128674 � PAGEREF _Toc401128674 �17��

�

Abbreviations

AMPS	Advanced Mobile Phone System

API	Application Programming Interface

CDMA	Code Division Multiple Access

CPU	Central Processor Unit

D-AMPS	Digital AMPS

ECTF	Enterprise Computer Telephony Forum

ETSI	European Telecommunications Standards Institute

GPRS	General Packet Radio Service

GSM	Global System for Mobile communications

HSCSD	High Speed Circuit Switched Data

HTML	Hyper Text Mark-up Language

HTTP	Hyper Text Transfer Protocol

IPR	Intellectual Property Rights

IVR	Intelligent Voice Recognition

JTAPI	Java Telephony Application Programming Interface

JVM	Java Virtual Machine

mexe	Mobile (Station) Execution Environment

MIME	Multipurpose Internet Mail Extensions

MMI	Man Machine Interface

MoU	Memorandum of Understanding

MS	Mobile Station

PCS	Personal Communication System

PDA	Personal Digital Assistant

RAM	Random Access Memory

SCP	Signal Control Point

SGML	Structured Generalised Mark-up Language

SIM	Subscriber Identity Module

SMS	Short Message Service

TCP/IP	Transport Control Protocol/Internet Protocol

TeleVAS	Telecom Value Added Service

UI	User Interface

URL	Uniform Resource Locator

USSD	Unstructured Supplementary Service Data

WAE	Wireless Application Environment

WAP	Wireless Application Protocol

WML	Wireless Mark-up Language

WMLS	Wireless Mark-up Language – Script

WSP	Wireless Session Protocol

WTP	Wireless Transport Protocol

WTP/C	WTP Connection oriented

WTP/D	WTP Datagram oriented

WWW	World Wide Web

Requirements

Presented in this section are the requirements for a MS execution environment identified by the project team and workshop.

Overall the provision of a full programming environment is seen as the general requirement, allowing MS applications to be developed independent of platform. Complementary solutions can be foreseen, one optimised for providing services on small devices optimised for low bandwidth and limited displays / MMI and a complete execution environment for more sophisticated devices.

In order to accommodate a range of existing and future technologies a common means of negotiation of capabilities, in terms of execution environment technology, and means to download to that environment is seen as a general requirement. The implementation of such a mechanism should be optional, in the absence of such a mechanism the user would be responsible for ensuring compatibility.

From a user’s perspective:

More sophisticated user interfaces (e.g. browser-like)

Use of a rich variety of MMI concepts to control and invoke services, i.e. softkeys, icons, voice recognition etc.

The capability to provide the look and feel of applications (e.g. email) accessed from the MS as accessed from a desktop

The ability to personalise the user interface

The ability to personalise services

Application variety

Internet access - via both standard Internet and Wireless optimised protocols

Some means to download new services to the MS

Some means to automatically upgrade services on the MS

Inherent security

From a network operator’s perspective:

The means for operator-specific services to be supported by all mobiles of a particular class (i.e. the need for a common set of APIs and tools to develop operator-specific services which are MS based)

The means to download new services to a MS and upgrade existing services

The means for operator-specific applications on the MS to communicate with other GSM network nodes (e.g. a SCP)

A means for applications in the MS to interface to external data networks in a manner as transparent as possible to GSM and the particular GSM data pipe being used.

The need for a security architecture, from handsets to servers on the Internet, such that both the MS and server sides of a connection are authenticated (possibly by a brokerage server), and have access to a range of encryption and security functions.

The need to maintain the security and integrity of the GSM network

The need to maintain security of subscribers personal data and GSM network data. Security mechanisms shall be centred on the SIM.

The ability to bill subscribers for services, at connect time, when downloading, or on usage.

The ability to provide information to 3rd party service providers (e.g. location information of MSs for use with location dependent services).

From a 3rd party service provider’s perspective:

The means for 3rd party-specific services to be supported by all mobiles of a particular class. The means for 3rd party services to be supported across a range of terminal devices (e.g. wireless, wired, PC) and accessible across a range of networks.

The opportunity for 3rd party service providers to leverage both expertise and software that they have developed for other platforms when they develop services for the GSM platform

APIs and tools to develop 3rd party services which are applicable for MAE MSs

The means for 3rd party service providers to determine MS capabilities

The means to download new services to an MS or upgrade services across the GSM network.

The ability for 3rd party services in the MS to communicate with GSM network nodes

Service Aspects

WAP Overview and Status

Scope

Wireless Application Protocol (WAP) is a result of continuous work to define an industry wide standard for developing applications over wireless communication networks. The scope for the WAP consortium is to define a set of standards to be used by service applications. The wireless market is growing very quickly, and reaching new customers and services. To enable operators and manufacturers to meet the challenges in advanced services, differentiation and fast/flexible service creation WAP defines a set of protocols in transport, session and application layers.

The upper layers of WAP will be independent of the underlying wireless network, while the transport layer might be adapted to specific features of underlying bearers. However, by keeping the transport layer interface, as well as the basic features, consistent global interoperability can be achieved using mediating gateways.

Scaleability is one of the most important issues in the WAP work. This includes both device scaleability as well as network scaleability. The framework (and applications) is suitable for both one-line display phones as well as advanced PDA devices. It fits very slow bearers as well as medium bandwidth bearers.

The WAP architecture is designed to be extensible and future proof. New bearers, like packet radio, can be added when available, and the applications can automatically benefit from this new environment. The layered architecture allows for future enhancements in each individual layer, with none or small changes to adjacent layers. Thus WAP will protect investments in servers and application software, and provide a stable platform for ever better and more efficient applications.

Driving Factors

User’s View

Easy to use

To get a user demand and acceptance for new services they must be perceived as easy and straightforward to use. If it’s a well-known service in a new (mobile) environment, the behaviour should preferably be similar to how it works in the known environment. Existing services in the MS may be made easier to use by introducing a new service platform.

One of the overarching design goals of WAP is to make services intuitive and user friendly.

Well-known environment

New services should be designed to fit the target (mobile) platform in a consistent manner so that they are perceived as a natural extension to the already well-known environment. The service platform introduced through WAP allows for a maintained, vendor consistent, “look-and-feel” in the user interface.

Personalised services

Introducing a new service platform such as WAP allows tailoring of new services to meet the specific needs of individual users.

Network Operator’s View

Differentiation through services

As existing operators gradually are meeting a more mature market, while at the same time new operators are entering the scene, the need to differentiate from the competition through services becomes obvious.

Fast and flexible service roll-out

In a fast growing and rapidly changing market it is vital for network operators to get new services out quickly and to be able to adjust services to meet new requirements. A generic service platform such as WAP gives the operator the tools to create his own unique services in order to meet the market needs.

Manufacturer’s View

Generic products

The rapidly increasing production volumes are moving the handset manufacturing industry into the consumer electronics business.

Producing for a mass market imposes strict requirements on cost focusing. Keeping the products as generic as possible is therefore vital. At the same time manufacturers are experiencing more and more customer specific requirements.

Introducing a new generic service platform through WAP allows manufacturers to meet both demands through a cost efficient, yet flexible, implementation.

Third Party Service Provider’s View

Technology acceptance

For third party service providers it is important that a new technology, with new mechanisms for service creation, becomes widely accepted in order to have new services available to a large number of users, thus making the investment worthwhile and reasonably future proof. Having all the world’s largest mobile handset manufacturers either driving or supporting the work, WAP meets this demand from the very beginning.

Fast & flexible service creation & roll-out

Just as for the network operators, it is equally important for third party service providers to get new services out quickly and to be able to adjust services to meet new requirements.

Generic Features

To provide the means for a flexible implementation of a wide variety of services, a set of generic features are defined in WAP.

WML (Wireless Mark-up Language)

A tag-based document language designed for small size displays and narrow-band bearers. WML is somewhat similar to Internet’s HTML.

WMLS (WML Script Language)

A lightweight procedural scripting language enhancing the capabilities of WAP based services. WMLS is loosely based on JavaScript.

TeleVAS (Telecom Value-Added Services)

TeleVAS brings telecom capabilities to services defined using WML and WMLS. It allows these services to securely access functions such as call control, phone book and messaging.

Legal Aspects

Organisation

The work on the WAP specifications is governed by a Memorandum of Understanding, signed by the four core members of WAP (Ericsson, Motorola, Nokia and Unwired Planet).

Currently, the MoU is not open for additional parties. It is however the intention of all the core members to have an as open attitude as possible and to invite other interested parties to join the work. Hence, the MoU is expected to be opened up for additional parties within the next couple of months.

Intellectual Property Rights

All specifications produced by the WAP consortium remains the property of the consortium. As the specifications stabilises they will be made publicly available.

The WAP MoU regulates IPR issues between the members and, to the extent possible, also how to handle these issues towards the public domain. It is the absolute intention of the WAP consortium to make all specifications open, publicly available, royalty free and free of any licensing.

The WAP MoU does not preclude that there might be IPR claims on implementations.

Availability

Currently the WAP consortium has published an architecture overview [97m034], available at http://www.xwap.com. It is expected that detailed specifications will be published within the next couple of months.

The creation of the WAP specification suite does not incorporate any product specifications or definitions. Neither does it make any assumptions on product availability. It is however likely that we will see some WAP supporting products being launched during 1998.

Java Overview and Status

Overview

Java is a software platform developed by JavaSoft, a division of Sun Microsystems.

It was initially designed with the intention of controlling small consumer electronic devices, where applications needed to be portable between products with different CPU chips and limited memory. However, its most widespread application so far has been on desktop computers and Unix. This has been largely driven by the emergence of the Internet, where it has been implemented in browsers to deliver interactive web applications.

Java’s key characteristic are:

Platform Independence

Applets

Built-in Network-Awareness

Security

Platform Independence

Traditionally a software application has to be compiled for every platform and operating system on which it will run. A Java application is compiled into a format called bytecode, which is translated to the specific machine language of the underlying computing platform as the program runs, by a Java Virtual Machine. The Java Virtual Machine (one for every computer platform) can be implemented in software or hardware, and is designed to be implemented on top of existing processors.

Application development is facilitated by a set of standard interfaces (Java API) which software developers can use to build their applications. An extensive set of APIs already exists with more being developed all the time to cater for the many and varied application markets (e.g. Java Advanced Imaging API which has application in professional graphics, medical and technical imaging markets, Java Commerce API which provides a framework for developing secure electronic commerce applications, Java Telephony API which enables intelligent call control applications). The “Core API” is a minimal set of API that developers can assume is present on all delivered implementations of a Java platform.

In many cases APIs have been developed in conjunction with Industry leaders in the specific market area addressed by the API.

Applets

Applets are applications which are downloadable from a server and can be executed within an application on the client (e.g. within a browser). They enable the development of thin clients (e.g. network computers) which don’t require disk storage, applications or even operating systems, as information and software can reside on servers and be delivered to the client as and when required. For example the whole WordPerfect suite has been developed using applet technology, which means that a user with a thin-client home computer could execute a spreadsheet application from a network connection rather than installing the whole suite of applications on the computer itself.

Network Awareness

Java APIs provide easy establishment of network connections and supports the standard TCP/IP protocols. It also has inherent support for numerous application level Internet protocols.

Security

In an environment where applications are downloaded to a terminal device across the network, there is a greater possibility for viruses or malicious applications to gain access to a terminal device. The Java runtime system provides a number of security mechanisms such that applets downloaded to a terminal device can not access any of the vulnerable system level functions. In general, applets which are loaded over the network are prevented from reading or writing files on the client file system and from making network connections, except to the originating host (i.e. the server where the applet is located).

There is ongoing work and development in the area of security, in order to gain an acceptable balance between protecting the system resources from malicious attack and providing access to trusted applets in order to enable more powerful features and services to be provided to the user. For instance the current version of Java provides support for authenticating applets which have a digital signature, such that the client can determine whether the applet is a trusted application or not.

Commercial Availability and Status of Java Platforms

Java is an open industry standard. Many companies are however licensing JVM from JavaSoft in order to have an implementation in a shorter timescale.

Already implemented on some embedded platform i.e. Microware and Windriver.

Currently embedded in a number of web browsers including Netscape Navigator and Internet Explorer.

Industry leaders such as HP, Apple, IBM, Novell, SCO and SGI have announced they plan to embed Java directly into their operating systems.

Telecoms and computer companies are developing Java-enabled network computers, telephony products and PDAs.

More than 500 independent software vendors have already created Java applications, ranging from personal applications such as email through business applications for manufacturing, accounting, telecoms, finance, human resources, publishing and electronic commerce. (e.g. Corel has developed a suite of office productivity applications written in Java, which are platform independent and network-centric, and can thus be deployed within a mixed-platform environment. Their development kit also enables 3rd party developers to extend current applications or add new ones).

Current version of Java is 1.1. Ongoing development of the language will result in further versions.

The Enterprise Java Platform created for desktop computers and workstations etc. can utilise the resources, both in terms of memory and bandwidth, that such devices can provide. For devices with more limited resources modified sub-sets of the Java Platform exist or are being defined:

JavaCard - for Java applications in smart cards, e.g. electronic commerce, authentication. Has been licensed to companies including Gemplus and Schlumberger.

Embedded Java - for smaller, dedicated embedded devices, where applications are optimised for the constraints of small memory footprint and diverse visual displays. e.g. pagers, fax machines, printers, networking routers and switches.

Personal Java - for network-connectable applications on personal consumer devices for home, office and mobile use. e.g. mobile PDAs, smart phones, web connected TVs.

In the GSM environment, Personal Java is likely to be the most suitable Java platform for the ME and Java Card for the SIM.

Java Card

Java Card is a new Java platform dedicated to smart card application development. It is an open standard, and consists of core and standard extension APIs . The draft Java Card API 2.0 specification is now available for public review and comment, final specification will be available on October 15, 1997. This second version of the Java Card API specification is the result of a standardisation process in which the major smart card manufacturers were involved, through the Java Card Forum.

The Java Card 2.0 API has been designed in order to support most existing smart card platforms. It is a subset of Java, from which some important features have been removed. For instance, floating-point computations and multithreading are not supported in Java Card. In order to make Java Card accessible to 8-bit platforms, 32-bit integer computations have been made optional, as well as garbage collection of unused objects.

However, Java Card has kept the essence of Java, by supporting an object-oriented programming model. It is possible to define classes, interfaces and packages, with dynamic and static fields and methods. Even dynamic object allocation is supported, of course within the limits implied by the absence of garbage collection.

The Java Card 2.0 API also includes the definition a set of classes, which are very much oriented towards to smart card world. It provides full support for the handling of ISO 7816-3 APDUs, as well as a full support for ISO 7816-4 file systems. With these tools, it is possible to develop Java applications which can easily be integrated in today’s smart card world.

The benefits of the Java Card technology are the following :

- applications written for one smart card platform can, for the first time, run on any other smart card platform.

- downloadable code elements called applets makes it easy to securely run multiple applications on a single card.

- application can now be developed using off-the-shelf Java development tool. Thus, developing applications for smart card becomes quick and painless.

Personal Java

Personal Java is a new Java platform for network-connectable applications on personal consumer devices for home, office and mobile use. It will be an open standard, and is available for public review with a final specification in 3Q97 and a reference implementation targeted for 4Q97.

It is targeted at developers writing applications for the consumer market, where the consumer expectation is for a sophisticated graphical user interface in order to access and execute services and applications. Applications in development include those for hand-held computers, game consoles, mobile hand-held devices and smart phones.

Personal Java is focused on providing the functions common to networked consumer devices. Because such devices are often memory limited, Personal Java is designed to be highly scaleable and configurable while requiring minimal system resources. In order to allow it to fit into memory limited devices, JavaSoft is working to reduce the footprint of core Personal Java to 1 Mbyte.

Personal Java will consist of a Virtual Machine, core API to create an environment on a client device for downloading and running applets, and device resident applications, and optional APIs. Optional APIs may be drawn from those that already exist, such as the Java Telephony API which provides a framework for high-level interface to call control, or from requirements specific to the consumer market devices being addressed by Personal Java.

Embedded Java

Embedded Java is a new Java Application Environment for high volume embedded devices.

Similar to Java, Embedded Java consists of core and standard extension APIs, and is designed specifically for severely resource constrained environments. Embedded Java includes a feature level subset of Java, therefore Embedded Java applications are upwardly compatible to both Personal Java and Java.

Developers use Embedded Java to create a variety of products including mobile phones, pagers, process control, instrumentation, office peripherals, and networking routers and switches.

Embedded Java applications run on real-time operating systems, and are optimised for the constraints of small memory footprints and diverse visual displays. Embedded Java enables manufacturers of devices to take advantage of the portability and flexibility of Java in their product software.

The Java Telephony Application Programming Interface (JTAPI)

JTAPI enables Java applications and applets to access telephony services, for example to provide intelligent call related applications on the terminal. Version 1.1 is available (as of February 1997). JTAPI is now owned and specified under the Enterprise Computer-Telephony Forum (ECTF). It consists of a “core” API providing a basic call model and basic telephony features (i.e. placing a call, answering a call, and dropping a call) and “standard extension” APIs for example:

call control extension package (to place calls on hold, transfer, conference calls etc.)

phone package (to control physical features of telephone, e.g. volume of the ring tone)

Trusted applications are allowed full access to the JTAPI functions. Untrusted applications are limited to functions which can not compromise the systems integrity.

No test suites for JTAPI are currently available, although compatibility test suite and implementer’s guide are planned.

JTAPI as it currently stands is not tailored for operation with GSM. Java libraries other than JTAPI would be required to provide such features as SIM access.

Legal Aspects

Java work has been initiated in groups run by JavaSoft. The approach taken has been to progress the work in these groups to a reasonable stage before turning the work over to industry fora. e.g., JTAPI was handed over to the ECTF (Enterprise Computing Telephony Forum).

The Java specifications are published on the WWW and in printed form. Clean room implementations of Java may be created IPR free, other implementations may incur IPR.

Technical Aspects

WAP Technical Overview

The WAP Architecture

The standard network architecture of WAP is shown in � REF _Ref399839122 * MERGEFORMAT �Figure 1�.

�

Figure � SEQ Figure * ARABIC �1�

The WAP architecture provides a scaleable and extensible environment for application development for mobile communication devices. This is achieved through a layered design of the network to application communication protocol stack. Each of the layers of the architecture are accessible by the layers above, as well as, by other service and applications

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �2�

The WAP architecture enables any number of services and applications to utilise the features of the WAP stack (� REF _Ref399245848 * MERGEFORMAT �Figure 2�). The applications specified in the WAP framework may utilise the common services layer internal to the application layer, while external applications may access the session and transport layers directly. Direct access from external applications to the security layer is currently optional.

Application Services

The Wireless Application Environment (WAE) architecture specifies a general-purpose application framework for wireless devices, e.g., phones and PDAs. The WAE extends and leverages the other WAP technologies, including WTP and WSP.

The WAE programming model closely follows the WWW programming model. All content is specified in formats which are similar to the standard Internet formats, and is transported using standard protocols on the WWW, while using an optimised HTTP-like protocol in the wireless domain. WAE has borrowed WWW standards and programming semantics wherever possible. Where existing standards were not appropriate due to the unique requirements of small wireless devices, WAE has modified the standards , without loosing the benefits of Internet technology.

The WAE architecture is built on the concept of content interpreters and a shared service layer containing common features like location independent addressing (URLs and URL registry), Event handling and TeleVAS services. The WAP Execution environment provides the device with a general-purpose WML browser, a WML scripting engine.

WML

WML is a tag-based document language. WML shares a heritage with the World-Wide-Web’s Hypertext Mark-up Language (HTML), and like HTML, WML is specified as an SGML document type. WML is optimised for specifying presentation and user interface on small screen, narrow-band devices such as phones and other wireless mobile terminals. WML can be stored in ‘static’ files on a Web server, or can be dynamically generated by an application.

WML contains constructs allowing the application to specify documents made up of multiple cards. Each interaction with the user is described as a series of cards, which can be grouped together into a deck. Logically, a user navigates through a series of WML cards, reviews the contents of each, enters requested information, makes choices, and moves on to another card. Cards are contained in decks, which are fetched from the server as needed.

Each card contains a specification for a particular user interaction. As with the HTML document language, WML is specified in a way that allows for presentation on a wide variety of devices yet allowing for vendor-controlled MMIs. WML also specifies requests for user input in a very abstract manner, which is feasible for a wide variety of input devices and mechanisms.

WMLS

WML-Script is a lightweight procedural scripting language. It enhances the standard browsing and presentation facilities of WML with behavioural capabilities, supports more advanced UI behaviour, provides a convenient mechanism to access the device and its peripherals, and reduces the need for round-trips to the network server.

WML-Script is based on a subset of the JavaScript™ WWW scripting language. JavaScript is widely deployed in all major HTML browsers, and forms a standard means for adding procedural logic to HTML web pages. WML-Script refines JavaScript for the narrowband device, integrates it with the WML browser and provides hooks for integrating in-device applications (e.g. for accessing TeleVAS services).

WML-Script provides the application programmer with a wide variety of interesting capabilities:

The ability to check the validity of user input before it is sent to the network server.

The ability to conveniently access device facilities and peripherals.

The ability to interact with the user without a round-trip to the network server (e.g. display an error message).

TeleVAS

TeleVAS is fully integrated with the WAP application framework and provides an efficient and secure way to access local and remote functions like Call Control, Phonebook, Messaging etc. The TeleVAS functions specify a device independent interface to the underlying vendor specific operating system and telephony subsystem. TeleVAS functionality does not rely on network specific functionality, and will be equally applicable to GSM, D-AMPS, CDMA or any PCS type of network.

The WAP TeleVAS services make it possible to create applications that enhance and extend services available in today’s advanced Mobile Networks. Services in the network can be made more accessible to the end user through user friendly menus and TeleVAS applications that hide many of the complicated call control features.

Existing third party IVR solutions built on touch-tones can also benefit using a TeleVAS application wrapper that presents the user with a scrollable menu sending touch tones without the user having to manually enter each keypress. Thus, operators seamlessly integrate WWW and telephony applications.

The TeleVAS application is built using standard WML cards and WML scripts/libraries downloaded through the WAP URL services. TeleVAS applications make it possible for the operator to tailor existing network services and make new features available to the end user. The available network transports can be used more efficiently with smart applications using script and cards that persist in the local device memory for quick access. The WAP content/application download makes it possible to keep the users handset updated with customised TeleVAS applications as soon as the network services change.

TeleVAS provides controlled Network access and enforces user control and privacy to Mobile Services. The URL registry provides seamless access to remote/local TeleVAS functions.

TeleVAS will provide access control to local functions, and is expected to restrict access to a well-known carrier-operated TeleVAS server.

TeleVAS functions can be invoked from any type of WML card/script. It will be the decision of the application currently running as to whether the events and return codes are ignored or passed to the user. The WAP application will have the choice of ignoring events during critical parts of the execution cycle, in other words it takes control of the phone.

As the TeleVAS functions are invoked, for example by an incoming voice call, the application can decide to accept the call using a local URL. In case of error a specific exception event will be generated. The handling of this "error/network" event is specified using service layer primitives. It will be at the discretion of the manufacturers as to the implementation of TeleVAS Functions, whether they are in assembly, C, Java or other scripting languages.

Common Application Services

Common Services are architectural elements that manifest themselves through WML or WML-Script. These services provide a general framework for handling user input, integrating applications, etc.

WAE intends to expand this area as needed to achieve a consistent and useful application framework.

Device Capabilities

Device capabilities are a mechanism that allows the application to determine characteristics of the mobile terminal device. It is expected that the session layer protocols (WSP) will include a mechanism for exchanging and caching capabilities. WAE will define a set of application-level capabilities that will be exchanged using the WSP mechanism.

Other Content Formats

Images

WAE will define a common image format suitable for transmission to a mobile terminal. The primary requirements for the image format will include:

Support for multiple pixel depths.

Support for colourspace tables.

Very small encoding

Very low CPU and RAM requirements for decoding and presentation

Multi-part messages

WAE will include a well-defined multi-part encoding specification, suitable for exchanging multiple typed entities over WSP. This will be based on the Internet MIME specification, but will be tuned and optimised for the narrowband environment

Compiled WML encoding and WMLScript bytecode

WAE will define binary (compiled) encodings for WML and WML-Script. These encodings will make transmission of WML and WML-Script more efficient.

Additional Content Formats

WAE will define additional content formats for the purposes of exchange of data between applications and devices. These content formats will focus on data and applications commonly found in intelligent devices.

Examples of content formats could be:

 Business Cards (phone book data)

 Calendar items

 Mail headers

Transport Mechanisms

Session Layer

The WAP Session Layer provides efficient and compact mechanisms for exchanging typed data between WAP applications in a secure fashion.

The WAP Session Layer builds upon the bearer-independent, scaleable WAP Transport Layer to provide communication services useful to many applications. One of these services is a general mechanism for securely exchanging typed data between the client and server, including support for server-initiated transfers (“push”).

In WAP, the session concept covers both a security association and the idea of a relatively long-lived application association between a client and a server. The application session allows the optimisation of communication by exchanging a certain set of static information during session creation eliminating the need to explicitly exchange it on each subsequent communication.

Transport Layer

The Transport layer protocol family in the WAP architecture is Wireless Transport Protocol, WTP. The WTP layer operates above the data capable bearer services supported by multiple network types. In the initial phase, bearers from the GSM network will be used. WTP will offer a consistent service to the upper layer protocol (Session and Security) of WAP and communicate transparently over one of the available bearer services.

�The Wireless Transport Protocols consists of a connection oriented protocol (WTP/C) and a datagram oriented protocol (WTP/D). The Protocols in the WTP family are optimised for very slow bearers in telecommunications.

WTP/D is a simple transport protocol. The WTP/D protocol is relayed transparently on the underlying bearers, i.e. the datagram information is moved unchanged from client to server and as well as from server to client. Any application layer protocol is relayed transparently on the WTP/D transport mechanism.

WTP/C is a connection oriented transport protocol. The WTP/C is optimised for low bandwidth wireless bearers. WTP/C is more efficient on request-reply applications than traditional connection oriented protocols.

Initially the transport layer specifications will cover datagram oriented and connection oriented transport protocols for GSM network types: Phase 2 SMS and Phase 2 USSD.

Future work items under consideration are protocol definitions for Phase 1 GPRS and Circuit Switched Data. Other non-GSM and paging network types will also be considered in the future. In the near term, its a goal to allow peer-to-peer and client/server applications to operate over different transport within a single network type. In the future this will be expanded to cover one-to-many applications to operate over different transport within a single network type. It should be noted that one-to-many means broadcast and unacknowledged multi-cast only.

Application Programming Interfaces (APIs) will be developed in the future modelled after existing transport interfaces.

Compliance

WAP Compliance

The mandatory architectural components required in a WAP compliant system are highlighted (greyed) in the diagram (� REF _Ref399245848 * MERGEFORMAT �Figure 2�). These include:

WML Browser

WMLScript Interpreter

TeleVAS features

The Session Protocol Layer (WSP)

A Security Protocol Layer

The Transport Protocol Layer (WTP)

Content Formats

The scope of the WAP compliance covers the layers from transport layer to application layer of the WAP stack.

The availability of certain wireless systems, or the availability of certain network data bearer service is out of the scope of WAP compliance. This means that a system supporting only USSD of GSM is WAP compliant if it otherwise supports all the protocols required.

Also, the MMI (Man-Machine Interface) of the WAP compliant system is out of the scope of compliance. Some system might provide access to all information in the handset through a browser, while another has the browser as only one of the applications available to the end user.

Test Suite

The WAP consortium will publish test suites to enable manufacturers and service developers to ensure interoperability.

JAVA Aspects

It is foreseen that the capabilities and resource requirements of WAP will be somewhere in between those of JavaCard and Embedded Java. A Java-based MS could make use of the transport mechanisms of WAP.

WAP and Java applications are not compatible: the bytecodes differ, the capabilities differ, and so do virtually all the APIs. For reasons of service and platform evolution, a smooth migration path from WAP to Java would be of benefit to users, network operators and service providers alike.

It seems reasonable that a Java-based MS could execute WAP applications. This requires additional WAP-APIs. Extending a WAP-based MS to cater for Java applications is probably not a worthwhile exercise.

Necessary Java extensions for a GSM environment

The Java platforms which seems to be best suited to GSM MSs are Personal Java and embedded Java. Within a given class of terminals, any implementation of Personal Java would require the MS to implement a Java Virtual Machine plus a “Core” API, i.e. a minimal set of API that developers can assume is present on all delivered implementations and which provides the framework within which applications can successfully run. It is the Applets and applications written to execute in this environment, and the optional APIs, which provide additional functions for applications to exploit, which provide the differentiation for operators, service providers and 3rd party developers.

The following provides an overview (not exhaustive) of areas requiring GSM specific extensions to Java.

Network Connectivity

Radio

A GSM MS network connection is characterised by being of a temporary nature, and usually of a low bandwidth, although new bearer services such as HSCSD and GPRS will improve this.

Connections are subject to interference, delay and call dropping at a higher level than experienced in a fixed network environment.

These characteristics do not have any significance for the Java Platform implementation, however they may affect the suitability of the “thin client” architecture for a GSM MS. i.e. it may be more effective to keep frequently used applications in the GSM MS rather than downloadable on demand from a server. The ability to download applications, is however, seen as a key benefit for GSM.

API extensions could be developed, or new API are defined to enable access to radio related parameters, such as signal strength, service provider id.

GSM Bearers

Parts of the Core Java API and parts of JTAPI are involved in setting up network connections when required by an application. Additions specific to GSM call control will be required to JTAPI. To cover, for example, SMS, Cell Broadcast, network selection, fax data selection, service configuration in addition to voice, circuit data, GPRS and USSD.

The ability for applications to flexibly choose, at a high level, the most appropriate bearer type should be provided.

Mobility

In the future mobiles may generate or have access to accurate location information which could be utilised by applications e.g. multi-media mapping application. It would seem useful for future GSM API extensions to include access to mobility information.

Connection to Legacy Network Equipment

Some client/ server applications may be unavailable when a subscriber is attached to legacy equipment. In such scenarios standard GSM services should still be available to the user.

Downloading and Managing Applications

New GSM standard services are currently developed and deployed on new product releases. Only a few services can be invoked from legacy terminal equipment by using standardised MMI sequences sent in USSD messaging.

In an environment where operator specific and 3rd party applications may be deployed according to operator roll-out plans, suitable mechanisms to download new applications are required. Java inherently provides the mechanisms required to download Applets and applications. Those used depend upon the protocol within which the applet or application is downloaded from the server to the client.

In addition, a Java API exists to enable applications to be deleted. Within a GSM environment the ability to delete applications may be required by both the user and service provider. This would enable an operator to automatically update applications on an MS or delete them when the subscription for those services has expired.

The ability to ensure there is enough memory available for an application to be downloaded, and mechanisms to prevent downloading applications if there is not, are currently under discussion.

Type approval

Suitable test suites for APIs adopted by GSM, would be required in order to ensure applications work in a consistent way across different vendors implementations.

Security

Currently all application software is either standardised or manufacturer-specific. Support of service provider, 3rd party software requires more stringent “firewalls” to the base functions of the MS.

Security mechanisms should be centred on the SIM, as with existing GSM security mechanisms. The security of information on the SIM must also be maintained, and shall not be accessible by untrusted applications.

In order to provide the security required when downloading Applets to a MS, a GSM applet context would need to be defined to specify the actions a trusted and untrusted applet can and can not do.

Commercial Aspects

Changing GSM Service Provider

If a subscriber with a Java-enabled MS, and operator specific services decided to change service provider, a mechanism to delete such services from the MS would be required. Potential options could include over the air or via the SIM card.

Roaming

Some client/ server applications may be unavailable when a subscriber roams outside his home network. In some instances it may be feasible to deliver service from the home network while the MS is roaming. This is outside the scope of this feasibility study.

Other areas

Further areas requiring development include:

A means of accessing the SIM.

A means of accessing data such as call lists.

A means of accessing and controlling supplementary services.

MS Application Execution Environment Feasibility Study	Page � PAGE �19�

