	3GPP TSG-T2 #17

13 -17 May 2002
	T2-020391

Agenda Item: MExE

Source: Aaron M. Cohen, Intel Labs, Intel (aaron.m.cohen@intel.com)

Title:
Discussion Topics Towards a Requirements Analysis for a MExE Run-Time Independent Conformance Framework

Document for: Aiding discussion and resolution on aspects of MExE needing clarification, modification, or extension to create a MExE Run-Time Independent Framework that can be re-used with many runtime technologies.

__

Introduction

This document is a partial list of the issues and discussion topics that may need to be resolved in order to proceed with the WID for MExE TS 23.057 V5.0.0 to create a MExE Run-Time Independent Conformance Framework (RTIF) that can be applied to any arbitrary runtime.

This document groups issues into four main categories:

1. Issues that runtime environments may need to address in order to be compliant with MExE device behavioral requirements.

2. Issues that the platform management software may need to address in order to provide support for the RTIF.

3. Issues in the MExE Service Environment (MSE) that may need to be resolved in order to provide a consistent run-time independent framework.

4. Other issues in the MExE specification that may need to be resolved in order to provide a well defined run-time independent framework.

It is convenient to define a term to use for the application of the requirements of the RTIF and the MSE to a specific runtime. For the purposes of this document this is called the RTIF mapping for an individual runtime.

It is thought that future runtime proposals will specify their RTIF mapping as a prerequisite to requesting evaluation for adoption as a classmark. Therefore, some of these issues will be important in creating a set of criteria for classmark adoption. It is hoped that the definition of the RTIF will form an explicit basis for adding new classmarks, that is, the RTIF will help clarify both the implicit and explicit requirements on new classmarks that already exist in the current MExE specification.

Some of the issues raised here highlight aspects of the MExE specification that could be extended to make operating with RTIF mappings more integrated and transparent to the operators and users. To some extent, these issues are independent from creation of the RTIF, but would be synergistic and provide increased value to both the RTIF and MExE in general. This is particularly true of the issues listed in section 3.

1. Issues which runtime environments may need to address in order to be compliant with MExE device behavioral requirements and claim conformance to the MExE RTIF.

1. What are the general requirements on the architecture of the runtime? Is binary application code allowed, or only application code executing in a virtual machine or a scripting engine? Is some kind of memory partitioning between application and system software required? For certain runtimes, e.g., binary runtimes, does this need to be enforced by hardware? Does the underlying OS have a role? What security must be in place to ensure that applications follow the security framework and do not cause damage? At a minimum, it seems that the RTIF mapping should describe how the MExE security domains are enforced.

2. Each runtime using MExE must provide a complete definition of the runtime core software, including the Libraries and APIs available to executables running in the MExE RTIF mapping. Are any APIs optional? How does the application determine whether optional APIs are present or not? What requirements does the MExE RTIF framework make in these areas?

3. Should each runtime providing a MExE RTIF mapping list the APIs that have call restrictions specific to each of the security domains? It is important for application authors to know which API functions are subject to security restrictions and under what circumstances. Otherwise it will be very difficult for programmers to be certain when APIs are restricted to a secure domain and when they are not. For some APIs this is obvious, but for other APIs that may have both secure as well as untrusted uses, it is not. Who is permitted to call what API when? Clarifying this would improve consistency between implementations of a runtime. Note that unrestricted APIs would not have to be described, only those APIs supporting actions listed as restricted to one of the three MExE security domains. Typically, the majority of API functions are fully usable in the untrusted domain and therefore a MExE RTIF mapping need only provide information on APIs with functionality that is restricted to one or more of the secure domains.

4. What certificate formats for RTIF mappings are supported? RTIF must support at least X.509. Are other certificate formats acceptable? How are these detected and recognized? Would it be simpler and just as effective to facilitate interoperability and extensibility by requiring that RTIF runtimes use X.509 certificates and only X.509 certificates?

5. Would it most efficient if a multi-runtime device could use one set of root certificates and certificate chains for all executables, independent of the number of runtimes supported on a device? Should the MExE specification make a recommendation or requirement on the issue of a device supporting one common, runtime independent certificate set verses one certificate set for each runtime? Are there cases where there is a compelling need for devices to support separate certificate hierarchies? It seems that authorization should be orthogonal to runtime technologies.

6. Does an RTIF compliant runtime have to specify the archive format for the executable? Is this independent from the definition of the runtime, or tightly bound to it?

7. An RTIF compliant runtime must specify a means to bind an executable to a certificate. The current classmarks do this in a manner specific to that classmark. For example, the Java based classmarks specify that that a certificate and executable are archived together in a JAR. This ThThmust also be specified as part of the definition of an RTIF mapping. In other words, as part of the definition of an RTIF mapping, what accessory data, such as an application descriptor file, is necessary to bind together the application, its signature, certificates, and the security domain in which it may run?

8. RTIF must describe the mechanism for identifying the runtime support required. This could be simply runtime identifier and version information, or a more extensive list of core configuration and profile, as well as required optional packages. Section 4.6.4 describes how this can be done with MIDP, but other runtimes will need to provide equivalent functionality.

9. Must the RTIF mapping define the application transfer mechanism? Would it make sense to require that all RTIF mappings use the same transfer mechanism, namely HTTP? The RTIF mapping must define how the client device is to recognize its content type.

10. Are there requirements for APIs, events, or messages to support power management or other specific functionality? Is there a certain level or set of functionality that is present in the current classmarks that we expect should be provided by all RTIF mappings as well? If so, then the requirements for RTIF mappings should list this explicitly.

11. Are there requirements for API support for specific network protocols? Should there be some common baseline of functionality that all classmarks and RTIF mappings must support?

12. Should we require that an RTIF mapping define the behavior of the runtime for functions, which have been designed for the trusted domain, being invoked in the untrusted domain? Are error codes returned from function calls? Is an application catchable exception thrown? Does the runtime shut the application down? What options are acceptable in an RTIF mapping? For consistency and portability, it seems that this should be defined by the RTIF mapping itself and not left to individual implementations of the RTIF mapping.

13. Does an RTIF define a certificate archive format or structure to distinguish between the various kinds (Operator, Manufacturer, Third Party) of certificates? For non-root certificates, this can be determined by tracing the authorization path to the root, but this is not sufficient for root keys in any of the trusted domains. Also, this is somewhat inefficient since it requires scanning all paths in all domains, as opposed to just a single domain. Should a more general mechanism be defined? The Java based classmarks use manifest attributes in the JAR file (see 8.10), but of course this is not necessarily available to other runtimes. The general issue is how is a certificate in one domain distinguished from another? Take, or example, the case when certificates are stored in the USIM. While it is suggested in Section A.3 that directory names on the USIM be used for this, there are two problems. First, the MExE spec does not define the names to use for the directories, making USIM/ME compatibility unlikely, and second, this solution will only work for certificates on the USIM and is not specified to work in the general case. Could the directory idea be extended to archives and packages as well to provide a very general, reusable mechanism?

14. Should our use of PKCS #15 be extended with an attribute to determine the security domain for the certificate and/or should we standardize directory names? There is a remark about “Domain attribute presence and value” in section A.2. Does this refer to the domain marking of certificates? Again, while it is suggested in Section A.3 that directory names on the USIM be used for this the MExE spec does not define the names to use for the directories, making USIM/ME compatibility unlikely.

15. Any RTIF mapping must described how security is maintained when the MEXE security domains are not supported. For example, Java uses the sandbox model with applications permissions restricted to those of the untrusted domain.

2. Issues that the platform management software may need to address in order to provide support for the RTIF.

1. Section 4.12 discusses user notification. It seems wise to require that runtimes using the RTIF do not interfere with any system support for a network activity indicator, or provide equivalent notification when they do. As with several other MExE requirements to notify the user on protected functionality, it is probably best to require that the runtime environment itself to provide and enforce this support, and not depend on applications being well behaved or application developers following the rules. For example, when making a phone call using the JavaPhone API, the implementation of the API should alert the user and request permission, rather than depending upon the application calling a function to request user permission and leaving it up to the application to enforce this. Perhaps this is obvious, however it would be useful to runtime designers to provide direct, explicit guidance on this.

2. The RTIF mapping must provide requirements on the Application Management Software to ensure that the integrity of the applications, its data, and the MExE security framework and service environment is not violated. How does the AMS actually execute and run
the application? Any RTIF mapping must specify this.

3. Along the lines of section 6.2.3, what are the requirements on browsers to permit service discovery and management for an arbitrary RTIF mapping? Must these be extensible? What details must the RTIF mapping provide to ensure that the browser can function as the service discovery mechanism and associate downloadable services with the runtime required for their execution?

4. How will user profile information be used with the RTIF runtimes? Section 4.7 mentions that interoperable aspects of the user profile will be defined in the future. Must applications running in a runtime access this user information and behave accordingly, or must the runtime environment itself enforce the user profile information? If the latter case is a better architecture
, then the RTIF
must include requirements on runtimes to enforce this profile information and also require the runtime to map its functionality to the user profile information as it is defined in Table 2 and is extended in the future. Similar issues are raised with user interface personalization in section 4.8.1. Should we require runtimes using the RTIF to specify how these requirements are met? For example, if the user expresses a language preference, should the runtime definition state which elements have behavior dependent upon that preference? It would improve the consistency of behavior between implementations of a given runtime.

5. HTML support (of some flavor) on the platform supporting a RTIF seems required if we are using a browser as the provisioning tool in the RTIF. Any others? What content can be embedded in the HTML?

6. Are there any mandatory or recommended content types for RTIF mappings? Is image support, say PNGs (Portable Network Graphics Specification, http://www.w3.org/TR/REC-png) required? What about audio files and formats?

3. Issues in the MExE Service Environment (MSE) that may need to be resolved in order to provide a consistent run-time independent framework.

Note that these issues highlight aspects of the MSE that could be extended to make operating with RTIF mappings more integrated and transparent to the user and operator. To a large extent, these issues are independent from creation of the RTIF, but would be synergistic and provide increased value to both the RTIF and MExE in general.

1. The MExE RTIF needs a consistent mechanism to correlate between capabilities, provisioning, delivery and application management:

a. Capabilities - which runtimes does an individual MExE device support?

b. Provisioning - Only appropriate executables should be presented to the MExE device for download.

c. Delivery - What is the specific runtime required by the MExE Executable being downloaded?

d. Application Management - A specific runtime must be associated with a MExE application upon installation.

2. To support the Capabilities item above, the current MExE use of UAProf must be extended to include the idea of RTIF. Currently it is restricted to specifying which of the MExE Classmarks and which versions of the Java Platform are supported. To support the RTIF, a mechanism is needed that can be specific to the level of detail of defining all that is necessary to specify a runtime, including version, instruction set (VM or machine language), available APIs, and other SW platform details. One simple way that this could be done would be to add an “RTIF” value to the legal values in the MExEClassmarks bag. And also add a new MEXERTIFRuntimes attribute as a literal bag that will list the “official” strings of the supported runtimes. An open question is who defines these strings? A URI mechanism could be used for this.

3. Should capability negotiation be extended to include support for the RTIF and flexible exchange of details such as archive formats? Possibly, if we want to enable generic reuse of archive formats for different RTIF mappings. For example, we could allow ZIP format to be used for more than one RTIC mapping. Should we consider extending UAProf values for this?

4. Should we make HTTP support for management and provisioning required? Since WAP 2.0 supports this, and this is the direction things seem to be converging, this may be a good idea. ItIIt would make supporting the framework easier, since everything could then be built on HTTP-friendly protocols.

5. How is the MSE provisioned? That is, how is the location of the MExE Service Environment (MSE) known? Is it always a URL? Can the user set the MSE URL? How much of this needs to be defined by MExE? Is configuration by the operator the best way? If the operator configures the MSE location, then where is it stored? Should it be stored securely? This would be one way for the operator to control the runtime environments that phones on their network are exposed to. Is this control necessary? Is this something that must be set up when the phone is configured? Is there some auto-configuration mechanism common to carrier networks? This is made easier, but not solved, by standardizing on the HTTP and URL scheme.

6. When downloading a MExE Executable, the mime type of the executable must be identified by the transport protocol (for example, in the HTTP headers) so that the device can appropriately notify the user, screen for unknown runtime types, and deliver the executable to the correct runtime. A device must be configured to recognize the set of mime types for MExE Executables. However this is not sufficient, because the same mime type may be used for more than one kind of runtime or classmark. With an arbitrary number of supported runtimes, and for binaries that may require a particular OS or set of libraries, there is a need for a simple scalable mechanism. For example, we could recommend an HTTP header that defines the runtime type using of some kind of URI mapping scheme, or we could recommend that a mime type be defined for each RTIF mapping

7. How does the server request the capabilities of the client? Section 4.6.6 lists server driven capability negotiation as allowed, but no mechanisms are described. This may be more important as a greater number of runtimes are supported within the MExE framework. Should the MSE overall definition be enhanced to provide a general mechanism for all runtimes?

8. Section 4.1.4 discusses core software download. Do we need to discriminate core download capabilities between approved classmarks and runtimes using the RTIF? Perhaps RTIF runtimes should only be able to update themselves, and not other system software or system runtimes. Or, perhaps, a device has a “main” runtime or classmark that is entrusted to do the core software updates and the rest do not. How do MExE requirements apply in this area?

4. Other issues in the MExE specification that may need to be resolved in order to provide a well defined run-time independent framework.

1. Support of at least one classmark is currently mandatory and strictly speaking, does not allow for the RTIF. Should be rephrased something like: “Support of at least one classmark or support of the MExE RTIF is mandatory for MExE conformance.

2. We must clearly list the certificate formats and encryption algorithms required by the RTIF, including key length and other parametric data. While this is currently in the MExE specification, it should be moved to the non-classmark section of the spec when it is reorganized. From section 8.4.1.1 it is clear that an RTIF mapping must support the X.509 version 3 (see 8.6.1) certificates detailed in the WAP certificate and CRL profile, as well as certificate chains at least one level deep, below the root. SHA1WithRSA signatures are also required for all RTIF mappings. The minimum supported key length is also defined (I think 2048 bits in one of the referenced specs), we should list it explicitly within either the runtime independent section or the RTIF section. Are there other aspects of the PKI that need to be made explicit?

3. The rules about signed JAR packages containing a collection of certificates of various sorts described in Section 8.10.2 really are applicable to any runtime. These should be moved out of the Java section into the general security section.

�PAGE \# "'Page: '#'�'" �� I did not understand the combination of these two sentences. Did you want to explore the restrictions or methods for listing callable APIs? Maybe a proposal or example can help…

�PAGE \# "'Page: '#'�'" �� This is a typographical error that is not detected by the spelling checker.

�PAGE \# "'Page: '#'�'" �� You may want to keep your points as open questions without evaluations. You can skip some of these points until you get into the meetings and discussions.

�PAGE \# "'Page: '#'�'" �� I was not clear about the case that you reference in this phrase. Is this the case for the runtime environment enforcing the user profile?

�PAGE \# "'Page: '#'�'" �� I was hoping to drive this from the MExE framework. Therefore, I was wondering if this could be positioned with a more “leading question?”

PAGE
1

