3GPP TSG-T2 #16
T2-020301

Sophia Antipolis, France, February 11-15, 2001

	CR-Form-v5

	CHANGE REQUEST

	

	(

	23.040
	CR
	
	(

rev
	
	(

Current version:
	5.2.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	X
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	Wireless Vector Graphics in EMS

	
	

	Source:
(

	T2

	
	

	Work item code:
(

	EMS
	
	Date: (

	February 2002

	
	
	
	
	

	Category:
(

	B
	
	Release: (

	REL-5

	
	Use one of the following categories:
F (essential correction)
A (corresponds to a correction in an earlier release)
B (Addition of feature),
C (Functional modification of feature)
D (Editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	WVG (Wireless Vector Graphics) provides a scalable and animated picture capability to EMS with high efficiency for message size by utilising a combination of compression technologies.

WVG also provides Character Size drawing (or glyph) capability to EMS, which allows complex Asian language messages to be handwritten and displayed efficiently.

	
	

	Summary of change:
(

	Two new IE types and one new extended object type added.

	
	

	Consequences if
(

not approved:
	Inefficient large bitmap picture messages, even with certain levels of compression implemented in EMS, may cause delays on handsets and overload on the network. . In addition, bitmap images do not scale well in size and suffer from “jaggies” when resized for different screen resolutions.

Without an efficient animated vector graphics message type, EMS may lose its time window in the marketplace.

	
	

	Clauses affected:
(

	3.10.6, 9.2.3.24, 9.2.3.24.10.1.11, 9.2.3.24.10.1.12, 9.2.3.24.10.1.11, Annex E.13, Annex G (should also change existing Annex G to Annex H)

	
	

	Other specs
(

	
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	None

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://www.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2000-09 contains the specifications resulting from the September 2000 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

3.10.5
vCard and vCalendar

A message may contain vCard and vCalendar objects as specified in [36][37]. These may be transmitted in a compressed form.

3.10.6
WVG (Wireless Vector Graphics) Object
A message may contain one or more WVG objects. A WVG object is a vector graphics picture or animation and is scalable. Two subtypes of WVG objects are supported; Standard WVG object and Character Size WVG object. Actual display size of a Standard WVG object depends on display screen size and MMI implementation on terminals. A Character Size WVG object has a height that equals or is similar to the height of message text but with variable width. Character Size WVG object may be edited in the same way as standard text, e.g. insertion deletion and text wrapping.
3.10.6.1 Overview of WVG Graphical Primitives
The WVG element is used to describe vector graphics objects. The vector graphics format is used to allow the creation of small pictures which may include simple animation or the creation small handwritten sketches. WVG makes use of the following graphical primitives (full detail is listed in annex G.2) These primitives can be used to describe a compact drawing.
List of Graphical Primitives

· Polylines (G2.1)
· Simple Line Polyline (G.2.1.1)

· Circular Polyline (G.2.1.2)
· Bezier lines (G.2.1.3)
· Polygons (G.2.2)
· Arbitrary Polygon (G.2.2)
· Regular Polygon (G.2.4)
· Star Shaped Polygon (G.2.4)
· Regular Grid Element (G.2.4)
· Ellipses (G.2.3.1)
· Rectangles (G.2.3.2)
· Text Element (G.2.5)

· Grouping Element (G.2.6)
· Reuse Element (G.2.7)
· Animations Elements (G.2.8)
· Frame Element (G.2.9)

· Local Element (G.2.10)
1. 9.2.3.24
TP‑User Data (TP‑UD)

The length of the TP-User-Data field is defined in the PDU’s of the SM-TL (see clause 9.2.2).

The TP‑User‑Data field may comprise just the short message itself or a Header in addition to the short message depending upon the setting of TP‑UDHI.

Where the TP‑UDHI value is set to 0 the TP‑User‑Data field comprises the short message only, where the user data can be 7 bit (default alphabet) data, 8 bit data, or 16 bit (UCS2 [24]) data.

Where the TP‑UDHI value is set to 1 the first octets of the TP‑User‑Data field contains a Header in the following order starting at the first octet of the TP‑User‑Data field.

Irrespective of whether any part of the User Data Header is ignored or discarded, the MS shall always store the entire TPDU exactly as received.

FIELD

LENGTH

Length of User Data Header

1 octet

Information‑Element‑Identifier "A"

1 octet

Length of Information‑Element "A"

1 octet

Information‑Element "A" Data

0 to "n" octets

Information‑Element‑Identifier "B"

1 octet

Length of Information‑Element "B"

1 octet

Information‑Element "B" Data

0 to "n" octets

Information‑Element‑Identifier "X"

1 octet

Length of Information‑Element "X"

1 octet

Information‑Element "X" Data

0 to "n" octets

The diagram below shows the layout of the TP-User-Data-Length and the TP-User-Data for uncompressed GSM 7 bit default alphabet data. The UDHL field is the first octet of the TP-User-Data content of the Short Message.

[image: image1.wmf]U

D

L

U

D

H

L

I

E

I

a

I

E

D

a

I

E

I

b

.

.

.

.

.

.

.

.

.

I

E

I

n

I

E

D

L

n

I

E

D

n

F

i

l

l

b

i

t

s

S

M

(

7

b

i

t

d

a

t

a

)

S

e

p

t

e

t

B

o

u

n

d

a

r

y

T

o

t

a

l

n

u

m

b

e

r

o

f

O

c

t

e

t

s

L

e

n

g

t

h

I

n

d

i

c

a

t

o

r

T

o

t

a

l

n

u

m

b

e

r

o

f

S

e

p

t

e

t

s

L

e

n

g

t

h

I

n

d

i

c

a

t

o

r

O

c

t

e

t

s

O

c

t

e

t

s

I

E

I

D

L

a

Figure 9.2.3.24 (a)

The diagram below shows the layout of the TP-User-Data-Length and the TP-User-Data for uncompressed 8 bit data or uncompressed UCS2 data. The UDHL field is the first octet of the TP-User-Data content of the Short Message.

[image: image2.wmf]U

D

L

U

D

H

L

I

E

I

a

I

E

D

a

I

E

I

b

.

.

.

.

.

.

.

.

.

I

E

I

n

I

E

D

L

n

I

E

D

n

O

c

t

e

t

B

o

u

n

d

a

r

y

T

o

t

a

l

n

u

m

b

e

r

o

f

O

c

t

e

t

s

L

e

n

g

t

h

I

n

d

i

c

a

t

o

r

T

o

t

a

l

n

u

m

b

e

r

o

f

O

c

t

e

t

s

L

e

n

g

t

h

I

n

d

i

c

a

t

o

r

O

c

t

e

t

s

O

c

t

e

t

s

I

E

I

D

L

a

S

M

(

8

b

i

t

d

a

t

a

o

r

U

C

S

-

2

d

a

t

a

)

Figure 9.2.3.24 (b)

The diagram below shows the layout of the TP-User-Data-Length and the TP-User-Data for compressed GSM 7 bit default alphabet data, compressed 8 bit data or compressed UCS2 data. The UDHL field is the first octet of the TP‑User-Data content of the Short Message.

[image: image3.wmf]U

D

L

U

D

H

L

I

E

I

a

I

E

D

a

I

E

I

b

.

.

.

.

.

.

.

.

.

I

E

I

n

I

E

D

L

n

I

E

D

n

O

c

t

e

t

B

o

u

n

d

a

r

y

T

o

t

a

l

n

u

m

b

e

r

o

f

O

c

t

e

t

s

L

e

n

g

t

h

I

n

d

i

c

a

t

o

r

T

o

t

a

l

n

u

m

b

e

r

o

f

O

c

t

e

t

s

L

e

n

g

t

h

I

n

d

i

c

a

t

o

r

O

c

t

e

t

s

O

c

t

e

t

s

I

E

I

D

L

a

C

o

m

p

r

e

s

s

e

d

S

M

(

o

c

t

e

t

s

)

Figure 9.2.3.24 (c)

The definition of the TP‑User‑Data‑Length field which immediately precedes the "Length of User Data Header" is unchanged and shall therefore be the total length of the TP‑User‑Data field including the Header, if present. (see 9.2.3.16).

The "Length‑of‑Information‑Element" fields shall be the integer representation of the number of octets within its associated "Information‑Element‑Data" field which follows and shall not include itself in its count value.

The "Length‑of‑User‑Data‑Header" field shall be the integer representation of the number of octets within the "User‑Data‑Header" information fields which follow and shall not include itself in its count or any fill bits which may be present (see text below).

Information Elements may appear in any order and need not follow the order used in the present document. Information Elements are classified into 3 categories as described below.

· SMS Control – identifies those IEIs which have the capability of dictating SMS functionality.

· EMS Control – identifies those IEIs which manage EMS Content IEIs.

· EMS Content – identifies those IEIs containing data of a unique media format.

It is permissible for certain IEs to be repeated within a short message, or within a concatenated message. There is no restriction on the repeatability of IEs in the EMS Content classification. The repeatability of SMS Control and EMS Control IEs is determined on an individual basis. See the IE table below for the repeatability of each IE.

In the event that IEs determined as not repeatable are duplicated, the last occurrence of the IE shall be used. In the event that two or more IEs occur which have mutually exclusive meanings (e.g. an 8bit port address and a 16bit port address), then the last occurring IE shall be used.

If the length of the User Data Header is such that there are too few or too many octets in the final Information Element then the whole User Data Header shall be ignored.

If any reserved values are received within the content of any Information Element then that part of the Information Element shall be ignored.

The Information Element Identifier octet shall be coded as follows:
	VALUE (hex)
	MEANING
	Classification
	Repeatability

	00
	Concatenated short messages, 8-bit reference number
	SMS Control
	No

	01
	Special SMS Message Indication
	SMS Control
	Yes

	02
	Reserved
	N/A
	N/A

	03
	Value not used to avoid misinterpretation as <LF> character
	N/A
	N/A

	04
	Application port addressing scheme, 8 bit address
	SMS Control
	No

	05
	Application port addressing scheme, 16 bit address
	SMS Control
	No

	06
	SMSC Control Parameters
	SMS Control
	No

	07
	UDH Source Indicator
	SMS Control
	Yes

	08
	Concatenated short message, 16-bit reference number
	SMS Control
	No

	09
	Wireless Control Message Protocol
	SMS Control
	Note 3

	0A
	Text Formatting
	EMS Control
	Yes

	0B
	Predefined Sound
	EMS Content
	Yes

	0C
	User Defined Sound (iMelody max 128 bytes)
	EMS Content
	Yes

	0D
	Predefined Animation
	EMS Content
	Yes

	0E
	Large Animation (16*16 times 4 = 32*4 =128 bytes)
	EMS Content
	Yes

	0F
	Small Animation (8*8 times 4 = 8*4 =32 bytes)
	EMS Content
	Yes

	10
	Large Picture (32*32 = 128 bytes)
	EMS Content
	Yes

	11
	Small Picture (16*16 = 32 bytes)
	EMS Content
	Yes

	12
	Variable Picture
	EMS Content
	Yes

	13
	User prompt indicator
	EMS Control
	Yes

	14
	Extended Object
	EMS Content
	Yes

	15
	Reused Extended Object
	EMS Control
	Yes

	16
	Compression Control
	EMS Control
	No

	17
	Object Distribution Indicator
	EMS Control
	Yes

	18
	Standard WVG object
	EMS Content
	Yes

	19
	Character Size WVG object
	EMS Content
	Yes

	1A-1F
	Reserved for future EMS features (see subclause 3.10)
	N/A
	N/A

	20
	RFC 822 E-Mail Header
	SMS Control
	No

	21
	Hyperlink format element
	SMS Control
	Yes

	22 – 6F
	Reserved for future use
	N/A
	N/A

	70 – 7F
	(U)SIM Toolkit Security Headers
	SMS Control
	Note 1

	80 – 9F
	SME to SME specific use
	SMS Control
	Note 2

	A0 – BF
	Reserved for future use
	N/A
	N/A

	C0 – DF
	SC specific use
	SMS Control
	Note 2

	E0 – FF
	Reserved for future use
	N/A
	N/A

	Note 1:
The functionality of these IEIs is defined in 3GPP TSG 23.048 [28], and therefore, the repeatability is not within the scope of this document and will not be determined here.

Note 2:
The functionality of these IEIs is used in a proprietary fashion by different SMSC vendors, and therefore, are not within the scope of this technical specification.

Note 3:
The functionality of these IEIs is defined by the WAP Forum and therefore the repeatability is not within the scope of this document and will not be determined here.

A receiving entity shall ignore (i.e. skip over and commence processing at the next information element) any information element where the IEI is Reserved or not supported. The receiving entity calculates the start of the next information element by looking at the length of the current information element and skipping that number of octets.

9.2.3.24.10.1.10
User Prompt Indicator

With the User Prompt Indicator a sending entity is able to indicate to the receiving entity, that the following object is intended to be handled at the time of reception, e.g. by means of user interaction. The object may be a picture, an animation, a User Defined Sound or a combination of these.

For example the User Prompt Indicator may be used when sending an operators logo to the ME that should be displayed instead of the operators name in standby mode.

When receiving the object the user shall be prompted to accept or discard the object. After this user interaction the SM may be discarded.

The User Prompt Indicator IE shall immediately precede the corresponding object IE(s).

If a User Prompt Indicator IE is not followed by a corresponding object IE it shall be discarded.

The Information‑Element‑Data octet(s) shall be coded as follows.

Octet 1
Number of corresponding objects

This octet shall contain the number of corresponding objects as an integer value.

Where Octet 1 indicates that the User Prompt Indicator refers to more than one object, the ME should check the validity of the objects referenced for stitching together. The objects should be considered for stitching if they are either Images (Small, Large, Variable Pictures) or User Defined Sounds, and all of the objects referenced by the User Prompt Indicator IE are of the same type. Animations, Text formatting and pre-defined sound IE's are not suitable for stitching.

User defined sounds may be stitched by concatenating the data contained within each User Defined Sound IE into a single melody object, this may be achieved by ignoring the iMelody header and footer information of the second and subsequent User Defined Sound IE's referenced from the User Prompt Indicator.

Images may be joined along their vertical edges, to form a single "wide" image, the resulting image will have a width equal to the sum of the widths of all the images defined in the User Prompt Indicator.

9.2.3.24.10.1.11
Standard WVG Object

The Standard WVG object as defined by IEI 18 is structured as follows:

Octet 1
position indicating in the SM data the instant the object shall be displayed in the SM data

Octet 2..n
Standard WVG object bit stream

The unused bits in the last octet will be filled with 0

The detailed data format and attributes of Standard WVG object are defined in Annex G.

The bit order is defined as follows:

The octet with a smaller octet number stores the bits appearing in the front position in the bit stream; the most significant bit in an octet stores the first bit in position in a 8-bit segment in the bit stream.

A Standard WVG object may or may not have fixed size. In either case, display size should be determined by the terminal implementation. Recommended display size is a largest possible size on terminal screen while aspect ratio shall be maintained.

9.2.3.24.10.1.12
Character Size WVG Object

The Character Size WVG object as defined by IEI 19 is structured as follows:

Octet 1
position indicating in the SM data the instant the object shall be displayed in the SM data

Octet 2..n
Character Size WVG bit stream

The unused bits in the last octet will be filled with 0

The detailed data format and attributes of Character Size WVG object are defined in Annex G.
The bit order is defined as follows:

The octet with a smaller octet number stores the bits appearing in the front position in the bit stream; the most significant bit in an octet stores the first bit in position in a 8-bit segment in the bit stream.
A Character Size WVG object is a small graphics similar to the size of a typed character. The display height for a Character Size WVG object is decided by the terminal implementation. Recommended Character Size WVG object height is to be similar to the message text font height. The width of a Character Size WVG object is variable depending on the aspect ratio defined in the object. Character Size WVG objects can appear more than one time in one message.
Example:

Dad, I [image: image4.wmf] you!
In the above example, the “heart” is a Character Size WVG object at the position in between the letter “I” and “y”.

[image: image5.png][image: image6.png][image: image7.png][image: image8.png]
In the above example, there are 4 Character Size WVG objects, each representing a Chinese character.
9.2.3.24.10.1.13
Extended Object

The Extended Object allows an extended code range for format types. The Extended Object may extend across segment boundaries of a concatenated short message. Octets 1 through 7 of the first Extended Object IE shall be contained in a single segment. A single segment may include one or more Extended Object IEs.

If multiple SMs are concatenated and at least one of them contains an Extended Object information element, then concatenation of the SMs shall be done using the 'Concatenated short messages, 16-bit reference number', verses the 'Concatenated short messages, 8-bit reference number' information element. The re-assembly of the Extended Object segments shall be done according to the sequence number of the associated Concatenation IE.

One or more Extended Objects may be compressed using a compression algorithm as indicated in the Compression Control IE (see clause 9.2.3.24.10.1.13).

An SME implementing the Extended Object IE shall be capable of interpreting an uncompressed concatenated message composed of at least min_eo_msg short messages which have been received. According to current content provider requirements and handset manufacturer constraints, variable min_eo_msg is set to 8.

The first Extended Object IE of an Extended Object contains a reference number, length, control data, type and position. The subsequent Extended Object IEs shall only contain Extended Object data as illustrated in Figure 9.2.24.10.11.

The IE length is variable.

Octet 1
Extended Object reference number.
A modulo 256 counter indicating the reference number for the Extended Object. Two different Extended Objects in a single concatenated message shall have different reference numbers.

Octet 2..3
Extended Object length in number of octets (integer representation) as shown in Figure 9.2.3.24.10.1.11.

Octet 4
Control data.

Bit 0

Object distribution

0 Object may be forwarded

1 Object shall not be forwarded by SMS

Bit 1

User Prompt Indicator

0
Object shall be handled normally
1
Object shall be handled as a User Prompt (see 9.2.3.24.10.1.10)

Bit 2..7
reserved

Any reserved values shall be set to 0.

Octet 5
Extended Object Type.
This octet indicates the format of the Extended Object from the table below.
If the value is reserved or if the associated format is not supported then the receiving entity shall ignore the Extend Object.

	Format Type
	Format Description

	0x00
	Predefined sound as defined in annex E.

	0x01
	iMelody as defined in annex E.

	0x02
	Black and white bitmap as defined in annex E.

	0x03
	2-bit greyscale bitmap as defined in annex E.

	0x04
	6-bit colour bitmap as defined in annex E.

	0x05
	Predefined animation as defined in annex E.

	0x06
	Black and white bitmap animation as defined in annex E.

	0x07
	2-bit greyscale bitmap animation as defined in annex E.

	0x08
	6-bit colour bitmap animation as defined in annex E.

	0x09
	vCard as defined in annex E.

	0x0A
	vCalendar as defined in annex E.

	0x0B
	Standard WVG object as defined in annex E

	0x0C.. 0xFE
	Reserved

	0xFF
	Data Format Delivery Request as defined in annex E.

Octet 6..7
Extended Object Position (integer representation).
The Extended Object Position indicates the absolute character position within the message text after which the object shall be played or displayed. The absolute character position relates to the entire text within the concatenated message, the first character is numbered character 1.

NOTE:
Although this is an absolute value, for concatenated messages, it is suggested the positions used are those that lie within the text of short message segments that have the sequence number equal to or higher than the one that contains the Extended Object IE.

If more than one Extended Object is located at the same position then they may be played or displayed in sequence or simultaneously.

Octet 8..n
Extended Object Data.
This sequence of octets is structured as illustrated in the figure below and defined annex E. This figure illustrates the construction of a number of SMs containing a large Extended Object which crosses a SM boundary and is encoded into 2 SM TPDUs. The figure illustrates only the User Data field of the SM (TPDUs). For a description of concatenation of SM refer to Figures 9.2.3.24 (a, b and c)

[image: image9.wmf]Control

Byte

Reference

 Data

Length

Positioning

 Information

Extended Object Data

1

2,3

4

5

6,7

Type

Identifier

Extended Object Header Information

Extended Object Data

Octet Number

UDHL

Concatenation Info

IEI

E.O.*

IEIDL

Extended Object Header

Extended Object Data

Concatenation Info

IEI

E.O.*

IEIDL

Continuation of Extended Object Data

TPDU 2

TPDU 1

8.....n

* E.O. means Extended Object

UDHL

Figure 9.2.3.24.10.1.11

Annex E (normative):
Extended Object Format Type

E.12
Data Format Delivery Request

This Data Format Delivery Request is an optional feature used by an SME to indicate which Extended Object data formats, listed in clause 9.2.3.24.10.1.11, it is requesting for delivery. This Data Format Delivery Request may be included by an SME in a MO SM containing other EMS related data, or in a MO SM independently. Processing of this data format is optional in a MT short message.

The information in this data format represents an extensible bit field with the first bit being mapped to the first Extended Object (EO) data format defined in the table in clause 9.2.3.24.10.1.11.

Octet 8

Bit 0: If set to 1 indicates support for EO data format 00

Bit 1: If set to 1 indicates support for EO data format 01

Bit 2: If set to 1 indicates support for EO data format 02

……

……

Octet n

Bit 0: If set indicates support for EO data format ((n – 8) * 8)

Bit 1: If set indicates support for EO data format ((n – 8) * 8) + 1

Bit 2: If set indicates support for EO data format ((n – 8) * 8) + 2

…….

Any unused bits in the last octet shall be set to zero.

E.13
Standard WVG Object

The Standard WVG object as defined by Format Type 0x0B in the Extended Object IE is as follows.
Octet 8..n
Standard WVG object bit stream

The unused bits in the last octet will be filled with 0

The detailed data format and attributes of Standard WVG object are defined in Annex G.

The bit order is defined as follows:

The octet with a smaller octet number stores the bits appearing in the front position in the bit stream; the most significant bit in an octet stores the first bit in position in a 8-bit segment in the bit stream.

A Standard WVG object may or may not have fixed size. In either case, display size should be determined by the terminal implementation. Recommended display size is a largest possible size on terminal screen while aspect ratio shall be maintained.

Annex G (Normative):
WVG (Wireless Vector Graphics) Data Format

WVG (Wireless Vector Graphics) is a compact binary data format for vector graphics. WVG data is represented by a bit stream, composed of a header, codec parameters and graphical elements. The bit representation of the drawing and contained graphical elements is designed such that the bit stream can be optimized for smallest possible size.

G.1
Introduction

G.1.1
Standard and Character Size WVG Elements

A Standard WVG element is defined by the complete WVG specification. Using a set of the WVG specification with a set of default values, a simplified vector graphics can be used to represent a simple and small vector graphics or glyph. Character Size WVG elements can be included in normal text to represent a handwritten character or symbols that are not supported by character coding system and the font library.

G.1.2
Compression Methods

A combination of compression methods is used in the WVG to achieve the best compression ratio for simple vector graphics and animations. They include:

· Switchable Linear or Non-linear coordination system: when graphical elements in a drawing are not evenly distributed, the representation of coordinates can be optimized using a non-linear coordinate system (uneven coordinates)

· Bit packing: variable number of bits to represent a number. The number of bits used in WVG can vary from 1 bit to 16 bits.

· Local envelope: use a dedicated coordinate system to describe elements in a small area using relatively small coordinate numbers

· Variable resolution: in coordinates, sizes, angles, scale and etc, different resolutions can be used for a graphical element to save the number of bits needed for representing a value.

· Palettes: color and element ID can be mapped using a palette defined in the drawing header. This also saves the number of bits for representing a color value and an element ID.

· Default values: many values can be omitted to use default values. E.g. when no color scheme is defined, the data describes a mono drawing

· Default Animation Timing: in addition to standard time based animation, WVG uses a simplified animation model. In Simple Animation mode, no timing is needed for describing animations. Instead, a cycle is defined to describe the timing for these animations.
G.1.3
Coordinate Systems

There are two coordinate systems used in WVG, namely Compact Coordinate System and Flat Coordinate System.

G.1.3.1
Compact Coordinate System

In compact coordinate system, a drawing area is defined as rectangle area called envelope. There are two types of envelopes, global envelope and local envelope. The global envelope is a base area in which the drawing is contained. There is only one global envelope. A local envelope is a square area completely or partially within the global envelop. There is no specific global envelope size specified in the data format. The physical display size is decided at rendering time.

The aspect ratio and orientation are defined in the data header and should be maintained when the drawing is displayed.
[image: image16.png]Aspect ratios include 1:1, 4:3, 16:9 up to 1024: 729 (height:width), in both portrait and landscape orientation. Aspect ratio for Characters Size WVG elements only has landscape orientation.
In Compact Coordinate System, coordinates are restricted to certain positions which are the cross points of a grid. The grid is defined in the WVG data header, set by a group of parameters. The grid lines along with x axis or y axis may be unevenly distributed.

The global grid can be described using a curve shown above.

There are one peak and two valleys in the curve. The definition of the curve is:

· Peak position: the central position of a peak

· Peak value: a value equal or larger than 1.0

· Peak width: a value less than 1.0

· All valleys should have the same value

· The total area enclosed by the curve and the x-axis from 0.0 to 1.0 is always equating to 1.0

The curve can be uniquely defined by peak position, peak value and peak width. Once the parameters are determined, other values such as valley value can be calculated. Once a curve is given, grid line positions can be calculated according to the following function:

[image: image10.wmf]ò

Xk

dx

x

d

0

)

(

=
[image: image11.wmf]1

-

n

k

Where Xk is the position of the kth grid line, where n is total number of grid lines. d(x) is the curve function described in this document.

In Standard WVG, the curve parameters are preset as follows.

Variable parameters:

· Number of grid lines: 15, 31, 63 or 127

· Peak value: 1.0, 1.5, 2.0 and 2.5

· Peak position: 13 options from 0.0(0/12), 0.083333(1/12), 0.166667(2/12) to 1.0(12/12)

· Peak width: 0.3, 0.4, 0.5 and 0.6

When a portion of a peak exceeds the global envelope only the part within the global envelope is valid.

For Character Size WVG or glyph, the parameters are set as follows.

Predefined parameters:

· Peak width: 0.4

Variable parameters:

· Number of grid lines: 7, 15, 31 or 63

· Peak value: 1.0 or 1.5

· Peak position: 0.3333(1/3), 0.5, 0.6667(2/3)

When using relative coordinates in Compact Coordinate System (refer to G1.3.3), some elements may be specified with specific resolution, which is independent of the global resolution. There are 8 predefined resolutions available for “re-definition resolution”, there are 1/27, 1/38, 1/48, 1/64, 1/85, 1/128 and 1/160 of the length of the shorter global envelop edge. Re-definition of resolution only applies to elements in global scope.

G.1.3.2
Flat Coordinate System

The Flat Coordinate System is a 16 bit signed coordinate system with the top left coordinate of the screen being defined as (x=0,y=0) and the bottom right coordinate being described as (x=2^15, y = 2^15). Note that this expresses the dynamic range of the coordinate system, however it does not mean that all drawings are of this size.

G.1.3.3
Coordinate Values

Coordinate values may be represented using two methods: absolute coordinate and relative coordinate.

Absolute Coordinate: an absolute coordinate is a pair of x and y coordinate number. In WVG Compact Coordinate System, absolute coordinate values are the coordinate grid line numbers and are always positive.

Relative Coordinate: the relative coordinate is used only in lines and transform. If the start point is defined by an absolute coordinate, subsequent points can be described by relative coordinates, which are relative grid units from the previous point. A relative coordinate is signed, and it may be positive or negative. A relative coordinate may be used in both global and local coordinate systems. A relative coordinate may exceed the scope of the local envelope that defines the start point of the line.

G.1.4 Color Schemes
WVG supports the following color schemes.

· Black and White (2 Colors): black and white color.
· 2-bit Grayscales: four grayscales are defined as (0,0,0), (85,85,85), (170,170,170) and (255,255,255) in 24-bit RGB color format.

· 4 Default Colors

· 6-bit RGB Color: it is similar to 24-bit RGB color definition but uses only 2 bits to represent a single color, in which value 0, 1,2 and 3 represent 8-bit color value 0, 85, 170 and 255 respectively.

· 6-bit RGB Color Using 2nd Palette

· 8-bit W3C websafe color

· 12-bit and 24-bit RGB color

There are 2 optional drawing pens in WVG, stroke pen and fill pen. Stroke pen and fill pen can be specified with one of the colors defined using the scheme. When the stroke pen is not defined, BLACK should be used for strokes. When the fill pen is not defined, no fill should be applied.
G.1.5 Rendering Model

WVG uses painter model. The elements appears in the later position in the WVG bit stream will overrides the overlapped portion of the elements which appear in the front in the bit stream.

G.2
Graphical Elements

WVG defines a set of graphical and animation elements. Among them, line, shape and text elements are the building blocks to form a drawing. These elements can be transformed, grouped and animated. There are also special elements that are auxiliary.

G.2.1
Line Elements

There are 3 types of lines: polyline, circular polyline and bezier polyline. A polyline can represent a dot when there is only a start point defined.
A line element has its reference point at the starting point.

G.2.1.1
Polyline

Polyline is a set of straight lines connecting a sequence of points. When there is only one point, it is defined as a Dot.

G.2.1.2
Circular Polyline

Circular Polyline is a line that contains at least one circular curve segment. The curve segment connects two adjacent points by a circular arc. The curve segment is determined by the two adjacent points and a curve offset (the perpendicular distance from the center of the line connecting the adjacent points to the circular arc).

[image: image12.wmf]

Curve offset

Center

point

Curve offset values are within the range – 0.5 to 0.5, inclusive. A value of 0.5 or – 0.5 identifies that the curve offset equals half of length of the connecting line. The value indicates that the curve is close to a half circle. A positive value indicates that the curve is at the left side of the base line viewed from the curve direction. A negative value indicates that the curve is at the right side of the base line viewed from the curve direction.

G.2.1.3
Bezier Polyline

A Bezier Polyline contains one or more off curve control points in between on curve points. Bezier curves can be filled to create curved shapes and are common in generalized Font representations.

All line elements have direction from the start point to the end point.

Color fill may apply to a line. Refer to G.2.1.4.
G.2.1.4
Auto-Closure of A Line

When a line is specified with the Fill attribute, the line is considered as a closed line, which connects the start point and the end point using a straight line. The enclosed area of a closed line can be used for color fill.

The enclosed area is based on Nonzero fill rule. Following are two examples in which the light color indicates the enclosed area.

G.2.2
Polygon Elements

Polygon elements are closed representations of polyline, circular polyline and Bezier polyline elements. Polygons may have separate line and fill colors or may not be filled at all.

Polygon elements use the Nonzero fill rule for enclosed areas and can be used for color file.

A polygon element has its reference point at the starting point.

G.2.3
Simple Shape Elements

There are two types of simple shape elements: ellipse and rectangle.

G.2.3.1
Ellipse

Ellipses are defined by their major axe, minor axe, center and angle of rotation. Circles are considered a special case of ellipse in which the major and minor axis are the same length.

G.2.3.2
Rectangle

Rectangles are represented by their center, length, height, and rotation angle. Squares are considered special rectangles in which the length and height are identical.

When the “round corner” indicator is set, the corner of the rectangle should be rounded. There is no specific radius of the round corner is defined. The recommended radius of the rounded corner should be 20% of the length of the shorter edge of the rectangle or the square.
[image: image13.png]
A simple shape element has its reference point at its center.

G.2.4
Special Shape Elements

There are 3 types of special shapes. Each shape has a reference point that determines its position. All special shapes except Grid have the reference point at its center. Shapes may have other parameters. These shapes include:

· Regular Polygon: a regular polygon has equal length of all its edges. In its original position, the bottom edge of the regular polygon should be aligned horizontally. A rotate angle can be optionally specified. Regular Polygon parameters include the number of vertex, the diameter of the reference circle and angle of rotation.

· Star: a star is defined by the number of corner vertex, the diameter of the reference circle, vertex angle and angle of rotation. In its original position, the bottom edge, which formed by two vertexes of the star, should be aligned horizontally. A rotate angle can be optionally specified. Vertex angles are predefined as 0, 36, 60, 90 degrees.

If the vertex angle is 0, a single line from center to vertex shall be drawn.
· Grid: a grid is a number of evenly distributed perpendicular lines. Its parameters include height, width, number of rows and columns (up to 16).

A special shape element has its reference point at its center.

G.2.5
Text Element

WVG supports text display inside the drawing. However it supports only the default font. To avoid inconsistency on different terminals, it is recommended to use vector based font. Text can be placed in a drawing with position, font size and rotate angle. Like other elements, text has attributes of line style, line color, line width. It can also be animated.

Control characters are ignored when the text is rendered except for the CR (Carriage Return). The CR indicates the text followed by should be displayed at the next line position. Multi-line text should be left aligned. There is no character spacing and line spacing defined. Recommended character spacing is 10% of the text height. Recommended line spacing is 20% of the text height.
When text encoding is GSM 7-bit, SMS character packing is used as defined in 3GPP TS 23.038 [9].

A text element has its reference point at top-left corner.

G.2.6
Group Elements

A set of elements can be grouped together.

A group of elements starts with a Group element, which is followed by a list of the elements in the group, and ends with an End_Group element. Two levels of grouping is allowed.

Group 1

Element 1

Element 2

……

Group 2

Element a

Element b

……

End Group

Element n

Element n+1

…..

End Group

A group element has its reference point at the reference point of its first element in the group.

G.2.7
Reuse Element

There are two usages of Reuse Element. The first is to repeat a set of elements in the bit-stream and the second is to display an element or group with a transform applied.

Repeat:

When the Encoder sees a set of elements that are identical to a previous set of elements, it replaces the latter set of elements with a Reuse element, so that encoded bit stream size will be minimized. A Reuse element uses the element_index and number_of_elements to repeat. When the Decoder see the Reuse Element, it will replace it with the set of elements that the Reuse element represents.

NOTE:
When calculating the element index of an element that follows a Reuse element in this case, the decoder should not count the Reuse element just as one element. Rather, the decoder should count the Reuse element it as the number of elements it represents. In other words, the index of elements after a Reuse Element in the bit-steam will be unchanged, so that another Reuse Element, which has an element_index, doesn’t need to be changed after a Reuse replaces a number of elements.

One Reuse element can replace a maximum of 8 original elements.

Display:
Reuse Element can be used to display an element or a group of elements with a transform and/or changed attributes and/or display an array. Whether a Reuse Element references a group or a basic element depends on the element type that the element_index in the Reuse Element points to. When reuse array is specified, the referenced element or group of elements is duplicated in rows and columns. The reference point of a reused array is at the center of the array.
G.2.8
Animation Elements

There are two types of animation elements, Simple Animation Element and Standard Animation Element. In the data format, an animation element is followed by another element or a group element that the animation applies to. An animation element cannot be followed by another animation element.
G.2.8.1
Simple Animation Elements

Simple animation is defined for WVG. All animation timing is based on an “Animation Cycle”. WVG animation is repetitive. After completion of playing one cycle, a subsequent cycle play commences immediately.
There are two types of animation cycles defined, short cycle and long cycle. The time length of animation cycles are not defined. The time length of a long cycle should be twice the length of a short cycle. Recommended short cycle should collapses for 1 second and long cycle pay for 2 seconds.
There are two types of animations.

Visibility: an element can be visible or invisible during a specific cycle segments. A short cycle is divided into 4 time segments equally and a long cycle is divided into 8 time segments equally.

In the following example, a visibility for short cycle animation is defined. The element to be animated will blink following the pattern defined in the Visibility field below. Bit 1 indicates the element should be displayed during the time segment. Bit 0 indicates it should not be displayed during the time segment.
	0
	1
	0
	1

In the following example, a visibility for long cycle animation is defined. The element to be animated will blink following the pattern defined in the Visibility field below.

	1
	0
	1
	0
	1
	1
	1
	1

Transform: a start and an end transform can be applied to an element to describe the start and end position of a rotote, a scale, a translate animation or any combination of these action. When a transform element is omitted, it defaults to use the element’s original position. An animation element must include at least one transform element. The animated element can also be a group to allow the animation action applied to a group of elements.
In Simple Animation, a transform from start position to end position should be completed in one cycle. A bounced flag can be turned on to allow “bouncing” animation. A bounced transform transforms the element from start position to end position in one cycle.
Transform in a short cycle:
	

 start transform

end transform
Bounced Transform in a short cycle:

	
	

 start
 end

 start
 transform
 transform transform

Transform in a long cycle:

	

 start transform

end transform

Bounced Transform in a long cycle:

	
	

 start

 end

 start
 transform

reserve transform

 transform

Visibility and transform animation can be applied to the same element.
G.2.8.2
Standard Animation Element

An Standard Animation Element contains animation information such as begin transform position, end transform position, begin attribute, end attribute, begin time, end time, etc. This allows one animation element to represent a series of related images, which results in significant compression of the data stream. The WVG player interpolates between the beginning state and end state to achieve animation.
Animation Elements are not allowed inside Groups. Animation Rotation ranges from 0 to 360 degrees in both clockwise and counter-clockwise directions.

G.2.9
Frame Element

Frame element is as a marker of the start of a new frame. All elements before a Frame element belong to previous frame. The delay between two frames is defined as an infinite time interval. This means says that once a frame marker is reached, the elements that have been displayed on the screen at this time will stay on the screen until the user requests that the next frame should be displayed. The idea is that one can have multiple “pages” of graphics, such as a multi-page cartoon. The user can then study the first page and when finish can press a button (or trigger some other event) to see the next page of the cartoon. The mechanism of the user event is not defined and is left up to the application developer.

Here are parameters of a Frame Element:

· Keep last frame contents (or not). Zero means not keeping last frame contents, otherwise all the contents of previous frame will be kept.

· Fill in a new background color (or not). Zero means no new fill color is needed for this frame, otherwise a new background color will be used.

· New Background color.

A Frame element cannot appear in an element group. Reuse and Animation elements can not apply to a Frame element.
G.2.10
Local Element

This element defines the size and position of a local envelope.

The local envelope is a square area whose top-left corner is defined as the origin for its x and y-axis. The number of grid lines are pre-defined to 7, 15, 31 and 63. The resolution is constant in a local grid which is pre-defined at 1/27, 1/32, 1/48, 1/64, 1/85, 1/128, and 1/160 of the local envelope width. Actual envelope size can be determined by number of grid lines and grid resolution. The position of the local envelope is determined by the local envelope origin that falls at a coordinate within the global envelop.
A local element cannot appear in between another local start and local end element.
G.2.11
Extended Element

The Extended Element is defined to create objects which are not part of the base parsing level of defined objects in this specification and as a future proof method of expansion as defined by 3GPP technical committees. The Extended Element is intended for resolving problems in the current release. It may also be possible to use the Extended Element for potential enhancements in future releases. If the decoder encounters an Extended Element and the Extended Element Type is unrecognized, it can gracefully skip this element by seeking past it in the bitstream, and continuing decoding at the next element in the bitstream.

An Extended Element contains the size of the Extended Element, the Extended Element type, and a series of bytes representing the payload data. The size field represents the payload data size in bytes. Note that when reading the payload data, bit alignment should be assumed (not byte alignment).
G.3
Element Attributes
Line, Polygon, Shape and Text elements can be applied with the following attributes.

· Line width: 3 levels (fine, medium, thick). Default is fine.

· Line style: 4 types (solid, dash, dot and reserved). Default is solid.

· line color and fill color
Line Width

There are 4 line width settings defined, namely No Line, Fine, Medium and Thick. No specific width is defined for Fine, Medium and Thick. Recommended line widths are 1% or one pixel, 2% and 4% of the shorter dimension of the drawing. Line width for Fine, Medium and Thick should be at least 1 pixel. E.g., in a 120x80 pixel screen, the line width may appear as 1 pixel, 2 pixels and 3 pixels.

Line Type:

Dash Line: a dash line should start with a solid segment of the line. The length of the solid segments is recommended to be 4 to 6 times of the line width. The space between two solid segments is recommended to be 3-4 times of the line width.

[image: image14.png]
Dotted Line: a dotted line is a string of circular dot on the path of a line. It is recommended that the diameter of rounded dot is same as the line width. The space between two dots shall be between 1 to 2 dot diameters.

[image: image15.png]
Line Cap:

Line cap is Circular.

Line Joint:
Line joint is Round for line joint.

G.4
Element Transform
Transform element can be included in Group, Reuse and Animation elements and applied to line, polygon, shape, text and group elements. Supported transforms include rotate, translate and scale.
G.5
Character Size WVG Element

The Character Size WVG, or glyph is a subset variation of WVG. Character Size WVG uses a compact coordinate system with a half resolution global grid (7, 15, 31 and 63 grid lines), default color (monochrome), line elements (polyline, circular polyline and Bezier polyline) and a simplified drawing header.
G.6
Data Format BNF

The following notation is used in this document for BNF syntax:

	< >
	Enclose term names

	|
	Separates alternatives (exclusive OR)

	[]
	Square brackets enclose optional items in syntax descriptions.

	{ }
	{} Term enclosed is used zero or more times

	()
	() Enclose groups of alternative terms

	…
	From … to

	;
	Start with comments

	0
	Bit value 0 in bit stream

	1
	Bit value 1 in bit stream

	‘ ‘
	Terminator described by enclosed text

Notes for reading the BNF.

1. The bit value appearing at the left in the BNF indicates it is arranged in the front in the bit stream.

2. Notation 00…11 is equivalent to (00 | 01 | 10 | 11)

3. Notation (0 | 1 <val>) is used in the BNF in many occurrences for optionally omitting a value. In this example, it indicates either a specific value <val> can be used, or it can be omitted when default value can be used. The bit value 0 or 1 indicates if <val> is specified.

WVG (Wireless Vector Graphics)
<WVG> ::= (0 <character size WVG>) | (1 <standard WVG>)

<character size WVG> ::= <character size WVG header> <line elements>

<standard WVG> ::= <standard WVG header> <elements>
Common

<text code mode> ::= 0 | 1

; 0 for 7-bit GSM character set. 1 for 16-bit UCS-2
<char> ::=
‘unsigned 8 bit integer’

; 7-bit GSM character value
; using GSM message packing into 8 bits
|
 unsigned 16 bit integer’

; 16-bit UCS-2 value

; terminated by 0x00 or 0x0000. Control characters are prohibited.

<mask> :=
0 | 1

; 0 for false, 1 for true

<hint> :=
0 | 1

; 0 for false, 1 for true

Character Size WVG Header

<character size WVG header> ::=
0 (<aspect ratio> <line element mask> <relative use>

<parameters X-0> <parameters Y-0>)

; standard header
|
1 (<line element mask> <relative use> <MaxXYInBits0>)

; compact header. In this case, x and y grid are same,

; default peak value 1.0, default aspect ratio1:1.

; Note: character size WVG always use compact coordinate mode

<line element mask> ::= <mask>
; true for at least one polyline element in the drawing
<mask>

; true for at least one circular polyline element in the drawing

<mask>

; true for at least one Bezier polyline element in the drawing

<relative use> ::= 0 | 1

; 0 for all points use absolute coordinates,

; 1 for at least one point uses relative coordinate (offset mode)
<parameters X-0> ::= <MaxXInBits0> <peak description>

<parameters Y-0> ::= <MaxYInBits0> <peak description>

<MaxXInBits0> ::= <bits indicator >

<MaxXInBits0> ::= <bits indicator >

<MaxXYInBits0> ::= <bits indicator >

<bits indicator> ::= 00…11
; 00 for 3 bits (max value 7), 01 for 4 bits (max value 15)

;10 for 5 bits (max value 31), 11 for 6 bits (max value 63)

<peak description> ::= 00…11

; 00: peak value 1.0, no peak position required

; 01: peak value 1.5, peak position 0.5

; 10: peak value 1.5, peak position 0.3333

; 11: peak value 1.5, peak position 0.6667

Character Size WVG Elements

<line elements> ::= <line element> { <line element> }

<line element> ::= <line header>

(<polyline element> | <circular polyline element> |<Bezier polyline element>)

<line header> ::= <line element type> [<point mode>]

; appear when <relative use> = 1
<line element type> ::=

; empty, when <line element mask> = 100, 010 or 100
0 | 1

; when <line element mask> = 011, 110, 110 or 101
; 0 for the firstelement with mask value 1 in the <line element mask>

; 1 for the second element with mask value 1 in <line element mask>
00..11

; 00 for polyline, 01 for circular polyline, 10 for Bezier polyline

; (when <line element mask> = 111>)
<point mode> ::= 0 | (1 <offset bit use>)

; 0 for use of absolute coordinate for <Next Point>

; 1 for using relative coordinate (offset mode) for <Next Point>
Standard WVG Header

<standard WVG header> ::= <general info> <color configuration> <codec parameters> <animation settings>

<general info> ::= <version> 0 | (1 <text code mode> <author string> <title string> <time stamp>)

<version> ::= 0000…1111

<author string> ::= 0 | (1 <char> { <char> })

<title string> := 0 | (1 <char> { <char> })

<time stamp> ::= 0 | (1 <year> <month> <day> <hour> <minute> <second>)

<year> ::='signed_13_bit_integer'

<month> ::='unsigned_4_bit_integer' ; range 1-12

<day> ::= 'unsigned_5_bit_integer' ; range 1-31

<hour> ::= 'unsigned_5_bit_integer' ; range 0-23

<minute> ::= 'unsigned_6_bit_integer' ; range 0-59

<second> ::= 'unsigned_6_bit_integer' ; range 0-59>

Color

<color configuration> ::= <color scheme> <default colors>

<color scheme> ::=
00

; black and white
|
010

; 2-bit gray scale

|
011

; 2-bit predefined color. 4 color value 00, 01, 10, 11 are

; mapped to RGB color (0,0,0), (255,0,0), (0,255,0) and

; (0,0,255) respectively

|
100

; 6-bit RGB color

|
101

; W3C websafe color

|
1100 <6-bit color palette>
; 6-bit RGB color using 2nd color palette
|
1101 <8-bit color palette>
; W3C websafe color using 2nd palette
|
1110

; for 12 bits color mode
|
1111

; for 24 bits color mode
<6-bit color palette> ::= 00000…11111

; number of color. Maximum 32 color entries

 {<6-bit RGB color>}

; specify color value from 0 to “number of color”-1
<8-bit color palette> ::= 0000000…1111111

; number of color. Maximum 128 color entries
 { <8-bit websafe color> }

;specify color value from 0 to “number of color”-1

; Note: the decoder will decide number of bits used by <indexed

; RGB/websafe color> <indexed color> use 1 to 7 bits if <number of

; color> is 2, 3…4, 5…8, 9…16, 17…32, 33…64, 65…128.
<draw color> ::=

<b/w color>

; when color scheme is 00

|
<grayscale>

; when color scheme is 010
|
<2-bit predefined color>

; when color scheme is 011
|
<6-bit RGB color>

; when color scheme is 100
|
<8-bit websafe color>

; when color scheme is 101
|
<indexed RGB color>

; when color scheme is 1100
|
<indexed websafe color>
; when color scheme is 1101
|
<12 bit RGB color>

; when color scheme is 1110
|
<24 bit RGB color>

; when color scheme is 1111
<b/w color> ::= 0 |
; white

1
; black
<grayscale> ::= 00…11
; 00 for 24-bit RGB color (0,0,0),
 01 for 24-bit RGB color (85,85,85)

; 10 for 24-bit RGB color (170,170,170), 11 for 24-bit RGB color (255,255,255)

<2-bit predefined color> ::= 00…11
;00 for 24-bit RGB color (0,0,0), 01 for 24-bit RGB color (255,0,0)

;10 for 24-bit RGB color (0,255,0), 11 for 24-bit RGB color (0,0,255)
<6-bit RGB color> ::= <2-bit R> <2-bit G> <2-bit B>

<indexed RGB color> ::= (0 | 1) | 00…11 | 000…111 | 0000…1111 | 00000…11111

; map to 6-bit RGB color value defined in <6-bit color palette>

<8-bit websafe color> ::= 00000000…11111111

<indexed websafe color> ::= (0 | 1) | 00…11 | 000…111 | 0000…1111 |

00000…11111 | 000000…111111 | 0000000…1111111

; map to 8-bit websafe color value defined in <8-bit color palette>

<2-bit R> ::= <2-bit color value>

; Red color value
<2-bit G> ::= <2-bit color value>

; green color value
<2-bit B> ::= <2-bit color value>

; blue color value
<2-bit color value> ::= 00…11

; 00, 01, 10 and 11 for color value 0, 85, 170 and 255

; defined in 0-255 color range respectively

<12-bit RGB color> ::= <4-bit R> <4-bit G> <4-bit B>
;

<4-bit R> ::= <4-bit color value>

; Red color value
<4-bit G> ::= <4-bit color value>

; green color value
<4-bit B> ::= <4-bit color value>

; blue color value
<4-bit color value> ::= 0000…1111

; left shift by 4 to convert to 24 bit color value
<24-bit RGB color> ::= <8-bit R> <8-bit G> <8-bit B>
;

<8-bit R> ::= <8-bit color value>

; Red color value
<8-bit G> ::= <8-bit color value>

; green color value
<8-bit B> ::= <8-bit color value>

; blue color value
<8-bit color value> ::= 00000000…1111111
; intensity value of color value
<default colors> :=
(0 | (1 <default line color>)) ; use black when first bit is 0
(0 | (1 <default fill color>)) ; use black when first bit is 0
(0 | (1 <background color>)) ; use white when first bit is 0
; If above color(s) are not

; specified, use BLACK as <default line color> and <default fill color>, and use

; WHITE as <background color>.

<default line color> ::= <draw color>

<default fill color> ::= <draw color>

<background color> ::= <draw color>

Codec Parameters

<codec parameters> ::= <element mask> <attribute mask> <generic parameters>

<coordinate parameters>

<coordinate parameters> ::= (0 <flat coordinate parameters>)

; flat coordinate mode

| (1 <compact coordinate parameters>)
; compact coordinate mode

<element mask> ::=
<mask>

; true for at least one local envelop element in the drawing
<mask>

; true for at least one polyline element in the drawing

<mask>

; true for at least one circular polyline element in the drawing

<mask>

; true for at least one Bezier polyline element in the drawing

<mask>

; true for at least one simple shape element in the drawing

<mask>

; true for at least one reuse element in the drawing

<mask>

; true for at least one group element in the drawing

<mask>

; true for at least one animation element in the drawing

(0 | (1

; extension bit. 1 for rare masks are followed by

<mask>

; true for at least one polygon element in the drawing

<mask>

; true for at least one special shape element in the drawing

<mask>

; true for at least one frame element in the drawing

<mask>

; true for at least one text element in the drawing
<mask>

; true for at least one extended element in the drawing

<mask>

; reserved
<mask>

; reserved
)
;The decoder should decide how many bits to be used by <element type>

)
; according to number of “1”s in the <element mask>. Number of bits

; used by <element type> can be 0 (if only one “1” in <element mask>),

; 1 (if 2 “1”s), 2 (if 3 or 4 “1”s), 3 (if 5-8 “1”s) or 4(if more than 8

; “1”s). Value of <element type> that is to represent a specific element

; type is same as the order of the specific mask in the <element mask>

; that represents this type of element. For example, if <element mask> is

; 1100000000010000, <element type> will use 2 bits and value 00, 01, 10

; (11 is not used) represent circular polyline, rectangle and animation

; elements respectively.

<attribute masks> ::= <line type mask> <line width mask> <line color mask> <fill mask>

<line type mask> ::= <mask>

; true when at least one element uses line type attribute

<line width mask> ::= <mask>

; true when at least one element uses line width attribute
<fill mask> ::= <mask>

; true when at least one element uses fill attribute

<line color mask> ::= <mask>

; true when at least one element uses line color
Generic Parameters

<generic parameters> ::= (0 | (1 <angle resolution> <angle in bits>)
; 0 for default (22.5 degree, 3 bits)
 (0 | (1 <scale resolution> <scale in bits>)
; 0 for default (1/4, 3 bits)
 (0 | (1 <index in bits>)
; 0 for default (both 3 bits)
[<curve offset in bits>]

; <curve offset in bits> appear when <mask> for <circular polyline element>

; or <polygon element> is true

<angle resolution> ::= 00…11

; 00 for angle unit is 1 degree; 01 for angle unit is 5.625 degree
; 01 for angle unit is 11.25 degree; 11 for angle unit is 22.5 degree

<angle in bits> ::= 000…111

; number of bits used by <angle value> is from 2 to 9 bits
<angle value> ::= ‘unsigned angleInBits+2-bit integer’

; angle unit is decided by <angle resolution>

<scale resolution> ::= 00..11

; 00 for 1/4 as scale unit. 01 for 1/16 as scale unit
; 10 for 1/64 as scale unit; 11 for 1/256 as scale unit

<scale in bits> ::= 000…111

; number of bits used by <scale value> is from 3 to 10 bits
<scale value> ::= ‘signed scaleInBits+3-bits integer’

; scale unit is decided by <scale resolution>

; scale value include a sign bit

<index in bits> ::= 000…111

; number of bits used by <index> are from 3 to 10 bits

<index> ::= <index value>

<index value> ::= ‘unsigned IndexInBits+3-bit integer’

<curve offset in bits> ::= 0 | 1

; 0 for using 4 bits (15 levels)
; 1 for using 5 bits (31 levels)
Compact Coordinate Parameters

<compact coordinate parameters> ::= <aspect ratio> <TransXYInBits1>
; 0 for default aspect ratio 1:1
<parameters X-1> <parameters Y-1> <redefine resolution hint>

<aspect ratio> ::= 00 |

; aspect ratio = 1:1
((01

; aspect ratio = 4:3
 | 10

; aspect ratio = 16:9
 | 1100

; aspect ratio = 64:27
 | 1101

; aspect ration = 256:81
 | 1110

; aspect ration = 1024:243
 | 1111

; aspect ration = 4096:729
) [<display orientation>]

; <display orientation> appears when standard WVG
)

; character size WVG uses landscape as default

<display orientation > ::= 0 | 1

; 0 for landscape, 1 for portrait
<parameters X-1> ::= <MaxXInBits1> <coordinate parameters>

<parameters Y-1> ::= <MaxYInBits1> <coordinate parameters>

<coordinate parameters> ::= <peak value> <peak position> <peak width>

<MaxXInBits1> ::= 00…11

; the number of grid lines
<MaxYInBits1> ::= 00…11

; the number of grid lines
; 00 for 15, 01 for 31,10 for 63, 11 for 127
<peak value> ::= 00…11

; 00 for1.0, 01 for 1.5, 10 for 2.0, 11 for 2.5
; if , <peak value> is 00, <peak position>,

; <peak width> and <transition width> are ignored.

<peak position> ::=
0000…1100

; 0-12. Peak position = value/12 from envelope left.

|
1101

; reserved

|
1110

; reserved

|
1111

; reserved
<peak width> ::= 00…11

; 00 for 0.3, 01 for 0.4, 10 for 0.5, 11 for 0.6
;<peak width> value are to the scale of total global envelope width.

<redefine resolution hint> ::= <hint>
; true when at least one element uses ‘redefine resolution’attribute

<TransXYInBits1> ::= 00..11
; number of bits to encode translation and center of transform

; 00 for 5 bits, 01 for 6 bits, 10 for 7 bits, 11 for 8 bits

Flat Coordinate Parameters

<flat coordinate parameters> ::= <drawing width> (0 | 1 (<drawing height>))
; 0 means height = width

<MaxXInBits2><MaxYInBits2> < XYAllPositive> <TransXYInBits2>

<OffsetXInBitsLevel1> <OffsetYInBitsLevel1>

<OffsetXInBitsLevel2> <OffsetYInBitsLevel2>

<drawing width> ::= ‘unsigned 16-bit integer’

<drawing height> ::= ‘unsigned 16-bit integer’

<MaxXInBits2> ::= ’unsigned_4_bit_integer’

; number of bits to encode X coordination

<MaxYInBits2> ::= ’unsigned_4_bit_integer’

; number of bits to encode Y coordination

<XYAllPositive> ::= ”unsigned_1_bit_integer’

; 0 means not all x/y are positive

; 1 means all x/y are positive

<TransXYInBits2> ::= ‘unsigned_4_bit_integer’
; number of bits to encode translation and center of transform

<OffsetXInBitsLevel1> ::= ‘unsigned_4_bit_integer’
<OffsetYInBitsLevel1> ::= ‘unsigned_4_bit_integer’
<OffsetXInBitsLevel2> ::= ‘unsigned_4_bit_integer’
<OffsetYInBitsLevel2> ::= ‘unsigned_4_bit_integer’

<NumPointsInBits> ::= ‘unsigned_4_bit_integer’
Animation Settings

<animation settings> ::= [<animation mode>]

;appear when <animation element> exist
[<frame timing>]

; appear when <frame element> exist
<animation mode> ::= 0 | 1
; 0 for simple animation; 1 for standard animation

<frame timing> ::= 0 | (1
; 0 means infinite delay between frames,

; 1 means reserved
Element

<elements> := <element> { <element> }

<element> :=
<element type> (<basic element> |

 <frame element> | <group element> | <re-use element> |

 <animation element> | <extended element> | <local envelop element>)

<element type> ::= | 0…1 | 00..11 | 000…111 | 0000…1111

; empty is allowed
; decided by <element mask>. Please refer to <element mask>

<animation element> :=
<simple animation element> | <standard animation element>

; if <animation mode> is 0, all animation elements in the drawing are <simple animation element>

; if <animation mode> is 1, all animation elements in the drawing are <standard animation element>

<basic element>::= <basic element header> (<polyline element> | <circular polyline element>

 | <Bezier polyline element> | <polygon element> | <simple shape element>

| <special shape element> | <text element>)

Basic Element Header

<basic element header> ::= [<resolution redefinition>]
; appear when using global coordinates

; in compact coordinate mode
 (0 | (1<offset bit use>)
)

; specify measurement mode for <Next Point> <width> <height> and <diameter>

; etc. the 0|1 indicator only exist in compact coordinate mode

; in compact coordinate mode, 0 for absolute mode, 1 for offset mode

 [0 | (1<attributes set>)]
; appears when <attribute masks> does not equal

; to 0000

; 0 for using default attributes defined in <drawing header>

; 1 for using the following specific attributes
<Offset Bit Use> ::= <Offset X Use><Offset Y Use>

<Offset X Use> ::= 0 | 1

; when in compact coordinate mode, 0 means offset X will use 3 bits.,

 1 means use 4 bits

; when in flat coordinate mode, 0 means offset X will use <OffsetXInBitsLevel1>,

 1 means use <OffsetXInBitsLevel2>

<Offset Y Use> ::= 0 | 1

; when in compact coordinate mode, 0 means offset X will use 3 bits,

 1 means use 4 bits

; when in flat coordinate mode, 0 means offset X will use <OffsetYInBitsLevel1>,

 1 means use <OffsetYInBitsLevel2>

<resolution redefinition>::=
;
; empty, do not redefine resolution
; when <redefine resolution hint> is false or in local scope

|
0
; do not redefine resolution
; when <redefine resolution hint> is true and in global scope

|
(1 <coordinate resolution>)
; redefine resolution
; when <redefine resolution hint> is true and in global scope
<coordinate resolution> ::= 000…111

; decide the grid line interval by a scale of width
; or height of the global envelope whichever is short.

; 0-7 for 1/27, 1/32, 1/38, 1/48, 1/64,

;
 1/85, 1/128 and 1/160 respectively

; after definition, the element still use <MaxXInBits1>,

; <MaxYInBits1>, <MaxYInBits2>,<MaxXInBits2>,

<MaxXInBits1> unless it uses offset mode
Element Attributes

<attribute set> ::=
[<line type>]

; appear when <line type mask> is true
[<line width>]

; appear when <line width mask> is true

[0 | (1 <line color>)]
; appear when <line color mask> is true and

; <line width> is not zero

[0 | (1

; 0 for no fill; 1 for with fill
 (0 | (1 <fill color>)) ; use <default fill color> if <fill color> absent
)

; appear when <fill mask> is true
]

; Note: line type and fill are not used by <text element> but still exist here,

<line width> ::= 00…11

; 00 for no line, 01 for Fine, 10 for medium, 11 for thick

; 00 is only valid when <fill color> is specified
<line type> ::= 00…11

; 0 for solid, 1 for dash line, 2 for dotted line

 <fill color > ::= <draw color>

<line color> ::= <draw color>

Transform

Note: signed integers use Two’s Complement representation.

<Transform> ::= ((0 <point>) | (1<TranslateX><TranslateY>))
; mandatory new position using two ways
0 | (1

; optional other transforms<Angle> <ScaleX><ScaleY> < CX>< CY>)

; Default rotation and scale center of <basic element> is the first point of lines, center of rectangle,

; ellipse and special shapes. Default rotation and scale center of <group element> is the rotation and

; scale center of the first basic element in the group.

<Angle> ::= 0 | (1 <Angle Value>)

; 0 means angle will use default value which is 0

<TranslateX> ::= 0 | (1 <TranslateX Value>)
; 0 means translate x will use default value which is 0
<TranslateX Value> ::= ’signed_TransXYInBits2_bit integer’
; when in flat coordinate mode

| ‘signed TransXYInBits1+4 integer’

; when in compact coordinate mode
<TranslateY> ::= 0 | (1 <TranslateY Value>)
; 0 means translate y will use default value which is 0
<TranslateY Value> ::= ’signed_TransXYInBits2_bit integer’
; when in flat coordinate mode

| ‘signed TransXYInBits1+4-bit integer’

; when in compact coordinate mode
<ScaleX> ::= 0 | (1<Scale value>)

; 0 means scale will use default value which is 1.0

<ScaleY>::= 0 | (1 <Scale value>)

; 0 means scale will use default value which is same as

; absolute value of <ScaleX>

<CX> ::= 0 | (1 <CX value>)

; translation of rotation and scale center; 0 means it will use default

; value which is 0
<CX value> ::= ’signed_TransXYInBits2_bit integer’

; when in flat coordinate mode

| ‘signed TransXYInBits1+4-bit integer’

; when in compact coordinate mode
<CY> ::= 0 | (1 <CY value>)

; 0 means it will use default value which is 0
<CY value> ::= ’signed_TransXYInBits2_bit integer’

; when in flat coordinate mode

| ‘signed TransXYInBits1+5-bit integer’

; when in compact coordinate mode
Polyline Element

<polyline element> ::= [<numberOfPoints>] <First Point> { <Next Point> } [<point terminator>]

; specifies a start point, zero or many intermediate points and an end point.

; <numberOfPoints> appears only when in flat coordinate mode

; <point terminator> appears only when in compact coordinate mode

<point terminator> ::=
111…111111

; Absolute mode in character size WVG. Same number of

; bits of <MaxXInBits0> or <MaxXYInBits0>
|
1111…1111111

; Absolute mode in standard WVG. Same number of bits of

; <MaxXInBits1>or <MaxLocalXYInBits>

|
100 | 1000
; Offset mode (relative).

Circular Polyline Element

Note: signed integers use Two’s Complement representation.

<circular polyline element> ::=
<curve hint> [<numberOfPoints>] <point> <curve offset> <point>

{ <curve offset> <point> } [<offset terminator>]

; <numberOfPoints> appears only when use

; flat coordinate mode

; <offset terminator> appears only when use

; compact coordinate mode

<curve hint> ::= <hint>

<curve offset> ::=
(0 | (1 <curve offset value>))

; when <curve hint> is true

|
<curve offset value>

; when <curve hint> is false

<offset value> ::=
‘signed 4-bit integer’

; when <curve offset in bits> = 0

; or in character size WVG

|
‘signed 5-bit integer’

; when <curve offset in bits> = 1

; Curve offset ratio r = e/L
; Where e is actual curve offset(can be positive or negative),

; L is distance between adjacent nodes
; We use a signed integer value v to represent. v = round(r*k);

; Where k = 2^n - 2 (n is number of bits used for <offset value>)

<offset terminator> ::=
(1 <curve offset bits>)

; when <curve hint> is true

|
< curve offset bits >

; when <curve hint> is false

<curve offset bits> ::=

1000

; when <offset in bits> = 0

|
10000

; when <offset in bits> = 1
Bezier Polyline Element

<Bezier polyline element> ::= [<NumberOfPoints>]

<First Point> {[<OnCurve>] <Next Point>} [1 <point terminator>]

; Same data format for PolyBezCurve, and PolygonBezCurve

; <numberOfPoints> appears only when in flat coordinate moed

; “1 <point terminator>” appears only when in compact coordinate mode

<NumberOfPoints> ::= ’unsigned_NumberOfPointsInBits_bit integer’

<OnCurve> ::= 0 | 1

; 0 – off curve

; 1 – on curve

Polygon Element

Polygon element is actually a closed polyline (including circular and Bezier polyline)

<polygon element> ::= (00 <polyline element>) | (01 <circular polyline element>)

 | (10 <Bezier polyline element>)

Simple Shape Element

<simple shape element> ::= (0 <rectangle element>) | (1 <ellipse element>)

<rectangle element>::=<Point><Width><Height><rounded flag> (0 | (1 <Angle>))

<ellipse element>::=<Point><Width><Height> (0 | (1 <Angle>))

<Width> ::= <X> | <Offset X>

; decided by measurement mode (see <basic element header>)
<Height>::= 0 | (1 <HeightValue>)
 ; 0 means the height is same as width, height will not be encoded
<HeightValue> ::= <Offset Y> | <Y>
; decided by measurement mode (see <basic element header>)
<rounded flag> ::=
0 | 1

; 0 for straight corner, 1 for rounded corner
Special Shape Element

<special shape element> ::=
<point>

00 (<vertex> < diameter > (0 | ((1 <angle>))

; regular polygon

|
01 (<vertex> <vertex angle> < diameter > (0 | (1 <angle>))
; star

|
10 (<rectangle size> <rows> <columns>)

; grid

|
11

; reserved

<diameter > ::= <X> | <Offset X>
; diameter of circle or vertex
<rectangle size>::= <width> <height>

<vertex> ::= 000…111

; number of vertex = <vertex> + 3
<vertex angle> ::= 00…11

; 00 for 0 degree, 01 for 36 degree

; 10 for 60 degree, 11 for 90 degree
<rows> ::= 0000…1111

; rows = <rows> + 1
<columns> ::= 0000…1111

; columns = <columns> + 1
Text Element

<text element> ::= <point> <angle> <text code mode> { <char> }

; <point> is top-left corner of the text.
 ::= <Y> | <Offset Y>

Local Envelop Element

<local envelop element> ::= (0 <local envelope description> <point>)

; local start

; <point> is top- left corner of the local envelope in global coordinates.

; Elements in the local envelope scope use local coordinates and measurements
| 1
; local end

<local envelope description> ::= <direction> <coordinate resolution> <MaxLocalXYInBits>

<direction> ::= 00 |
; x and y axis are at same direction of the global envelop
01 |
; x axis is at negative direction of x axis of the global envelop, and y at same direction

10 |
; x and y axis are at negative direction of the global envelop

11
; y axis is at negative direction of y axis of the global envelop, and x at same direction
<MaxLocalXYInBits> ::= 00…11

; 00 for 3 bits(max value 7), 01 for 4 bits (max value 15),

 10 for 5 bits (max value 31), 11 for 6 bits (max value 63)
Group Element

<group element> ::= (0 (0 | (1 <transform>)) <display>)
; start of group. Transform is optional

|
1

; end of group
<display> ::= 0 | 1

; 0 – no display when render; 1 – display when render

Re-use Element

<re-use element> ::= <element index>

; point to the element to be re-used

; only <basic element>,<group element> and

; <re-use element> can be reused

(0 <number of elements>)
; simple repeat (usually used in multi-frame cases)
|
(1

; re-use with changes
<transform>

; re-use with transformation

0 | (1 <array parameter>)
; array. It should be performed as the last step

0 | (1 <OverrideAttributeSet>)

)

<element index> ::= <index value>
; the element sequence number in whole drawing

<number of elements>::=’unsigned 3-bits integer’

; number of elements will be repeated when encode
<array parameter> ::= <rows> [<height>] <columns> [<width>]

; <height> indicates whole height of the array, appears when <rows> is non-zero

; <width> indicates whole width of the array, appears when <colunms> is non-zero

<OverrideAttributeSet> ::= <AttributeSet>

; override attributes
Frame Element

<Frame> ::= <KeepLastFrameContentFlag><HasFilledColorFlag>[<Filled Color>]

<KeepLastFrameContentFlag>::='unsigned 1-bit integer'

; keep the image of the last frame on the screen, or clear it

; value 0 - Do not keep last frame content.

; value 1 - Keep last frame content.

<HasFilledColorFlag> ::='unsigned 1-bit integer'

; value 0 - no filled color

; value 1 - has filled color

<Filled Color>::=<draw color>

; new background color for the frame

Simple Animation Element

<simple animation element> ::=
<cycle type>

(0 | (1 <visibility parameter>)

(0 | (1 <transform>)

; begin transform
(0 | (1 <transform>)

; end transform
(0 | 1)

; 0 for no bouncing. 1 for bouncing

(0 | 1 <rotation direction>)
;0 for no rotation or specified by <transform>.

; 1 for round rotation and will override angles defined in

 ; <transform>
; all animation actions use reference point of the animated <basic element> being reused

; or the reference point of the first element in the animated <group element>

<cycle type> ::= 0 | 1

; 0 indicates short animation cycle; 1 indicates long animation cycle
<visibility parameter> ::= <visibility timing>

<visibility timing> ::= 0000…1111 | 00000000…11111111

; One blinking cycle is divided into four equal time steps for short

; animation cycle or eight steps for long animation cycle. <visibility timing> is a map of time steps in

; which 0 represents invisible and 1 represents visible. Note that in above map, consequence time steps

; is from left to right, or from first order to later order in bit stream.

<rotation direction> ::=
0 | 1

; 1 for clockwise rotating. 0 for counter-clockwise rotating
Standard Animation Element

<standard animation element>::= <element index> <BeginTransform><EndTransform><Rotation Direction>

<Round><Begin Attribute><EndAttribute><BeginTime><Duration><ExistAfter>

<BeginTransform> ::= 0 | (1<Transform>)

;0 – means use (start from) default transform:
; Angle=0, TranslateX=0, TranslateY=0, ScaleX=256, ScaleY=256, Cx=0, Cy=0

;1 – means Transform follows

<EndTransform> ::= 0 | (1 <Transform>)

;0 – means use (end at) default transform

; Angle=0, TranslateX=0, TranslateY=0, ScaleX=256, ScaleY=256, Cx=0, Cy=0

;1 – means Transform follows

<Rotation Direction> ::= 0 | 1
;0 – counter clockwise

;1 – clockwise

<Round> ::= 0 | 1

;0 – rotate 360 degrees

;1 – no rotation

<BeginAttribute> ::= 0 | (1 <Attribute Set>)

;0 – use default attribute set (starts from current attribute set)

;1 – Attribute Set follows

<EndAttribute> ::= 0 | (1 <Attribute Set>)

;0 – use default attribute set (ends at the current attribute set)

;1 –Attribute Set follows

<BeginTime> ::= ’unsigned 12-bit integer’

<Duration> ::= ’unsigned 12-bit integer’

<ExistAfter> :: = 0 | 1

; 0 – animation element will disappear after the animation is finished

; 1 – animation element will persist after the animation is finished

Extended Element

<Extended> ::= <SizeOfSize><Size><ExtendedElementType>{<payload>}

<SizeOfSize>::=’unsigned_5_bit integer’

; the bit size of the Size field

<Size>::=’unsigned-<SizeOfSize>-bit integer’

; size of extended element data after ExtendedElementType, in bytes

<ExtendedElementType>::=’unsigned_8_bit integer’

; element type of extended element
<payload>::=’unsigned_8_bit integer’

; encoded extended element data. The size should be the same as the Size field of Extended, above.

Position and Measurement

Note: signed integers use Two’s Complement representation.

<First Point>::=<point>

; first point of a polyline or polygon (including circular and

; Bezier polygons)
<Next Point> ::= <point> |

; when use absolute mode
<Offset>

; when use offset mode
<point> ::= <X> <Y>

<X> ::= ’signed MaxXInBits2-bit integer’
; when in flat coordinate mode and <XYAllPositive> = 0

| ‘unsigned MaxXInBits2-bit integer’

; when in flat coordinate mode and <XYAllPositive> = 1
| ‘unsigned MaxXInBits1+4-bit integer’

; when in compact coordinate mode and in global scope
| ‘unsigned MaxLocalXYInBits+4-bit integer’
; when in compact coordinate mode and in local scope

| ‘unsigned MaxXInBits0+3-bit integer’

; when in character size WVG (use standard header)
| ‘unsigned MaxXYBits0+3-bit integer’

; when in character size WVG (use compact header)
<Y> ::= ’signed MaxYInBits2-bit integer’
; when in flat coordinate mode and <XYAllPositive> = 0

| ’unsigned MaxYInBits2-bit integer’

; when in flat coordinate mode and <XYAllPositive> = 1
| ‘unsigned MaxYInBits1+4-bit integer’

; when in compact coordinate mode and in global scope
| ‘unsigned MaxLocalXYInBits+4-bit integer’
; when in compact coordinate mode and in local scope
| ‘unsigned MaxYInBits0+3-bit integer’

; when in character size WVG (use standard header)
| ‘unsigned MaxXYBits0+3-bit integer’

; when in character size WVG (use compact header)
; Note: in compact coordinate mode,<X> and <Y> do not use the maximum number of the unsigned integer
<Offset> ::= <Offset X> <Offset Y>

<Offset X> ::= <signed offset X>

; when used by <Next Point>
| <unsigned offset X>

; when used in other cases
<signed offset X> = ’signed OffsetXInBitsLevel1-bit integer’

;when in flat coordinate mode and <offset bit use> = 0

| ’signed OffsetYInBitsLevel2-bit integer’

;when in flat coordinate mode and <offset bit use> = 1

| ‘signed 3-bit integer’

;when in compact coordinate mode and <offset bit use> = 0

| ‘signed 4-bit integer’

;when in compact coordinate mode and <offset bit use> = 0

<unsigned offset Y> ::= ’unsigned OffsetYInBitsLevel1-bit integer’

;when in flat coordinate mode and <offset bit use> = 0
| ’unsigned OffsetYInBitsLevel2-bit integer’

;when in flat coordinate mode and <offset bit use> = 1

| ‘unsigned 3-bit integer’

;when in compact coordinate mode and <offset bit use> = 0
| ‘unsigned 4-bit integer’

;when in compact coordinate mode and <offset bit use> = 1

vertex angle

X Axis

1.0

(0, 0)

(0, 0)

Peak Position

Valley value

Peak value

Valley value

Valley Width

Peak Width

Valley Width

(1, 1)

(1, 1)

Global Envelop

Local Envelop

�PAGE \# "'PAGE: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'PAGE: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'PAGE: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'PAGE: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the lastest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'PAGE: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'PAGE: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'PAGE: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'PAGE: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'PAGE: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. Work item acronyms are listed in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'PAGE: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'PAGE: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'PAGE: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'PAGE: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'PAGE: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'PAGE: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'PAGE: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'PAGE: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'PAGE: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'PAGE: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'PAGE: '#'�'" �� This is an example of pop-up text.

_962624703

_1052858959.doc

Control Byte

Reference

 Data Length

Positioning

 Information

Extended Object Data

1

2,3

4

5

6,7

Type

Identifier

Extended Object Header Information

Extended Object Data

Octet Number

UDHL

Concatenation Info

IEI

E.O.*

IEIDL

Extended Object Header

Extended Object Data

UDHL

Concatenation Info

IEI

E.O.*

IEIDL

Continuation of Extended Object Data

TPDU 2

TPDU 1

8.....n

* E.O. means Extended Object

_1064251258.unknown

_1075172994.doc

Center point

Curve offset

_1064251214.unknown

_962624721

_962624667

