
	3GPP TSG-T2#16

Sophia-Antipolis, France

11-15 February 2002
	T2-020192 

	CR-Form-v4

	CHANGE REQUEST

	

	(

	23.040
	CR
	CRNum
	(

rev
	-
	(

Current version:
	5.2.0
	(


	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	Vector Graphics Format for EMS

	
	

	Source:
(

	Ericsson, Nokia, ZOOMON

	
	

	Work item code:
(

	TEI5
	
	Date: (

	

	
	
	
	
	

	Category:
(

	B
	
	Release: (

	REL-5

	
	Use one of the following categories:
F  (correction)
A  (corresponds to a correction in an earlier release)
B  (addition of feature), 
C  (functional modification of feature)
D  (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	There is currently no support for vector graphics in EMS. This CR proposes to add vector graphics to EMS based on the W3C open standard SVG, in particular SVG-Tiny Mobile Profile.

SVG is a language for describing two-dimentional graphics in XML. Graphical objects can be grouped, styled and transformed. SVG drawings can be both static and dynamic.

SVG 1.1 features the definition of “SVG Mobile” profiles, which is specifically tailored for use in capability-constrained devices. Of these mobile profiles, SVG-Tiny targets very constrained devices such as low-end phones.

A binary form of SVG/SVG Tiny, called CVG, is used to encode the vector graphic objects. CVG is added to the EMS specification as an extended object.

	
	

	Summary of change:
(

	The features of SVG Tiny relevant to EMS are described.

A new format type is included in the list of supported extended objects.
The binary format of SVG Tiny, CVG, is specified in annex E.

	
	

	Consequences if 
(

not approved:
	EMS will not support the proposed Vector Graphics format.

	
	

	Clauses affected:
(

	2, 3.10, 9.2.3.24.10.1.11, Annex E

	
	

	Other specs
(

	
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	


2 
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]
3GPP TS 01.04: "Digital cellular telecommunication system (Phase 2+); Abbreviations and acronyms".

[2]
3GPP TS 02.03: "Digital cellular telecommunication system (Phase 2+); Teleservices supported by a GSM Public Land Mobile Network (PLMN)".

[3]
3GPP TS 22.004: "General on supplementary services".

[4]
3GPP TS 22.041: "Operator determined barring".

[5]
3GPP TS 43.002: "Digital cellular telecommunication system (Phase 2+); Network architecture".

[6]
3GPP TS 23.008: "Organization of subscriber data".

[7]
3GPP TS 23.011: "Technical realization of supplementary services - General Aspects".

[8]
3GPP TS 23.015: "Technical realization of Operator Determined Barring (ODB)".

[9]
3GPP TS 23.038: "Alphabets and language‑specific information".

[10]
3GPP TS 23.041: "Technical realization of Cell Broadcast Service (CBS)".

[11]
3GPP TS 43.047: "Digital cellular telecommunication system; Example protocol stacks for interconnecting Service Centre(s) (SC) and Mobile‑services Switching Centre(s) (MSC)".

[12]
3GPP TS 44.008: "Digital cellular telecommunication system (Phase 2+); Mobile radio interface layer 3 specification".

[13]
3GPP TS 24.011: "Short Message Service (SMS) support on mobile radio interface".

[14]
3GPP TS 27.005: "Use of Data Terminal Equipment ‑ Data Circuit terminating Equipment (DTE ‑ DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)".

[15]
3GPP TS 29.002: "Mobile Application Part (MAP) specification".

[16]
3GPP TS 51.011: "Digital cellular telecommunication system (Phase 2+); Specification of the Subscriber Identity Module ‑ Mobile Equipment (SIM‑ ME) interface".

[17]
CCITT Recommendation E.164 (Blue Book): "Numbering plan for the ISDN era".

[18]
CCITT Recommendation E.163 (Blue Book): "Numbering plan for the international telephone service".

[19]
CCITT Recommendation Q.771: "Specifications of Signalling System No.7; Functional description of transaction capabilities".

[20]
CCITT Recommendation T.100 (Blue Book): "International information exchange for interactive videotex".

[21]
CCITT Recommendation T.101 (Blue Book): "International interworking for videotex services".

[22]
CCITT Recommendation X.121 (Blue Book): "International numbering plan for public data networks".

[23]
CCITT Recommendation X.400 (Blue Book): "Message handling system and service overview".

[24]
ISO/IEC10646: "Universal Multiple‑Octet Coded Character Set (USC); UCS2, 16 bit coding". 

[25]
3GPP TS 22.022: "Personalization of GSM ME Mobile functionality specification - Stage 1".

[26]
3GPP TS 23.042: "Compression Algorithm for Text Messaging Services".

[27]
3GPP TS 23.060: "General Packet Radio Service (GPRS); Service description; Stage 2".

[28]
3GPP TS 43.048: "Digital cellular telecommunications system (Phase 2+); Security Mechanisms for the SIM application toolkit; Stage 2".

[29]
3GPP TR 21.905: "3G Vocabulary".

[30]
3GPP TS 31.102: "Characteristics of the USIM application".

[31]
3GPP TS 31.101: "UICC – Terminal interface; Physical and logical characteristics".

[32]
3GPP TS 22.105: "Services and Service Capabilites".

[33]
Infrared Data Association. Specifications for Ir Mobile Communications (IrMC).
iMelody.

[34]
IETF RFC 822: "Standard for the format of ARPA Internet text messages".

[35]
IETF RFC 1951: " Deflate Compressed Data Format Specification"

[36]
"vCard - The Electronic Business Card", version 2.1,The Internet Mail Consortium (IMC), September 18, 1996, 
URL:http://www.imc.org/pdi/vcard-21.doc
[37] 
"vCalendar - the Electronic Calendaring and Scheduling Format", version 1.0,
The Internet Mail Consortium (IMC), September 18, 1996,
URL:http://www.imc.org/pdi/vcal-10.doc
[38] 
"Scalable Vector Graphics (SVG) Specification", version 1.0,
W3C Recommendation, September 4, 2001
URL: http://www.w3.org/TR/SVG
[39] 
"SVG Mobile Requirements", version 1.0,
W3C Working Draft, August 3, 2001,
URL: http://www.w3.org/TR/SVGMobileReqs
[40] 
"Scalable Vector Graphics (SVG) Specification", version 1.1,
W3C Working Draft, January 8th, 2002, 
URL: http://www.w3.org/TR/SVG11/ 

[41] 
"Mobile SVG Profiles: SVG Tiny and SVG Basic”,
W3C Working Draft, January 8th, 2002,
URL: http://www.w3.org/TR/SVGMobile
3.10 Enhanced Messaging Service

3.10.6 SVG Tiny Vector Graphics Objects

Vector graphics is a compact way to represent resolution independent static and animated graphical objects. EMS shall use the W3C Scalable Vector Graphics Mobile Profile, SVG Tiny [41], as vector graphics content type. Note that SVG Tiny refers to some content in the SVG 1.1 specification [40] 

EMS vector graphics shall support basic line drawing objects, basic shapes, and basic animations. Due to these relative simplistic requirements, the part of the SVG Tiny that relates to images, hyperlinking, text, conditional processing as well as some SVG Tiny elements related to structure and animation shall be non-mandatory in EMS. 
Non-Mandatory elements for SVG Tiny in EMS are: 

defs (Tiny Structure Module)  
image (Image Module)
switch  (Conditional Processing Module) 

a (Hyperlinking Module) 

text (Tiny Text Module) 

animate (Tiny Animation Module)  
font, fontface, glyph, missing-glyph, hkern, vkern  (Tiny Font Module) 

Non-Mandatory attribute modules for SVG Tiny in EMS are: 
Tiny Font Attribute Module
A mandatory compression algorithm for SVG Tiny elements in EMS, in the form of a binary format representation of SVG Tiny called CVG, is specified in Annex E. CVG encoded graphics are included in EMS through an extended object.
9.2.3.24.10.1.11
Extended Object

The Extended Object allows an extended code range for format types. The Extended Object may extend across segment boundaries of a concatenated short message. Octets 1 through 7 of the first Extended Object IE shall be contained in a single segment. A single segment may include one or more Extended Object IEs.

If multiple SMs are concatenated and at least one of them contains an Extended Object information element, then concatenation of the SMs shall be done using the 'Concatenated short messages, 16-bit reference number', verses the 'Concatenated short messages, 8-bit reference number' information element. The re-assembly of the Extended Object segments shall be done according to the sequence number of the associated Concatenation IE.

One or more Extended Objects may be compressed using a compression algorithm as indicated in the Compression Control IE (see section 9.2.3.24.10.1.13).

An SME implementing the Extended Object IE shall be capable of interpreting an uncompressed concatenated message composed of at least min_eo_msg short messages which have been received. According to current content provider requirements and handset manufacturer constraints, variable min_eo_msg is set to 8.

The first Extended Object IE of an Extended Object contains a reference number, length, control data, type and position. The subsequent Extended Object IEs shall only contain Extended Object data as illustrated in Figure 9.2.24.10.11.

The IE length is variable.

Octet 1
Extended Object reference number
a modulo 256 counter indicating the reference number for the Extended Object. Two different Extended Objects in a single concatenated message shall have different reference numbers.

Octet 2..3
Extended Object length in number of octets (integer representation) as shown in Figure 9.2.3.24.10.1.11.

Octet 4 
Control data
 
Bit 0

Object distribution

0 Object may be forwarded

1 Object shall not be forwarded by SMS

Bit 1

User Prompt Indicator

0
Object shall be handled normally
1
Object shall be handled as a User Prompt (see 9.2.3.24.10.1.10)

Bit 2..7
reserved

Any reserved values shall be set to 0.


Octet 5
Extended Object Type
This octet indicates the format of the Extended Object from the table below.
If the value is reserved or if the associated format is not supported then the receiving entity shall ignore the Extend Object.

	Format Type
	Format Description

	0x00
	Predefined sound as defined in annex E.

	0x01
	iMelody as defined in annex E.

	0x02
	Black and white bitmap as defined in annex E.

	0x03
	2-bit greyscale bitmap as defined in annex E.

	0x04
	6-bit colour bitmap as defined in annex E.

	0x05
	Predefined animation as defined in annex E.

	0x06
	Black and white bitmap animation as defined in annex E.

	0x07
	2-bit greyscale bitmap animation as defined in annex E.

	0x08
	6-bit colour bitmap animation as defined in annex E.

	0x09
	vCard as defined in annex E. 

	0x0A
	vCalendar as defined in annex E.

	0x0B
	Vector Graphics format as defined in Annex E.

	0x0C.. 0xFE
	Reserved

	0xFF
	Data Format Delivery Request as defined in annex E.


Octet 6..7
Extended Object Position (integer representation)
The Extended Object Position indicates the absolute character position within the message text after which the object shall be played or displayed. The absolute character position relates to the entire text within the concatenated message, the first character is numbered character 1.

If more than one Extended Object is located at the same position then they may be played or displayed in sequence or simultaneously. 

Octet 8..n
Extended Object Data
This sequence of octets is structured as illustrated in the figure below and defined annex E.   This figure illustrates the construction of a number of SMs containing a large Extended Object which crosses a SM boundary and is encoded into 2 SM TPDUs.  The figure illustrates only the User Data field of the SM (TPDUs). For a description of concatenation of SM refer to Figures 9.2.3.24 (a, b and c)


[image: image1.wmf]Control

Byte

Reference

 Data

Length

Positioning

 Information

Extended Object Data

1

2,3

4

5

6,7

Type

Identifier

Extended Object Header Information

Extended Object Data

Octet Number

UDHL

Concatenation Info

IEI

E.O.*

IEIDL

Extended Object Header

Extended Object Data

Concatenation Info

IEI

E.O.*

IEIDL

Continuation of Extended Object Data

TPDU 2

TPDU 1

8.....n

* E.O. means Extended Object

UDHL


Figure 9.2.3.24.10.1.11

Annex E (normative):
Extended Object Format Type

.

E.13
Vector Graphics

CVG encoded SVG Tiny vector graphics objects can be integrated in an Extended Object IE with the following structure:

Octet 8..n
CVG objects coded according to E.13.1.

E.13.1 CVG Specification

E.13.1.1 Introduction

The purpose of the CVG Core Module is to preserve the structure and information content of an SVG representation, while being efficient in terms of the number of bits used. The syntax is divided into two parts: an initialisation part, mainly consisting of configuration and definitions, followed by the animated vector graphics body. 

E.13.1.2 Structure

The layout of the coded representation of a basic SVG representation is depicted in Figure 1.



Figure 1: Layout of coded representation
E.13.1.3 Main Header


Figure 2: Layout of Main Header representation
11-bit wide "Type ID", is an identifier that indicates that the file is in Compact Vector Graphics (CVG) format. This field is identical for all of the representations in this format. The identifier has the following binary value: 10110111011.    

5-bit wide "Version #", indicates the version number. For the initial implementation, this value is 0. The Type-ID and Version Number combined define a Magic Number of two bytes for each CVG version.

18-bit wide configuration field will be described in the next section.

E.13.1.3.1 Configuration

This 18-bit data declares the configuration of the representation to follow. It consists of the following fields:

3-bit "Spatial Resolution" (r), which denotes the smallest increment steps in the coordinate space. The smallest step is defined as 10(3-r).(see Section E.13.2.2 for a detailed discussion on real number value representation). 

7-bit "Time Resolution" field, which specifies the resolution used in time representations. The value of this field times 10 ms. gives the increments used in the time representations. For example, if this field is 5, the time representations are multiplied by 50 milliseconds to get the correct time.

2-bit "Color Representation" field, which specifies the representation used for color encoding. See Section E.1.5.11 for color representation. 

3-bit "Scale resolution" (s), which denotes the smallest increment steps for scale values. The smallest step is defined as 10(1-s).

3-bit "Angle resolution" (a), which denotes the smallest angular value increments. The smallest step is defined as 90*2(-a) degrees.

E.13.1.4 Sub Header



Figure 3: Layout of Sub Header representation

E.13.1.4.1 Body Size

The number of bits used for the element data. Size of the body is encoded as an integer value. See Section E.13.2.1.3 for representation of nonnegative integers without upper bound. 

E.13.1.5 Body 


Figure 4: CVG Body Structure

This field corresponds to the main body (<svg>…</svg>) of the SVGT and SVGB syntax. There is no 'BODY START CODE', because the decoder knows when the body size part has finished, and it should start decoding the main body afterwards.

E.13.1.5. 1 Element Definition

The body consists of a series of element declarations. A generic element declaration consists of the following parts:

SVGT, SVGB and SVG1.1 Element Definition as shown inFigure 5:

[Element Identifier][Element Size][Has Children][Element Attributes]

Unknown Element Definition:

[Unknown Element Identifier][Element Size][Has Children][TEXT STRING]

The Unknown Element has a unique Element ID and the data inside this element is encoded as UTF-8 text string.

Figure 5: Element Structure

Segments:

[Element Identifier]: From 5 to 7 bit element identifier for SVGT elements and 13 bit element identifier for SVGB elements. This identifier states the element being declared. The element identifier allocation is as follows:

00000  
path

00001  
text

00010  
rect

00011  
circle

00100  
ellipse

00101  
style

00110  
script

00111  
use

01000  
g

01001  
image

01010  
animate

01011  
set

01100  
animateMotion

01101  
animateTransform

01110

glyphs

01111

font

10000

a

10001

polygon

10010

polyline

10011

switch

10100

line

10101

font-face


10110

missing-glyph

10111

hkern

11000

vkern

11001

animateColor

11010

desc 

11011

title

11100

svg

11101

defs

1111000
unknown element

1111001
metadata


1111010
view

1111011
foreignObject

1111100
mpath

1111101          reserved

1111110          reserved

1111111  000000 clipPath

1111111  000001 color-profile

1111111  000010 cursor

1111111  000011 symbol

1111111  000100 feBlend

1111111  000101 feColorMatrix

1111111  000110 feComponentTransfer

1111111  000111 feComposite

1111111  001000 feFlood

1111111  001001 feFuncA

1111111  001010 feFuncB

1111111  001011 feFuncG

1111111  001100 feFuncR

1111111  001101 feGaussianBlur

1111111  001110 feImage

1111111  001111 feMerge

1111111  010000 feMergeNode

1111111  010001 feOffset

1111111  010010 feTile

1111111  010011 filter

1111111  010100 font-face-format

1111111  010101 font-face-name

1111111  010110 font-face-src

1111111  010111 font-face-uri

1111111  011000 glyphRef

1111111  011001 linearGradient

1111111  011010 mask

1111111  011011 pattern

1111111  011100 radialGradient

1111111  011101 stop

1111111  011110 textPath

1111111  011111 tref

1111111  100000 tspan

1111111  100001 definition-src

1111111 100010 – 11111 111111 Reserved
[Element Size] The size of the element’s attributes excluding its children in bits. The number of bits is encoded as nonnegative integer of unknown upper bound with a default codebook 7.
[Has Children] The “Has Children”-flag is 1-bit indicating if the element has a child (1) or not (0). If the element does have children elements, the bit is followed by a “Number of children” field. The number of Children of an Element is encoded as integer of unknown upper bound with a default codebook 4. If the Element does not contain child elements this size field is omitted.  

E.13.1.5. 2 Attribute Definition

Any SVG element with attributes should be encoded in the following order:

[ElementIdentifier][ElementSize][HasChildren][RequiredSVGTAttr1][RequiredSVGTAttrN ][SVGTOptionalAttributeMask][SVGTOptionalAttribute1][SVGTOptionalAttributeN][ProfileSwitchBit][SVGBSwitch][SVGBOptionalAttributeMask][SVGBOptionalAttribute1][SVGBOptionalAttributeN][SVGFullSwitch][SVGFullOptionalAttributeMask][SVGFullAttribute1][SVGFullAttributeN][UnknownAttributeSwitch][UnknownAttribute] 

The Encoder should put the attributes into order starting with the SVGT required attributes, SVGT optional attributes, SVGB optional attributes, SVG Full optional attributes and finally unknown attributes.

· Required attributes. For these attributes, configuration data is not needed, because the decoder knows that they are included.

· Optional attributes. Consist of a configuration mask, which states which of the optional attributes will be included, followed by the attribute value(s).  

· Profile Switch Bit: This one bit switch indicates whether there are either SVGBasic, SVG Full, and/or unknown attributes encoded. SVGB Optional Attribute Switch, SVG Full Optional Attribute Switch and Unknown Attribute Switch are one bit each. 

· Unknown attributes are encoded application specific; default method is textual encoding as described in Section E.13.1.5.10.1.2 

Example:
<rect fill="#c488aa" xyz=”foo” stroke="none" x="0" y="0" width="160" height="160" opacity=".5" />

[Element Identification] [Element Size] [Element Type] [width=”160”] [height=”160”] [SVGT Optional Attribute Mask][x=”0”] [y=”0”] [stroke="none"] [fill="#c488aa"][ProfileSwitchBit (1)][SVGBSwitch(1)] [SVGB Optional Attribute Mask][ opacity=".5"][SVGSwitch(0)] [UnknownAttributeSwitch(1)][xyz=”foo”]

Element Identification: for <rect> it is 00010

Element Size: to be computed as represented as nonnegative integer. See Section E.13.2.1.3 
Has Children: for <rect> it is 0. (no children)

Required <rect> attributes: width, height

SVGT Optional Attribute Mask: 7 bit mask 

Optional SVGT attributes for <rect>: x, y, fill, stroke

ProfileSwitchBit = 1

SVGBSwitch = 1

SVGB Optional Attribute Mask: See: http://www.w3.org/TR/SVGMobile 

SVGB Optional Attribute:: opacity

SVG Switch = 0

Unknown Attribute Switch = 1  

Unknown attribute: xyz 

E.13.1.5. 3 Structural Elements

E.13.1.5.3.1 Element Declaration for 'Svg' (<svg>) Element

· Element identifier:  11100

· Optional attributes:  StdAttrs, STYLE, TRANSFORM, TEST, COORDS(x,y), COORDS(width, height), baseProfile, viewBox, preserveAspectRatio,  version, zoomAndPan, contentScriptType, contentStyleType, GraphicsElementEvents, DocumentEvents
· Required attributes: None

E.13.1.5.3.1.1 Representation of StdAttrs

See Section E13.
E.13.1.5.3.1.2 Representation of STYLE

See Section E13.
E.13.1.5.3.1.3 Representation of TRANSFORM

See Section E13.
E.13.1.5.3.1.4 Representation of TEST

See Section E13.
E.13.1.5.3.1.5 Representation of COORDS(x,y) (width, height)
Only the width and height coordinates of outmost ‘svg’ element may have unit identifiers in SVGT content, for all other SVG profiles all coordinates may have unit identifiers. Coordinates are represented as Section E.13.2.4, for unit representation see Section E13.1.5.7.4.
E.13.1.5.3.1.6 Representation of baseProfile

The 'baseProfile' attribute on the outermost 'svg' element must have the value "tiny" for SVG Tiny content, and "basic" for SVG Basic content. The 'baseProfile' attribute on nested child 'svg' elements is ignored. The SVG 1.1 specification states that the 'version' attribute of the outermost 'svg' element in SVG 1.1 content must have the value "1.1".

000 SVG Tiny

001 SVG Basic

010 SVG full 1.1

011 SVG 1.0

100-111 reserved

E.13.1.5.3.1.7 Representation of viewBox values

See Section E.13.1.5.7.2 

E.13.1.5.3.1.8 Representation of preserveAspectRatio values

E.13.1.5.3.1.9 See Section E13.1.5.7.3 Representation of version

Indicates the SVG language version to which this document fragment conforms as real number. See Section E13.2.2. 
E.13.1.5.3.1.10 Representation of zoomAndPan

The outermost 'svg' element in an SVG document fragment has attribute zoomAndPan, which takes the possible values of disable (1) and magnify (0), with the default being magnify.

E.13.1.5.3.1.11 Representation of contentScriptType

Identifies the default scripting language for the given document. This attribute sets the scripting language used to process the value strings in event attributes. The value content-type specifies a media type, per [RFC2045]. The default value is "text/ecmascript". The string (#URI) is encoded as textual data, as described in Section E13.1.5.10.2 
E.13.1.5.3.1.12 Representation of contentStyleType

The string (#URI) is encoded as textual data, as described in Section E13.1.5.10.1.2
E.13.1.5.3.1.13 Representation of GraphicsElementEvents

See Section E13.
E.13.1.5.3.1.14 Representation of DocumentEvents

See Section E13.
E.13.1.5.3.2 Element Declaration for 'Defs' (<defs>) Element

· Element identifier:  11101

· Optional attributes: StdAttrs, STYLE, TRANSFORM, TEST, GraphicsElementEvents 
· Required attributes: None

E.13.1.5.3.3 Element Declaration for 'Desc' (<desc>) Element

· Element identifier:  11010

· Optional attributes: StdAttrs, STYLE, CDATA 

· Required attributes: None

E.13.1.5.3.3.1 Representation of CDATA

See Section E13.
E.13.1.5.3.4 Element Declaration for 'Title' (<title>) Element

· Element identifier:  11011

· Optional attributes:  StdAttrs, STYLE, CDATA
· Required attributes: None

E.13.1.5.3.5 Element Declaration for 'Group' (<g>) Element

· Element identifier:  01000

· Optional attributes:  StdAttrs, STYLE, TRANSFORM, TEST, GraphicsElementEvents
· Required attributes: None

E.13.1.5.3.6 Element Declaration for ‘Symbol’ (<symbol>) Element

· Element identifier:  1111111  000011

· Optional attributes:  StdAttrs, STYLE,  externalResourcesRequired,  viewBox, preserveAspectRatio, GraphicsElementEventAttrs
· Required attributes: None

E.13.1.5.3.6.1 Representation of externalResourcesRequired values

See Section E13.1.5.4.2.4. 
E.13.1.5.3.7 Element Declaration for ‘Use’ Element

· Element identifier: 00111

· Optional attributes:  StdAttrs, STYLE, TRANSFORM, TEST, COORDS(x, y), COORDS(width, height), XlinkRefAttrs, GraphicsElementEventAttrs
· Required attributes: xlink:href

E.13.1.5.3.7.1 Representation of xlink:href (#URI)

If the URI is internal a numbering schema is used as described in Section E.13. ; otherwise the URI is encoded as textual data as described in Section E13..

E.13.1.5.3.7.2 Representation of XlinkRefAttrs

See Section E13.
E.13.1.5.3.8 Element Declaration for 'Image' (<image>) Element

· Element identifier: 01001

· Optional attributes:  StdAttrs, STYLE, TRANSFORM, TEST, COORDS(x, y), preserveAspectRatio
· Required attributes: width, height, xlink:href
E.13.1.5.3.8.1Representation of xlink:href
If an image is embedded using base64 encoding in the original SVG file, the image is embedded into the bitstream after a header for the images:

The 4-bit header is defined as follows:

1000 External Link

1001 WBMP

1010 PNG

1011 JPEG

1100 SVG

In case of an external link, the URI is encoded as textual data as described in Section E.13. after the (1000) External Link header.

E.13.1.5.3.9 Representation of StdAttrs

StdAttrs are the core set of attributes that can be present on any element. The StdAttrs bit is the first bit on every optional attributes mask. If any of the four attributes are present this bit is set to 1. The ‘StdAttrs’ attribute is represented as a sequence of {Type, Value(s)} pairs. The Type is a token that identifies the type of ‘StdAttrs’ that will be set, and Value(s) is the type-specific representation of the value.

Table 1: StdAttrs Attributes

	000
	id

	001
	xml:base

	010
	xml:lang

	011
	xml:space

	111
	DONE


E.13.1.5.3.9.1 Representation of ‘id’ values: 

The id of the element is encoded in n-bits, where n is determined by the total number of object id's at the moment of coding the animation. The same numbering schema is used by ‘xlink:href’ attributes to have consistent reference mechanism between id attribute value and xlink:href attribute value. 

E.13.1.5.3.9.2 Representation of ‘xml:base’ values:

 The value is a string. It is encoded as textual data. SeeE.13.1. 
E.13.1.5.3.9.3 Representation of ‘xml:lang’ values:

 The value is a string. It is encoded as textual data. See E 13.
E.13.1.5.3.9.4 Representation of ‘xml:space’ values:

 The value is a string. It is encoded as textual data. See E.13.
E.13.1.5.4 Conditional processing  

SVG contains a 'switch' element along with attributes requiredFeatures, requiredExtensions and systemLanguage to provide an ability to specify alternate viewing depending on the capabilities of a given user agent or the user's language.

E.13.1.5.4.1 Element Declaration for 'Switch' (<switch>) Element

· Element identifier: 10011

· Optional attributes: StdAttrs, STYLE, TRANSFORM, TEST, GraphicsElementsEventsAttrs
· Required attributes: none 

The following feature set is used:


000 user defined


001 org.w3c.svg.1-1.svgt


010 org.w3c.svg.1-1.svgb


011-111 Reserved

‘user defined’ is followed by a string encoded as textual data as described in section Section E.13. after the (1000) External Link header. 

Attributes requiredFeatures, requiredExtensions and systemLanguage act as tests and return either true or false results. The 'switch' renders the first of its children for which all of these attributes test true. If the given attribute is not specified, then a true value is assumed.

Attribute externalResourcesRequired is available on all container elements and to all elements that potentially can reference external resources. It specifies whether referenced resources that are not part of the current document are required for proper rendering of the given container element or graphics element.

E.13.1.5.4.2 Representation of the ‘TEST’ Attribute

‘TEST’ Attribute incorporates the following attributes: requiredFeatures, requiredExtensions, systemLanguage and externalResourcesRequired. The ‘TEST’ attribute is represented as a sequence of {Type, Value(s)} pairs. The Type is a token that identifies the type of ‘TEST’ that will be set, and Value(s) is the type-specific representation of the value.

Table 2: TEST Attributes

	000
	requiredFeatures

	001
	requiredExtensions

	010
	systemLanguage

	011
	externalResourcesRequired

	111
	Done


E.13.1.5.4.2.1 Representation of ‘requiredFeatures’ values: 

The value is a list of feature strings, with the individual values separated by white space. The feature strings are encoded as textual data. See E.13.
E.13.1.5.4.2.2 Representation of ‘requiredExtensions’ values:

The requiredExtensions attribute defines a list of required language extensions. Each extension is identified by a URI reference. The extensions are encoded as textual data. See E 13,
E.13.1.5.2.3 Representation of ‘systemLanguage’ values:

The attribute value is a comma-separated list of language names as defined in [http://www.ietf.org/rfc/rfc3066.txt]. The language names are encoded as textual data. See E.13.
E.13.1.5.4.2.4 Representation of ‘externalResourcesRequired’ values:

Boolean “(0) false | (1) true”, represented with one bit.

E.13.1.5.5 Style   

E.13.1.5.5.1 Element Declaration for 'Style' (<style>) Element

· Element identifier:  00101

· Optional attributes:  StdAttrs, media, title, xml:space, CDATA
· Required attributes: type

E.13.1.5.5.1.1 Representation of ‘type’ value:

The value is a string. It is encoded as textual data. See E13.
E.13.1.5.5.2 Representation of ‘media’ value:

The value is a string. It is encoded as textual data. See E13.
E.13.1.5.5.3 Representation of ‘title’ value:

The value is a string. It is encoded as textual data. See E13.
E.13.1.5.5.4 Representation of ‘xml:space’ value:

The value is a string. It is encoded as textual data. See E13.
E.13.1.5.5.2 Style Attributes

The style attribute is represented as a sequence of {Property, Value(s)} pairs. The Property is a token which identifies the property which will be set, and Value(s) is the property-specific representation of the value to which the property is being set. The Property token starts with a 4-bit code that is to be interpreted according to. 

	0000
	‘fill’

	0001
	‘stroke’

	0010
	‘stroke-width’

	0011
	‘visibility’

	0100
	‘color’

	0101
	‘font-family’

	0110
	‘font-size’

	0111
	‘font-style’

	1000
	‘font-weight’

	1001
	‘reserved’

	1010
	‘display’

	1011
	‘fill-rule’

	1100
	‘reserved’

	1101
	EXT

	1110
	‘reserved’

	1111
	DONE with style


Table 3: Property identifiers for most used SVGTiny style properties
If the property to be defined is one of the properties listed in Table 3, the token consists of the associated 4-bit code. Otherwise, the EXT code word (1101) is generated, which is followed by a 6-bit code to complete the token. The 6-bit code is the ordinal of the property in the Property Index (Appendix L) of SVG Specification. The list of 6-bit property codes is given in Table 4 . The number of bits following the property type depends on the property type. In an SVG document, the style properties can also appear as stand-alone attributes (For example, as in <rect fill="black" x="10" width="5" height="3"> ). In these cases, these attributes should be converted into style properties before or during the conversion to binary format.

	000000
	'alignment-baseline' 
	100000
	'overflow' 

	000001
	'baseline-shift' 
	100001
	'pointer-events' 

	000010
	'clip' 
	100010
	'shape-rendering' 

	000011
	'clip-path' 
	100011
	'stop-color' 

	000100
	'clip-rule' 
	100100
	'stop-opacity' 

	000101
	'color-interpolation' 
	100101
	'stroke-dasharray' 

	000110
	'color-profile' 
	100110
	'stroke-dashoffset' 

	000111
	'color-rendering' 
	100111
	'stroke-linecap' 

	001000
	'cursor' 
	101000
	'stroke-linejoin' 

	001001
	'direction' 
	101001
	'stroke-miterlimit' 

	001010
	'dominant-baseline' 
	101010
	'stroke-opacity' 

	001011
	'enable-background' 
	101011
	'text-anchor' 

	001100
	'fill-opacity' 
	101100
	'text-decoration' 

	001101
	'filter' 
	101101
	'text-rendering' 

	001110
	'flood-color' 
	101110
	'unicode-bidi' 

	001111
	'flood-opacity' 
	101111
	'word-spacing' 

	010000
	'font' 
	110000
	'writing-mode' 

	010001
	'font-size-adjust' 
	110001
	Reserved

	010010
	'font-stretch' 
	110010
	Reserved

	010011
	'font-variant' 
	110011
	Reserved

	010100
	'glyph-orientation-horizontal' 
	110100
	Reserved

	010101
	'glyph-orientation-vertical' 
	110101
	Reserved

	010110
	'image-rendering' 
	110110
	Reserved

	010111
	'kerning' 
	110111
	Reserved

	011000
	'letter-spacing' 
	111000
	Reserved

	011001
	'lighting-color' 
	111001
	Reserved

	011010
	'marker' 
	111010
	Reserved

	011011
	'marker-end'
	111011
	Reserved

	011100
	'marker-mid'
	111100
	Reserved

	011101
	'marker-start'
	111101
	Reserved

	011110
	'mask' 
	111110
	Reserved

	011111
	'opacity' 
	111111
	Reserved


Table 4: List of 6-bit style property codes

E.13.1.5.5.2.1 Representation of ‘fill’ and ‘stroke’ values:

Values are color values. See Section E13..
E.13.1.5.5.2.2 Representation of ‘stroke-width’ value:

Value is a non-negative length or ‘inherit’. The first bit is to signal inherit if it is set to zero, the length (See E13.) is encoded afterwards.

E.13.1.5.5.2.3 Representation of ‘visibility’ value:

Values are 
00 visible  

01 hidden

10 collapse 

11 inherit
represented with 2 bits. 

E.13.1.5.5.2.4 Representation of ‘color’ value:

See Section E13.
E.13.1.5.5.2.5 Representation of ‘font-family’ value:

The value is a string or ‘inherit’. The first bit is signals inherit. If it is set to zero, the text is encoded afterwards. See E13..
E.13.1.5.5.2.6 Representation of ‘font-size’ value:

The value is a length or ‘inherit’. The first bit signals inherit. If it is set to zero, the length is encoded afterwards.

E.13.1.5.5.2.7 Representation of ‘font-style’ value:

Values are represented with 2 bits:  (00) normal | (01) italic | (10) oblique | (11) inherit

E.13.1.5.5.2.8 Representation of ‘font-weight’ value:

Values are represented with 4 bits: (0000) normal | bold | bolder | lighter | 100 | 200 | 300
| 400 | 500 | 600 | 700 | 800 | 900 | (1110)inherit

E.13.1.5.5.2.9 Representation of ‘display’ value:

Values are represented with 5 bits. (00000) inline | block | list-item |
run-in | compact | marker |
table | inline-table | table-row-group | table-header-group |
table-footer-group | table-row | table-column-group | table-column |
table-cell | table-caption | none | inherit (10010)

E.13.1.5.5.2.10 Representation of ‘fill-rule’ value:

Values are represented with two bits: (00) nonzero | (01) evenodd | (10) inherit

All remaining attributes are defined in their own Sections.
E.13.1.5.5.3 Element Declaration for 'mask' (<mask>) Element

· Element identifier: 1111111  011010
· Optional attributes:  StdAttrs, STYLE, TEST, COORDS(x, y), width, height, maskUnits, maskContentUnits
· Required attributes: none

E.13.1.5.5.3.1 Representation of maskUnits

Value is represented with one bit (0)userSpaceOnUse | (1)objectBoundingBox
E.13.1.5.5.3.2 Representation of maskContentUnits

Value is represented with one bit (0)userSpaceOnUse | (1)objectBoundingBox
E.13.1.5.5.4 Element Declaration for 'pattern' (<pattern>) Element

· Element identifier: 1111111  011011
· Optional attributes:  StdAttrs, STYLE, TEST, COORDS(x, y), width, height, xlink:href, viewBox, preserveAspectRatio, patternUnits, patternContentUnits, patternTransform

· Required attributes: none

E.13.1.5.5.4.1 Representation of patternUnits

Value is represented with one bit (0)userSpaceOnUse | (1)objectBoundingBox
E.13.1.5.5.4.2 Representation of patternContentUnits

Value is represented with one bit (0)userSpaceOnUse | (1)objectBoundingBox

E.13.1.5.5.4.3 Representation of patternTransform

Value is a transform list. See 0
E13.1.5.6 Filters

E13.1.5.6.1 Element Declaration for 'filter' (<filter>) Element

· Element identifier: 1111111  010011
· Optional attributes:  StdAttrs, STYLE, TEST, COORDS(x, y), width, height, filterUnits, primitiveUnits, filterRes, xlink:href
· Required attributes: none

E13.1.5.6.1 1Representation of filterUnits

Value is represented with one bit (0)userSpaceOnUse | (1)objectBoundingBox
E13.1.5.6.1.2 Representation of primitiveUnits

Value is represented with one bit (0)userSpaceOnUse | (1)objectBoundingBox

E13.1.5.6.1.3 Representation of filterRes
Value is number.

E13.1.5.7 Transformations and Units 

E13.1.5.7.1 Representation of the 'TRANSFORM' Attribute

The transform attribute is represented as a sequence of {Type, Value(s)} pairs. The Type is a token which identifies the type of transform which will be set, and Value(s) is the type-specific representation of the value which quantifies the particular transform. The Type tokens are listed in Table 5.

	00
	Translate

	010
	Rotate

	011
	Scale

	100
	Matrix

	101
	SkewX

	110
	SkewY

	111
	DONE with transform


Table 5: Property identifiers for the transform properties
The transform values are encoded as integers, as defined in Section E 13. . 

SpatialResolution: Translate property values, center coordinate values of the Rotate property, and e, f values of the Matrix property are scaled by spatialResolution.

ScaleResolution: Scale property values and a, b, c, d values of the matrix property are scaled by scaleResolution.

AngleResolution: SkewX and SkewY property values, and the rotation angle value of the Rotate property are scaled by angleResolution.

Some transform types have optional arguments. 

matrix(<a> <b> <c> <d> <e> <f>)
no optional parameters
translate(<tx> [<ty>]) 


ty is optional
scale(<sx> [<sy>])


sy is optional

rotate(<rotate-angle> [<cx> <cy>])  
cx, cy are optional
skewX(<skew-angle>) 

no optional parameters
skewY(<skew-angle>) 

no optional parameters

All numeric values are real <number>s (See E). The optional arguments are preceded by a 1-bit indicator whether the optional argument will be specified (1), or not (0).

E13.1.5.7.2 Representation of the 'viewBox' Attribute

The viewBox values (x1, y1, x2, y2) are encoded as integers via Codebook-cl  (in absolute mode), as described in Section E..

E13.1.5.7.3 Representation of the 'preserveAspectRatio' Attribute

The ‘preserveAspectRatio’ values are in two sets. First set is align attribute second set is  meetOrSlice attribute. The align attribute is represented with 4 bits.
(0000) none  | xMinYMin | xMidYMin | xMaxYMin  | xMinYMid  | xMidYMid   | xMaxYMid  | xMinYMax | xMidYMax | (1010) xMaxYMax 

Afterwards the meetOrSlice attribute is represented with one bit. (0) meet | (1) slice

E13.1.5.7.4 Representation of Units

All coordinates and lengths in SVG can be specified with or without a unit identifier. 

SVGT only supports user units (i.e., CSS units are not supported), with the one exception that the 'width' and 'height' attributes on the outermost 'svg' element can specify values in any of the following CSS units: in, cm, mm, pt, pc, and %. SVGB supports lengths in user coordinate space and in CSS units. 

When a coordinate or length value is a number without a unit identifier, then the given coordinate or length is assumed to be in user units.

user unit 
0

cm

1000

mm

1001

inch

1010

pixel

1011

point

1100

pica

1101

percent
1110 

E13.1.5.8 Path Element 

· Element identifier: 00000

· Optional attributes:  StdAttrs, STYLE, TRANSFORM , TEST, pathLength, GraphicsElementsEventsAttrs
· Required attributes: d (path data)

E13.1.5.8.1 Representation of the Path Data (d)

Path data is expected to cover a major part of the total information contained in a typical vector graphics animation. Thus, efficient representation of the path data has a crucial importance. As a result of seeking high efficiency, path data representation is one of the trickiest parts in the design of the bitstream syntax. This subsection presents this representation.

Path data starts with a 6 or 7 bit configuration header as SVGT content does not require elliptical arc. This header, together with the additional configuration information that follows it, determines the codewords to be used in the representation. The configuration header consists of the following flags:

· C1:    0 states that both absolute and relative coordinates are used. 1 states that only one coordinate type is used.

· C2:    0 states that Z (closepath) is not used in the current path representation. 1 states that it is used.

· C3:    0 states that M (moveto) is not used in the current path representation. 1 states that it is used.

· C4:    0 states that L is used, and is the only lineto command. 1 states that it is either not used, or there are other types of lineto commands as well, such as H and V.

· C5:    0 states that L may not be used successively. 1 states that L may be used successively.

· C6:    0 states that none of the curve commands (such as C, S, Q, T) are used. 1 states that they at least one of them is used.

· C7:    0 states that A (elliptical arc) is used in the current path representation. 1 states that it is not used. This header bit is present only for SVG Basic and SVG Full content.

The additional configuration data is sent conditionally, as follows:

· A1: 

· If (C1 == 1),

· 1-bit indicator of whether absolute  (0) or relative (1) coordinates are used.

· For each coordinate representation type, (See Section E.13. for details of representation)

· 1-bit indicator of whether the coordinate representation code length will be defined (1) or the default code length (0) , as may be defined as a function of the global size attributes and/or configuration parameters, will be used. If this indicator is 1,

· 4-bit representation of the code length (The same codebook will be used for representation of the angles).

· A4:
· If (C4 == 1),

· 2-bit indicator which is to be interpreted as follows: 

· 00:  no lineto commands are used,

· 01:  L and H are used, (if there is only H, use this one)

· 10:  L and V are used, (if there is only V, use this one)

· 11:  L, H, and V are used. (if there is only H and V, use this one)

· A6: 

· If (C6 == 1)

· 1-bit indicator which indicates whether C (cubic Bezier curve) is used (0) or not (1).

· 1-bit indicator which indicates whether S (shorthand cubic Bezier curve) is used (0) or not (1).

· 1-bit indicator which indicates whether Q (quadratic Bezier curve) is used (0) or not (1).

· 1-bit indicator which indicates whether T (shorthand quadratic Bezier curve) is used (0) or not (1).

After the configuration field, path data continues as a sequence of {Command, Arguments} pairs. Most of the arguments are encoded by using the appropriate coordinate representation codebook (The exceptions are some flags, which are 1-bit). 

E13.1.5.8.2 Encoding of the Commands

The codebook for the commands is constructed by choosing the available
 commands from the following list. The first available command is assigned the first codeword, etc. The length of the code words is a function of the total number D of the available commands. The code words are allocated as would be allocated by a Huffman code for n equi-probable symbols. In case of tie-breaks, the commands occurring earlier in the codebook are assigned shorter codewords (In fact, this process does not require an explicit construction of Huffman codewords).

List of commands: M, m, L1, l1, L2, l2, L3, l3, L4, l4, H, h, V, v, Z, C, c, S, s, Q, q, T, t, A, a, DONE.
Where Ln denotes n successive lineto commands.

Example Command Codebook:
Consider the following path data in SVG: d="M 64 42 l 1 5 M 88 42 l 1 5 M 76 48 L 76 45 M 73 55 h 7". For this path data, the command codebook is constructed as follows:

Both absolute and relative coordinates are used; Z is not used; M is used; L and H is used; L is not used successively, no curves used; no elliptical arcs used. Thus, the commands in the codebook are as follows: {M, m, L1, l1, H, h, DONE}. The code words for these commands are as follows:

· M:  
00

· m:  
010

· L1: 
011

· l1:
100

· H:
101

· h:
110

· DONE:
111

In the particular path data, M occurs 4 times, l1 2 times, L1 one time, h one time, and DONE one time. Thus, for the representation of the commands in this path data, a total of 4*2+(2+1+1+1)*3 = 23 bits are spent.

E13.1.5.8.3 Encoding of the arguments

Two different codebooks are used, depending on whether absolute or relative addressing is used. Each codebook is parameterized by a constant code length cl, as described in Section E.13.. The cl 's are encoded once for the whole path, and used throughout.

E13.1.5.8.4 Example Encoding of Path Data

Let us consider the full encoding of the path data of the above example: 

d="M 64 42 l 1 5 M 88 42 l 1 5 M 76 48 L 76 45 M 73 55 h 7".

The configuration header is composed as follows: 

· Both absolute and relative coordinates are used, so C1=0,

· Z is not used, so C2=1,

· M is used, so C3=0,

· L and H is used, so C4=1,

· L is not used successively, so C5=1,

· No curves used, so C6=1,

· No elliptical arcs used, so C7=1.

Thus, the configuration header is 0101111 (7 bits). 

Next, additional configuration data is composed:

· For absolute addressing, we choose cl=7, which can represent the maximum absolute coordinate in the path, 88, in 7 bits. To indicate this code length, 10111 is sent (5 bits) (For this example, we assume that the default cl for absolute mode is different than 7). First 1 indicates that a new cl is defined for absolute addressing, and the next four bits is the binary representation of cl=7.

· For relative addressing, we choose cl=4, which can represent the maximum relative coordinate in the path, 7, in 4 bits. To indicate this code length, 10100 is sent (5 bits) (For this example, we assume that the default cl for relative mode is different than 4). First 1 indicates that a new cl is defined for relative addressing, and the next four bits is the binary representation of cl=4.

· Since C4=1,  a two-bit indicator which indicates that L and H are used, 01, is sent (2 bits).

After this, {Command, Argument } pairs can be transmitted. We use the command code book from the above example for encoding the commands. Absolute arguments are represented by 7-bit codewords, and relative arguments are represented by 4-bit codewords. The encoding goes as follows:

· M  64 42
:
00 (M), 1000000 (64), 0101010 (42)
16 bits
· l 1 5  
:
100 (l1), 1000 (1), 1100(5)

11 bits
· M  88 42
:
00 (M), 1011000 (88), 0101010 (42)
16 bits
· l 1 5  
:
100 (l1), 1000 (1), 1100(5)

11 bits
· M  76 48
:
00 (M), 1001100 (76), 0110000 (48)
16 bits
· L 76 45
:
011 (L1), 1001100 (76), 0101101(45)
17 bits
· M  73 55
:
00 (M), 1001001 (73), 0110111 (55)
16 bits
· h 7
:

110 (h), 1110 (7)

7 bits
· DONE
:
111 (DONE)


3 bits
113 bits are spent for the {Command, Argument } pairs, and 19 bits for the configuration. In total, the path data is encoded by 132 bits.

E13.1.5.9 Basic Shapes

E13.1.5.9.1 Element Declaration for 'Rectangle' (<rect>) Element

· Element identifier: 00010

· Optional attributes:  StdAttrs, STYLE, TRANSFORM, TEST, COORDS(x, y),COORDS(rx, ry), GraphicsElementsEventsAttrs, PointerEventsPresentationAttrs
· Required attributes: width, height
E13.1.5.9.2 Element Declaration for 'Circle' (<circle>) Element

· Element identifier: 00011

· Optional attributes:  StdAttrs, STYLE, TRANSFORM, TEST, COORDS(cx, cy), GraphicsElementsEventsAttrs, PointerEventsPresentationAttrs
· Required attributes: r
E13.1.5.9.2.1 Representation of r
Radius is represented as a length.(See Section 0)

E13.1.5.9.3 Element Declaration for 'Ellipse' (<ellipse>) Element

· Element identifier: 00100

· Optional attributes:  StdAttrs, STYLE, TRANSFORM, TEST, COORDS(cx, cy), GraphicsElementsEventsAttrs, PointerEventsPresentationAttrs
· Required attributes: rx, ry
E13.1.5.9.3.1 Representation of rx and ry
rx and ry are represented as Coordinate (See Section E.13.2.4)

E13.1.5.9.4 Element Declaration for 'Line' (<line>) Element

· Element identifier: 10100

· Optional attributes:  StdAttrs, STYLE, TRANSFORM, TEST, GraphicsElementsEventsAttrs, PointerEventsPresentationAttrs
· Required attributes: x1, y1, x2, y2 (coordinates of the end points of the line)

E13.1.5.9.4.1 Representation of x1, y1, x2, y2
First, the codebook parameter cl is encoded, as described in Section E.13.2.1. After this, x1, y1, x2, and y2 are encoded as integers via Codebook-cl  (in absolute mode), as described in Section E.13. .

E13.1.5.9.5 Element Declaration for 'Polyline' (<polyline>) Element

· Element identifier: 10010

· Optional attributes:  StdAttrs, STYLE, TRANSFORM,TEST, GraphicsElementsEventsAttrs, PointerEventsPresentationAttrs
· Required attributes: points
E13.1.5.9.5.1 Representation of points (x1, y1, x2, y2, … , xn, yn) 

First, the number of vertices n is encoded as a nonnegative integer via Codebook-5, as described in Section  0.

Then, the codebook parameter cl (which will be used for encoding the vertices) is encoded as described in Section Error! Reference source not found.. After this, x1, y1, x2, y2, … , xn, yn are encoded as integers via Codebook-cl  (in absolute mode), as described in Section E.13.2.1 ..

E13.1.5.9.6 Element Declaration for 'Polygon' (<polygon>) Element

· Element identifier: 10001

· Optional attributes:  StdAttrs, STYLE, TRANSFORM,  TEST, GraphicsElementsEventsAttrs, PointerEventsPresentationAttrs
· Required attributes: points
E13.1.5.9.6.1 Representation of points(x1, y1, x2, y2, … , xn, yn) 

Same as the representation of the vertices of polyline.

E13.1.5.10 Text

E13.1.5.10.1 Element Declaration for 'Text' (<text>) Element

· Element identifier:00001

· Optional attributes:  StdAttrs, STYLE, TRANSFORM, TEST, CDATA, COORDS(x, y),  rotate, GraphicsElementsEventAttrs, PointerEventsPresentationAttrs 
· Required attributes: none

E13.1.5.10.1.1 Representation of rotate
First, the codebook parameter cl is encoded, as described in Section E.13. . After this the rotation values are encoded as integers via Codebook-cl (in absolute mode).

E13.1.5.10.1.2 Representation of (CDATA) text data
In SVG textual content is defined in terms of a sequence of XML characters, where each character is defined by a particular Unicode code point The Unicode Standard defines three encoding forms that allow the same data to be transmitted in a byte, word or double word oriented format (i.e. in 8, 16 or 32-bits per code unit). All three encoding forms encode the same common character set and can be efficiently transformed into one another without loss of data. 

UTF-8 (ISO/IEC 10646) is a way of transforming all Unicode characters into a variable length encoding of bytes. It has the advantages that the Unicode characters corresponding to the familiar ASCII set have the same byte values as ASCII. Therefore UTF-8 encoding is suitable for textual representation.

Unicode characters from the BASIC LATIN collection are represented in UTF-8 in accordance with ISO/IEC 4873, i.e. single octets with values ranging from 20 to 7E.

First the length of the text string is encoded as integer value, after this the text string is encoded in UTF-8.

E13.1.5.10.2 Representation of PresentationAttributes-TextContentElements

E13.1.5.10.2.2 Representation of ‘alignment-baseline’

The values are represented with 4 bits ((0000)baseline | top | before-edge | text-top | text-before-edge | middle | bottom | after-edge | text-bottom | text-after-edge | ideographic | lower | hanging | mathematical | inherit (1111)

E13.1.5.10.2.3 Representation of ‘baseline-shift’

The value can be a length or (00)baseline | sub | super | (11)inherit. A one bit switch will indicate if the length or two bit values are encoded at the beginning of value (0) for two bit (1) length. 

E13.1.5.10.2.3 Representation of ‘direction’

The values are represented with 2 bits (00) ltr | (01) rtl | (10)inherit

E13.1.5.10.2.4 Representation of ‘dominant-baseline’

The values are represented with 4 bits (0000)auto | autosense-script | no-change | reset |

ideographic | lower | hanging | mathematical | (1001)inherit 

E13.1.5.10.2.5 Representation of ‘glyph-orientation-horizontal’

The value is a angle or ‘inherit’. The first bit is to signal inherit if it is set to zero, the angle is encoded afterwards.

E13.1.5.10.2.6 Representation of ‘glyph-orientation-vertical’

The value is a angle or ‘inherit’ or ‘auto’. The first bit is to signal auto if it is set to zero, the second bit is to signal ‘inherit’ if it set to zero, the angle is encoded afterwards.

E13.1.5.10.2.7 Representation of ‘kerning’

The value is a length or ‘inherit’ or ‘auto’. The first bit is to signal auto if it is set to zero, the second bit is to signal ‘inherit’ if it set to zero, the length is encoded afterwards.

E13.1.5.10.2.8 Representation of ‘letter-spacing’

The value is a length or ‘inherit’ or ‘normal’. The first bit is to signal auto if it is set to zero, the second bit is to signal ‘inherit’ if it set to zero, the length is encoded afterwards.

E13.1.5.10.2.9 Representation of ‘text-anchor’

The values are represented with 2 bits (00)start | middle | end | (11)inherit

E13.1.5.10.2.10 Representation of ‘text-decoration’

The values are represented with 3 bits (000)none | underline | overline | line-through | blink | (101) inherit 

E13.1.5.10.2.11 Representation of ‘unicode-bidi’

The values are represented with 2 bits  (00)normal | embed | bidi-override | (11) inherit
E13.1.5.10.2.12 Representation of ‘word-spacing’

The value is a length or ‘inherit’ or ‘normal’. The first bit is to signal auto if it is set to zero, the second bit is to signal ‘inherit’ if it set to zero, the length is encoded afterwards.

E13.1.5.10.3 Representation of CDATA 

Several SVG elements including ‘text’ have a content model which include character data (CDATA), which is not a SVG element by itself. For each element which has CDATA in its content model, will have an extra bit in their optional attribute mask which will signal presence of CDATA. If there is CDATA included in the element, it will be encoded as textual data, see Section 0
E13.1.5.10.4 Element Declaration for 'Tref' (<tref>) Element

· Element identifier: 1111111  011111
· Optional attributes:  StdAttrs, STYLE, TEST, CDATA, COORDS(x, y), COORDS(dx, dy), GraphicsElementEvents, rotate, textLength, lenghtAdjust  
· Required attributes: xlink:href

E13.1.5.10.4.1 Representation of xlink:href

URI is internal; a numbering schema is used for internal references as described in Section 0;  

E13.1.5.10.4.2 Representation of textLength

Encoded as length

E13.1.5.10.4.3 Representationof lengthAdjust

Encoded with one bit: (0)spacing|spacingAndGlyphs(1)

E13.1.5.10.5 Element Declaration for 'Tspan' (<tspan>) Element

· Element identifier: 1111111  100000
· Optional attributes:  StdAttrs, STYLE, TEST, CDATA, COORDS(x, y), COORDS(dx, dy), GraphicsElementEvents, rotate, textLength, lenghtAdjust  
· Required attributes: none

E13.1.5.10.6 Element Declaration for 'TextPath' (<textPath>) Element

· Element identifier: 1111111  011110
· Optional attributes:  StdAttrs, STYLE, TEST, CDATA, GraphicsElementEvents, startOffset, textLength, lenghtAdjust, method, spacing 
· Required attributes: xlink:href

E13.1.5.10.6.1 Representation of startOffset

Value is length

E13.1.5.10.6.2 Representation of method

Value is represented with one bit (0) align | (1)stretch
E13.1.5.10.6.3 Representation of spacing

Value is represented with one bit (0)auto | (1)exact
E13.1.5.11 Color

SVG supports multiple color representation all specified in sRGB space. A color can be specified by its 

· Name (“red”), 

· 4 bit per color RGB value(F00),  

· 8 bit per color RGB value (FF0000)  

or it can be “none” or “inherit".  

The color resolution field defines the color depth of the CVG binary content, for example if the SVG content has defined color in 8 bits per color component and the color resolution is set to 4 bits per color, the SVG color is transformed into a 4 bit per color component. The encoder sets the color resolution field.

The color resolution on the decoder defines the color depth of the terminal display. It is fixed for each terminal due to its capabilities. Incoming CVG stream is converted into the color resolution, in this case a color content can be send to a black/white terminal and still rendered correctly.

Each color data set contains represented with two parts as depicted in Figure 7. The first bit represents the state “inherit”. If this bit is set, there are no “none” or RGB bits. If the “inherit” bit is not set, it is followed by a “none” bit, indicating that the color is set  to none. If this bit is set there are no color bits. If neither the “inherit” nor the “none” bit is set each component of the RGB color is encoded as an integer value with respect to the color resolution field.
 
 

Figure 6: Color Representation

Color Resolution field is defined as:


01 1-bit color resolution (black/white). In this case there are no separate values for each component. Only one bit indicates if the color is black or white.


10 4-bit per channel color resolution


11 8-bit per channel color resolution

E13.1.5.11.1 lement Declaration for 'color-profile' (<color-profile>) Element

· Element identifier:  1111111  0000
· Optional attributes:  StdAttrs, local, rendering-intent, xlink:href

· Required attributes: name

E13.1.5.11.1.1 Representation of ‘name’

Value is encoded as textual data, as described in SectionE.13. ..

E13.1.5.11.1.2 Representation of ‘local’

Value is encoded as textual data, as described in Section E.13, .

E13.1.5.11.1.3 Representation of ‘rendering-intent’

Value is encoded with 3 bits (000) auto | perceptual | relative-colorimetric | saturation | absolute-colorimetric(100)

E13.1.5.12 Gradients

E13.1.5.12.1 Element Declaration for 'linearGradient' (<linearGradient>) Element

· Element identifier: 1111111  011001
· Optional attributes:  StdAttrs, STYLE,  externalResourcesRequired, XlinkAttribute, stop-color stop-opacity, gradientUnits, gradientTransform, x1, y1, x2, y2, spreadMethod, xlink:href   
· Required attributes: none

E13.1.5.12.1.1 Representation of ‘gradientUnits’

Value represented with one bit: (0)userSpaceOnUse | (1)objectBoundingBox
E13.1.5.12.1.2 Representation of gradientTransform

Value is a transform list. See E13.0
E13.1.5.12.1.3 Representation of x1, y1, x2, y2

Each attribute’s value is length in user coordinate system. See E13.0
E13.1.5.12.4 Representation of ‘spreadMethod’

Value represented with two bits: (00) pad | reflect | (10)repeat

Representation of ‘xlink:href’

E13.1.5.12.5 Representation of xlink:href (#URI)

URI is internal for gradients; a numbering schema is used for internal references as described in Section 0;  

E13.1.5.12.2 Element Declaration for 'radialGradient' (<radialGradient>) Element

· Element identifier: 1111111  011100
· Optional attributes:  StdAttrs, STYLE,  externalResourcesRequired, XlinkAttribute, stop-color stop-opacity, gradientUnits, gradientTransform, cx, cy, r, fx, f y, spreadMethod, xlink:href   
· Required attributes: none

E13.1.5.12.2.1 Representation of cx, cy, fx, fy, r

Each attribute’s value is length in user coordinate system. See 0
E13.1.5.12.3 Element Declaration for 'stop' (<stop>) Element

· Element identifier: 1111111  011101
· Optional attributes:  StdAttrs, STYLE, offset
· Required attributes: none

E13.1.5.12.3.1 Representation of ‘offset’

Value is length (number or percentage). See 0
E13.1.5.12.4 Gradient Presentation Attributes

E13.1.5.12.4.1 Representation of ‘stop-color’

Value is a color See E13..
E13.1.5.12.4.1 Representation of ‘stop-opacity’

Value is a number or inherit. First bit indicates ‘inherit’ if it is 0, number value is encoded.

 E13.1.5.13 Linking

E13.1.5.13.1 Element Declaration for 'a' (<a>) Element

· Element identifier: 10000

· Optional attributes:  StdAttrs, STYLE, TRANSFORM, TEST, XlinkAttribute, CDATA
· Required attributes: xlink:href

E13.1.5.13.1.1 Representation of xlink:href (#URI)

If the URI is internal (inside the same <svg> … </svg> element) a numbering schema is used as described in Section 0; otherwise the URI is encoded as textual data as described in Section0.

E13.1.5.13.2 Element Declaration for 'view' (<view>) Element

· Element identifier: 1111010

· Optional attributes:  StdAttrs, STYLE, TRANSFORM, externalResourcesRequired, viewBox, preserveAspectRatio, zoomAndPan, viewTarget
· Required attributes:  none

E13.1.5.13.2.1 Representation of viewTarget 

The string (#XML Name) is encoded as textual data, as described in Section E. .

E13.1.5.13.3 Representation of XLink Attribute Module
The  XLink Attribute Module (XlinkRefAttrs) is represented as a sequence of {Property, Value(s)} pairs. The Property is a token which identifies the property which will be set, and Value(s) is the property-specific representation of the value to which the property is being set. The Property token starts with a 4-bit code which is to be interpreted according  to Table 6
	000
	xlink:type

	001
	xlink:role

	010
	xlink:arcrole

	011
	xlink:title

	100
	xlink:show

	101
	xlink:actuate

	111
	DONE 


Table 6: Property identifiers for the Full XLink Attribute Module
E13.1.5.13.3.1 Representation of xlink:type

The value is encoded as textual data, as described in Section E. .

E13.1.5.13.3.2 Representation of xlink:role

The value is encoded as textual data, as described in Section E..

E13.1.5.13.3.3 Representation of xlink:arcrole

The value is encoded as textual data, as described in Section E. .

E13.1.5.13.3.4 Representation of xlink:title

The value is encoded as textual data, as described in Section E.13...

E13.1.5.13.3.5 Representation of xlink:show

The value is encoded as textual data, as described in Section E.13...

E13.1.5.13.3.6 Representation of xlink:actuateopacity

The value is encoded as textual data, as described in Section E.13...

E13.1.5.14 Scripting and Interactivity

E13.1.5.14.1 Specifying the default scripting language

The <contentScriptType> attribute on the <svg> element specifies the default scripting language for the given document fragment. See E13.0
E13.1.5.14.2 Element Declaration for 'script' (<script>)Element

· Element identifier: 00110 

· Optional attributes:  StdAttrs, externalResourcesRequired, XlinkRefAttrs,  xlink:href, CDATA

· Required attributes: type
E13.1.5.14.2.1 Representation of ‘type’ value:

The value is a  string. It is encoded as textual data. SeeE13.Error! Reference source not found.
E13.1.5.14.2.1 Representation of ‘xlink:href’ value:

If the URI is internal a numbering schema is used as described in Section E13.0; otherwise the URI is encoded as textual data as described in Section E13.0.

E13.1.5.14.3 Event Attributes

There are three set of Events. Each event group has multiple events with their bit codes. Value for each event is a script function, which is encoded as textual data.

E13.1.5.14.3.1 Document Events

The  Document Events Module is represented as a sequence of {Property, Value(s)} pairs. The Property is a token which identifies the property which will be set, and Value(s) is the property-specific representation of the value to which the property is being set. The Property token starts with a 3-bit code which is to be interpreted according  to Table 7. All the attribute values are represented as textual data, as described in Section E13.Error! Reference source not found..
	000
	Onunload

	001
	Onabort

	010
	Onerror

	011
	Onresize

	100
	Onscroll

	101
	Onzoom

	111
	DONE 


Table 7: Property identifiers for the Document Events.
E13.1.5.14.3.2 Graphical Element Events

The  Graphical Element Events Module is represented as a sequence of {Property, Value(s)} pairs. The Property is a token which identifies the property which will be set, and Value(s) is the property-specific representation of the value to which the property is being set. The Property token starts with a 4-bit code which is to be interpreted according  to Table 9. All the attribute values are represented as textual data, as described in Section Error! Reference source not found..
	0000
	onfocusin 

	0001
	Onfocusout 

	0010
	onactivate 

	0011
	onclick

	0100
	onmousedown

	0101
	onmouseup

	0110
	onmouseover

	0111
	onmousemove

	1000
	onmouseout

	1001
	onload

	1111
	Done


Table 9: Property identifiers for the Graphical Element Events.
E13.1.5.14.3.3 Animation Events

The  Animation Events Module is represented as a sequence of {Property, Value(s)} pairs. The Property is a token which identifies the property which will be set, and Value(s) is the property-specific representation of the value to which the property is being set. The Property token starts with a 2-bit code which is to be interpreted according  to Table 11. All the attribute values are represented as textual data, as described in Section Error! Reference source not found..
	00
	onbegin

	01
	onend

	10
	onrepeat

	11
	Done


Table 11: Property identifiers for the Animation Events.
E13.1.5.14.3.4 Pointer Events 

The  Pointer Events Module is represented as a sequence of {Property, Value(s)} pairs. The Property is a token which identifies the property which will be set, and Value(s) is the property-specific representation of the value to which the property is being set. The Property token starts with a 4-bit code which is to be interpreted according  to Table 13. All the attribute values are represented as textual data, as described in Section Error! Reference source not found..

	0000
	visiblePainted

	0001
	visibleFill

	0010
	visibleStroke

	0011
	visible

	0100
	painted

	0101
	fill

	0110
	stroke

	0111
	all

	1000
	none

	1001
	inherit

	1111
	Done


Table 13: Property identifiers for the Pointer Events 

E13.1.5.15 Animation

E13.1.5.15.1 Element Declaration for 'Animate' (<animate>) Element

· Element identifier: 01010

· Optional attributes:  StdAttrs, TEST,  AnimTimingAttrs, AnimValueAttrs  AnimEventAttrs, AnimElementAttrs, AnimAdditionAttrs, attribute type
· Required attributes: attributeName
AnimTimingAttrs bit indicates that <animate> element contains at least one of the nine AnimTimingAttributes. It refers to a 9 bit secondary mask that will indicate which timing attribute is set.

E13.1.5.15.1.1 Representation of AnimElementAttrs

Representation of xlink:href
If the URI is internal a numbering schema is used as described in Section 0; otherwise the URI is encoded as textual data as described in Section0.

E13.1.5.15.1.2 Representation of AnimTimingAttrs

E13.1.5.15.1.2.1 Representation of begin, dur, end, min, max 

This field is represented as a positive integer, which is translated into a time according to the time resolution specified in the global configuration. First, the codebook parameter cl is encoded, as described in Section Error! Reference source not found.. Then, the positive integer is encoded as a nonnegative integer via Codebook-cl  (in absolute mode), as described in Section Error! Reference source not found..

E13.1.5.15.1.2.2 Representation of RepeatCount, RepeatDur:

RepeatCount can have a fractional part, up to 4 bits after the point, or it can be "indefinite". The representation starts with a 1-bit indicator that indicates whether the repeat count is indefinite (0), or a finite count representation will follow (1). If the first indicator is 1, another 1-bit indicator follows. This indicates whether an integer (0) or a fixed-point rational (1) representation will be used. The integer part is represented by a Codebook-7 absolute representation. If there is a fractional part, it is represented in 4 bits.

E13.1.5.15.1.2.3 Representation of restart:

restart(00 always | 01 never | 10 whenNotActive) 11 reserved. default=’always’

E13.1.5.15.1.2.4. Representation of fill:

fill (remove=0 | freeze=1)

E13.1.5.15.1.3 Representation of AnimValue Attrs

values can be one data type of large range of attribute value types which is determined through ‘attributeName’ value.

E13.1.5.15.1.3.1 Representation of  from, to, by

From, to and by are represented as values.   

E13.1.5.15.1.3.2 Representation of values
 A semicolon-separated list of one or more values. Vector-valued attributes are supported using the vector syntax of the attributeType domain.

A list is implemented by first encoding the number of values in the list as a nonnegative integer via Codebook-5, as described in Section  0. Afterwards values are encoded. 

E13.1.5.15.1.3.3 Representation of calcMode

calcMode (00 discrete | 01 linear | 10 paced | 11 spline) default='linear'

E13.1.5.15.1.3.4 Representation of keyTimes 

A semicolon-separated list of time values used to control the pacing of the animation. See above for list implementation.

E13.1.5.15.1.3.5 Representation of keyValues

The attribute value is a semicolon separated list of control point descriptions. See above for list implementation

E13.1.5.15.1.4 Representation of AnimAdditionAttrs

additive one bit: (replace=0 | sum=1)

accumulate one bit: (none=0 | sum=1)

E13.1.5.15.1.5 Representation of attributeType

2 bit represtation

00 XML

10 CSS

11 ‘auto’


E13.1.5.15.1.6 Representations of attributeName

First bit: 0 attributeName is a ‘style’ attribute; 1 non style attribute.

If ‘style’ attribute the attributeName is encoded as in0
All other attributeNames are encoded with 7 bits as follows:

	Attribute Name
	Id  
	Attribute Name
	Id
	Attribute Name
	Id
	Attribute Name
	Id

	style 
	0
	xlink:href
	25
	k4
	50
	limitingConeAngle
	75

	X
	1
	target
	26
	order
	51
	baseFrequency
	76

	Y
	2
	class
	27
	kernelMatrix
	52
	numOctaves
	77

	Width
	3
	dx
	28
	divisor
	53
	seed
	78

	Height
	4
	dy
	29
	bias
	54
	stitchTiles
	79

	Rx
	5
	rotate
	30
	targetX
	55
	filterRes
	80

	Ry
	6
	textLength
	31
	targetY
	56
	filterUnits
	81

	Cx
	7
	lengthAdjust
	32
	edgeMode
	57
	primitiveUnits
	82

	Cy
	8
	clipPathUnits
	33
	kernelUnitLength
	58
	gradientUnits
	83

	R
	9
	maskUnits
	34
	preserveAlpha
	59
	gradientTransform
	84

	x1
	10
	maskContentUnits
	35
	surfaceScale
	60
	spreadMethod
	85

	y1
	11
	mode
	36
	diffuseConstant
	61
	markerUnits
	86

	x2
	12
	in2
	37
	xChannelSelector
	62
	markerWidht
	87

	y2
	13
	type
	38
	yChannelSelector
	63
	markerHeight
	88

	points
	14
	values
	39
	azimuth
	64
	orient
	89

	D
	15
	tableValues
	40
	elevation
	65
	refX
	90

	matrix
	16
	slope
	41
	stdDeviation
	66
	refY
	91

	translate
	17
	intercept
	42
	in
	67
	patternUnits
	92

	scale
	18
	amplitude
	43
	radius
	68
	patternContentUnits
	93

	rotate
	19
	exponent
	44
	z
	69
	patternTransform
	94

	skewX
	20
	offset
	45
	specularConstant
	70
	fx
	95

	skewY
	21
	operator
	46
	specularExponent
	71
	fy
	96

	pathLength
	22
	k1
	47
	pointsAtX
	72
	method
	97

	viewBox
	23
	k2
	48
	pointsAtY
	73
	spacing
	98

	preserveAspectRatio
	24
	k3
	49
	pointsAtZ
	74
	startOffset
	99


E13.1.5.15.2 Element Declaration for 'Set' (<set>) Element

· Element identifier: 01011 

· Optional attributes:  StdAttrs, TEST, AnimTimingAttrs , AnimValueAttrs, AnimEventAttrs, AnimElementAttrs, AnimAdditionAttrs
to, attribute type
· Required attributes: attributeName 

E13.1.5.15.2.1 Representations of  to

 ‘to’ is encoded similar to attributeName

E13.1.5.15.3 Element Declaration for 'AnimateMotion' (<animateMotion>) Element

· Element identifier: 01100 

· Optional attributes:  StdAttrs, TEST, AnimTimingAttrs , AnimValueAttrs, AnimEventAttrs, AnimElementAttrs, AnimAdditionAttrs  ,
path, keyPoints, rotate, origin
· Required attributes: none

Note that calcMode is different from the general AnimValueAttrs.

E13.1.5.15.3.1 Representation of path

It is the same as the data representation of path element, as described in Section Error! Reference source not found..

E13.1.5.15.3.2 Representation of calcMode

calcMode (00 discrete | 01 linear | 10 paced | 11 spline) default='paced'

E13.1.5.15.3.3 Representation of keyPoints

keyPoints takes a semicolon-separated list of floating point values between 0 and 1. See ‘animate’ element for list implementation

E13.1.5.15.3.4 Representation of rotate

The value can be an angle or (auto | auto-reverse). The first two bits represent if the values is (00) auto, (01) auto-reverse, (11) angle. If it is angle the angle value is encoded with angle resolution See0.
E13.1.5.15.3.5 Representation of origin

The origin attribute is defined in the SMIL Animation specification [SMILANIM-ATTR-ORIGIN]. It has no effect in SVG.

E13.1.5.15.4 Element Declaration for 'AnimateTransform' (<animateTransform>) Element

· Element identifier: 01101

· Optional attributes:  StdAttrs, TEST, AnimTimingAttrs , AnimValueAttrs,  AnimEventAttrs, AnimElementAttrs, AnimAdditionAttrs attribute type,  type 

· Required attributes: attributeName
E13.1.5.15.4.1 Representation of type

The value is represented with 3 bits: (translate=0 | scale=100 | rotate=101 | skewx=110 | skewy=111)

E13.1.5.15.5 Element Declaration for 'AnimateColor' (<animateColor>) Element

· Element identifier: 11001 

· Optional attributes: :  StdAttrs, TEST,  AnimTimingAttrs , AnimValueAttrs AnimEventAttrs, AnimElementAttrs, AnimAdditionAttrs attribute type 
·  Required attributes: attributeName
The ‘values’ attribute for the 'animateColor' element consists of a semicolon-separated list of color values. See ‘animate’ element representation for list implementation.
E13.1.5.15.6 Element Declaration for 'mpath' (<mpath>) Element

· Element identifier: 1111100 

· Most used attributes: none

· Optional attributes:  StdAttrs, externalResourcesRequired

· Required attributes: xlink:href
E13.1.5.15.6.1 Representation of xlink:href (#URI)

If the URI is internal a numbering schema is used as described in Section 0; otherwise the URI is encoded as textual data as described in Section0.

E13.1.5.16 Fonts

E13.1.5.16.1 Element Declaration for 'Font' (<font>) Element

· Element identifier: 01111 

· Optional attributes:  StdAttrs, STYLE , externalResourcesRequired, horiz-origin-x, horiz-origin-y, vert-origin-x, vert-origin-y, horiz-adv-y
· Required attributes: horiz-adv-x
An SVG font is a font defined using SVG's ‘font' element. All the optional and requires attributes of the Font Element are real number values, See Section Error! Reference source not found.. Each 'font' element must have a ‘font-face’ child element that describes various characteristics of the font.

E13.1.5.16.1.1 Representation of ‘horiz-origin-x’

Value is a number. See E13.Error! Reference source not found.
E13.1.5.16.1.2 Representation of ‘horiz-origin-y’

Value is a number. See E13.Error! Reference source not found.
E13.1.5.16.1.3 Representation of ‘vert-origin-x’

Value is a number. See E13.Error! Reference source not found.
E13.1.5.16.1.4 Representation of ‘vert-origin-y’

Value is a number. See E13.Error! Reference source not found.
E13.1.5.16.1.5 Representation of ‘horiz-adv-y’
Value is a number. See E13.Error! Reference source not found.
E13.1.5.16.2 Element Declaration for ‘Font-Face’ (<font-face>) Element

· Element identifier: 10101 

· Optional attributes:  StdAttrs, STYLE, font-family, font-style, font-variant, font-weight, font-stretch, font-size, unicode-range, units-per-em, panose-1, stemv, stemh, slope, cap-height, x-height, accent-height, ascent, descent, widths, bbox, ideographic, alphabetic, mathematical, hanging, v-ideographic, v-alphabetic, v-mathematical, v-hanging, underline-position, underline-thickness, strikethrough-position, strikethrough-thickness, overline-position, overline-thickness
· Required attributes: none
E13.1.5.16.2.1 Representation of ‘font-family’  

The value is a string or ‘inherit’. The first bit is to signal inherit if it is set to zero, the text is encoded afterwards. See E13.Error! Reference source not found.
E13.1.5.16.2.2 Representation of ‘font-style’  

Values are represented with 2 bits:  (00) normal | (01) italic | (10) oblique | (11) inherit

E13.1.5.16.2.3 Representation of ‘font-variant’ 

Value is encoded as textual data as described in Section E13.0.

E13.1.5.16.2.4 Representation of ‘font-weight’  

Values are represented with 4 bits: (0000) normal | bold | bolder | lighter | 100 | 200 | 300
| 400 | 500 | 600 | 700 | 800 | 900 | (1110)inherit

E13.1.5.16.2.5 Representation of ‘font-stretch’

Value is encoded as textual data as described in Section0.

E13.1.5.16.2.6 Representation of ‘font-size’  

The value is a length or ‘inherit’. The first bit is to signal inherit if it is set to zero, the length is encoded afterwards.

E13.1.5.16.2.7 Representation of ‘unicode-range’ 

Value is encoded as textual data as described in Section E13.0.

E13.1.5.16.2.8 Representation of ‘units-per-em’ 

Value is a number.

E13.1.5.16.2.9 Representation of ‘panose-1’ 

Value is a list of number with 10 list elements. 10 nonnegative integers are encoded.

E13.1.5.16.2.10 Representation of ‘stemv’ 

Value is a number.

E13.1.5.16.2.11 Representation of ‘stemh’

Value is a number. 

E13.1.5.16.2.12 Representation of ‘slope’

Value is a number.

E13.1.5.16.2.13 Representation of ‘cap-height’ 

Value is a number.

E13.1.5.16.2.14 Representation of ‘x-height’ 

Value is a number.

E13.1.5.16.2.15 Representation of ‘accent-height’ 

Value is a number.

E13.1.5.16.2.16 Representation of ‘ascent’ 

Value is a number.

E13.1.5.16.2.17 Representation of ‘descent’ 

Value is a number.

E13.1.5.16.2.18 Representation of ‘widths’ 

Value is encoded as textual data as described in Section E13.0.

E13.1.5.16.2.19 Representation of ‘bbox’ 

Value is encoded as textual data as described in Section E13.0.

E13.1.5.16.2.20 Representation of ‘ideographic’ 

Value is a number.

E13.1.5.16.2.21 Representation of ‘alphabetic’ 

Value is a number.

E13.1.5.16.2.22 Representation of ‘mathematical’ 

Value is a number.

E13.1.5.16.2.23 Representation of ‘hanging’ 

Value is a number.

E13.1.5.16.2.24 Representation of ‘v-ideographic’ 

Value is a number.

E13.1.5.16.2.25 Representation of ‘v-alphabetic’ 

Value is a number.

E13.1.5.16.2.26 Representation of ‘v-mathematical’

Value is a number.

E13.1.5.16.2.27 Representation of ‘v-hanging’ 

Value is a number.

E13.1.5.16.2.28 Representation of ‘underline-position’ 

Value is a number.

E13.1.5.16.2.29 Representation of ‘underline-thickness’ 

Value is a number.

E13.1.5.16.2.30 Representation of ‘strikethrough-position’ 

Value is a number.

E13.1.5.16.2.31 Representation of ‘strikethrough-thickness’ 

Value is a number.

E13.1.5.16.2.32 Representation of ‘overline-position’ 

Value is a number.

E13.1.5.16.2.33 Representation of ‘overline-thickness’

Value is a number.

E13.1.5.16.3 Element Declaration for 'Glyphs' (<glyphs>) Element

· Element identifier: 01110 

· Optional attributes:  StdAttrs, STYLE , unicode, glyphName, d, horiz-adv-x, vert-adv-y, vert-origin-x, vert-origin-y, orientation, arabic-form, lang

· Required attributes: none

E13.1.5.16.3.1 Representation of ‘unicode’

Value is encoded as textual data as described in Section E13.0.

E13.1.5.16.3.2 Representation of ‘glyphName’

Value is encoded as textual data as described in Section E13.0.

E13.1.5.16.3.3 Representation of ‘d’

The graphics that make up the 'glyph' can be either a single path data specification within the d attribute or arbitrary SVG as content within the 'glyph'. CVG supports a single path data speciation, which is handled similar to path data representation, See Section E13.Error! Reference source not found.. 

E13.1.5.16.3.4 Representation of ‘orientation’

Value is represented with one bit (0)h|(1)v.

E13.1.5.16.3.5 Representation of ‘arabic-form’

Value is represented with 2 bits (00)initial | medial | terminal | (11) isolated
E13.1.5.16.3.6 Representation of ‘lang’

Value is encoded as textual data as described in Section E13.0.

E13.1.5.16.4 Element Declaration for 'Missing-Glyph' (<missing-glyph>) Element

· Element identifier: 10110 

· Optional attributes:  StdAttrs, STYLE , unicode, glyphName, d, horiz-adv-x, vert-adv-y, vert-origin-x, vert-origin-y
· Required attributes: none

E13.1.5.16.5 Element Declaration for 'Hkern' (<hkern>) Element

· Element identifier: 10111 

· Optional attributes:  StdAttrs, g1, g2, u1, u2 
· Required attributes: k

E13.1.5.16.5.1 Representation of u1, u2

Value is encoded as textual data as described in Section E13.0.

E13.1.5.16.5.2 Representation of g1, g2

Value is encoded as textual data as described in Section E13.0.

E13.1.5.16.5.3 Representation of ‘k’

Value is a number. See E13.Error! Reference source not found.
E13.1.5.16.6 Element Declaration for 'Vkern' (<vkern>) Element

· Element identifier: 11000 

· Optional attributes:  StdAttrs, g1, g2, u1, u2
· Required attributes: k

E13.1.5.17 Metadata

E13.1.5.17.1 Element Declaration for 'metadata' (<metadata>) Element

· Element identifier: 1111001 

· Optional attributes:  StdAttrs, EXT, CDATA
· Required attributes: none
CVG encodes metadata content as CDATA (UNICODE text) and leave it to the viewer how to handle the content.
E13.1.5.18 Extensibility 

Element Declaration for ' foreignObject' (<foreignObject>) Element

· Element identifier: 1111011 

· Optional attributes:  StdAttrs, STYLE, TRANSFORM, TEST, x, y, CDATA      
· Required attributes: width, height 

E13.2 Representation of Basic Data Types

All the basic data types are scaled with one of the resolution values: 

· “Spatial Resolution" field, which denotes the fixed-point sub-integer resolution used in the representation of coordinates, sizes, etc.

· "Time Resolution" field, which specifies the resolution used in time representations. The value of this field times 10 ms. gives the increments used in the time representations. For example, if this field is 5, the time representations are multiplied by 50 milliseconds to get the correct time.

· "Scale resolution" field.  

· "Angle resolution" field.  

 and represented by integers inside the CVG format.

E13.2.1 Representation of Integer

An integer is specified as an optional sign character ('+' or '-') followed by one or more digits "0" to "9". If the sign character is not present, the number is non-negative. Unless stated otherwise for a particular attribute or property, the range for a integer encompasses (at a minimum) -2147483648 to 2147483647.

E13.2.1.1 Representing a Nonnegative Integer val via Codebook-cl

Consider the representation of a positive integer value val of unknown dynamic range,  according to a codebook parameterized by a constant code length cl  (Note: This representation can be used only when val is known from the context to be a nonnegative integer). The method of encoding is as follows:

Each value val in the range [0, 2cl-2] is encoded by a cl-bit unsigned binary representation of val.

·  If val is greater than 2cl-2, a codeword consisting of cl consecutive ones (cl-bit unsigned binary representation of 2cl-1) indicates this. Then, encoding iterates on val-2cl+1. The iteration continues this way, until the residue is in the range [0, 2cl-2]. 

Example:
Representation of val=9 by Codebook-4 is "1001". The representation of val=18 by Codebook-4 is "1111  0101".

E13.2.1.2 Representation of cl, and Modes of Representation

In some contexts, it is useful to signal the value of cl explicitly. In these cases, the value of cl is represented as follows:

First, there is a 1-bit indicator of whether the cl to be used is equal to the default cl (0) , as defined by the global size attributes, configuration parameters, and mode of representation; or it is different (1) than the default cl . If this indicator bit is 1, a 4-bit representation of cl follows(Practically, cl cannot be larger than 14. A value of 15 is reserved for extensions.).

The default cl is 7 for the absolute mode of representation.  

In relative mode of representation, the default cl value is 4. In this mode, an offset of 2cl-1-1 is added to val before representation. So, for default cl, val+7 is encoded instead of val. (This mode is useful in encoding possibly negative numbers. See the example in Section Error! Reference source not found. below.)

E13.2.1.3 Representing a Nonnegative Integer of Unknown Upper Bound

A nonnegative integer of unknown upper bound is represented by sending the code length cl first, and then using codebook-cl for the representation of the nonnegative integer.
Example:
In absolute mode, 

val=65  can be represented by "0 1000001" (8 bits);

val=3 by "1 0010 11 00” (9 bits) or “1 0011 011" (8 bits); and 

val=130 by "1 1000 10000010" (13 bits) or by "0 1111111 0000011" (17 bits). 

E13.2.1.4 Representing an Integer val via Codebook-cl 

Now let us consider the representation of an integer value val of unknown dynamic range,  according to a codebook parameterized by a constant code length cl.  The method of encoding is as follows:

· Each value val in the range [0, 2cl-2] is encoded by a cl-bit unsigned binary representation of val.

· If val is outside this interval, a codeword consisting of cl consecutive ones (cl-bit unsigned binary representation of 2cl-1) indicates this. Then, 1-bit representation of whether val is less (0) than 0, or it is greater (1) than 2cl-2 follows. If it is less than 0, -(val + 1) is encoded as a nonnegative integer via Codebook-cl. Otherwise, val-2cl+1 is encoded as a nonnegative integer via Codebook-cl.

E13.2.1.5 Representing an Integer of Unknown Dynamic Range

An integer of unknown dynamic range is represented by sending the code length cl first, and then using codebook-cl for the representation of the integer.

Example:
In absolute mode, (default cl=7)

val=65  can be represented by "0 1000001" (8 bits);

val= -6 by "1 0011 111 0 101" (12 bits).

In relative mode, (default cl=4)

val=9  can be represented by "0 1111 1 0001" (10 bits) or "1 0101 11000" (10 bits);

val=7  can be represented by "0 1110" (5 bits)

val= -6 by "0 0001" (5 bits).

E13.2.2 Representation of Real Number Values

CVG represents real number values as integers. Conversion of real number values to integer is performed via scaling by one of the global parameter {spatial, time, scale, angle} Resolution, followed by rounding to nearest integer. Afterwards the integer values are represented as in Section Error! Reference source not found. 
Spatial Resolution n specifies the number of binary digits after the point. It means: multiply the real number with 2^n to compute the integer representation at Encoder; divide the integer number with 2^n to compute the real number at Decoder.

For example, if this field has a value of 3, the coordinate values will be represented by 3 bits after the point, or in other words in increments (or resolution) of 1/8.

Example 1
Spatial resolution=1

x and y values inside the original SVG FILE: <rect x=10.5 y=100>

x and y values as integer inside CVG: [rect][x][21][y][200]

x and y values in the receiver after decoding: rect(10.5,100)

E13.3 Length

A length is a distance measurement. The format of a <length> is a <number> optionally followed immediately by a unit identifier. CVG uses the following binary representation for the length for SVGB and SVG Full length representation; SVGT has a specific length representation, see Section Error! Reference source not found., where unit is represented as in Section Error! Reference source not found. and the number as in the previous section :


Figure 7: Length Representation

E13.2.4 Coordinate
A <coordinate> represents a <length> in the user coordinate system that is the given distance from the origin of the user coordinate system along the relevant axis (the x-axis for X coordinates, the y-axis for Y coordinates).

SVGT Coordinate Representation for Coordinates other than width and height in the outmost <svg> element: First the codebook parameter cl is encoded, as described in Section Error! Reference source not found.. After this, the x- and y-coordinates are encoded as integers via Codebook-cl  (in absolute mode), as described in Section Error! Reference source not found.. Integerization is performed via scaling by the global parameter spatialResolution, followed by rounding to nearest integer.

Coordinate Representation for all other Coordinates:

Coordinate representation starts with a 1-bit indicator of whether user coordinate system(0), or a unit based representation (1), will be used. If a unit based representation will be used, the unit must be specified. (See SectionError! Reference source not found.)

Afterwards, the codebook parameter cl is encoded, as described in Section Error! Reference source not found.. After this, the x- and y-coordinates are encoded as integers via Codebook-cl  (in absolute mode), as described in Section Error! Reference source not found.. Integerization is performed via scaling by the global parameter spatialResolution, followed by rounding to nearest integer.


















































































































Body





Sub Header





Main Header





Type Id





Version #





Configuration





11 Bits





18 Bits





5 Bits





Variable # Bits





Body Size





Element 1





Element 2





Elementn-1





 Var.Bits





 Var.Bits





 Var.Bits





Var. Bits





El.Identification





El. Size





Has Children





El. Attributes





 Var.Bits





 Var.Bits





Var. Bits 





B





G





R





none





inherit





number





unit








� In this context, "available" means possible occurrence in the current path data, and is determined by the configuration part of the path data.





�PAGE \# "'PAGE: '#'�'"  �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.


�PAGE \# "'PAGE: '#'�'"  �� Enter the CR number here. This number is allocated by the 3GPP support team.


�PAGE \# "'PAGE: '#'�'"  �� Enter the revision number of the CR here. If it is the first version, use a "-".


�PAGE \# "'PAGE: '#'�'"  �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�


�PAGE \# "'PAGE: '#'�'"  �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.


�PAGE \# "'PAGE: '#'�'"  �� Mark one or more of the boxes with an X.


�PAGE \# "'PAGE: '#'�'"  �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.


�PAGE \# "'PAGE: '#'�'"  �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.


�PAGE \# "'PAGE: '#'�'"  �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�


�PAGE \# "'PAGE: '#'�'"  �� Enter the date on which the CR was last revised.


�PAGE \# "'PAGE: '#'�'"  �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".


�PAGE \# "'PAGE: '#'�'"  �� Enter a single release code from the list below.


�PAGE \# "'PAGE: '#'�'"  �� Enter text which explains why the change is necessary.


�PAGE \# "'PAGE: '#'�'"  �� Enter text which describes the most important components of the change. i.e. How the change is made.


�PAGE \# "'PAGE: '#'�'"  �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).


�PAGE \# "'PAGE: '#'�'"  �� Enter each the number of each clause which contains changes.


�PAGE \# "'PAGE: '#'�'"  �� Enter an X in the box if any other specifications are affected by this change.


�PAGE \# "'PAGE: '#'�'"  �� List here the specifications which are affected or the CRs which are linked.


�PAGE \# "'PAGE: '#'�'"  �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.


�PAGE \# "'Page: '#'�'"  �Page: 24��� We agree with these changes.





_1052858959.doc


Control Byte







Reference







 Data Length







Positioning



 Information







Extended Object Data







1







2,3







4







5







6,7







Type



Identifier











Extended Object Header Information







Extended Object Data







Octet Number







UDHL











Concatenation Info







IEI







E.O.*







IEIDL











Extended Object Header







Extended Object Data











UDHL







Concatenation Info







IEI







E.O.*







IEIDL











Continuation of Extended Object Data







TPDU 2







TPDU 1







8.....n







* E.O. means Extended Object












