	3GPP TSG-T2 #16

Sophia Antipolis, France
11-16 February 2002
	T2-020164

	
	

Agenda Item:
Persistent Network-Based Storage

Source:
Openwave Systems, Inc.

Title:
Commentary on Persistent Network-Based Storage Functions

Document for:
Discussion for support of accompanying CR T2-020163

Within the 3GPP community there is a desire to have network-based storage defined by 3GPP, to allow a more consistent interface on the UE in terms of manipulating messages in the network storage. SA1 recently approved SP-010748, a CR to TS22.140, that defines more clearly how the network based storage should operate. The following discussion presents some possible use cases for these features, for the purpose of supporting the suggested specifications that occur in the accompanying CR.

Persistently stored messages have a “state” and other attributes associated with them. The “MM state” can be completely controlled by the client, but has specific values, which are mutually exclusive of each other, that are applied by default depending upon the most recent transaction involving the MM. The defined states are: Draft, Sent, New, Retrieved, and Forwarded.

Other attributes may be represented with keyword flags. For example, an MMS User Agent may allow the user to set a Personal flag on selected MMs, allowing personal MMs to be easily collected.

· The MMS shall allow an MMS service provider to configure MMS in such a way that one, several or all incoming MMs of a particular user be stored persistently in a network based repository

· The MMS shall allow an MMS service provider to configure MMS in such a way that one, several or all submitted MMs of a particular user be stored persistently in a network based repository

· The MMS shall be able to support a request from a sender to persistently store a sent MM in a network based repository at the time of sending

The cases of automatically storing all incoming or submitted MMs must be handled by the MMS Relay/Server implementation, without assistance from the MMS User Agent.

To handle the case of persistently storing individual submitted MMs, new information elements, called Store and MM_State, are added to MM1_submit.REQ. The Store parameter causes the MMS Relay/Server to store a copy of the submitted MM into the originator’s MMBox.

· The MMS shall be able to support a request from a user to persistently store a MM for which he received a notification in a network based repository

To handle the case of persistently storing individual incoming MMs, a new transaction called MM1_mmbox_store is added. Given a Message Reference from a preceding notification, the store transaction causes the MMS Relay/Server to store the referenced message into the requestor’s MMBox.

Please see Figure 1.

[image: image1.wmf]MM1_notification.REQ

+ MM Ref

MM1_store.RES

+ MM Ref

MMS

UA

MMS

Relay/Server

MM1_store.REQ

+ MM Ref. State, Flags

MMS

UA

MMS

Relay/Server

MM1_forward.REQ

+ Store, MM State, Flags

MM1_forward.RES

+ Store status

MM1_notification.REQ

+ MM Ref

Store Incoming MM

Forward & Store MM

MM1_mmbox_upload.REQ

+ MM, State, Flags

MMS

UA

MMS

Relay/Server

MM1_mmbox_upload.RES

+ MM Ref

Upload & Store

Incoming MM

MM1_submit.REQ

+ MM, Store, State, Flags

MMS

UA

MMS

Relay/Server

MM1_

mmbox_

store.RES

+ MM Ref, State

Submit & Store

Incoming MM

Figure 1 – MMBox Store Transactions

In addition to Store, new MM State and MM Flags information elements are used to set corresponding information elements in the MM being stored.

The cases of persistently storing several MMs would require the configuration of a filter by which the several incoming or submitted MMs are recognized. A typical use case might be the automatic storing of all MMs from one’s significant other or family members. Since it will not be possible to specify and agree upon any kind of filtering mechanism within the Release 5 timeframe, which is the current goal, we recommend that the fulfillment of the “several MMs” aspect of these requirements be deferred as a Release 6 work item.

· The MMS shall be able to support a request from a user to upload one or more MMs into a network based repository for persistent storage

To fulfill this requires a new transaction, called “MM1_mmbox_store”. To store a single MM is a relatively simple matter – the new MM1 MMBox Store request is quite similar to MM1 Submit request. To store “more” MMs is not simple, since TS23.140 has no specification for encapsulating multiple MMs, except possibly using MIME. Even if we extend the specifications to include a “multipart/mixed” MIME usage, there is another problem: errors occurring during the transmission of multiple MMs require a more complex reporting mechanism than is currently specified in any of the transactions.

For example, if an error occurs during the storing of three MMs, did any of the MMs actually get stored? If so, then multiple statuses must be returned to indicate which MMs were stored, and which were not. For the sake of simplicity, it is suggested that the storing of multiple MMs be accomplished with multiple MM1 Store requests, on a one-to-one basis.

This function is required in order to save partially composed Draft messages. It is also needed for those operators wishing to provide subscribers with a function by which MMs previously saved to local storage on the mobile terminal can be transferred to persistent, network-based storage.

If a subscriber wishes to change MMS terminals, many subscribers may prefer to transfer and save their handset-resident MMs. Currently, this might possibly only be accomplished with a transfer of the SIM card, but may also not be successful unless both MMS terminals agree on the formats of the MM storage within the SIM card.

As a side-benefit of this function, operators enable their subscribers the ability to change MMS phones (with locally saved MMs) without having to consider changing MMS service providers. In short, this function allows operators to collect “value”.

· The MMS shall be able to support a request from a user to receive one or more MMs that are stored in a network based repository

This function can be easily accomplished with a subtle adaptation of the MM1 Retrieve request. MM1_retrieve.REQ currently takes an opaque MM reference (presumably a URI of some kind) that was previously passed on a notification request. If the specification of MM1_retrieve.REQ is expanded to allow the MM Reference to be either from a notification or from a view response, then MM1_retrieve can do “double duty” as the initial retrieve function and as the “fetch” function from the MMBox. Please see Figure 2.

This function is the primary rationale of persistent, network-based storage: being able to retrieve MMs repeatedly, after notification. This is a mandatory feature for those operators wishing to offer multiple access methods to stored MMs. It may also be a significant revenue-generating function for operators with subscribers wishing to retain their more interesting or valuable MMs.

· The MMS shall be able to support a request from a user to delete one or more MMs that are stored in a network based repository

If subscribers are paying an extra premium for persistent storage, then they must have the capability of managing that storage. MMs that are saved must, at some time, be capable of being deleted upon request by the subscriber. We will call this the “MM1 Delete” request, and is illustrated in Figure 2.

The implementation of this function requires that it also be possible to retrieve a list of stored MMs, as well as some of the associated information elements by which the subscriber can make storage management decisions. This is another usage of the “MM1 View” function – to provide information to the MMS User Agent in order to allow the user the ability to select which MMs are to be deleted.

· The MMS shall be able to support a request from a user to forward one or more MMs that are stored in a network based repository to another destination without being delivered first to that user.

Once MMs are stored in persistent, network-based storage, the subscriber should have the capability of causing one or more of the MMs to be forwarded to another destination. Also, it must not be necessary to download all of the MM in order for the subscriber to determine that it should be forwarded.

This function can also be achieved with a slight modification to an existing MM1 transaction: MM1 Forward request. If the Message Reference can be the reference from either a previous notification request or from a previous MMBox View response, then MM1 Forward can be used to achieve forwarding on new, incoming MMs as well as persistently stored MMs. This is illustrated in Figure 2.

· The MMS shall be able to support a request from a user to view the list of MMs and MM related attributes, such as sender, recipient, subject and date/time, in a network based repository

This function requires a new MM1 View request and response pair. MM1_mmbox_view.REQ will take several input parameters: Message Reference List – a list of messages to view, or alternatively, select – a list of MM State or MM Flags keywords that specify which MMs to list; start – an index to the first MM to return for the listing; limit – the maximum number of MMs to return in the listing; attribute list – a list of information elements to be returned as part of the response for each MM in the listing.

The most common selection will be for New MMs – to view those MMs that have been delivered and stored since the previous view request. Another common selection will likely be Sent MMs, to view only those MMs that have been sent.

This is a key function, which is required by several of the other functions: to be able to acquire information about one or more MMs without having to download each MM in its entirety. Note that this requirement is not exhaustive in its details: the implementation of the MMS User Agent, along with the subscriber, should determine which information elements of each MM are downloaded to the mobile terminal. In other words, the MMS Relay must be able to support a configurable list of attributes (ie: the “attributes” parameter) to be downloaded rather than a fixed set. This will make the MMS Relay’s implementation of this function compatible with all MMS User Agents.

Another implicit requirement of this function is the capability of presenting “batches” of the listing of MMs (via the “start” and “limit” parameters), rather than overwhelming the mobile terminal with a complete listing of all the MMs in the MMBox. In other words, this function must support the capability of requesting a batch or range of results, so that the mobile terminal can properly manage its own memory resources. If a subscriber has managed to save 50 or a hundred MMs, it is not feasible to expect a listing of that many MMs to be acceptable to mobile terminals. They must be able to make multiple, repeated requests for different ranges, or batches, of the listing. The MMBox view transaction pair is illustrated in Figure 2 below.

[image: image2.wmf]MMS

UA

MMS

Relay/Server

MMS

UA

MMS

Relay/Server

MM1_forward.REQ

+ MM Ref, Addrs, etc.

MM1_forward.RES

+ Status

Retrieve Stored MM

Forward Stored MM

MM1_mmbox_view.REQ

+ MM Refs or Select,

Attributes, Totals, Quotas

MMS

UA

MMS

Relay/Server

MM1_mmbox_view.RES

+ View info, Totals, Quotas

View List of MMs

MM1_

mmbox_

delete.REQ

+ MM Refs

MMS

UA

MMS

Relay/Server

MM1_

mmbox_

delete.RES

+ status(es)

Delete MMs

MM1_retrieve.REQ

+ MM Ref

MM1_retrieve.RES

+ MM, State, Flags, etc.

Figure 2 Retrieving MMs from an MMBox

_1074022311.unknown

_1074022227.unknown

