	3GPP TSG-T2 #16

Sophia Antipolis, France

11-15 February 2002
	T2-020222

Agenda Item:
Vector Graphics for EMS

Source:
Motorola

Title:
SVG Compatibility with WVG
Document for:
EMS subgroup (3GPP T2 –SWG3)

SVG Compatibility with WVG

Version 0.1

Status: draft

Motorola, Lexicus Division

3145 Porter Drive

Palo Alto, CA 94304

Internet: http://www.mot.com/lexicus

Phone: 1 (800) LEXICUS

Release Date: February 12, 2002
Table of Contents

3Introduction: SVG Compatibility mechanism in WVG

3WVG compatibility list with SVG Tiny/Basic

3Shapes

4Attributes/Styling

4Image

4Color

4Time

4Text

5Font

5Conditional Processing

5Coordinate System, Transform

6Grouping

6Animation

6Filter

7Gradients and Patterns

7Clipping, Masking and Compositing

7Linking

7Metadata and Extensibility

7Interactivity

8Scripting

9Extended Element Encoding Information

Introduction: SVG Compatibility mechanism in WVG

This document describes a briefly how to achieve SVG Tiny representation inside of a binary encoded WVG stream. WVG is a subset of SVG Tiny however it also includes a mechanism called the extended element, which allows future content to be encoded while existing WVG decoders can gracefully skip over the new content. This means that in the EMS world the current WVG specification can be used to transmit content for small-animated vector graphics and ink images while maintaining transparent forwards and backwards compatibility with future versions. When MMS becomes mature and when the SVG Tiny specification is complete a revision to the WVG specification, essentially an updated BNF grammar, can be written as outlined in the last part of this document which allows future versions of WVG to efficiently represent the SVG Tiny content in compact binary form while not losing any backwards compatibility for the content and codecs written for EMS applications.

Necessarily this also means that an extra software module can be added to an WVG encoder/decoder pair to read and write SVG/XML output. However in regular WVG (such as on a EMS handset) content it is not necessary to use XML there by saving code space required for the XML parser and the WVG to SVG XML output library.

Note that SVG in its pure form is very complex as it was developed for use by graphics professionals (SVG contains things such as patterned gradient fills with optical filtered effects). This means that a subset must be used to represent content which can be rendered on a small, CPU and memory constrained devices. More information on SVG and its mobile profiles can be found at www.w3.org/TR/SVGMobile

.
WVG compatibility list with SVG Tiny/Basic

This section shows the differences between the various SVG flavors and has notes on WVG when being used to represent SVG Tiny content.

WVG – Wireless Vector Graphic format from Bijitec and Motorola

Mobile SVG – SVG Basic + SVG Tiny (W3C Working Draft 8 January 2002)
Note: SVG = SVG 1.1

Shapes

	
	WVG
	SVG Tiny
	SVG Basic
	Mobile SVG
	SVG

	Rectangle
	Supported
	Supported
	Supported
	Supported
	Supported

	Circle
	Supported
	Supported
	Supported
	Supported
	Supported

	Ellipse
	Supported
	Supported
	Supported
	Supported
	Supported

	Line
	Supported
	Supported
	Supported
	Supported
	Supported

	Polyline
	Supported
	Supported
	Supported
	Supported
	Supported

	Polygon
	Supported
	Supported
	Supported
	Supported
	Supported

	Path
	Elliptical arc not supported
	Elliptical arc not supported
	Elliptical arc not supported
	Elliptical arc not supported
	Supported

Attributes/Styling

	
	WVG
	SVG Tiny
	SVG Basic
	Mobile SVG
	SVG

	Stroke
	Supported
	Supported
	Supported
	Supported
	Supported

	Stroke Width
	Supported
	Supported
	Supported
	Supported
	Supported

	Fill
	Supported
	Supported
	Supported
	Supported
	Supported

	Other Color & Painting attributes
	No
	*
	*
	*
	Supproted

*: The next Working Draft will include the list of style properties in SVGB and SVGT, with limitations on allowed values.
Image

	
	WVG
	SVG Tiny
	SVG Basic
	Mobile SVG
	SVG

	Image format supported
	WBMP, JPEG, PNG by extended elements
	WBMP
	JPEG, PNG, WBMP
	JPEG, PNG, WBMP*
	JPEG, PNG, WBMP

*: Refer to www.w3.org/TR/SVGMobile

 for details

Color

	
	WVG
	SVG Tiny
	SVG Basic
	Mobile SVG
	SVG

	SRGB
	Supported by extended element
	Supported
	Supported
	Supported
	Supported

Time

	
	WVG
	SVG Tiny
	SVG Basic
	Mobile SVG
	SVG

	Time unit
	Supported by extended element
	Supported
	Supported
	Supported
	Supported

Text

	
	WVG
	SVG Tiny
	SVG Basic
	Mobile SVG
	SVG

	Encoding
	Unicode, ASIIC
	Unicode, ASCII, UTF-8
	Unicode, ASCII, UTF-8
	Unicode, ASCII, UTF-8
	Unicode, ASCII, UTF-8

	Text
	Tagged Text support.

Placed Text supported by extended element
	Supported
	Supported
	Supported
	Supported

	Text on a path
	Not supported
	Not supported
	Supported
	Supported*
	Supported

	Tspan
	Not supported
	Not supported
	Supported
	Supported*
	Supported

	Tref
	Not supported
	Not supported
	Supported
	Supported*
	Supported

*: Refer to www.w3.org/TR/SVGMobile

 for details

Font

	WVG
	SVG Tiny
	SVG Basic
	Mobile SVG
	SVG

	Supported by extended element
	Supported*
	Supported*
	Supported*
	Supported

*: Refer to www.w3.org/TR/SVGMobile

 for details

Conditional Processing

	WVG
	SVG Tiny
	SVG Basic
	Mobile SVG
	SVG

	Supported by extended element
	Supported
	Supported
	Supported
	Supported

Coordinate System, Transform

	
	WVG
	SVG Tiny
	SVG Basic
	Mobile SVG
	SVG

	Translate
	Supported
	Supported
	Supported
	Supported
	Supported

	Scale
	Supported
	Supported
	Supported
	Supported
	Supported

	Rotate
	Supported
	Supported
	Supported
	Supported
	Supported

	Skew
	Supported by extended element
	Supported
	Supported
	Supported
	Supported

	ViewBox
	Supported by Graphic Lib and extended element
	Supported
	Supported
	Supported
	Supported

	PreserveAspectRatio
	Supported by Graphic Lib and extended element
	Supported
	Supported
	Supported
	Supported

Grouping

	WVG
	SVG Tiny
	SVG Basic
	Mobile SVG
	SVG

	Supported
	Supported
	Supported
	Supported
	Supported

Animation

	
	WVG
	SVG Tiny
	SVG Basic
	Mobile SVG
	SVG

	Linear
	Supported
	Supported
	Supported
	Supported
	Supported

	Spline
	Not supported
	Not Supported
	Supported
	Supported*
	Supported

	Paced
	Supported by animation element
	Supported
	Supported
	Supported*
	Supported

	Discrete
	Supported by frame animation
	Supported
	Supported
	Supported*
	Supported

	Script Animation
	Not supported
	Not supported
	Supported
	Supported*
	Supported

Linear

Simple linear interpolation between values is used to calculate the animation function. Except for 'animateMotion', this is the default calcMode.

Paced

Defines interpolation to produce an even pace of change across the animation. This is only supported for values that define a linear numeric range, and for which some notion of "distance" between points can be calculated (e.g. position, width, height, etc.). If "paced" is specified, any keyTimes or keySplines will be ignored. For 'animateMotion', this is the default calcMode.

Discrete

This specifies that the animation function will jump from one value to the next without any interpolation.

Spline

Interpolates from one value in the values list to the next according to a time function defined by a cubic Bézier spline. The points of the spline are defined in the keyTimes attribute, and the control points for each interval are defined in the keySplines attribute.

*: Refer to www.w3.org/TR/SVGMobile for details

Filter

	WVG
	SVG Tiny
	SVG Basic
	Mobile SVG
	SVG

	Not supported
	Not supported
	Supported*
	Supported*
	Supported

*: Refer to www.w3.org/TR/SVGMobile for details

Gradients and Patterns

	
	WVG
	SVG Tiny
	SVG Basic
	Mobile SVG
	SVG

	Gradient
	Not supported
	Not supported
	Supported*
	Supported*
	Supported

	Patten
	Not supported
	Not supported
	Supported*
	Supported*
	Supported

*: Refer to www.w3.org/TR/SVGMobile for details

Clipping, Masking and Compositing

	
	WVG
	SVG Tiny
	SVG Basic
	Mobile SVG
	SVG

	Clipping
	Not supported
	Not supported
	Supported*
	Supported*
	Supported

	Masking
	Not supported
	Not supported
	Supported*
	Supported*
	Supported

	Compositing
	Not supported
	Not supported
	Supported*
	Supported*
	Supported

*: Refer to www.w3.org/TR/SVGMobile for details

Linking

	
	WVG
	SVG Tiny
	SVG Basic
	Mobile SVG
	SVG

	Link to SVG Content
	Not supported

	Not Supported
	Supported
	Supported*
	Supported

	Link to Web Resources
	Supported by extended element
	Supported
	Supported
	Supported*
	Supported

*: Refer to www.w3.org/TR/SVGMobile

 for details

Metadata and Extensibility

	WVG
	SVG Tiny
	SVG Basic
	Mobile SVG
	SVG

	Supported
	Supported
	Supported
	Supported
	Supported

Interactivity

	WVG
	SVG Tiny
	SVG Basic
	Mobile SVG
	SVG

	Supported by extended element
	Supported*
	Supported*
	Supported*
	Supported

*: SVGB and SVGT support a subset of the SVG 1.1 interactivity feature set. The subset will be defined in the next working draft.
Refer to www.w3.org/TR/SVGMobile for details

Scripting

	WVG
	SVG Tiny
	SVG Basic
	Mobile SVG
	SVG

	Not supported
	Not supported
	Supported*
	Supported*
	Supported

*: Refer to www.w3.org/TR/SVGMobile for details

Extended Element Encoding Information

This section describes an outlined approach for how to represent extended elements in WVG binary streams. All WVG codecs can handle the parsing of the extended element header listed below. This header describes the type and size of the extended element. Extended elements can theoretically be up to 4GB in size (more information on how extended elements are represented is in the CR 23040 document). If the WVG implementation is only EMS compliant then it will know how large the extended element is and simply skip over this data. If the WVG implementation is SVG-Tiny compliant then it will parse the extended element using a scheme as outline in the next section. This is not a final representation of SVG compatibility mode since we are waiting for the final W3C recommendation to be complete at which point the final form of this grammar will be submitted to the appropriate 3GPP committees (most likely SA4).

Extended Elements (General BNF)

<Extended>::=<ElementType><SizeOfSize><Size><ExtendedObjType>{<payload>}

<SizeOfSize>::=’unsigned_5_bit integer’

; the bit size of the Size field

<Size>::=’unsigned-<SizeOfSize>-bit integer’

; size of extended element data after ExtendedObjType, in bytes

<ExtendedObjType>::=’unsigned_8_bit integer’

; element type of extended element

<payload>::=’unsigned_8_bit integer’

; encoded extended element data. The size should be the
; same as the Size field of Extended, above.

Payload for each extended element:

1. Change Time Unit

<ChangeTimeUnite>::=<TimeUnit>

<TimeUnit>::=’unsigned_16_bit integer’

; time unit measured in ms

2. Interactive

<Interactive>::=<TrigObjIndex><TargetObjIndex><Event><Action>

<TrigObjIndex>

; the element that the event is triggered

<TargetObjIndex>

; the target element that the action will be performed

<Event>

; event at the TrigobjIndex

<Action>

; action will be performed on the event

3. Extended Display Element

<ExtenedDisplayElement>::=<TargetObjIndex><TransformMatrix><OverrideAttributes>

<TargetElementIndex>

; target element index

<TransformMatrix>::=<a><c><d><e><f>

; 3x2 transform matrix

[image: image1.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

1

0

0

f

d

b

e

c

a

<OverrideAttributes>

; override attributes set

4. View Box

<ViewBox>::=<MinX><MinY><ViewBoxWidth><ViewBoxHeight>

<MinX><MinY>

; translate x,y

<ViewBoxWidth><ViewBoxHeight>
; view box width/height

5. Change Palette

<ChangePalette>::=<ColorIndex><NewColor>

<ColorIndex>

; replaced color index

<NewColor>

; 32 bits new color

6. Link URL

<LinkURL>::=<ObjIndex><URL>

<ObjIndex>

; index of element that will trigger the url link

<URL>

; url link

7. Font

::=<FontFamily><FontStyle><FontSize><FontWeight>

<FontFamily>

; font name

<FontStyle>::=’unsigned_1_bit integer’

; normal, italic

<FontSize>

; size of font

<FontWeight>::=’unsigned_1_bit integer’

; normal, bold

8. Placed Text

<PlacedText>::=<Encoding><FontID><TextString><StartX><StartY><TextBoxWidth><TextBoxHeight><TextColor>

<Encoding>

; encoding, Unicode, ASCII…

<FontID>::=’unsigned_16_bit integer’

; element id of a font element

<TextString>

; the text

<StartX>

; text box top left corner x

<StartY>

; text box top left corner y

<TextBoxWidth>

; text box width

<TextBoxHeight>

; text box height

<TextColor>

; attribute set define the text color and background color

9. Conditional Processing

<Goto>::=<NextObjIndex>

; goto next element

<If>::=<NumOfCondition><ConditionList><ThenObjIndex>

<NumOfCondition>

; number of conditions in the list

<ConditionList>

; a list of condition tags, if either one is false, then the whole is false

<ThenObjIndex>

; if all condition is true, go to this element

_1072266885.unknown

