
	3GPP TSG-T2#15

Cancun, Mexico

26-30 November 2001
	T2-011045

Source:
Ericsson, Nokia, Siemens, ZOOMON
Title:
A compression method for SVG content
Document for:
Discussion
Agenda Item:

1. Background

2D vector graphics is likely to become an important content type for applications in the mobile environment.

In a separate input document to the 3GPP T2#15 meeting (see [1]) we proposed that W3C Scalable Vector Graphics (SVG) (see [3]), and in particular the SVG Mobile Profile, SVG Tiny (see [2]), is considered as the format for 2D vector graphics content in EMS.
SVG is a textual XML language, which has the advantage of a good readability and easy integration with other Internet formats.

On the other hand, SVG, in original XML format, is too large to be sent to mobile terminals in an efficient manner. Generic compression mechanisms, such as Zip, WBXML and other proposed generic compression methods for EMS, cannot be applied for efficient compression of SVG because of their poor compression ratio.
2. A proposal for a compressed method for SVG content

In parallel with the ongoing work for the definition of the Mobile SVG profiles in the W3C (see [2]), the authors of this contributions have been addressing the need of defining an efficient compression scheme that facilitates the delivery in compact for SVG content over wireless channels, and its rendering on resource-limited devices, such as low-end mobile phones.

We present to the attention of the group a proposal of a compression scheme for SVG content that in our opinion efficiently solves the problem of delivering and rendering vector graphic content on low-end mobile terminals. We introduce in the following the most important design principles that inspired our work and provide some information about the performance of the method.

The complete technical specification is included in the submission as Annex A. In this document, the compression scheme is applied to the elements that are included in the current set of SVG-Tiny profile of Mobile SVG. The reason is that we believe that the low-end terminals targeted by SVG-Tiny are also those that will mostly benefit form the compression of SVG. However, the compression method has been designed so as to allow straightforward extensibility to richer profiles, if needed.
In the following, we refer to the proposed method for the compression of SVG as “Compact Vector Graphics” (CVG).

In the separate contribution to 3GPP-T2#15 by the authors (see [1]), CVG is proposed as a compression method for SVG Tiny in EMS
3. Design Principles

The following design principles have been considered for the development of CVG:

· CVG should be highly compressible to reduce downloading time for complex content.

· CVG should preserve the structure and information content of SVG content.

· It should be possible to use existing authoring tools with a simple and efficient, conversion step to create CVG.

· The client application that decodes the CVG content should require a small memory footprint, considering both code memory and data memory.

· CVG should be highly scalable so it can increase in richness with increased bandwidth and terminal processing power without losing backward compatibility.

· CVG should support the graphical shapes and rendering modes included in SVG Mobile.
4. Performance of CVG

We propose in the following a few simple examples that aim at demonstrating the effectiveness of the proposed compression technique.

4.1 Dynamic Graphics

The tests have been conducted on three simple animations:

[image: image1.png]

Heart: It is a simple shape made of a couple of vector graphics primitives. Also, the animation is trivial consisting only of scaling the size of the shape.

Figure 1: Heart Animation

[image: image4.png]YV

Flower: The animation contains three separate objects: the pot, the stem (including leaves), and the flower. Each object is quite complex and comprises many vector graphics primitives. Animation consist of simply scaling and rotating objects.

Figure 2: Flower Animation

[image: image5.png]

Guru: The shape of the guru is rather complicated consisting of a large number of vector graphics primitives. The animation consists of translating and rotating the guru and translating and scaling the shadow.

Figure 3: Guru Animation

Table 1 Comparison of Vector Graphics Representations (all values are in bytes)

	
	SVG XML
	SVG WBXML(*)
	SVG gzipped
	CVG

	Heart
	435
	432
	296
	109

	Flower
	1892
	1728
	979
	364

	Guru
	1089
	998
	606
	286

(*) WBXML encoder results were obtained using the KXML package.

4.2 Static Graphics

The tests have been conducted on three simple static graphics all designed with a viewport and drawing area of 80x60.

Feather: This static drawing consists of polylines and lines.

[image: image6.png]YUY Y Y LSRR

—

Figure 4.

Forest: This static drawing consists of filled polygons, circles and lines.

[image: image2.png]

Figure 5.

AtSleep: This static drawing consists of polylines.

[image: image3.png]

Figure 6.

Table 2 Comparison of Vector Graphics Representations (all values are in bytes)
	
	SVG XML
	SVG gzipped
	CVG

	Feather
	 770
	506
	 103

	Forest
	1299
	701
	211

	AtSleep
	1016
	640
	182

[1]: 3GPP T2-011046 “CR 23.040 Rel-5: Vector Graphics Format for EMS” contribution to the 3GPP T2#15 meeting in Cancun, Mexico, November 26-30, 2001
[2]: "Mobile SVG Profiles: SVG Tiny and SVG Basic”, W3C Working Draft, October 30, 2001, URL: http://www.w3.org/TR/SVGMobile
[3] “Scalable Vector Graphics (SVG) Specification", version 1.0, W3C Recommendation, September 4, 2001, URL: http://www.w3.org/TR/SVG
