
	3GPP TSG-T2 #15

Cancun, Mexico, November 26-30, 2001
	T2-011151

	CR-Form-v4

	CHANGE REQUEST

	

	(

	TS 23.040
	CR
	CRNum
	(

rev
	-
	(

Current version:
	5.1.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	x
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	Clarification of LZSS compression for “EXTENDED OBJECTS” in EMS

	
	

	Source:
(

	magic4 Ltd.

	
	

	Work item code:
(

	MESS5-EMS
	
	Date: (

	Nov. 21, 2001

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-5

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	The compression format specified in the scope of the EMS extended object is inappropriately described. The reference given is inappropriate and does not provide a full description of any particular implementation.

	
	

	Summary of change:
(

	A description of an LZSS implementation is provided in a new annex F.

	
	

	Consequences if
(

not approved:
	TS 23.040 does not provide enough detail for implementation of the compression control. Accordingly, EMS will not support extended object compression, or if implemented not guarantee can be made concerning interoperability issues. Compression will be implementation dependent.

	
	

	Clauses affected:
(

	References; 9.2.3.24.10.1.13; Figure Figure 9.2.3.24.10.1.13; new Annex F added; Revision History becomes annex G:

	
	

	Other specs
(

	
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]
3GPP TS 01.04: "Digital cellular telecommunication system (Phase 2+); Abbreviations and acronyms".

[2]
3GPP TS 02.03: "Digital cellular telecommunication system (Phase 2+); Teleservices supported by a GSM Public Land Mobile Network (PLMN)".

[3]
3GPP TS 22.004: "General on supplementary services".

[4]
3GPP TS 22.041: "Operator determined barring".

[5]
3GPP TS 43.002: "Digital cellular telecommunication system (Phase 2+); Network architecture".

[6]
3GPP TS 23.008: "Organization of subscriber data".

[7]
3GPP TS 23.011: "Technical realization of supplementary services - General Aspects".

[8]
3GPP TS 23.015: "Technical realization of Operator Determined Barring (ODB)".

[9]
3GPP TS 23.038: "Alphabets and language‑specific information".

[10]
3GPP TS 23.041: "Technical realization of Cell Broadcast Service (CBS)".

[11]
3GPP TS 43.047: "Digital cellular telecommunication system; Example protocol stacks for interconnecting Service Centre(s) (SC) and Mobile‑services Switching Centre(s) (MSC)".

[12]
3GPP TS 44.008: "Digital cellular telecommunication system (Phase 2+); Mobile radio interface layer 3 specification".

[13]
3GPP TS 24.011: "Short Message Service (SMS) support on mobile radio interface".

[14]
3GPP TS 27.005: "Use of Data Terminal Equipment ‑ Data Circuit terminating Equipment (DTE ‑ DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)".

[15]
3GPP TS 29.002: "Mobile Application Part (MAP) specification".

[16]
3GPP TS 51.011: "Digital cellular telecommunication system (Phase 2+); Specification of the Subscriber Identity Module ‑ Mobile Equipment (SIM‑ ME) interface".

[17]
CCITT Recommendation E.164 (Blue Book): "Numbering plan for the ISDN era".

[18]
CCITT Recommendation E.163 (Blue Book): "Numbering plan for the international telephone service".

[19]
CCITT Recommendation Q.771: "Specifications of Signalling System No.7; Functional description of transaction capabilities".

[20]
CCITT Recommendation T.100 (Blue Book): "International information exchange for interactive videotex".

[21]
CCITT Recommendation T.101 (Blue Book): "International interworking for videotex services".

[22]
CCITT Recommendation X.121 (Blue Book): "International numbering plan for public data networks".

[23]
CCITT Recommendation X.400 (Blue Book): "Message handling system and service overview".

[24]
ISO/IEC10646: "Universal Multiple‑Octet Coded Character Set (USC); UCS2, 16 bit coding".

[25]
3GPP TS 22.022: "Personalization of GSM ME Mobile functionality specification - Stage 1".

[26]
3GPP TS 23.042: "Compression Algorithm for Text Messaging Services".

[27]
3GPP TS 23.060: "General Packet Radio Service (GPRS); Service description; Stage 2".

[28]
3GPP TS 43.048: "Digital cellular telecommunications system (Phase 2+); Security Mechanisms for the SIM application toolkit; Stage 2".

[29]
3GPP TR 21.905: "3G Vocabulary".

[30]
3GPP TS 31.102: "Characteristics of the USIM application".

[31]
3GPP TS 31.101: "UICC – Terminal interface; Physical and logical characteristics".

[32]
3GPP TS 22.105: "Services and Service Capabilites".

[33]
Infrared Data Association. Specifications for Ir Mobile Communications (IrMC).
iMelody.

[34]
IETF RFC 822: "Standard for the format of ARPA Internet text messages".

[35]
Unused
[36]
"vCard - The Electronic Business Card", version 2.1,The Internet Mail Consortium (IMC), September 18, 1996,
URL:http://www.imc.org/pdi/vcard-21.doc
[37]
"vCalendar - the Electronic Calendaring and Scheduling Format", version 1.0,
The Internet Mail Consortium (IMC), September 18, 1996,
URL:http://www.imc.org/pdi/vcal-10.doc
………

9.2.3.24.10.1.13
Compression Control

This information element is used to indicate compressed octet sequence. The compression control is only used in association with one or more Extended Objects and/or Reused Extended Objects.. The compressed data may extend across sequential short messages within a concatenated short message as illustrated by Figure 9.2.24.10.1.13 The first Compression Control IE of a compressed – data sequence contains one octet of Compression Information and a 2-octet length field.

The SME shall support decompression if the Extended Object IE is implemented. An SME implementing the Extending Object IE shall be capable of decompressing a received stream for which the original uncompressed information fits into 1 to min_eo_msg messages. An SME may be capable of decompressing a received stream for which the original uncompressed information fits into more than min_eo_msg short messages. Variable min_eo_msg is defined in section 9.2.3.24.10.1.11.

The IE length is variable.

Octet 1
Compression information

Bits 0..3 represent the compression algorithm and bits 4..7 represent compression algorithm specific parameters.

Bit 0..3

Compression algorithm

0000

LZSS Compression according to section 9.2.3.24.10.1.13.1
Bit 4..7
Shall be set 0.
0001..1111

reserved for future use; reserved bits shall be transmitted 0.

Bit 4..7
reserved

Octets 2..3
Length of the compressed data in octets (integer representation)
The length indicates the length of the compressed data that may extend across several compression control IEs.

Octets 4..n
Compressed data may contain one or more compressed Extended Objects. Figure 9.2.3.24.10.1.13 is an example and illustrates the assembly of a series of SM TPDUs from a sequence of concatenated and compressed extended objects. Each Extended Object is preceded by its IEI (Extended Object or Reused Extended Object). A series of Extended Objects is then compressed into a single buffer and this is split into several SM TPDUs as illustrated.

[image: image2.wmf]Object n

Reference

Object n data length

Object n

control

byte

Object n

type

identifier

Object n information

Object n data

Reused Extended Object 1

Extended Object 1

Extended Object 2

IEI EO *

IEI EO *

IEI REO*

Compressed Data Stream

Compressed

Data Length

Compression

Information

Compressed Data Stream

Extended Object Header

Extended Object Data

Compression Header

Compressed Data

UHDL

Concatenation

information

IEI C.C.

EIDL

Compression

Header

Compression Data

UDHL

Concatenation

Information

IEI CC

EIDL

Continuation of Compression Data

Concatenate Extended objects into single byte stream

Compress

Add Extended Object Compression Information Header

Build individual EMS User-Data-Header fields

from the compressed extended object byte

stream

*E.O Means Extended Object.

*R.E.O means Reused Extended Object.

C.C. means compression.

Figure 9.2.3.24.10.1.13

9.2.3.24.10.1.13.1 LZSS Implementation for EMS extended object compression
LZSS compression uses two tokens to identify either litteral strings (byte-sequencies) or references to repeated sequencies. These tokens (for EMS extended-object compression) are described in this section of the document. A more general introduction to LZSS compression tokether with an informative example (based upon the tokens described below) is provided in Annex F (informative).
The compressed data stream consists of any combination of literal data blocks and slice descriptor sequences.
The format of the compressed data stream is illustrated as follows: -
	Compressed data stream (initial section) …..

	1
	2
	3
	4
	5
	.
	.
	.
	.
	.
	.
	.
	.
	.
	
	
	

	Literal data block
	Slice descriptor
	Literal data block
	Slice descriptor
	Slice descriptor

Figure 9.2.3.24.10.1.13.1.a

LZSS compressed data format.
This diagram represents the structure of a compressed byte stream using LZSS. The stream contains a mixture of literal octets from the input buffer and slice descriptors representing the re-occurrence of an octet sequence together with a length and index for the matching octet sequence. The initial octets of a compressed buffer will always be a sequence of literal octets. The structures of the literal data blocks and Slice descriptors are given below.
	Bit 7
	Bit 6
	Bit 5
	Bit 4
	Bit 3
	Bit 2
	Bit 1
	Bit 0

	1
	Number literal bytes to follow.

Figure 9.2.3.24.10.1.13.1.b

Literal block identifier.

When literal octets are written into the compression buffer (for instance during the initial phases of compression they are preceded by a literal block identifier. The most significant bit (bit 7) of this block shall be set 1. Bits 6-0 indicate the length of the literal block which follows (up to 127 octets). If no match can be found in a octet sequence of greater that 127 octets then 2 (or more) literal blocks shall be written sequentially.

	Octet 1
	Octet 2

	Bit 15
	Bit 14
	Bit 13
	Bit 12
	Bit 11
	Bit 10
	Bit 9
	Bit 8
	Bit 7
	Bit 6
	Bit 5
	Bit 4
	Bit 3
	Bit 2
	Bit 1
	Bit 0

	0
	Slice Length
	Slice Offset

Figure 9.2.3.24.10.1.13.1.c

Slice Descriptor.
As can be seen from the above table, the slice descriptor sequence length is two octets, hence only repeating slices of data longer than two octets are extracted. The “slice length” is contained in the descriptor high octet and describes a data slice length of up to 63 octets. The “slice offset index” to the start of the slice is contained in the lower 9 bits and limits the window to 511 octets. The “slice offset index” gives the start position of the source slice measured backwards from the current writing position in the output decoded message data buffer, expressed as a positive number.
9.2.3.24.10.1.13.2 Data Compression

The compressed data output stream is constructed by repeating the following process until the end of the input data buffer is reached.

The input data buffer is scanned, from the current reading position (minus 1) through to the a position 511 bytes back from current reading position (the window) looking for the maximum (but limited to 63 octets) length matching data slice contained that matches the data starting at the current reading position (the look ahead buffer)

If no matching data slice, longer than two octets, is found then the input data octet at the current reading position is written to a literal buffer. Both the current reading position in the input data buffer and the current writing position in the output data buffer are incremented by one.

If a matching slice is found then a slice descriptor is written to the output data buffer at the current writing position in the output data buffer and the current writing position is incremented by two. The current reading position in the input data buffer is incremented by the length of the newly found matching data slice.

If the next read octet results in a matching slice being found then the literal buffer is written out. The literal block header, containing a count of the number of literals in the block, is written out first. (If more than 127 literal octets exist in the literal buffer, then it is split into multiple blocks).

The above sequence is repeated until the current reading position reaches the end of the input data buffer.

When encoding (compressing), it is the input data buffer, up to the current reading position, that is used to search for already known matching data slices, as this represents, and is equal to, the reconstructed output data buffer of the decoder at the receiving end.

9.2.3.24.10.1.13.3 Data De-compression

The following sequence is repeated until the end of the input data buffer.

The data octet at the current reading position in the input data buffer is tested for either 0 or 1 in bit 7.

If the bit is set (bit 7 = 1), then the number of literal octets that follow is determined from the lower 7 bits of the header octet (this one).

The literal octet block is written to the output data buffer at the current writing position and both the output data writing position and the input data reading position pointers are incremented by the block size.

If the bit is clear (bit 7 = 0), then the “slice length” and “slice offset index” are extracted from the two octet slice descriptor.

The data slice is copied from within the output data buffer to the end of the output data buffer, where the start of the source slice is at a position “slice offset index” back from the current output data writing position and the destination start position of the slice is the current output buffer writing position. The input data buffer reading position is incremented by two and the output data writing position is incremented by the “slice length”.

9.2.3.24.10.1.13.4 Test Vectors

In order to assist implementors of the compression algorithm described in this specification, a suite of test vectors and ‘help’ information are available in electronic format. The test vectors are supplied on a single diskette attached to this specification.

These test vectors provide checks for most of the commonly expected parameter value variants in this specification and may be updated as the need arises.

In adition Annex F contains an introduction to LZ-type compression algorithms and also has a brief informative example.
……

Annex F (informative) : Compression methods for EMS
F.1
LZSS compression

F.1.1
Introduction
The LZSS compression algorithm is one of a number of comperession algorithms generally refered to as “Dictionary Methods”. These algorithms rely upon the fact that (in general) an input data buffer will contain repeating “patterns” or matching sequences of bytes.

The algorithms fall into 2 groups. Systems like LZ78 and LZW scan an input buffer and construct a “dictionary” of the most commonly occurring byte sequences or “phrases”. This dictionary is pre-pended with the compressed data and the compressed data comprises an array of indices into the dictionary.

A second set is a modification of this in that the data dictionary is implicit in the uncompressed data buffer. All are based upon an algorithm developed and published in 1977 by Abraham Lempel and Jakob Ziv LZ77. A refinement of this algorithm, which is the basis for practically all the later methods in this group, is the LZSS algorithm developed in 1982 by Storer and Szymanski. These methods try to find if the character sequence currently being compressed has already occurred earlier in the input data and then, instead of repeating it, output only a pointer to the earlier occurrence. This is illustrated in the following diagram:

[image: image3.wmf]A

B

A

F

E

D

B

C

G

E

D

C

A

Ptr

F

E

D

C

B

G

Input Stream

Output Stream

Figure F.1.1 Illustration of “Implicit Dictionary” compression methods.

F.1.2
LZSS Basic Algorithm

The algorithm searches the window (a buffer moving back from the current position in the input data). It searches for the longest match with the beginning of the look-ahead buffer (a buffer moving forward from the current position in the input data) and outputs a pointer to that match. This pointer indicates a position and length of that data match. It is referred to here as a “Slice Descriptor”.

 Since it is possible that not even a one-character match can be found, the output cannot contain just pointers. Accordingly at times it is necessary to write literal octets into the output buffer. A block of literal octets is preceded by a “Literal Block Identifier” which indicates the length of the literal octet sequence that follows.

F 1.3 Informative Example.

The following is provided as an informative example using the input buffer shown below.
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

	0x01
	0x02
	0x03
	0x01
	0x02
	0x03
	0x04
	0x01
	0x02
	0x03
	0x01
	0x02
	0x03
	0x01
	0x02
	0x03

Figure F.12.6.1 Sample input buffer (16 octets long).

Step 1:

Starting position is byte 1 in the input buffer. For octets 1 to 3 there are no octet matches in the window for the look-ahead buffer. So write a literal octet sequence of 3 octets following a literal block header.

	1
	2
	3
	4

	0x83
	0x01
	0x02
	0x03

Figure F.12.6.2 Output buffer after initial literal block is written.

Step 2:

Current position is octet 4. Examining the look-ahead buffer and the window a 3 octet match is found beginning 3 octets before (octet 1) and of 3 octets in length. A 2 octet slice descriptor is added to the output buffer. The current position moves to octet 7 of the input buffer.

	1
	2
	3
	4
	5
	6

	0x83
	0x01
	0x02
	0x03
	0x06
	0x03

Figure F.12.6.3 Output buffer after the first slice descriptor is written.

Step 3:

Current position is octet 7 in the input buffer (0x04). There are no matches in the window for this value so a 2 octet literal sequence is written to the end of the output buffer. The current position moves to octet 8 of the input buffer.
	1
	2
	3
	4
	5
	6
	7
	8

	0x83
	0x01
	0x02
	0x03
	0x06
	0x03
	0x81
	0x04

Figure F.12.6.4 Second literal block is written into output buffer

Step 4:

Current position is octet 8 of the input buffer. Comparing the window with the look-ahead buffer reveals a octet match from the current position with octets 1 to 6 of the input buffer. That is a 6 octet sequence beginning 7 octets back from the current position.. A two-octet slice descriptor for this match is added to the output buffer. The current position moves to octet 14 of the input buffer (6 octets further on).
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	0x83
	0x01
	0x02
	0x03
	0x06
	0x03
	0x81
	0x04
	0x0C
	0x07

Figure F.12.6.4 A 6 octet match slice descriptor is written into output buffer

Step 5:

Current position is octet 14 of the input buffer. Comparing the window with the look-ahead buffer reveals another 3 octet sequence match (0x01, 0x02, 0x03). This octet sequence occurs several times in the window within the 511 octets that the slice descriptor allows. Therefore several different (but valid) slice descriptors could be written (this would be implementation dependent). However in this example we will reference the initial 3 octets of the input buffer and write a slice descriptor indicating a 3 octet match beginning 13 octets behind the current position.

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	0x83
	0x01
	0x02
	0x03
	0x06
	0x03
	0x81
	0x04
	0x0C
	0x07
	0x06
	0x0D

Figure F.12.6.4 A 3 octet match slice descriptor is written into output buffer: the final output buffer

 Annex G (informative):
Change history

	TSG
	TSG TDoc
	Vers
	CR
	Rev
	Ph
	Cat
	Subject
	New Vers
	Work Item

	T#4
	TP-99126
	2.0.0
	New
	
	
	
	Creation of 3GPP 23.040 v3.0.0 out of GSM 03.40 v7.1.0
	3.0.0
	

	T#4
	TP-99124
	3.0.0
	001
	
	R99
	A
	Clarification concerning SMSC address checking in the MS for concatenated messages and replace message types
	3.1.0
	TEI

	T#4
	TP-99146
	3.0.0
	002
	
	R99
	A
	Guidance regarding the SMSC address in a Status Report
	3.1.0
	TEI

	T#5
	TP-99177
	3.1.0
	003
	
	R99
	A
	Change to reserved port number range for SMS
	3.2.0
	TEI

	T#5
	TP-99177
	3.1.0
	004
	
	R99
	B
	New TP-PID value for delivery of ANSI-136 Short Messages
	3.2.0
	SMS

	T#5
	TP-99177
	3.1.0
	005
	
	R99
	D
	IEI values in concatenated SM’s
	3.2.0
	SMS

	T#6
	TP-99237
	3.2.0
	007
	
	R99
	F
	Adaptations for UMTS
	3.3.0
	TEI

	T#6
	TP-99237
	3.2.0
	006
	
	R99
	C
	Duplicate messages
	3.3.0
	TEI

	T#6
	TP-99237
	3.2.0
	008
	
	R99
	A
	Concatenated Short Message
	3.3.0
	TEI

	T#7
	TP-000024
	3.3.0
	009
	
	R99
	B
	Enhancement of the Message Content in SMS
	3.4.0
	MMS

	T#7
	TP-000024
	3.3.0
	010
	
	R99
	B
	Multiple Information Elements
	3.4.0
	TEI

	T#7
	TP-000024
	3.3.0
	011
	
	R99
	B
	SMS E-MAIL PARAMETERS
	3.4.0
	TEI

	-
	-
	3.4.0
	-
	-
	R99
	-
	Editorial graphics update to make visible
	3.4.1
	-

	T#8
	TP-000073
	3.4.1
	012
	
	R99
	F
	Alignment in Enhanced Messaging Service
	3.5.0
	EMS

	T#8
	TP-000073
	3.4.1
	014
	
	R99
	F
	Correction to text on SMS TimeZone
	3.5.0
	TEI

	T#8
	TP-000073
	3.4.1
	015
	
	R99
	F
	Correction of TP-PID
	3.5.0
	TEI

	T#8
	TP-000074
	3.5.0
	013
	
	Rel4
	B
	Addition of numbering plan value for Service Centre Specific Addresses
	4.0.0
	TEI

	T#9
	TP-000144
	4.0.0
	016
	
	Rel4
	F
	Presence of TP-PI
	4.1.0
	SMS TEI

	T#9
	TP-000144
	4.0.0
	017
	
	Rel4
	D
	Big endian integer representation
	4.1.0
	SMS TEI

	T#9
	TP-000144
	4.0.0
	018
	
	Rel4
	B
	SMS Address fields section needs clarification
	4.1.0
	SMS TEI

	T#9
	TP-000144
	4.0.0
	019
	
	Rel4
	B
	User prompt indication
	4.1.0
	SMS TEI

	T#11
	TP-010029
	4.1.0
	020
	
	Rel4
	C
	Predefined animations for EMS
	4.2.0
	TEI4

	T#11
	TP-010029
	4.1.0
	021
	
	Rel4
	C
	Message Waiting Indication Status storage on the USIM
	4.2.0
	UICC1-CPHS

	T#12
	TP-010128
	4.2.0
	023
	
	Rel4
	F
	Clarification of User Prompt Indicator
	4.3.0
	TEI4

	T#12
	TP-010128
	4.2.0
	025
	
	Rel4
	F
	Clarification of Email Addressing for Email – SMS Interworking
	4.3.0
	TEI4

	T#12
	TP-010128
	4.2.0
	026
	
	Rel4
	F
	Removal of duplicated values in TP-PID section
	4.3.0
	TEI4

	T#12
	TP-010128
	4.2.0
	027
	
	Rel4
	F
	Application Port Addressing Clarification
	4.3.0
	TEI4

	T#12
	TP-010128
	4.3.0
	022
	
	Rel5
	B
	Addition of text and background colour
	5.0.0
	MESS5-EMS

	T#12
	TP-010128
	4.3.0
	024
	
	Rel5
	B
	Object Distribution Indicator
	5.0.0
	MESS5-EMS

	T#12
	TP-010149
	4.3.0
	028
	1
	Rel5
	B
	Extended Objects in EMS
	5.0.0
	MESS5-EMS

	T#13
	TP-010194
	5.0.0
	029
	
	Rel5
	B
	Hyperlink Information Element
	5.1.0
	TEI5

	T#13
	TP-010194
	5.0.0
	031
	
	Rel5
	A
	Removal of EMS PID
	5.1.0
	TEI5

	T#13
	TP-010194
	5.0.0
	033
	
	Rel5
	B
	EMS Delivery Request
	5.1.0
	TEI5

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

_1061988222.vsd

_1063226124.vsd

_1052859513.doc

Object 1

header

Object 1 Data

Object 2 Header

Object 2 Data

Reusable

Object

Header

Reusable Object Data

Compressed Data Stream

Compress

Object n

reference

Object n Data Length

Object n

Control Byte

Object n

Type

Identifier

Object n Positioning

Information

Object n Data

Concatenate Extended Objects into Single

Byte Stream

Compressed Data Stream

Compression

Information

Compressed Data

Length

Add Extended Object Compression

Information Header

Compression Header

Compressed Data

UDHL

Concatenation Info

IEI

C.C.*

EIDL

Compression Header

Compressed Extended Objects Data

UDHL

Concatenation Info

IEI

C.C.*

EIDL

Continuation of Compressed Extended Objects Data

Build individual SM User Data Header Fields From The

Compressed Extended Object Byte Stream

IEI

E.O.*

IEI

E.O.*

IEI

R.E.O.

* E.O. means Extended Object

 R.E.O. means Reused Extended Object

 C.C. means Compression Control

