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9.2.3.24.10.1.13
Compression Control

This information element is used to indicate  compressed  octet sequence. The compression control is only used in association with one or more Extended Objects and/or Reused Extended Objects.. The compressed data may extend across sequential short messages within a concatenated short message as illustrated by Figure 9.2.24.10.1.13 The first Compression Control IE of a compressed – data sequence contains one octet of Compression Information and a 2-octet length field. 

The SME shall support decompression if the Extended Object IE is implemented. An SME implementing the Extending Object IE shall be capable of decompressing a received stream for which the original uncompressed information fits into 1 to min_eo_msg messages. An SME may be capable of decompressing a received stream for which the original uncompressed information fits into more than min_eo_msg short messages. Variable min_eo_msg is defined in section 9.2.3.24.10.1.11.

The IE length is variable.

Octet 1
Compression information

Bits 0..3 represent the compression algorithm and bits 4..7 represent compression algorithm specific parameters.

Bit 0..3 

Compression algorithm



0000


LZSS Compression according to  section 9.2.3.24.10.1.13.1
Bit 4..7
Shall be set 0.
0001..1111

reserved for future use; reserved bits shall be transmitted 0.

Bit 4..7
reserved

Octets 2..3
Length of the compressed  data in octets (integer representation)
The length indicates the length of the  compressed data that may extend across several compression control IEs.

Octets 4..n 
Compressed data may contain one or more compressed Extended Objects.  Figure 9.2.3.24.10.1.13 is an example and illustrates the assembly of a series of SM TPDUs from a sequence of concatenated and compressed extended objects. Each Extended Object is preceded by its IEI (Extended Object or Reused Extended Object). A series of Extended Objects is then compressed into a single buffer and this is split into several SM TPDUs as illustrated.
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Figure 9.2.3.24.10.1.13

9.2.3.24.10.1.13.1 LZSS Implementation for EMS extended object compression
LZSS compression uses two tokens to identify either litteral strings (byte-sequencies) or references to repeated sequencies.  These tokens (for EMS extended-object compression) are described in this section of the document. A more general introduction to LZSS compression tokether with an informative example (based upon the tokens described below) is provided in Annex F (informative).
The compressed data stream consists of any combination of literal data blocks and slice descriptor sequences. 
The format of the compressed data stream is illustrated as follows: -
	Compressed data stream (initial section) …..

	1
	2
	3
	4
	5
	.
	.
	.
	.
	.
	.
	.
	.
	.
	
	
	

	Literal data block
	Slice descriptor
	Literal data block
	Slice descriptor
	Slice descriptor


Figure 9.2.3.24.10.1.13.1.a

LZSS compressed data format. 
This diagram represents the structure of a compressed byte stream using LZSS.  The stream contains a mixture of literal octets from the input buffer and slice descriptors representing the re-occurrence of an octet sequence together with a length and index for the matching octet sequence.  The initial octets of a compressed buffer will always be a sequence of literal octets.  The structures of the literal data blocks and Slice descriptors are given below.
	Bit 7
	Bit 6
	Bit 5
	Bit 4
	Bit 3
	Bit 2
	Bit 1
	Bit 0

	1
	Number literal bytes to follow.


Figure 9.2.3.24.10.1.13.1.b

Literal block identifier.

When literal octets are written into the compression buffer (for instance during the initial phases of compression they are preceded by a literal block identifier.  The most significant bit (bit 7) of this block shall be set 1.  Bits 6-0 indicate the length of the literal block which follows (up to 127 octets).  If no match can be found in a octet sequence of greater that 127 octets then 2 (or more) literal blocks shall be written sequentially.

	Octet 1
	Octet 2

	Bit 15
	Bit 14
	Bit 13
	Bit 12
	Bit 11
	Bit 10
	Bit 9
	Bit 8
	Bit 7
	Bit 6
	Bit 5
	Bit 4
	Bit 3
	Bit 2
	Bit 1
	Bit 0

	0
	Slice Length
	Slice Offset


Figure 9.2.3.24.10.1.13.1.c

Slice Descriptor.
As can be seen from the above table, the slice descriptor sequence length is two octets, hence only repeating slices of data longer than two octets are extracted.  The “slice length” is contained in the descriptor high octet and describes a data slice length of up to 63 octets.  The “slice offset index” to the start of the slice is contained in the lower 9 bits and limits the window to 511 octets.  The “slice offset index” gives the start position of the source slice measured backwards from the current writing position in the output decoded message data buffer, expressed as a positive number.
9.2.3.24.10.1.13.2 Data Compression

The compressed data output stream is constructed by repeating the following process until the end of the input data buffer is reached.

The input data buffer is scanned, from the current reading position  (minus 1) through to the a position 511 bytes back from current reading position (the window) looking for the maximum (but limited to 63 octets) length matching data slice contained that matches the data starting at the current reading position (the look ahead buffer) 

If no matching data slice, longer than two octets, is found then the input data octet at the current reading position is written to a literal buffer. Both the current reading position in the input data buffer and the current writing position in the output data buffer are incremented by one.

If a matching slice is found then a slice descriptor is written to the output data buffer at the current writing position in the output data buffer and the current writing position is incremented by two. The current reading position in the input data buffer is incremented by the length of the newly found matching data slice.

If the next read octet results in a matching slice being found then the literal buffer is written out. The literal block header, containing a count of the number of literals in the block, is written out first. (If more than 127 literal octets exist in the literal buffer, then it is split into multiple blocks).

The above sequence is repeated until the current reading position reaches the end of the input data buffer.

When encoding (compressing), it is the input data buffer, up to the current reading position, that is used to search for already known matching data slices, as this represents, and is equal to, the reconstructed output data buffer of the decoder at the receiving end.

9.2.3.24.10.1.13.3 Data De-compression

The following sequence is repeated until the end of the input data buffer.

The data octet at the current reading position in the input data buffer is tested for either 0 or 1 in bit 7. 

If the bit is set (bit 7 = 1), then the number of literal octets that follow is determined from the lower 7 bits of the header octet (this one).

The literal octet block is written to the output data buffer at the current writing position and both the output data writing position and the input data reading position pointers are incremented by the block size.

If the bit is clear (bit 7 = 0), then the “slice length” and “slice offset index” are extracted from the two octet slice descriptor.

The data slice is copied from within the output data buffer to the end of the output data buffer, where the start of the source slice is at a position “slice offset index” back from the current output data writing position and the destination start position of the slice is the current output buffer writing position. The input data buffer reading position is incremented by two and the output data writing position is incremented by the “slice length”.

9.2.3.24.10.1.13.4 Test Vectors

In order to assist implementors of the compression algorithm described in this specification, a suite of test vectors and ‘help’ information are available in electronic format. The test vectors are supplied on a single diskette attached to this specification.

These test vectors provide checks for most of the commonly expected parameter value variants in this specification and may be updated as the need arises.

In adition Annex F  contains an introduction to LZ-type compression algorithms and also has a brief informative example.
………………………………………………………………………………………………………………………………

Annex F (informative) : Compression methods for EMS
F.1
LZSS compression

F.1.1
Introduction
The LZSS compression algorithm is one of a number of comperession algorithms generally refered to as “Dictionary Methods”.  These algorithms rely upon the fact that (in general) an input data buffer will contain repeating “patterns” or matching sequences of bytes. 

The algorithms fall into 2 groups.  Systems like LZ78 and LZW scan an input buffer and construct a “dictionary” of the most commonly occurring byte sequences or “phrases”.  This dictionary is pre-pended with the compressed data and the compressed data comprises an array of indices into the dictionary.

A second set is a modification of this in that the data dictionary is implicit in the uncompressed data buffer. All are based upon an algorithm developed and published in 1977 by Abraham Lempel and Jakob Ziv LZ77.  A refinement of this algorithm, which is the basis for practically all the later methods in this group, is the LZSS algorithm developed in 1982 by Storer and Szymanski.  These methods try to find if the character sequence currently being compressed has already occurred earlier in the input data and then, instead of repeating it, output only a pointer to the earlier occurrence. This is illustrated in the following diagram:
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Figure F.1.1 Illustration of  “Implicit Dictionary” compression methods. 

F.1.2
LZSS Basic Algorithm

The algorithm searches the window (a buffer moving back from the current position in the input data). It searches for the longest match with the beginning of the look-ahead buffer (a buffer moving forward from the current position in the input data) and outputs a pointer to that match.  This pointer indicates a position and length of that data match.  It is referred to here as a “Slice Descriptor”.

 Since it is possible that not even a one-character match can be found, the output cannot contain just pointers.  Accordingly at times it is necessary to write literal octets into the output buffer.  A block of literal octets is preceded by a “Literal Block Identifier” which indicates the length of the literal octet sequence that follows.

F 1.3 Informative Example.

The following is provided as an informative example using the input buffer shown below.
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

	0x01
	0x02
	0x03
	0x01
	0x02
	0x03
	0x04
	0x01
	0x02
	0x03
	0x01
	0x02
	0x03
	0x01
	0x02
	0x03


Figure F.12.6.1 Sample input buffer (16 octets long).

Step 1:

Starting position is byte 1 in the input buffer.  For octets 1 to 3 there are no octet matches in the window for the look-ahead buffer.  So write a literal octet sequence of 3 octets following a literal block header.

	1
	2
	3
	4

	0x83
	0x01
	0x02
	0x03


Figure F.12.6.2 Output buffer after initial literal block is written.

Step 2:

Current position is octet 4.   Examining the look-ahead buffer and the window a 3 octet match is found beginning 3 octets before (octet 1) and of 3 octets in length.  A 2 octet slice descriptor is added to the output buffer. The current position moves to octet 7 of the input buffer.

	1
	2
	3
	4
	5
	6

	0x83
	0x01
	0x02
	0x03
	0x06
	0x03


Figure F.12.6.3 Output buffer after the first slice descriptor is written.

Step 3:

Current position is octet 7 in the input buffer  (0x04).  There are no matches in the window for this value so a 2 octet literal sequence is written to the end of the output buffer.  The current position moves to octet 8 of the input buffer.
	1
	2
	3
	4
	5
	6
	7
	8

	0x83
	0x01
	0x02
	0x03
	0x06
	0x03
	0x81
	0x04


Figure F.12.6.4 Second literal block is written into output buffer

Step 4:

Current position is octet 8 of the input buffer.  Comparing the window with the look-ahead buffer reveals a octet match from the current position with octets 1 to 6 of the input buffer.  That is a 6 octet sequence beginning 7 octets back from the current position..  A two-octet slice descriptor for this match is added to the output buffer.  The current position moves to octet 14 of the input buffer (6 octets further on).
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	0x83
	0x01
	0x02
	0x03
	0x06
	0x03
	0x81
	0x04
	0x0C
	0x07


Figure F.12.6.4 A 6 octet match slice descriptor is written into output buffer

Step 5:

Current position is octet 14 of the input buffer.  Comparing the window with the look-ahead buffer reveals another 3 octet sequence match (0x01, 0x02, 0x03).  This octet sequence occurs several times in the window within the 511 octets that the slice descriptor allows.  Therefore several different (but valid) slice descriptors could be written (this would be implementation dependent).  However in this example we will reference the initial 3 octets of the input buffer and write a slice descriptor indicating a 3 octet match beginning 13 octets behind the current position. 

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	0x83
	0x01
	0x02
	0x03
	0x06
	0x03
	0x81
	0x04
	0x0C
	0x07
	0x06
	0x0D


Figure F.12.6.4 A 3 octet match slice descriptor is written into output buffer: the final output buffer
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