Page 1

3GPP TSG-T2 #12

Los Angeles, US

12th - 16th February 2001
T2-010073

CR-Form-v3

CHANGE REQUEST

(

23.057
CR
CR-Num
(

rev
-
(

Current version:
4.0.0
(

For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

Proposed change affects:
(

(U)SIM

ME/UE
X
Radio Access Network

Core Network

Title:
(

Miscellaneous Corrections to the MExE Specification

Source:
(

Philips Consumer Communications

Work item code:
(

MEXE-ENHANC

Date: (

6-Feb-01

Category:
(

D

Release: (

REL-4

Use one of the following categories:
F (essential correction)
A (corresponds to a correction in an earlier release)
B (Addition of feature),
C (Functional modification of feature)
D (Editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

Reason for change:
(

There are still a few typographic errors, mistakes and inaccuracies in the latest release of the specification.

Summary of change:
(

The most significant changes are the updated 'MExE' and 'J2ME' acronyms for consistency with their current usage, as well as the updated references, particularly in the Annex D.

Consequences if
(

not approved:

Clauses affected:
(

Almost all clauses

Other specs
(

 Other core specifications
(

affected:

 Test specifications

 O&M Specifications

Other comments:
(

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://www.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2000-09 contains the specifications resulting from the September 2000 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.
3GPP TS 23.057 V4.0.0 (2000-12)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Terminals;

Mobile Execution Environment (MExE);

Functional description;

Stage 2

(Release 4)

[image: image1.png]K ey

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organisational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organisational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organisational Partners' Publications Offices.

Keywords

UMTS, terminal, MExE

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2000, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA,TTC).

All rights reserved.

Contents

7Foreword

1
Scope
8
2
References
8
3
Definitions and abbreviations
10
3.1
Definitions
10
3.2
Abbreviations
11
4
Generic MExE aspects
12
4.1
MExE classmark 1 (WAP environment)
13
4.2
MExE classmark 2 (PersonalJava environment)
13
4.3
MExE classmark 3 (Java 2ME CLDC environment)
13
4.4
Multiple classmark support
13
4.4.1
Classmark 1 service support in non-Classmark 1 MExE devices
14
4.4.2
Classmark 2 service support in non-Classmark 2 MExE devices
14
4.4.3
Classmark 3 service support in non-Classmark 3 MExE devices
14
4.5
High level architecture
14
4.6
Capability and content negotiation
15
4.6.1
Capability negotiation characteristics
16
4.6.2
CC/PP over WSP (Classmark 1)
17
4.6.3
CC/PP over HTTP (Classmark 2)
17
4.6.4
Transfer of capability negotiation information in Classmark 3
18
4.6.5
Client content capability report
18
4.6.6
Server role in capability negotiation
18
4.6.7
Client-driven negotiation
18
4.7
User profile
18
4.7.1
Location of, access to, and security of, the user profile
19
4.7.2
User profile and capability negotiation relationship
19
4.7.3
Support of the user profile
19
4.7.4
Virtual home environment
20
4.8
User interface personalisation
20
4.8.1
MExE user interface personalisation
21
4.8.2
Support of MExE user interface personalisation
21
4.9
Provisioning and management of services
21
4.9.1
Service discovery
21
4.9.2
Service transfer
22
4.9.3
Service installation and configuration
22
4.9.4
Service management
22
4.9.5
Service termination
22
4.9.6
Service deletion
22
4.10
User control of application connections
23
4.11
Journalling of network events
23
4.12
 User notification
23
4.13
 Quality of service
24
4.14
Core software download
24
5
WAP MExE devices
24
5.1
High level architecture
25
5.2
Optionality
25
5.3
Call control
25
5.4
Local phonebook
26
5.5
Services
26
5.5.1
User interface
26
5.5.2
Access points
26
5.5.3
Transferring
27
5.5.3.1
WSP and HTTP/1.1 Proxy Function
28
6
Java MExE devices
28
6.1
Classmark 2 MExE devices
28
6.1.1
High level architecture
29
6.1.2
High level functions
29
6.1.2.1
Optionality
29
6.1.2.2
Required and optional PersonalJava APIs
30
6.1.2.3
Required and optional JavaPhone APIs
30
6.1.2.3.1
Application installation
30
6.1.2.3.2
Power
31
6.1.2.3.3 Datagram recipient addressing
31
6.1.2.4
Required and optional MExE PersonalJava APIs
31
6.1.2.5
Mandated services and applications
31
6.1.2.5.1
Network protocol support
31
6.2
Classmark 3 MExE devices
32
6.2.1
High level architecture
32
6.2.2
High level functionality
32
6.2.2.1
Connected Limited Device Configuration (CLDC)
32
6.2.2.2
Mobile Information Device Profile (MIDP)
33
6.2.2.2.1
Networking
33
6.2.2.2.2
MID Applications (MIDlet)
33
6.2.2.2.3
MIDlet Suites
34
6.2.2.2.4
Record Storage
34
6.2.2.3
Required and optional MExE APIs
34
6.2.3
Service discovery and management
34
7
Charging
34
7.1
Generic charging support
35
7.2
WAP charging support
35
7.3
Java charging support
35
8
Security
35
8.1
Generic security
35
8.2
MExE executable permissions
36
8.2.1
MExE executable permissions for operator, manufacturer and third party security domains
36
8.2.2
MExE executable permissions for untrusted MExE executables
39
8.2.3
Separation of I/O streams
40
8.3
 User permission types
40
8.4
Certification and authorisation architecture
41
8.4.1
Certification requirements
42
8.4.2
Example certification process
42
8.5
Root Public keys
43
8.5.1
Operator root public key
43
8.5.1.1
ME actions on SIM insertion and/or power up.
43
8.5.1.2
ME actions on removal of the SIM
45
8.5.2
Manufacturer root public key
45
8.5.3
Third party root public key
45
8.5.4
Administrator root public key
46
8.6
Certificate management
46
8.6.1
Certificate extension for removal of network access
47
8.6.1.1
 X.509 version 3
47
8.7
Certificate configuration message (CCM)
47
8.7.1
CCM numbering convention
47
8.7.2
CCM order of transmission
47
8.7.3
CCM field mapping convention
48
8.7.4
Authorised CCM download mechanisms
50
8.8
Provisioned mechanism for designating administrative responsibilities and adding third parties in a MExE MS
50
8.8.1
Determining the administrator of the MExE MS
50
8.8.1.1
Administrator of the MExE MS is the user
51
8.8.1.2
Administrator of the MExE MS is not the user
52
8.9
Java security
53
8.9.1
PersonalJava security
53
8.9.1.1
Java applet certification in PersonalJava
53
8.9.1.2
Java application signature verification in PersonalJava
53
8.9.1.3
Java loading native libraries in PersonalJava
53
8.9.2
CLDC security
53
8.10
Signed packages used for installation
53
8.10.1
Installing MExE native libraries
55
8.10.2
Installation of root certificates in a signed data package
55
8.10.3
Installation of other signed data
55
8.10.4
Administrator root certificate download mechanism
55
8.11
 Optimised application signature verification
56
9
Quality of Service
56
9.1
MExE QoS support
57
9.2
MExE QoS manager
58
9.3
Network control API
58
9.4
MExE QoS API
58
9.5
Sources of bearer service parameters
59
9.6
QoS streams
59
9.7
QoS security
59
Annex A (normative): MExE profile of PKCS#15
60
A.1
PKCS#15 certificate object attributes presentation
60
A.1.1
Object common attributes
60
A.1.2
Certificate common attributes
60
A.1.3
Certificate attributes
60
A.1.4
Specific X.509 certificate attributes
60
A.2
MExE profile of PKCS#15
60
A.3
Coding and storage in SIM
61
Annex B (informative): PKCS#15 certificate objects ASN1 expanded syntax extract
62
Annex C (normative): Access restriction certificate extension
64
Annex D (informative): MExE executable life cycle
65
D.1 State of a MExE executable
65
D.2 Released state
67
D.3 Uninstalled Execution state
68
D.4 Verification
69
Annex E (informative): MExE conformance requirements
70
Annex F (informative): Change history
74

Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

1
Scope

The present document defines the stage 2 and stage 3 description of the Mobile Execution Environment (MExE). Stage 2 identifies the functional capabilities and information flows needed to support the service described in stage 1.

The present document includes information applicable to network operators, service providers and terminal, switch and database manufacturers.

The present document contains the core functions for a Mobile Execution Environment (MExE) which are sufficient to provide a complete service.

MExE uses a number of technologies to realise the requirements of the stage 1 description (3GPP TS 22.057). The present document describes how the service requirements are realised with the selected technologies. The TS is devised into sections each covering the aspects relating to particular MExE technologies, it is intended that this specification will evolve along with the MExE technologies. A generic section of the specification covers areas of MExE common to all technologies.

2
References

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
GSM 01.04: "Digital cellular telecommunications system (Phase 2+); Abbreviations and acronyms".

[2]
3GPP TS 22.057: "MExE Stage 1 Description".

[3]
Personal Java 1.1.1 or higher, Sun Microsystems http://www.javasoft.com/products/personaljava/
[4]
JavaPhone API version 1.0, http://java.sun.com/products/javaphone/.

[5]
JTAPI 1.2, Sun Microsystems http://www.java.sun.com.

[6]
Wireless Application Protocol (WAP) version 1.2.1 http://www.wapforum.org.

[7]
vCard – The Electronic Business Card Exchange Format – Version 2.1, The Internet Mail Consortium (IMC), September 1996, http://www.imc.org/pdi/vcard-21.doc.

[8]
vCalendar – The Electronic Calendaring and Scheduling Exchange Format – Version 1.0, The Internet Mail Consortium (IMC), September 1996, http://www.imc.org/pdi/

[9]
Hypertext Transfer Protocol – HTTP/1.1, IETF document RFC2616, http://www.w3.org/Protocols/rfc2616/rfc2616

[10]
Java Mail API version 1.0.2, http://www.java.sun.com

[11]
3GPP TR 22.170: "Universal Mobile Telecommunications System (UMTS); Service aspects; Provision of Services in UMTS - The Virtual Home Environment".

[12]
3GPP TS 22.121: "Universal Mobile Telecommunications System (UMTS); Provision of Services in UMTS - The Virtual Home Environment: Stage 1".

[13]
ISO 639 International Standard - codes for the representation of language names.

[14]
3GPP TS 22.101: "Universal Mobile Telecommunications System (UMTS); Service Aspects; Service Principles".

[15]
CC/PP Exchange Protocol based on HTTP Extension Framework; W3C http://www.w3.org/TR/NOTE-CCPPexchange

[16]
Composite Capability/Preference Profiles (CC/PP):A user side framework for content negotiation; Available at W3C web pages.

[17]
UAProf Specification http://www.wapforum.org/what/technical.htm

[18]
JDK 1.1 security http://www.javasoft.com/products/jdk/1.1/docs/guide/security/index.html

[19]
Java 2 security http://www.javasoft.com/products/jdk/1.2/docs/guide/security/index.html

[20]
Java security tutorial http://java.sun.com/docs/books/tutorial/security1.2/overview/index.html
[21]
OCF 1.1.: "Smartcard API specified by OpenCard Consortium http://www.opencard.org

[22]
RFC 1738 Uniform Resource Locators (URL) http://www.w3.org/pub/WWW/Addressing/rfc1738.txt
[23]
The MD5 Message Digest Algorithm", Rivest, R., RFC 1321, April 1992. URL: ftp://ftp.isi.edu/in-notes/rfc1321.txt

[24]
ISO/IEC 10118-3 1996: "Information technology - Security techniques - Hash-functions - Part 3: Dedicated hash-functions".

[25]
IETF RFC 2368: "The mailto URL scheme".

[26]
ITU-T Recommendation X.509: "Information technology – Open Systems Interconnection – The Directory: Authentication framework".

[27]
GSM 11.11: "Digital cellular telecommunications system (Phase 2+); Specification of the Subscriber Identity Module – Mobile Equipment (SIM-ME) interface".

[28]
3GPP TS 23.107: "3rd Generation Partnership Project; Technical Specification Group Services and system Aspects QoS Concept and Architecture (3GPP TS 23.107)".

[29]
3GPP TS 24.007: "3rd Generation Partnership Project; Technical Specification Group Core Network; Mobile radio interface signalling layer 3; General Aspects (3GPP TS 24.007)".

[30]
3GPP TS 24.008: "3rd Generation Partnership Project; Universal Mobile Telecommunications System; Mobile radio interface layer 3 specification, Core Network Protocols – Stage 3 (TS 24.008)".

[31]
3GPP TS 23.060: "3rd Generation Partnership Project; Technical Specification Group Core Network; Digital cellular telecommunications system (Phase 2+); General Packet Radio Service (GPRS); Service Description; Stage 2 (3GPP TS 23.060)".

[32]
PKCS #15 "Cryptographic Token Information Standard" version 1.0, RSA Laboratories, April 1999
URL: ftp://ftp.rsa.com/pub/pkcs/pkcs-15/pkcs15v1.doc
[33]
RFC 2510 Internet X.509 Public Key Infrastructure January 1999.

[34]
Connected Limited Device configuration, J2ME version 1.0, http://java.sun.com/aboutJava/communityprocess/final/jsr030/index.html
[35]
Mobile Information Device Profile, J2ME version 1.0, http://java.sun.com/aboutJava/communityprocess/final/jsr037/index.html
[36]
eXtensible Markup Language (XML) 1.0, W3C Recommendation.
URL: http://www.w3.org/XML

[37]
Resource Definition Framework (RDF) Model and Syntax, W3C Recommendation.
URL: http://www.w3.org/RDF

[38]
UML Partners: Unified Modelling Language. URL: http://www.omg.org.

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document the following definitions apply:

administrator: The administrator of the MExE MS is the entity which has the control of the third party trusted domain, and all resources associated with the domain. The administrator of the device could be the user, the operator, the manufacturer, the service provider, or a third party as designated by the owner of the device.

best effort QoS (Quality of Service): The best effort QoS refers to the lowest of all QoS traffic classes. If the guaranteed QoS cannot be delivered, the bearer network delivers the QoS which can also be called best effort QoS [28].
certificate: An entity that contains the issuer's public key, identification of the issuer, identification of the signer, and possibly other relevant information. Also, a certificate contains a signed hash of the contents. The signer can be a 3rd. party other than the issuer.

delivered QoS: Actual QoS parameter values with which the content was delivered over the lifetime of a QoS session [28].

fine grain: Refers to the capabilities of the Java security system to allow applications, sections of code or Java classes to be assigned permissions to perform a specific set of privileged operations. The smallest programming element that can be given permission attributes is a Java class [19].

key pair: Key pairs are matching private and public keys. If a block of data is encrypted using the private key, the public key from the pair can be used to decrypt it. The private key is never divulged to any other party, but the public key is available, e.g. in a certificate.

negotiated QoS: In response to a QoS request, the network shall negotiate each QoS attribute to a level that is in accordance with the available network resources. After QoS negotiation, the bearer network shall always attempt to provide adequate resources to support all of the negotiated QoS profiles [31].
personal certificate: This is a certificate loaded by the user or a user application which is limited to the application that it is intended for, and is not a MExE Certificate. E.g. an e-mail application could load certificates for its usage. Personal certificates are out of scope for MExE.

phonebook: A phonebook is a dataset of personal or entity attributes. The simplest form is a set of name-number pairs as supported by GSM SIMs.
MExE: MExE (Mobile Execution Environment) is defined in detail in this document, but the scope of MExE does not include the operating system, or the manufacturer’s execution environment.
MExE API: MExE API consists of interfaces present in the MExE device and exposed to MExE executables. The APIs which are outside of the scope of this specification, are not part of MExE API.
MExE certificate: This is a certificate used in the realisation of MExE security domains. A MExE Certificate can be used to verify downloaded MExE executables. Use of the word "certificate" in this document implies a MExE certificate. Other varieties of certificate will be explicitly qualified as a e.g. "Personal Certificate".

MExE executable: An executable is an applet, application, or executable content, which conforms to the MExE specification and may execute on the ME.

MExE Java VM: This is a standard Java virtual machine used to execute MExE Java applets and applications.

MExE native library: This is a downloaded native library that can be accessed by MExE executables.

MExE Server: a node supporting MExE services in the MExE service environment. The MExE server may be a web or WAP server providing services for users to download MExE executables. MExE server is not necessarily a special network element but may utilize the normal Internet service environment.

MExE-SIM: A SIM that is capable of storing a security certificate that is accessible using standard mechanisms.

MIDP application: A MIDP application, or “MIDlet,” is one that uses only the APIs defined by the MIDP and CLDC specifications. This type of application is the focus of the MIDP specification and is expected to be the most common type of application on a MID.

MIDlet suite: A collection of MIDP Applications, or MIDlets packaged together and share resources within the context of a single Java Virtual Machine.

owner: An owner of the MExE MS. An owner could be a user, operator (e.g. where the MS is obtained as part of a subscription and the cost of the MS is subsidised), service provider, or a third party (e.g. the MS is owned by the user’s company and this company wishes to control how the MS is used).

power up event: An abstract event that occurs when the MExE MS is cold started (i.e. switched on).

QoS session: Lifetime of PDP context. The period between the opening and closing of a network connection whose characteristics are defined by a QoS profile. Multiple QoS sessions may exist, each with a different QoS profile [28].

QoS profile: A QoS profile comprises of a number of QoS parameters. A QoS profile is associated with each QoS session. The QoS profile defines the performance expectations placed on the bearer network [28].

requested QoS: A QoS profile is requested at the beginning of a QoS session. QoS modification requests are also possible during the lifetime of a QoS session [28], [31].

sandbox: A sandbox is a safe area to run Java code. Untrusted Java code executing in a sandbox has access to only certain resources [18].

service: A service (which may consist of an application or applet, and its related content) is a set of functions offered to a user by an organisation, and may be performed on the MExE MS and/or remotely.

service name: An identifier associated with a service, which could be a string, a fully qualified Java class name, a unique URI or other identifier.

session: The period between the launching of a MExE executable and its execution termination. A WAP-session is established between the mobile and the WAP Gateway. The duration of a WAP-session can range from a second to years. The WAP-session can be associated with a particular subscription in the WAP Gateway.
signature: "Signing" is the process of encrypting a hash of the data using a private key. If the signature can be decrypted using the public key, then the signature is valid.

signed JAR file: Archives of Java classes or data that contain signatures that also include a way to identify the signer in the manifest. (The Manifest contains a file which has attributes defined in it.)

subscribed QoS: The network will not grant a QoS greater than that subscribed. The QoS profile subscription parameters are held in the HLR. An end user may have several QoS subscriptions. For security and the prevention of damage to the network, the end user cannot directly modify the QoS subscription profile data [31].

user: The user of the MExE MS.

Further definitions specific to MExE are in GSM given in 3GPP TS 22.057 (MExE stage 1) [2].

3.2
Abbreviations

For the purposes of the present document the following abbreviations apply:

API
Application Programming Interface

APDU
Application protocol data unit

CA
Certification Authority

CC/PP
Composite Capability/Preference Profiles

Diff-serv
Differentiated Services

CGI
Common Gateway Interface

CCM
Certificate Configuration Message

CLDC
Connected Limited Device Configuration

CP-Admin
Certificate Present (in the MExE SIM) - Administrator

CP-TP
Certificate Present (in the MExE SIM) - Third Party

DHCP
Dynamic Host Configuration Protocol

GSM
Global System for Mobile Communication

GPRS
General Packet Radio Service

HTTP
HyperText Transfer Protocol

HTTPS
HyperText Transport Protocol Secure (https is http/1.1 over SSL, i.e. port 443)

IETF
Internet Engineering Task Force

IP
Internet Protocol

JAD
Java Application Descriptor

JAM
Java Application Manager

J2ME
Java 2 Micro Edition

J2SE
Java 2 Standard Edition

JNDI
Java Naming Directory Interface

JTAPI
Java Telephony Application Programming Interface

JAR file
Java Archive File
JVM
Java Virtual Machine
KVM
K Virtual Machine

MIDP
Mobile Information Device Profile

MIDlet
MIDP Application

MMI
Man-Machine Interface

MSE
MExE Service Environment

OCF
OpenCard Framework

OEM
Original Equipment Manufacturer

QoS
Quality of Service

PDP
Packet Data Protocol

RDF
Resource Description Format

RFC
Request For Comments

SAP
Service Access Point

SMS
Short Message Service

TLS
Transport Layer Security

TP
Third Party

UDP
User Datagram Protocol

UE
User Equipment

UI
User Interface

UMTS
Universal Mobile Telecommunications System

URL
Uniform Resource Locator

URI
Uniform Resource Identifier

USSD
Unstructured Supplementary Service Data
VM
Virtual Machine
WAE
Wireless Application Environment

WAP
Wireless Application Protocol

WDP
Wireless Datagram Protocol
WSP
Wireless Session Protocol

WTA
Wireless Telephony Applications

WTAI
Wireless Telephony Applications Interface

WTLS
Wireless Transport Layer Security

WTP
Wireless Transaction Protocol

WWW
World Wide Web

Further abbreviations are given in 3GPP TS 22.057 (MExE stage 1) [2] and GSM 01.04 [1].

4
Generic MExE aspects

Support of at least one MExE classmark is mandatory. A MExE UE may also include optional support for applications from any other MExE classmark (refer to subclause 4.4).

This section defines the common aspects of all MExE compliant devices, independent of MExE technology.

Considering the wide and diverse range of current and future technology and devices that (will) use wireless communication and provide services based thereon a one-size-fits-all approach is unrealistic. Instead the present document categorises devices by giving them different MExE classmarks. In this specification the following MExE classmarks are defined:

· MExE classmark 1 - based on WAP (Wireless Application Protocol) [6] - requires limited input and output facilities (e.g. as simple as a 3 lines by 15 characters display and a numeric keypad) on the client side, and is designed to provide quick and cheap information access even over narrow and slow data connections.

· MExE classmark 2 - based on PersonalJava [3] - provides and utilises a run-time system requiring more processing, storage, display and network resources, but supports more powerful applications and more flexible MMIs.

· MExE classmark 3 – based on J2ME CLDC and MIDP environment [34,35] – supports Java applications running on resource constrained devices.

Content negotiation allows for flexible choice of formats available from a server or adaptation of a service to the actual classmark of a specific client device.

Bi-directional capability negotiation between the MExE Service Environment and MExE device (including MExE classmark), supports the transfer of capabilities between the client and the server.

4.1
MExE classmark 1 (WAP environment)

Classmark 1 MExE devices are based on Wireless Application protocol (WAP).

The Wireless Application Protocol is a standard to present and deliver wireless information and telephony services on mobile phones as well as other wireless terminals. Supporting mandatory features of WAP, WAP enabled devices provide access to the World Wide Web based content for small mobile devices.

4.2
MExE classmark 2 (PersonalJava environment)

Classmark 2 specifies Personal Java enabled devices with the addition of the JavaPhone API.

The Personal Java[3] application environment is the standard Java environment optimised for consumer electronic devices designed to support World Wide Web content including Java applets. The Personal Java API is a feature level subset of J2SE with some Java packages optional and some API modifications necessary for the needs of small portable devices (for example an optimised version of the Abstract Windowing Toolkit targeted to small displays).

JavaPhone[4] is a vertical extension to the Personal Java platform that defines APIs for telephony control, messaging, address book and calendar information, etc.

4.3 MExE classmark 3 (J2ME CLDC environment)

Classmark 3 MExE devices are based on the Connected Limited Device Configuration (CLDC) with the Mobile Information Device Profile (MIDP).

Java 2 Micro Edition (J2ME) is a version of the Java 2 platform targeted at consumer electronics and embedded devices. CLDC consists of a virtual machine and a set of APIs suitable for providing tailored runtime environments. The J2ME CLDC is targeted at resource constrained connected devices (e.g. memory size, processor speed etc.).

4.4
Multiple classmark support

Support of multiple MExE classmarks on a MExE UE is optional.

A given MExE Classmark identifies support by a MExE UE for a defined level of MExE functionality as defined by that classmark. Support of MExE classmarks by a UE shall enable flexible support of MExE functionality. A MExE UE may support any multiple combination of MExE classmarks.

The support of any other functionality by a MExE UE is also possible, and is out of scope of this specification.

NOTE:
Some implementation issues may arise from the multiple support of classmarks on a device, e.g.:

1) In conforming to all of the requirements, how are mandatory requirements in one classmark compatible with optional requirements for another?

2) With kJava and pJava on one device, MIDP can be on top of a Java VM. Which of the classmarks will it be then? In conforming with both Classmark 2 and 3 requirements, are 2 VMs required in one device?

4.4.1
Classmark 1 service support in non-Classmark 1 MExE devices

Support of Classmark 1 executables in non-classmark 1 MExE devices is optional.

To allow access to services designed for MExE Classmark 1 devices, MExE devices other than Classmark 1 will need to support full or a subset of WAP protocol as identified below. Due to the fast evolution of new technologies, support of WAP in Classmarks other than Classmark 1 is not mandated by MExE specification. However WAP is a possibility for the integrity of service provisioning as well as quick access to information by feature rich devices (e.g. Java devices).

If Classmark 1 services are supported by non-Classmark 1 devices, Classmark 1 services shall execute in the same manner as they execute in a MExE Classmark 1 UE. For that purpose, a MExE non-Classmark 1 device shall comply with data and telephony profile class (Class B) of WAP Class Conformance Requirement Specification [6].

NOTE:
A more specific reference to the WAP Class Conformance Requirement Specification shall be supplied when available.

4.4.2
Classmark 2 service support in non-Classmark 2 MExE devices

Support of Classmark 2 executables in non-classmark 2 MExE devices is optional.

If Classmark 2 services are supported by non-Classmark 2 devices, Classmark 2 services shall execute in the same manner as they execute in a MExE Classmark 2 UE.

4.4.3
Classmark 3 service support in non-Classmark 3 MExE devices

Support of Classmark 3 executables in non-classmark 3 MExE devices is optional.

If Classmark 3 services are supported by non-Classmark 3 devices, Classmark 3 services shall execute in the same manner as they execute in a MExE Classmark 3 UE.

4.5
High level architecture

The following architectural model shows an example of how standardised transport mechanisms are used to transfer MExE services between the MS and the MExE service environment, or to support the interaction between two MSs executing a MExE service.

The MExE service environment could, as shown in Figure 1 "Generic MExE architecture", consist of several service nodes each providing MExE services that can be transferred to the MS using mechanisms such as (but not limited to) fixed/mobile/cordless network protocols, Bluetooth, infrared, serial links, wireless optimised protocols, standard Internet protocols. These service nodes may exist in the circuit switched domain, packet switched domain, IP multimedia core network subsystem or in the internet space (e.g. SMS service centres, multimedia messaging servers, internet servers etc.). The MExE service environment may also include a proxy server to translate content defined in standard Internet protocols into their wireless optimised derivatives.

For the versatile support of MExE services, the wireless network shall provide the MS with access to a range of bearer services on the radio interface to support application control and transfer from the MExE service environment. As MExE also applies to fixed and cordless environments, MExE UE may also access MExE services via non-wireless access mechanisms.

[image: image2.wmf]Voice

-

based access

Data services

Supplementary services

Multimedia services

-

operator / handset

manufacturer / 3

rd

party

services

-

multimedia services

-

multimedia messaging

services

-

SMS messaging

-

notification services

-

fax services

-

store/forward services

-

e

-

mail/v

-

mail services

-

WWW access and

content

-

services download

-

content download

-

handset upgrades

-

synchronisation

services

-

backup services

-

user to user services

-

data broadcast

-

protocol translations

-

bearer control

-

etc.

-

operator / handset

manufacturer / 3

rd

party

services

-

multimedia services

-

multimedia messaging

services

-

SMS messaging

-

notification services

-

fax services

-

store/forward services

-

e

-

mail/v

-

mail services

-

WWW access and

content

-

services download

-

content download

-

handset upgrades

-

synchronisation

services

-

backup services

-

user to user services

-

data broadcast

-

protocol translations

-

bearer control

-

etc.

Internet

services

Multimedia

services

Circuit/packet

switched

services

MExE Service Environment

MExE UE

Access network

(e.g. wireless, fixed, cordless)

MExE UE

Figure 1: Generic MExE architecture

4.6
Capability and content negotiation

Support of capability negotiation for all MExE UEs is mandatory, while support of content negotiation is optional.

Interaction between the MExE MS and the MSE for WWW/WAP browsing and service discovery shall be supported by the use of the hypertext transfer protocol HTTP/1.1 [9], or an HTTP/1.1 derived protocol (e.g. WSP as defined in Wireless Application Protocol [6]). Communication between the MExE MS and the MSE supports:

· Capability negotiation

The MExE MS connects to the MSE by using HTTP/1.1 or an HTTP/1.1 derived protocol. Capability negotiation between the MExE MS and the MSE only takes place for the first time after the MExE MS has connected to the MSE, and the MSE is informed about the MExE MS. Without this first initial contact from the MExE MS, the MSE has no knowledge of the MExE MS, and thereafter the MSE may connect to the MExE MS by using HTTP/1.1 or an HTTP/1.1 derived protocol.

Capability negotiation represents the mechanism by which the MExE MS and the MSE interact to inform each other of the specific mechanisms, capabilities and support which each is able to provide or support within the scope of a MExE service interaction. The capability negotiation normally takes place prior to any content transfer between the two entities.

Capability negotiation is used by the MExE MS to inform the MSE of its capabilities. The MExE MS may be informed by the MSE of its use of the MExE MS’s capabilities. The MExE MS may also spontaneously inform the MSE of its capabilities (i.e. following a change in MExE support, such as removal of MExE MS from a docking station with its keyboard, mouse and monitor). A subset of characteristics which may be transferred between the MExE MS and the MSE during the capability negotiation are identified in subclause 4.6.1 "Capability negotiation characteristics".

· Content negotiation

Content negotiation represents the means by which the MExE MS and the MSE inform each other of the requested and available form of content. If needed, the content negotiation may take place following capability negotiation between the two. The methods for content negotiation are the basic HTTP/1.1. or WSP methods explained in [9] and [6].

Content negotiation is used to select the best representation of an entity when there are multiple representations of the entity available from the MSE. The entity (e.g. a service, an image, etc) is located behind a URI, and the application in the MExE MS connects to the URI by using HTTP/1.1 or an HTTP/1.1 derived protocol. The best representation of an entity can be decided by the server (server-driven negotiation) or by the client application (agent-driven negotiation).

Both the capability and the content negotiation has the same purpose: to optimise the content according to client’s capabilities. The term "content negotiation" has been used e.g. in the HTTP specification and the HTTP/1.1. and the WSP contain headers to perform the content negotiation. However, the capability negotiation in MExE aims at extending the basic HTTP and WSP methods for content negotiation. MExE terminal is free to use both the existing HTTP/WSP content negotiation methods and the new MExE capability negotiation methods.

The content negotiation transferred between the MExE MS and the MSE is identified in subclause 4.6.5 "Client content capability report" onwards.

4.6.1
Capability negotiation characteristics

The method for capability negotiation is based on the Composite Capability/ Preferences Profiles (CC/PP) specification made by W3C, [16]. The properties and the actual schema is based on the WAP UAProf group specification [17]. The CC/PP framework is intended to provide an efficient mechanism for enabling enhanced content and service negotiation through a standardised format for user agent profiles. The use of Resource Description Framework (RDF) [37] in CC/PP allows for interoperable encoding of the profile metadata in XML[36] and supports multiple vocabularies to provide for future extensibility. WAP UAProf is based on the CC/PP framework. The purpose of the UAProf is to specify:

· an RDF based schema and vocabulary for CC/PP in the context of WAP UAProf that includes the class definitions and semantics of attributes described in a user agent profile, and

· guidelines for schema extensibility to support a composite profile that enables future additions to the vocabulary and schema.

Not all capabilities have to be reported in the request to the server but instead, the client may point to URL(s) where the server may fetch the properties. An MSE may, or may not, use the client capability information.

The generic set of capabilities which may be negotiated between the client and the server consists of the subsequently identified properties in the UAProf schema, [17].

A MExE UE shall support the properties in the UAProf schema for capability negotiation defined in Table 1 "UAProf properties supported by MExE" as "mandated properties".

It is recommended that MExE UE supports the properties defined in the Table 1"UAProf properties supported by MExE" as "recommended properties". It is not required that a MExE terminal shall send all the "recommended properties", when sending a request, however it should be possible for the MExE terminal to send one or more of the "recommended properties", with user permission.

The mandatory and recommended properties in Table 1"UAProf properties supported by MExE" are specified in UAProf.

"Proposed new properties" are candidates for inclusion to the UAProf specification and may be subsequently added to the table either as "mandated properties" or as "recommended properties".

Table 1: UAProf properties supported by MExE

Mandated Properties

Attribute
Description
Resolution Rule
Type
Sample

MexeClassmark
Comma separated list of classmarks supported by the MExE device
Locked
Literal
"1", "2", "3", "1, 2", "2,3", etc.

MexeSpec
The first two digits of the MExE Specification version that the device conforms to
Locked
Literal
"3.3"

Recommended Properties

Vendor
UE vendor
Locked
Literal
"Lexus", "Ford", etc.

Model
UE model number
Locked
Literal
"Mustang 90", "Q10", etc.

SoftwareNumber
The number of the device specific software.
Locked
Literal
"1.0", "2.7.0", etc.

ScreenSize
The size of the device's screen in units of pixels.
Locked
Dimension
"160x160", "640x480"

ScreenSizeChar
Size of the device's screen in units of characters (based on the standard font).
Locked
Dimension
"12x4", "16x8"

ColorCapable
Whether the device display supports color
Override
Boolean
"Yes", "No"

AudioInputEncoder
List of audio input encoders supported by the device
Append
Literal (bag)
"G.711"

VideoInputEncoder
List of video input encoders supported by the device
Append
Literal (bag)
"MPEG-1", "MPEG-2", "H.261"

PointingResolution
Type of resolution of the pointing accessory supported by the device
Locked
Literal
"Character", "Line", "Pixel"

CcppAccept-Language
List of preferred document languages
Append
Literal (bag)
"zh-CN" "en fr"

Keyboard
Type of keyboard supported by the device as an indicator of ease of text entry.
Locked
Literal
"Disambiguating", "Qwerty", "PhoneKeypad"

SupportedBearers
List of bearers supported by the device.
Locked
Literal (Bag)
"GPRS", "GUTS", "SMS", CSD", "USSD"

Proposed New Properties

MexeSecureDomains

Note: currently considered by the WAP Forum
Refers to whether the device supports the MExE security domains
Locked
Boolean
"Yes", "No"

JVMversion/JavaPlatform/MExEPlatform

Note: currently considered by the WAP Forum
Refers to the version of Java the MExE device supports
Locked
Literal
"Pjava1.1.3", "MIDP1.0", "J2SE1.0"

Generally, the combination of user profile and ME logic will determine the information sent in the capability negotiation from the MExE device to the MExE Service Environment. As an example, for the support of VideoInputEncoder information the user’s profile controls if and when VideoInputEncoder information may be sent to the MExE Service Environment (e.g. never sent, always sent, only after user confirmation).

The capability negotiation process shall be used by the client to permit transfer of capabilities from the client to the server. By transferring its capabilities, the client will support efficient use of resources both over the radio interface as well as in the client or server. Capability negotiation shall be performed prior to transfer over the radio interface to verify as far as possible the ability of the client to support any services to be downloaded.

In order to transfer the capability information between the MExE MS and the MSE, CC/PP method is used with the schema defined in the WAP UAProf working group.

4.6.2
CC/PP over WSP (Classmark 1)

In Classmark 1 the CC/PP is carried over by using CC/PP over WSP, [17].

4.6.3
CC/PP over HTTP (Classmark 2)

In Classmark 2 the CC/PP is carried over by using CC/PP over HTTP, [15] and optionally CC/PP over WSP, [17].

4.6.4
Transfer of capability negotiation information in Classmark 3

In Classmark 3 the CC/PP is carried over by using CC/PP over HTTP, [15] and optionally CC/PP over WSP, [17].

Also MIDP itself provides a simple mechanism for applications to indicate the capabilities they require. The Java Application Descriptor File (JAD), which is a file stored and downloaded separately to the application itself, contains information such as application name, version number, JAR file size, data storage requirements etc. The Application Descriptor accompanies the JAR file and can be used to ensure prior to the actual application download that the application suits the device. The JAD file is described in more details in the section 6.2.2.2.2 " MID Applications (MIDlet)".

4.6.5
Client content capability report

The client may perform content negotiation capabilities to the server by using appropriate HTTP/1.1 or WSP request headers. The following methods are available for content negotiation:

· Client software (product): User-Agent header;

· MIME media types: Accept header;

· Character set: Accept-Charset header;

· Content encoding: Accept-Encoding header;

· Language: Accept-Language header.

There is no need for MExE to specify any tokens for content negotiation, as these headers are already defined in HTTP and WSP. The formats for these headers are specified in [9] and [6].

4.6.6
Server role in capability negotiation

The server may request the capabilities of a client whenever required, and shall enquire of the client’s capabilities prior to making each transaction resulting in a set of transfers to the client; the characteristics which may be reported in the client capability report are identified in the list above.

In server-driven negotiation the server signals to the client that the response entity was selected from a set of available representation.

4.6.7
Client-driven negotiation

If the server cannot specify an optimal version for the client basing on the CC/PP sent over to the server, the server may also indicate to client which type of versions are available and let the client make the decision. This method is already available in HTTP1.1. In client-driven negotiation the client selects the best representation after having received an initial response from the server.

4.7
User profile

Support of the user profile is optional.

NOTE:
The user profile is not yet specified in an interoperable way. Support of the user profile will be defined when it has been fully specified in a fully interoperable way.

The user profile (which may consist of sub user profiles for a user) contains the characterisation of the MExE MS as defined by the user and service provider. Further, it is also possible for multiple users of a MExE MS to each have their own user profiles. The user profile is not unique to the MExE MS, and this clause identifies the usage and content of the user profile from a MExE perspective only, and does not identify the generic support of user profiles in general. Refer to UMTS 22.101 [14] for further details on the user profile.

4.7.1
Location of, access to, and security of, the user profile

As multiple user profiles may be defined, the user is able to set up or receive calls/connections associated with different user profiles simultaneously by securely activating a user profile (with each user profile being associated with at least one unique identifier). Refer to the Security clause for further details on user profile activation.

The user’s characterisation of the MExE MS in the user profile may be modified at any time by the user and the service provider, and changes affected at the earliest possible opportunity.

The security clause shall apply to all user profiles at all times, whether activated or not

The user profile is securely managed by the MExE MS, and stored in a secure area of the MExE MS (either SIM or ME). The service provider may also retain the user profile in the network for service optimisation. User private data in the user profile may also be stored in the network, however only with the user permission.

The support of more than one user profile is not mandatory.

4.7.2
User profile and capability negotiation relationship

The user profile contains the user’s preferences. Support of the user’s preferences will depend on the capabilities of the device. If the capabilities change, then the degree of support of the user’s preferences may change too.

The capability negotiation between the MExE terminal and the MSE, as shown in Figure 2 "Model of user profile and capability relationship", contains those user preferences which the device is able to support.

In this way the MSE will serve a MExE terminal with the lowest common denominator of the users preferences, the terminal capabilities and the provided service characteristics and support the user’s preferences to the maximum degree.

[image: image3.wmf]MSE

capability

negotiation

store / access

user profile

(ME,SIM,MSE)

user profile

settings

User

Figure 2: Model of user profile and capability relationship

4.7.3
Support of the user profile

The user profile acts as a repository (which is always available in the MExE MS) defining the MExE MS behaviour.

MExE preferences and personalisation are supported in the user profile (e.g. UMTS portability and support of VHE defined in [12] and other 22-series specifications), which in turn is based on the Composite Capability/Preference Profile (CC/PP) specification from W3C [16].

MExE preferences and personalisation may not only be recorded directly in the user profile as supported by CC/PP (the direct referencing mechanism), but may also be retrieved from a URL (the indirect referencing mechanism).

Generally, the user profile’s CC/PP framework provides the mechanism for the standardised format of preferences, and its use of Resource Description Framework (RDF) permits the interoperable encoding of MExE preferences and personalisation. Future extensions will be supported by the W3C mechanism, allowing for evolution and development of MExE preferences and personalisation.

The set of preferences which are supported in the user profile consists of the following:

user interface personalisation

the user’s personalisation of the user interface.

service personalisation and management

the user’s generic service management information.

The coding and presentation of the above characteristics in the user profile is defined by the Composite Capability/Preference Profile (CC/PP) specification from W3C [16], and referenced by the MExE capability negotiation in subclause 4.6 "Capability and content negotiation".

The following user preference information is supported by UAProf [17]. A MExE terminal shall support the following property in Table 2 "Mandatory UAProf properties" of the UAProf schema for user preference information:

Table 2: Mandatory UAProf properties

Attribute
Description
Resolution
Rule
Type
Sample Values

AcceptDownloadableSoftware
Indicates the user's preference on whether to accept downloadable software
Locked
Boolean
"Yes", "No"

It is recommended that a MExE UE supports the following UAProf properties in Table 3 "Recommended UAProf properties":

Table 3: Recommended UAProf properties

Attribute
Description
Resolution
Rule
Type
Sample

CcppAccept-Language
User's preference for document language. Property value is a list of natural languages, where each item in the list is the name of a language as defined by RFC 1766.
Append
Literal (Bag)
"zh-CN", "en fr"

PreferenceForFrames
User's preference for displaying frames
Locked
Boolean
"Yes", "No"

WapPushMsgPriority
User's settings for WAP Push message priorities
Locked
Literal
"critical", "low", "none"

Also, there is support for indicating terminal's capabilities related to UI features, e.g. capability for displaying images or frames, as well as capability information about input and output methods.

4.7.4
Virtual home environment

Virtual Home Environment (VHE) (see [11] and [12]) is defined as a concept for personalised service portability across network boundaries and between terminals. MExE is identified by VHE as one of the mechanisms which may be used to support VHE.

The characteristics of the VHE (to reflect any user or home environment modification of the user’s VHE) shall be stored as part of the user profile.

4.8
User interface personalisation

Support of user interface personalisation as detailed in this subclause is optional.

The MS interface consists of the buttons, menus, screens and MMI as designed and provided by the MS manufacturer; the nature of this MS interface is naturally evolving, MS specific and proprietary to the individual manufacturers of the industry. This interface is the one normally seen by the user in normal operation of his MS. This specification does not place any requirements or limitations on the individual manufacturers’ MS interface.

The MExE MMI, in turn, is the interface available to the user to support MExE services and functionality on the MS. The nature of the MExE MMI interface, like the normal MS interface described above, is not standardised in any way, to allow for manufacturer innovation, cater for evolving market needs, and permit manufacturer differentiation. The MExE MMI, depending on different manufacturer implementations, may consist of the normal MS interface, the normal MS interface with modifications, a different interface to the normal MS interface, or some combinations thereof etc. MExE services operate within, and using the capabilities of, the MExE MMI.

User interface personalisation consists of two parts. The first part refers to the user’s ability to request, and verify, the preferred changes to the user interface; thus the user’s preferences, as supported by the specific MS, require to be recorded. The second part refers to the MExE MS’s support of the user’s preferences for the interface, within the capabilities of an MS. By defining the user interface personalisation to consist of two stages, the preferences which have been recorded by the user may be transferred (as part of the user profile, e.g. CcppAccept-Language and/or PreferenceForFrames), and thereby provide portability of the user’s preferences.

4.8.1
MExE user interface personalisation

Personalisation of the user interface offers the MExE Service Environment and or the user, the ability to inform the MExE MS of the desired extent of personalisation. All support of the user interface personalisation is optional, not mandatory on any class of MS, and subject to the capabilities of the MS. Depending on the capability of the MS, the personalisation may be fully supported, partially supported, interpreted or ignored.

Personalisation of the user interface is not restricted to modifying the appearance of the MMI, but also the modification of MMI parameters (e.g. programming of the voicemail number). The user’s personalisation of the interface is retained as part of the user profile.

4.8.2
Support of MExE user interface personalisation

MExE user interface personalisation is supported via the preferences in the user profile, which in turn is based on the Composite Capability/Preference Profile (CC/PP) specification from W3C [16].

User interface personalisation may not only be reported in the CC/PP request to the server (the direct referencing mechanism), but indeed the client may point to a URL (the indirect referencing mechanism) from where the user interface personalisation preferences may be retrieved.

Generally, the user profile’s CC/PP framework provides the mechanism for the standardised format of preferences, and its use of Resource Description Framework (RDF) permits the interoperable encoding of user interface personalisation. Future extensions will be supported by the W3C mechanism, allowing for evolution and development of MExE user interface personalisation.

4.9
Provisioning and management of services

Support of management of services as detailed in this subclause is mandatory.

The MExE UE shall be capable of supporting services in a standard (WAP or Java) execution environment independently of the MExE UE manufacturer. Service provisioning provides a standardised method for a MExE UE to discover and install services. It includes download and installation of the service's client application. Once discovered and delivered, services are managed by the user. Management of services provides the user with the capability to:

· control the transfer of services;

· install and configure services ;

· control the execution of services;

· terminate or suspend executing services

· delete services

on his MExE UE.

4.9.1
Service discovery

A MExE user is able to request (or be informed about) the range of MExE services available from the MExE server to which it is connected. To be able to interactively discover the services via standard mechanisms such as WSP or HTTP, a MExE device should feature a browser which is a common tool for service discovery. The request, and transfer of information on MExE services from the MExE server is supported by the use of the capability negotiation mechanism.

All services available in the network continue to be available to the user, in addition to MExE services.

An example of an alternative means of receiving information on MExE services, is the use of an application on the MExE MS which the user interrogates to provide services information (from various sources), and which in turn then obtains such information and presents it to the user. Such an example is not subject to standardisation.

4.9.2
Service transfer

The standardisation of the transferral of MExE services to a MExE UE is outside the scope of this specification.

Examples of possible ways of supporting service transfer are from a MExE server or from another user device (e.g. using wireless and standard protocols and mechanisms such as HTTP, FTP, proprietary protocols and mechanisms, via a serial link, infrared, Bluetooth data exchange, etc.).

The above examples are not exhaustive. Regardless of the means of transfer, all services are required to conform with the security requirements in clause 8 "Security".

4.9.3
Service installation and configuration

Installation of a service may result in changes to the MExE UE user interface using icons, browsers or menus as applicable depending on the capability of the MExE UE to support them. The name of the installed service may be contained in the package in which it was received (i.e. a JAR file or script), assigned by the user during configuration, or some other means. After installation, the service may be configured. Configuration of the service includes setting the user permissions that apply to the service (e.g. blanket permission for call origination). Configuration may be performed automatically based on the user profile.

The user controls whether a service transferred to the MExE UE is automatically configured and installed in the MS. If automatic configuration and/or installation is enabled, the user is notified once it is completed. In the event that there is no authorisation for the automatic installation and/or configuration of a transferred service, the user is notified.

Subsequent user modification of a service’s configuration (e.g. by modification of user profile settings) shall take effect at the earliest possible opportunity thereafter.

4.9.4
Service management

The MExE UE shall support the ability to determine which services are transferred to, resident, installed or executing on the UE. The information relating to the services shall include the name as a minimum and the version number if available.

The user controls which services are permitted or denied to be transferred, resident, installed, configured or executing on the MExE UE via the user profile, e.g. AcceptDownloadableSoftware. The user profile permits characteristics such as security level, identification of specific services etc. to manage services on the MExE UE.

4.9.5
Service termination

A MExE UE shall support the termination of services.

A service may terminate by itself, or be terminated by the provider of the service or by the user. The user is in charge of the service, except when the service provider may appropriately control the service as part of user support.

The mechanism for terminating a service is out of scope of standardisation and shall be provided on a service by service basis by the provider of the service.

4.9.6
Service deletion

A MExE UE shall support the deletion of services.

A service may be deleted (i.e. removed) from the MExE UE with the authorisation of the user. The deletion may be initiated by the authoriser of the service or by the user.

4.10
User control of application connections

Support of the user control of application connections is mandatory.

This subclause addresses the generic aspects of connection control supported by both WAP and Java classmark MExE MSs.

In order to allow the user to maintain control over connections on his MExE MS and the ability to initiate connections, the user shall be able to terminate or suspend any active connection associated with an application in the MExE environment of the MExE MS. The user shall be able to obtain information about all connections associated with applications on the MExE MS (e.g. requesting information, being informed by the MExE device etc.). Behaviour of the application following termination or suspension of its connection is undefined.

The specific support of connection control by WAP and Java classmark MExE MSs is identified in subsequent subclauses, the security aspects of connection control are identified in the security subclause, and the user control of connection authorisation is identified in the user profile subclause.

4.11
Journalling of network events

Support of the journalling of network events is mandatory.

To support the user in monitoring (potentially chargeable) network events initiated by services in the MExE environment, the MExE MS shall maintain a record of network events initiated by MExE executables on the MExE MS.

Network events for the purposes of journalling, are defined as events which result in the origination of connections by a service in the MExE environment of the MExE MS. Examples of such events (any (potentially chargeable) network event initiated by services in the MExE environment) are:

· Sending an SMS message;

· Sending an USSD message;

· Initiating a circuit switched connection;

· Initiating a packet switched connection;

· Sending data over a packet switched connection.

The length, format and longevity of the journal is undefined and subject to manufacturers’ discretion.

The journal shall be managed by the ME, and not be accessible by MExE executables.

4.12

User notification

Support of user notification is optional.

It is recommended that the device should clearly display an indicator whenever network activity is in progress.

Ideally, this would be an icon on the phone's screen which is displayed whenever the device is sending/receiving SMS, USSD, data call, voice call, or packets.

However, there are certain cases when this indicator need not be displayed, especially if it is obvious by some other means that the device is performing network actions.

4.13

Quality of service

Quality of Service (QoS) [28] is seen by the end user as a measure of the amount of network resources given to an application by the underlying network. The network may employ a number of QoS mechanisms, but the end user / MExE executable is not involved in these. The end user / MExE executable requires an interface into the network QoS through a visible set of standard parameters.

A QoS aware MExE executable may request a QoS from the network at the beginning of a QoS session. Changes in the level of QoS provided shall be notified to the end user / MExE executable. An end user may request a change in the QoS through the MExE MS MMI. A MExE executable may have several QoS streams open simultaneously.

The MExE executable shall be able to dynamically request a change in the level of QoS at connection setup request or subsequently during the connection. The end user / MExE executable may receive a rejection to a QoS modification request, upon which the end user / MExE executable must be notified.

The end user's service level QoS subscription parameters are stored in the network, they identify the maximum permissible QoS that a user may negotiate with the network. Several QoS subscriptions may be possible for one user. MExE is neither aware nor able to determine or modify the end user's service level QoS subscriptions.

For MExE devices supporting bearers defined by QoS, the MExE execution environment shall support QoS management. QoS management may be available directly to the MExE executables themselves, or to the MExE environment.

4.14
Core software download

Support of core software download is optional.

Core software download enables the UE radio, characteristics and properties to be updated by changing the software in the UE. E.g. a new CODEC may be loaded into a device, a new air interface, etc. This process could include the transfer of executable code and software patches over the air.

This updating of core software (e.g. the Software Defined Radio (SDR) concept) can in principle be generically supported within the MExE framework by a MExE service that executes in the manufacturer security domain, and uses handset manufacturer proprietary APIs. Possible scenarios for the support of this functionality include:

· A MExE service that can be transferred to, and executed in, the manufacturer domain. The service would use manufacturer APIs to perform the software update, radio re-configuration, etc.

· A core software download application that executes in the manufacturers' domain that acts like a user agent in conjunction with a server to transfer software as needed or requested by the user. The core software download application uses manufacturer APIs to perform the software update, radio re-configuration, etc.

Similar functionality may be supported by a downloaded MExE service using manufacturer's OEM classes. All such OEM classes shall comply with the MExE security requirements in Table 6 "Security domains and actions" and Table 7 "Executable permissions for untrusted MExE executables".
The support of core software download functionality in a MExE UE shall only be under the control of the UE manufacturer.
5
WAP MExE devices

Support of WAP in a MExE classmark 1 UE as detailed in this subclause is mandatory.

WAP MExE devices shall be based on the WAP specifications [6]. In addition to the base specifications in [6], further developments made in the WAP specifications shall form part of this MExE specification.

WAP MExE devices shall implement the WAP version as specified in reference [6], or a later version, under the condition that the version of WAP is backward compatible with the version specified in reference [6].

The existing WAP specification covers security, creation and transfer of WAP executables and content, access, and execution.

5.1
High level architecture

The WAP architecture provides a scaleable and extensible environment for application development for mobile communication devices. This is achieved through a layered design of the entire protocol stack.

The key features of WAP include:

· Markup language (WML) and a script language (WMLScript) designed to create applications on the small displays of handheld devices. WML does not assume a QWERTY keyboard and a mouse is available for user input. Unlike the flat structure of HTML documents, WML documents are divided into a set of well defined units of user interactions. One unit of interaction is called a card, and services are created by letting the user navigate back and forth between cards from one or several WML documents. WML has a smaller set of markup tags that makes it more appropriate to implement in handheld devices, than, say, HTML.

· Light-weight protocol stack to minimise the required bandwidth and to guarantee that a maximum number of wireless network types can run WAP applications. For example, GSM SMS/USSD, circuit switched data (CSD), and GPRS.

· A framework for Wireless Telephony Applications (WTA) allows access to telephony functionality such as call control, phone book and messaging from within WMLScript scripts. This allows operators to develop telephony applications integrated into WML/WMLScript services.

Since WAP is based on a scalable layered architecture, each layer can develop independently of the others. This makes it possible to switch onto new bearers, to use new transport protocols, without major changes in the other layers.

5.2
Optionality

Mandatory and optional components of WAP are specified in the WAP specifications. Services and applications shall be able to determine the presence of optional parts of the functionality.

5.3
Call control

WAP telephony services are written in WML and WMLScript. The WAP Telephony API (WTAI) exposes telephony functions to service authors as a set of libraries. The WTAI function libraries can be accessed from WML as URIs, and from WMLScript as script functions. The following libraries have been specified:

· Public library
This includes functions that are available in all networks, and can be provided by any third party service provider; and not only the network operator. The user must acknowledge the function before it is carried out. Functions have been specified, which can be used e.g. to initiate a mobile originated call, send DTMF tones and add phonebook entry.

· Network Common library
This includes functions that are available in all networks, and can be provided only by the network operator. E.g. functions for advanced call control, accessing the phonebook, and sending and reading network text (SMS) have been specified.

· Network Specific library
Functions that are only available in certain types of networks, and can be provided only by the network operator. For GSM, e.g. functions for call reject, call hold, call transfer, multiparty, getting location information and sending USSD have been specified.

The WML and WMLScript author uses the WTAI libraries to create web services for mobile phones with telephony capabilities.

Call control shall be performed using WTA authenticated scripts.

5.4
Local phonebook
WAP Telephony API (WTAI) is used to access the information stored in the phonebook on the ME or the SIM. Phonebook entries consist of name, number and identity. Phonebook entries can be read, written, deleted, and searched for.

5.5
Services
WAP is a general purpose application based on World Wide Web (WWW) technologies and philosophies. Many services can be provided to both WAP clients and traditional WWW clients, from the same server. Services are created based on the same information space. The major difference is the user interface. The user interface of WAP services is realised by the Wireless Markup Language, WML [6], and has a menu tree oriented structure, instead of the traditional flat structure of HTML pages.

Typical WAP services provided to mobile phones may include (this list is not exhaustive):


News


Weather information


Package Tracking


Stocks

Telephony Services


Time Tables


Access to corporate databases


Sports

5.5.1
User interface

The user interface of WAP services is realised by the Wireless Markup Language, WML [6]. WML does not define the user interface itself, the implementation of the browser defines how the WML data is presented to the user (e.g. hyperlinks are blue and underlined). The script language, WMLScript [6], may be used to enhance the standard browsing and presentation facilities of WML with behavioural capabilities, and to access the device and its peripheral functionality.

5.5.2
Access points

Services may be hosted on standard HTTP servers and can be created with proven technologies; CGI, Java Servlets. URLs are used to address services.

The WAP network topology is shown in Figure 3 "WAP network topology".

[image: image4.wmf]WAP Gateway

WAP

Client(s)

HTTP/1.1

Server

Databases

Interfaces

Programs for

Interaction &

Dynamic content

Other Servers (e.g. proxies, firewalls)

Internet/intranet

GSM network

Other Network Nodes (e.g SMS-C)

WML

Figure 3: WAP network topology

Mobile phones access services by sending a request with a URI to the WAP gateway. The URI is used to identify the origin server on which the service is available. The request is sent from the mobile phone by the WAP protocols over one of the available bearer networks. The WAP Gateway is a WAP to HTTP/1.1 proxy that translates the WAP request into an HTTP/1.1 request (from binary form to text). The HTTP/1.1 request is passed on to the server identified by the URI.

The HTTP server may have multiple access points to various databases and other services available in the infrastructure network. Once the request has been serviced a response is sent back to the WAP Gateway, which in turn translates it into a WAP response (from text to binary form) and sends it down to the mobile phone.

Note that WAP does not specify anything "behind" the WAP Gateway. However it is assumed that the origin server is an HTTP/1.1 server, and that the WAP Gateway has access to the TCP/IP network on which the origin server is hosted.

5.5.3
Transferring

The core of WSP [6] is a binary version of the Hypertext Transfer Protocol - HTTP/1.1 [9]. The core function of WSP is the same as for HTTP/1.1. A client sends a request to the server using an appropriate request method with a URI and information about the client. The server responds with a status code and possibly (if success) the requested content.

There is a differentiation between an origin server and a WSP server. The origin server is where the content is stored, and the WSP server is where the WSP session terminates. The WSP server is also typically the WAP gateway.

In addition to the basic HTTP/1.1 function, WSP has some functions that can not be found in HTTP/1.1, they are:

· Session Establishment and Management
Before a request is sent, the WSP client can establish a session with the server. During session establishment the client and server exchange static headers. The header are cached for the duration of the session, thus they need to be sent in every single request within the session. Static headers may be: Accept headers, User-agent header, etc. In addition, capabilities such as supported optional protocol functions, the maximum service data unit the protocol can handle, the maximum number of simultaneously outstanding requests, supported header code pages, etc. can also be exchanged during session establishment.

· Header encoding
WSP is using a compact binary header encoding to minimise the number of bytes sent over the air.

· Asynchronous transactions
WSP allows for multiple asynchronous transactions, that is, unordered transactions.

· Transaction Abort
WSP support abortion of an outstanding transaction.

· Datagram transport
WSP together with the helper protocol Wireless Transaction Protocol, WTP [9], can run over a datagram transport such as SMS or UDP. The WDP can also be used for non-IP bearers.

· Push
WSP supports the push of data from server to client. This can be done within and outside of a session. It can be done with and without acknowledgement from the client. Push of indications down to mobile phones is an essential function many wireless applications.

5.5.3.1
WSP and HTTP/1.1 Proxy Function

The WAP Architecture is a client-proxy-server architecture. The client is typically a mobile phone, the data gateway is the WAP Gateway and the server is the origin server (a standard HTTP server). The WAP Gateway translates the binary WSP header into text formatted HTTP/1.1 headers and passes them on to the origin server. In the opposite direction the WAP Gateway translates the text formatted HTTP/1.1 header into binary WSP headers. If the WAP Gateway receives a header it does not recognise it simply passes it on as an unknown header. Unknown headers that are not part of the WSP Header Code page or Extended code pages (negotiated at session establishment) are sent in plain text for the client to interpret as best it can.

6
Java MExE devices

6.1
Classmark 2 MExE devices

Support of PersonalJava in a MExE classmark 2 UE as detailed in this subclause is mandatory.

MExE Classmark 2 devices shall be based on the API for Personal Java, which defines the required and optional components of Personal Java /JavaPhone APIs that shall be used to realise a Classmark 2 compliant device.

The APIs primarily define the functions available to a Personal Java based MExE device such that services (specified in the form of Java classes and interfaces) can control such a device in a standardised way.

Many aspects of the MExE Classmark 2 API specification are optional. Services and applications shall be able to determine the presence of optional parts of the functionality. When optional parts of the functionality are implemented, the API shall be supported.

6.1.1
High level architecture

[image: image5.wmf]Required

PersonalJava APIs

Optional

PersonalJava APIs

Required

JavaPhone APIs

Optional

JavaPhone APIs

Optional Java APIs

MExE API

MExE Applications

JavaPhone API

Personal Java API

Figure 4: Basic functional architecture of a PersonalJava MExE device

The functional architecture of a Java MExE classmark 2 device is shown in Figure 4 "Basic functional architecture of a PersonalJava MExE device". Java applets, applications, and services access functionality via the MExE PersonalJava API. The MExE PersonalJava API is based on a combination of optional Java APIs approved by Sun Microsystems and the Wireless Profile of the JavaPhone API [4] as defined by the JavaPhone Expert Group. The JavaPhone API is based on the PersonalJava API [3] defined by Sun Microsystems.

6.1.2
High level functions

6.1.2.1
Optionality

The use of Java encourages development of modular interfaces and minimal required functionality. Additional functionality is provided by optional APIs specified in terms of the Java language. In general, optionality is specified in terms of Java packages. Packages are containers for the highest level of functionality in the Java language. In some cases, optionality is specified in terms of Java classes and interfaces. Classes and interfaces are elements contained inside packages.

The following Table 4 "Optionality of the Wireless Profile of the JavaPhone APIs" specifies the Sun Microsystems defined optionality of the Wireless Profile of the JavaPhone APIs. Within some of the packages, certain classes and methods may be individually specified as optional by the JavaPhone API specification.

Where a mandatory package is identified, it is implicit that any packages called by that mandatory package are also mandatory.

Table 4: Optionality of the Wireless Profile of the JavaPhone APIs

JavaPhone API
Java package
Optionality

Addressbook
Javax.pim.addressbook
Mandatory

User Profile
Javax.pim.userprofile
Mandatory

Calendar
Javax.pim.calendar
Mandatory

Network
Java.net
Mandatory

Datagram
Javax.net.datagram
Mandatory

Power Monitor
Javax.power.monitor
Mandatory

Power Management
Javax.power.management
Optional

Install
Javax.install
Optional

Communications
Java.comm
Optional

SSL
Javax.net.ssl
Optional

JTAPI Core Package
Javax.telephony
Mandatory

JTAPI Core Capabilities Package
Javax.telephony.capabilities
Mandatory

JTAPI Core Events Package
Javax.telephony.events
Mandatory

JTAPI Call Control Package
Javax.telephony.callcontrol
Optional

JTAPI Call Control Capabilities Package
Javax.telephony.callcontrol.capabilities
Optional

JTAPI Call Control Events Package
Javax.telephony.callcontrol.events
Optional

JTAPI Phone Package
Javax.telephony.phone
Optional

JTAPI Phone Capabilities Package
Javax.telephony.phone.capabilities
Optional

JTAPI Phone Events Package
Javax.telephony.phone.events
Optional

JTAPI Mobile Package
Javax.telephony.mobile
Mandatory

Java.math
Optional

Java.rmi
Optional

Java.rmi.dgc
Optional

Java.rmi.registry
Optional

Java.rmi.server
Optional

Java.security
Optional

Java.security.interfaces
Optional

Java.sql
Optional

Java.io
Optional

6.1.2.2
Required and optional PersonalJava APIs

MExE classmark 2 devices shall support the PersonalJava specification [3]. The PersonalJava APIs provide a standardised and readily implementable execution environment as a mean for applications, applets, and content:

· to access and personalise the user interface via the java.awt packages;

· to utilise both Internet and Intranet connections via the java.net package.

6.1.2.3
Required and optional JavaPhone APIs

The JavaPhone APIs extend the PersonalJava APIs to provide functionality unique to telephony devices. MExE classmark 2 devices shall support the Wireless Profile of the JavaPhone API specification [4]. MExE classmark 2 devices shall support all APIs specified as required by the Wireless Profile in the JavaPhone API specification. All APIs that are optional in the Wireless Profile shall be optional in MExE classmark 2 devices.

6.1.2.3.1
Application installation

MExE classmark 2 devices shall support the following JAR file manifest entries (as described in the JavaPhone specification) as described below:

 Implementation-Title

the Implementation-Title shall be used in any textual description of the application which is displayed in the UI element used to launch the application. E.g. the text displayed with an icon.

 Main-Icon

the use of icons to launch applications is optional, however if icons are used as elements to launch the application, then the icon file within the JAR file named by the Main-Icon attribute shall be displayed, and may be scaled if desired.

 Main-Class and Class-Path

when the application is launched, the MExE Java VM shall be supplied with the classpath and shall call the main() method in the class named by the Main-Class attribute.

6.1.2.3.2
Power

MExE classmark 2 devices shall support the Power Monitor package (javax.power.monitor) as specified by the JavaPhone API to access the power level of the device and receive notifications concerning changes in power states.

Note that the Power Monitor package does not specify the minimum required events that should be generated under certain circumstances. MExE classmark 2 device shall at least implement the following event generation:

· BatteryCritical

shall be generated when the battery is at a critically low level.

· BatteryNormal

shall be generated when the battery is no longer low.

All the other event generation should be supported by the implementation.

6.1.2.3.3 Datagram recipient addressing

The syntax described in Concrete Addressing [4] specifies the format to be used for raw text-only GSM SMS messages, UDP datagram via IP, and WAP datagram via GSM SMS message(s).

As a minimum, the formats above shall be supported if the device supports the relevant bearer/transport combination.

Note that for the purposes of this clause, “GSM SMS” means SMS as defined by the 3GPP specifications including 23.040.

6.1.2.4
Required and optional MExE PersonalJava APIs

MExE classmark 2 devices shall not be required to support any other Java APIs.

MExE classmark 2 devices may optionally support any other Java APIs which comply with the MExE security requirements in Table 6 "Security domains and actions", such as:

· OCF SmartCard API OpenCard, available from [21]. If the ME supports smartcards other than the SIM, and the smartcard is open to 3rd party applications, then the opencard.core.terminal section of the OpenCard API may be used to access the card.

6.1.2.5
Mandated services and applications

6.1.2.5.1
Network protocol support

Support for network protocols in MExE classmark 2 devices is specified in the following Table 5 "Support for network protocols":

Table 5: Support for network protocols

Protocol
Optionality

HTTP/1.1 [9]
Mandatory

HTTPS
Mandatory

Gopher
Optional

ftp
Optional

mailto [25]
Mandatory

File
Optional

6.2
Classmark 3 MExE devices

Support of CLDC/MIDP in a MExE classmark 3 UE as detailed in this subclause is mandatory.

MExE Classmark 3 devices are based on the J2ME Connected Limited Device Configuration (CLDC) with the Mobile Information Device Profile (MIDP).

All APIs defined by CLDC and MIDP shall be supported by a MExE classmark 3 device.

6.2.1
High level architecture

Figure 5: Functional architecture of a Classmark 3 MExE device

The functional architecture of a Classmark 3 MExE device is shown in Figure 5 "Functional architecture of a Classmark 3 MExE device". The MExE API is based on the combination of CLDC APIs and MIDP APIs. OEM specific APIs are outside the scope of MExE specification. CLDC and MIDP APIs are defined in J2ME specified by Sun Microsystems [34,35].

6.2.2
High level functionality

J2ME CLDC and MIDP addresses a large market of resource-constrained devices and is aimed to provide complete end-to-end solution for creating dynamically extensible networked products and applications. It allows the use of Java programming language as the standard platform for secure delivery of dynamic content for the extensible next-generation devices.

In order to fit into various types of the devices and support extensibility, Java2ME defines in Configuration a minimum platform with a virtual machine features and minimum libraries which are available on all devices of similar class. In a Profile J2ME addresses the specific demand of a certain category of the devices allowing additional APIs. Profile is implemented on top of configuration (see Figure 5 "Functional architecture of a Classmark 3 MExE device"). Classmark 3 MExE device shall be based on the following types of configuration and profile: Connected Limited Device Configuration (CLDC) and Mobile Information Device Profile (MIDP).

6.2.2.1
Connected Limited Device Configuration (CLDC)

Classmark 3 devices shall support CLDC specification [34].

CLDC provides only high level libraries without focus on any specific device categories. Defining "the lowest common denominator" of Java technology all features included in CLDC must be generally applicable to a wide variety of the devices. CLDC does not address to a certain device category. Such features are specified in a profile. CLDC does not define any optional features.

The classes provided by CLDC are either subset of J2SE (Standard Edition) classes or CLDC specific classes which can be mapped onto J2SE. Classes belonging to the packages: Java.io, Java.lang, Java.util are a subset of corresponding Java2SE libraries, while classes specified in Javax.microedition.io are specific CLDC classes, which, however, can be mapped onto Java2SE.

Javax.microedition.io provides generic connection framework for supporting input/output and networking in a generalized and extensible manner. The framework is a functional subset of Java2SE classes which can be mapped to common low-level hardware or to any Java2SE implementation. It does not provide a set of different kinds of abstractions for different forms of communications, but rather a set of related abstractions are used at the application programming level.

The framework uses a hierarchy of Connection interfaces that group together classes of protocols with the same semantics. The actual supported protocols or implementation of the specific protocols is outside the scope of CLDC Generic Connection Framework and is maintained at the profile level.

The basic set of available Connection interfaces is the following:

- Connection

- ContentConnection

- Datagram

- DatagramConnection

- InputConnection

- OutputConnection

- StreamConnection

 - StreamConnectionNotifier

6.2.2.2
Mobile Information Device Profile (MIDP)

Java MExE device shall support MIDP specification [35]. MIDP is based on CLDC. Some of the features of CLDC are modified or extended by MIDP [35].

6.2.2.2.1
Networking

While CLDC specifies only a generic Connector used for all types of connections, MIDP extends connectivity support by providing support of the subset of the HTTP protocol. HttpConnection API provides the additional functionality to set request header, parse response headers and perform HTTP specific functions. The API must support RFC2396 (URI) and RFC2116 (HTTP1.1).

The MIDP does not provide support for Datagrams. If a Datagram API is to be implemented, the DatagramConnection interface defined in CLDC shall be used.

6.2.2.2.2
MID Applications (MIDlet)

A MIDP application (or MIDlet) uses the APIs defined by the MIDP and CLDC specifications. One or more MIDlets may be packed in one JAR file. Sharing of data between MIDlets is controlled by the individual APIs (e.g. Record Management System API).

Application Management Software provides an environment in which a MIDlet is installed, started, stopped and uninstalled. Each JAR file can be accompanied by an Application Descriptor (a text file consisting of name/value pairs), which is used to manage MIDlet and is used by MIDlet for configuration specific attributes. With the help of descriptor file, verification prior to software download is done to ensure that the MIDlet is suited to the device: Java Application Manager checks if the application already exists on the device, verifies the version number (whether an update is needed or not) and reading the JAR-file-size information ensures that there is sufficient amount of memory on the device to save the file. The minimum attributes which the Application Descriptor must contain are the following:

· MIDlet-Name

· MIDlet-Version

· MIDlet-Vendor

· MIDlet-Jar-URL

· MIDlet-Jar-Size

Mandatory and optional attributes are defined in [35]. If the mandatory attributes are not identical in the descriptor file and in the manifest file, the JAR file shall not be installed.

6.2.2.2.3
MIDlet Suites

MIDlets may be packaged together in a single JAR file, forming a MIDlet suite. MIDlets in a MIDlet suite share the classes in the JAR file and the persistent storage is the MIDP Record Management System.

MIDlets in a MIDlet suite may be discovered, transferred, installed and deleted together as a packaged set of MIDlets. The deletion of a MIDlet in a MIDlet suite may result in the deletion of the entire MIDlet suite, in which case the user shall be notified of the deletion of the MIDlet suite.

6.2.2.2.4
Record Storage

The MIDP provides a mechanism for MIDlets to persistently store data and later retrieve it. The persistent storage mechanism is called Record Management System. Record stores are created in platform-dependent locations and are not exposed to MIDlets. The record store maintains a version number, which is incremented each time the content of the record store is modified. A record store is shared between all MIDlets in a MIDlet suite.

6.2.2.3
Required and optional MExE APIs

Support of any other Java APIs besides CLDC and MIDP is not mandated in a Classmark 3 MExE device. A Classmark 3 MExE device may optionally support any other Java APIs which comply with the MExE security requirements.

6.2.3
Service discovery and management

A browser installed on a MExE device should support MIME type text/vnd.sun.j2me.app-descriptor. This support allows the user to browse and discover a Java application which can then be downloaded. Capability negotiation information in the request header can determine which application to present. MIDlets and MIDlet suites should be indicated to the user, and if the terminal has a display, may be presented as an icon and a tag or as a textual tag only.

A JAD file can be downloaded and used to determine if the MIDlet is deemed suitable for download and installation. If it is suitable, the JAR file can be downloaded and installed. If not, the MExE UE should be able to prompt the user so that the user might choose to take such actions such as deletion of some existing applications if there is not enough space to install the new application. If the application chosen to be installed already exists on the device, the user should be notified so that he could take further actions either to download the chosen version or to retain the existing one.

The user should be able either to launch the MIDlet immediately or later.

7
Charging

Support of charging is outside the scope of MExE standardisation.

The following informative subclauses provide a brief overview of the charging possibilities enabled by MExE.

7.1
Generic charging support

The standard GSM/UMTS charging records contain information sufficient to associate bearer usage and SMS/USSD messages with a subscriber.

Third party service providers and/or service providers may define charging regimes for MExE services (e.g. on a MExE or WAP server).

7.2
WAP charging support

The WAP protocol suite in [6], with upgrades as identified in this specification, does not specify mechanisms for charging (e.g. charging records) or subscription management. WAP is bearer independent and is running as an application on top of the bearer network. However the WAP architecture suggests that appropriate charging information can be collected in the WAP Gateway; the point of convergence for all WAP traffic.

The WAP security protocol can be used for authentication of the subscriber.

7.3
Java charging support

MExE Java devices do not require any additional specific charging (e.g. charging records) or subscription management. Java usage of network resources is bearer independent and runs as applications on top of the bearer network.

8
Security

8.1
Generic security

In order to manage the MExE and prevent attack from unfriendly sources or transferred applications unintentionally damaging the MExE device a security system is required. This section defines the MExE security architecture.

The basis of MExE security is:

· a framework of permissions which defines the permissions transferred MExE executables have within the MExE MS;

· the secure storage of these permissions (and permission type as defined in subclause 8.3 "User permission types");

· conditions within the execution environment that ensure that MExE executables can only perform actions for which they have permission.

The MExE permissions framework is defined in 3GPP TS 22.057 and is as follows (there is no implied hierarchy):

· MExE Security Operator Domain (MExE executables authorised by the HPLMN operator);

· MExE Security Manufacturer Domain (MExE executables authorised by the terminal manufacturer);

· MExE Security Third Party Domain (trusted MExE executables authorised by trusted third parties);

· MExE Untrusted. Untrusted MExE executables are not permitted to execute in a security domain (i.e. Operator domain, Manufacturer domain or Third Party domain) and execute in the Untrusted area, and have very reduced privileges as described in subclause 8.2.1 "MExE executable permissions for operator, manufacturer and third party security domains" for Classmark 1 and Classmark 2, and in subclause 8.2.2. "MExE executable permissions for untrusted MExE executables" for Classmark 3.

MExE device shall support either all three security domains or no domains. If the security domains are not supported, then all applications shall be untrusted. The MExE device shall not support any subset of the three security domains. Support of the MExE Untrusted Domain is mandatory.

8.2
MExE executable permissions

Support of MExE executable permissions as detailed in this subclause is mandatory.

8.2.1
MExE executable permissions for operator, manufacturer and third party security domains

The following Table 6 "Security domains and actions" specifies the permissions of operator, manufacturer and third party security domains in the order of restriction.

The actions listed in the security Table 6 "Security domains and actions" are generic actions. These actions can only be performed by MExE executables via application programming interfaces (APIs) (which are intrinsically part of the MExE implementation) The security restrictions shall apply to MExE executables whether the API functionality is called directly or indirectly by the MExE executable. Explicit user permission is required for all actions by MExE executables in all domains. Types of user permission are defined in subclause 8.3 User permission types.

Untrusted MExE executables are not permitted access to any actions which access the phone functionality (phone functionality includes all the actions in Table 6 "Security domains and actions") except for the exceptions identified in 8.2.2 "MExE executable permissions for untrusted MExE executables".

Actions available using interfaces giving access to the phone functionality (either in existence at the time of approval of this specification or not) that are not listed in the security Table 6 "Security domains and actions" shall be categorised into one of the groups in the security Table 6 "Security domains and actions" by comparing its action against the groups in order as they are listed in the Table 6 "Security domains and actions". If an action can be categorised into a more restrictive group near the top of the table, then it shall not be again categorised into another, less restrictive, group further down in the table. E.g if a new action eventually results in forwarding a call, it shall be categorised into Network access. If the action is totally new, it shall be categorised into some of the groups by comparing its functionality to the group description below and by comparing with the list of actions listed in the table within the group.

1. Device core function access includes functions, which are an essential part of the phone functionality .

2. SIM smart card low level access includes functions, which allow communications at the transport service access point (send and receive application protocol data unit).

3. Network security access includes all functionalities which relate to CHV, CHV2, UNBLOCK CHV and UNBLOCK CHV2 (verification, management, reading or modifying), GSM authentication, GSM ciphering.

4. Network property access includes functions, which enable the management of operator-related data parameters and network settings.

5. Network services access includes all functionalities which result in or need interaction via the operator´s network.

6. User private data access includes all functionalities which relate to management, reading or modifying of data that the user has stored in the MS including user preferences.

7. MExE security functions access includes all functionalities which, through an API relate to certificate handling in the MS; end to end encryption, signed content, hashing, access to public, private, secret keys stored in the MS or in a smart card.

8. Application access includes the functionalities which relate to launch provisioned functionality, MExE executables, external executables (SIM tool kit application,…) usage.

9. Lifecycle management includes the functionalities which are needed for installing or removing MExE executables in the MS.

10. Terminal data access includes the functions which relate to accessing terminal data, i.e. not user data.

11. Peripheral access includes the functionalities related to peripherals other than user interface peripherals usage through a high level software application interface.

12. Input output user interface access includes the functionalities related to the user interface and user notification means usage.

Table 6: Security domains and actions

MExE Security Domains

Actions
Operator
Manufacturer
Third Party

Device core function access

1. Start/stop radio

2. Turn on/off device

3. Write time and/or date

4. Activate a user profile

5. Modify a user profile
No

Support of Core Software Download

e.g. Update UE software
No
Yes
No

SIM smart card low level access11
1. Send APDU

2. Slot management (power on/off, reset, port lock…)
No

11 – Access to SIM is provided using more high level API as phonebook, application launching

Network Security access

1. Run algorithm

2. Verify CHV/2 or UNBLOCK CHV/2
3. Activate/deactivate CHV
4. Modify CHV/2
No

Network property access

1. Get IMSI

2. Get home network

3. Select network
Yes
No

Network services access

1. Initiate a voice/data connection 3
2. Accept a voice/data connection 3
3. Call forward 4
4. Multiparty call 4
5. Call deflection 4
6. Explicit call transfer 4
7. Terminate an existing connection

8. Hold an existing connection

9. Resume an existing connection

10. Send point-point message (e.g. SMS, USSD) 4
11. Generate DTMF

12. Query network status

13. Get signal level

14. Get call list

15. QoS management
Yes
Yes 6

3 – A network connection may be via any supported bearer service

4 – Multiparty, deflection, and explicit call transfer shall be permitted only to numbers explicitly supplied by the user to the MExE Executable. Modification of call forward numbers stored in the network shall only be permitted to numbers explicitly supplied by the user to the operator.

6– The Third Party domain's permission to access the networking action depends on the provisioning mechanism as described in subclause 8.8.1 "Determining the administrator of the MExE UE"

User private data access 1
1. Read

2. Write

3. Get properties

4. Delete

5. Get Location Information

6. Read stored SMS

7. Delete stored SMS

8. Modify user preferences
Yes2
Yes2
Yes2
Yes2
Yes2
Yes2
Yes2
Yes7

1 – User private data includes user files, phonebook, etc located on the MS.

2 – The user shall be able to specify data access permissions within the capabilities of the device. It is not applied to user preferences

7 – Trusted applications only have permission to modify user preferences, and not to activate or de-activate them. The user shall be able to specify for each domain, the preferences that applications in that domain can access. All other preferences shall not be accessible to that domain. The default shall be that there is no access. Single action user permission is the only type of user permission that shall be possible for changes to User Preferences.

MExE security functions access

1. Install a certificate for a given domain

2. Uninstall a certificate for a given domain

3. Replace a certificate for a given domain

4. Data encryption API

5. Verify a signature API

6. Compute a digital signature API

7. Hash a content API

8. Non repudiation API
Yes 5

Yes 5

Yes 5

Yes

Yes

Yes

Yes

Yes

5 – Only the organisation whose public key is certified (or the organisation that certified the public key) can add, delete or replace a particular certificate.

Application access

1. Get application list
2. Launch an application
3. Get application status
4. Stop, suspend, resume an application
Yes8
Yes8

Yes8
Yes9

8 – Device provisioned functionality access is limited to manufacturer domain.
SIM tool kit application access is limited to operator domain.
MExE executable access is limited to MExE executable issued by the same issuer (identify by the certificate) of launched MExE executable

9 – Access is limited to MExE executable which launch the application. But the end user, shall have a way to stop the launched application, MExE environment may stop the launched application or launched application may stop itself.

Lifecycle management

1. Install a MExE Executable

2. Uninstall a MExE executable
Yes

Terminal data access

1. Get manufacturer software version

2. Read time and date
Yes

Yes

Peripheral access
1. Sound generation to speaker (e.g. via stream)

2. Set speaker volume

3. printer access

4. Monitor the power state

5. Change the power state

6. Activate/ access Serial port (RS232, IrDA, Bluetooth, USB …) access
7. Activate/access Parallel port
8. Activate/access Smart card other than SIM card (Send APDU, Slot management)
Yes

Input output User interface access

1. Input device (keyboard, mouse …)

2. Output device (display)
3. Output notification device(smart icon, sound, light, vibrator …)
Yes10

Yes10

Yes

10 – Access request no user permission.

The lists in the groups in Table 6 "Security domains and actions" are not exhaustive, and other actions which are of the same category shall be included in the group for the purposes of requesting user permission.

This subclause identifies the permissions for MExE executables in the 3 security domains (operator, MS manufacturer and Third Party). The permissions do not apply to untrusted MExE executables which are not permitted to execute within the domains.

8.2.2
MExE executable permissions for untrusted MExE executables

When the Security Domains are not supported then all executables are untrusted and they execute in the untrusted area for which the executable permissions are defined as follow in Table 7 "Executable permissions for untrusted MExE executables".

In order to facilitate untrusted MExE executables having some limited access to MExE UE functionality beyond their very limited privileges, some of the access permissions in the previous Table 6 "Security domains and actions" are extended to untrusted MExE executables and described in Table 7 "Executable permissions for untrusted MExE executables" as well as in subclause 8.2.3 "Separation of I/O streams".

The untrusted MExE executables permitted to use these facilities shall be MExE executables the user has downloaded him or herself, and not be MExE executables that have been pushed to the user. MExE executables on the MExE UE due to the user having visited a particular Web site are considered to be MExE executables that the user had downloaded him or herself.

Untrusted MExE executables shall not be permitted access to any other functions.

Table 7: Executable permissions for untrusted MExE executables

Classmark 1
Classmark 2
Classmark 3

User Interface
An untrusted, uninstalled MExE executable (e.g. an applet) can access the user interface output and input without user permission, but the sending of user data to a server to which the MExE executables has a session connection (e.g. as part of a browser session) requires user permission.

An installed untrusted MExE executable shall only be able to access the user interface output and input with user permission (clearly, for the usability of untrusted MExE executables such as games, blanket user permission should be sought and given, and this is permissible).
Untrusted MExE executables can access the user interface output and input without the user permission.

File, Persistent Data
File access is not permitted for untrusted MExE executables.

But, untrusted MExE executables can access files only in the MExE executable’s own directory.
But, persistent data may be stored via the MIDP record management system (stores are shared between MIDlets in the same MIDlet Suite).

Initiate a Voice/Data Connection
Untrusted MExE executables shall be able to make calls under the following conditions:

In addition to an untrusted MExE executable possibly displaying the number to be called (or the URL to be accessed) to the user, the number to be called (or the URL to be accessed) shall be presented to the user for permission by a provisioned functionality of the MExE MS and not by the MExE executable itself. (This facility would support, for example, "click to dial" button/links in an untrusted MExE executable, and a MExE MS provisioned functionality then represents the number to the user for confirmation.)

Generate DTMF
Untrusted MExE executables shall be able to generate DTMF tones under the following conditions:

An untrusted MExE executable is only permitted to send DTMF tones in a currently active call. The request to generate DTMF tones in the currently active call, shall result in the characters which the tones represent being presented to the user for permission by a provisioned functionality of the MExE MS.

Add Phonebook Entry
Untrusted MExE executables shall be able to add a phonebook entry (i.e. name and number only) under the following conditions:

The name and the number to be added shall be displayed to the user for permission by a provisioned functionality of the MExE MS and not by the MExE executable itself. The phonebook entry shall not be added without user permission. The function shall not be able to modify or delete any phonebook entry.

Executable Interaction
Executable interaction is not permitted for untrusted MExE executables (except for MIDlets within the same MIDlet suite).

Note that the functionality of "Generate DTMF tones" and "Add Phonebook Entry" is not supported by the MIDP at the moment.

8.2.3
Separation of I/O streams

Support of the separation of I/O streams is mandatory.

Except for the MExE Classmark 3 executables (MIDlets) from the same MIDlet Suite, there shall be strict separation of the user interface input and output streams between different MExE executables, i.e. it shall not be possible for one MExE executable to access the user interface input or output of another MExE executable. In particular, it shall not be possible for an untrusted MExE executable to access the user interface input and output destined for or proceeding from a trusted MExE executable. (This requirement is to prevent a long lived malicious MExE executable from eavesdropping upon on interfering with the user to MExE executables communications, for instance PINs, of a trusted MExE executable).

8.3

User permission types

Support of user permission types is mandatory.

The term "user permission" is defined to mean that the user can give permission for a specific action in one of the ways defined in Table 8 "User Permissions". Support single action permission is mandatory, but support of blanket permission and session permission is optional.

All prompts for user permission as described in Table 8 "User Permissions"must display a user friendly name identifying the signer of the corresponding MExE executable, if available. The user shall be able to request to see the "subject" field of the certificate of the signer ("subject" here refers to the "subject" fields of WTLS and X.509 certificates and an equivalent field for any other format of certificate). If an application, for which user permission is being sought, is untrusted, the fact that the application is untrusted shall be at least visually indicated to the user, if the ME is capable of visual indication, whenever user permission is sought. Other means of indication are additionally permitted. If the ME is not capable of visual indication, or is not designed for use by a human user, other means of indication shall be used.

The user shall be prompted for user permission relating to all action groups listed in the Table 6 "Security domains and actions" that are required by the MExE executable. If a prompt for permission relates to more than one action, e.g. networking and user data, then it shall list the individual action group permissions which will be granted, though the action group permissions can all be granted with a single user action. This condition applies to any prompts relating to user permissions in Table8 "User Permissions".

Note that blanket permission cannot be used for uninstalled MExE executables e.g. applets, WMLS.

Table 8: User Permissions

User Permissions

Permission Type
Description
Invocation
Revocation

blanket permission
The user gives blanket permission to the MExE executable for the specified action, and the MExE executable subsequently uses the user’s original permission for the identified subsequent actions whenever the MExE executable is running.
Typically such permission would be given at MExE executable configuration or run time.
The blanket permission maybe revoked by the user at any time. The user permission no longer applies once the MExE executable has been removed.

session permission
The user gives permission to the MExE executable for the specified action during a specific run time session of an MExE executable, and the MExE executable subsequently uses the user’s permission for the identified subsequent actions whilst the MExE executable session is still running.
Typically such permission would be given at MExE executable run time.
The session permission maybe revoked by the user at any time. The user permission no longer applies once the MExE executable run time session has terminated.

single action permission
The user gives a single permission to the MExE executable for the specified action; if the MExE executable subsequently wishes to repeat the action it must again request the user’s permission for the identified subsequent action.
Typically such permission would be given at MExE executable run time.
The user permission no longer applies once the action has terminated.

8.4
Certification and authorisation architecture

If the 3 MExE security domains defined in subclause 8.1 "Generic security" are not supported, then the certificate and authorisation architecture described in this subclause is optional.

In order to enforce the MExE security framework a MExE capable MS is required to operate an authentication mechanism for verifying downloaded MExE executables. A successful authentication will result in the MExE executable being trusted; and able to be executed in a security domain (as determined by the root public key of its certification tree).

As the MExE MS may want to authenticate content from many sources, a public key based solution is mandatory. Before trusting MExE executables, the MExE MS will therefore check that the MExE executable was signed with a private key, for which the MExE MS has the corresponding public key. The corresponding public key held in the MS must either be a root public key (securely installed in the MS, e.g. at manufacture) or a signed public key provided in a certificate. The MExE MS must be able to verify certificates, i.e. have the public key (as a root key or in a certificate) corresponding to the private key used to sign the certificate. Support of certificate chains is therefore mandatory.

The requirements on authorisation and certification are given in subclause 8.4.1 "Certification requirements". An example authorisation and certification process is described in subclause 8.4.2 "Example certification process".

8.4.1
Certification requirements

A MExE MS cannot verify certified MExE executables of a particular domain unless it has a root public key for that particular domain.

Root public keys shall be securely installed in the MExE MS, say, at manufacture.

It is recommended that a "disaster recovery" root public key be securely installed on the terminal, to be used to install new root public keys when all other root public keys on the terminal are invalid.

Third Party Domain root public keys will typically be installed along with and integrated into the MExE ME browser, as is done for PC-based browsers.

A MExE executable can only be verified if the MExE MS contains a valid root or certified public keys corresponding to the private key used to sign the MExE executable.

A MExE MS shall support at least one level of certificate under operator, manufacturer or Third Party root public keys. The MExE MS shall support at least one level of certificate chain analysis in a signed content package, as shown in Figure 6 "Trust hierarchy".

A certificate (other than one containing a root public key) shall only be considered valid if the signature on the certificate is verified by a valid public key (root or contained in a certificate) already present on the MS and if the certificate being verified has not expired.

Public keys shall not be shared between domains.

[image: image6.wmf]Mandatory minimum supported trust hierarchy

Root Operator Key

Root Manufacturer Key

Root TTP1 Key

Root

TTPn

 Key

Figure 6: Trust hierarchy

The boxes below the root keys represent individual public key certificates. The solid boxes represent the minimum MExE, and the dotted boxes represent possible further support for public key certificates (either at the first or subsequent levels).
8.4.2
Example certification process

The following processes might be followed in order to securely download a Third Party application to a MExE MS.

Root public keys for a number of Certification Authorities (CAs) are installed in the ME, along with the ME browser, at manufacture. These root public keys can be used to verify certificates for Third Party MExE executables.

1. A third party software developer generates a private and public key pair (or obtains such a pair from a CA).

2. The third party software developer obtains a certificate for the public key from a CA. The certificate contains the developer public key, signed with the private key of the CA.

3. The 3rd party software developer adds all the certificates required in the key chain in the JAR.

4. The MExE MS downloads a MExE executable of the third party software developer.

5. The MExE MS verifies the certificate using the root public key, contained in the browser, of the relevant CA, and extracts the third party software developer public key and may store it in the certificate store for future use.

6. The MExE MS verifies that the MExE executable was signed using the private key corresponding to the third party software developer public key and installs or rejects the MExE executable accordingly.

8.5
Root Public keys

If the 3 MExE security domains defined in subclause 8.1 "Generic security" are not supported, then the root public key management described in this subclause is optional.

8.5.1
Operator root public key

The ME shall support secure storage for at least one certificate containing an operator root public key. The ME shall support the use and management of an operator root public key on the SIM. The certificate contains a root public key generated either by the operator, or by a CA trusted by the operator. The ME shall get the operator root public key from the secure area every time it needs to verify a signature, rather than cache the root public key for use in subsequent verifications.

If the MS does not contain a valid operator root public key, then the certificate chain to MExE executable previously executing in the Operator Domain will be invalid, and they will be excluded from the operator domain.

The user shall not be able to add or delete any type of operator public key (root or contained in a certificate).

Optionally, the operator may install a corresponding disaster-recovery root public key stored in the MS, enabling the operator to use a secure mechanism (involving the disaster-recovery key) to replace the certificate containing the standard operator root public key. It shall not be possible to use the disaster recovery operator root public key to replace the standard operator root public key unless both public keys are from the same operator.

There shall be no more than one valid operator root public key on the MS (excluding the disaster recovery root public key).

An application signed by an operator shall not be able to execute in the Operator Domain unless the root public key of that operator is installed in the MS (either ME or SIM) and is marked as trusted.

8.5.1.1
ME actions on SIM insertion and/or power up.
The requirements in this subclause ensure that the operator domain on the ME belongs to the same operator as the operator that issued the SIM inserted in the ME and, if there is an operator root public key (ORPK) on the SIM, that trusted operator applications on the terminal were verified using that ORPK.

The ME shall support the use and management of an Operator root public key (ORPK) on the SIM.

On power up of the terminal, the terminal shall behave as dictated by Figure 7 "Terminal behaviour on power up" below.

[image: image7.wmf]

Yes

Following a power

-

up

Yes

Yes

No

ORPK in

S

IM?

ORPK in

ME?

No

Operator

domain is

disabled

Store ID of the ORPK in ME.

All ORPKs on ME are/remain

invalid,

even the ones from the

same operator, stored in the

ME

.

ORPK on SIM is valid.

ORPK = PK

ID of operator

application?

For all

operator apps:

Operator application

is untrusted

Operator application

is trusted

Yes

Id ORPK

SIM = Id

ORPK in

ME?

No

ME ORPK

invalid

ME ORPK

valid

Yes

No

operator

domain is

enabled

SIM

inserted?

No

Figure 7: Terminal behaviour on power up
Note that on DCS1900 the MCC+MNC is 6 digits, but elsewhere it is 5 digits. The ME needs to know how many digits to use, however this is outside the scope of this specification. The identity of the root public key has to be defined.

The terminal shall only read the SIM ORPK from the SIM when required and shall not store a SIM ORPK on the terminal.

When an operator root public key stored on the ME is marked as invalid, all operator applications verified using that root public key or by certificates verified by a chain that terminates with that root public key, shall cease operation as soon as possible and shall be marked as untrusted.

8.5.1.2
ME actions on removal of the SIM

Removal of the SIM shall not cause the status (i.e. valid or invalid) of any operator root public key on the terminal to change.

If a SIM is removed from the ME (without another SIM being inserted), operator applications shall continue to execute in the operator domain.
8.5.2
Manufacturer root public key

The ME shall support secure storage for a certificate containing a manufacturer root public key. The certificate contains a root public key generated by the manufacturer of the device, or by a CA trusted by the manufacturer of the device.

If the ME does not contain a valid manufacturer root public key, then the certificate chain to MExE executable previously executing in the Manufacturer Domain will be invalid, and they will be excluded from the manufacturer domain.

The user shall not be able to add or delete any type of manufacturer public key (root or contained in a certificate).

The Manufacturer shall put a root public key and optionally its corresponding disaster-recovery key in the device at the time of manufacture, and use a proprietary secure mechanism (e.g. using the disaster-recovery key) to replace the certificate containing the manufacturer root public key. It shall not be possible to use the disaster recovery manufacturer root public key to replace the standard manufacturer root public key unless both public keys are from the same manufacturer.

An application signed by a manufacturer shall not be able to run in the Manufacturer Domain unless the root public key of that manufacturer is installed in the MS and is marked as trusted.

There shall be no more than one valid manufacturer root public key on the MS (excluding the disaster recovery root public key).

8.5.3
Third party root public key

The ME shall support secure storage for at least one certificate containing a third party root public key. The ME shall support the use and management of Third Party root public keys on the SIM. The ME may contain root public key (s) generated by CA(s) implicitly trusted by the user. The user will be able to securely install (using a secure transport) or remove Third Party root public keys at any time using a system administrative tool.

The Manufacturer, Operator and Administrator may at their discretion, securely install certificates containing Third Party root public key(s) on behalf of the user, e.g. at the time of manufacture by the Manufacturer. See subclause 8.6 "Certificate management" for details of Administrator control of Third Party certificate download.

If a Third Party public key is deleted or becomes invalid, then the certificate chain to MExE executables previously executing in the Third Party Domain certified by that public key will become "untrusted".

There may be any number of Third Party root public keys on the MS.

The third party domain administrator (user or other body) shall be able to enable and disable Third Party root public keys by using CCM. The process of adding/removing public keys and enabling/disabling public key are independent.

All third party certificates shall be subject to restrictions imposed by valid certificate configuration messages.

See subclause 8.6 "Certificate management" for the management of Third Party root public keys on the SIM.

8.5.4
Administrator root public key

The ME shall support secure storage for a certificate containing an administrator root public key. The ME shall support the use and management of an Administrator root public key on the SIM. Only one administrator root public key shall be valid on the MExE MS.

The MExE MS shall support the administrator designation mechanism and the secure downloading of CCMs explained in subclause 8.8 "Provisioned mechanism for designating administrative responsibilities and adding third parties in a MExE MS".

The user shall not be able to delete an administrator root public key or certificate.

The system shall support a mechanism (as part of a provisioned functionality and/or inherently part of the MExE implementation) allowing the owner of the MExE MS to manage the administrator root public key (including the download of a new administrator root public key) as defined in subclause 8.8.1.1 "Administrator of the MExE MS is the user". This mechanism shall be secure so that only the owner can use this functionality.

The administrator root public key can be downloaded to the MExE MS as described in subclause 8.10.4 "Administrator root certificate download mechanism".

The terminal shall only read the SIM Administrator root public key from the SIM when required and shall not store the SIM Administrator root public key on the terminal.

See subclause 8.6 Certificate management for the management of Administrator root public keys on the SIM.

The same root public key may be used for both the Administrator role and the operator or manufacturer domain. This facility does not imply any increased right of the manufacturer or operator to take the Administrator role.

If the same root public key is used for the operator domain and Administrator role and this root public key is stored on the SIM (see [27]), there shall be separate entries relating to each use of the root public key in the operator and administrator trusted certificate directory files. These entries in the operator and Administrator trusted certificate directory files may point to the same root public key in the certificate data file.

If the root public key to be shared is not stored on the SIM, then procedures relating to this are out of the scope of this specification.

8.6
Certificate management

If the 3 MExE security domains defined in subclause 8.1 "Generic security" are not supported, then the certificate management described in this subclause is optional. The manufacturer may load initial third party certificates on the device. Downloaded certificates shall be verified by an existing trusted certificate and placed in the domain defined by the root public key at the top of the verification chain for the downloaded certificate.

The administrator root certificate shall be provided on the SIM if support for certificate storage on the SIM exists. For SIMs not having certificate storage the administrator root may be downloaded using the root download procedure described in subclause 8.10.4 "Administrator root certificate download mechanism".

The actions that may be performed for a given certificate are:

· addition,

· deletion,

· mark un-trusted (un-trusted certificates cannot be used to verify applications or other certificates. This process may be preferred to certificate deletion as there is a chance that the certificate may become trusted again in the near future),

· mark trusted (marking as trusted is the process of allowing an untrusted certificate to come into use again),

· modify fine grain access permissions (proposed as a future enhancement).

The ability to perform these actions depend on the certificate type being modified as well as the access level of the entity performing the operation. Users may add a third party certificate as long as it is certified by an existing trusted certificate.

Using a provisioned functionality, users may delete Third Party certificates.

8.6.1
Certificate extension for removal of network access

MExE defines the certificate extension (attribute) " access-Restriction". If the access-Restriction extension is present in a certificate used to verify the signature on a trusted application or in any certificate in the certificate chain used to verify that signature, then the application shall not be permitted the capabilities listed under "network service access" in the security table, (Table 6 "Security domains and actions"). This restriction applies irrespective of any user permission for network service access that may or may not be requested by the application and/or given by the user.

The extension prevents the trusted applications of developers who do not need network service access from writing applications that can perform network service access.

The support of this extension in the operator domain is mandatory. The support of this extension in the manufacturer and third party domains is optional.

The extension is defined for X.509v3 only. Support for WTLS, X9.68 certificate formats is for further study.

8.6.1.1

X.509 version 3

If MExE terminals support X.509v3 format in operator, manufacturer or third party domains, it shall support the X.509 version 3 access-Restriction extension.

X509 v3 provides a mechanism to define extensions. An Object identifier (OID) s defined for each private extension as defined in X509 [26]. The extension is defined to be within the ETSI Object Identifier (OID) name space.

This extension shall apply irrespective of the presence or otherwise of any other X.509 key usage or extended key usage field.

Normal use of the "critical" flag for extensions apply. That is, if this extension is marked as critical in the certificate used to verify the signature on the application or in any certificate in the chain used to verify the signature and this extension cannot be processed in the terminal then the certificate shall be considered invalid.

The syntax of the extension is defined in Annex C.

8.7
Certificate configuration message (CCM)

If the 3 MExE security domains defined in subclause 8.1 "Generic security" are not supported, then the certificate configuration message described in this subclause is optional.

The MExE device shall use the CCM to determine the third party certificates (and only the Third Party certificates) that are trusted for use on the MExE MS. The CCM shall only be used to enable or disable third party certificates and can not be used to delete certificates. The CCM may be periodically fetched or downloaded to a MExE device by the Administrator to dynamically configure the third party list using the mechanisms defined in subclause 8.7.4 "Authorised CCM download mechanisms". The Certificate Configuration Message shall be as shown in Figure 9 "Format of a CCM". This message is essentially a simplified version of a certificate revocation list to satisfy a particular use case. More complex usage requires a full certificate revocation list.

The MExE device may additionally support other means of enabling/disabling root certificates.

8.7.1
CCM numbering convention

Bits are grouped into octets. The bits of an octet are shown horizontally and are numbered from 0 to 7. Multiple octets are shown vertically and are numbered from 0 to n.

8.7.2
CCM order of transmission

Frames are transferred in units of octets, in ascending numerical octet order (i.e., octet 0, 1, (, n-1, n). The order of bit transmission is specific to the underlying protocols used to transport the CCM.

8.7.3
CCM field mapping convention

When a field is contained within a single octet, the lowest bit number of the field represents the lowest-order value. When a field spans more than one octet, the order of bit values within each octet progressively decreases as the octet number increases. In that part of the field contained in a given octet the lowest bit number represents the lowest-order value.

For example, a 16 bit number can be represented as shown in Figure 8 "Field mapping convention".

Bit

7
6
5
4
3
2
1
0

215
214
213
212
211
210
29
28
1st Octet of field

27
26
25
24
23
22
21
20
2nd Octet of field

Figure 8: Field mapping convention

Bit

7
6
5
4
3
2
1
0
Octet

 Version
0

Certificate Advice
1

Issued Timestamp

.

.
2 – 8

Expiry Timestamp

.

.
9 –15

SignerInfo
16

Listlength
17 –18

Fingerprint 1 Hashtype
19

Hashvalue

.(Variable length k according to hash type)

.

.

20

Fingerprint 2 Hashtype
k+20

Hashvalue

(Variable length m according to hash type)

.

.

Fingerprint 3

.

.

(k+20)+m+1

Fingerprint n

.

.

etc.

CCM Signature Hashtype
Listlength+19

Administrator signature

(Variable length according to administrator signature type)

Figure 9: Format of a CCM

version = The CCM format version is 0. All other values are reserved for future use.

certificateAdvice = enumerated { enable all present and future Third Party certificates (0), disable all present and future Third Party certificates (1), enable present list only (2),enable CCM list (3), disable CCM list (4) }. All other values are reserved for future use.

Issue and Expiry Timestamps = Fields used to identify the issue and expiry date of the CCM. The issue timestamp indicates a time before the current time of day (GMT) when a CCM message must be considered invalid. The expiry timestamp (GMT) identifies the time when a CCM is to be deemed no longer valid. The receiver shall use these parameters to detect a replay attack. A MExE MS maintains information on the last valid CCM message received. A replay attack is an attacker replaying a previous valid CCM message to a MS in order to change the security settings. This is particularly dangerous for CCM messages used to enable certificates. Administrators should try and set the expiration time to be no longer than the next expected system update time of CCM information. CCM messages used to enable-all (rather than disable-all) certificates should be very short lived as the danger of these being used in a replay attack should be considered serious.

The encoding of time (GMT) shall be coded as an OCTET SEQUENCE of seven octets in length as follows:

Octet 0
1
2
3
4
5
Octet 6

Year
Month
Day
Hour
Minute
Second

Element
Size (bits)
Range

Year
16
(0 – 65535)10

Month
8
(1 – 12) 10

Day
8
(1 - 31)10

Hour
8
(0- 23)10

Minute
8
(0 – 59)10

Second (see note)
8
(0 – 60)10

NOTE:
The second field range includes the value 60 in order to accommodate leap seconds.

For example, 1st January, 2001 00:00:30 would be encoded as: 07 d1 01 01 00 00 1E.

SignerInfo = one octet indicating the type of signer information for this CCM. The only currently defined value is device-admin = 0. In this case, no further signer information follows as it is implicit. All other values are reserved for future use.

listLength = The total length of the fingerprint list not including the final CCM signature. Shall be zero when certificateAdvice = enable-all, disable-all or enable present list.

hashType = enumerated { signature (0), MD5 (1), SHA-1 (2) } All other values are reserved for future use.

hashLength = The number of octets output by the selected hash type (16 for MD5 [23] and 20 for SHA-1 [24]).

The list entries shall contain certificate fingerprints in the form of hashes of the encoded signed certificates. The full hash output for the specified algorithm shall be used to generate the fingerprint. A list generator shall check to insure that no two list entries match when creating a list. For an X509v3 [26] or X9.68 (currently being drafted) certificate the fingerprint hash shall be computed over the ASN.1 encoded signed certificate object, first octet to last octet. For WTLS certificates the hash shall be computed over the signed WTLS certificate in network transmission format, first octet to last octet.

The signature type and length shall be indicated by the administrator certificate, which shall be present on the device. If no administrator certificate is on the device or the signature does not verify the message shall be rejected.

Upon receipt of a valid certificate configuration message the MExE device shall go through the third party certificate list, computing fingerprints if they are not stored with the certificate, enabling or disabling each certificate according to the following conditions:

 certificateAdvice is enable-all

all Third Party certificates shall be enabled;

 certificateAdvice is disable-all

all Third Party certificates shall be disabled;

 certificateAdvice is enable present list only
enable all Third Party certificates currently on device, do not enable any future certificates (this option allow the list to be frozen at time of manufacture) until Administrator changes;

 certificateAdvice is enable-list

if its fingerprint occurs in the CCM, it shall be enabled, otherwise it shall be disabled;

 certificateAdvice is disable-list
if its fingerprint occurs in the CCM, it shall be disabled, otherwise it shall be enabled.

For future releases, the setting of fine grained permissions for each certificate is expected to be supported.

An implementation shall keep track of the domain that authorised a given application. If a CCM message is received while MExE applications are currently running the implementation shall check to ensure any applications no longer in the Third Party domain have their permissions re-configured appropriately and actions that are no longer permissible are terminated.

8.7.4
Authorised CCM download mechanisms

The download of third party certificate lists by a remote administrator shall be performed by using a secure mechanism as defined below. The download mechanisms shall use HTTP over IP and/or the WAP Protocol. The URL from which the CCM is downloaded shall be in the administrator certificate if the CCM was not downloaded with the Administrator certificate. The format for storing the URL information with the certificate shall be as shown in Figure 10 "CCM Message URL storage format":

[image: image8.wmf]Urltype

CharacterSet

UrlLength

URL

Urltype

CharacterSet

UrlLength

URL

Figure 10: CCM Message URL storage format

Urltype= one byte, enumerated {WAP (0), HTTP (1)}. All other values are reserved for future use

CharacterSet = one byte, Internet Assigned Numbers Authority assigned character set.

UrlLength = one byte unsigned integer, length of the URL in octets.

The format for storing the URL information in the certificate shall be defined as part of the enhanced administrator mechanism.

When the administrator is changed, then the CCM shall also be changed. If there is URL information with the certificate as described in Figure 10 "CCM Message URL storage format", then the new CCM shall be obtained using the URL. If the Administrator certificate was downloaded in a JAR file, the CCM shall be obtained from the same JAR file.

8.8
Provisioned mechanism for designating administrative responsibilities and adding third parties in a MExE MS

If the 3 MExE security domains defined in subclause 8.1 "Generic security" are not supported, then the administrator concept described in this subclause is optional.

All applications in the Domain are to be signed by a key which shall be verified back to a Third Party root public key on the MExE MS. The Third Party root public keys shall be managed (e.g. addition/mark trusted/mark untrusted) by an administrator that is designated by the owner of the MExE MS using the MExE administrator provisioning mechanism. A mechanism is required to be provided to enable the owner of the device to dynamically assign an administrator. The mechanism shall support the following cases:

· the user is the owner;

· the owner is at a remote location. In this case the owner could be the operator, a service provider or a third party;

· the owner of the MExE-SIM wants to be a temporary administrator.

8.8.1
Determining the administrator of the MExE MS

The administrator of the MExE MS shall be determined by the logical process shown in the flowchart in Figure 11 "MExE Release 98 administrator mechanism". During power-up the provisioned mechanism shall look for an administrator root public key that is stored on the ME.

· Administrator root public key is absent

if the administrator root public key is absent, then the user shall automatically become the administrator of the MExE MS.

· administrator root public key is present

if an administrator root public key is present, this root public key shall be used for all remote administration authentication, implying that the owner of the administrator root public key is the administrator.

[image: image9.wmf]Is

administrator

root public key

present

in ME ?

Yes

Power-up event,

Administrator

Root public key owner

is

Is the

administrator

User is the

administrator

No

Figure 11: MExE Release 98 administrator mechanism

The rest of the mechanism is subsequently defined, however it is a future release implementation, see Figure 12 "Enhanced administrator mechanism". This future enhanced administrator Mechanism shall be initiated after a power-up event is processed or when a MExE-SIM is detected.

(The following subclauses assume that Third Party certificates can be added using the MExE-SIM, however Third Party certificates may be added using a non-SIM approach.)

8.8.1.1
Administrator of the MExE MS is the user

If the administrator is the user, then a check shall be made to determine whether there is a MExE-SIM. If a MExE-SIM is present, then a check shall then be made to determine whether there is a certificate in the MExE-SIM. The enhanced administrator Mechanism shall allow the MExE MS to determine (via a format) what type of certificate is present:

· certificate present - third party (CP-TP)

A certificate present in the MExE-SIM shall be considered by the ME as a Third Party certificate, whilst that MExE-SIM is inserted in the ME. The user shall be queried to allow or disallow the certificate as a Third Party.

· certificate present - administrator (CP-Admin)

If a temporary certificate is present in the MExE-SIM, the user shall be queried whether to allow the certificate on the MExE-SIM to take temporary control of the third party domain. By temporary control, it is meant that once the card is removed the administrator reverts back to the user administrator settings. The above mechanism implies that the previous configuration settings for the administrator shall be saved, so that they may be restored. If the user disallows the MExE-SIM certificate, the Third Party Domain shall not be able to use any of the network capabilities in the third party domain as identified in the network access section of the security Table 6 "Security domains and actions".

If a certificate is not present on the MExE-SIM and the administrator is the user, the user shall continue to be the administrator and may make use of all functionality.

8.8.1.2
Administrator of the MExE MS is not the user

If the administrator is not the user, then a check is made to determine if there is a MExE-SIM. If a MExE-SIM is present, then a check is made to see if there is a certificate in the MExE-SIM. If a certificate is present in the MExE-SIM, then a comparison is made of the certificate’s root public key on the MExE-SIM with the root public key on the ME for the following cases:

· Case (a): they are the same;

· Case (b): they are not the same, but the ME certificate is cross-certified with the MExE-SIM certificate (a cross-certificate exists on the ME);

· Case (c): they are not the same, but the ME certificate has a line of trust back to the MExE-SIM certificate domain;

· Case (d): they are not the same.

If the owner of the public key in the certificate on the MExE-SIM is to be a temporary administrator (CP-Admin), then in cases (a), (b) and (c), the temporary administrator shall be the owner of the CP-Admin root public key. In case (d), the Third Party domain shall not use any of the network capabilities in the third party domain as identified in the network access section of the security Table 6 "Security domains and actions". If the certificate is to be a Third Party, then the certificate (CP-TP) shall be verified with the CCM and based on the content and permissions of the CCM, the certificate shall be added to the Third Party list or rejected.

[image: image10.wmf]Is user the

administrator ?

Yes

No

Is

certificate on

MExE

SIM ?

Following a power-up and/or SIM Insert event,

and if MExE SIM exists in the MExE MS

User is the

administrator

No

Yes

CP-TTP

CP-Admin

Query user:

Add CP-TTP

to TTP ?

Query user:

User wishes

temporary CP-

Admin ?

User is the

administrator,

but TTP loses

network access

CP-Admin certificate owner is

temporary administrator.

Current

administrator

is retained

Yes

No

No

Check

with CCM to

add/disallow

to TTP list

CP-TTP

Check with

administrator

certificate

Cases (a), (b), (c)

Case (d)

Current

administrator

retained, but TTP

domain loses

network access

CP-Admin

Yes

Is

certificate on

MExE

SIM ?

Certificate

type ?

Certificate

type ?

Figure 12: Enhanced administrator mechanism

8.9
Java security

If the 3 MExE security domains defined in subclause 8.1 "Generic security" are not supported, then the Java security described in this subclause is optional.

8.9.1
PersonalJava security

There are two types of Java security [20]: sandbox, and fine grain.

The sandbox model [18] has just one domain; there is no concept of a partly trusted domain. The sandbox meaning of "trusted" means it is totally unrestricted to access all system resources.

Using the sandbox system, each MExE security domain shall be implemented as running in a sandbox, configured with different privileges corresponding to those of the domain. If the security domains are not supported then the Java sandbox security model shall be supported and it shall be configured for untrusted MExE executables support only, as defined in subclause 8.2.Using the fine grain Java security system [19], each MExE security domain will be a set of constraints within which a Java fine grain security domain can be configured.

8.9.1.1
Java applet certification in PersonalJava

Support for trusted applets is optional. Although a Java application shall be executed in a trusted domain if its certification can be validated, a Java Applet will not necessarily be executed in a trusted domain even if it does have a valid signature. It will be up to the implementers to decide if "trusted" Applets will be supported. (In certain implementations, all Applets may be always executed as "untrusted".)

8.9.1.2
Java application signature verification in PersonalJava

The verification of the certification of the application or applet shall be performed as described in subclause 8.9.1.1 "Java applet certification in PersonalJava".

8.9.1.3
Java loading native libraries in PersonalJava

The MExE Java VM may be able to load native libraries that are intrinsically part of the ME implementation and MExE native libraries. The MExE Java VM shall not load other native libraries.

8.9.2
CLDC security

A Java execution environment running on a Classmark 3 MExE device shall comply with the security requirements defined in the CLDC specification [34]. That is, it shall comply with both the low-level virtual machine security requirements and the application-level security requirements.

The application-level CLDC security requirements define a sandbox security model where Java classfiles are verified. Java APIs available to the application are limited to those APIs which have been defined by the configuration and profiles supported by the device. Downloading and management of the Java applications on the device takes place at the native level, no user-definable Java class loaders are provided and the set of APIs available to a MIDlet is closed.

The low-level CLDC virtual machine security requirements define a Java classfile pre-verification mechanism which takes place off-device (e.g. on the server prior to downloading) and inserts a special attribute called a "stack map" into class files to facilitate runtime verification of the same classfiles.

8.10
Signed packages used for installation

If the 3 MExE security domains defined in subclause 8.1 "Generic security" are not supported, then the signed packages used for installation described in this subclause is optional.

The Java Archive (JAR) file format shall be supported on classmark 2 and 3 MExE devices for securely packaging objects that are to be downloaded and installed on the ME. The method for securely packaging objects for MExE classmark 1 devices may be referenced from the WAP specifications in a future release of this specification. A MExE device may support other proprietary means of downloading and installing objects.

The JAR file shall contain a manifest file that has at least the following attribute:

MExE-Implementation-Type

Whose value shall be either

· "MExENativeLibrary"

in the case of a MExE Native Library (as described in 8.10.1 "Installing MExE native libraries");

· "TTPCertificate"

in the case of a certificate containing a 3rd party root public key (as described in 8.10.2 "Installation of root certificates in a signed data package");

· "ManufacturerCertificate"

in the case of a certificate containing a manufacturer root public key (as described in 8.10.2 "Installation of root certificates in a signed data package");

· "OperatorCertificate"

in the case of a certificate containing an operator root public key (as described in 8.10.2 "Installation of root certificates in a signed data package");

· "AdminCertificate"

in the case of an administrator certificate (as described in 8.10.2 "Installation of root certificates in a signed data package"); or

· "CCM"

in the case of a CCM (as described in 8.10.2 "Installation of root certificates in a signed data package"); or

· -free-format-value-
in the case of proprietary binaries or Java classes such as native DSP code, provisioned functionality upgrades and patches (as described in 8.10.3 "Installation of other signed data").

E.g.

MExE-Implementation-Type: MExENativeLibrary

See Figure 13 "Signed packages". When a download of a JAR file is completed, the system installer shall read the manifest to determine what types of files are contained in the JAR, and install them appropriately.

Note that a signed package containing a library which does not have a manifest attribute "MExE-Implementation-Type: MExENativeLibrary" shall be considered to be some type of upgrade to libraries that are intrinsically part of the ME implementation rather than a "MExE native library". E.g.

MExE-Implementation-Type: ManufacturerUpgrade (something.dll)

(Recommended behaviour for the server is that it uses the capability information supplied from the ME to determine how to offer appropriate upgrades.)

[image: image11.wmf]Signature

Manifest (attributes)

Contents (Java classes, native

code, certificate, etc…)

MExE-Implementation-Type

: …..

Figure 13: Signed packages

8.10.1
Installing MExE native libraries

A signed native library whose signature verifies as describe in subclause 8.5.2 "Manufacturer root public key" as belonging to the Manufacturer Domain may be installed as a "MExE native library".

A MExE native library may be called by a MExE executable, and shall not compromise the MExE security system.

Support of MExE native library signed package installation is optional.

8.10.2
Installation of root certificates in a signed data package

Root certificates in a signed package (whose signature verifies as described in subclause 8.5 "Root Public keys" to the Manufacturer root, Operator root, or the Administrator root), may be installed to the root public key store on the ME. Note that the certificate thus packaged does not necessarily belong to the manufacturer domain. The types of certificate that can be present and installed by packages are given in Table 9 "Allowed certificate types in signed packages". The ME shall store the root public key as indicated by the certificate type.

When a certificate containing an Administrator root public key is thus contained in a signed package, the signed package (JAR) shall contain two files: the Administrator root public key and the CCM.

Table 9: Allowed certificate types in signed packages

Signature on Package
Allowed Certificate types in package

Administrator
Third Party

Manufacturer
Administrator, Manufacturer, Operator, Third Party

Operator
Administrator, Operator, Third Party

8.10.3
Installation of other signed data

A signed package of proprietary binaries or Java classes such as native DSP code, provisioned functionality upgrades and patches, whose signature verifies as described in subclause 8.5.2 "Manufacturer root public key" as belonging to the Manufacturer Domain may be installed. The use of such binaries is outside the scope of MExE, but the manufacturer shall be responsible for ensuring that the integrity of MExE is not compromised.

Support of this feature is optional.

8.10.4
Administrator root certificate download mechanism

Devices supporting SIMs without certificates shall at least support the following procedure to download the administrator root certificate.

1. Upon sign-up with an administrator the user and administrator will make contact.

2. The administrator service centre will obtain any required information from the user and inform the user by SMS or other means of the location of the administrator root certificate.

3. The user will initiate the download of the Administrator root certificate using a signed package.

4. Once the procedure is complete the device shall compute the hash of the received Administrator certificate containing root public key.

5. The user will contact the administrator and enters on the device at least the first 8 bytes using decimal value of the hash of the Administrator root public key information provided by the administrator . The device compares the beginning of computed hash value and the abbreviated hash value entered by the user If these two values are the same ,the provisioning process will be complete. If the two values are different this shall be indicated to the user who should inform the administrator of this.

Alternative methods to download an administrator root certificate may be used where appropriate but must insure that the certificate is received by the device unaltered.

8.11
 Optimised application signature verification

If the 3 MExE domains defined in subclause 8.1 "Generic security" are not supported, then the pre-verification of applets described in this subclause is optional.

This is an optional feature added to eliminate the potentially excessive overhead of checking a signature each time an application is launched.

To use this process the MExE device shall create a hash of the executable object (executable object fingerprint) as if checking the signature. This shall be stored in a protected verified application list, along with indication of the domain permissions for the application. The hash used shall be the same type as that used for signing the object. When launching an application or downloading an applet, the hash shall be performed as for when computing the signature. The verified application list shall then be checked; if the hash value is present and the entry has not expired then the application or applet may execute. If no list entry exists for this object, or the entry has expired, the process shall then proceed with the full signature verification. Note that the lists for applications and applets should be separate and that an implementation determines management policy for the lists (e.g., ageing policy, which entries to delete when trying to add a new entry to a full list etc.). One restriction imposed that shall be enforced is that the maximum number of uses for an entry before it is marked invalid is limited to some maximum value.

In the event that a new CCM is received by the MExE MS, all verified application list entries shall be marked invalid unless some mechanism to determine the validity of an authorising certificate entry for each application is provided by the ME implementation.

9
Quality of Service

Support of quality of service for MExE devices supporting bearers defined by QoS as defined in this subclause is optional.

QoS aware MExE executables may be executing on the MExE UE. To ensure correct operation with the QoS provisioning of the bearer network(s) the associated API's and the MExE QoS manager shall be supported by MExE MS supporting bearers defined by QoS – see Figure 14 "Logical MExE Terminal QoS manager elements". Non QoS aware MExE executables shall operate with the defined QoS by the user or the network.

[image: image12.wmf]MExE QoS Manager

MExE executable

MExE

QoS API

Network Control API

GPRS / UMTS Terminal Network Functions

End User

MMI

MExE Network API

Figure 14: Logical MExE Terminal QoS manager elements

9.1
MExE QoS support

In the logical architecture depicted in Figure 14 "Logical MExE Terminal QoS manager elements", a conceptual entity, a MExE QoS manager exists between the MExE executable and the Network Control API. A QoS API for MExE executables is provided and an API to the network. The MExE QoS functions accommodate standard methods of end to end QoS provisioning.

For a MExE device supporting bearers defined by QoS, it is recommended that the MExE device shall support the following basic QoS operations:

· The end user should be able to manage the QoS directly via the MMI.

For MExE devices supporting bearers defined by QoS, the MExE device shall optionally support the following basic QoS operations:

 a mapping between the QoS requirements of the MExE executable and the network layer;

 MExE executables shall be able to indicate and interpret QoS values of the network via the MExE QoS Manager;

 MExE executables shall be able to modify the QoS dynamically;

 MExE executables shall be able to react to changes in the provided QoS;

MExE introduces two new elements to cater for QoS – the MExE QoS manager and the QoS API. The MExE QoS manager shall handle the fact that the network may not have QoS capabilities.

9.2
MExE QoS manager

A conceptual entity, the MExE QoS manager is responsible for:

 Managing the QoS streams for MExE executables;

 Notification of the negotiated and delivered QoS to the end user / MExE executable.

The MExE QoS manager shall support the MExE QoS API according to the bearer supported by the device, and provide functions such as:

 insert additional QoS signalling parameters;

 add the functionality of the MExE QoS API at best effort, if the network does not support it directly;

 translate between the QoS parameters from the MExE executable and those of the network;

 monitor the QoS delivered by the network and manage QoS requests between the MExE executable and the network;

 be informed by the MExE executable of the requested QoS traffic class ;

 be informed by the MExE executable of the lowest QoS traffic class which can be accepted by the MExE executable;

 attempt to re-negotiate the QoS if it falls below the lowest QoS traffic class.

The MExE QoS manager may request information from the network regarding the QoS available.

The MExE QoS manager does not need to know the end user's subscribed QoS, this is held within the network and used to validate a requested QoS level.

The MExE QoS manager may also be accessed through the device's MMI.

9.3
Network control API

The network control API shall provide the QoS manager with access to the network specific QoS control (e.g. as defined for GPRS/UMTS in [29] and [30]).

The MExE QoS manager may perform some QoS control, even if it is not provided in the network control.

9.4
MExE QoS API

The MExE QoS API provides the MExE executable with an interface to the QoS management. It does not require the MExE executable to have any knowledge of the underlying network, or how QoS is implemented in the network.

The QoS API shall provide the MExE executable with a standard set of parameters. Refer to [28] for details of these parameters (see note).

NOTE:
The FLOWSPEC parameters, defined by the IETF Integrated Services Working Group, provide the QoS information required by QoS capable network elements.

Table 10 "Example parameters" shows the set of example parameters.

Table 10: Example parameters

Parameter
Units
Type

Token Bucket Rate
bytes /sec
32-bit IEEE floating point number

Token Bucket Size
bytes
32-bit IEEE floating point number

Peak Data Rate
bytes/sec
32-bit IEEE floating point number

Minimum Policed Unit
bytes
32-bit integer

Maximum Packet Size
bytes
32-bit integer

Latency
micro secs
32-bit integer

Delay Variation
micro secs
32-bit integer

Service Type

service type

As a minimum the following three parameters shall be supported by the MExE QoS manager:

 Token Bucket Rate;

 Token Bucket Size;

 Peak Data Rate.

NOTE:
The discussion of UMTS bearer service parameters as well as radio access bearer parameters is still going on. Especially the bitrate parameters and reliability parameter are under discussion [28].

If the MExE executable does not provide a full set of QoS parameters, then the MExE QoS manager shall the provide QoS parameters based on information available to it (e.g. from the MMI settings), see subclause 9.5 'Sources of Bearer Service Parameters'.

9.5
Sources of bearer service parameters

A set of QoS parameters (QoS profile) specify the service provided to the user by the network. At bearer service establishment or modification different QoS profiles have to be taken into account. This is based on:

-
The UE capabilities;

-
The UE or the TE within the terminating network;

-
A QoS profile in the QoS subscription (describes the upper limits);

-
Default QoS profile (of the user or network);

-
A Network specific QoS profile characterising for example the current resource availability or other network capabilities.

9.6
QoS streams

Several MExE executables may be executing in the MExE device, each with a different QoS requirement. Also, a MExE executable may operate several QoS streams, each with different parameter settings. The MExE QoS manager within the MExE device shall be able to deal with each stream independently.

9.7
QoS security

Only the end user, MExE executable or the network using a QoS stream should be able to modify the QoS of that stream.

Annex A (normative):
MExE profile of PKCS#15

A.1
PKCS#15 certificate object attributes presentation

Details from PKCS#15[32] in this clause A.1 are for information only.

A.1.1
Object common attributes

Label
human readable label to describe the certificate

Flags
indicates whether the object is private (e.g. CHV authentication request), whether the object is read only.

Authentication object identifier
a cross-reference back to the authentication object, which describes the properties of a CHV, used to protect this object.

A.1.2
Certificate common attributes

identifier
the identifier is used for correlation between the public key contained in the certificate and the associated private key.

Authority
indicates whether the certificate is for an authority (i.e. CA or AA) or not.

Request identifier
used to search a certificate : Issuer and serial number SHA-1 hash, or issuer public key SHA-1hash, or public key subject SHA-1 hash.

Thumbprint
used as secure way to verify that no one has tampered with a certificate: hash on to be signed certificate (internet). MExE uses the thumbprint to enable or disable a certificate through the certificate configuration message (CCM).

A.1.3
Certificate attributes

Type of certificate
indicates the type of certificate: WTLS, X509, SPKI, PGP, X9.68.

Value
direct value or indirect file path or URL.

MExE only supports storage of WTLS, X509, X9.68 certificates.

A.1.4
Specific X.509 certificate attributes

For information see PKCS#15 [28].

A.2
MExE profile of PKCS#15

PKCS15CommonObjectAttributes.label must be present. The value content is unspecified.

PKCS15CommonObjectAttributes.Flag must be present. The value shall be private, not modifiable by ME.

PKCS15CommonObjectAttributes.Authentication must be present. The value shall be "CHV1". The certificates files are protected by CHV1, because MExE need also IMSI to manage domains availability.

PKCS15CommonCertificateAttributes.Id must be present. The value content is unspecified.

PKCS15CommonCertificateAttributes.Authority must be present if and only if certificate is a CA certificate. The value is true.

PKCS15CommonCertificateAttributes.RequestId must be at least present if certificate is an operator or third party root certificate. The value shall be the same as the ones used in the issuer/authority key identifier field of the certificates, provided by this issuer (as in RFC2459 document [33]). The aim of this attribute is to give a easy way to search a key issuer of a received certificate without reading all certificates content.

PKCS15CommonCertificateAttributes.Thumbprint must be at least present if certificate is a third party root certificate. The value shall be the same as the ones used in CCM. The aim of this attribute is to give a easy way to search a certificate with reference included in CCM message.
Domain attribute presence and value shall be added as soon as it will be available in PKC#15 v1.1.

PKCS15(type)CertificateAttributes.value must be present Value is a indirect file path (path, index, offset). Index and offset default value is 0.

Specific X509 attributes are not supported:
PKCS15X509CertificateAttributes.subject must not be present.

PKCS15X509CertificateAttributes.issuer must not be present.

PKCS15X509CertificateAttributes.serialNumber must not be present.

The ME shall recognise all optional present fields above. The ME shall accept and ignore all unused fields or new field extensions.

A.3
Coding and storage in SIM

See detail of file hierarchy and file properties in SIM document [27].

Since the domain attribute is not available in PKCS#15 v1.0, MExE creates one directory file for each trusted domain. If the domain attribute is available in the next PKCS#15 versions, for future new domains, MExE may create a common directory file. See abstract syntax definition and coding detail in PKCS#15 document [32].

The address of the certificate descriptor Elementary File is fixed.

According to PKCS#15 [32] subclause 7.6 The PKCS15Certificates type , the contents of a certificate descriptor Elementary File must be the value of the DER encoding of a SEQUENCE OF PKCS15Certificate (i.e. excluding the outermost tag and length bytes).

The address of the certificate data Elementary File is unspecified.

According to PKCS#15 [32] : subclauses 7.6.1 to 7.6.6, the certificate data value is coded according to the related certificate type (e.g. DER for X5.09, base64 for SPKI and PGP, WTLS network format for WTLS, DER or PER for X9.68).

Annex B (informative):
PKCS#15 certificate objects ASN1 expanded syntax extract

{ -- sequence of certificate

x509Certificate,[0] x509AttributeCertificate,[1] spkiCertificate, [2] pgpCertificate, [3] wtlsCertificate,[4] x9-68Certificate : {

 commonObjectAttributes {

 label "" UTF8 string OPTIONAL,

 flags {private (0), modificable (1)} bit string OPTIONAL, --

 authId octet string OPTIONAL, --

 },

 CommonCertificateAttributes {

 iD octet string,

 authority boolean default not an authority,

 requestId {

idtype
integer

IdValue
octet string

pkcs15IssuerAndSerialNumber PKCS15KEY-IDENTIFIER::=

 {SYNTAX PKCS15-OPAQUE.&Type IDENTIFIED BY 1}

 -- As defined in RFC [CMS]

pkcs15SubjectKeyIdentifier PKCS15KEY-IDENTIFIER ::=

 {SYNTAX OCTET STRING IDENTIFIED BY 2}

 -- From x509v3 certificate extension

pkcs15IssuerAndSerialNumberHash PKCS15KEY-IDENTIFIER ::=

 {SYNTAX OCTET STRING IDENTIFIED BY 3}

 -- Assumes SHA-1 hash of DER encoding of IssuerAndSerialNumber

pkcs15SubjectKeyHash PKCS15KEY-IDENTIFIER ::=

 {SYNTAX OCTET STRING IDENTIFIED BY 4}

 -- Hash method defined in Section 7.

pkcs15IssuerKeyHash PKCS15KEY-IDENTIFIER ::=

 {SYNTAX OCTET STRING IDENTIFIED BY 5}

 -- Hash method defined in Section 7.

 } OPTIONAL,

 thumbprint
[0] OOBCertHash OPTIONAL, -- hash on to be signed certificate, used for secure certificate identification as CCM using

 },

 [1] typeAttributes {

 value indirect : path : {

 path

octet string, -- '4331'H Reference by file identifier

 index

integer OPTIONAL, -- ‘XXXX’H offset in file

 [0] length
integer OPTIONAL, -- ‘XXXX’H length in file
 }

 -- other optional attributes are defined for X509 certificate

 }

 },

}

Annex C (normative):
Access restriction certificate extension

access-Restriction extension

id-ETSI OBJECT IDENTIFIER ::= {ITU identified-organization (3) ETSI } ::= {ETSI}

id-mexe OBJECT IDENTIFIER ::= {ETSI MExE}

Id-mexe-accessRestriction ::= {id-mexe 1}

AccessRestriction ::= BIT STRING {

network_service_access
(0),}

Annex D (informative):
MExE executable life cycle

This is a conceptual description of the life cycle of a MExE executable. There may be small deviations in a specific classmark.

The Unified Modelling Language (UML) [38] is used in the description. (This is a brief description of the symbols. A rounded rectangle is a state. An arrow is a transition between states. A dot is an initial state indicating the starting state when the enclosing state is entered. A circle with a dot is a final state. When a final state is activated the enclosing state ends.)

Figures in parenthesis are references to sections in the specification.

D.1 State of a MExE executable

The life cycle of MExE executables (4.9 "Provisioning and management of services") is described using a state machine. In a MExE device a MExE executable can have the following states and transitions between states.
Editor's note: All references in the diagram below have been updated with the correct annex number 'D'.

[image: image13.wmf]Discovered

Uninstalled

Execution

 (

D.

3)

Resident

Verification

(D.

4)

Released

(D.

2)

Configuration

State or Transition (=>)
Description

Initial => Discovered
The MExE executable is discovered (4.9.1 "Service discovery").

Discovered
The MExE executable is discovered and can be installed or executed without installation. (Only executables useable on the device should enter this state.)

Discovered => Resident
The discovered executable is selected to be installed and the executable is transferred (4.9.2 "Service transfer") to the MExE device for installation.

Discovered => Uninstalled Execution
The discovered executable is selected to be executed without installation.

Discovered => final state
The executable is undiscovered.

Resident
The executable is stored in the MExE device. It has been transferred or is pre-loaded.

Verification
This is the initial sub-state of the Resident state. This is a composite state. There is a description of the Verification state in D.4.

Verification => Configuration
The result of the verification indicates that the executable can be installed in one of the Domains.

Configuration
This is a sub-state of the Resident state. The executable can be configured, manually or automatically (4.9.3 "Service installation and configuration").

Configuration => Released
The service is released for execution.

Released
This is a sub-state of the Resident state. The executable is resident, configured and released for execution. This is a composite state and there is a description of it in D.2.

Released => Configuration
The executable is blocked for execution or an executable has changes security domain (The user shall have the possibility to review the configuration before the executable is released for execution with different privileges.).

Resident => final state
The Resident state is left when the service is deleted (4.9.6 "Service deletion"). From the MExE device point of view the executable does not exist any more. (The Integrity and Certification Validation (8.6 "Certificate management") can also force a deletion)

Uninstalled Execution
The executable is executed without installation. This is a composite state. There is a description of the Uninstalled Execution state in D.3.

Uninstalled Execution => final state
The Uninstalled Execution state is left when the executable terminates by itself or when the user terminates the executable (4.9.5 "Service termination"). From the MExE device point of view the executable does not exist any more.

Uninstalled Execution => Resident
This is a possible but unusual transition. A MExE executable that has been used for uninstalled execution is installed without retransferring.

D.2 Released state

A MExE executable in the Released state is resident, configured and released for execution.
Editor's note: All references in the diagram below have been updated with the correct annex number 'D'.

[image: image14.wmf]Released

Passive

Activated

Executing

Waiting for

user

permission

Suspended

Verification (D.4)

o

r

Optimised

Verification

State or Transition (=>)
Description

Passive
This is the initial state. The executable can be invoked.

Passive => Verification
The MExE executable is invoked.

Verification (or Optimised Verification)
The verification can either be done according to the Verification state described in D.4 or as an Optimised Verification described in (8.11 "Optimised application signature verification").

Verification => Executing
The result of the verification indicates that the executable may be executed. The Activated state and its sub-state Executing are entered.

Verification => final state
The MExE executable has changed its security state and it must not be executed.

Activated
The MExE executable is activated.

Executing
This is a sub-state of Activated. The executable executes (if it is not waiting for user permission).

Executing => final state
The Executing state is left when the executable terminates by itself. The Activated state is left and the Passive state is entered.

Waiting for user permission
This is a sub-state to Executing. (If there is support for multi-threaded applications, this state can be a state concurrent to the Executing state.) The MExE executable is waiting for permission to perform some action (8.2.1 "MExE executable permissions for operator, manufacturer and third party security domains").

Suspended
This is a sub-state of Activated. The execution is suspended (4.9 "Provisioning and management of services").

Activated => Passive
The Activated state is left when the executable terminates by itself or when the user terminates the executable (4.9.5 "Service termination").

D.3 Uninstalled Execution state

In the Uninstalled Execution state a MExE executable is executed without installation.
Editor's note: All references in the diagram below have been updated with the correct annex number 'D'.

[image: image15.wmf]Uninstalled Execution

Executing

Waiting

 for

user

permission

Suspended

Transferring

Verification

(D.

4)

State or Transition (=>)
Description

Transferring
This is the initial state of Uninstalled Execution. The MExE executable is transferred to the MExE device.

Transferring => Verification
If the executable is signed the Verification state is entered after the transferring is finished.

Transferring => Executing
If the executable is not signed the Executing state is entered. (To allow streaming, this can be done before the transfer is finished.)

Verification
This is a composite state. There is a description of the Verification state in D.4.

Verification => Executing
The result of verification indicates that the executable may be executed.

Verification => final state
The result of verification indicates that the executable must not be executed and the Uninstalled Execution state is ended.

Executing
The MExE executable is executing.

Executing => final state
The Executing state is left when the execution terminates by itself (The Uninstalled Execution state is left.)

Waiting for user permission
This is a sub-state to Executing. (If there is support for multi-threaded applications, this state can be a state concurrent to the Executing state.) The MExE executable is waiting for permission to perform some action (8.2.1 "MExE executable permissions for operator, manufacturer and third party security domains").

Suspended
The execution is suspended (4.9 "Provisioning and management of services")

D.4 Verification

The integrity and certification validation (8.6 "Certificate management") is done in the Verification state. The result of validation determines the change of state.

[image: image16.wmf]Verification

Trusted

In Operator or Manufacturer

or Third Party Domain

Validation

Untrusted

Domainless

State
Description

Validation
This is the initial state. The integrity and certification validation (8.6 "Certificate management") is done.

Untrusted
The executable is untrusted (8.1 "Generic security")

Trusted in Operator Domain
The executable is verified to belong to the Operator Domain (8.1 "Generic security").

Trusted in Manufacturer Domain
The executable is verified to belong to the Manufacturer Domain (8.1 "Generic security").

Trusted in Third Party Domain
The executable is verified to belong to the Third Party Domain (8.1 "Generic security").

Domainless
The executable is not permitted in any Domain and may not run at all.

Annex E (informative):
MExE conformance requirements

The table of Conformance Requirements define the minimum set of features that a conformant MExE device must implement.

Legend:-

M -
Mandatory feature/requirement

O -
Optional feature

N/A -
Feature is not applicable: the MExE specification does not prevent from implementing a feature, however support of the feature is not required for a device to be regarded as being compliant with a specific MExE Classmark device, and therefore optionality of the feature is not indicated in the specification.

M/O – Support as such is required. Mandatory and Optional features are gathered into a table

ID
Requirement
Reference
CM1
CM2
CM3

 Support of at least one MExE classmark on a device
4
M
M
M

Support of multiple combinations of MExE classmarks
4.
O
O
O

Support of WAP
4.
M
O
O

If Classmark 1 services are supported by non-Classmark 1 devices, Classmark 1 services shall execute in the same manner as they execute in a MExE Classmark 1 UE
4
N/A
M
M

Support of PersonalJava
4.
O
M
O

If Classmark 2 services are supported by non-Classmark 2 devices, Classmark 2 services shall execute in the same manner as they execute in a MExE Classmark 2 UE.
4
M
N/A
M

Support of CLDC and MIDP
4.
O
O
M

If Classmark 3 services are supported by non-Classmark 3 devices, Classmark 3 services shall execute in the same manner as they execute in a MExE Classmark 3 UE.
4
M
M
N/A

Support of capability negotiation process
4
M
M
M

Support for interaction between the MExE UE and the MSE by the use of HTTP/1.1or HTTP/1.1 derived protocol (e.g. WSP)
4
M
M
M

Support of the properties in the UAProf schema for capability negotiation
4.4.1
M/O
M/O
M/O

Support of content negotiation
4.4.4
O
O
O

Support of user profiles
4.5
O
O
O

Support of more than one user profile (if user profiles supported)
4.5.1
O
O
O

Ability to retain the user profile in the network (if user profiles supported)
4.5.1
O
O
O

User permission for retaining the user profile in the network (if user profiles supported)
4.5.1
M
M
M

Support of direct and indirect referencing mechanisms in retrieval of MExE preferences (if user profiles supported)
4.5.3
O
O
O

Support of the properties in the UAProf schema for user preference information (if user profiles supported)
4.7.3
M
M
M

Support of user interface personalisation
4.
O
O
O

Support of direct and indirect referencing mechanisms in retrieval of user interface personalisation preferences
4.
O
O
O

Ability to support VHE
4.8
O
O
O

Storage of the VHE characteristics as a part of the user profile (if VHE and user profile is supported)
4.8
M
M
M

Capability to discover new services
4.
M
M
M

Support for a browser for service discovery
4
O
O
O

Ability to control service installation and configuration
4.
N/A
M
M

Ability to determine which services are transferred to, resident, configured or executing on the UE (provide the name and, if available, version number)
4.
M
M
M

Service termination capability
4.
M
M
M

Capability to delete a service
4.
M
M
M

User’s ability to terminate or suspend any active connection associated with any MExE executable
4.9
M
M
M

User’s ability to obtain information on all connections associated with any MExE executable on the MExE UE
4.9
M
M
M

Support of journalling of network events by MExE executables
4.10
M
M
M

Management of the journal by the ME, with no access to it by MExE executables
4.10
M
M
M

Indicate whenever network activity is in progress
4.11
O
O
O

Support of QoS management by MExE
4.12
O
O
O

Support of core software download functionality
4
O
O
O

Core software download (if supported) only under control of the UE manufacturer
4
M
M
M

Call control using WTA scripts
5.3
M
O
O

Support of the Wireless Profile of the JavaPhone API specification (Optionality of Wireless Profile of the JavaPhone APIs as presented in Table 4 "Optionality of the Wireless Profile of the JavaPhone APIs")
6.2.1, 6.2.3
O
M/O
O

Support of the JAR file manifest entries as per JavaPhone specification
6.2.3.1
O
M
O

The use of icons to launch applications
6.2.3.1
O
O
O

If icons are used as elements to launch the application, then the icon file within the JAR file named by the Main-Icon attribute shall be displayed
6.2.3.1
O
M
O

Implementation of “BatteryCritical”, “BatteryNormal” event generation
6.2.3.2
O
M
O

Support for the following formats in Datagram recipient addressing: raw text-only GSM SMS message, UDP datagram via IP, and WAP datagram via GSM SMS message(s)
6.2.3.3
O
M
O

Support any other Java APIs which comply with the MExE security requirements in Table 6 "Security domains and actions"
6.2.4
O
O
O

Support for network protocols as per Table 5 "Support for network protocols"
6.2.5.2
O
M/O
O

Support of MIDlet discovery and management via a browser using MIME type text/vnd.sun.j2me.app-descriptor
6.2.3
O
O
O

Indication of MIDlets and MIDlet suites to the user (with a tag or icon and tag)
6.2.3
O
O
O

Support of charging regimes of MExE services (charging mechanisms are outside the scope of MExE specification).
7.1
O
O
O

Support of the untrusted domain
8.1
M
M
M

Support of all three security domains together (i.e. operator, manufacturer and third party), or no security domains at all
8.1
M
M
M

Security restrictions shall apply to MExE executables when API functionality is directly or indirectly called by MExE executables
8.2
M
M
M

Support for permissions of operator, manufacturer and third party security domains in the order of restriction (as defined in Table 6 "Security domains and actions" of MExE specification).
8.2
M
M
M

Access by MExE untrusted executables limited to the functionality specified in the Table 7 "Executable permissions for untrusted MExE executables" of MExE specification
8.2.2
M
M
M

Separation of the user interface input and output streams between different MExE executables (except for the MIDlets in the same MIDlet suite)
8.2.2
M
M
M

Support of single action permission with a prompt for the user
8.3
M
M
M

Support of session permission and blanket permission with a prompt for the user
8.3
O
O
O

Indication to the user whenever user permission is sought by an untrusted MExE executable
8.3
M
M
M

Ability of the user to request to be informed of the “subject” field of the certificate of the signer (if secure domains supported)
8.3
M
M
M

Support for public key based solution of content authentication (if secure domains supported)
8.4
M
M
M

Support of certificate chains (if secure domains supported)
8.4
M
M
M

Support at least one level of certificate under operator, manufacturer or Third Party root public keys (if secure domains supported)
8.4
M
M
M

Secure installation of root public keys in the MExE UE (if secure domains supported)
8.4.1
M
M
M

Prohibition to share public keys between domains (if secure domains supported)
8.4.1
M
M
M

Support the use and management of an operator root public key on the USIM (if secure domains supported)
8.5.1
M
M
M

Prohibition of the user to add or delete any type of operator public keys (if secure domains supported)
8.5.1
M
M
M

Support of operator and manufacturer disaster recovery root public keys (if secure domains supported)
8.5.
O
O
O

Support of the use and management of the operator root public key (if secure domains supported)
8.5.1.1
M
M
M

Support of the use and management of the manufacturer root public key (if secure domains supported)
8.5.2
M
M
M

Support of the use and management of the third party root public keys (if secure domains supported)
8.5.3
M
M
M

Support of the use and management of the administrator root public key (if secure domains supported)
8.5.4
M
M
M

Support of the administrator designation mechanism (if secure domains supported)
8.5.4
M
M
M

Support of the certificate configuration management (if secure domains supported)
8.6
M
M
M

Use of the CCM by MExE device to determine the third party certificates that are trusted for the use on the MExE UE (if secure domains supported)
8.7
M
M
M

Additional support of other means to enable/disable root certificates (if secure domains supported)
8.7
O
O
O

Support of authorised CCM download mechanisms (if secure domains supported)
8.7.1
M
M
M

When the administrator is changed, then the CCM shall also be changed. (if secure domains supported)
8.7.4
M
M
M

Support of provisioned mechanism for designating administrative responsibilities and adding third parties in a MExE device (if secure domains supported)
8.8
M
M
M

Support of the cases: the user is the owner, the user is at remote location, the owner of the MExE-SIM wants to be a temporary administrator (if secure domains supported)
8.8
M
M
M

Support for determining the administrator of the MExE UE (if secure domains supported)
8.8.1
M
M
M

Either sandbox or fine grain Java security shall be supported
8.9.1
N/A
M
N/A

Support for trusted applets (if secure domains supported)
8.9.1
N/A
O
O

Verification of the certification of the application or applet (if secure domains supported)
8.9.2
M
M
M

Java loading native libraries that are intrinsically part of the ME implementation, and MExE native libraries
8.9.3
O
O
O

No loading of other native libraries
8.9.3
N/A
M
N/A

Support of the JAR file format devices for securely packaging objects that are to be downloaded and installed on the ME
8.10
N/A
M
M

Support for other proprietary means of downloading and installing objects
8.10
O
O
O

Support of MExE native library signed package installation
8.10.1
N/A
O
O

Support for the case when a certificate containing an Administrator root public key is thus contained in a signed package, the signed package (JAR) shall contain two files: the Administrator root public key and the CCM (if secure domains supported).
8.10.2
N/A
M
M

Support of installation of other signed data (e.g. proprietary binaries or Java classes such as native DSP code, provisioned functionality upgrades and patches) (if secure domains supported).
8.10.3
O
O
O

Support for administrator root certificate mechanism (if secure domains supported).
8.10.4
M
M
M

Support of alternative methods to download an administrator root certificate (if secure domains supported).
8.10.4
O
O
O

Support of pre-verification of applications (if secure domains supported).
8.11
O
O
O

Support of QoS API by MExE UE
9
O
O
O

Support of a basic QoS operations
9.1
O
O
O

Support of MExE QoS API by MExE QoS Manager
9.2
O
O
O

Provision of the MExE QoS Manager functions
9.2
O
O
O

Ability to manage QoS through the device's MMI
9.2
O
O
O

QoS control by MExE QoS Manager, if it is not provided in the network control
9.3
O
O
O

Provision of a standard set of parameters by a QoS API to MExE executable
9.4
O
O
O

Ability of MExE QoS Manager to deal independently with each of the several simultaneous QoS streams
9.6
O
O
O

Annex F (informative):
Change history

TSG
T-Tdoc
T2-Tdoc
CR
Rev
Rel
Subject
Cat
Version-Current
Version-New

T#7
TP-000024
T2-000047
001

R99
Corrections to WAP chapters
F
3.0.0
3.1.0

T#7
TP-000024
T2-000049
002

R99
QoS
F
3.0.0
3.1.0

Editorial change by MCC

3.1.0
3.1.1

T#8
TP-000073
T2-000307
003

R99
Addition of phonebook entry and addition/modification of user data update for untrusted applications
F
3.1.1
3.2.0

T#8
TP-000073
T2-000298
004

R99
Editorial clarifications
F
3.1.1
3.2.0

T#8
TP-000073
T2-000304
005

R99
ME actions on SIM insertion and/or power up
F
3.1.1
3.2.0

T#8
TP-000073
T2-000295
006

R99
Client/Server 'negotiation'
F
3.1.1
3.2.0

T#8
TP-000073
T2-000296
007

R99
Third Party Root Public Key
F
3.1.1
3.2.0

T#8
TP-000073
T2-000291
008

R99
Third Party root public keys management
F
3.1.1
3.2.0

T#8
TP-000073
T2-000300
009

R99
User permission types (visual indication)
F
3.1.1
3.2.0

T#9
TP-000143
T2-000401
010

R99
Storage of user private data in the user profile in the network
F
3.2.0
3.3.0

T#9
TP-000143
T2-000504
011

R99
UAProf tags
F
3.2.0
3.3.0

T#9
TP-000143
T2-000523
012

R99
WAP UAProf URL correction
F
3.2.0
3.3.0

T#10
TP-000193
T2-000631
013

Rel4
Support of blanket user permission
C
3.3.0
4.0.0

T#10
TP-000193
T2-000632
014

Rel4
Update of WAP version MExE release 4 refers to
C
3.3.0
4.0.0

T#10
TP-000193
T2-000633
015

Rel4
Application version number
C
3.3.0
4.0.0

T#10
TP-000193
T2-000634
016

Rel4
Capability negotiation for browsing
C
3.3.0
4.0.0

T#10
TP-000193
T2-000637
017

Rel4
Addition of the definitions of MExE API and MExE server
C
3.3.0
4.0.0

T#10
TP-000193
T2-000639
018

Rel4
Generic MExE Classmark 1 aspects
D
3.3.0
4.0.0

T#10
TP-000193
T2-000640
019

Rel4
Core software download support
C
3.3.0
4.0.0

T#10
TP-000193
T2-000641
020

Rel4
Application connection information
C
3.3.0
4.0.0

T#10
TP-000193
T2-000642
021

Rel4
Support of journalling
C
3.3.0
4.0.0

T#10
TP-000193
T2-000643
022

Rel4
Support of the user profile
C
3.3.0
4.0.0

T#10
TP-000193
T2-000644
023

Rel4
Capability Negotiation
F
3.3.0
4.0.0

T#10
TP-000193
T2-000796
024

Rel4
Datagram recipient addressing
C
3.3.0
4.0.0

T#10
TP-000193
T2-000646
025

Rel4
QoS support in MExE devices
C
3.3.0
4.0.0

T#10
TP-000193
T2-000647
026

Rel4
Core software download
B
3.3.0
4.0.0

T#10
TP-000193
T2-000648
027

Rel4
RDF and XML References
C
3.3.0
4.0.0

T#10
TP-000193
T2-000649
028

Rel4
Support of VHE
C
3.3.0
4.0.0

T#10
TP-000193
T2-000794
029

Rel4
High level architecture
C
3.3.0
4.0.0

T#10
TP-000193
T2-000666
030

Rel4
Personal Java Reference
C
3.3.0
4.0.0

T#10
TP-000193
T2-000740
031

Rel4
Deletion of unnecessary text
C
3.3.0
4.0.0

T#10
TP-000193
T2-000744
032

Rel4
User Profile CC/PP tags
C
3.3.0
4.0.0

T#10
TP-000193
T2-000745
033

Rel4
Service management
C
3.3.0
4.0.0

T#10
TP-000193
T2-000746
034

Rel4
Classmark 3 non-security and conformance
B
3.3.0
4.0.0

T#10
TP-000193
T2-000747
035

Rel4
Classmark 3 security and conformance
B
3.3.0
4.0.0

T#10
TP-000193
T2-000748
036

Rel4
Update of HTTP RFC Reference
C
3.3.0
4.0.0

T#10
TP-000193
T2-000752
037

Rel4
Table of UAProf tags
C
3.3.0
4.0.0

T#10
TP-000193
T2-000753
038

Rel4
Added Annex about MExE Executable Life Cycle
C
3.3.0
4.0.0

T#10
TP-000193
T2-000754
039

Rel4
Update to security section for Rel4
C
3.3.0
4.0.0

T#10
TP-000193
T2-000755
040

Rel4
Conformance Table
B
3.3.0
4.0.0

MExE Applications

 OEM APIs

 MIDP APIs

CLDC APIs

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the lastest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � LIENHYPERTEXTE "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. Work item acronyms are listed in the 3GPP work plan. See � LIENHYPERTEXTE "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 1

_1034018214.ppt

Voice-based access

Data services

Supplementary services

Multimedia services

		operator / handset manufacturer / 3rd party services

		multimedia services

		multimedia messaging services

		SMS messaging

		notification services

		fax services

		store/forward services

		e-mail/v-mail services

		WWW access and content

		services download

		content download

		handset upgrades

		synchronisation services

		backup services

		user to user services

		data broadcast

		protocol translations

		bearer control

		etc.

Internet

services

Multimedia

services

Circuit/packet

switched

services

MExE Service Environment

MExE UE

Access network

(e.g. wireless, fixed, cordless)

MExE UE

_1042318666.ppt

Discovered

Uninstalled

Execution (D.3)

Resident

Verification (D.4)

Released (D.2)

Configuration

_1042319127.ppt

Released

Passive

Activated

Executing

Waiting for user

permission

Suspended

Verification (D.4)

or

Optimised

Verification

_1042319240.ppt

Uninstalled Execution

Executing

Waiting for user

permission

Suspended

Transferring

Verification (D.4)

_1036969534.doc

No

SIM inserted?

operator domain is enabled

No

Yes

ME ORPK valid

ME ORPK invalid

No

Id ORPK SIM = Id ORPK in ME?

Yes

Operator application is trusted

Operator application is untrusted

For all operator apps:

ORPK = PK ID of operator application?

Store ID of the ORPK in ME.

All ORPKs on ME are/remain invalid, even the ones from the same operator, stored in the ME.

ORPK on SIM is valid.

Operator domain is disabled

No

ORPK in ME?

ORPK in SIM?

No

Yes

Yes

Following a power-up

Yes

_1035191752.ppt

Verification

Trusted

In Operator or Manufacturer or Third Party Domain

Validation

Untrusted

Domainless

_990987334.doc

Mandatory minimum supported trust hierarchy

Root Operator Key

Root Manufacturer Key

Root TTP1 Key

Root

 TTPn

 Key

_990991620.doc

Is

administrator

root public key present

in ME ?

Yes

Power-up event,

Administrator

Root public key owner is

Is the administrator

User is the

administrator

No

_1025339354.doc

Network Control API

MExE Network API

MExE QoS Manager

MExE executable

End User

MMI

MExE QoS API

GPRS / UMTS Terminal Network Functions

_990988097.doc

Signature

Manifest (attributes)

Contents (Java classes, native

code, certificate, etc…)

MExE-Implementation-Type: …..

_989235044.doc

Required PersonalJava APIs

Optional PersonalJava APIs

Required JavaPhone APIs

Optional JavaPhone APIs

Optional Java APIs

MExE API

MExE Applications

JavaPhone API

Personal Java API

_990216827.doc

Is user the

administrator ?

Yes

No

Is

certificate on

MExE SIM ?

Following a power-up and/or SIM Insert event,

and if MExE SIM exists in the MExE MS

User is the

administrator

No

Yes

CP-TTP

CP-Admin

Query user:

Add CP-TTP

to TTP ?

Query user:

User wishes

temporary CP-

Admin ?

User is the

administrator,

but TTP loses

network access

CP-Admin certificate owner is

temporary administrator.

Current

administrator

is retained

Yes

No

No

Check

with CCM to

add/disallow

to TTP list

CP-TTP

Check with

administrator

certificate

Cases (a), (b), (c)

Case (d)

Current

administrator

retained, but TTP

domain loses

network access

CP-Admin

Yes

Is

certificate on

MExE SIM ?

Certificate

type ?

Certificate

type ?

