[image: image4.png]Q)

[image: image4.png]
Copyright: November 2000

Confidential

	3GPP TSG-T2 #11

Shin Yokohama JAPAN

November 27th – December 1st 2000
	T2-000727

m@gic4 and g@te: value added services using SMS as a bearer

Summary:
m@gic4’s data encoding scheme for SMS and associated g@te software will become an enabling technology for low to mid tier mobile devices. The recent incorporation of Enhanced Messaging Service (EMS) into the 3GPP standards will allow the exchange of simple icons and multi-media using SMS. m@gic4’s coding scheme, although superficially similar, extends this functionality considerably. In addition to delivery of pictures, animations, ringer tones etc. m@gic4 allows simple transaction based services using a “Form Mark-up Script” , the exchange of encrypted data and downloadable menu items into the g@te client to simplify user interaction with data servers.

References:
 All m@gic4 internal documentation referenced in this white paper are currently company confidential. However, they are available from m@gic4 subject to appropriate non-disclosure agreements between any third party and m@gic4.

31. m@gic4, Value Added Services (VAS) and SMS

32. SMS and EMS

43. Functionality and data encoding schemes for the g@te client

64. g@te client software, an overview

115. Advantages of m@gic4 encoding over current specifications

126. References

127. Glossary

1. m@gic4, Value Added Services (VAS) and SMS

It is becoming clear that the success or failure of VAS in the mobile marketplace will have a fundamental impact it’s future. This is particularly evident in light of the huge investments already committed for the provision of “third generation” mobile infrastructures. Put simply, service providers have to encourage much greater use of available bandwidth or they may not survive. An increasingly large user-base for voice services per-se may not provide adequate returns. In this environment provision of additional services, the evolution of the mobile phone into a mobile information device and the willingness of customers to use them will be critical.

VASs currently available to mobile devices can be divided into WAP based “browser” solutions or simple notification services mediated through SMS. Both of these solutions are less than ideal. WAP services currently available are poor and the user experience of WAP browsers on mobile devices with small user interfaces, typically in the order of 80x60 pixels, is very poor (leading to the term wapathy!). Current SMS services are text only and often require knowledge, by the user, of arcane tokens in order to initiate a service request.

m@gic4’s mission is to set the standard for delivering value added services to low and mid-tier mobile phones using SMS as a bearer. We will achieve this by delivering easy to use, but compelling, services to end-users. Services will be enlivened by the inclusion of graphics, small animations (iconimations) and melody. M-commerce applications will be supported by provision of “forms-based” transactions with support for encryption and compression. The user will be able to initiate any service request from a dynamic menu system maintained and updated transparently by g@te client software embedded in the phone.

The WAP solution, currently implemented on many high-end devices, is to pare down a PC technology and shoehorn it into a phone. The m@gic solution uses a tried and tested phone technology and enhances it.

2. SMS and EMS

SMS text messaging provides functionality for a store and forward delivery system of a user data block of 140 bytes. Using the 7bit GSM alphabet this means that a message containing 160 characters may be sent in a single SMS between two mobile entities. Whilst SMS was initially conceived as a “pager like” text based service, the GSM specification (originally GSM 03.40, now 3G TS 23.040, ref. 1) has always been “forward looking”. For instance, provision was made that SMS messages may form packets in higher protocols by the use of appropriate protocol- identifier fields (TP-PIDs) in the SMS message header. Similarly, provision was made in the 140-byte user data field for a byte stream forming a textual pre-amble (the TP-UDH or “user data header”), which might contain formatting information. Initially the TP-UDH has only been used to indicate message concatenation, i.e. a receiving mobile entity should concatenate several SMS into a single text message comprising more than 160 characters. In addition, the provision for an 8-bit encoding scheme in SMS also meant that some proprietary software might use SMS as a 140-byte packet in any user defined protocol.

Provision of these extensions has meant that SMS, in spite of its uptake, has been considerably under utilised whilst used primarily as a text-based service. This situation seems set to change. A recent addition to the SMS specification, contemporaneous with the development of m@gic4 messaging and g@te, is the extended messaging service (EMS).

The EMS specification goes a little way to adding more interest into SMS messaging. The specification adds support for formatting within the text. This formatting permits the message to contain simple animations, small melodies and selection of text styles or fonts. Text in the message may be pre-ambled by one or more of these headers in the TP-UDH. Melodies may be encoded according to the iMelody specification (ref. 2) and user defined pictures according to 3G TS 23.040 (ref. 1). Animations are not sent over the air but are pre-defined on the device and an indication to play them included in the message. These animations represent the emotions often sent in email as emoticons. No media in EMS, or any media indication, may be greater than 140 bytes, however multiple SMS containing EMS may be concatenated.

3. Functionality and data encoding schemes for the g@te client

Fundamental to the design of the m@gic4 messaging system was the tacit decision to ignore the limitations of SMS and consider SMS to be a 140 byte “packet”. Accordingly, services may be coded in many more than 140 bytes. The byte stream thus encoded is then compressed and written into the TP-UD as a TP-UDH in a small message (SM) encoded as either 7bit or UCS-2 (it was decided very early that avoiding proprietary 8bit encoding would make m@gic4 more acceptable to most operators and handset manufacturers). m@gic4 media may be any size (within sensible limits) and the compressed byte stream is split amongst as many concatenated SMS as required (g@te supports SMS concatenation).

The general structure of a m@gic4 encoded byte stream in an SMS is given below:

[image: image1.png]User Datar
Header
Lengtn
1BVTE

Concatenate
s
SBYTES

Ma@gic
DATA
ouFF

Lengthof
DATA
1BVTE

M@gio# deta byte stream

User Data
"WOT HO MAGIC"
12 chars

m@gic4 is currently seeking from 3GPP a PID and a user data header identifier for our media. In the diagram above (of the TP-UD of an SM) the byte value 0xFF is used to indicate (after the concatenation information) the m@gic4 data. The m@gic4 data is simply the encoded and compressed byte stream, described below, split into SMS sized packets.

Services in m@gic for are considered to be a sequence of “things” that happen on the device. For instance a “cricket service” may begin with the BBC test match theme, include an iconimation of a shattered wicket and contain the textual information “G. Thorpe caught and bowled S. Patel 188; England declare on 606 for 5 at tea on the second day”, followed by a sponsors logo. Individual elements in this display may be grouped into operations (if they occur at the same time), for instance the screen might be concurrently occupied by static text, an iconimation and there may be simultaneous melody. The g@te client software deals with each operation (collection of elements) in turn by examining a bit field that precedes the media. These bits indicate whether a media should be displayed (D) persisted (P) or replied to (R or RE for encrypted reply). Media are also preceded by 2 licensing bits, indicating whether the media is freely distributable, may be persisted upon the device etc. A detailed description of the m@gic4 message header, the media control bits and the encoding of m@gic4 data types is given in refs. 3,4 and 5.

Possibly the most important media types supported by m@gic4 is a “form mark-up”. This allows the user of a mobile device to request information from a server, e.g. request a service or submit some information. This allows straightforward transaction processing to occur between a m@gic4 server and a mobile device. Elements in the return may also be encrypted using 3-DES. Form Mark-up Language, and its use in transaction processing are described in detail in refs. 6 and 7.

A further data type, supported by m@gic4, is the “command” data type. m@gic4 messages containing these operations are not intrinsically for display to the user. In its simplest form these may contain additions to the g@te menu system. However, the data may also contain an offset into a function pointer table. These functions may be used to enable hidden features on the device (OTA device upgrade), to run a device specific remote diagnostic sequence, to change system settings or even to disable the device.

m@gic4 are currently prototyping systems that use command tags to reset point of presence settings transparently to the user, to activate WAP browsers to provided URLs and to disable or track stolen mobiles.

4. g@te client software, an overview

The g@te client software is written entirely in ANSI C in order to make it as compatible as possible with any potential device real-time operating system (RTOS) or any manufacturers programming environment. Calls to most C “run-time” libraries (generic and therefore often over engineered in the context of embedded systems) have been eliminated, except where handset manufacturers assure us that functionality already exists on the device. They have been replaced by specific routines optimised for speed and size.

g@te has been written as a collection of discrete modules, which export a clearly defined internal API, this structure makes the client easy to understand, test and debug. The client works as a finite state machine (FSM) and processes events from the device according to its state at the time. All events (key press, new SMS etc.) are posted into the client via a ClientProcessMessage() function, apart from initialisation this is the only API exported for the device. In addition, the client hands control, as often as possible, back to the device RTOS by posting itself messages and returning from the ClientProcessMessage() call. This method, together with the FSM structure, means that the call stack depth for the client is small and the processor time required by the client, for any one operation, is minimal.

g@te requires that handset manufacturers implement (as far as possible) a small API which allows g@te to send and receive SMS, to write to the graphics display, to use the system sound and to write data to a cache or to the devices persistence store (e.g. EEPROM or flash). This API is based upon known internal APIs from 3 handset manufacturers and was designed to make integration into mobile devices as easy as possible. The required device API is documented in a porting guide (ref. 2) and is available from m@gic4.

The g@te software has a small footprint. The current application, encompassing the state engine, parsers, graphics layer, menu manager, file system manager, device interface layer and, if required, a pseudo-heap manager, occupies fewer than 35 Kbytes (for a Motorola 68K build).

The g@te software is intrinsically simple, the client only “knows” how to display, persist or reply to single messages. In terms of transactions the client software may be considered “stateless”, all transaction logic lies in m@gic4’s server architecture. Much of the process logic involved in displaying, persisting or replying to a m@gic4 SMS is encoded in the control bits of elements of the message. The core of the g@te client is a kernel (the state engine) responsible for en-queueing a message, as a series of operations, and dispatching each, in turn, to the appropriate g@te module. Operations are dispatched, in order of priority, for display, persistence or reply. Whilst a module has ownership of an operation, all device events are also forwarded to that module from the kernel. When a module finishes with an operation it is either cleaned up (if no further control bits are set) or re-queued by the kernel for further action. The sequence for handling a typical message and the use of the control bit field is illustrated in the following diagram. This design was motivated by two considerations. That the number of actions that we might want to do with a given m@gic4 data type is actually quite small and a desire to keep the flow logic of the client as simple as possible (in keeping with the first consideration!).

[image: image2.png]4 4
Engine Engine Engine Command
Cveve ! Requeue Cveve ! Requeue v erased
5 5 Iy
v v v
Command Command Command
ODER oDER ODER
0111 0011 0001
AsPbitis Engine sees
AaDbiis | Engine sees set, the Engine sees AeRBLS | thatthe D, P
o the | patihe P an command s | thatthe R bit osetthe | andRbis are
commandte | Rbte are ot dispatchedto | s still set, 5o Sommandie | Talm st
e il ueuss the the it re-queves he GEM has finished
play ki persistance the command handling the
server command reietan stack anding
Engine
Domain
Server
Domain
Upon Upon Upon
comieion. | opp comieion. | op5 contieton, | opeR
setsthe D bit | 0011 sets the P bit | 0001 the R bit gets | 00CO
oo 00
v v v
Display Server Persistance GSM Stack (reply
Server transmission)

Effectively the engine de-queues the head element of the operation queue structure. The engine examines the control (DRP) field of each command element and dispatches the structure to whichever device handles the highest priority request (“display”, ”reply” or “persist”). The handling object services the request and sets its control flag DR or P = 0 for all command elements in the command structure. Upon completion, the structure is returned to the engine via a post message function. Fields DPR are examined again; any elements set 000 are removed from the command structure. If all elements are set 000, the command structure is cleaned up. If not the command structure is en-queued.

A high level diagram of the g@te client software is given below.

[image: image3.png]BSM STACK

svsTEM
RAM

_pou
encoder

Merory
manager

Byte stream parser

Forms parser

Engine.

EepROM
FLASH
Persistence
‘Server
sw
screen
Display
Server
RINGER

Client Software

Responsibilities of each module are relatively straightforward, but are briefly highlighted here:

· TP-PDU encoder: Is the point of connection between the phone GSM software and the m@gic4 client software. It is a translation layer for TP-PDUs into the BYTE stream representation required by the Byte Stream Parser. This module is also responsible for the un-compression and concatenation of the incoming SMS messages.

· Byte Stream Parser: This component parses the m@gic4 byte stream and fills in a command structure (comprising a doubly linked list of command elements) for each time discrete operation (or series thereof) in the transcribed SMS byte stream. An operation in this context is a collection of events, which occur, or appear to occur, at the same time to the user. For instance a play tone and an associated iconimation.

· Forms Parser: The byte-stream parser delegates parsing of text information containing a “forms” mark-up language to a character based parser. The module parses a stream of text generating a command element structure for each discrete Prompt: Reply pair in the form object and passes the element back to the byte stream parser where it is embedded in a command structure representing the form operation.

· State Engine: This component presents an external API to the mobile phone software for generation of SMS that include embedded media. Its major role, however, is to manage a queue of operations for incoming m@gic4 byte streams when in receive mode. Each element of this queue comprises a command structure. The engine, in receive mode, is therefore a very simple object which examines the control bits of the individual command elements and moves them to the appropriate display, or persistence server. The engine will respond to messages from the display server or persistence server indicating that the operation has terminated (successfully or unsuccessfully). These messages will pass back ownership of the command structure to the Engine, which may then en-queue them as a new operation (discarding any command elements with no control bits set).
· Display Server and Persistence Server: These objects comprise several modules. The display logic is broken down into 4 major blocks. A display manager sits directly above the device API primitives and gives a higher level of functionality to a display manager (a mini FSM in its own right) and to a menu manager. In addition, if the handset manufacturer cannot match exactly the m@gic4 porting guide there will be a thin interface layer above the handset primitives, which exports the documented APIs for the display manager.
· Memory Manager: The client has been developed using ANSI C in order to be as flexible as possible when integrating into mobile platforms. Accordingly the presence of a managed heap for dynamic memory allocation has been assumed (valid for environments running EPOC32, PALM, Nucleus, QNX or most proprietary embedded OS). Where a heap does not exist, the memory manager will support a simple queue based dynamic allocation from a contiguous area in the mobile phone RAM. The dynamics of memory allocation in the prototype client is essentially two-fold, an allocation phase followed by a release phase. Heap usage falls to zero between messages or upon dismissal of the g@te menu system. This allows the use of a simple allocation algorithm in a small memory space.

5. Advantages of m@gic4 encoding over current specifications

The specifications for SMS and EMS have been briefly described here. Although several service providers are using SMS to push services into mobile devices, these services are almost universally bland since they are limited to text only presentation. EMS specifies a standard for including into appropriately formatted text simple pictures (1 bit pixel depth), melodies and emoticon-like animations that are pre-defined on the mobile device. Although these enhancements are welcome additions to the SMS specification they do not comprise an outstanding enhancement for the end-user.

Similarly, WAP has failed to match industry expectations for its functionality or usability. Currently WAP is a browser only experience, WAP is not designated to support push services until GPRS/UMTS infrastructures are available (a significant deficit compared even to SMS based push services). Importantly user experience of WAP services is, at present, very poor. An expectation of “internet on a mobile phone” simply fails to live up to expectation on devices with limited processing power and restricted graphics capability. Additionally WAP browsers are typically only available (at this time) on high-end mobile devices.

m@gic4 SMS based messaging was designed from the ground up to cope with the limitations of mobile handsets and to integrate easily into low or mid-tier devices. The design paradigm was to use an existing technology (SMS) and use part of its specification to add functionality and end user experience. A thin client in a handset in addition to a simple encoding scheme provides synergistic returns for the service provider and service user. m@gic4 offers all the functionality of EMS but adds significant additional features:

· Dynamic Application Menus -
Users can get to a service they want with minimal key presses. Menu items are automatically downloaded when users select a service.

· Transactions – m@gic4 supports transaction processing through forms based mark-up.

· Compression – m@gic4 routinely compress services or messages, in system tests 1400 bytes have been compressed as much as 60%. Currently SMS and EMS only offer text compression, media are sent over the air uncompressed.

· Encryption – m@gic4 includes specification for encryption, an absolute requirement for m-commerce.

· Command data types – These allow remote diagnostics on the device, activation of hidden functionality and security features.

· Rich content – although limited by device capabilities m@gic4 encoding was designed to maximise user experience within these constraints. In this respect m@gic4 offers considerably more functionality than EMS and, although a different technology, we feel better content than any currently serviced by WAP.

6. References

1]
3G TS 23.040 v4.0.0 (2000-07) 3rd Generation Partnership Project;

Technical Specification Group Terminals; Technical realization of the Short Message Service (SMS); (release 2000).

2]
Infrared Data Association: Specifications for Ir Mobile Communications (IrMC). iMelody.

3]
General Data Transmission Format: (version 1.1) m@gic4 1st November 2000.

4]
Common Data Formats: (version 1.0) m@gic4 28th October 2000.

5]
m@gic4 Client, MT Data Representation for the m@gic4 Client: (version 5.0) m@gic4 31st October 2000.

6]
Form Mark-up Language Functional Specification: (version 2.0) m@gic4 15th November 2000.

7]
The use of m@gic4 forms for transaction processing: (version 0.1) m@gic4 15th September 2000.

8]
m@gic4 SMS Client Porting Requirements: (version 1.02) 17th November 2000.

7. Glossary

3-DES
Triple DES; Data Encryption Standard.

3GPP
 Third Generation Project Partnership.

ANSI
American National Standards Institute.

EMS

Extended Messaging Service.

FSM

Finite State Machine.

GSM

Global System for Mobile Communications.

RTOS

Real Time Operating System.

SM

Small Message.

SMS

Small Message Service.

TP-PID

TP protocol-identifier.

TP-UD

TP user-data.

TP-UDH

TP user-data-header.

VAS

Value Added Services.

WAP

Wireless Application Protocol

Common Data Formats:

Initial draft.

M@gic4 Confidential Information:

© M@gic4 Ltd. 2000.
Document History

	Version
	Author
	Date
	Details

	1.0
	Dan Beaumont
	28th October
	Initial version

Contents

41
Overview

2
Fundamental Datatypes
4
2.1
<SERVICE ID>
4
2.2
<SERVER NUMBER>
4
2.3
<POSITION>
4
2.4
<SIZE>
4
3
Compound Datatypes
5
3.1
<M@GIC IMAGE>
5
3.1.1
<M@GIC IMAGE HEADER>
5
3.1.2
<TOP LEFT POSITION >
6
3.1.3
<SIZE>
6
3.1.4
<EXT INFO>
6
3.1.5
<M@GIC IMAGE DATA>
6
3.2
<ICONIMATION>
6
3.2.1
<ICONIMATION HEADER>
6
3.2.2
<DELREP>
7
3.2.3
<EXT INFO>
7
3.3
<NOTE STREAM>
7

Overview

The purpose of this document is to specify common datatypes and structures that are used in many places throughout the Data Documents.

Fundamental Datatypes

<SERVICE ID>

<SERVICE ID>
::= { 4 byte service ID number }

<SERVER NUMBER>

<SERVER NUMBER>
::= { TON GSM Phone number (see GSM 03.40) }

<POSITION>

This is a definition of a position in X,Y format. A <POSITION> consists of four bytes. The bytes represent the following quantities:

<POSITION>
::= { X Position (2 bytes) } { Y Position (2 bytes) }

<SIZE>

A definition of a size. A <SIZE> consists of four bytes. The bytes represent the following quantities:

<SIZE> ::= { X Size (2 bytes) } { Y Size (2 bytes) }

Compound Datatypes

<M@GIC IMAGE>

A <M@GIC IMAGE> is a fundamental monochrome single image or bitmap.

<M@GIC IMAGE> ::=
<M@GIC IMAGE HEADER>

[<TOP LEFT POSITION>]

<SIZE>

[<EXT INFO>]

<LENGTH>

<M@GIC IMAGE DATA>

1.1.1 <M@GIC IMAGE HEADER>

The <M@GIC IMAGE HEADER> is 1 byte. This byte is used as follows:

	Bit
	Meaning

	7 – 6
	Length of the <LENGTH> field:

00
1 byte

01
2 bytes

10
3 bytes

11
4 bytes

	5 – 4

	Compression Scheme:

00
No Compression (default)

01
RLE Scheme 1

10
RLE Scheme 2

11
Reserved

	3 – 2

	Justification:

00
Left Justify (default)

01
Right Justify

10
Centre

11
Reserved

	1
	<TOP LEFT POSITION> flag:

0
<TOP LEFT POSITION > does not appear (default)

1
<TOP LEFT POSITION > appears

	0

	<EXT INFO> presence flag:

0
<EXT INFO> not present
(default)

1
<EXT INFO> present

1.1.2 <TOP LEFT POSITION >

A <POSITION> as defined previously in this document. Holds the position where the top left pixel of the image should be displayed upon the screen. If no <TOP LEFT POSITION> is specified it is assumed that the image will be displayed at the current cursor position, taking justification into consideration.

1.1.3 <SIZE>

A <SIZE> as defined previously in this document. This holds the dimensions of the image, in pixels.

1.1.4 <EXT INFO>

The <EXT INFO> byte is an optional byte to hold further information. At the time of writing, this byte is unused.

1.1.5 <M@GIC IMAGE DATA>

The <M@GIC IMAGE DATA> is the raw data for the image. This is simply a bit-based bitmap for the whole of the image. The final byte of the data may be partially used, depending upon the dimensions of the image.

<ICONIMATION>

<ICONIMATION> ::=
<ICONIMATION HEADER>

<DELREP>

[<EXT INFO]

<M@GIC IMAGE>+

1.1.6 <ICONIMATION HEADER>

The <ICONIMATION HEADER> is 1 byte. This byte is used as follows:

	Bit
	Meaning

	7
	Reserved. Assumed to be zero.

	6 – 3
	The number of images within the iconimation:

0000
2 images

1111
17 images

	2
	Iconimation reversing flag:

0
Play Iconimation normally

1
Once Iconimation has played normally, reverse the sequence

	1
	Reserved. Assumed to be zero.

	0
	<EXT INFO> presence flag:

0
<EXT INFO> not present

1
<EXT INFO> present

1.1.7 <DELREP>

The <DELREP> byte always appears. This byte is used as follows:

	Bits
	Meaning

	7 – 4
	Delay value. The value (in tenths of a second) that is requested between each frame:

0000
1 tenth

(i.e. 0.1s)

1111
16 tenths
(i.e. 1.6 s)

	3 – 0
	Repeat value. The requested number of repetitions of the iconimation:

0000
Unlimited repetition

0001
1 repetition

1111
15 repetitions

1.1.8 <EXT INFO>

The <EXT INFO> is presently unused. If it appears, it should be ignored.

<NOTE STREAM>

A <NOTE STREAM> is a simple series of note tones (including any pauses). Each note is represented by 2 bytes (16 bits), as described in the table below.

	Bit
	Meaning

	15 – 14
	Octave Number:

00
Octave 0

01
Octave 1

10
Octave 2

11
Octave 3

	13 – 10
	Note Identifier – Specifies particular note:

0000

Pause

0001

C

0010

C#

0011

D

0100

E$

0101

E

0110

F

0111

F#

1000

G

1001

A$

1010

A

1011

B$

1100

B

1101 – 1111
Reserved

	9 – 0
	Duration – Length of note to be played (time units are 1/100 s):

0000000000
1 time unit (0.01s)

…

…

…

…

1111111111
1024 time units (10.24s)

	

	
	Compression schemes for M@gic4 client

M@gic4 Confidential Information:

© M@gic4 Ltd. 2000.

	

	Summary
	Description of the algorithms, data structures and software routines for the compression schemes implemented on the M@gic4 client.

	Author
	Leigh Morris

Revision history

	Version
	Author
	Date
	Comments

	1.0
	Leigh Morris
	28 November 2000
	First draft

Contents

41
Introduction.

42
Prerequisites for the compression schemes.

42.1
Loss-less compression.

42.2
Low count data stream efficiency.

53
The Compression Schemes.

53.1
The LZSS Compression scheme.

53.1.1
Brief description of the LZSS Compression Scheme

63.1.2
LZSS Compression Routines.

73.1.3
LZSS Compression Data Format.

93.1.4
LZSS Compression Implementation.

103.1.5
LZSS Decompression Implementation.

113.2
The Huffman Compression scheme.

113.2.1
Brief description of the Huffman Compression Scheme

123.2.2
Huffman Compression Routines

133.2.3
Huffman Compression Data Format

143.2.4
Huffman Compression Implementation

143.2.5
Huffman Decompression Implementation.

Introduction.

Data compression schemes are required to attempt to reduce the number of PDU packets transmitted for any given message. With any compression scheme the overall reduction in data transferred depends upon the nature of the data and the algorithm chosen.

Prerequisites for the compression schemes.

In the context of Magic4 data messages the compression scheme must meet several conditions in order to fulfil it’s overall objective.

Loss-less compression.

The representation of data is such that in some cases the loss of a proportion of that data can be acceptable in order to achieve a substantial reduction in overall data size, as for example in the case of photographic pictures.

However, in the case of the transfer of data to and from the Magic4 client the loss of any data would not be acceptable.

Overall data reduction must be achieved whilst maintaining 100% data integrity, this is called “loss-less” compression.

Low count data stream efficiency.

All data compression schemes introduce some extra data overhead in order to implement or control the scheme. The schemes chosen for implementation within the Magic4 client must keep this overhead to an absolute minimum in order to be efficient with low packet count messages where, for instance, the total number of bytes is less than a few hundred.

The Compression Schemes.

In view of the prerequisites for the compression of Magic4 data it was determined by exploratory analysis that variations on two basic compression schemes were the most appropriate.

The LZSS Compression scheme.

1.1.9 Brief description of the LZSS Compression Scheme

A common solution for compressing data is to create a list of the most common words or phrases, or in our case data sequences, and then replace each of these occurrences with a number that represents it’s position in the list. This so called “dictionary” scheme is attributed to Abraham Lempel and Jakob Ziv, hence “LZ”.

One, of many, variations on this scheme is attributed to James Storer and Thomas Symanski, hence “LZSS”, and modifies the above by not keeping, or more importantly not transmitting, a data dictionary, but maintains a moving window of reconstructed data and uses this as a dictionary.

A modified vision of this scheme was deemed to incur the least overhead at the same time as not requiring a pre-sent dictionary.

1.1.10 LZSS Compression Routines.

The LZSS compression routine is implemented in Mg4lzss.c and is defined as follows in Mg4lzss.h

MSword LZSSCompress(MByte* iBuffer, MByte* oBuffer, MSword iSize, MBool fWrite) ;

The routine takes the following parameters as input:

MByte* iBuffer
A pointer to the start of data to be compressed.

MByte* oBuffer
A pointer to the start of an allocated buffer

to take the output compressed data.

MSword iSize
Size (byte count) of the input data to be compressed.

Mbool fWrite
A flag, which if set, enables writing to the output buffer.

The routine returns with the output data size, even if fWrite is not set.

The compression routine has a complementary expansion routine as implemented in Mg4lzss.c and is defined as follows in Mg4lzss.h

MSword LZSSExpand(MByte* iBuffer, MByte* oBuffer, MSword iSize, MBool fWrite) ;

The routine takes the following parameters as input:

MByte* iBuffer
A pointer to the start of data to be expanded.

MByte* oBuffer
A pointer to the start of an allocated buffer

to take the output expanded data.

MSword iSize
Size (byte count) of input data to be de-compressed.

Mbool fWrite
A flag, which if set, enables writing to the output buffer.

The routine returns with the output data size, even if fWrite is not set.

1.1.11 LZSS Compression Data Format.

The compressed data stream consists of firstly a single byte that defines the escape code used to mark the start of a slice descriptor sequence.

The data that follows the first byte is any combination of actual data and slice descriptors.

The format of the compressed data stream is illustrated as follows :-

Fig 1. LZSS compressed data format.

	Data byte stream (initial section) …..

	1
	2
	3
	4
	5
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	
	
	
	
	

	Escape code
	Raw data
	Slice descriptor
	Raw data
	Slice descriptor
	Slice descriptor

The format of a slice descriptor is as follows :-

Fig 2. Slice Descriptor.

	Byte 1
	Byte 2
	Byte 3

	Escape code
	Slice descriptor high byte
	Slice descriptor low byte

	
	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	
	Slice length
	Slice offset index

As can be seen from the above table, the slice descriptor escape sequence length is three bytes, hence only repeating slices of data longer than three bytes are extracted.

The most efficient slice escape code is chosen from the input data to be compressed. This is achieved by selecting the byte with the lowest frequency of occurrence within the input data to be compressed.

Whenever the chosen escape byte code occurs naturally within the data stream this has to be identified so that it is not mistaken for the start of a slice descriptor sequence by the decoder. This is achieved by following the data byte with two zero bytes, effectively making the “slice length” and “slice offset index” both zero. This special case is then decoded as a single data byte equal to the escape byte. Occurrences of this situation obviously reduce the overall compression achieved, hence the need to chose the escape byte based on minimum frequency of occurrence within the input data.

The “slice length” is contained in the most significant five bits of the slice descriptor high byte and describes a data slice length of up to 31 bytes.

The “slice offset index” to the start of the slice is contained in the lower 11 bits and limits the “slice offset index” (and hence the slice buffer window) to 2047 bytes.

The “slice offset index” gives the start position of the source slice measured backwards from the current writing position in the output decoded message data buffer, expressed as a positive number.

1.1.12 LZSS Compression Implementation.

The compression routine firstly scans the entire input data buffer and determines the least occurring data byte, this is then chosen as the slice descriptor sequence escape code. This byte code is written out as the first byte of the compressed data stream.

The compressed data output stream is then constructed by repeating the following process until the end of the input data buffer is reached.

The input data buffer is scanned, from a position 2047 bytes back from the current reading position through to the current reading position (minus 1), looking for the maximum (but limited to 31 bytes) length matching data slice contained that matches the data starting at the current reading position.

If no matching data slice, longer than three bytes, is found then the input data byte at the current reading position is written to the output data buffer at the current writing position. Both the current reading position in the input data buffer and the current writing position in the output data buffer are incremented by one.

If a matching slice is found then a slice descriptor escape sequence is written to the output data buffer at the current writing position in the output data buffer and the current writing position is incremented by three. The current reading position in the input data buffer is incremented by the length of the newly found matching data slice.

The above sequence is repeated until the current reading position reaches the end of the input data buffer.

Nb. When encoding (compressing), it is the input data buffer, up to the current reading position, that is used to search for already known matching data slices, as this represents, and is equal to, the reconstructed output data buffer of the decoder at the receiving end.

1.1.13 LZSS Decompression Implementation.

The decompression routine firstly reads the first data byte of the input data buffer and records this as the slice descriptor escape code.

The following sequence is then repeated until the end of the input data buffer.

The data byte at the current reading position in the input data buffer is compared with the escape code.

If the byte is not equal to the escape code then the input data byte is written to the output data buffer at the current writing position and both the output data writing position and the input data reading position pointers are incremented by one.

If the input data byte is equal to the escape byte then the “slice length” and “slice offset index” are extracted from the two byte slice descriptor.

If these are both zero then the escape byte code is written to the output data buffer and the output data buffer writing position is incremented by one and the input data buffer reading position is incremented by three.

If they are not zero then a data slice is copied from within the output data buffer to the end of the output data buffer, where the start of the source slice is at a position “slice offset index” back from the current output data writing position and the destination start position of the slice is the current output buffer writing position. The input data buffer reading position is incremented by three and the output data writing position is incremented by the “slice length”.

The Huffman Compression scheme.

1.1.14 Brief description of the Huffman Compression Scheme

Huffman encoding is a statistical approach to data compression, named after David Huffman. The scheme involves computing how often particular patterns or codes are found in the data set and then replacing the most common ones with shorter patterns and the least common ones with longer patterns.

The basic algorithm involves the construction of a code “tree” that defines the data entities and their respective probability of occurrence within the data set. The most common exist at the top of the tree and the least common at the bottom. Navigating the tree, from top to bottom, produces the variable length encoded pattern for each data entity.

In order to decode the patterns back into the original data set the tree must first be transmitted to the decoder. This introduces a major overhead to the compression scheme, particularly for relatively small data sets, especially when a pre-defined tree cannot be efficiently used.

In the case of purely alphabetic text, a pre-defined tree can be produced, for any given language, that will give a fairly close fit for any section of text, particularly as the text length increases. This is not the case with data sets traversing the Magic4 system.

Analysis of typical Magic4 messages revealed that a “tree” could be created for the relatively small number of frequently occurring codes and that encoding further codes was a case of achieving diminishing returns.

Hence an encoding scheme was devised that uses a pre-determined encoded pattern for the five most frequently occurring data bytes. In this way the coding overhead is kept to an absolute minimum and involves only the transfer of the five most frequently occurring codes in advance of the encoded data stream.

1.1.15 Huffman Compression Routines

The Huffman compression routine is implemented in Mg4huffman.c and is defined as follows in Mg4huffman.h

MSword HuffmanCompress(MByte* iBuffer, MByte* oBuffer, MSword iSize, MBool fWrite) ;

The routine takes the following parameters as input:

MByte* iBuffer
A pointer to the start of data to be compressed.

MByte* oBuffer
A pointer to the start of an allocated buffer

to take the output compressed data.

MSword iSize
Size (byte count) of the input data to be compressed.

Mbool fWrite
A flag, which if set, enables writing to the output buffer.

The routine returns with the output data size, even if fWrite is not set.

The compression routine has a complementary expansion routine as implemented in Mg4huffman.c and is defined as follows in Mg4huffman.h

MSword HuffmanExpand(MByte* iBuffer, MByte* oBuffer, MSword iSize, MBool fWrite) ;

The routine takes the following parameters as input:

MByte* iBuffer
A pointer to the start of data to be expanded.

MByte* oBuffer
A pointer to the start of an allocated buffer

to take the output expanded data.

MSword iSize
Size (byte count) of input data to be de-compressed.

Mbool fWrite
A flag, which if set, enables writing to the output buffer.

The routine returns with the output data size, even if fWrite is not set.

1.1.16 Huffman Compression Data Format

The Huffman compressed data stream consists of firstly a double byte sequence that defines the expanded data size, expressed as an integer count of the total number of bytes (octets) in the expanded data set.

Then follows the top five most frequent bytes found within the expanded data set.

The data that follows is the compressed data bit stream and is padded at the end so as to form a complete byte (octet).

This is illustrated as follows :-

Fig 3. Huffman compressed data format.

	Compressed data stream (initial section)…

	Byte 1 High
	Byte 2 Low
	Byte 3
	Byte 4
	Byte 5
	Byte 6
	Byte 7
	Bit stream …

	Expanded

data size
	Most frequent byte
	…
	…
	…
	5th most frequent byte
	Compressed data

Fig 4. Huffman encoded bit patterns.

	Original data
	Encoded Bit pattern

	Most frequent byte
	10

	2nd most frequent byte
	1100

	…
	1101

	…
	1110

	5th most frequent byte
	1111

	All other bytes (xxxxxxxx)
	0xxxxxxxx

1.1.17 Huffman Compression Implementation

The compression process first scans the whole of the input data set (buffer) and compiles a list of data bytes present and their respective frequency counts, this list is then sorted such that the five most frequently occurring data bytes are determined.

The total uncompressed data length is written to the compressed output data buffer followed by the five most frequently occurring data bytes.

The input data buffer is then read from start to end and each byte read is encoded into a bit pattern that is appended to the compressed output data stream.

The encoded bit pattern is created and shifted such that the first bit written in any byte is the most significant bit (bit 7) of that byte. The last encoded pattern is padded out with zeros to fill the unused least significant bits in the last byte of the compressed data stream.

1.1.18 Huffman Decompression Implementation.

Decompression of the Huffman encoded bit stream is simply the reverse of the compression process. Firstly the expanded data length is extracted from the first two bytes of the input data, followed by the five most frequent byte values.

The bit stream is then read a bit at a time and the encoded patterns expanded into their actual data equivalents.

Magic4 SMS Client

Form Definition Language

Functional Specification

Version 2.0

M@gic4 Confidential Information:

© M@gic4 Ltd. 2000.
	Version
	Author
	Date
	Details

	2.0
	Colin Wilcox
	15th November 2000
	· Added definition of floating point numbers

· Added max size of any default input values

· Fine tuned details of how times are displayed

	1.9
	Colin Wilcox
	3rd November 2000
	· Added ability to specify optional fields

	1.8
	Colin Wilcox
	26th October 2000
	· Added details about how to mark items in the selection list as being selected.

	1.7
	Colin Wilcox
	24th October 2000
	· Added decimal placing specification in format byte.

· Assume times are sent as 24hr always and we have an am/pm marker

	1.6
	Colin Wilcox
	22nd October 2000
	· Added short codes for retrieving ME settings details in forms.

· Date format now uses 4 digits to represent the year

	1.5
	Colin Wilcox
	7th October 2000
	· Various minor updates for Input command.

· Extend shortcuts to display reserved characters.

· Change format byte diagrams to include maximum/minimum fields

	1.4
	Colin Wilcox
	5th October 2000
	· Adjust input command format to support data ranges.

· Change input command examples

· Remove form name paragraph.

	1.3
	Colin Wilcox
	4TH October 2000
	· Slight adjustments in light of toolkit requirements

	1.2
	Colin Wilcox
	3rd October 2000
	· Expanded the shortcut examples

	1.1
	Colin Wilcox
	10th June 2000
	· Cull and pruning of grammar in light of further discussion.

	1.0

(VSS LABEL)
	Colin Wilcox
	2nd June 2000
	· Corrected Selection Command Examples

	0.9
	Colin Wilcox
	31st May 2000
	· Confirmation prompt is now always last entry in form definition.

	0.8
	Colin Wilcox
	24th April 000
	· Remove option count from option block grammar. This is now calculated dynamically.

	0.7
	Colin Wilcox
	20th April 2000
	· Line Terminator (‘;’) Added To Language Grammar.

	0.6
	Colin Wilcox
	19th April 2000
	· Added Time And Date Field Definitions

	0.5
	Colin Wilcox
	29th March 2000
	· Combine Single And Multiple Selection Commands.

	0.4
	Colin Wilcox
	24th March 2000
	· Add Input Field Access State To Text Formatting Block.

· Add Password Field Bit To Text Formatting Block.

· Change Command Byte For OneFromMany and SeveralFromMany commands

	0.3
	Colin Wilcox
	22nd March 2000
	· MFDL now fixed as GFDL (Generic Form Definition Language)

· Extended Text Formatting Block to include text alignment.

	0.2
	Colin Wilcox
	21st March 2000
	· Add Text Flashing Bits To Formatting Block.

· Expand On Form Identification Block.

· Update Input Command Syntax.

	0.1
	Colin Wilcox
	18th March 2000
	Initial Draft

Overview
5
Core Functional Requirements
6
Form Transactions
6
Form Format
6
Message Commands
7
General Conventions
7
Form Identification
8
Display Free Text
8
Shortcut Text Prompts and Reserved Characters
9
A full list of the abbreviated short codes can be found in the appropriate header
9
file.
9
Text Formatting Command
10
Selection Commands
11
Confirmation Prompt
13
Input Commands
14
Using data short codes
21
References
22

Overview

The Magic4 SMS Client will provide the ability to interact with the user using the concept of forms. Forms will provide the mechanism for providing prompts to the user and convey their responses back to the service centre.

The intention of this document is to define the underlying language grammar that will be used to provide form support in Magic4 SMS client software.

The core language grammar was inspired by the Tagged Text Markup Language (TTML) specification defined by Nokia [1], with extensions being made where necessary to support any extra functionality specific to the Magic4 SMS client.

Core Functional Requirements

Form Transactions

A basic requirement of the form mechanism is to allow the two-way transfer of data between a handset and the service centre. There is no guarantee that a group of SMS messages sent from the service centre to a given handset will arrive at the handset in the order in which they were sent, or vice versa. It is essential that we are able to maintain the correct sequence of packets and also keep packet associated with the same transaction together.

Some information needs to be stored in each form definition packet to:

· Identify the transaction number

· Indicate the packet sequence number and

· The total number of packets in the transaction

The above details can be represented in a two-byte header, one byte for a modulo-256 transaction number. The packet sequence number and the total number of packets in a transaction can be stored in a single byte

Form Format

The form data will consist of one or more message command blocks described below. Each block will be self-contained and may contain one or more instruction that need to be parsed and acted upon by the SMS client software.

The form will consist of two parts: - a form identification block, which will uniquely identify the set of commands that will follow; together with one or more form-specific commands. Each command will be one of the commands described by the BNF grammar below.

<Form> ::= {<Command Block>’;’}*

 <Confirmation Block>

<Command Block> ::= ‘#’

{ <Display Free Text Command> |

 <One Of Many Input Selection Command> |

 <Many Of Many Selection Command> |

 <Input Command> |

 <Text Formatting Command>

}

<Display Free Text Command > ::= {‘T’|’t’}<text string>

<Text Formatting Command> ::= ‘F’<formatting word>

<Selection Command> ::= ‘S’<Selection Byte><Prompt Text>’:’

 <Option Block>

<Confirmation Block> ::=’#‘<Confirmation Prompt Command> ‘;’

<Confirmation Prompt Command> ::= ‘R’[<Confirmation prompt>]

<Input Command> ::={‘I’|’I’} {‘C’|’N’|’T’|’D’}<Format Byte>

[<Min Value>,][<Max Value>,]

[<Prompt>]’:’[<Default Input Data>]

<Option Block> ::= [<Option State>]<Option Value> {‘,’[<OptionState>]

 <Option Value>}*

<Option State> ::= ‘?’

Message Commands

1.1.19 General Conventions

· The M@gic Generic Form Definition Language (GFDL) will use a convention whereby the case of the letters that specify the current command will be significant. Where relevant an uppercase character will imply that the cursor will start at the beginning of line below the line where the prompt is displayed. A lower case letter will imply that the cursor will remain after the end of the prompt text.

1.1.20 Form Identification

The Form Identification block is used to manage the transfer of data between the handset and the service centre.

1.1.21 Display Free Text

Displays the specified piece of text. The user can specify a piece of text that will be displayed on the handset display for providing information to the user or prompting purposes. The layout of this text message will depend on the physical characteristics of the display on the handset.

[image: image5.png]76543210

00XX ===+ Nominimum

01XX = === Minimumvalue present
10 XX = === Oreaterthan cument system timeidate

11%X - Greater than previous systern timefdate

XX 00 - No maximum

Xx01 - Madrur value present

XX 10 - Maximurm value less than current system timefdate
Xx 11 - Maximurm value less than previous system timeldate

Nurnber of decimal places
0.7 . Only applicable for flsating poirt nurmbers, ignored and assumed

to be zero for integer values. (Default is zero)
Optional Field, set > field optional, clear field -> mandatory.

Example:-

#THello World

[image: image6.png]0K To Send
ResuLts?

 #tHelloWorld

The length of the free text is unlimited but is considered to end upon detected of an end of line command or the end of the SMS packet.

The two commands below allow the selection of one or more values from a list of values supplied. This list of possible values will be listed in the order which they will be displayed on the handset, each separated by a comma (‘,’).

1.1.22 Shortcut Text Prompts and Reserved Characters

Using the concept of common text shortcuts may reduce the number of bytes needed for text prompts. These shortcuts will provide a mechanism for representing commonly used words or phrases without the need to store the entire prompt text as part of form definition. Shortcuts may be used wherever a textual prompt is expected.

The client software will be aware of a number of commonly used words and phrases (TBD) which may them be reference within a form definition script. The client will then expand on this reference to reproduce the original word or phrase.

Depending on the character sets that are available within the SMS packet body, and therefore the form script definition entry, the shortcut prompt marker will look similar to that given below.

‘<’<shortcut index>

where <shortcut index> byte is a single 8-bit characters which is used as an offset into the shortcut table.

Example :-

With a shortcut table given below …

	Offset
	Length
	Shortcut Word/Phrase

	00
	17
	Please enter your

	01
	8
	How many

	02
	7
	What is

1.1.23 A full list of the abbreviated short codes can be found in the appropriate header

1.1.24 file.

#T<0 name ? (where ‘0’ is binary zero)

causes the prompt “Please enter your name ?” to be displayed followed by a

new line.

Note : In order to display reserved characters within a free text prompt (for example ‘<’ and ‘#’), a byte stream similar to that given below is required.

#T<<<# Magic4 <#> is here !!

which will produce the following output …

<# Magic4 #> is here !!

1.1.25 Text Formatting Command

The Text Formatting Command is used to describe the appearance of both the prompt and user entry text on the handset. The content of the formatting byte is given below.

[image: image7.png]Ready To
Send Forn

Data 7

· MSB

The bottom two bits are used to specify the text alignment properties. Valid combinations of bits are given below. All other bits are currently unused.

	Bit1
	Bit0
	Alignment

	RESET
	RESET
	Left Aligned

	RESET
	SET
	Right Aligned

	SET
	RESET
	Centred

	SET
	SET
	Unused

· LSB

The bottom nibble is concerned with the appearance of the text entered by the handset user, the upper nibble is concerned with the appearance of the prompt text supplied by the client.

1.1.26 Selection Commands

· Single Option Selection

To provide the user with the ability to choose one option from a number of possible options displayed on the handset.

The user will be given a textual prompt followed by the list of possible options. A number of these, possibly zero, may be selected which will then be transmitted back to the service centre for processing.

The default value is that all items in the selection list will be unselected.

[image: image8.png]Selection Type
ingle Selection
1= Muliiple Selection

Maximum Number of Options
That May be Selected

(Only Applicable When

BIlD is Set. Zero

Indicates Unlimited
Selections

Minimum Number Of Selections
0= May Have Zero Selections
t Least One Selection Required

Example:-

#S<selection options>

Please Select One:

Black, White, Red
This response will then be sent back to the service centre for processing.

Provides the user with the ability to choose potentially several options from a number of possible options displayed on the handset.

The user will be given a textual prompt followed by the list of possible options. A number of these, possibly zero, may be selected which will then be transmitted back to the service centre for processing.

The default value is that all items in the selection list will be unselected.

Since only one option can be selected the bits of the <selection options> byte will always be set as shown below.

[image: image9.png]

· Multiple Option Selection

[image: image10.png]Please Select
Sone

{1 England

e

Example:-

#S<selection options>

Please Select Some:

England, America, France

[image: image11.png]Croll Down
Hechanisn

[image: image12.png]Please Select

{1 Italy

[image: image13.png]Please Select
Sone

]

[x] Anerica

v

[image: image14.png]Selection Type
Single Selection
Multiple Selection
Waxinun Number Of Optians
That Mat Be Selected
(only Applicable When
Bito Is Set)

The <selection options> byte will allow one or more options from the supplied list to be selected. The bit settings will look similar to that shown below.

[image: image15.png]Please Select One

The default state of each item in the selection list may be specified such that if

the first character is ‘?’ (ASCII 63) then this item is selected otherwise the item is

unselected.

1.1.27 Confirmation Prompt

Provides a prompt to the user as to whether the data that has been entered is correct and can be sent back to the service centre for processing. There are two alternatives to this command: the first uses a standard prompt (TBD, example below), the other displays a form specified prompt.

This field is mandatory and must be the last field in the form definition.

Example:

[image: image16.png]Most Significant Byte (Defaut 0)

Least Significant Byte (Default 0)

—Prompt Text— [User data—

T

R=E:

Alignnent
Read-0nly
Passuard
Unused

Bold
Underline
Italic
Flashing

#R

[image: image17.png]Hello vorld|

#ROK To Send Results?

1.1.28 Input Commands

A number of general techniques for retrieving information from the user will be provided. In general terms these will be textual (characters) based input and numeric input. Other more specific forms of data entry will be supported at some point.

Each piece of data may be preceded by a prompt message (either via the Input Command method below or by using the Free Text method described above). There will also be the ability to provide a default value, whose format will depend on the type of value that is being expected.

<Input Command> ::={‘I’|’I’} {‘C’|’N’|’T’|’D’}<Format Byte>

[<Min Value>,][<Max Value>,]

[<Prompt>]’:’[<Default Input Data>]

The maximum length of the default input value is 255 characters.

The mandatory <Format Byte> is supplied regardless of input data type. It use is dependant on the input data type specified.

[image: image18.png]iette vord

[image: image19.png]Enter Your Nane
|Calin

The format of floating point numbers specified in the input command will be defined as

below:-

<Floating Point Number> ::= {<digit>}*[‘.’]{<digit>}*

· Text Input
Allows the user to enter a piece of non-specific text in response to a form initiated prompt. The user response is treated as a piece of unformatted free text.

[image: image20.png]Enter Your Nane

[image: image21.png]| ABCOEF

#IC<0>Enter Your Name:Colin

[image: image22.png]

[image: image23.png]Nane 7 |Colin

#IC<0>Enter Your Name:

[image: image24.png]Name 7

[image: image25.png]| ABCOEF

#IC<0>:ABCDEF

[image: image26.png]

[image: image27.png]Enter Your hge
133

#IC<0>:

[image: image28.png]Enter Your hge

[image: image29.png]108

#iC<0>Name ?:Colin

[image: image30.png]

#iC<0>Name ?:

[image: image31.png]hgz 7 133

[image: image32.png]hge 7

[image: image33.png]108

#IC<0>:ABCDEF

[image: image34.png]

[image: image35.png]TT7T

T

Dete Format
DDy

MYV YYD
YYYYMMDD

111 = Unused
Fied Optonal

Maxinumyalue, (See Input Command)
Mirimum Value, (Sez Input Commanc)

#IC<0>:

· Numeric Input

Allows the user to enter a numeric value in response to a form initiated prompt. The user’s response is treated as an integer value.

[image: image36.png]Date? |

[image: image37.png]Date?

#IN<0>Enter Your Age:33

[image: image38.png]Date ? (31050000

[image: image39.png]Date?
131050000

#IN<0>Enter Your Age:

[image: image40.png]T Tt

Hou Cycle
0= 24nour format used
Displayed using AMPM

Time Format
=g
HHMSS
Unused
Unused

Fied Optonal
Maxinum Value, (See It Commanc)
Mirimum Value, (Se2 Input Comman)

#IN<0>:100

[image: image41.png]Time 7|

[image: image42.png]Time ?

[image: image43.png]Time ? 11355

?IN<0>:

[image: image44.png]Time ?
11355

[image: image45.png]60,70y (110,100} ’

@.70)
(5050

/ @526

 #iN<0>Age ?:33

[image: image46.png]9050 (140,60)

600

()

[image: image47.png]

 #iN<0>Age ?:

 #IN<0>:100

#IN<0>:

· Date Input
It is necessary to specify the format (ordering of day month and year information) in which the date input is expected to be entered. The date input format byte is given below.

#iD<0>Date ?:

#ID<0>Date ?:

#iD<0>Date ?:31050000

#ID<0>Date ?:31050000

· Time Input

The input of time-related data needs be considered in a global context. The accuracy and time format needs to be able to be specified within the input data specification. Time formats will always be sent in 24hour format; bit 0 of the time format byte will determine how the time is actually displayed.

1.1.28.1
1.1.28.2

#iT<0>Time ?:

#IT<0>Time ?:

#IT<0>Time ?:1355

#IT<0>Time ?:1355

1.1.29 Using data short codes

A number of short codes may be specified within the default value field of an input command. This allows several personal information and initialisation file settings to be retrieved and used as the default responses to form requests.

The currently recognised short codes are given in the table below.

Note : The case of the short code is significant.

	Short Code
	Meaning

	$FNAME
	Retrieves the stored forename from the personalisation settings

	$SNAME
	Retrieves the stored surname from the personalisation settings

	$HNO
	Retrieves the stored house number from the personalisation settings

	$PCODE
	Retrieves the stored post code from the personalisation settings

	$IMEI
	Retrieves the ME IMEI number

	$IMSI
	Retrieves the IMSI number of the current SIM

	

	
	DES Encryption in the Magic4 Client

M@gic4 Confidential Information:

© M@gic4 Ltd. 2000.

	

	Summary
	Description of the DES (Data Encryption Standard) implementation within the Magic4 client

	Author
	John Corbally

Revision history

	Version
	Author
	Date
	Comments

	1.0
	John Corbally
	17 July 2000
	First draft

	1.1
	John Corbally
	27 July 2000
	Added DES-CBC, 3DES, 3DES-CBC

Contents

41
Overview

2
DES Encryption in the Magic4 client
4
2.1
DES Encryption functions
4
2.2
DES-CBC (Cipher Block Chaining) Encryption functions
5
2.3
Triple DES (DES-EDE2) Encryption functions
5
2.4
Triple DES in CBC mode (DES-EDE2-CBC)
6
2.5
Internal functions used by the DES Encryption module
7
2.6
Other Information
8
3
References
8

Overview

This document describes the DES encryption algorithm used within the Magic4 client. Also included in this document is a description the bit manipulation operations needed by the encryption module.

DES Encryption in the Magic4 client

DES Encryption functions

Below is a list of the DES encryption functions available to other modules within the Magic4 client. All data is passed in via pointers (managed by the user), and a BYTE is an unsigned char as defined in Mg4Base.h. 8 BYTES (64 bits or 8 characters) are passed into each parameter of each function via the pointers.

void des_enciper(const BYTE *plaintext, BYTE *ciphertext,

 const BYTE *key)

This function takes three arguments – a byte of data to be encrypted, a byte of data where the encrypted data will be returned, and a byte of data that contains the key used to encrypt the data.

void des_decipher(const BYTE *ciphertext, BYTE *plaintext,

 const BYTE *key)

This function takes three arguments – a byte of data to be decrypted, a byte of data where the decrypted data will be returned, and a byte of data that contains the key used to decrypt the data.

DES-CBC (Cipher Block Chaining) Encryption functions

Below is a list of the DES-CBC encryption functions available to other modules within the Magic4 client. All data is passed in via pointers (managed by the user), and a BYTE is an unsigned char as defined in Mg4Base.h. A multiple of 8 BYTES (64 bits or 8 characters) are passed into each parameter of each function via the pointers.

void cbc_encipher(const BYTE *plaintext, BYTE *ciphertext,

 const BYTE *key, int size)

This function takes four arguments – a multiple of eight bytes of data to be encrypted, a corresponding number of bytes where the encrypted data will be returned, a byte of data that contains the key used to encrypt the data, and the length in bits of the data to be encrypted.

void cbc_decipher(const BYTE *ciphertext, BYTE *plaintext,

 const BYTE *key, int size)

This function takes four arguments – one or more bytes of data to be decrypted, a corresponding number of bytes where the decrypted data will be returned, a byte of data that contains the key used to decrypt the data, and the length in bits of the data to be decrypted.

Triple DES (DES-EDE2) Encryption functions

Below is a list of the DES-EDE2 encryption functions available to other modules within the Magic4 client. All data is passed in via pointers (managed by the user), and a BYTE is an unsigned char as defined in Mg4Base.h. 8 BYTES (64 bits or 8 characters) are passed into each parameter of each function via the pointers.

void tdes_encipher(const BYTE *plaintext, BYTE *ciphertext,

 const BYTE *key)

This function takes three arguments – one or more bytes of data to be encrypted, a corresponding number of bytes where the encrypted data will be returned, and two bytes of data that contain the 128 bit key used to encrypt the data.

void tdes_decipher(const BYTE *ciphertext, BYTE *plaintext,

 const BYTE *key)

This function takes three arguments – one or more bytes of data to be decrypted, a corresponding number of bytes where the decrypted data will be returned, and two bytes of data that contain the 128 bit key used to decrypt the data.

Triple DES in CBC mode
(DES-EDE2-CBC)

Below is a list of the DES-EDE2-CBC encryption functions available to other modules within the Magic4 client. All data is passed in via pointers (managed by the user), and a BYTE is an unsigned char as defined in Mg4Base.h. A multiple of 8 BYTES (64 bits or 8 characters) are passed into each parameter of each function via the pointers.

void tcbc_encipher(const BYTE *plaintext, BYTE *ciphertext,

 const BYTE *key, int size)

This function takes four arguments – one or more bytes of data to be encrypted, a corresponding number of bytes where the encrypted data will be returned, two bytes of data that contain the 128 bit key used to
encrypt the data, and the length of the plaintext in bits.

void tcbc_decipher(const BYTE *ciphertext, BYTE *plaintext,

 const BYTE *key, int size)

This function takes four arguments – one or more bytes of data to be decrypted, a corresponding number of bytes where the decrypted data will be returned, two bytes of data that contain the 128 bit key used to encrypt the data, and the length of the plaintext in bits.

Internal functions used by the DES Encryption module

The DES Encryption module uses bit manipulation operations in the process of encrypting and decrypting data. These functions are all stored within the DES Encryption module. They build on the existing single bit manipulation macros in Mg4Base.h, including GET_BIT and SET_BIT. N.B. Due to the way the DES Encryption Algorithm is implemented, a byte of data has the following layout (i.e. not bits 0 - 7 from right to left):

	0
	1
	2
	3
	4
	5
	6
	7

int bit_get(const BYTE *bits, int pos)

This function takes a stream of bits via a pointer. It then returns the state of the bit (1 or 0) at the position referred to by pos. As mentioned above, the stream starts at bit 0 which is at the left of the stream, and pos refers to the bit at the nth place from the left of the bit stream.

void bit_set(BYTE *bits, int pos, int state)

This function takes a stream of bits via a pointer. It then sets the bit at position pos to the value passed in via state (1 or 0). Again, the stream starts at bit 0 which is at the left of the stream, and pos refers to the bit at the nth place from the left of the bit stream.

void bit_xor(const BYTE *bits1, const BYTE *bits2,

BYTE *bitsx, int size)

This function takes two bit streams (or buffers) – via the pointers bits1 and bits2. Both streams contain the number of bits specified in size. For each corresponding bit of the streams, e.g. bit 3 from both bits1 and bits2, a bitwise XOR (exclusive OR) is calculated using the 2 bits. If the bits taken from each stream are different, then a 1 is placed in the corresponding bit of bitsx. If the bits taken from each stream are the same, then a 0 is placed in the corresponding bit of bitsx. A pointer is used for passing back bitsx for which the storage is managed by the user.

void bit_rot_left(BYTE *bits, int size, int count)

This function takes a stream of bits via a pointer, the amount of which indicated by size. The bit stream is rotated to the left, with the number of times to rotate passed in through count. This results in the first count number of bits becoming the right count number of bits, with all the other bits shifted accordingly. The result is stored in the original bit stream via the pointer bits.

Other Information

To implement the bit manipulation operations, some new macros were needed. These are stored in Mg4Base.h and include an XOR_BYTE macro for use in the xor_bit function, and CEIL() and FLOOR() macro replacements for the standard C library functions.

The internal structure of the DES Encryption module contains the bit manipulation operations, the DES Algorithm, a permute function, and a des_main function which takes all the data from des_encipher or des_decipher along with an enumerated type parameter which tells it whether to encrypt or decrypt the data. This function also uses the memory management functions MEM_CPY and MEM_SET.

References

1] “Mastering Algorithms with C” – Kyle Loudon, O’Reilly August 1999
General Data Transmission Format

M@gic4 Confidential Information:

© M@gic4 Ltd. 2000.
Document History

	Version
	Author
	Date
	Details

	1.1
	Dan Beaumont
	1 November 2000
	Added character set flag

	1.0
	Dan Beaumont
	28th October 2000
	Initial version

Contents

41
Overview

2
General Data Transmission Format (GDTF)
4
2.1
<PREAMBLE>
4
2.2
<COMPRESSED DATA>
5
2.3
<CHECKSUM>
5

Overview

All transfers of data from a server to the phone based G@te client can be achieved using various transport technologies (currently SMS).

Once all packets of the same message have been received, the individual parts can be re-assembled to form the General Data Transfer Format (GDTF).

General Data Transmission Format (GDTF)

The completed package consists of three distinct sections.

<GDTF> ::= <PREAMBLE> <COMPRESSED DATA> <CHECKSUM>

<PREAMBLE>

The preamble contains information regarding the transmission that may be required, but is not intrinsically required for client operation.

<PREAMBLE> ::=
<HEADER BYTES>

[<SERVER NUMBER>]

[<LOCALE>]

[<PHONE METRIC ID>]

There can be 1 or more header bytes.

Header Byte 1

	Bit(s)
	Meaning

	7
	Another header byte following flag:

0
No more header bytes follow

1
At least 1 more header byte follows

	6 – 5
	Compression Method (of <COMPRESSED DATA>)

00
No Compression (default)

01
CM1

10
CM2

11
Reserved

	4
	Server number present

0
Server number not present (default)

1
Server number present

	3
	Locale present

0
Locale not present (default)

1
Locale present

	2
	Phone Metric present

0
Phone Metric not present (default)

1
Phone Metric present

	1
	Text Character Set (for all text within the transmission)

0
GSM 7/8 bit character set (default)

1
UCS2 16 bit character set

	0
	Reserved.

<COMPRESSED DATA>

When the M@gic4 data is being prepared on the server, compression is applied to the data before transmission in an attempt to reduce the amount of data being transmitted.

Once the <COMPRESSED DATA> is decompressed (if required), the uncompressed data should conform to the specification laid out in the Data Representation Document.

<CHECKSUM>

The checksum byte contains a running XOR of the entire M@GIC4 DATA.

Graphic Representation Schemes

Within A

Magic Byte Stream

M@gic4 Confidential Information:

© M@gic4 Ltd. 2000.
	Revision
	Author
	Date
	Details

	0.3
	Colin Wilcox
	20th July 2000
	· Add description of RLE Scheme #2

	0.2
	Colin Wilcox
	7th July 2000
	· Added details on Image data RLE schemes.

· Added Directional drawing description.

	0.1
	Colin Wilcox
	4th July 2000
	Initial Draft

Introduction
4
Encoding Techniques
5
Chained Relative Drawing
5
Directional Drawing
7
Graphical Image Encoding Schemes
8
References
11

Introduction

This document is intended to present a number of possible techniques for representing graphical data within the magic4 SMS byte stream.

Encoding Techniques

1.1.1 Chained Relative Drawing

This approach works by assuming the drawing process exists within a simple state engine. At any time during the drawing process the current drawing state is either:-

· Setting the operating mode to ‘Moving’,

· Setting the operating mode to ‘Drawing’,

· Changing the active colour, or

· Resetting the cursor position to the to the origin.

A number of persistent environment variables exist during the life time of the drawing process.

· Drawing colour.

· Cursor position.

· Operating mode (either moving or drawing).

The initial state when the drawing process begins will be such that

· The drawing colour is black.

· The cursor position is at the drawing origin.

· The operating mode is ‘Drawing’.

The graphical information will be stored as a stream of 7-bit packed data. The active environment settings will be used until one or more of the environment settings are altered from within the data stream.

The set of instructions supported within the data stream is given below.

<Graphics Stream> ::= <Graphics Command>{<Graphics Command>}*

<Graphics Command> ::= <Move Command> |

 <Draw Command> |

 <Origin Command> |

 <Colour Change Command>

<Move Command> ::= ‘M’<Relative Column><Relative Row>

 {<Relative Column><Relative Row>}*

<Draw Command> ::= ‘D’<Relative Column><Relative Row>

 {<Relative Column><Relative Row>}*

<Origin Command> ::= ‘O’

<Colour Change Command> ::= ‘C’<Red Component><Green Component>

 <Blue Component>

An number of example sequences are shown below:-

1.1.1.1 OM5050D10202000CFFFFFFD3030D2020OD2525

1.1.1.1.1 OD90605000-90-60-5000

Directional Drawing

Directional drawing is similar in principle to that of Chained Relative drawing given above. The main difference is that from the current cursor position the next line segment can be draw in one of eight possible direction.

1.1.2

With directional drawing each line segment must have a specified direction and distance, it, although it will be possible to move the current cursor position as with chain drawing.

The set of supported commands will be given below.

	Command
	Arguments
	Description

	O
	None
	Reset cursor position to the coordinate origin.

	M
	<Column><Row>
	Move cursor position to coordinates <Column><Row>

	U
	<Distance>
	Move cursor column up by <Distance> units

	D
	<Distance>
	Move cursor column down by <Distance> units

	L
	<Distance>
	Move cursor row left by <Distance> units

	R
	<Distance>
	Move cursor row right by <Distance> units

	C
	<Red><Green><Blue>
	Set drawing colour to the RGB colour specified.

	E
	<Distance>
	Set cursor position to a position <Distance> units to the northwest of the current cursor position.

	F
	<Distance>
	Set cursor position to a position <Distance> units to the northeast of the current cursor position.

	G
	<Distance>
	Set cursor position to a position <Distance> units to the southeast of the current cursor position.

	H
	<Distance>
	Set the cursor position to a position <Distance> units to the southwest of the current cursor position.

The main disadvantage of this approach is that line segments can only be drawn relative to each other at angles in multiples of 45 degrees.

1.1.3 Graphical Image Encoding Schemes

Graphical image data within a magic data stream may be represented using one of a number of data encoding schemes [1]. The choice of encoding scheme is image specific and is determined by the method which gives the greatest degree of compression of the raw image data. The currently available compression schemes are described below.

· Run Length Encoding – Scheme #1

Scheme #1 uses the top bit to identify the nature of the data that follows. When the top bit is set the lower 7bits of that byte store the length of the data run and the byte that follows stores the value of the run data. If the top bit is not set, then the run is taken to be a single byte and the lower 7-bits then represent the value of the data run.

Hence encoding and decoding become very simple….

2 Decoding

Repeat until end of data stream

Read byte

If top bit of data byte is set

Length Of Run = lower 7 bits of current byte

Run Value = value of next byte

Else

Length Of Run = 1

Run Value = lower 7 bits of current byte

End If

End Repeat

· Encoding

Clear last byte value

Clear run length

Repeat until end of encoded stream

Read byte

If start of run

Last byte = current byte value

Length of run = 1

Else

If current byte is same as last byte

Increment length of run

If length of run > max run length

Write maximum run data to encoded buffer

Length of run = 1

End if

Else

Write run data to encoded buffer

Length of run = 1

Last byte = current byte value

End If

End If

End Repeat

· Run Length Encoding – Scheme #2

Scheme #2 is only for use with two tone images (i.e. black and white). Each value in the encoded stream epresents the length of the run in the currently active colour. Two things need to be considered:-

· An image stream always starts with a black run of pixels, even if this run is a dummy run of zero bytes.

· If a run is greater than 255 characters in length, a zero length run of the other colour is inserted into the encoded stream to allow for context switching.

For example …

Run of ten black pixels

 : (10)

Run of ten white pixels

 : (0) (12)

Run of ten black, then five white pixels : (10)(5)

Run of 300 black pixels

 : (255)(0)(45)

Run of 10 white pixels, then 300 black pixels : (0)(10)(255)(0)(45)

· Encoding

For each byte in the raw byte stream

If start of byte stream then

If byte is white then

Add zero length dummy run

Increment run length

Else

Increment run length

End if

Else

If continuation of current run

Increment run length

If run length doesn’t fit in a byte then

Write 255

Write dummy run of zero

Subtract 255 from run length

End if

Else

Write current run length

Run Length = 1

End if

End if

· Decoding

For each byte in encoded run

Read byte

If current colour is black then

Write run length black bytes to output stream

Else

Write run length white bytes to output stream

End if

References

[1] “Magic4 Client Data Representation for the M@gic4 Client”, magic4.com, July 2000

A number of situations need to be considered; the interpretations of which are given below…

If the maximum and minimum values are present and they are specified in the reverse order then the range is an exclusive range.

In the case when inputting textual data, the range specifies the number of characters that may be entered.

In the case when inputting numeric data, the range specifies the range of values that may be entered.

If either the minimum or maximum values are missing the following interpretations will be used.

Textual	Missing minimum : Minimum number of characters is assumed to be one.

		Missing maximum : Maximum number of characters is assumed to be unlimited.

Numeric	Missing minimum : No restriction on the lowest number that may be entered.

		Missing maximum : No restriction of the highest value that may be entered.

Date	Missing minimum : Start date may be any date up to the current date.		Missing maximum : End date may be any date

Time	Missing minimum : Start time may be any time up to the current time		Missing maximum : End date may be any date.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Enter a string with prompt giving a default value. Default is displayed on next line.

�

Enter a string with prompt but no default value. Cursor moves to next line.

�

Enter a string with no prompt but with a default value. Cursor does not move to next line as no prompt was shown.

�

Enter a string with no prompt or default value. Cursor does not move to next line as no prompt was given. Is this useful ?

Enter a string with a prompt giving a default value. Cursor remains on same line as the prompt.

�

�

Enter a string with a prompt but no default value. Cursor remains on same line as prompt.

�

Enter a string without a prompt but with a default value. Cursor remains on the same line.

�

Enter a string with no prompt or default value.

Enter a numeric value with a prompt and a default value

�

�

Enter a numeric value with prompt but no default value

�

Enter a numeric value with no prompt but a default value

�

Enter a numeric value with no prompt or default value.

Input a numeric value giving a prompt and a default value. Cursor remains on the same line as the prompt.

�

�

Enter a numeric value giving a prompt but no default value. The cursor remains on the same line as the prompt.

�

Enter a numeric value giving a default value but no prompt.

�

Enter a numeric value giving no prompt or default value.

�

�

Enter a date. The cursor stays on the same line as the text prompt.

�

Enter a date. The cursor will start at the beginning of the line after the date prompt.

�

Enter a date providing a default date on the same line as the prompt text.

Enter a date providing a default value. The default date is displayed at the start of the line below the text prompt.

�

�

�

Enter a time. The cursor remains on the same line as the prompt text.

�

Enter a time. The cursor moves to the start of the line after the text prompt.

Enter a time providing a default time (format depends on time format byte). The default value will appear on the same line as the text prompt.

�

Enter a time providing a default time. The default time (format depends of time formatting byte) will appears at the start of the line below the text prompt.

�

�

�

�

