ETSI SMG4 MExE		TSGT2#2(99)074

16-19 March 1999

London

�
�
�

Source: IBM

Smartcard API Considerations

-Draft document -

�toc \o "1-3" �Purpose	�pageref _Toc444581841 \h ��1�

Scenarios for smartcard support in MExE	�pageref _Toc444581842 \h ��2�

Scenario 1: CardTerminal Layer only	�pageref _Toc444581843 \h ��2�

Scenario 2: CardTerminal + CardService for 2nd slot	�pageref _Toc444581844 \h ��4�

Scenario 3: CardTerminal + CardService for all slots	�pageref _Toc444581845 \h ��6�

SIM Toolkit considerations	�pageref _Toc444581846 \h ��8�

Security considerations	�pageref _Toc444581847 \h ��9�

Conclusion	�pageref _Toc444581848 \h ��9�

�

Purpose

The intent of this contribution is to discuss various scenarios for smartcard access in a classmark 2 mobile device, based on the principal selection of the smartcard API defined by the OpenCard Consortium (refer to 03.57, 6.2.2.).

The document also takes into the account the multiple slot support of GSM 11.14 (SIM Toolkit) and finishes with considerations about the security aspects of providing a Java API for smartcards.

�

Scenarios for smartcard support in MExE

When specifying or choosing an API, there is always a trade-off to be made between richness of functionality and ease of implementation. The following scenarios span the range from very primitive APIs for very constrained devices to more flexible approaches for more sophisticated devices.

Scenario 1: CardTerminal Layer only

for 2nd slot

for 1st and 2nd slot

The Opencard API is divided into two principal packages: opencard.core.service and opencard.core.terminal. The API has been constructed in a way which allows usage of the opencard.core.terminal package without the other packages, reflecting the requirements of devices with very limited resources.

Note that the term CardTerminal denotes the card reader device, not the entire mobile equipment.

Using the CardTerminal layer only, one obtains an interface which encapsulates the card-reader specific device driver details below an interface, which consists of basic classes such as

APDU		The protocol data units passed from / to the smartcard

Slot		The card reader may have more than one slot

CHVControl	to specify details of CardHolder Verification

CardTerminal	processing card inserted / card removed events, etc.

This interface can be considered as the lowest common denominator of application requirements to a smartcard interface. Its footprint is small, however, only the card reader device is encapsulated. Smartcard-specific details, such as proper sequence and content of the APDUs, has to be implemented by the application, making the application very dependent on the actually inserted card.

A figure outlining scenario 1 is sketched below.

�

�
Scenario 2: CardTerminal + CardService for 2nd slot

Document 03.57 specifies the Opencard API for the 2nd card slot only, to support, for instance, booking or payment applications. Such transaction-oriented application scenarios can involve a wide variety of different smartcards. Having encapsulated the card reader driver only, implementing the application can become very complex when more than one type of smartcard is to be supported.

The opencard.core.service package makes the application portable in the sense that it can remain unchanged if the requirement occurs to support another type of smartcards. This portability (or independence between application and smartcard details) is achieved by encapsulating the protocol which is used to communicate with the smartcard in such a way, that the application does not need to know what APDUs are to be send and received in what sequence and what the actual coding of the APDUs has to be to satisfy the smartcard. The application would merely invoke functions such as “debit 10 Euros from this card” or “increase loyalty points” or “store user preferences” or “run authentication algorithm”.

Since the actual card service implementation depends on the type of smartcard, the Opencard API provides only a plug-in place to register a card-specific card service. The appropriate card service would typically be provided by the card issuer as a resident or downloadable piece of code. Applications can then rely on the presence of such a card service API; this holds even if, for instance, conventional cards are replaced by JavaCards supporting the same application.

The API of opencard.core.service consists of classes such as:

Smartcard		Representation class of the inserted card

CardService		Base classes Hook for specific card service implementation

CardServiceRegistry	knows about available card services

DefaultCHVDialog	The default CHV dialog used by card services.

CardChannel		The logical equivalent to ‘slot’

CardServiceScheduler	To manage concurrent access to the card

CardRequest		To wake up an application when the desired card is inserted

�

Figure 2 shows an architecture making use of the opencard.service API.

�
Scenario 3: CardTerminal + CardService for all slots

The previous case can be expanded to a scenario where the Opencard API supports also the primary smartcard slot in a ME, by provision of one or more matching card services. These card services would implement the communication protocol between ME and SIM for the ‘classical’ case of a legacy SIM card, and the communication protocol of the SIM Toolkit Application in the case of a SAT-enabled pair of smartcard and ME. In the first case denoted as ‘classical’, the API of a SIM Card service would provide methods such as:

Authenticate()

RunGSMAlgorithm()

StoreSMS()

etc.

In the case of SIM Toolkit, the corresponding card service API would offer the functionality required

to enable communication between the ME and the SIM.

Both SIM-dependent card service API could be standardized; this would allow to keep the ME- / network-resident application unchanged when a new generation of SIM cards (for example, JavaCards) is deployed.

Note that this is an example only, the paper does not propose any new APIs.

The intent of this paper is, however, to show an architecture which can accommodate a SIM-specific card service or other card services by provision of a very basic “plug-in” API.

Figure 3 depicts the comprehensive scenario of a ME supporting one slot for a SAT-enabled SIM and in addition a 2nd slot for transactional applications such as payment.

�

��
SIM Toolkit considerations

GSM 11.14 specifies, in conjunction with GSM 11.11, a mechanism to support multiple slots for smartcards. In the case where slot #1 houses a SIM Toolkit card and slot #2 a third party card (for instance, banking card), it is assumed that the SIM Toolkit card manages the card in the 2nd slot by passing appropriate APDUs back and forth to the other card. The ME acts merely as a communication channel between smartcards, MMI, and the network, but does not actually run the application.

Replacing or modifying the SIM Toolkit application would require either costly issuance of new cards or (if the SIM supports this) download of the application into the SIM. In the latter case, the SIM has certainly more resource constraints (memory space, speed of execution, download speed), compared to the ME.

In a MExE environment, which can accommodate downloaded applications, there will also exist applications making use of the smartcard slots. These applications can benefit from the resources of the ME and they can be run independently of the SIM, if required. A variety of business models can thus be implemented, including third party service providers.

A MexE environment which includes a suitable smartcard API is therefore an optimal platform for new services involving non-SIM cards, extending the limited capabilities of the present multiple slot support defined in GSM 11.14.

�

Security considerations

It was debated whether particularly a SIM-related Java API should be defined,

since there are concerns that a malicious application could be downloaded, hook itself to the API, and tap or modify the communication between smartcard and ME.

In principle, the smartcard can be considered as a very secure device, whereas software residing in the ME, particularly downloaded software, can be assumed to be less secure. Because of this, the smartcard is normally programmed in such a way that it won’t reveal any secrets, and communicate with the outside world only after appropriate authentication. A malicious application would therefore have to share a common secret with the smartcard in order to be able to interact with the smartcard.

Beyond that, code downloaded into the terminal can be equipped with a signature, which the ME has to verify before that code can be launched.

Conclusion

Three different scenarios of Opencard API usage were shown. The Opencard Framework is considered as a very flexible framework with an open path to future extensions. The API is supported not only by Sun�symbol 228 \f "Symbol" \s 10�ä� but numerous companies (which together form the Opencard Consortium). Implementations of the CardTerminal API are already available for a variety of common reader devices.

Since MExE’s goal seems to stay with minimal API definitions for the upcoming MExE98 release, a potential path could be to specify only the opencard.core.terminal package as mandatory for MexE – compliant MEs, and to recommend the opencard.core.service package as an optional enhancement. Doing so would allow rapid establishment of a low-level smartcard API for classmark 2 devices, based on proven implementations, while leaving the door open for future adoption of more flexible smartcard support. Such a support would benefit not only transactional applications using a 2nd slot, but also the evolving SIM Toolkit applications. Needless to say that this scheme harmonizes very well with the JavaCard specified by SMG9.

- End of Document -

Scenario 3: Multiple slot support by smartcard API

