Error! No text of specified style in document.
9
Error! No text of specified style in document.

7
Data type Definition Method (DtDM)

7.1
Introduction

Section 7 describes the Data type Definition Method, DtDM, a method describing how to define the new data types contained in the Generic User Profile, including an initial set of built-in data types It is used to describe data types, which define the possible values a data item can have. This Section also describes how to use the DtDM.
7.2
Data type Definition Guidelines

The following guidelines are defined:

1. Each data element shall be defined as an XML element of a suitable type.

2. XML attributes shall be used only to qualify the data element defined as XML elements and not contain the actual data values.

3. An XML element either contains other XML elements or actual data value. An XML element shall not have both a value and other XML elements as subelements.

4. The type definitions provided by the XML schema shall be used.
7.2.1
Identification of Data types
1. A Naming Convention shall be followed which shall inherently make visible the hierarchical structure of the lower entities.
a. The Naming Convention is FFS.

i. Example of a suitable naming convention – 3GPP/GUP_DDM/Profile/Profile_Component_Group/Profile_Component/Element_name/attribute/

ii. Example - 3GPP/GUP_DDM/Profile_ChargingAndQOS/PCG_User_ID/PC_User_name/Element_xxx/global_local
2. The names should be meaningful, but as short as possible.

3. If a name consist of more than one word or abbreviated word, capitalization shall be used to keep the long names readable. Each new word after the first word in a name shall start with a capital letter. Also the first word shall start with a capital letter for names of XML elements and types (e.g. ElementName, TypeName).

4. The attribute names shall start with a lower case letter (e.g. attributeName).

5. When abbreviations which take the first letter of each word are used, the whole abbreviation is capitalized (e.g. GSMPhone). When the abbreviation is few characters from a word like addr for address, the abbreviation is handled like a word, i.e. sometime the first letter shall be capitalized and sometimes not (e.g. HomeAddr for element containing home address and addrType for attribute containing the address type information qualifying the data element).

7.2.2
Semantics and Comments
7.2.3
Extensions of Datatypes

7.2

7.3
XML Schema Usage for Datatype Definitions

..
7.3.1
Introduction

This section describes the XML Schema to be used for creating new Datatype Definitions . It defines how different t syntax constructions such as atomic types and composite datatypes are represented using XML Schema.

7.3.2
Atomic Datatypes

7.3.2.1 Introduction

This Section describes list of built-in datatypes and derivation rules for new datatypes.

Atomic datatypes are those having values, which are regarded by as being indivisible or not further decomposable.

There are predefined atomic datatypes and derived atomic datatypes. Derived datatypes can be defined by restricting a predefined atomic datatype or by defining a union datatype.

7.3.2.2 Predefined Atomic Datatypes

Predefined atomic datatypes can only be added by revisions to this specification.

The XML-schema primitive datatypes are: string, boolean, decimal, float, double, duration, dateTime, time, date, gYearMonth, gYear, gMonthDay, gDay, gMonth, hexBinary, base64Binary, anyURI, QName, and NOTATION.

The XML-schema primitive derived datatypes are: normalizedString, token, language, NMTOKEN, NMTOKENS, Name, NCName, ID, IDREF, IDREFS, ENTITY, ENTITIES, integer, nonPositiveInteger, negativeInteger, long, int, short, byte, nonNegativeInteger, unsignedLong, unsignedInt, unsignedShort, unsignedByte, positiveInteger.

The predefined atomic datatypes are a subset of the XML-schema primitive datatypes. The dataypes from the XML-schema which are excluded are below in comments “{* … *}”.

{predefinedAtomicDatatype} ::=

string | boolean

{*| decimal | float | double*}

| duration | dateTime | time | date

{*| gYearMonth | gYear | gMonthDay | gDay | gMonth*}

{*| hexBinary | base64Binary*}

| anyURI

{*| QName | NOTATION*}

| normalizedString

{*| token *}

| language

{*| NMTOKEN | NMTOKENS | Name | NCName*}

| ID | IDREF

{*| IDREFS | ENTITY | ENTITIES*}

{*| integer | nonPositiveInteger | negativeInteger | long*}

| int | short | byte

{*| nonNegativeInteger | unsignedLong*}

| unsignedInt | unsignedShort | unsignedByte

{*| positiveInteger*}

7.3.2.3 Derived Atomic Datatypes

Derived atomic datatypes can be defined by restricting a predefined atomic datatype or by defining a union datatype.

7.3.2.4 Atomic Datatypes Derived by Restriction

A datatype is said to be derived by restriction from another datatype when values for zero or more constraining facets are specified that serve to constrain its value space and/or its lexical space to a subset of those of its base type. A constraining facet is an optional property that can be applied to a datatype to constrain its value space.

<xs:simpleType name="{datatypeName}">

<xs:restriction base="{datatypeName}">

<xs:{facet} value="{value}"/>*

</xs:restriction>

</xs:simpleType>
7.3.2.5 Constraining Facets

Constraining Facets in XML–schema are: length, minLength, maxLength, pattern, enumeration, whiteSpace, maxInclusive, maxExclusive, minExclusive, minInclusive, totalDigits, and fractionDigits.

{facet} ::= minExclusive | minInclusive | maxExclusive|maxInclusive

| totalDigits | fractionDigits | length | minLength | maxLength

| enumeration | pattern
7.3.2.6 Union Datatype

A union type enables an attribute value to be one instance of one type draw from the union of multiple atomic.

Union datatypes are those whose value spaces and lexical spaces are the union of the value spaces and lexical spaces of one or more other datatypes.

The datatypes that participate in the definition of a union datatype are called member types of that union datatype.

<xs:simpleType name=”{datatypeName}”>

<xs:union memberTypes=”{simpleDatatypeName}*”/>

</xs:simpleType>
7.3.3
Composite Datatypes

7.3.3.1 Introduction

A composite datatype contains a number of name items each with a defined datatype. A field can be simple or a vector. A simple field can contain one element and a vector field a number of elements of the specified datatype.

7.3.3.2
Field and Data Element Names

A Composite datatype has a number of fields each with a local name {fieldName}, which must be unique within the datatype.

An instance of a Composite Datatype is a composite data element containing a number of sub elements corresponding to the fields. The local name of a sub element is a {elementName}. The {elementPath} is used to identify a sub element or a sub-sub element and so on.

7.3.3.3
Record Datatype

A record datatype contains a number of named items called fields each with a defined datatype. The field names must be unique with a record datatype. The datatype of a field can be any atomic data type or composite datatype.

<xs:complexType name="{datatypeName}">

<xs:sequence>

{field}*

</xs:sequence>

</xs:complexType>
7.3.3.4 Selection Datatype

A selection datatype defines a number of named items called fields each with a defined datatype. For a selection datatype only one of its fields can be stored at the same time.

The field names must be unique within a selection datatype. The datatype of a field can be any atomic data type or composite datatype.

<xs:complexType name="{datatypeName}">

<xs:choice>

{field}*

</xs:choice>

</xs:complexType>
7.3.3.5 Field

{field} ::= {fieldSimple} | {fieldSimpleOptional} | {fieldVector}

Simple field:

{fieldSimple} ::=

<xs:element name="{elementName}" type="{datatypeName}"
/>*
Simple optional field:

{fieldSimpleOptional} ::=

<xs:element name="{elementName}" type="{datatypeName}"

minOccurs="0" maxOccurs="1"
/>*
Vector field:

{fieldVector} ::=

<xs:element name="{elementName}" type="{datatypeName}"

minOccurs="{min}" maxOccurs="{max}"

/>*

7.4

5.
6.
7.
8.

9.
10.
11.
12.
13.

3GPP

