Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-T2 #20

San Francisco, CA, USA

20 -24 January 2003
1
T2-030012

Agenda Item:
GUP

Source:
Ericsson

Title:
GUP, Work in Progress Document

Document for:
Discussion

4
Document Overview

The data description "matter" can be split in the following domains:

· Data
Data stored and or access in a User Profile

· Data Description
describes the data contained in the User Profile. (This also called the Schema level.)

· Data Description Framework
Defines how to create the data description. (This also called the Schema-Schema level i.e. the Schema describing the Schema, which describes the data.)

[image: image1.wmf]Data

Description Framework

Data

Description Framework

Describes the data

Defines how to do the data description

Data Description

Data

Data stored and accessed in a device

 Figure 1: xxx

5
Information Model

5.1 Introduction

5.2
Structure for Profile Component

5.2.1
Profile Component Instance

5.2.2
Profile Component Payload

5.2.3
Profile Component Run-Time Properties

5.3
Profile Component Related Identities

5.3.1 Profile Component Identity

Profile Component Locators, PCLs, are used as identifiers for the items described in the previous section.

URL is used to identify resources in the WWW. Rules are defined how to use similar principles to identify Profile Component instance and other GUP related resources.

A PCL is a URI and is used as

· Permanent Profile Component instance Id

· Reference to Profile Component

· …

There are different kinds of PCL:

· Absolute

· Relative

· Dynamic bind

5.3.2
Profile Component Payload Internal Identification

5.4
Profile Component Description

5.4.1 Introduction

Figure 6 shows the main relation between the instances and the related descriptions. The purpose of a Profile description is to describe the specifics for each type of Profile. The GUP information model is describing the common thing applying to all Profile instances.

[image: image2.wmf]Profile

Profile Component

Data Payload

Attribute = Data value

Profile Description

Component Description

Composite

Datatype

Attribute :

Datatype

Instance

(s)

Description

Figure 6: Symmetric between Instance and Description

Figure 8 shows the Profile Description and the related Concepts. The part in the figure with vertical yellow lines as background is the Profile Description and the part with horizontal green is the Profile.

[image: image3.wmf]Component

Description

Semantic

1

Component

Property

0..*

1

Composite

Datatype

0..*

1

Payload

Datatype

Profile

Component

1

Component

Run

-

Time

Property

1

..*

1

Payload

1

1

Profile

Profile

Description

1

..*

1

..*

1

..*

1

1

1

Profile Type

0..*

Figure 8: UML-diagram, Profile Description

The Component Description and the related Component Property is the basis for the creation of Profile Components and Component Run-Time Properties.

A Component Run-Time Property contains additional and in run-time changeable information, controlling the handling and access of the related Profile Components.

5.4.1 Profile Component Type definition

A Component Description describes a Component type and defines the common properties of all the components of this type and it contains:

· Semantics
defines the meaning of the component.

· Payload Datatype
is a reference a Composite Datatype that describes the content of the components data Payload.

· Component Property reference
is referencing a Common Properties containing data controlling the usage and handling of the component.

5.4.2
Profile Component Semantics

5.4.3 Profile Component Payload Datatype

A Composite Datatype defines the abstract syntax of a composite datatype and the semantics of the components in the composite datatype.

5.4.4 Profile Component Properties

A Component Property defines the rules, which control the usage and handling of Profile Components.

The Component Property contains information controlling the usage and handling of a Profile Component. To allow several Profile Components to use the same Component Property, references are used.

Examples of property information are:

· Dynamics, change rate of

· Component creation/deletion

· Data value

· Ownership

· Access rights for different users

· No access, read, write access

· Right to create, delete

5.a1
(Structure for Profile only in WiPD)

5.a1.1
Introduction

This section is an informal introduction to the main concepts.

Figure 1 shows the structural relations between the main concepts. There are many Profile instances each containing a number of Profile Component instances. A Profile Components instance contains a Data Payload containing a number of Attributes carrying the Data values.

If there is a need for logical grouping of profile instances naming conventions can be used. The name of profile instance belonging to a group can have the same beginning of the name.

[image: image4.wmf]Profile

Profile Component

Data Payload

Attribute = Data value

Figure 1: Structural relation between main concepts.

Figure 2 shows an example with a number of instances. In the figure there are four profile instances called P1, P2, P3, and P4. Profile P1 contains three Profile Component instances called P1.1, P1.2 and P1.3.

Two users and the related Generic User Profiles, GUPs designated U1 and U2 are also shown. The profile P1 and P2 is part of U1 and P2 and P3 is part of U2. The profile instance P2 is shared between the users. Profile P4 is not part of any user’s GUP.

[image: image5.wmf]P1 :

profile

P2 :

profile

P3 :

profile

P4 :

profile

P1.1 :

pc

P1.2 :

pc

P1.3 :

pc

U1 :GUP

P2.1 :

pc

P2.2 :

pc

P3.1 :

pc

P3.2 :

pc

P3.3 :

pc

P4.1 :

pc

U2 :GUP

Figure 2: An example of Instances

A Profile Component instance is loosely coupled to the Profile Instance and independent in the sense that it is the unit of creation, deletion, storage and access control. The intention is that the Profile Instances should not need to be explicitly represented. Figure 3 shows a possible storage distribution of the Profile Component from figure 2. A part of the Profile Component instance name is the Profile instance name. By using the name of the Profile Component instances all profile component instances belonging to a profile can be found.

[image: image6.wmf]P1 :profile

P2 :profile

P3 :profile

P4 :profile

P1.1 :pc

P1.2 :pc

P1.3 :pc

P2.1 :pc

P2.2 :pc

P3.1 :pc

P3.2 :pc

P3.3 :pc

P4.1 :pc

Storage

Node

4

Storage

Node

2

Storage

Node 1

Storage

Node

3

Figure 3: An example of storage distribution

This is a summary in a list form:

1) The Profile Component instances are the principal and independent units. They are instantiated separately.

2) A Profile instance is a collection of Profile Component instances. The Profile Component instances have a common part in the beginning of their names).

3) As a consequence of the instantiation of the first Profile Component instances the corresponding Profile instance is also indirectly instantiated. The Profile instance is NOT explicitly instantiated by its own.

4) A Profile instance is of a Profile Type.

5) A Profile Component instance is of a Profile Component Type

6) The Profile Type is mainly a "collection" of Profile Component Types (consequence of 2, 4 and 5).

7) The Profile Type is defined in a Profile Description.

8) The purpose of a "Profile" is to structure or keep together a number of Profile Components both the instances and the corresponding types or descriptions.

8a) Profile Instances consists of a number of Profile Component Instances.

8b) Profile Type consists of a number of Profile Component Types.

5.a1.2
Profile Instance

The purpose of a Profile instance is to associate some data with a Primary Profile Id. One Profile Description defines the type of a profile, Profile Type.

A Profile instance is always associated with one Primary Profile Id. The Primary Profile Id is associated with one Profile instance.

A Profile instance contains one or more Profile Component instances each containing the Data Payload. The data in the Data Payload is the data that the Profile instance associates with the Profile Primary Id. A Profile Component is a part of one Profile.

A Profile Component instance is loosely coupled to the Profile instance and independent in the sense that it is the unit of creation, deletion, storage and access control. If possible a Profile instance is just the set of Profile Component instances, which constitute the Profile instance. There is no data solely for the Profile instance.

[image: image7.wmf]Profile

Profile

Component

Data Payload

0..*

1

1

Primary

Profile Id

Profile Description

0..*

1

Profile Type

1

Figure 5: UML-diagram, Profile

5.a1.3
Profile Instance Motivation

The purpose of a profile is to keep together logically related data, which are possibly distributed in several storage nodes.

The definition of a Profile type is kept together in a Profile Description.

A Primary Profile Id is a permanent identifier used to identify one Profile instance. Permanent means here that it may not be changed. The name of all Profile Component instances belonging to a Profile instance contains the Primary Profile Id.

There can be many ways besides the Primary Profile Id to navigate to a Profile instance.

5.a2
(Profile Related Identities only in WiPD)

5.a2.1
Principles

[image: image8.wmf]Profile Description

PD_Id

Profile Component

Instance

PI_Id

PC_Id

PD_Id

Profile Instance

PI_Id

Profile Component

Description

PC_Id

Grouping

Using PI_Id

Same PC_Id

PD_Id

Figure 1: …

Symbol
Meaning
Scope of identity

PI_Id
Profile instance identity
Global

PC_Id
Profile Component instance identity
Local within Profile

PI_Id§PC_Id
Profile Component instance identity
Global

PD_Id
Profile Description identity
Global

5.a4
(Profile Type Description only in WiPD)

5.a3.1
Introduction

Figure 6 shows the main relation between the instances and the related descriptions. The purpose of a Profile description is to describe the specifics for each type of Profile. The GUP information model is describing the common thing applying to all Profile instances.

[image: image9.wmf]Profile

Profile Component

Data Payload

Attribute = Data value

Profile Description

Component Description

Composite

Datatype

Attribute :

Datatype

Instance

(s)

Description

Figure 6: Symmetric between Instance and Description

Figure 8 shows the Profile Description and the related Concepts. The part in the figure with vertical yellow lines as background is the Profile Description and the part with horizontal green is the Profile.

[image: image10.wmf]Component

Description

Semantic

1

Component

Property

0..*

1

Composite

Datatype

0..*

1

Payload

Datatype

Profile

Component

1

Component

Run

-

Time

Property

1

..*

1

Payload

1

1

Profile

Profile

Description

1

..*

1

..*

1

..*

1

1

1

Profile Type

0..*

Figure 8: UML-diagram, Profile Description

The Component Description and the related Component Property is the basis for the creation of Profile Components and Component Run-Time Properties.

A Component Run-Time Property contains additional and in run-time changeable information, controlling the handling and access of the related Profile Components.

5.a3.2
Profile Type definition

A Profile Description is the definition of a Profile Type, which is class or type of Profile instances. The common properties of a number of Profile instances are described.

A Profile is described in one Profile Description. A Profile Description describes zero or more Profiles

[image: image11.wmf]Profile

Profile Description

0..*

1

Profile Type

Figure 7: UML-diagram, Basic Principles Profile Description

A Profile Description is in run-time (in principle) static or constant. Parts that are used to describe existing Profiles may not be changed or deleted. A description can be extended.

A Profile Description is keeping together the description of a Profile Type and it contains a number of Component Descriptions, Component Properties and Composite Datatypes.

5.a3.3
Profile Semantics

5.a3.4
Profile Content

5.a3
(Distributed Storage of Profiles only in WiPD)

Introduction

Distribute storage of Profile Components belonging to a Profile is required. The Profile Components belonging to one Profile can be stored in different locations. There is a need for loosely coupled Profile Components.

7.2
Storage Principles

Figure 9 shows a data model without an explicitly stored Profile. (The Profile is implicitly defined.)

There is a need to distinguish between two types of storage (in a run-time system): Data Store and Description Store. A system contains normally many Data Stores and Description Stores.

Profile Components and Run-Time Component Properties are stored in Data Stores. The Profile Components belonging to a Profile can be stored in different Data Stores and different locations. A Profile Component and the referenced Run-Time Component Property is stored in the same Data Store.

Profile Descriptions are stored in Description Stores. Profiles and the corresponding Profile Description can be stored in different locations.

A Profile Component is associated with one Primary Profile Id and one Component Description and it must know its:

· Profile instance identity

· Profile Component identity

· Profile Description identity.

[image: image12.wmf]Data Store

Description Store

Component

Description

Semantic

1

Component

Property

0..*

1

Composite

Datatype

0..*

1

Payload

Datatype

Profile

Component

1

Component

Run

-

Time

Property

1

..*

1

Payload

1

1

Profile

Description

1

..*

1

..*

1

..*

1

1

Primary

Profile Id

1

0..*

Profile

{

Profile

Object

}

0..*

1

1

1

Profile Type

Figure 9: UML-diagram, Implicit Profile

(Note: Some of the associations in figure 9 can be association between objects handled by loosely coupled systems. Internal object identities cannot be used to implement the associations. Some types of more global identities have to be defined.)

5.a4
(Generic User Profile only in WiPD)

6
Data Description Method (DDM)

6.1 Introduction

6.2
Profile Component Description

6.2.1
Profile Component Definition

6.2.2 Profile Component Semantics

6.2.3
Profile Component Payload Datatype

6.2.4 Profile Component Properties

6.3
Handling of Description Versions

6.3 Data Description Usage

Tools and file

The Data Description Framework is designed to make use of standardised and broadly available tools. This annex contains an introduction of the files and tools that are related to the Data Description Framework and the development of data descriptions.

Using XML-schema and in general

The purpose of an XML-schema is to define a class of XML documents. The term "instance document" is often used to describe an XML document that conforms to a particular schema.

XML is defined in http://www.w3.org/XML/ and XML-schema is defined in http://www.w3.org/XML/Schema.

Information about XML-schema tools can be found in http://www.w3.org/XML/Schema -Tools and in http://www.oasis-open.org/cover/schemas.html.

XML-schema supported editing

An XML-schema can be used to control an XML-schema aware editor. The editor can support by the creation of a conforming XML-document. The editor can provide context-sensitive support and help. Normally it is only possible to insert elements and attribute that are allowed in a certain place. The document can continuously be validated and any errors are immediately shown.

XML-schema supported validation

An instance document (”.xml”) may be processed against a schema (”.xsd”) to verify whether the rules specified in the schema are honoured in the instance. The checks for conformance to the rules, is called schema validation.

XML-translation using XSLT in general

XSL Transformations (XSLT) is a part of the Extensible Stylesheet Language (XSL) and is a language for Transforming XML documents into other XML documents. XSLT is defined in http://www.w3.org/TR/xslt. Information about XSLT-tools can be found in http://www.w3.org/Style/XSL/, http://www.xmlsoftware.com/xslt/, and http://www.oasis-open.org/cover/xslSoftware.html
An implementation of the XSLT language is called an XSLT processor.

7
Datatype Definition Method (DtDM)

7.1 Introduction

7.a
Definitions

7.a.1
Datatype

[From XML-schema specification] In this specification, a datatype is a 3-tuple, consisting of a) a set of distinct values, called its value space, b) a set of lexical representations, called its lexical space, and c) a set of facets that characterize properties of the value space, individual values or lexical items.

7.a.2
Atomic datatypes

Atomic datatypes are those having values, which are regarded by as being indivisible or not further decomposable.

7.a.3
Predefined Atomic datatypes

Predefined Atomic datatypes are atomic datatypes, which are defined in this specification.

7.a.4
Derived Atomic datatypes

Derived Atomic datatypes are Atomic datatypes derived from the Atomic predefined datatypes by constraining them or by defining a union of Atomic datatypes.

7.a.4
Reference datatypes

The reference datatype is an atomic datatype that is treated in a special way.

7.a.5
Composite datatypes

Composite datatypes are defined using atomic and other composite datatypes.

7.2
Examples of Datatype Definitions

7.3
XML Schema Usage for Datatype Definitions

7.3.1 Atomic/Simple Datatypes

13.2.1
Introduction

Atomic datatypes are those having values, which are regarded by as being indivisible or not further decomposable.

There are predefined atomic datatypes and derived atomic datatypes. Derived datatypes can be defined by restricting a predefined atomic datatype or by defining a union datatype.

13.2.2
Predefined atomic datatypes

Predefined atomic datatypes can only be added by revisions to this specification.

The XML-schema primitive datatypes are: string, boolean, decimal, float, double, duration, dateTime, time, date, gYearMonth, gYear, gMonthDay, gDay, gMonth, hexBinary, base64Binary, anyURI, QName, and NOTATION.

The XML-schema primitive derived datatypes are: normalizedString, token, language, NMTOKEN, NMTOKENS, Name, NCName, ID, IDREF, IDREFS, ENTITY, ENTITIES, integer, nonPositiveInteger, negativeInteger, long, int, short, byte, nonNegativeInteger, unsignedLong, unsignedInt, unsignedShort, unsignedByte, positiveInteger.

The predefined atomic datatypes are a subset of the XML-schema primitive datatypes. The dataypes from the XML-schema which are excluded are below in comments “{* … *}”.

{predefinedAtomicDatatype} ::=

string | boolean

{*| decimal | float | double*}

| duration | dateTime | time | date

{*| gYearMonth | gYear | gMonthDay | gDay | gMonth*}

{*| hexBinary | base64Binary*}

| anyURI

{*| QName | NOTATION*}

| normalizedString

{*| token *}

| language

{*| NMTOKEN | NMTOKENS | Name | NCName*}

| ID | IDREF

{*| IDREFS | ENTITY | ENTITIES*}

{*| integer | nonPositiveInteger | negativeInteger | long*}

| int | short | byte

{*| nonNegativeInteger | unsignedLong*}

| unsignedInt | unsignedShort | unsignedByte

{*| positiveInteger*}

13.2.3
Derived Atomic Datatypes

Derived atomic datatypes can be defined by restricting a predefined atomic datatype or by defining a union datatype.

13.2.4
Atomic datatypes derived by restriction

[From XML-schema specification] A datatype is said to be derived by restriction from another datatype when values for zero or more constraining facets are specified that serve to constrain its value space and/or its lexical space to a subset of those of its base type. A constraining facet is an optional property that can be applied to a datatype to constrain its value space.

Note: Atomic datatypes derived by restriction can only be derived directly from Predefined atomic datatypes and not as restriction on derived atomic datatypes as in XML-Schema.

13.2.5
Constraining Facets

Constraining Facets in XML–schema are: length, minLength, maxLength, pattern, enumeration, whiteSpace, maxInclusive, maxExclusive, minExclusive, minInclusive, totalDigits, and fractionDigits.

[Issue: Which XML-schema Constraining Facets to select to be used]

13.2.6
Union datatype

A union type enables an attribute value to be one instance of one type draw from the union of multiple atomic.

[From XML-schema specification] Union datatypes are those whose value spaces and lexical spaces are the union of the value spaces and lexical spaces of one or more other datatypes.

The datatypes that participate in the definition of a union datatype are called member types of that union datatype.

7.3.2 Composite/Complex Datatypes

13.3.1
Introduction

A composite datatype contains a number of name items each with a defined datatype. A field can be simple or a vector. A simple field can contain one element and a vector field a number of elements of the specified datatype.

13.3.2
Field and Data element names

A Composite datatype has a number of fields each with a local name {filedName}, which must be unique with the datatype.

An instance of a Composite Datatype is a composite data element containing a number of sub elements corresponding to the fields. The local name of a sub element is a {elementName}. The {elementPath} is used to identify a sub element or a sub-sub element and so on.

13.3.3
Record datatype

A record datatype contains a number of named items called fields each with a defined datatype. The field names must be unique with a record datatype. The datatype of a field can be any atomic data type or composite datatype.

13.3.4
Selection datatype

A selection datatype defines a number of named items called fields each with a defined datatype. For a selection datatype only one of its fields can be stored at the same time and it is a combination between a Record datatype and a Union.

The field names must be unique within a selection datatype. The datatype of a field can be any atomic data type or composite datatype.

13.3.5
Simple field

13.3.6 Vector field

13.4
Reference datatype

13.4.1 Introduction

The value of a Reference datatype is the identity of the target. The target can be a Generic Profile, a Profile Component or a data element. A data element is a Data Instance or a part of a Data Instance.

Different restrictions can be defined for the target of a reference. Example of restrictions is the location and datatype of the target.

The reference datatype is based on the in XML-schema built-in datatype anyURI. The value is the identity of the target.

Restrictions on the value can be defined by using the attribute scope and target and by including enumeration, pattern and targetDatatype elements. Some of these restrictions can only be checked in run-time.

13.4.5
Illegal and empty reference value

A reference may be empty. An empty string is used to represent an empty or “null” reference.

The applications using Generic Profiles must be able to handle empty references. Illegal reference should also be expected and handled in a robust way.

7.3.3
Identification of Attribute/Data Element

7.3.4 Semantics and Comments

Comment elements are used to give comments in English to the Data Description itself.

Semantic is used to define the meaning of the thing defined in a Data Description Examples of things given meaning are: Profile Component, Datatype, item in Datatype and specific value (in enumerations).

The semantic is given using normal language. It is possible to give it in several different languages.

The Semantic element is used in many elements to define the meaning. Examples are defining the meaning of a Profile Component, a Datatype, or a specific value in enumerations. The semantic is given using normal language. It is possible to give it in several different languages.

The information in the semantic elements is used by the interpretation and usage of the values in a Generic User Profile

Comment elements are used to comment the Data Description.

7.3.5
Extensions of Datatypes

7.4 Datatype Definition Guidelines

7.5
Datatype Definition Versions and Versioning Rules

91
From T2C-030006

Introduction

Note! The main purpose of this document is to establish the structure of this document. The text should to start with be regarded as indication on the intended content. The text is mainly fetched from T2-0209823, “LS on LS on GUP Information Model, Discussion paper” GPP TSG-T2 #19, Bundang, Korea, 18 -22 November 2002.

This is a work in progress document on the GUP information model, which has been reviewed and updated during several T2 meetings with the goal to define the GUP information model and to establish a set of terms to be used in the specifications. To find good terms and definitions takes time and is an iterative process. Note that during this process there may be differences between this document and the related GUP TSs. Regard this document as a tool to find a good set of terms, which later are incorporated in the specifications.

The text is based on:

· A work in progress document used in the T2 to define the GUP Information Model.

· The LS S2-022434 from T2 to SA2 on “GUP Information Model, Discussion paper”.

· The discussion of S2-022434 in SA2#26.

· The discussion of T2C-020058 in T2-SWG2#2.

· The discussions of T2-020910 in T2#19.

Note: To make a model is to make an abstraction. To abstract means to describe only those issues that are important for a purpose or situation and leave out details that are not relevant.

Examples of aspects, which eventually have to be covered, are:

· Different types of profile usage.

· Simple usage just accessing existing profile component.

· Create and delete profile components.

· Define and change access control rules.

· Access of the profile descriptions, describing thing as abstract syntax, semantics and handling rules.

· Storage distribution of profile components in loosely coupled systems.

· Storage distribution principles.

· Object identities used between systems.

· Synchronisation of physical copies of a logical profile component.

A better introduction is needed! Some bullets are:

· This document defines constrains on data that can be build into the data agnostic GUP services. Data agnostic means that these services may not have any built in knowledge of the specific data but have to use the data descriptions.

· This document describes what to describe. The Data Description Method, DDM, documents describes how.

Definitions

For the purposes of the present document, the [following] terms and definitions [given in ... and the following] apply.

Profile Instance: A Profile instance consists of one or more Profile Component instances. A Profile instance associates the data defined by a Profile Type to a Primary Profile Id.

Profile Type: Are the common properties of a number of Profile instances. It is described in a Profile Description.
Primary Profile Id: A permanent identifier used in identification of Profile instances.
Profile Component: A Profile consists of a number of Profile Components each containing a Data Payload. A Profile Component instance is loosely coupled to the Profile instance and independent in the sense that it is the unit of creation, deletion, storage and access control.
Data Payload: is the useful data in a Profile Component. It consists of a number of Attributes carrying the Data Values.

Generic User Profile (data model definition): A set of Profiles related to a User implementing the functional definition of Generic User Profile according to Stage TS 22.240.

Alternative definitions:

Profile Component instance: It is the independent object in the sense that it is the unit of creation, deletion, storage and access control. (= PCI are the atoms)

Profile instance: A Profile instance consists of a number of Profile Component Instances. (= Grouping of PCIs makes PI)

Data Payload: It is the useful data contained in a Profile Component Instance (= useful part of PCI)

From T2C-030006 Annex (informative):
Example of Profiles and Profile components

B.1
Introduction

This annex contains examples showing different profiles and profile components. It is important to remember that these are just examples. The GUP information model must support this examples and (m)any other way of structuring the data. The GUP information model must be rather flexible and allow for nearly any usage and structuring of data.

B.2
Examples

B.2.1
General User Information profile

This profile contains data about the user, which may be useful for many services. Examples of such data are: Name, phone number, e-mail address, and postal address.

B.2.1
General User Preferences profile

This profile contains the user’s preferences, which may be used by many services. Example of such data is preferred language.

B.2.1
Service Configuration profile

A service configuration profile contains the data needed to configure a service for a certain user.

Possible profile components:

· Configuration of server function
Service provider specific way of configuring the service.

· Configuration of client access to server
Standardised component describing the connectivity to the server. It may contain authentication and authorisation data for the service access.

· Personalisation of user interface
Device specific way of configuring the user interface.

[image: image13.wmf]Browser

Component 1

Component …

Component N

MMS

Component 1

Component …

Component N

Call Forward

Component 1

Component …

Component N

Location

Component 1

Component …

Component N

Terminal features

Component 1

Component …

Component N

Terminal

Repository

Service &

Function Profiles

Component

Component …

Component N

Network

Repository

Component

Component …

Component N

Synchronisation

Component

Component …

Component N

Component

Component …

Component N

Component

Component …

Component N

Component

Component …

Component N

Component

Component …

Component N

Component

Component …

Component N

Shared

component

Example Generic User Profile Scenario

Logical View

Physical View

B.2.1
Service Offering profile

This is the data supporting the selection of service from a palette of services. A part of the service offering defines the needed capability of the used device to be able to use the service. A service offering profile contains also the information needed to configure the service for a certain user.

Possible profile components:

· Capability requirements
Specifies the needed requirements to be able to access the service.

· Default setting for the service
Used as the initial configuration of the service.

B.2.1
Terminal Capability profile

Profile describing the capabilities of a terminal used for example by content negotiation. The values are constant.

Possible profile components:

· User interface capabilities

· User agent capabilities

· GPRS capabilities

· A component for each available runtime environments

B.2.1
Privacy Control Settings profile

The privacy control profile contains the settings by which the user can control the external access to private data.

B.2.1
Terminal Personalisation profile

Possible profile components:

· Ring signal

· User interface personalisation

B.2.1
Terminal Application Configuration profiles

This type of profile contains the setting for in the terminal local and stand-alone application. There is one profile instance for each application or group of application.

B.2.1
Subscription profile

This is a Profile describing the agreed possibilities and limitations in a subscription.

_1099310432.ppt

Profile

Profile

Component

Data Payload

0..*

1

1

Primary

Profile Id

Profile Description

0..*

1

Profile Type

1

_1103059449.ppt

Profile

Profile Component

Data Payload

Attribute = Data value

_1103064619.ppt

Profile Description

PD_Id

Profile Component

Instance

PI_Id

PC_Id

PD_Id

Profile Instance

PI_Id

Profile Component

Description

PC_Id

Grouping

Using PI_Id

Same PC_Id

PD_Id

_1099310435.ppt

P1 :profile

P2 :profile

P3 :profile

P4 :profile

P1.1 :pc

P1.2 :pc

P1.3 :pc

P2.1 :pc

P2.2 :pc

P3.1 :pc

P3.2 :pc

P3.3 :pc

P4.1 :pc

Storage

Node 4

Storage

Node 2

Storage

Node 1

Storage

Node 3

_1099310436.ppt

P1 :profile

P2 :profile

P3 :profile

P4 :profile

P1.1 :pc

P1.2 :pc

P1.3 :pc

U1 :GUP

P2.1 :pc

P2.2 :pc

P3.1 :pc

P3.2 :pc

P3.3 :pc

P4.1 :pc

U2 :GUP

_1099311566.ppt

Profile

Profile Component

Data Payload

Attribute = Data value

Profile Description

Component Description

Composite Datatype

Attribute : Datatype

Instance(s)

Description

_1099310434.ppt

Terminal Repository

Service & Function Profiles

Network Repository

Synchronisation

Shared component

Example Generic User Profile Scenario

Logical View

Physical View

Browser

Component 1

Component …

Component N

MMS

Component 1

Component …

Component N

Call Forward

Component 1

Component …

Component N

Location

Component 1

Component …

Component N

Terminal features

Component 1

Component …

Component N

Component

Component …

Component N

Component

Component …

Component N

Component

Component …

Component N

Component

Component …

Component N

Component

Component …

Component N

Component

Component …

Component N

Component

Component …

Component N

Component

Component …

Component N

_1099310429.ppt

Component

Description

Semantic

1

Component

Property

0..*

1

Composite

Datatype

0..*

1

Payload

Datatype

Profile

Component

1

Component

Run-Time

Property

1..*

1

Payload

1

1

Profile

Profile Description

1..*

1..*

1..*

1

1

1

Profile Type

0..*

_1099310430.ppt

Profile

Profile Description

0..*

1

Profile Type

_1065510423.ppt

Data Description Framework

Data Description Framework

Describes the data

Defines how to do the data description

Data Description

Data

Data stored and accessed in a device

_1099310428.ppt

Data Store

Description Store

Component

Description

Semantic

1

Component

Property

0..*

1

Composite

Datatype

0..*

1

Payload

Datatype

Profile

Component

1

Component

Run-Time

Property

1..*

1

Payload

1

1

Profile Description

1..*

1..*

1..*

1

1

Primary

Profile Id

1

0..*

Profile

{Profile Object}

0..*

1

1

1

Profile Type

