
1

	3GPP TSG-T2

Portland, Oregon USA

23rd - 25th Ocotber 2001
	T2-MExE-010110

	CR-Form-v3

	CHANGE REQUEST

	

	(

	23.057
	CR
	CR-Num
	(

rev
	-
	(

Current version:
	4.3.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	X
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	Classmark 4 code safety verification

	
	

	Source:
(

	MExE Group

	
	

	Work item code:
(

	MEXE-EHANC
	
	Date: (

	23.10.2001

	
	
	
	
	

	Category:
(

	B
	
	Release: (

	REL-5

	
	Use one of the following categories:
F (essential correction)
A (corresponds to a correction in an earlier release)
B (Addition of feature),
C (Functional modification of feature)
D (Editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	Introduction of a new MExE classmark based on CLI, the Common Language Infrastructure. This CR introduces the changes necessary to integrate CLI code verification with the MExE security framework.

	
	

	Summary of change:
(

	Modifications to sections 8 to introduce CLI code verification and limit MExE execution of CLI code to verified safe code. This document is one of a set of three necessary to introduce classmark 4 and integrate it with the MExE framework. It is proposed as a rolling CR to be added to the two existing CLI rolling CRs, T2-010670 (CR Classmark 4 non-security) and T2-010671(CR Classmark 4 security), approved as a rolling CRs in Edinborough, Scotland, August 2001. Highlights are used to indicate changes made in this update.

	
	

	Consequences if
(

not approved:
	

	
	

	Clauses affected:
(

	8

	
	

	Other specs
(

	
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

8.9
Java security

If the 3 MExE security domains defined in clause 8.1 "Generic security" are not supported, then the Java security described in this clause is optional.

8.9.1
PersonalJava security

There are two types of Java security [20]: sandbox, and fine grain.

The sandbox model [18] has just one domain; there is no concept of a partly trusted domain. The sandbox meaning of "trusted" means it is totally unrestricted to access all system resources.

Using the sandbox system, each MExE security domain shall be implemented as running in a sandbox, configured with different privileges corresponding to those of the domain. If the security domains are not supported then the Java sandbox security model shall be supported and it shall be configured for untrusted MExE executables support only, as defined in clause 8.2.Using the fine grain Java security system [19], each MExE security domain will be a set of constraints within which a Java fine grain security domain can be configured.

8.9.1.1
Java applet certification in PersonalJava

Support for trusted applets is optional. Although a Java application shall be executed in a trusted domain if its certification can be validated, a Java Applet will not necessarily be executed in a trusted domain even if it does have a valid signature. It will be up to the implementers to decide if "trusted" Applets will be supported. (In certain implementations, all Applets may be always executed as "untrusted".)

8.9.1.2
Java application signature verification in PersonalJava

The verification of the certification of the application or applet shall be performed as described in clauses 8.5 ”Root Public keys” and 8.8 “Provisioned mechanism for designating administrative responsibilities and adding third parties in a MExE MS”.

8.9.1.3
Java loading native libraries in PersonalJava

The MExE Java VM may be able to load native libraries that are intrinsically part of the MExE device implementation and MExE native libraries. The MExE Java VM shall not load other native libraries.

8.9.2
CLDC security

A Java execution environment running on a Classmark 3 MExE device shall comply with the security requirements defined in the CLDC specification [34]. That is, it shall comply with both the low-level virtual machine security requirements and the application-level security requirements.

The application-level CLDC security requirements define a sandbox security model where Java classfiles are verified. Java APIs available to the application are limited to those APIs which have been defined by the configuration and profiles supported by the MExE device. Downloading and management of the Java applications on the MExE device takes place at the native level, no user-definable Java class loaders are provided and the set of APIs available to a MIDlet is closed.

The low-level CLDC virtual machine security requirements define a Java classfile pre-verification mechanism which takes place off- MExE device (e.g. on the server prior to downloading) and inserts a special attribute called a "stack map" into class files to facilitate runtime verification of the same classfiles.

8.10 CLI Security

If the three MExE security domains defined in subclause 8.1 "Generic security" are not supported, then the CLI security described in this clause is optional.
8.10.1 CLI Application Verification

The CLI specification includes a detailed algorithm to verify the safety and integrity of application code, known as "application verification" [48]. An application is either verified as "safe" or "unsafe". The result of the application verification process is presented to the runtime system before program execution. This is distinct from the verification that MExE performs before running an application inside a security domain.
CLI applications that are verified as unsafe allow for code that could potentially access the environment in an unauthorized manner. For example, code that uses pointer arithmetic or accesses arrays using out-of-bounds indices would be deemed unsafe. An unsafe application is not permitted to execute in any of the MExE security domains or in the MExE environment. Once an application is verified as safe, this information is passed on to the CLI runtime environment, which will then apply the appropriate MExE security domain policy to the application at runtime, as specified under subclause 8.1, "Generic Security".

The CLI runtime may be able to load libraries that are intrinsically part of the MExE device implementation. Such intrinsic libraries may contain unsafe code, however other libraries containing unsafe code are prohibited.

8.11
Signed packages used for installation
If the 3 MExE security domains defined in clause 8.1 "Generic security" are not supported, then the signed packages used for installation described in this clause is optional.

The Java Archive (JAR) file format shall be supported on classmark 2 and 3 MExE devices for securely packaging objects that are to be downloaded and installed on the ME. The method for securely packaging objects for MExE classmark 1 devices may be referenced from the WAP specifications in a future release of this specification. A MExE device may support other proprietary means of downloading and installing objects.

The JAR file shall contain a manifest file that has at least the following attribute:

MExE-Implementation-Type

The information contained within the manifest file is represented as so-called "name: value" pairs, where "name" is represented by MExE-Implementation-Type. Groups of name-value pairs are known as a "section", where sections are separated from other sections by empty lines.

The MExE-Implementation-Type value shall be one of the following:-

-
"MExENativeLibrary"

in the case of a MExE Native Library (as described in 8.10.1 "Installing MExE native libraries");

-
"TTPCertificate"

in the case of a certificate containing a 3rd party root public key (as described in 8.11.2 "Installation of root certificates in a signed data package");

-
"ManufacturerCertificate"

in the case of a certificate containing a manufacturer root public key (as described in 8.11.2 "Installation of root certificates in a signed data package");

-
"OperatorCertificate"

in the case of a certificate containing an operator root public key (as described in clause 8.11.2 "Installation of root certificates in a signed data package");

-
"AdminCertificate"

in the case of an administrator certificate, which shall consist of a section containing both the administrator certificate and a CCM (as described in clause 8.11.2 "Installation of root certificates in a signed data package"); or

-
"CCM"

in the case of a CCM (as described in clause 8.11.2 "Installation of root certificates in a signed data package"); or

-
-free-format-value-

in the case of proprietary binaries or Java classes such as native DSP code, provisioned functionality upgrades and patches (as described in clause 8.11.3 "Installation of other signed data").

Refer to [42] for full details of how to encode the "name: value" pairs and "section" in a JAR manifest file.
See figure 13 "Signed packages". When a download of a JAR file is completed, the system installer shall read the manifest to determine what types of files are contained in the JAR, and install them appropriately.

Note that a signed package containing a library which does not have a manifest attribute "MExE-Implementation-Type: MExENativeLibrary" shall be considered to be some type of upgrade to libraries that are intrinsically part of the MExE device implementation rather than a "MExE native library". E.g.

MExE-Implementation-Type: ManufacturerUpgrade (something.dll)

(Recommended behaviour for the server is that it uses the capability information supplied from the MExE device to determine how to offer appropriate upgrades.)

[image: image1.wmf]Signature

Manifest (attributes)

Contents (Java classes, native

code, certificate, etc…)

MExE-Implementation-Type

: …..

Figure 13: Signed packages

8.11.1
Installing MExE native libraries

A signed native library whose signature verifies as describe in clause 8.5.2 "Manufacturer root public key" as belonging to the Manufacturer Domain may be installed as a "MExE native library".

A MExE native library may be called by a MExE executable, and shall not compromise the MExE security system.

Support of MExE native library signed package installation is optional.

8.11.2
Installation of root certificates in a signed data package
Root certificates in a signed package (whose signature verifies as described in clause 8.5 "Root Public keys" to the Manufacturer root, Operator root, or the Administrator root), may be installed to the root public key store on the MExE device. Note that the certificate thus packaged does not necessarily belong to the manufacturer domain. The types of certificate that can be present and installed by packages are given in table 9 "Allowed certificate types in signed packages". The MExE device shall store the root public key as indicated by the certificate type.

When a certificate containing an Administrator root public key is thus contained in a signed package, the signed package (e.g. a JAR file in the case of Java based MExE classmarks) shall contain two files: the Administrator root public key and the CCM.

Table 9: Allowed certificate types in signed packages

	Signature on Package
	Allowed Certificate types in package

	Administrator
	Third Party

	Manufacturer
	Administrator, Manufacturer, Operator, Third Party

	Operator
	Administrator, Operator, Third Party

8.11.3
Installation of other signed data

A signed package of proprietary binaries or Java classes such as native DSP code, provisioned functionality upgrades and patches, whose signature verifies as described in clause 8.5.2 "Manufacturer root public key" as belonging to the Manufacturer Domain may be installed. The use of such binaries is outside the scope of MExE, but the manufacturer shall be responsible for ensuring that the integrity of MExE is not compromised.

Support of this feature is optional.

8.11.4
Administrator root certificate download mechanism
MExE devices supporting (U)SIMs without certificates shall at least support the following procedure to download the administrator root certificate.

1.
Upon sign-up with an administrator the user and administrator will make contact.

2.
The administrator service centre will obtain any required information from the user and inform the user by SMS or other means of the location of the administrator root certificate.

3.
The user will initiate the download of the Administrator root certificate using a signed package.

4.
Once the procedure is complete the MExE device shall compute the hash of the received Administrator certificate containing root public key.

5.
The user will contact the administrator and enters on the MExE device at least the first 8 bytes using decimal value of the hash of the Administrator root public key information provided by the administrator . The MExE device compares the beginning of computed hash value and the abbreviated hash value entered by the user If these two values are the same ,the provisioning process will be complete. If the two values are different this shall be indicated to the user who should inform the administrator of this.

Alternative methods to download an administrator root certificate may be used where appropriate but must insure that the certificate is received by the MExE device unaltered.

8.12
 MExE executable integrity
If the 3 MExE security domains defined in clause 8.1 "Generic security" are not supported, then the pre-verification of MExE executables at launch time described in this clause is optional.

A potential threat is that MExE executables may be securely authenticated at the time of download, but tampered with or corrupted prior to being launched. Further a certificate may be compromised or expired. Authentication of a MExE executable at the time of download does not ensure that the MExE executable has not been modified when it is subsequently launched. Furthermore, authentication of a MExE executable at the time of launch does not ensure that the MExE executable is not modified during execution. Similarly, verification of the certificate at the time of download may not ensure that the certificate is valid at time of application launch, and verification of the certificate at the time of launch does not ensure that the certificate remains valid during execution.

Therefore, the MExE device shall ensure application integrity immediately prior to application execution.

Application integrity is defined as the state in which:-

· application code has not been modified since authentication; and

· the certificate containing the root public key is checked and known to be valid.

The mechanism by which the device preserves integrity is an implementation detail, dependant on the application storage mechanism and access. Examples of mechanisms that contribute to such application integrity could include :

· Storage of applications in a non-compromisable memory area on the device;

· Preventing launch of the application when the MExE device becomes aware that the certificate is invalidated;

· Full signature verification prior to each application invocation (see clause 8.12.1);

· Optimised pre-launch signature verification (see clause 8.12.2);

· Periodic full signature verification by separate process during application execution.

The list of examples is not exhaustive and any other mechanisms ensuring application integrity may be equally considered.

A MExE device may furthermore ensure that the application code has not been modified during application execution.

8.12.1 Full signature verification

Full signature verification assumes that the procedure of validation for downloaded MExE executables and certificates is used. For more details see clause 8.4 “Certification and Authorization Architecture”.

8.12.2
Optimised pre-launch signature verification

This is an optional feature which is used to eliminate the potentially excessive overhead of checking a signature again after initial full certificate verification has already been performed.

To use this process the MExE device shall create a hash of the executable object (executable object fingerprint) as if checking the signature. This shall be stored in a protected verified application list, along with indication of the domain permissions for the application. The hash used shall be the same type as that used for signing the object. When launching an application or downloading an applet, the hash shall be performed as for when computing the signature. The verified application list shall then be checked; if the hash value is present and the entry has not expired then the application or applet may execute. If no list entry exists for this object, or the entry has expired, the process shall then proceed with the full signature verification. Note that the lists for applications and applets should be separate and that an implementation determines management policy for the lists (e.g., ageing policy, which entries to delete when trying to add a new entry to a full list etc.). One restriction imposed that shall be enforced is that the maximum number of uses for an entry before it is marked invalid is limited to some maximum value.

In the event that a new CCM is received by the MExE device, all verified application list entries shall be marked invalid unless some mechanism to determine the validity of an authorising certificate entry for each application is provided by the MExE device implementation.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the lastest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. Work item acronyms are listed in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

3GPP

_990988097.doc

Signature

Manifest (attributes)

Contents (Java classes, native

code, certificate, etc…)

MExE-Implementation-Type: …..

