INTERNET-DRAFT

S. Bharadwaj

Intended Category: Informational

Media Farm, Inc.

Filename: draft-bharadwaj-virtual-palmtop-client.txt

February, 2001

Expires: August 2001

Status of this Memo

This document is an Internet-Draft and is NOT offered in accordance with

Section 10 of RFC2026, and the author does not provide the IETF with any

rights other than to publish as an Internet-Draft.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF), its areas, and its working groups. Note that other groups may

 also distribute working documents as Internet- Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and

may be updated, replaced, or obsoleted by other documents at any time. It is

inappropriate to use Internet-Drafts as reference material or to cite them

other than as "work in progress."

The list of current Internet-Drafts can be accessed at

http://www.ietf.org/ietf/1id-abstracts.txt The list of Internet-Draft Shadow

Directories can be accessed at http://www.ietf.org/shadow.html.

Copyright

Copyright (C) Media Farm, Inc. All Rights Reserved.

Abstract

This document describes the interactions, behaviour and protocol of a thin

client solution for 2.5G and 3G Mobile Networks. It is intended as a

standard that allows small, limited memory and processing devices to run

larger programs on server computers. This document describes the detailed

behavior of the client device and the protocols it uses to communicate with

servers in the network. 3G PP is currently standardizing Classmarks for use

in 3G networks. It is intended as a reference for the development of a

universal MExE device that can support multiple existing and future

classmarks by running these applications on servers inside the MExE Service Environment. This document restricts itself to the client describing its

interactions as well as the protocols it must support to be a Virtual

PalmTop client.

Keywords

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.

Rationale for the Virtual PalmTop

The Virtual PalmTop is a new Client/Server architecture intended for usage in Mobile Environments. Multiple platforms have been specified and are being considered for Mobile Handsets. These include WAP, Personal Java, MIDP and CLI. The presence of these environments has brought and will bring a preponderance of applications and content that needs to be accessed from limited memory and compute capable devices. The growth of new content, new application environments and new applications makes it difficult for devices to be both backward and forward compatible with a wide array of such content. New capabilities like multimodal Applications, multimedia support, new software environments like CLI and new markup languages continue to be invented. Each new technology, platform and capability results in new software, applications, content and services. Devices, however tend to have limited resources and capabilities and cannot run very large applications. The solution to the problem is to develop a thin client on the handset(or UE) and to allow servers in the device's service environment to actually run the applications.

Furthermore, it must be recognized that the mobile environment has lesser bandwidth and larger latencies than the Wireline Environment. Devices also are powered on and powered off very often and the user migrates through a variety of locations where location or environment specific information is absent and users are not prescient about their application requirements in such locales. Therefore, it is necessary for the user's application set to morph and change with his location and the applications that "run" on his device to reflect the ambient environment. The Virtual PalmTop Client allows servers in the service environment to "run" the applications that the user sees without regard to the capability of his device and its ability to actually execute the same applications.

Table of Contents

1. Introduction

1.1 Overview of Virtual PalmTop features

1.1.1 Overview of the Graphics Interactions and Protocol

1.1.1.1 Compound Operations on Drawables

1.1.1.2 Client Capabilities and Negotiations

1.1.1.3 The States of the VP Client and their relationship to sessions

1.1.1.4 Colorsystems for VPClients

1.1.1.5 Drawing Interactions

1.1.1.6 Font Handling Interactions

1.1.1.7 Image Interactions

1.1.1.8 Widget Interactions

1.1.1.9 Advanced Usage of Compound Operations

1.1.2 Overview of the Event Handling Protocol

1.1.2.1 Mouse and Touch Panel Interactions

1.1.2.2 State Transition Events

1.1.2.3
Speech Interactions

1.1.3 Overview of the Speech Interactions and Protocol

1.1.3.1 Speech Input Methods and Speech Recognition

1.1.3.2 Speech Output Methods and Text-to-Speech Conversion

1.1.3.3 Recommendations for Multimodal Applications and Server Behavior

1.1.4 Overview of Multimedia Interactions and Protocol

1.1.5 The Mobile File Store Interactions and Protocol

1.1.6 Security Interactions and Protocols

1.2 General Definitions

1.3 Overview of the Interactions for bootstrapping VP Clients

1.3.1 DHCP and bootstrap support in the Virtual PalmTop

1.3.2 The Application List Manager

1.3.3 The Application List Manager Protocol

2. Protocol Data Types

2.1 Basic Data Types

2.2 Enumerations and Constants

2.3 Structured Data Types

2.4 Error Definitions

3. RPC Usage and behavior

3.1 Deviations from ONC RPC and its Implications

3.2 Sequence Numbers and their Use

4. Security Interactions and GSSAPI

5. The Graphics and Speech Interface Protocol

5.1 Null

5.2 Compound Operations

5.3 VirtualPalmTopSystem Info

5.4 InitializeGraphicsSystem

5.5 InitializeEventSystem

5.6 FreeGraphicsSystem

5.7 GetVisualInfo

5.8 SetFillStyle

5.9 CreateDrawable

5.10 FreeDrawable

5.11 CopyArea

5.12 ClearRect

5.13 LoadFont

5.14 FreeFont

5.15 GetTextWidth

5.16 DrawChar

5.17 DrawString

5.18 DrawBytes

5.19 DrawLine

5.20 DrawArc

5.21 FillArc

5.22 DrawOval

5.23 FillOval

5.24 DrawPolygon

5.25 DrawPolyLine

5.26 FillPolygon

5.27 DrawRect

5.28 DrawRectTextBox

5.29 FillRect

5.30 DrawRoundRect

5.31 FillRoundRect

5.32 Draw3Drect

5.33 Fill3Drect

5.34 DrawImage

5.35 DrawImageContinuation

5.36 DrawLabel

5.37 DrawButton

5.38 DrawCheckbox

5.39 DrawCheckboxGroup

5.40 DrawChoiceList

5.41 DrawList

5.42 DrawScrollBar

5.43 DrawTextField

5.44 DrawTextArea

5.45 DrawMenu

5.46 DrawMenuBar

5.47 SetText

5.48 ClearText

5.49 SelectText

5.50 SelectOnWidget

5.51 AddToWidget

5.52 RemoveFromWidget

5.53 NewApplication

5.54 CopyDrawable

5.55 PushDrawable

5.56 PopDrawable

5.57 RepaintDrawable

5.58 ShowDrawable

5.59 MapSubDrawable

5.60 UnMapSubDrawable

5.61 ListCachedDrawables

5.62 PushWid

5.63 PopWid

5.64 PushFid

5.65 PopFid

5.66 ClearScreen

5.67 ApplicationChange

5.68 OnAction Operation

5.69 CreateVisualObject

5.70 ShowVisualObject

5.71 HideVisualObject

5.72 MoveVisualObject

5.73 ResizeVisualObject

5.74 Pause

5.75 TTSRequest

5.76 RawSpeech

5.77 VoiceCall

5.78 Notification

6. The Event System Protocol

6.1 Event Types and Systems

6.2 Speech as Input Events

6.2.2 Out of Band Speech Events

6.2.3 In band Delivery of Speech Events

6.3 InitEventSystem

6.4 FreeEventSystem

6.5 DeliverNextEvent

6.6 SelectItem

6.7 ScrollToText

6.8 StateTransitionEvent

6.9 SpeechServerInfo

7. The Application List Protocol

7.1 GetCurrentApplicationList

7.2 LaunchApplicationManager

7.3 NewApplication

7.4 GetAvailableServer

7.5 GetProgramList

7.6 GetSecurityInfo

8. The Speech Data Format

8.1 Overview of the Various Formats

8.2 Raw Speech Format

8.3 ADPCM Speech Format

8.4 GSM Speech Format

8.5 AMR Speech Formats

8.6 Sphinx Speech Format

8.7 Silence Detection and Removal

8.8 Preprocessing of Speech for Noise Removal

9. Multimedia Support

9.1 Delivery Layer Abstraction

9.2 Client Server Interaction

9.3 MMS Support

10. State Reestablishment and Caching

11. Supporting Virtual File Stores

12. RPC Definition Specifications

12.1 The Graphics Protocol

12.2 The Event System Protocol

13. Bibliography

14. Authors

14.1 Authors' Addresses

14.2 Acknowledgements

15 Full Copyright Statement

1.0 Introduction

The Virtual PalmTop is intended to be a universal thin client solution running applications written for a variety of environments including but not restricted to the Personal Java Environment, Common Language Interface, MIDP, etc. A large class of existing applications including browsers, personal productivity applications, enterprise or business applications, information access and e-Commerce applications exist and have been written for such environments. Further new applications and platform features including Multimodal and Multimedia Applications have come into being. The goal of the Virtual PalmTop is to allow support for such applications from well connected limited memory and computation devices. This specification describes the protocols, interactions and behavior of the cleint software on these devices and their capabilities. It does not specify how servers behave to support such VP Client devices beyond what is deemed necessary to allow compliant implementations of such devices. The VP environment is intended to be a new Classmark under the 3G PP MExE specification.

To develop a compliant VP Client an implementation need not support all the capabilities required. The only mandatory requirement is a minimal core intended to support a functional thin client graphics system. All additional requirements while recommended are optional and it is incumbent on servers to try to support any mix of features and provide support for the maximum number of applications given those features. The VP Client must however specify during capability negotiation its exact capabilities and functionality and must conform or provide these in keeping with this specification.

The Virtual PalmTop system is intended to be a "server maintained state" system. Thus all client information and state is fully maintained by servers and can be recreated at the behest of the user. A VP Client can thus reconnect with any server on which an application had previously been run and reestablish its display state and proceed from there on.

The VP Client typically interacts with the various servers in its environment. Its primary interaction is with the server running the current Application. However, the VP Server also has interactions with the server running the Application List Manager(ALM).

Most of the requests in this specification use ONC RPC and XDR, both of which are outlined in rfc 1831 and rfc 1832[6], [7]. It however makes certain changes to these specifications for better supporting mobile environments. It is assumed that the reader has a somewhat reasonable familiarity with the specifications.

A note of terminology must be made. With regard to the graphical system, the VP Client is actually the server side of the protocol much like the X Server which can run an X Terminal. The remaining protocols are however traditional client applications. The terminology used in this RFC builds on existing terminology commonly used in addition to the terminology used by the MExE specifications[1], [2], [3].

1.1 Overview of Virtual PalmTop Features

The Virtual PalmTop Client supports multiple Input/Output features to enable remote servers to "run" a variety of applications on the device or User Equipment(UE). The VP client must necessarily possess a graphical display with support for at least raw drawing and simple graphical actions on the frame buffer. The VP client must also support at least one of mouse, keyboard, touch panel or similar input and can have multiple such input methods including speech. The ability to support speech input and output in any of the defined forms is purely optional. VP clients can be compliant without any speech support although applications that rely on speech as the sole input method or that mandate it might not "run" on devices that do not provide support for it.

The Virtual PalmTop Client is intended to run over simple mobile transports where latency is noticeably larger than equivalent Wireline counterparts. Optional features in the VP Protocol enable the efficient use of both bandwidth and the amelioration of problems relating to latency in Mobile Networks by allowing for both caching of requests, their replay from these caches and the judicious use of larger compound requests. (typical wireless latencies tend to range in the 50 ms. to 100 ms. range for the air interface for WCDMA, GPRS, UMTS and other networks)

Virtual PalmTop Clients can also be used in WLAN environments. The availability of more bandwidth and the lower latency of these environments further enhance the suitability, capabilities and appropriateness of using VP in educational environments, open public places, enterprises, small offices and buildings and homes.

The Virtual PalmTop Client also can work on a range of devices with more complex and less complex capabilities. The onus of supporting a variety of these devices rests on the ability of servers. Servers can however indicate that they are unable to support certain features and the VP Client must then fall back to find a least common denominator of its own and the server's capabilities.

The VP Client can support multiple features including Speech and multimedia. In the case of speech, it is possible for speech to be delivered to servers either on a separate channel, over the data channel with no detection of silences(on a continuous basis) or as and when the user speaks. The format of speech too is determined at the time of capability negotiations. In a multimodal application, the speech can be played back either using a TTS converter on the UE or by having the server stream out the speech over the negotiated channel.

VP Clients are also intended to "run" server hosted MMS applications, MPEG-J based applications, and bring about a rich environment of multimedia enabled applications for mobile users. While this is optional on VP Clients, the ability to support multimedia is part of the VP Client. Further it should be possible for users to selectively turn off some of the channels of a multimedia message replay as and when they want. (A user might want to turn off the video but not the audio of a message to save bandwidth while on the road but not while he is at his office).

VP Clients can run multiple applications concurrently but typically one at a time(this is implied but it is not mandated). VP Clients can obtain information about their applications at any time.

At the time of bootstrap the VP Client obtains session, security and state information about the User's current list of Applications and verifies login and authenticates the user. Following authentication, the VP Client is bootstrapped back to its prior existing state. The Application List protocol (along with DHCP) is intended to provide support for this process and is implemented by the Application List Manager. It could contact an Application List Manager UI which is a VP Application hosted by the bootstrap server that drives the User Interface of the VP Client with an application from where the user can launch additional applications and browse his current Virtual Environment. Additionally, as part of the bootstrap process, the speech system might establish an RTP/RTSP session to a proxy server. As the VP Client changes Application Servers, information about this proxy server and the VP Client's session with it are forwarded to each new Application Server.

1.1.1 Overview of Graphics Interactions and Protocol

The Graphics Interaction Protocol is intended to be a drawing protocol that scales across the graphical capabilities of a gamut of device classes. It ranges from allowing very simple devices to implement a very simple graphics protocol that uses more bandwidth and have higher latency to more complicated devices that have inherent Widget support and can handle compound requests and cache them thus using lesser bandwidth and working well over high latency environments. The Graphics Interaction Protocol allows the client and server to negotiate the capabilities for the session at the outset allowing them to specify the right set of features that would be used in the session as well as when the client is reconnected to the server. The goal of the VP Client is to provide the richest possible user support given the capability negotiation. The VP Client must attempt to conserve bandwidth and decrease end user latency and implementations are encouraged to support this.

The Graphics Interactions protocol works by providing drawing and rendering actions on drawables. These are flat rectangular surfaces that vary in size from the size of the screen of the UE(full drawables) (or possibly even larger surfaces if the VP client supported this capability) to subdrawables that are smaller. Drawables can nest (only one level of nesting is supported in this version of the protocol) and there can be drawables that can be contained inside a full drawable and allow independent actions on them. There is the notion of a root drawable that represents the physical screen, as well as off-screen drawables that represent memory for drawables, that can be shown as needed. Drawables need not persist across disconnections. However, there could be clients that could support persistence. (The onus rests on servers to support both persistent and non-persistent drawable systems). The Client System at the outset indicates the number of drawables it can reasonably support and the server will try to restrict its usage to within that number. A variety of operations are possible on these surfaces and they form the basis of this protocol.

1.1.1.1 Compound Operations on Drawables

The goal in providing support for Compound Operations is to decrease the number of over the wire operations and interchanges. This decreases the associated end user latency while reducing contention over a potentially shared air interface. All Compound operations take place on a given drawable. However it is possible for Compound to include multiple different drawables. They would however have to involve one target drawable(either a root drawable or an offscreen drawable). Operations to copy drawables, copy an area of a drawable, etc. also are possible. The aim in such operations is to reduce the amount of over the wire data as well as to allow reduced latency. Further clients can cache operations on a drawable without actually rendering them in the case of offscreen drawables(but not the display itself). Client behavior does NOT require the creation of drawables at the time of the call. Instead the system can choose to postpone actions based on available memory capacity, etc. till the time when it is deemed necessary to render it to the offscreen or when the drawable is shown(rendered to the display).

To support compound operations, there are two drawables that are defined. There is the current drawable of the compound request which is passed between the individual requests in the compound request. This could be the result of a CREATEDRAWABLE request or passed as the drawable in the first request. There is the saved drawable which is pushed into a save area. The definition of the current is NULL and the saved drawable is -1;.(ffffffff)

This Virtual Screen system thus allows the ability of a limited memory system to support multiple actions on a drawable. Further, as indicated in the protocol, it is possible to have the VP client indicate that it no longer has state associated with a specific (offscreen) drawable(which must be unique!!?). The server could then replay with the actions on the drawable and then repeat the request.

Supporting Compound operations is recommended but not mandatory. A limited system could choose to not implement Compound Operations and might work just as well in certain environments.

1.1.1.2 Client Capabilities and Negotiations

Client Capabilities are negotiated at the beginning of each application session. Servers may choose to reuse Client Capability information to save bandwidth. However, it must indicate the start of a new application as Clients use this information to purge and reuse cached data using their own smart algorithms.

Client Capability Negotiation relates to a large number of display and input features as well as system features. These include whether the system supports color displays, input features like speech, font capabilities, image formats, multimedia support, etc.

Client Capability Negotiation allows servers to negotiate the full capability up front. This allows Servers to plan their actions accordingly. For instance, a server might use this client capability to decide whether it will support compound operations, drawing interactions, etc.

1.1.1.3 The State of VP Clients and their relationship to sessions

VP Clients are in one of many states with respect to sessions. Typically there is the ACTIVE state of the session which is when the application is actively running. When there are no active sessions the system is said to be in STANDALONE mode. The ACTIVE session is the one that controls the screen. When the VP Client transitions from the ACTIVE state, it could either go to the SUSPENDED state, the DISCONNECTED state or the TERMINATED state. The SUSPENDED state is typically when the VP client has transitioned to another application. This second application could be running on either the same server or on another server. When in the SUSPENDED state, the client can choose to disconnect either by sending a message or by breaking the connection(if there is one). A server does not know if the client has transitioned to the DISCONNECTED state or not unless it has explicitly said so. Thus servers wait for prespecified periods of time(recommended 4 minutes) before assuming that they are disconnected. A server caches ALL information needed to restore state. This includes actions performed on offscreen drawables, the root drawable as well as other information. The TERMINATED state is caused by an exiting of the Application or by the user initiated termination(or killing) of the application. (the client deletes all caches).

A client which supports Compound requests must cache requests on the current active drawable. It must also look to cache requests on as many drawables in the ACTIVE session if possible, but if it cannot, it must respond with a REPLAY error during the time of a SHOWDRAWABLE on a drawable. This allows the system to reconstruct its state on the drawable, which is then shown.

Clients have no ability to command reconstruction of state. They are forced to rely on servers to help them. At the time of reconnection (implying a move from either the SUSPENDED state or the DISCONNECTED state) back to the ACTIVE state a server might request the list of cached drawables from a client and choose to update them. This might help speed the user response time subsequent to reconnection.

1.1.1.4 ColorSystems

The various color systems that VP Clients could support include the Gray Color, RGB, YUV or RGBA systems and other systems that represent extensions. RGB systems can be either RGB565, RGB888. VPClients could support any of the defined colorsystems as well as additional color systems that are specific to the server and the client. It is hoped that these ColorSystems will be standardized (through addenda).

Further there is support for other colorsystems and one can use GETVISUALINFO for obtaining visual information. However VP Clients must support atleast one of the defined colorsystems in addition to any extensible colorsystems.

1.1.1.5 Drawing Interactions

A variety of drawing interactions are specified in the protocol. They include the drawing of common graphical shapes including rectangles, polygons, ellipses and arcs, lines and solid objects. Drawing interactions do not reflect the needs of 3D. This will be tackled in later versions of the protocol. The client specification requires that the handset should support all mandatory procedures (18 to 31) shown in 5.18 to 5.31 to be in compliance. The client should support this minimal set of procedures.

Support for Drawables is mandatory. At least one offscreen drawable and the ability to create sub-drawables within the main screen must be provided. The recommended number is at least 4 offscreen drawables for very limited memory devices and 8 or more drawables for devices with 8 MB or more available memory supporting compound operations with caching and when there is support for multiple simultaneous applications. The intention is to allow these UEs to maximally use their networked capabilities to bring greater user access and productivity in a dynamic mobile environment.

Additionally the interactions do require that when support for "OnAction" operations (including mouse over operations) exists, the implementations do make a best effort to render the changes as reflected. (there is no drag and drop support in this version of the protocol). Support for OnAction operations is optional.

1.1.1.6 Font Handling Interactions

The support for font handling is similar to drawing interactions. At the time of the capability negotiations, all supported fonts must be indicated by the handset. This allows servers to choose the appropriate font for rendering on the screen. Support for scaleable fonts is an important (though optional) requirement for VP devices. If this is absent it is difficult to support Classmark II and Classmark III devices and possibly other future classmarks.

The font handling system could also be additionally compliant with "VP Font Metrics". This will allow servers to avoid querying the UE about the lengths of text sequences through "GetTextWidth" calls.

Additionally Font Handling Interactions could support OnAction operations (to Underline, Embolden or Italicize). This is optional.

1.1.1.7 Image Interactions

At the time of the capability negotiation, the image interactions are determined. The VP Client must specify the formats it can encode indicating as many formats as it can. This will allow the server to determine the appropriate format for transmission. It may be that the server might use only one of the formats specified for over the air transmission. The type of image used is specified per image transmission. Support for the improvement of visual clarity might be supported by servers and clients (if they both support this feature). In this case, at the user's behest, the system can choose to retransmit the picture possibly with lower compression or in an improved format.

Image Interactions are intended to simplify the easy handling of images and rendering of compressed and uncompressed pictures over the air. The image system is lossy in that the picture is recompressed (this is avoided if the final format supported and the format of the original picture is the same) in the negotiated format.

1.1.1.8 Widget Interactions

The aim in providing support for Widget Interactions is to allow state of the art operating systems that have compact Widgets to make very effective use of their capabilities. The system at the time of capability negotiation indicates support for Widget Interaction. The Widgets are then rendered on the display. They are updated and maintained by the client and all actions on the Widget, including selections and are sent back to the server. Selections are sent only after the user makes one and not while he scrolls through the list. Typically servers could also maintain a mirror of the client's Widget and reflect actions on it.

Scrolling actions are not typically sent over the wire until the final state is reached at which point a "Scrolled ToText" request is sent.

1.1.1.9 Advanced Usage of Compound Operations

The usage of Compound Operations tends to make things difficult for Servers. For this reason it is important to make client behavior specific for each sequence of compound operations. Compound operations tend to produce many failure cases as any one of a sequence can fail. Sequence numbers give a server a chance to recover from failures due to over the air corruption or errors. However, Client behavior must strive to respond predictably. This allows Servers to make best case efforts and assumptions.

VP Client behavior requires that clients stop performing subsequent operations in a sequence of compound operations if one operation fails. This behavior allows servers to recover by looking at the error on the failed request and replaying subsequent requests in the set.

Further, VP Clients must cache Compound Requests made to on screen drawables. This is required due to OnAction style operations.

In the case of OffScreens of the current active application, the client must request a REPLAY of all requests to a drawable at the time of a SHOWDRAWABLE and reach the state in which the drawable was at the time of the request to SHOWDRAWABLE.

It is typical that this implies that Clients cache either all or no operations on any drawable. The intention must be to try and preserve over the air bandwidth and user latency.

A further use of advanced compound operations involves the definition of visual objects and movement actions on them. Support for Visual Objects is a strictly optional feature for a VP Client. . A Visual Object is a persistent compound request that defines a grouped graphical object. The object once defined can be custom moved anywhere on the screen or resized. The CREATEVISUAL, SHOWVISUAL, HIDEVISUAL, MOVEVISUAL and RESIZEVISUAL requests are intended to support this. The Visual Object is intended to support icons and graphical cursors typically with Alpha Blending. A future version of this protocol will address even more complicated graphical operations using Visual Objects. The PAUSE operation can be used along with MOVEVISUAL operations to indicate cursor movements. Typically, it is required that small sequences with very short pause times are specified. This is because of the intention to avoid excessive threading requirements on the UE or handset in this version of the protocol.

Compound Operations are also used by the input system to indicate event sequences.

1.1.2 Overview of the Event Handling Protocol

The Event Handling Protocol defines the actions taken by the event system. The actions of the VP Client are outlined in this document. The Event System tends to allow the VP Client a chance to handle requests sent to it. The goal of the VP protocol in this is to allow the handset a simple way of sending user events back to servers and the application to handle them. The various events that are defined in the protocol represent actions by the user or are the result of actions on the system by the user.

Typical actions include Touch Events, Key Events, Mouse Events and Speech Events. There are sequence numbers that typically get reset across active sessions. The events are delivered in order and processed in order. VP Clients also deliver the causal events that let the state of the system change.

The event handling protocol that the client implementation must follow requires that events be delivered in order and that duplicate handling of events does not take place. For this sequence numbers are used. This must proceed in sequence from 0 to 65535 and then rotate back to 0 on any given session. The connection and state on the client for the Event Handling Session must follow the same states as the Drawing Protocol. This one-to-one association guarantees that events are not delivered incorrectly. Thus when VP Clients transition they must transition both connections. The Event Handling protocol is subsequently tied to the handling of various simple actions.

At the time of EventSystem Initialization, the VP Client specifies the various event systems resident on the device. If Speech (input) is one of them, then there could be multiple possibilities about how the server could get speech input from the client and additional session level interactions might need to be established to enable this.

It is additionally possible for the VP Client to use a proxy or an agency to deliver events to the VP server. The presence of a proxy could simplify interactions by allowing VP Clients to persist with connections, allow the VP Client to send speech to a different location from the other events or to allow input to be sent to multiple applications without much reconnect time.

1.1.2.1 Mouse, Key and Touch Panel Events

Mouse, Key(or Button) and Touch panel events generate requests that get sent to the server. The events are delivered in sequence over the wire. These are traditional Input device events that specify a click or a press or a touch panel touch. Typically they specify a location. In the case of Key Panels, the DTMF or keypad touch is delivered translated as an ASCII character string. Key panel press events should be batched and sent as KeyString Event requests as much as possible. They can also be echoed on the local terminal when there is local support for Widgets. (for instance, Text Boxes, TextAreas and TextFields will echo local events). Typically, more sophisticated devices with a small keyboard should try to support TextAreas and TextFields to allow simple and typing functions. (but this is only a recommendation). If they do not support these Widgets, they should try to support the DrawRectTextBox function. When DrawRectTextBox is supported, the handset should echo all data upto the point where the TextBox is full leaving additional actions to be taken by the server. Graphiti writing as seen in contemporary handheld devices also fall under the purview of Key events.

If neither TextField, TextArea Widgets or TextBoxes is supported, the Event System should fall back to echoing characters back to the server.

Touch Panel Events too can be compounded as a string of actions and sent to the server. These are line drawings, etc. Touch Panel Events can also form the basis for actions to a handwriting recognizer(application). In this case, the sequence of events is sent to the server as a compound event using DELIVEREVENTS. The Server then recognizes the character and issues a DrawChar or DrawString Event.

1.1.2.2 State Transition Events

The various state transition events that take place with respect to session connections are also sent back to the Server (Application). Servers too, can initiate state transitions through the CHANGESERVER Request. (Called an Application Worm Hole, this is similar to a hyperlink button, and causes a new application to be launched (Change Server results in the VP Client reconnecting with a new server which could be on either the same machine or on a different machine). The Client could also initiate a link to a new Application from the UE. Subsequent to the request to launch the new application (on another server) the server sends the CHANGESERVER request. The VP Client could check with the user at this point or could go ahead and move the connection into the SUSPENDED state(as recommended by the CHANGESERVER REQUEST) or the TERMINATED STATE if the Application is Exiting. State Transition Events can also occur from User Actions that are local to the Client. The result is that the Client moves to a new state with respect to this application. State Transition Events can be delivered back to the Application Itself. It is typical although not necessary for servers to suspend applications when the client is moved to the SUSPENDED state.

Typically, state transition events are sent to indicate a change with respect to a session with an application. It is possible for the VP Client to seek the user's advice on whether to disconnect or terminate the current set of active applications at the time of poweroff. (not necessary).

A system list of the current set of applications running on behalf of the users can be obtained using the APPLICATIONLIST request. This request is made to the ApplicationListManager(ALM). The VP Client can use this information to browse and decide the list of Applications the User is currently running and where(and additional information about them). This gives the user access to his environment and the ability to reconnect to any application in it.

1.1.2.3 Speech Interactions

The role of Speech is to enable speech and multimodal applications and act as a means for delivering it over a shared channel. Speech can be both an input and output in such applications and the event system deals with the use of Speech as Input. Speech is sent in one of several formats to the server. Speech Recognition systems on the server would recognize the spoken word and the application would display and verify what was spoken. This acts as a feedback mechanism to the user and helps correct and rectify errors. Speech can also be a means to verify and authenticate a user and speaker identity systems have been in use. It is preferable to use Raw Speech for speaker identity.

1.1.3 Overview of the Speech Interactions and Protocol

Speech can occur both in the data channel or outside the data channel. (over a separate channel). In GPRS systems, the system might support simultaneous modes as well as a swap mode or only support data mode. Multimodal interaction is possible in all three modes. Typical signal processing system use Voice Activity Detection(VAD) to detect moments of silences and these are used in contemporary cellular voice systems. Multimodal Man-Machine Applications involve much longer silences than regular phone converations and involve much less talk typically. There is a burst followed by other actions and then a burst of speech. Although separate voice channels can be established and used through the length of the application, such usage may not seem efficient for multimodal applications. The other possibility is through the data channel. When speech is sent over the data channel, the VP Client could choose to either send it as part of the DeliverNextEvent RPC request or using a separate channel or IP connection using the Session Initiation Protocol and RTP/RTSP to send data to the server application. It is also not necessary for the speech data rate in multimodal applications to match the channel rate(it could be higher instantaneously) as one could assume that even though the data channel rate is low, the bursts of speech activity allow one to spread the speech over a longer time. Further in Man-Machine communications, delays are not as important as in person-person communications. The formats for speech are specified in the next section. Several formats are possible. The UE and the server must agree on a format. It is preferable if the speech recognizer and the handset agree on the format that the recognizer uses internally as a conversion from one format to another might lose speech information. This is again decided as part of the capabilities and negotiations.

If Speech is sent over the dedicated speech channel and involves a phone call that terminates just across the air interface(probably at an MSC), then it is typical for speech to be recognized by a speech recognition system there. This could be the same location as the application. If it is not, then speech could be forwarded(relayed) to the actual server using a server to server Media Gateway Session (and is beyond the scope of this specification). If Speech is sent over the data channel using the Event System Connection and as part of the DeliverNextEvent RPC, there is no need for a separate Speech Connection. If this is found to be unsuitable by the client and server, then it is possible to have a separate RTP/RTSP connection and this is negotiated as part of the Event System Initialization. It is also possible for the VP Client's speech to always be sent through a proxy to the current Application Server. It is also important to note that Speech either recognized or unrecognized can be forwarded back to the Application List Manager UI(and is discussed later).

Speech can be sent in various forms. There is the simple form of speech that involves sampled raw speech. Another form could be ADPCM. A third form of speech is the one used in GSM Networks(RPE-LTP). 3G PP has specified AMR which has many internal modes of ACELP. A fifth format is the one used by the Sphinx system which uses homomorphic analysis of speech and involves cepstral and delta cepstral parameter transmission.(input from Companies is needed for this) It is preferable if some form of noise cancellation is done as part of the process. This could be done either at the server or at the client.

1.1.3.1 Input Methods and Speech Recognition

The several (pointing device)input methods used like Touch Panel, Mouse, etc. can be complemented by speech. Speech input can be fed back into the user interface. For instance, a user might specify the new cursor setting using the Touch Panel and then use speech input to update the TextField he has targeted. Also it is possible for speech inputs to cause multiple actions both in the active APPLICATION or in a secondary application.

Speech Input can also serve to enable meta-actions on the user interface. For instance, a "List file menu" request might imply that the UI list the File menu. Such Interfaces can be developed for an application. Speech can also be input to a VoiceXML browser. Several additional possibilities exist.

1.1.3.2 Speech Output Methods and Text-to-Speech Conversion

The Speech Aspects of the protocol relate to delivery of Text for TexttoSpeech conversion when the system supports it and the delivery of raw speech(in the negotiated format) to aid Speech output to support Multimodal applications.

1.1.3.3 Recommendations for Multimodal Applications and Server Behavior

Multimodal Applications will have a significant impact on the future of mobile computing. Multimodal applications require that the platform and the application interoperate to provide a unified look and feel involving both an audio and a visual input/output mechanism. Multimodal Applications accept input from key and touch panels as well as from Speech. The Spoken word could lead to a meta-action (like help on the overall screen), might be context sensitive to the current location of the cursor or might lead to the launch of a new application (and have been intended for the Application Manager). The semantic import of the speech could thus vary with the User Interface. The use of deictic gestures (including pars-pro-toto deixis) with coordinated speech input offers new and powerful user interfaces that could easily for the basis for building compelling and attractive user interfaces. The interactions to support this might involve additional application level protocols, server to server protocols and use conditions that go beyond the scope of this specification. Further, multimodality brings added robustness as errors in speech recognition could be rectified through visual reverification. Typical Multimodal Applications include VoiceXML browsers, future Multimodal Markup Language browsers, java.speech enabled AWT applications, etc. The W3C is actively studying the scope of multimodal web interfaces and is likely to also create a markup language to bring new killer applications[15].

1.1.4 Overview of Multimedia Interactions and Protocol

The main multimedia interactions relate to the delivery of audio and video between a VP Server and the VP Client. Multimedia Audio and Video are heavy bandwidth users and need realtime support. This makes multimedia streaming a challenge in mobile networks. Heavy rate control and error robustness handling is required for realtime streaming in Wide Area Wireless environments. Instantaneous rates can both exceed the channel rate as well as the random moving average rate from the original source can be too high for use on the particular channel. This implies that the VP Server must reduce rates to match the available bandwidth in the air interface through multiple means including lossy compression schemes, recompression, lowering screen rates, etc. Users should also have a say in deciding the rate they want and they might want higher rates for certain kinds of activity and lower rates for others.

The MExE stage 1 specification require fine grain user control over streamed media. Currently, 3G PP is specifying a Packet Switched Streaming Service(PSS [16]) for media streaming. This specifies multiple formats including MPEG-4 and H.263. In addition, a multimedia messaging service is being defined by 3G PP to support the delivery of multimedia messages to clients. This too defines several formats and protocols to be implemented by the MMS User Agent. Various capabilities provided in MPEG-4 are again optional features.

VP Clients can have Multimedia support as a strictly optional feature.

1.1.5 The Mobile File Store Interactions and Protocol

At the broadest level, user state typically includes permanent storage including owned application storage, data and applications.

Permanent storage is scarce in most current day handsets and handheld computers. Thus permanent storage inside the network seems a viable option for end users. VP Clients could support this through several means. The first would be to implement a networked file system to browse data from handsets. NFS V4 is also built around ONC RPC and shares several features and functionality with VP Clients. This could be used to implement a networked file access system. Another alternative is for the Application Manager to provide a visual file browsing capability from the server to a virtual view of the users files located inside the network.

Server supported file set migration and replication capabilities are additionally important in mobile application environments and the presence of a mobile file store and the ability of users to manage it might serve as a complementary addition and support the notion of a Virtual Home Environment that users find ubiquitously available.

The Mobile File Store is a strictly optional and complementary.

1.1.6 Security Interactions and Protocols

The VP Client protocol uses a slight variant of the RPC specification (and XDR) defined in RC1831 and RFC1832. Several security flavors traditionally existed for RPC notably Unix Security, DES, Kerberos. In recent years, RPCSEC_GSS security flavor as defined in RFC2203(and uses GSS-API as specified in RFC2078) has been proposed for the addition of stronger and more secure wide area connectivity. RFC2847 specifies the LIPKEY infrastructure for use with RPC. This is a low infrastructure public key system for use with RPC.

Further discussion on the detailed methods for implementing Security on a VP Client is expanded in brief in Section 4. Detailed specification is deferred to a sister document of this specification.

1.2 General Definitions

The definitions below are used to illustrate the use of terminology in this document. Additional terminology reference is also available from 22.057 the MExE Stage 1 specification and 23.057, the MExE Stage 2 specification and a few referenced documents. This draft version does not however predefine all terms prior to use and several must be understood in the context of their use.

VP Client
The term "VP client" describes the software on the User's Equipment which handles the display and input of the UE and Implements the VP Protocols and interactions described in this document

VP Server
A server that runs applications on behalf of the VP Client and uses the VP Protocols to interact with the Client

BootStrap Server
Runs DHCP and enables the VP Client to find a variety of information that it is looking for. Also runs the Application List Manager

Application

List Manager
The Application List Manager is a service that runs on the BootStrap Server and implements the server side of the Application List Protocol. At the VP Client request it could launch a new application or connect the user to application to any of his existing applications or launch the Application Manager UI

Application

Instance
The Application Instance is an executing VP Application that is launched and running on a VP Server.

1.3 Overview of the Interactions for bootstrapping VP Clients

This section is only a recommended guideline for bootstrap in the context of IP. VP Clients could use alternative mechanisms to bootstrap themselves and VP Clients could run on alternate transports and networks.

A variety of interactions exist for bootstrapping VP Clients. They include the initial DHCP request to the DHCP BootStrap Server. Typically every handset should be in an environment that has a DHCP server. Using the DHCP response (and following a possible authentication), the VP Client establishes a connection to the Application Manager and could then either automatically return to the previously running Application (by querying the Application List Manager) or launch the Application Manager UI. From the VP Client's perspective the core of the bootstrap process is intended to return to the previously existing state of the VP Client.

1.3.1 DHCP and bootstrap support in the Virtual PalmTop

The DHCP bootstrap process is intended to enable VP Clients to gain an identity (like a mobile IP address) and connect to their existing state in any environment that the user is in. DHCP is defined in RFC2131. DHCP extensions to support VP Clients in Mobile IP environments will be defined in a related sister specification.

A variety of servers and services information are needed as part of the VP Client bootstrap process. These include security and authentication services and information, User Identity information, and other configuration information. Additional Host Profile identification and information could be obtained through server to server protocols and is beyond the scope of this specification.

1.3.2 The Application List Manager

The Application List Manager(ALM) is an RPC service that runs on a server identified by the DHCP server in the UE's service environment. It is intended to support the UE's environment and its mobility. It is implicit that the Application List Manager in a mobile environment will involve a server to server protocol or mechanism to obtain information on the user's current environment and how to connect back to it.

The ALM also helps the UE join one of its existing applications or binds to the last run application.

The ALM and its associated protocol is designed to offer a UE and the MExE service environment a supporting framework to enable the Virtual Home Environment or VHE[3]. The intention is to allow serving networks to provide complete access to a user's environment, his running applications and to enable users to personalize their service environments. The ALM mechanisms are intended to use existing HLR and VLR databases with extensions to handle and support the access to and the easy provisioning of new services. The retrieval and reestablishment of previously established state is a cornerstone of VP and a necessary requirement for the idea of ubiquitous computing.

1.3.3 The Application List Manager Protocol

The Application List Manager Protocol is used to communicate with the ALM. A VP Client sends ALM requests to the ALM RPC service. The protocol serves to retrieve Application information and for Application Discovery and connection. It is a mechanism to enable VP Clients to find appropriate VP Servers. ALM Servers cooperate with each other to discover the user's existing applications and application environment.

New Application Launching is handled in cooperation with the ALM. VP Clients being mobile migrate to new virtual environments. In these environments, new applications could run on appropriate servers and new applications might exist. The ALM is intended to support this mechanism. The VP Client uses the ALM Protocol for its Application needs. VP Servers also use the ALM protocol when there is a button or link that leads to the launch of a new application. In this case, the ALM Protocol as well as additional mechanisms could be used to obtain an appropriate Server. Once the appropriate server is found, the application is launched on this server and the VP Client is informed about it.

Some of the server- to -server aspects of ALM is beyond the scope of this specification.

2. Protocol Data Types

This section provides the various data types used by the protocols listed in this document. The various data types listed here are used to implement the protocols required.

2.1 Basic Data Types

Data Type

Definition

 int32_t

typedef int int32_t;

uint32_t

typedef unsigned int uint32_t;

int64_t

typedef hyper int64_t;

uint64_t

typedef unsigned hyper uint64_t;

short_t

typedef short ushort_t;

ushort_t

typedef unsigned short_t;

Uchar

typedef
unsigned char Uchar;

Uchararray

typedef
unsigned char Uchararray<>;

Fid

typedef
short Fid;

Namestr

typedef
string Namestr<MAXNAMELEN>;

Drawable

typedef
opaque Drawable[DRLENGTH];

Parray

typedef int Parray<>;

Seq_t

typedef
unsigned short seq_t;

Wid

typedef short Wid;

Enums

typedef unsigned short enums;

Procnums

typedef unsigned short Procnums;

VPstat

typedef unsigned short VPstat;

Reqnum

typdef unsigned short ReqNum;

2.2 Constants and Enumerations

const RGB = 3;

const RGBA = 4;

const YUV = 3;

const MAXNAMELEN = 255;

const StaticGray = 0;

const GrayScale = 1;

const StaticColor = 2;

const PseudoColor = 3;

const TrueColor = 4;

const DRLENGTH = 4;

const CURRENTDRAWABLE = 0

const SAVEDDRAWABLE = -1;

enums sessionstate {

ACTIVE = 0,

SUSPENDED = 1,

DISCONNECTED = 2,

TERMINATED = 3,

};

enums colorsystem {

CL_RGB565 =
1,

CL_RGB888 =
2,

CL_RGBA8888 = 3,

CL_YUV888 =
4

};

enums eventsystem {

EVT_MOUSE = 1,

EVT_REMOTE = 2,

EVT_KBD = 3,

EVT_JOYSTICK = 4,

EVT_SPEECH

};

const MAXEVENTSYSTEMS = 8;

enum imgtype {

JPEG = 1,

GIF = 2,

PIXMAP = 3

};

enums img_enum {

RETOK = 0,

RETRY = 1,

NOMEMORY = 2

};

const MAXIMAGEDATA = 8192;

enums mask {

VisualNoMask = 0,

VisualIDMask = 1,

VisualScreenMask = 2,

VisualDepthMask = 4,

VisualClassMask = 8,

VisualRedMaskMask = 16,

VisualGreenMaskMask = 32,

VisualBlueMaskMask = 64,

VisualColormapSizeMask = 128,

VisualBitsPerRGBMask = 256

};

enums Fnttype {

THIN = 0x1,

LIGHT = 0x2,

REGULAR = 0x4,

BOLD = 0x8,

ISITALIC = 0x16,

ISUNDERLINE = 0x32,

};

enums Labelhow {

LEFT = 0,

RIGHT = 1,

CENTER = 2

};

enums ScrollbarType {

VERTICAL = 0,

HORIZONTAL = 1

};

enums TareaScrollbars {

SCROLLBARS_BOTH,

SCROLLBARS_NONE,

SCROLLBARS_HORIZONTAL_ONLY,

SCROLLBARS_VERTICAL_ONLY

};

enums SetTextHow {

START = 0,

APPEND = 1,

INSERT = 2,

REPLACERANGE = 3

};

enums MenuItemType {

MENUITEM = 0,

SUBMENU = 1,

CHECKBOXMENUITEM = 2

};

enums OnOpType {

ONCLICK=0,

ONOVER=1,

ONOUT=2,

ONCLICK2=3,

ONSELECT=4,

OnScrollLUP =5,

OnScrollLDOWN = 6,

OnScrollPUP = 7,

OnScrollPDOWN = 8

};

2.3
Structured Data Types

struct colrgbtype {

/*

byte r;

byte g;

byte b;

*/

char rgb[RGB];

};

struct colrgbatype {

/*

byte r;

byte g;

byte b;

byte a;

*/

char rgba[RGBA];

};

struct colyuvtype {

/*

byte y;

byte u;

byte v;

*/

char yuv[YUV];

};

struct colothertype {

opaque
colcookie[2];

opaque

colval<COLSIZE>;

};

const DRLENGTH = 4;

enums colorsystem {

CL_RGB565 =
1,

CL_RGB888 =
2,

CL_RGBA8888 =
3,

CL_YUV888 =
4,

CL_GRAY2 = 5,

CL_GRAY4 = 6,

CL_GRAY8 = 7,

OTHER = 8

};

enums eventsystem {

EVT_MOUSE = 1,

EVT_TOUCH = 2,

EVT_KBD = 3,

EVT_REMOTE = 4,

EVT_SPEECH=5,

EVT_JOYSTICK = 6

};

const MAXEVENTSYSTEMS = 8;

const COLSIZE = 8;

union Color switch (colorsystem colsys) {

case CL_RGB565:

col565type
colrgb565;

case CL_RGB888:

colrgbtype
colrgb;

case CL_RGBA8888:

colrgbatype
colrgba;

case CL_YUV888:

colyuvtype
colyuv;

case CL_GRAY2, CL_GRAY4, CL_GRAY8:

char

colgray;

case OTHER:

colothertype
colval;

default:

void;

};

union ColArray switch (colorsystem colsys) {

case CL_RGB565:

col565type
rgb565array<>;

case CL_RGB888:

colrgbtype
rgb888array<>;

case CL_RGBA8888:

colrgbatype
rgba8888array<>;

case CL_YUV888:

colyuvtype
yuv888array<>;

case CL_GRAY2, CL_GRAY4, CL_GRAY8:

char

colgrayarray<>;

case OTHER:

colothertype
colvalarray<>;

default:

void;

};

struct ScreenParams {

int
ScreenID;

int
ScrWidth;

int
ScrHeight;

int
ScrWidthMM;

int
ScrHeightMM;

colorsystem ScrCol;

OSC_resp oscresp;

DrwResp
RootDrawable;

/* maybe we need a Font Here */

};

enum imgtype {

JPEG = 1,

GIF = 2,

PIXMAP = 3

};

enum img_enum {

RETOK = 0,

RETRY = 1,

NOMEMORY = 2

};

const MAXIMAGEDATA = 8192;

union ImgArray switch (imgtype itype) {

case JPEG:

opaque JPegData<MAXIMAGEDATA>;

case GIF:

opaque
GifData<MAXIMAGEDATA>;

case PIXMAP:

ColArray
ColorArr;

};

struct EventParams {

int
EventSysID;

eventsystem evttype;

bool
DragAndDrop;

};

#define MAXRECTS 1

struct Rectangle {

int X;

int Y;

int Width;

int Height;

};

typedef struct Rectangle Rectangle;

struct RectSize {

short Width;

short Height;

};

struct Coordinate {

short X;

short Y;

};

union WidgetU switch(bool created) {

case TRUE:

Wid widget;

case FALSE:

void;

};

union WidgetListU

switch(bool created) {

case TRUE:

Wid widget<>;

case FALSE:

void;

};

Union Widsize switch (bools recommend) {

Case TRUE:

RectSize

size;

Case FALSE:

Void;

};

struct Button {

Label label;

};

struct CreateLabelReq {

int ScreenID;

Drawable drw;

Button button;

};

struct Checkbox {

Label label;

bool on;

WidU checkboxgroup;

};

struct ChoiceItem {

Uarray Name;

};

struct errseqreply {

Seq_t
received;

Seq_t
expected;

};

union ObjectU switch(bool created) {

case TRUE:

Objid Object;

case FALSE:

void;

};

enums speechformat {

SPEECH_CALL=0,

SPEECH_SIP_RAW = 1,

SPEECH_SIP_RPE_LTP = 2,

SPEECH_SIP_SPHINX = 3,

SPEECH_EVT_RAW = 4,

SPEECH_EVT_RPE_LTP = 5,

SPEECH_EVT_SPHINX = 6

};

2.4
Error Definitions

VPOK -
 Request was performed successfully

VPCOMPNOTSUPP - Compound Operations is not supported

VPONOPSNOTSUPP - Does not support "onxxx" operations

VPUNWRAP - unwrap the compound operation as it is too complicated

VPNOTSUPP - Procedure is not supported

STALEDRAWABLE - The drawable supplied is stale - (recreate and replay the sequence on the drawable to reestablish its state)

OUTOFSEQ -
Sequence Number failure - (received, expected seqnum is appended)

VPINVAL -
The argument supplied was invalid

VPCOLSYSNOTSUPP -
The ColorSystem chosen is not supported

EVENTSYSNOTSUP - One of the EventSystems chosen is not supported

IMAGESYSNOTSUP - One of the ImageSystems chosen is not supported

FONTSYSNOTSUPP - one of the FontSystems chosen is not supported

3. RPC/XDR Usage and Behavior

VP is mostly based on the use of RPC and XDR[6], [7] and is intended to completely reuse existing specifications, leverage security styles and because of the ubiquitous availability of both software and documentation on the subject.

3.1 Deviations from the RPC/XDR specification

One departure from RFC1832 and RFC1831 is that data in the XDR format is rounded off on 2 byte boundaries rather than 4 byte boundaries. This is due to the need to conserve bandwidth and is one of the methods to reduce bandwidth usage.

A further optimization is the definition of a short enumeration enums and a short boolean type bools.

3.2 Sequence Numbers and their use

Sequence Numbers are used to identify requests and most protocols require actions to be executed in order. Thus every RPC request in the VP protocol (and the Event System Protocol) begin with a sequence number. This is implied in the sections 5, 6 and 7 protocol specifications.

4. Security Interactions and RPCSEC_GSS

Security Interactions could change based on the location of usage. It is important to note that VP Clients can be used in both local environments, where the level of trust and security is higher and hence does not require sophisticated security, as well as wide area environments where sophisticated security will be very important. For this reason, some of the implications of security must be carefully explored in the context of mobile environments.

The VP protocol uses RPCSEC_GSS where appropriate and leaves the specifications for security to a related specification with the important comment that much of the onus of supporting a variety of flavors is implicitly placed on servers. VP Clients could choose to implement just one appropriate security flavor other than AUTH_NONE.

 5. The Graphics and Speech Interface Protocol

 The detailed specification of the Graphics and Speech Interface Protocol is outlined below. The protocol is designed to enable VP Clients to service requests from a Server. It defines the protocol interactions and behavior of the client.

Please note that the terminology of Client and server used here is the reverse of traditional use in RPC environments. The VP Client is the server side of the RPCs

sent by the VP Server. To be consistent this document uses VP Client even when the software described is the server side of RPC.

5.1 Null Operation

Procedure 0: NULL - No Operation

SYNOPSIS

<null>

ARGUMENT

Void;

RESULT

Void;

DESCRIPTION

Standard NULL procedure. This is used to measure overhead or is sometimes overloaded to handle initial security negotiations.

ERRORS

None

5.2 Compound Operations

Compound operations is adapted from its use in NFS V4. Although compound request support is optional on clients, it can be said that it is a recommendation for handsets with more advanced capabilities, particularly those targeted for Wide Area low latency networks. The model for compound operations is for the client to service requests in order till a request fails. On failure, subsequent operations are not handled. The operations happen on the "current" drawable. There is also the "saved" drawable.

The basics of the COMPOUND request involve sending a series of (op + args) requests.

The reply involves a corresponding series of status and results. The onus is on the server to handle recovery from errors. (if it keeps track of requests it can choose to reestablish state on the drawable or reshape the UI).

SYNOPSIS

Compoundargs (compoundres

ARGUMENT

union VP_args switch (procnums proc) {

Case <OPCODE>: <argument>;

….

}

struct Compoundargs {

VP_args VP_argarray<>;

}

RESULT

Union VP_res switch (procnums proc) {

Case <OPCODE>: <argument>;

….

}

struct Compoundres {

VPstat
status;

VP_res VP_rearray<>;

};

DESCRIPTION

The Compound Procedure combines multiple VP requests into one single request. The VP client performs the individual requests of the compound request in order till one of the requests fail. The result is the same as that of the last request executed. Several operations have a void response(these are mandatory requests that involve simple

Drawings). No bytes are sent in the response for these.

IMPLEMENTATION

The implementation requires that the VP Client conform to the capability negotiation agreed upon. VP Clients that support Compound requests and the OnAction operations defined would need to cache compound requests on the root drawable.

ERRORS

All defined errors.

VPCOMPNOTSUPP, VPONOPSNOTSUPP - can both be returned by Compound.

In addition, the client can either say that it does not support compound operations or ask the server to unwrap the compound operation as it is not able to execute the long sequence. It can also say that it does not support Onxxx operations.

5.3 VirtualPalmTopSystem Info

SYNOPSIS

VPSystemInfoargs (VPSystemInfores

ARGUMENT

Union SpeechSupport switch (bools supported) {

case TRUE:

SpeechFormat
speechformat<>;

Case FALSE:

Void;

}

VPSystemInfoargs {

Bools
supportcompound;

Bools
supportonop;

SpeechSupport
speechInput;

SpeechSupport
speechoutput;

colorsystem
colsys<>;

eventsysem evtsys <>;

imgtype
imgsys<>;

fontsystems
fontsys<>;

};

RESULT

VPSystemInfores {

Bools
supportcompound;

Bools
supportonop;

SpeechSupport speechoutput;

SpeechSupport speechinput;

short NumActiveDrawables;

short NumCachedDrawables;

int64_t
SuppOptProcflags;

short
ScrWidth;

short
ScrHeight;

short
ScrWidthMM;

short
ScrHeightMM;

colorsystem ScrCol;

Bools
supportforVisuals;

Bools
supportforfillstyles;
eventsystem evtsys<>;

imgtype imgsys<>;

fontsystems fontsys<>;

}

DESCRIPTION

This represents the capability negotiation that takes place between the client and the server regarding the VP Client's display and Input capabilities. The VP Server informs the VP client regarding its own support for the display size, color system used, the supported input and output capabilities, support for compound operations etc. It is advisable that VP Servers support the broadest possible set of capabilities.

The client replies with indications about its own support for Compound Operations, OnAction operations, various forms of speech output etc. from the list of capabilities the server supports. This results in a lower common subset as the negotiated capabilities used by servers to access VP Clients.

The reply also indicates if the VP Client supports colorsystems beyond the identified systems. If this is the case, the VP Server can then use GetVisualInfo to query for additional capabilities.

This is a mandatory procedure and all VP Clients must support it.

IMPLEMENTATION

It is advisable that VP Clients look to follow recommended profiles as advised by the Classmark. This will ensure that servers support their capabilities. However, it is better if servers support the widest possible array of VP Client capabilities.

A VP Server might not use this operation if it has previously negotiated and might choose to directly proceed with either initializing the graphics system or directly to request actions on drawables, caches etc.

The recommendations that VP Clients make on Cached Drawables are purely advisory. As they disconnect and reconnect it is possible that they might choose to discard cached state. The Onus is on servers to always maintain state and be able to recover when VP Clients have discarded state across disconnections and reconnections.

VP Client implementers must note that servers can use server to server protocols to transfer negotiated capabilities to minimize over the air traffic.

ERRORS

INVAL - if the arguments supplied by the server are invalid

5.4 InitializeGraphicsSystem

SYNOPSIS

InitializeGraphicsSystemargs (InitializeGraphicsSystemRes

ARGUMENT

Struct InitializeGraphicsSystemargs {

Colorsystem Scrcol;

Color
fg;

Color
bg;

short
ScrWidth;

short
ScrHeight;

eventsystem evtsys<>;

imgtype imgsys<>;

fontsystems fontsys<>;

bools
isnewapp;

bools
isRootActive;

opaque
AppCookie[APPCOOKIESIZE];

};

RESULT

struct Offscreenresp {

short NumDrawables;

};

union OSC_resp switch (bool hasoffscr) {

case TRUE:

Offscreenresp offscr;

case FALSE:

void;

};

union DrawableCache switch(bool supportcache) {

case TRUE:

Drawable drcache<>;

Case FALSE:

Void;

}

union DrwResp switch(bool created) {

case TRUE:

Drawable
drw;

case FALSE:

bool
updated;

};

struct InitializeGraphicsSystemres {

bool
hascookie;

DrawableCache drawablecache;

colorsystem ScrCol;

OSC_resp oscresp;

colorsystem ScrCol;

OSC_resp oscresp;

DrwResp
RootDrawable;

};

DESCRIPTION

This is the graphicssystem initialization that takes place after clients and servers negotiate. The system attempts to specify whether the application is old or new and then advises the VP Client about the screen parameters previously negotiated, the foreground color, the background color, the eventsystems negotiated, etc.

The VP Client is advised on the Application and whether this is a new application or an old one. If it is new, it is advised on the whether there have been any intervening updates to the screen while the user was disconnected(if there were then isRootActive is false).The AppCookie must be unique on the server across reboots, etc. Thus the tuple, server address and AppCookie represent a unique identifier for the application from the VP Clients point of view. A VP client that supports caches can indicate that it has the Appcookie by setting hascookie to TRUE.

The VP Client if it caches drawables then indicates the list of cached drawables for this application. If the RootDrawable was also cached, the Client updates the screen with the cached version of the RootDrawable(only if isRootActive is TRUE). VP Clients that do not support caches must still conform with the protocol and set supportcache as FALSE.

IMPLEMENTATION

VP Clients that support Caching must cache Appcookies and server tuples as well as the current Root Drawables to effectively return to previously existing and cached state. They should cache drawables whole or not at all.

ERRORS

INVAL - The arguments supplied by the server are invalid

VPCOLSYSNOTSUPP -
The ColorSystem chosen is not supported

EVENTSYSNOTSUP - One of the EventSystems chosen is not supported

IMAGESYSNOTSUP - One of the ImageSystems chosen is not supported

FONTSYSNOTSUPP - one of the FontSystems chosen is not supported

The errors are unlikely but on seeing these, the VP server will attempt to renegotiate.

5.5 InitializeEventSystem

SYNOPSIS

InitializeEventSystemArgs
 (
InitializeEventSystemRes

ARGUMENT

union SpeechSysAction switch (SpeechFormat) {

Case SPEECH_CALL:

String
PhoneNum;

Case SPEECH_SIP_RAW, SPEECH_SIP_RPE_LTP, SPEECH_SIP_SPHINX:

Address
SIPServer;

Case SPEECH_EVT_RAW, SPEECH_EVT_RPE_LTP, SPEECH_EVT_SPHINX:

Short hostcookie;

};

Union EventSysAction switch (evttype) {

Case EVT_KBD, EVT_MOUSE, EVT_TOUCH, EVT_REMOTE, EVT_JOYSTICK:

Short hostcookie; /* this is typically a port address on the server */

Case EVT_SPEECH:

SpeechSysAction speechaction;

};

struct InitializeEventSystemArgs {

EventSysAction evttype<>;

};

RESULT

struct EventParams {

short
EventSysID;

eventsystem evttype;

};

union EventU switch (bool evtreply) {

case TRUE:

EventParams evtparms;

case FALSE:

void;

};

union InitializeEventSystemRes switch (Vpstat stat) {

 case VPOK:

EventU
evts<>;

 Default:

Void;

}

DESCRIPTION

This initializes the EventSystems for sending input back to the server. The effect of this is to initialize the list of event systems the VP Client supports and to connect to Speech systems when they are supported. This requires the initialization of connections by the Event System Protocol and the establishment of a conduit back to the VP server from it. The hostcookie is typically a port on the server that the Event System Protocol could use (either directly or through an agency). The request specifies the various possible event systems to initialize. The response however specifies the list of Event Systems that were actually initialized.

If Speech input is supported the PhoneNum or SIPAddress is provided by the server as a recommendation.

Support for this request is mandatory.

IMPLEMENTATION

When Caches are known to exist and compound requests are supported, this request itself can be compounded with InitializeGraphicsSystem. This will allow fewer over the air transfers as part of reinitialization or initialization.

In single threaded VP Clients this might take a period of time as the Event System is initialized by the VP Client implementation.

VP Clients could choose to switch to the PhoneNum or they could continue with their existing number. If they do continue then the VP Client must indicate back to the server on the InitEventSystem request as part of the initialization of the Event System Protocol the server that it is using. If it uses an agency or proxy for its regular event system requests, that too is indicated by the InitEventSystem request. (agency support will be explained by an addendum or reference).

ERRORS

INVAL - when arguments are invalid

EVENTSYSNOTSUPP -
when a system recommended by the server is not supported

EVENTSYSCONNECTERROR - there was a problem connecting or establishing the connection with a certain eventsystem.

5.6 FreeGraphicsSystem

SYNOPSIS

FreeGraphicsSystemArgs (FreeGraphicsSystemReq

ARGUMENT

FreeGraphicsSystemArgs {

opaque
AppCookie[APPCOOKIESIZE];

};

RESULT

Void;

DESCRIPTION

Free the GraphicsSystem associated with the AppCookie. This frees all resources, caches, etc and disconnects the eventsystem as well

IMPLEMENTATION

Typically VP Clients could choose to return to the ALM when this request is seen. This will allow the VP Clients to bind to additional applications or advise the user that the application has exited.

ERRORS

5.7 GetVisualInfo

SYNOPSIS

GetVisualInfoargs (GetVisualInfores

ARGUMENT

Struct GetVisualInfoargs {

mask
masks;

Vtemplate vtemplate< >;

}

RESULT

Enums Colorclass {

DIRECTCOLOR = 0,

GRAYSCALE = 1,

PSEUDOCOLOR = 2,

STATICCOLOR = 3,

STATICGRAY = 4,

TRUECOLOR = 5

};

Struct VisualInfo {

short depth;

enums Colorclass;

unsigned long red_mask;

unsigned long green_mask;

unsigned long blue_mask;

short colormap_size;

short bits_per_rgb;

bools
tilesandstipples;

}

union GetVisualInfores switch (bool ret) {

case TRUE:

VisualInfo Vinfo<>;

case FALSE:

void;

};

DESCRIPTION

For advanced Graphics Systems like gaming systems, GetVisualInfo allows the use of new colormap handling and visuals. This concept is adopted from X Windows. When the colorsystem is OTHER, this is used to obtain information about that colorsystem.

IMPLEMENTATION

The use of this capability is mainly intended for supporting better graphics and can be specific to certain applications and devices.

Many VP clients may not support this capability. (depends on input).

ERRORS

VPINVAL - parameters are invalid

VPNOTSUPP - this procedure is not supported

5.8 SetFillStyle

SYNOPSIS

SetFillStyleArgs (VPstat

ARGUMENT

Enums FillStyle {

FILLSOLID = 0,

FILLTILED = 1,

FILLSTIPPLED = 2,

FILLOPAQUESTIPPLED = 3

};

union SetFillStyleU switch (enums FillStyle) {

case FILLSOLID:

void;

case FILLTILED:

Pixmap
tile;

Case FILLSTIPPLED:

Pixmap
stipple;

}

struct SetFillStyleArgs {

Drawable drw;

SetFillStyleU sfsu;

Coordinate
tsorigin;

}

RESULT

VPstat;

DESCRIPTION

SetFillStyle is again used in advanced graphics systems to paint a brush pattern while drawing or coloring. This request is used to develop better user interfaces in modern UI systems. Pixmap represents the pattern used to transcribe.

IMPLEMENTATION

SetFillStyle is used to develop an improved graphics system and can be used also in gaming etc. VP Clients must support both tiling and stippling. It can be used with compound operations to implement interesting features. Thus advanced VP Clients could support this capability notably if they are interested in gaming etc.

ERRORS

VPINVAL - arguments are invalid

VPNOTSUPP - the procedure is not implemented

VPINVALDRAWABLE - the drawable is invalid

5.9 CreateDrawable

SYNOPSIS

CreateDrawableArgs (CreateDrawableRes

ARGUMENT

struct CreateDrawableReq {

short X;

short Y;

short Width;

short Height;

Color bgCol;

Color fgCol;

bools isOffscr;

};

RESULT

union DrwResp switch(VPstat created) {

case VPOK:

Drawable
drw;

default:

void;

};

DESCRIPTION

Create a new drawable. The drawable could be offscreen or on the screen. The created drawable has the foreground and background colors as indicated.

IMPLEMENTATION

With Compound requests the PUSHDRAWABLE can be used. Otherwise with Compound requests, subsequent actions would be on this drawable.

ERRORS

INVAL - if arguments exceeds screen parameters

VPNOMOREOFFSCR - if the number of available offscreens exceeds the capability of the system

5.10 FreeDrawable

SYNOPSIS

FreeDrawableArgs (void

ARGUMENT

struct FreeDrawableArgs {

Drawable drw;

};

RESULT

Void;

DESCRIPTION

This frees the drawable and all resources relating to it.

IMPLEMENTATION

The associated caches etc. are also freed.

ERRORS

-

5.11 CopyArea

SYNOPSIS

CopyAreaArgs (CopyAreaRes

ARGUMENT

struct CopyAreaArgs {

Drawable src;

Drawable dst;

short X;

short Y;

short Width;

short Height;

short DstX;

short
DstY;

};

RESULT

Vpstat stat

DESCRIPTION

This allows Copying between two areas either within the same drawables or between drawables.

The VP Client copies content from one part of the drawable to another.

IMPLEMENTATION

This is a typical copy request used in Drawing Operations. It could be done either as a simple or as a compound request.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - one of the drawables was invalid

ILLEGAL - exceeded the sizes of the drawable

5.12 ClearRect

SYNOPSIS

ClearRectArgs (ClearRectRes

ARGUMENT

struct ClearRectReq {

Drawable drw;

short X;

short Y;

short Width;

short Height;

};

RESULT

 Vpstat stat

DESCRIPTION

This is used to clear a rectangular area. Typically the area returns to the background color.

IMPLEMENTATION

When this area covers the size of the screen, it might be prudent to purge the cached requests associated with this drawable.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - one of the drawables was invalid

ILLEGAL - exceeded the sizes of the drawable

5.13 LoadFont

SYNOPSIS

LoadFontArgs (LoadFontRes

ARGUMENT

struct LoadFontArgs {

Drawable drw;

bools isQuery; /* is this a query load */

Namestr name; /* uses X Font Conventions */

short Height;

short Width;

short type; /* is a combination of FntTypes */

};

RESULT

struct FontReplystruct {

short ascent;

short descent;

short maxascent;

short maxdescent;

short width;

short direction;

bools isFixed;

Fid fontid;

};

Union LoadFontRes switch (bool fidreply) {

case TRUE:

FontReplystruct
font;

case FALSE:

void;

};

DESCRIPTION

This request loads a font for use within a drawable. The font has a fid which can be used to write data.

IMPLEMENTATION

The Loaded font should conform to the closest equivalent of the request. It might help for implementations to keep a table against popular fonts.

The Fid returned must not be 0. (0 is reserved for the "current" Fid in compound requests).

ERRORS

5.14 FreeFont

SYNOPSIS

FreeFontArgs (void

ARGUMENT

Struct FreeFontArgs {

Drawable drw;

Fid Fontid;

}

RESULT

Void;

DESCRIPTION

Free this Font for this Drawable

IMPLEMENTATION

All fonts loaded are freed when a drawable is freed.

ERRORS

5.15 GetTextWidth

SYNOPSIS

GetTextWidthArgs (GetTextWidthRes

ARGUMENT

Struct GetTextWidthArgs {

Drawable Drw;

Fid fontid;

short ascent;

short descent;

short direction;

short height;

Uarray ustring;

};

RESULT

Union GetTextWidthRes switch(Vpstat stat) {

Case VPOK:

Short Length;

Default:

Void;

}

DESCRIPTION

This returns the length of the string on the client's machine. The client allows servers to evaluate the right length that is suitable for display.

IMPLEMENTATION

VP Clients could implement well known font systems that allow the server to itself decide the length of those fonts.

ERRORS

INVAL - arguments were invalid

INVALDrawable - the Drawable is invalid

INVALFid - there is no knowledge of this Fid

5.16 DrawChar

SYNOPSIS

DrawCharArgs (VPStat

ARGUMENT

struct DrawCharArgs {

Drawable drw;

Fid
fontid;

Color col;

Uchar uchar;

short Offset;

short Length;

short X;

short Y;

};

RESULT

VPStat;

DESCRIPTION

Draw a single character at the location specified.

IMPLEMENTATION

ERRORS

INVAL - arguments were invalid

INVALDrawable - the Drawable is invalid

INVALFid - there is no knowledge of this Fid

5.17 DrawString

SYNOPSIS

DrawStringArgs (VPStat

ARGUMENT

Union Tbstring switch(bools inTB) {

Case TRUE:

Wid
TB;

Case FALSE:

Void;

}

struct DrawStringArgs {

Drawable drw;

Fid fontid;

Color col;

Uarray ustring;

Tbstring Tbstring;

short Offset;

short Length;

short X;

short Y;

bools
isUnderline;

bools
isItalic;

bools
isSelected;

};

RESULT

Vpstat;

DESCRIPTION

Write a string at the specified location. The string is specified in a UTF-16 array. The Tbstring is used to draw into a TextBox. isUnderLine if set causes the string to be underlined. IsItalic causes it to be italicized. IsSelected causes it to be selected.

IMPLEMENTATION

The string must be written in sequence and in the color specified at the location.

VP Client implementations must write the data at the location specified. The onus on ensuring readability and Layout in the case of VP Clients rests on the server, the software environment and the Application. IsSelected is implementation dependent.

In the case of usage in compound requests, if the Wid is the current Wid(0) then the DrawString is on the last created TextArea, TextField or TextBox in the Compound Request. Similarly, if the Fid is current Fid (0) then the DrawString uses the current font that has been loaded.
ERRORS

INVAL - arguments were invalid

INVALDrawable - the Drawable is invalid

INVALFid - there is no knowledge of this Fid

5.18 DrawBytes

SYNOPSIS

DrawBytesArgs (Vpstat

ARGUMENT

Union Tbstring switch(bools inTB) {

Case TRUE:

Wid
TB;

Case FALSE:

Void;

}

struct DrawBytesArgs {

Drawable drw;

Fid fontid;

Color col;

Uchararray ustring;

Tbstring Tbstring;

short Offset;

short Length;

short X;

short Y;

bools
isUnderline;

bools
isItalic;

};

RESULT

Vpstat;

DESCRIPTION

DrawBytes is same as DrawString with the difference that the argument is a character array.

IMPLEMENTATION

Same as DrawString.

ERRORS

5.19 DrawLine

SYNOPSIS

DrawLineArgs (VPstat

ARGUMENT

struct DrawLineArgs {

Drawable drw;

Color col;

short X1;

short Y1;

short X2;

short Y2;

};

RESULT

Vpstat;

DESCRIPTION

DrawLine draws lines on the specified drawable.

IMPLEMENTATION

With compound operations drawline typically will occur on the current drawable.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

5.20 DrawArc

SYNOPSIS

DrawArcargs (Vpstat

ARGUMENT

struct DrawArcArgs {

Drawable drw;

Color col;

short X;

short Y;

short Width;

short Height;

short StartAngle;

short ArcAngle;

};

RESULT

Vpstat;

DESCRIPTION

DrawArc draws an arc at X, Y with the rectangle of width and height as specified. The StartAngle and ArcAngle are in 1/64th of a degree.

This procedure is also mandatory.

IMPLEMENTATION

Some simplistic clients might not have much support for Arc Drawing but it is possible to simulate it from line drawing. Best effort drawing should suffice for Arc Drawing.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

5.21 FillArc

SYNOPSIS

FillArcargs (VPstat

ARGUMENT

struct FillArcargs {

Drawable drw;

Color col;

short X;

short Y;

short Width;

short Height;

short StartAngle;

short ArcAngle;

};

RESULT

Vpstat

DESCRIPTION

Similar to DrawArcArgs but provides fill shading. This is again to enable drawing of arcs and shapes.

The procedure is mandatory.

IMPLEMENTATION

See Above. FillDrawing can be simulated by FillRects just as DrawArc can be simulated with Lines.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

5.22 DrawOval

SYNOPSIS

DrawOvalArgs (Vpstat

ARGUMENT

struct DrawOvalReq {

Drawable drw;

Color col;

short X;

short Y;

short Width;

short Height;

};

RESULT

Vpstat;

DESCRIPTION

Drawing Ovals is also mandatory. X, Y specify the center and the Width and Height specify the length and width of the rectangle that fits the Oval.

IMPLEMENTATION

Could be implemented through multiple arc drawing algorithms.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

5.23 FillOval

SYNOPSIS

FillOvalargs (VpStat

ARGUMENT

struct FillOvalargs {

Drawable drw;

Color col;

short X;

short Y;

short Width;

short Height;

};

RESULT

Vpstat

DESCRIPTION

Fills the Oval with specified color with Origin X, Y and rectangle of specified width and height.

This procedure is mandatory

IMPLEMENTATION

Could be implemented through multiple fill arcs or as a rectangle and several fill arcs.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

5.24 DrawPolygon

SYNOPSIS

DrawPolygonargs (Vpstat

ARGUMENT

struct DrawPolygonReq {

Drawable drw;

Color col;

short numPoints;

Parray Xpoints;

Parray Ypoints;

};

RESULT

Vpstat;

DESCRIPTION

The Polygon drawing request specifies the number of points and the X and Y coordinates of the points. A polygon is drawn around them.

IMPLEMENTATION

The lines are drawn in order. The VP Client need not check to see if the coordinates make a consistent polygon or not. It is upto Servers to specify the order and ensure convexity, etc.

Polygons is a mandatory procedure.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

5.25 DrawPolyLine

SYNOPSIS

DrawPolyLineargs (Vpstat

ARGUMENT

struct DrawPolylineReq {

Drawable drw;

Color col;

short numPoints;

Parray Xpoints;

Parray Ypoints;

};

RESULT

Vpstat;

DESCRIPTION

The polyline is an open ended polygon (without the last line back to the origin). The polyline is developed for complex line drawing.

Polyline is also mandatory as it does not take much beyond line drawing. (although a compound request might have sufficed).

IMPLEMENTATION

The Polyline is similar to polygons.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

5.26 FillPolygon

SYNOPSIS

FillPolygonargs (Vpstat

ARGUMENT

struct FillPolygonArgs {

Drawable drw;

Color col;

short numPoints;

Parray Xpoints;

Parray Ypoints;

};

RESULT

Vpstat;

DESCRIPTION

The fill polygon args request fills a polygon in the specified color.

This procedure is mandatory.

IMPLEMENTATION

Fill Polygon implementations rely on the server to ensure that the points are specified in the right order. VP Clients must however be careful about this not being the case as it could cause unexpected actions.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

5.27 DrawRect

SYNOPSIS

DrawRectargs (Vpstat

ARGUMENT

struct DrawRectArgs {

Drawable drw;

Color col;

short X;

short Y;

short Width;

short Height;

};

RESULT

Vpstat;

DESCRIPTION

The DrawRect request is probably one of the most common requests. It is mandatory.

IMPLEMENTATION

It is likely that DrawRect is a simple and often used routine. With compound request implementations, it must be possible to easily perform this routine.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

5.28 DrawRectTextBox

SYNOPSIS

DrawRectTextBoxArgs (DrawRectTextBoxRes

ARGUMENT

Struct for3D {

Bools raised;

Col
linecol;

}

Union switch 3Drect (bools is3D) {

Case TRUE:

For3D
3Dparams;

Case FALSE;

Void;

};

struct DrawRectTextBoxArgs {

Drawable drw;

Color col;

Color fillcol;

Color defaultfontcol;

Fid
reqFid;

short X;

short Y;

short Width;

short Height;

short showfrom;

3Drect
for3Drects;

bools
isArea;

};

RESULT

Struct TextBoxReply {

Wid
TBWid;

Fid
reqFid;

short
linesdisplayed;

};

union DrawRectTextBoxRes switch (bools created) {

case TRUE:

TextBoxReply
tbreply;

case FALSE:

Void;

};

DESCRIPTION

The Rectangular TextBox is the most primitive of Widgets. It is a rectangular area which contains text. The TextBox is a rectangular area that displays text that can be scrolled. This is a building block for lists, menus, textfields, text areas, etc. The isArea parameter indicates if it is a one line field or an area. The fillcol specifies the color of the box. Showfrom is used to indicate the initial place in the text that is currently shown.

 In Compound operations with OnOp, showfrom can be adjusted on the cached Drawable.

The request is not mandatory as support for Widgets is not mandatory for compliant VP Clients. However, TextBoxes is recommended. It can be used to form the basis of several other widgets and its features can be used to develop many complex devices and systems.

The TextBox can be a 3D text box. Refer Draw3Drect.

SetText request is used to set and change the TextArea information.

IMPLEMENTATION

This is simple widget which can form the basis for other widgets. It is a building block that VP Client implementations could support if they do not have the ability to support the rest of the widgets. This along with compound requests simplifies the making of very good UI systems.

With Cached OnOp operations TextBox contents are adjusted using Showfrom. Thus Showfrom can be incremented on the Widget.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

5.29 FillRect

SYNOPSIS

FillRectArgs (VPStat

ARGUMENT

struct FillRectArgs {

Drawable drw;

Color col;

short X;

short Y;

short Width;

short Height;

};

RESULT

Vpstat;

DESCRIPTION

The FillRect is another commonly used primitive.

It is mandatory.

IMPLEMENTATION

The FillRect request is a commonly used request.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

5.30 DrawRoundRect

SYNOPSIS

DrawRoundRectargs (Vpstat

ARGUMENT

struct DrawRoundRectargs {

Drawable drw;

Color col;

short X;

short Y;

short Width;

short Height;

short Warc;

short Harc;

};

RESULT

Vpstat;

DESCRIPTION

DrawRoundRect is another commonly used primitive. It consists of several lines and arcs. It is a primitive worth supporting due to the fact that well rounded Widgets are very popular for buttons, etc. It is also mandatory for VP Clients. The Harc and Warc are the Height and Width of the arcs that form the RoundRect.

IMPLEMENTATION

A round rectangle can be implemented by breaking up the request into a series of lines and arcs. For certain widget toolkits the use of RR buttons might be very popular depending on the look and feel.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

5.31 FillRoundRect

SYNOPSIS

FillRoundRectargs (Vpstat

ARGUMENT

struct FillRoundRectargs {

Drawable drw;

Color col;

short X;

short Y;

short Width;

short Height;

short Warc;

short Harc;

};

RESULT

Vpstat;

DESCRIPTION

The FillRoundRect fills a roundrect area with the given color. It is a mandatory procedure.

IMPLEMENTATION

The implementation for FillRoundRect typically involves 4 or 5 FillRects and a 4 FillArcs.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

5.32 Draw3Drect

SYNOPSIS

Draw3Drectargs (Vpstat

ARGUMENT

struct Draw3DRectReq {

Drawable drw;

Color col;

short X;

short Y;

short Width;

short Height;

bool raised;

Color Rgb;

};

RESULT

Vpstat;

DESCRIPTION

Draw3D is to develop a raised or lowered 3D rectangle. It is commonly used in widget implementations, textboxes etc.

This procedure is mandatory.

IMPLEMENTATION

VP Clients must faithfully reproduce the server's request.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

5.33 Fill3Drect

SYNOPSIS

Fill3Drectargs (VPStat

ARGUMENT

struct Fill3DRectargs {

Drawable drw;

Color col;

short X;

short Y;

short Width;

short Height;

bools raised;

Color Rgb;

};

RESULT

Vpstat;

DESCRIPTION

Fill3Drect is similar to Draw3D. It colors the interior to reflect a 3D effect on the rectangle.

IMPLEMENTATION

VP Clients must faithfully reproduce the server request.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

5.34 DrawImage

SYNOPSIS

DrawImageargs (img_enums

ARGUMENT

struct
DrawImageargs {

Drawable drw;

imgtype imgtype;

int TrnSize;

int srcX;

int srcY;

int Width;

int Height;

int imgXid;

ImgArray imgarray;

bools
continues;

bools
displayimmediate;

};

RESULT

Union Img_reply switch (bools moredetail) {

Case FALSE:

img_enums
finalreply;

case TRUE:

img_enums
contreply;

}

DESCRIPTION

The DrawImageargs is intended to draw an image and it performs the drawing as indicated. There is also the possibility of continuations for Image Requests. Therefore DrawImage has a continuation. If the image has a continuation request then the displayimmediate indicates to the client whether it must display immediately or not.(see implementation on the import of offscreens)

DrawImage is a mandatory procedure for VPClients.

IMPLEMENTATION

The implementation requires that DrawImage draw the image. If the drawable is offscreen, then the implementation could choose to wait till the image is shown to render it to screen at that time.

It is possible to have the first few parts of the image to provide a low level of detail and for continuations to provide more detail.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

5.35 DrawImageContinuation

SYNOPSIS

DrawImageContinuationArgs (DrawImageContinuationRes

ARGUMENT

struct DrawImageContReq {

Drawable drw;

imgtype imgtype;

short srcX;

short srcY;

short Width;

short Height;

short imgXid;

short Seqnum;

ImgArray imgarray;

bools
continues;

bools
displayimmediate;

};

RESULT

Union Img_reply switch (bools moredetail) {

Case FALSE:

img_enums
finalreply;

case TRUE:

img_enums
contreply;

};

DESCRIPTION

ImageContinuation offers a continuation to images. Large images are broken up and sent as a sequence of packets. There could be a smaller packets or larger packets as appropriate. The Sequence number requires that they be sent in order.

ImageContinuation is mandatory.

IMPLEMENTATION

It is possible for continuations to provide added detail. The VP client could indicate that it does not want detail beyond a point in an effort to trade off bandwidth and picture quality, given the sensitive nature of bandwidth. Some freedom is left to implementations.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

5.36 DrawLabel

SYNOPSIS

DrawLabelArgs (WidgetU

ARGUMENT

struct DrawLabelArgs {

Drawable drw;

Label label;

};

RESULT

WidgetU;

DESCRIPTION

This is used to define Labels. These are important Widget operations. Labels are passive controls and do not support user interaction. As Widget support is optional, support for this operation is optional. However VP Clients that support Widgets must support Labels.

IMPLEMENTATION

The implementation for Labels could vary between VP Clients. However, they must strive to implement support for the behavior specification expected.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

5.37 DrawButton

SYNOPSIS

DrawButtonargs (WidgetU

ARGUMENT

Union Widsize switch (bools recommend) {

Case TRUE:

RectSize

size;

Case FALSE:

Void;

};

Union Location switch (bools recommend) {

Case TRUE:

Coordinate
Place;

Case FALSE:

Void;

};

struct Button {

Label label;

};

struct DrawButtonargs {

Drawable drw;

Button button;

Location

where;

Widsize
Widgetsize;

};

RESULT

WidgetU

DESCRIPTION

The DrawButton request draws a button to a specified drawable. The Label associated with a button can be changed using SetText later. Thus an empty Label with a NULL string is also possible. Location and Size could specify the location and size of the

Button.

DrawButton is not mandatory.

IMPLEMENTATION

The implementation of Widgets could be very system specific. For instance, buttons can be square, rectangular, oval or roundrects. VP Clients are at a liberty to implement these in any way. The location, size recommendation is however important as VP Clients must strive to offer servers the ability to handle layout. Widget Implementations must also restrict the Label to be within the Widget, so partially displayed Labels are allowed.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

VPNOTSUPP - Widget support is absent

5.38 DrawCheckbox

SYNOPSIS

DrawCheckboxargs (WidgetU

ARGUMENT

union CbWidU switch (bool partofGroup) {

case TRUE:

int WidU;

case FALSE:

void;

};

struct Checkbox {

Label label;

bool on;

CbWidU checkboxgroup;

};

struct DrawCheckboxargs {

Drawable drw;

Checkbox checkbox;

Widsize
size;

Location
 where;

};

RESULT

WidgetU

DESCRIPTION

The Checkbox request is intended to create and draw a check box. "On" sets the checkbox on. The Checkbox could be part of a Checkbox group in which case it is added to the Checkboxgroup. If the Checkbox is set and the Checkbox is part of a Checkbox group, then the new Checkbox is set and the already on Checkbox disabled.

IMPLEMENTATION

The Implementation for Checkbox could be specific to the VP Client implementation. However the size recommendation is important.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

VPNOTSUPP - Widget support is absent

5.39 DrawCheckboxGroup

SYNOPSIS

CheckboxGroupargs (WidgetListU

ARGUMENT

struct CheckboxGroupargs {

Drawable drw;

Checkbox cblist<>;

};

RESULT

WidgetListU;

DESCRIPTION

The Checkboxgroup request is intended to create a mutually exclusive set of checkboxes. Only one of the list can be set to on. The list can be empty as well and individual Checkboxes can be added later.

IMPLEMENTATION

The VP Client implementation must check to ensure that only one of the Checkboxgroup is checked on. The VP Client must strive to use the recommendations for size and location as this enables layout handling at the Server.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

VPNOTSUPP - Widget support is absent

5.40 DrawChoiceList

SYNOPSIS

DrawChoiceListargs (WidgetU

ARGUMENT

struct ChoiceItem {

Uarray Name;

};

struct DrawChoiceListargs {

Drawable drw;

int selectedindex;

ChoiceItem List<>;

Location

where;

Widsize
Widgetsize;

};

RESULT

WidgetU;

DESCRIPTION

The implementation for ChoiceList is to create a list of items that can pop up and give the user the ability to choose from that list. There is a default selection. (1….size

Of list). The value -1 indicates that there is no selection. Future references could use 1… size Of list to select an item.

IMPLEMENTATION

VP clients could specify an appropriate implementation for this Widget. VP clients could also choose the default when the -1 index is set(to importune the user to select).

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

VPNOTSUPP - Widget support is absent

5.41 DrawList

SYNOPSIS

DrawListargs (WidgetU

ARGUMENT

struct ListItem {

Uarray Name;

bools selected;

};

struct DrawListargs {

Drawable drw;

bools multiSelect;

ListItem List<>;

Location

where;

Widsize
Widgetsize;

};

RESULT

WidgetU;

DESCRIPTION

DrawList request is similar to Choice, except that multiple selections are possible. Several selections are possible.

IMPLEMENTATION

The implementation typically requires a scrollbar and the ability to scroll down the list and make a selection. Several items are selectable.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

VPNOTSUPP - Widget support is absent

5.42 DrawScrollBar

SYNOPSIS

DrawScrollBarsargs (WidgetU

ARGUMENT

enum ScrollbarType {

VERTICAL = 0,

HORIZONTAL = 1

};

enum ScrollType {

PAGEUPDOWN,

LINEUPDOWN,

};

struct Scrollbar {

ScrollbarType stype;

ScrollType atype;

short InitialValue;

short ThumbSize;

short Min;

short Max;

};

struct DrawScrollBararg {

Drawable drw;

Scrollbar sb;

Location

where;

Widsize
Widgetsize;

Bools DeliverScrollinfo;

};

RESULT

WidgetU

DESCRIPTION

DrawScrollBar draws a scrollbar that can scroll up or down. It is typically coupled with other Widgets. ScrollBars form a sliding scale of adjustment. The ScrollType decides whether a single touch leads to a large block move or a single line move.

Deliver ScrollInfo forwards scrolling events back to the server.

IMPLEMENTATION

Scroll Bars can work with Compound Operations and OnOp combinations requests to develop common Widgets implementations. They implement the ONScrollLUP, ONScrollLdown, ONScrollPUP, ONScrollPDown operations.

Using Compound Requests one could,

DrawRectTextBox

PushWid

DrawScrollBar

OnAction (currentWid) -

ONScrollPUP - PopWid - Increment Showfrom

ONScrollPDown - PopWid - Decrement Showfrom

OnAction (PopWid) -

OnSelect - SelectText(and HighLight) SendEvent

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

VPNOTSUPP - Widget support is absent

5.43 DrawTextField

SYNOPSIS

DrawTextFieldargs (WidgetU

ARGUMENT

struct indexrange {

int start;

int end;

};

union selectedTextU switch (bool selected) {

case TRUE:

indexrange irange;

case FALSE:

void;

};

struct DrawTextFieldargs {

Drawable drw;

bool isEditable;

bool setEchoChar;

int numChars;

Uarray str;

SelectedTextU stU;

};

RESULT

WidgetU;

DESCRIPTION

The DrawTextField request is intended to support the creation of TextFields. These are single line text areas and can be used for inputing text or to display a line of Text.

This is an optional procedure.

IMPLEMENTATION

The TextField is implemented to support text entry. They are straightforward implementations of simple text handling. Several contemporary User Interface Systems have support for TextFields and Areas.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

VPNOTSUPP - Widget support is absent

5.44 DrawTextArea

SYNOPSIS

DrawTextAreaargs (WidgetU

ARGUMENT

enum TareaScrollbars {

SCROLLBARS_BOTH,

SCROLLBARS_NONE,

SCROLLBARS_HORIZONTAL_ONLY,

SCROLLBARS_VERTICAL_ONLY

};

struct DrawTextAreaargs {

Drawable drw;

TareaScrollbars tsb;

short numLines;

short numChars;

short showfrom;

bools isEditable;

bools DeliverScroll;

Uarray str;

SelectedTextU stU;

};

RESULT

WidgetU

DESCRIPTION

The TextArea request is for creating TextAreas. Typically they are square areas where text scrolls. The associated scrollbar can be used for scrolling through the text.

The request specifies the number of lines and characters and a portion of the text can be selected.

This is an optional procedure.

IMPLEMENTATION

TextAreas are commonly used primitives. It is typical in most applications, notably browsers, etc.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

VPNOTSUPP - Widget support is absent

5.45 DrawMenu

SYNOPSIS

DrawMenuArgs (WidgetListU

ARGUMENT

enum MenuItemType {

MENUITEM = 0,

SUBMENU = 1,

CHECKBOXMENUITEM = 2

};

struct MenuI {

Label label;

bool isEnabled;

};

struct CheckboxMenuI {

Label label;

bool
on;

};

union MenuItem switch (MenuItemType type) {

case MENUITEM:

MenuI
menui;

case SUBMENU:

Menu
menuelem;

case CHECKBOXMENUITEM:

CheckboxMenuI cbmenui;

};

struct Menu {

Label name;

bool removable;

MenuItem
menulist<>;

};

struct DrawMenuargs {

Drawable drw;

Menu menu;

};

RESULT

WidgetListU;

DESCRIPTION

DrawMenu is intended to support Menus. A menu contains a list of available items and the items could have other submenus under them. The Menu is a complicated and explorable Selection list and is useful in UEs with small screens(but not too small).

The reply returns a list of Widgets. The Widgets correspond to the list of Widgets created and in the same order as that requested.

DrawMenu is an optional request.

IMPLEMENTATION

The implementation can be quite complicated in some systems as there is limited real estate on most handsets. However when available it is a useful feature. Applications must limit the size of menus to small and measureable sizes.

The implementation must also support the corresponding event selection and handling.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

VPNOTSUPP - Widget support is absent

5.46 DrawMenuBar

SYNOPSIS

DrawMenuBarargs (WidgetListU

ARGUMENT

struct MenuBar {

Menu
menus<>;

};

struct DrawMenuBarArgs {

Drawable drw;

MenuBar mb;

};
RESULT

WidgetListU;

DESCRIPTION

MenuBar are horizontal bars that contain a list of Menus. These are typically for larger screen systems. A MenuBar is a series of Menus.

 MenuBar is completely optional.

IMPLEMENTATION

The implementation for MenuBar can be quite complicated. There are several contemporary UI systems that support MenuBars. Thus MenuBar is supported in VP as well. MenuBar implementation can be avoided to simplify software burdens on most handset implementations.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

VPNOTSUPP - Widget support is absent

5.47 SetText

SYNOPSIS

SetTextArgs (Vpstat

ARGUMENT

union SetTextU switch (SetTextHow how) {

case START:

Uarray str;

case APPEND:

Uarray str;

case INSERT:

Insertstr istr;

case REPLACERANGE:

Replacestr rstr;

};

struct SetTextargs {

Drawable drw;

short Wid;

Color
col;

SetTextU stu;

Bools highlight;

Bools
Italicize;

Bools
Underline;

};

RESULT

Vpstat;

DESCRIPTION

The SetText request adds text to a specified Widget. It is possible to do SetText on a Textbox, TextField, etc.

IMPLEMENTATION

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

VPNOTSUPP - Widget support is absent

INVALWID
- The Wid is invalid

INVALTEXTONWID
- Text Additions and actions specified are not possible on this Wid

5.48 ClearText

SYNOPSIS

ClearTextArgs (Vpstat

ARGUMENT

Struct Textrange {

Short index;

Short length;

}

enums ClearTextHow {

ALL=0,

FROM=1

};

Union ClearTextU switch (ClearTextHow cth) {

Case ALL:

Void;

Case FROM:

Textrange tr;

}

struct ClearTextargs {

Drawable drw;

short Wid;

ClearTextU ctu;

};

RESULT

Vpstat;

DESCRIPTION

ClearText clears the text in an a Widget.

IMPLEMENTATION

SetText can itself be used for much of the functionality of ClearText.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

VPNOTSUPP - Widget support is absent

INVALWID
- The Wid is invalid

INVALTEXTONWID
- Text Additions and actions specified are not possible on this Wid

5.49 SelectText

SYNOPSIS

SelectTextArgs (Vpstat

ARGUMENT

Enums PositionHow {

CHARCOUNT = 0,

LINECOUNT = 1,

LINEANDCHAR=2

};

struct lineandchar {

short lineno;

short charno;

};

Union Position switch(enum PositionHow) {

Case CHARCOUNT:

Short charno;

Case LINECOUNT:

Short lineno;

Case LINEANDCHAR:

Lineandchar lnc;

};

Struct SelectTextArgs {

Drawable drw;

short Wid;

Color
col;

PositionHow ph;

Short Length;

}

RESULT

Vpstat;

DESCRIPTION

This is used to select a part of the Text. A selection can occur or be set on any part of the text.

This is optional but if a VP client implementation implements any of the Text Widgets specified it must implement SelectText.

IMPLEMENTATION

The selected text is highlighted. The highlighting is position independent.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

VPNOTSUPP - Widget support is absent

INVALWID
- The Wid is invalid

INVALTEXTONWID
- Text Additions and actions specified are not possible on this Wid

5.50 SelectonWidget

SYNOPSIS

SelectOnWidgetargs (Vpstat

ARGUMENT

Enums Select {

THISWID = 0,

INDEXNUM = 1,

LABELSTRING = 2

};

Union SelectHow switch(select sl) {

Case THISWID:

Void;

Case INDEXNUM:

Short index;

Case LABELSTRING:

String label;

}

SelectOnWidgetargs {

Drawable drw;

short Wid;

SelectHow sh;

};

RESULT

Vpstat;

DESCRIPTION

The SelectOnWidget request causes a selection to be made on a Widget Item or the Widget itself. This is used in Widget implementations of various kinds.

IMPLEMENTATION

The implementation requires a highlighting of the item chosen.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

VPNOTSUPP - Widget support is absent

INVALWID
- The Wid is invalid

INVALACTIONWID
- Actions specified are not possible on this Wid

5.51 AddtoWidget

SYNOPSIS

AddtoWidgetargs (Vpstat

ARGUMENT

Enums ItemType {

CHECKBOX = 0,

CHOICEITEM = 1,

LISTITEM = 2,

MENUITEM = 3,

MENU = 4

};

union ItemWhich case (Itemtype it) {

case CHECKBOX:

Checkbox cb;

Case CHOICEITEM:

ChoiceItem ci;

Case LISTITEM:

ListItem li;

Case MENUITEM:

MenuItem mi;

Case MENU:

MENU me;

};

AddtoWidgetargs {

Drawable drw;

short Wid;

ItemWhich iw;

};

RESULT

Vpstat;

DESCRIPTION

The AddtoWidget procedure is intended to add a new item or widget to a given widget. It can be used for adding items in response to actions etc.

This is optional as it applies to VP Clients that supports Widgets.

IMPLEMENTATION

Selections and Additions are present to enable VP Clients to add to items to Widgets.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

VPNOTSUPP - Widget support is absent

INVALWID
- The Wid is invalid

INVALACTIONWID
- Actions specified are not possible on this Wid

5.52 RemoveFromWidget

SYNOPSIS

RemoveFromWidgetArgs (Vpstat

ARGUMENT

union RemoveItemWhich case (Itemtype it) {

case CHECKBOX:

Wid
Widget;

Case CHOICEITEM:

Short
index;

Case LISTITEM:

Short
index;

Case MENUITEM:

 Wid
Widget;

Case MENU:

Wid
Widget;

};

AddtoWidgetargs {

Drawable drw;

short Wid;

RemoveItemWhich iw;

};

RESULT

Vpstat;

DESCRIPTION

RemovefromWidget removes an item from a Widget wid.

IMPLEMENTATION

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

VPNOTSUPP - Widget support is absent

INVALWID
- The Wid is invalid

INVALACTIONWID
- Actions specified are not possible on this Wid

5.53 NewApplication

SYNOPSIS

NewApplicationargs (VPstat

ARGUMENT

Struct Program {

ClassmarkU
CU;

short Environment;

Featureset features<>;

LocationURL
programURL;

};

struct Server {

Address Vphost;

}

struct NewApplicationargs {

Program program;

Server recommendedservers<>;

Bools exiting;

}

RESULT

Vpstat;

DESCRIPTION

The NewApplication request takes place sometimes on a click or some other event. The VP Server, realizes that this leads to a new program launch, informs the VP Client that it has requested the Launch of a new application. The VP Client then uses the ALM Protocol to launch a new application.

The variable exiting indicates that the current application is exiting.

IMPLEMENTATION

The VP Client must check the list of servers. If the list is empty then the VP Client uses NewApplication to contact the ALM to launch the Application on any appropriate server and waits for the VP Server to connect to it. If the list is not empty, the the VP Client uses LaunchNewOnServer to get the ALM to launch the application on a given server. The Application(or the environment in which it runs) will then launch itself and use this protocol to connect to this VP client.

The VP Client can also reply saying that there is no launch. In this case the current application will continue to drive the UI or do a APPLICATIONCHANGE back to the ALM.

If the current application is exiting, the VP server informs the ALM before it exits.

ERRORS

VPINVAL - arguments were invalid

VPNOTLAUNCH - the VP Client does not want to Launch a new application

5.54 CopyDrawable

SYNOPSIS

CopyDrawableargs (CopyDrawableRes

ARGUMENT

Struct RDrawable {

Drawable drw;

Bools
replace;

};

Union DestDrw switch (bools create) {

Case TRUE:

Void;

Case FALSE:

RDrawable DestDrw;

}

Struct CopyDrawableargs {

Drawable srcdrw;

DestDrw dstdrw;

Bools
isOffscr;

}

RESULT

Union CopyDrawableRes switch(VPStat vp) {

case VPOK:

Drawable dstdrw;

Default:

Void;

}

DESCRIPTION

CopyDrawable copies the contents of a drawable. The srcdrw can be the rootdrawable or an offscreen drawable.

The destination drawable must also be held for subsequent requests and is active. VP clients must copy to specified destination drawable unless the replace is TRUE. If Replace is TRUE, then the VP Client can choose to either replace the drawable or not. The request returns the old or new drawable as appropriate.

IsOffscr specifies if the destination is onscreen or offscreen.

This operation is optional but it is a must for implementations with Compound Operations.

IMPLEMENTATION

The copy action can be a cache request copy. Copy Drawable could be used along with Compound Requests to alter a given viewable screen and show it with less use of bandwidth.

Thus the following Compound Operation,

PushDrawable (current root)

 CopyDrawable(root to created) - (created drawable will become current)

Drawing and Screen Actions

ShowDrawable (show the current which becomes new root)

PopDrawable (old root)

FreeDrawable (free the old root drawable)

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

VPNOTSUPP - Widget support is absent

5.55 PushDrawable

SYNOPSIS

PushDrawableargs (Vpstat

ARGUMENT

Struct PushDrawableargs {

Drawable drw;

}

RESULT

Vpstat;

DESCRIPTION

The request has relevance only in the case of Compound Operations. It allows a push of the Drawable onto the stack or save area of drawables.

Optional for those VP clients that do not support Compound Operations.

IMPLEMENTATION

The implementation for this requires that drawables be pushed and popped as needed.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

VPNOTSUPP - No Support for this procedure in this VP Client

5.56 PopDrawable

SYNOPSIS

PopDrawableargs (Vpstat

ARGUMENT

Void;

RESULT

Union PopDrawableRes switch (Vpstat) {

Case VPOK:

Drawable drw;

Default:

Void;

}

DESCRIPTION

The request has relevance only in the case of Compound Operations. It allows a pop of the Drawable onto the stack or save area of drawables.

Optional for those VP clients that do not support Compound Operations.

IMPLEMENTATION

The implementation for this requires that drawables be pushed and popped as needed.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

VPNOTSUPP - No Support for this procedure in this VP Client

5.57 RepaintDrawable

SYNOPSIS

RepaintDrawableArgs (Vpstat

ARGUMENT

Union SubRect switch(bools isSubRect) {

Case TRUE:

Rectangle
subrect;

Case FALSE:

Void;

}

Struct RepaintDrawableArgs {

Drawable drw;

SubRect sb;

};

RESULT

Vpstat;

DESCRIPTION

The RepaintDrawable request is used to repaint the drawable or a portion of it.

This is again Optional.

IMPLEMENTATION

The RepaintDrawable request is used to refresh a drawable and could happen as part of a compound request. The Compound Request could lead to the Drawable being updated with requests and then the entire log of requests could be replayed or refreshed.

Repainting portions of screens may not be possible in some UI systems.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

VPNOTSUPP - No Support for this procedure in this VP Client

VPCACHEREPLAY - The Cache of request was lost; replay the drawable cache

5.58 ShowDrawable

SYNOPSIS

ShowDrawableArgs (Vpstat

ARGUMENT

Struct ShowDrawableArgs {

Drawable drw;

}

RESULT

Vpstat;

DESCRIPTION

The ShowDrawable request is used to show a drawable to the screen. This causes an offscreen drawable to be made the root drawable.

This procedure is mandatory.

IMPLEMENTATION

The ShowDrawable request can sometimes cause a VPCACHEREPLAY error. The VP Client issues this error when it has discarded the cache for the drawable. The Server will then attempt to recreate the state of the drawable on the client.

ShowDrawable could be the last procedure in a compound request to update the screen with the contents of a newly created drawable.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

VPNOTSUPP - No Support for this procedure in this VP Client

VPCACHEREPLAY - The Cache of request was lost; replay the drawable cache

5.59 MapSubDrawable

SYNOPSIS

MapSubDrawableArgs (Vpstat

ARGUMENT

Struct MapSubDrawableArgs {

Drawable drw;

Coordinate Location;

}

RESULT

Vpstat;

DESCRIPTION

The MapSubDrawable is for VP client implementations that have a Windowing system or miniwindowing system. They map the subdrawable to the specified location which specifies the top-left corner.

This is purely optional.

IMPLEMENTATION

This is for VP Clients that have Windowing systems implemented.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

VPNOTSUPP - No Support for this procedure in this VP Client

5.60 UnMapSubDrawable

SYNOPSIS

UnMapSubDrawableArgs (Vpstat

ARGUMENT

Struct UnMapSubDrawableArgs {

Drawable drw;

};

RESULT

Vpstat;

DESCRIPTION

The UnMapSubDrawable is a request intended to unmap a given subdrawable. It performs this operation and makes the drawable an offscreen drawable.

Purely optional, but all VP clients that implement MapSubDrawable must implement UnMapSubDrawable.

IMPLEMENTATION

The UnMapSubDrawable is for VP Clients that have Windowing Systems or similar functionality. There is no requirement to cache the Drawable, but it is better to do so as it might be brought back to be shown.

ERRORS

INVAL - arguments were invalid

INVALDRAWABLE - the drawable was invalid

VPNOTSUPP - No Support for this procedure in this VP Client

5.61 ListCachedDrawables

SYNOPSIS

ListCachedDrawablesargs (ListCachedDrawableRes

ARGUMENT

Void;

RESULT

Union ListCachedDrawableRes switch (Vpstat stat) {

Case VPOK:

Drawables drwlist<>;

Default:

Void;

};

DESCRIPTION

The ListCachedDrawables request is to help in the management of the drawable caches. The VP Client replies with the list of drawables that it holds in its cache(in full) for this application session.

IMPLEMENTATION

The ListCachedDrawables is used by VP Servers to determine which drawables to replay to ameliorate end user performance delays. This is typical also after a RECONNECT.

ERRORS

INVAL - arguments were invalid

VPNOTSUPP - this procedure is not supported

5.62 PushWid

SYNOPSIS

Wid (Void

ARGUMENT

Wid

RESULT

Void

DESCRIPTION

PushWid pushes a Widget on the stack of Wids. It assumes Compound Operations.

This is an optional procedure.

IMPLEMENTATION

This is used to enable Compound Operations.

ERRORS

INVAL - arguments were invalid

VPNOTSUPP - this procedure is not supported

5.63 PopWid

SYNOPSIS

Void
(Wid

ARGUMENT

Void;

RESULT

Wid;

DESCRIPTION

The PopWid primitive pops the Wid and makes it the current Wid.

IMPLEMENTATION

The use of PopWid is to change the Wid in Compound Operations.

ERRORS

VPWIDSTACKEMPTY - the WID stack was empty

5.64 PushFid

SYNOPSIS

Fid (Void

ARGUMENT

Fid

RESULT

Void;

DESCRIPTION

This pushes a Fid onto the stack. The PushFid request is used in Compound Operations.

This is an optional request.

IMPLEMENTATION

The use of PushFid/PopFid is to enable Compound Request to VP Clients MultiFont capabilities to efficiently add text that is in several fonts.

Notably it allows Textareas like those in a browser to send single requests to update a full page.

ERRORS

VPINVALFID - The Fid is invalid

5.65 PopFid

SYNOPSIS

Void (Fid

ARGUMENT

Void;

RESULT

Fid;

DESCRIPTION

PopFid pops the Fid from the stack.

IMPLEMENTATION

See above.

ERRORS

VPFIDSTACKEMPTY - The FID stack was empty(underflow)

5.66 ClearScreen

SYNOPSIS

ClearScreenReq (VPStat

ARGUMENT

Struct ClearScreenReq {

Bools
ReleaseMappedDrawables;

Bools
ReleaseAllDrawables

}

RESULT

VPStat;

DESCRIPTION

The ClearScreen request is intended to clear the screen. If ReleaseMappedDrawables is set, then all subdrawables that are mapped currently are released. If ReleaseAllDrawables is set, then all Drawables that are both Mapped and Unmapped are released.

IMPLEMENTATION

Clear Screen also causes the freeing of Drawable Caches associated with the root drawable as well as mapped subdrawables.

ERRORS

5.67 ApplicationChange

SYNOPSIS

ApplicationChangeargs (Vpstat

ARGUMENT

Union AppServerU switch (bools NewApp) {

Case TRUE:

Program program;

Case FALSE: /* an existing application */

ApplicationInstance
ai;

}

Struct ApplicationChangeargs {

ChangedServerU app;

Address
server;

Bools
exiting;

Bools
isALM;

};

RESULT

Vpstat;

DESCRIPTION

The ApplicationChange request directs the VP Client to change servers. It requests the VP Client to switch to a new application possibly on a different server(by interacting with the ALM). This could lead to the launch of a new application on the server or reconnection with an existing application on the server based on what was request.

The ApplicationChange request could also be back to the ALM, if isALM is set.

If exiting is set, it implies that the current application is exiting.

IMPLEMENTATION

Similar to NewApplication but this could also be to an existing application.

The ApplicationChange request could also be back to the ALM. The ALM can then either

If exiting is set all the caches associated with this Server must be destroyed.

ERRORS

VPINVAL - the arguments were invalid

VPCHANGEFAILED - the launch or change to the server specified failed

5.68 OnAction Operation

SYNOPSIS

OnActionArgs (VPStat

ARGUMENT

union VP_args switch (procnums proc) {

Case <OPCODE>: <argument>;

….

}

struct Compoundargs {

VP_args VP_argarray<>;

}

struct SimpleArgs {

VP_args VP_arg;

};

union Actionargs switch (bools compound) {

case TRUE:

Compoundargs cp;

Case FALSE:

SimpleArgs sp;

}

enums OnOpType {

ONCLICK=0,

ONOVER=1,

ONOUT=2,

ONCLICK2=3,

ONSELECT=4,

OnScrollLUP =5,

OnScrollLDOWN = 6,

OnScrollPUP = 7,

OnScrollPDOWN = 8

};

union ActionProc switch (OnOptype operation) {

case <OPTYPE>:

Actionargs Action;

…..

}

Union ObjU switch(bools isWid) {

Case TRUE:

Wid
widget;

Case FALSE:

Void;

}

Struct WidAction {

ObjU
whichObj;

ActionProc
actonWid;

}

OnActionArgs {

WidAction
widlist<>;

}

RESULT

VPStat;

DESCRIPTION

The OnAction request is a persistent request that is used along with Compound Operations. It acts as a script for actions that take place on the VP Client.

The VP Client caches the OnAction request and returns after evaluating if the request can be reasonably handled on the VP Client.

There are two types of OnAction requests. Those that take place on Widgets and those that take place on primitive requests. (like rects, lines, text etc.) In the case of the latter, they could lead to highlighting underlining, etc.

OnAction requests cannot nest.

OnAction works with ChangeVariable to also accomplish additional actions.

This is a purely optional capability.

Editor's Note: Alternate mechanisms are possible for implementing OnAction style capabilities.

IMPLEMENTATION

OnAction is a more intricate capability that requires interaction with the Event System etc. It is present mainly to better support Client side scripting. (as in browsers etc.).

The OnAction implementation must be careful to prevent deadlocking. The typical implementation will create a set of checks that the Event System peruses on User Actions. If a User Actions is on a Widget that requires an OnAction action, appropriate action is taken. In the case of Widgets more complicated capabilities are possible and these might be harder to implement.

OnAction also is specific to UI input. OnOver or OnOut, for instance, imply some form of mouse, Joystick or pointing device (as opposed to touch panel).

OnAction capabilities are not required. They are intended for devices that support compound requests and are likely to run browsers, etc.

OnAction works along with other functionality like ChangeVariable etc. to bring about scripting action.

ERRORS

VPINVAL - invalid arguments

VPINVALDRAWABLE - invalid drawable

VPNOTSUPP - The procedure is not supported

VPNOWIDGETS - OnAction is supported but not for Widgets

VPTOOCOMPLEX - The Onaction request was too complicated

5.69 ChangeVariable

SYNOPSIS

ChangeVariable
(Vpstat

ARGUMENT

Enums varnametype {

SHOWFROM=0,

COL =1,

TEXT=2,

ISITALIC =3,

UNDERLINE = 4,

COL2 = 3

};

Union newval switch (varnametype vnt) {

Case SHOWFROM:

Int newshowfrom;

Case COL:

Col
newCol;

Case TEXT:

 String
Text;

Case ISITALIC:

Void;

Case UNDERLINE:

Void;

Case COL2:

Col
newCol;

};

Enums reftype {

WID = 0,

REQNUM = 1,

};

Union Objref switch(reftype rtype) {

Case WID:

Wid widref;

Case REQNUM:

Unsigned short reqref;

};

Struct ChangeVariableargs {

Drawable drw;

Objref
oref;

Newval value;

};

RESULT

VPStat;

DESCRIPTION

ChangeVariable is used as part of OnAction Operations. It is intended to support changes for OnAction operations. Although it maybe possible to have OnAction, support for ChangeVariable is recommended if OnAction is implemented.

This procedure is not mandatory.

IMPLEMENTATION

ChangeVariable alters UI state. For instance showfrom on a TextBox will change the visible content on the screen.

ERRORS

VPINVAL - invalid arguments

VPINVALDRAWABLE - invalid drawable

VPNOTSUPP - The procedure is not supported

VPNOWIDGETS - OnAction is supported but not for Widgets

5.70 CreateVisualObject

SYNOPSIS

CreateVisualObjectArgs (ObjectU

ARGUMENT

union VP_args switch (procnums proc) {

Case <OPCODE>: <argument>;

….

}

struct Compoundargs {

VP_args VP_argarray<>;

};

Union AlphaB switch (bools isAlpha) {

Case TRUE:

Short
alpha;

Case FALSE:

Void;

}

Struct CreateVisualObject {

Drawable drw;

Struct Compoundargs cpa;

Bools
isVisible;

Coordinate Location;

AlphaB
alphaBlend;

}

RESULT

ObjectU;

DESCRIPTION

A Visual Object is a group of drawing requests that represent an object. The Visual Object can be created shown and moved. These could include cursors, animations, etc.

CreateVisualObject creates a Visual Object. The Compound Requests are expected to be simple actions and should not contain OnAction primitives. They must also all occur on the one drawable. The Compound Requests occur relative to the Location(they assume that Location is the top left corner).

If isVisible is FALSE, the Object is invisible when created. If isalpha is set(on systems that support it), then the Object is Alpha Blended into the screen.

IMPLEMENTATION

VPClients that can utilize this capability are higher end devices. These are typically devices that have sophisticated UIs or are graphically intensive systems like Gaming Consoles, animation enabled AV reading and entertainment devices.

Care must be taken to ensure that the system can move the visual object intoto against a background etc. More capabilities along these lines will be available in future versions of the protocol.

VP Client implementations must strive to completely support VisualObject features or not at all.

ERRORS

VPINVAL - invalid arguments

VPINVALDRAWABLE - invalid drawable

VPINVALNOALPHA - Alpha blending is not supported on the device

VPNOTSUPP - The procedure is not supported

5.71 ShowVisualObject

SYNOPSIS

ShowVisualObjectargs
(VPstat

ARGUMENT

Union alphaU switch (bools setAlpha) {

Case TRUE:

Short
alpha;

Case FALSE:

Void;

}

Struct ShowVisualObjectargs {

Objid

object;

Coordinate
Location;

AlphaU

au;

}

RESULT

Vpstat;

DESCRIPTION

The ShowVisual Object primitive is used to display a visual object to the screen. It is a simple primitive used to bring a Visual Object onto the screen. If alphaU is set, then the alpha blending value is also set.

IMPLEMENTATION

The Object is brought onto the screen at the specified location.

ERRORS

VPINVAL - invalid arguments

VPINVALDRAWABLE - invalid drawable

VPINVALOBJECT - invalid Object

VPINVALNOALPHA - Alpha blending is not supported on the device

VPNOTSUPP - The procedure is not supported

5.72 HideVisualObject

SYNOPSIS

Objid
(Vpstat

ARGUMENT

Objid

RESULT

Vpstat;

DESCRIPTION

The aim of HideVisualObject is to hide the object.

IMPLEMENTATION

The implementation requires that the object be hidden from view.

ERRORS

VPINVAL - invalid arguments

VPINVALDRAWABLE - invalid drawable

VPINVALOBJECT - invalid Object

VPINVALNOALPHA - Alpha blending is not supported on the device

VPNOTSUPP - The procedure is not supported

5.73 MoveVisualObject

SYNOPSIS

MoveVisualObjectargs (Vpstat

ARGUMENT

Struct MoveVisualObjectargs {

Objid
object;

Location

where;

}

RESULT

Vpstat;

DESCRIPTION

The MoveVisualObject request requires that the Visual Object be moved to the specified location.

IMPLEMENTATION

ERRORS

VPINVAL - invalid arguments

VPINVALDRAWABLE - invalid drawable

VPINVALOBJECT - invalid Object

VPINVALNOALPHA - Alpha blending is not supported on the device

5.74 ResizeVisualObject

SYNOPSIS

ResizeVisualObjectargs (Vpstat

ARGUMENT

Struct ResizeVisualObjectargs {

short WidthScale;

short HeightScale;

};

RESULT

Vpstat;

DESCRIPTION

This resizes the visual object's Width and Height. The Width and Height are on a percentage scale. (200 doubles and 50 halves, while 100 leaves it as is).

IMPLEMENTATION

These are operations for more advanced graphical displays.

ERRORS

VPINVAL - invalid arguments

VPINVALDRAWABLE - invalid drawable

VPINVALOBJECT - invalid Object

VPINVALNOALPHA - Alpha blending is not supported on the device

5.75 Pause

SYNOPSIS

Short -> Vpstat

ARGUMENT

Short;

RESULT

Vpstat;

DESCRIPTION

Pause is used in Compound requests to simulate slow movement. Pause values are in 100s of microseconds. Thus Pause 100 pauses for 10 million seconds.

It is recommended that Pause operations be for very short duration.

IMPLEMENTATION

The Pause should be carefully implemented. Long pauses might not be in the

Interest of the handset. VP Clients can exercise the liberty to avoid very long pauses.

ERRORS

VPINVAL - invalid arguments

VPTOOLONG - the pause request is for too long

5.76 TTSRequest

SYNOPSIS

String (Vpstat

ARGUMENT

String

RESULT

Vpstat

DESCRIPTION

The TTS Request causes the request to convert the string to audio and play it. TTS request is converted to speech and played using a voice supported by the VP Client and available on the UE.

IMPLEMENTATION

There are multiple possibilities. Festival[14] is a commonly used and publicly available TextToSpeech system. Multiple other systems exist and can be developed.

ERRORS

VPNOTSUPP - The VP Client does not support TTS

5.77 SpeechStream

SYNOPSIS

SpeechStreamargs (Vpstat

ARGUMENT

Struct SpeechStreamargs {

Type format;

SpeechDataFormat dataformat;

Opaque bytesofdata<>;

}

RESULT

Vpstat;

DESCRIPTION

This is used to play the appropriate raw speech that is sent. Section 9 outlines the various formats that could be negotiated. The VP Client uses this for inband speech streams using the RPC form of communication.

IMPLEMENTATION

This is an alternative to for TTS and for multimodal communication. VP clients should be able to implement atleast one of the formats specified and servers must provide data in that format. This is not to be used for Media Streaming. (in this case separate media streaming technologies like RTP serve better).

Certain applications may use this for Telephony API implementations and applications.

ERRORS

VPNOTSUPP - the procedure is not supported

VPINVAL - the arguments specified are invalid

VPFORMATNOTSUPP - the specified format is not supported

5.78 VoiceCall

SYNOPSIS

PhoneNumber (VPstat

ARGUMENT

Struct PhoneNumber {

String phonenum;

}

RESULT

Vpstat

DESCRIPTION

This specifies the phone number to call. This is used to support Click-To-Voice functionality to enable Computer Telephony Integration and similar capability.

IMPLEMENTATION

The String specifies a phone number. The string should be strictly numeric and DTMF.

This may not be supported for some applications as the user may disable availability to this for certain classes of applications.

VP Clients could make this configurable on the UE (or servers could do this using a user profile setting).

ERRORS

VPNOTSUPP - there is no support for this feature

VPINVAL - the phone number string was invalid

VPPERMISSIONDENIED - the application was denied permission to do Click-To-Voice

5.79 Notification

SYNOPSIS

Void (NotificationRes

ARGUMENT

Void

RESULT

Enums NotificationRes {

WILLRECONNECT = 0,

BUSY = 1,

DISABLED = 2,

DONTCARE = 3

}

DESCRIPTION

This is used for asynchronous notifications thus enabling servers to inform clients of events and thus call back. The intention is to allow applications like MMS to provide immediate notification to clients about impending events like messages, etc.

The VP Client either interrupts its current application and reconnects, indicates that it is busy, or that the notification feature is temporarily disabled or that it does not care about it.

IMPLEMENTATION

A VP Client that wishes to implement this feature, must be able to wake up on a server side transmission, check to see if action is necessary and respond to it.

A session even in the suspended state could be reinvigorated using this feature.

ERRORS

VPNOTSUPP - there is no support for this feature

6 The Event System Protocol

The Event System Protocol is mainly used to allow handsets to send back User Driven events back to the server. The various interactions require that user Events are delivered back to the VP server. The VP Client implementation requires that Widget Events, Clicks, Speech Events, etc. be delivered back to the server. There is a lot of interaction that is specific to the UE.

The Event System Protocol from the RPC point of view works with the UE being the RPC client and the VP Server being the RPC server.

The Event System is initialized at the behest of the VP Server when it issues an InitializeEventSystem call. This leads to the VP client identifying all supported Event Systems. The VP Server also specifies the port on the VP Server that the client should use for the Event System Connection.(where the Event System connection resides).

It is possible for the VP Client to use an agency for the Event System Protocol. If this is the case then the VP Client sends its

The client sends an InitEventSystem request and information on each of the input capabilities available on the device.

FreeEventSystem is typically done when the Event System is freed.

DeliverNextEvent delivers another event to the VP Server.

DeliverEvents delivers a sequence of events to the VP Server.

6.1 Event Types and Systems

Most Event Systems are grouped under one of the following - Keyboard, Mouse, Joystick, Touch Panel, Remote or Speech Driven.

There could be other variations that could simulate one of these event systems.

There are multiple types of requests that the event system could generate. They could be simple or they could be compound requests. Simple requests are requests like a Click or a Touch Event. The Remote is used to specify that the use case where there are a few buttons on the device that are specially mapped by the application and the UI system(UISPECIFIC)(in this case the buttons are mapped in order on the handset from 1 at the top left moving horizontally till the end of the list - a later draft release could address a button mapping system). Compound requests are a series of clicks and moves. A line drawn on a touch panel could be a Compound Request.

Keyboard typing could lead to a character string being sent back to the server.

6.1.1 Consts and Enums

Const MAXHOSTID = 20;

Enums evtsystype {

MOUSE = 1,

TOUCH = 2,

KBD = 3,

REMOTE = 4,

SPEECH=5,

JOYSTICK = 6
};

enums evttype {

KEYPRESS = 1,

KEYLIST = 2,

TOUCH = 3,

BUTTONPRESS = 4,

BUTTONRELEASE = 5,

MOTIONNOTIFY = 6,

CLICK = 7,

SELECT = 8,

SCROLL = 9,

SPEECH = 10,

 };

struct keypos {

short x;

short y;

short key;

};

enums datatype {

ASCII = 0,

UTF16 = 1,

DTMF = 2,

UISPECIFIC = 3

};

Union Butposdata switch(datatype dt) {

Case ASCII:

Char typedchar;

Case UTF16:

utf16 utf16char;

Case DTMF:

Char dtmfkey;

Case UISPECIFIC:

Char UISpecificKey;

};

Union Keylistdata switch(datatype dt) {

Case ASCII:

String data;

Case UTF16:

Utf16 utf16data<>;

Case DTMF:

Char data<>;

Case UISPECIFIC:

Char data<>;

};

struct keylist {

short x;

short y;

Keylistdata kdata;

};

struct tpos {

short x;

short y;

};

struct butpos {

Butposdata bpdata;

};

struct motion {

tpos from;

tpos to;

};

struct scrollinfo {

Wid
which;

bools UP;

}

union Event switch (evttype etype) {

case KEYPRESS:

keypos kps;

case KEYLIST:

keylist krs;

case TOUCH:

tpos tps;

case BUTTONPRESS:

butpos bps;

case BUTTONRELEASE:

butpos bps;

case MOTIONNOTIFY:

motion mps;

case CLICK:

Wid
ws;

case SELECT:

Wid
ws;

case SCROLL:

scrollinfo si;

case SPEECH:

};

struct NextEvent {

int EventDID;

int EventSeqNum;

Event evt;

};

enums kbdtype {

ENGQWERTY = 1,

KANJI = 2,

DTMF = 3,

OTHER = 4

};

struct keystruct {

int EventDID;

kbdtype ktype;

};

enums mousetype {

TWOBUTTON = 1,

THREEBUTTON = 2

};

struct mousestruct {

int EventDID;

mousetype mtype ;

};

enums touchtype {

NORMAL = 1,

COMPOUND = 2

};

struct touchstruct {

int EventDID;

touchtype ttype;

};

struct speechstruct {

int EventDID;

speechformatdata sfd; /* see section 9 */

}

union EventSystem switch (evtsystem systype) {

case MOUSE:

mousestruct ms;

case TOUCH:

touchstruct ts;

case KBD:

keystruct ks;

case REMOTE:

keystruct krs;

case SPEECH:

speechstruct ss;

case JOYSTICK:

mousestruct mjs;

};

enums hosttype {

INET = 1,

GPRS = 2,

OTHER

};

typedef enums hosttype hosttype;

union Host switch (hosttype hstype) {

case INET:

char inetaddr[4];

case GPRS:

char gprsaddr[8];

case OTHER

char <>;

};

struct EventSystemInfo {

Host hostid;

Opaque hostcookie[4];

EventSystem evtsys<>;

}

struct PhoneNum {

String dialnum;

};

6.2 Speech as Input Events

Speech also functions to serve as an input mechanism. There are several ways to send speech input. There are both inband and out of band methods of sending speech inputs from VP Clients. Typically in mostly data environments where speech brings a multimodal capability, the use of speech is very periodic and bursty. Thus a phone call dedicated to this mode might or might not be economically appropriate and the right approach from a resource usage point of view. It is however important to recognize that certain handsets might use this.

Speech can also be used out of band (with respect to this protocol) but through the data channel. In this case, a separate channel is established. The VP Client system recommends the use of the contemporary Session Initiation Protocol for this purpose. (rfc2543).

6.2.1 Out of Band Speech Events

As previously indicated, Out of Band Speech could use two forms of communication. There is the speech call that causes the client to dial a number. If the server supports the use of a phone call for speech, and has not already indicated the number to dial the Event System of the Client can use the Event System Protocol to obtain the remote number (using GetPhoneNum). This form of interaction is feasible for some classes of devices (like GPRS Class A devices) which support simultaneous voice and data connectivity.

The use of SIP(or H.323) makes it possible to have a remote server that is waiting for Multiple speech formats are supported by VP protocol. The presence of many formats serves to allow VP clients to send speech data in any one of the negotiated formats. However, the client must find the server and port to connect to, the speech format and negotiate the connection successfully. The Event System Protocol ensures this using the GetSpeechServerInfo request.

It is also necessary to state that additional server to server protocols will be necessary to establish the right movement of speech data and information back to the VP server running the multimodal application.(this lies beyond the scope of this specification).

6.2.2 In band Delivery of Speech Events

The Inband delivery of speech is to use DeliverNextEvent to send speech data back to the server. The Inband delivery of speech implies that the server should by itself support the needed recognition and capabilities, and if it did not, should seek and find the agency necessary and communicate with it.

This makes the delivery of inband speech events simpler.

6.3 InitEventSystem

SYNOPSIS

EventSystemInfo
 (EVstat

ARGUMENTS

Union SpeechServerInfo switch (enums Speechformat) {

Case SPEECH_CALL:

String
PhoneNum;

Case SPEECH_SIP_RAW, SPEECH_SIP_RPE_LTP, SPEECH_SIP_SPHINX:

Address
SIPServer;

Case SPEECH_EVT_RAW, SPEECH_EVT_RPE_LTP, SPEECH_EVT_SPHINX:

Short hostcookie;

}

Struct EventSystemInfo {

Applicationid Aid;

Host
Hostid;

Opaque hostcookie[4];

EventSystem evtsys<>;

}

RESULTS

Struct Evstatlist {

Evstat stat<>;

}

DESCRIPTION

The EventSystemInfo request specifies the various event systems on the VP client that are to be initialized. The Hostid/hostcookie pair is either the VP server itself that was indicated in the Graphics System Protocol or the agency currently being used by the client.

The reply specifies whether the VP Server was satisfied with the request or not.

IMPLEMENTATION

The speech server could be the VP Server’s recommendation or the server that the VP Client currently uses. If the Client uses a PhoneNumber already and does not wish to change, the VP server could expect a SIP connection that originates at the other end of the phonecall. If the Client uses an existing SIP connection and does not wish to change, the Client specifies a Hostid/Hostcookie to the server from where the VP server can expect to receive its speech information.

Additionally, an agency or proxy might be used. If this is the case then the client must specify the peer's address and port to the VP server(through the agent or proxy). Further interactions with the proxy must also prepend Application Identifiers to identify the application. The server will then contact the peer host to receive information(before it replies). The VP Client then continues to send future DeliverEvents and DeliverNextEvent request through the proxy to the VP server.

ERRORS

EVBADSERVER – Specifies that a server is bad

6.4 FreeEventSystem

SYNOPSIS

EventSystemInfo (void

ARGUMENTS

EventSystemInfo (as above)

RESULTS

Void;

DESCRIPTION

This is used to free event system and to release connections. It releases tied down or dedicated resources inside the network.

IMPLEMENTATION

The release of resources must be done by the VP Client as well if it uses additional resources (disconnecting phone calls, SIP connections etc.)

ERRORS

6.5 DeliverNextEvent

SYNOPSIS

NextEvent (Evstat

ARGUMENTS

Struct NextEvent {

short EventDID;

short EventSeqNum;

Drawable drw;

Event evt;

};

RESULTS

Evstat;

DESCRIPTION

The NextEvent is delivered to the server in sequence(with the SeqNum incremented on each request). This is the most common request sent to the server. When it includes a speech event sent inband, it is a simple packet with the format indicated(see Section 9).

IMPLEMENTATION

The implementation requires that the Event System requests be sent in sequence.

If delivered through an agency or proxy, the VP Client sends the Application ID as the first parameter

Of the request. The agency or proxy uses this to determine where to send the request to.

ERRORS

EVOUTOFSEQ – the Event was delivered out of sequence

EVSPEECHDATATOOLONG – the Speech data was too long

6.6 DeliverEvents

SYNOPSIS

DeliverEvents (Evstatlist

ARGUMENTS

Struct SeqEvent {

short EventSeqNum;

Event evt;

};

Struct DeliverEvents {

short EventDID;

Drawable drw;

SeqEvent Eventlist<>;

};

RESULTS

Struct Evstatlist {

Evstat stat<>;

}

DESCRIPTION

Delivers a sequence of Events intended for the Application. The aim of this is to send multiple short events that are allied like touch panel line drawings, mouse movements, etc. The EventSeqNums correspond and increase for the events.

IMPLEMENTATION

The implementation requires that the Event System requests be sent in sequence.

If delivered through an agency or proxy, the VP Client sends the Application ID as the first parameter of the request. The agency or proxy uses this to determine where to send the request to.

ERRORS

6.7 SelectItem

SYNOPSIS

SelectItemargs (Vpstat

ARGUMENTS

Struct SelectItemargs {

short EventDID;

Drawable drw;

Wid
widget;

short
item;

}

RESULTS

Vpstat;

DESCRIPTION

The SelectItem request allows the VP Client to send the selection of an item by a client back to the server.

IMPLEMENTATION

This is possible only for VP Clients that have support for Widgets.

ERRORS

EVDONTKNOW - The server does not know about this Widget or Item

6.8 ScrollToText

SYNOPSIS

ScrollToTextargs (Vpstat

ARGUMENTS

Struct ScrollToTextargs {

Drawable drw;

Wid
widget;

Short showfrom;

}

RESULTS

Vpstat;

DESCRIPTION

The ScrollToTextargs enables the VP Client to indicate that the user scrolled down the page to a certain location.

IMPLEMENTATION

The implementation specifies the area to showfrom.

ERRORS

6.9 Reconnect

SYNOPSIS

Reconnectargs (ReconnectresU

ARGUMENTS

Struct ActiveCachedDrawableList {

Drawable drw<>;

}

Struct Reconnectargs {

Applicationid Aid;

Host
Hostid;

Opaque hostcookie[4];

ActiveCachedDrawableList acdl;

}

RESULTS

Struct ReconnectEventSystemU {

EventSystem evtsys;

Short SeqNum;

}

Struct WillReplayDrawableList {

Drawable drw<>;

Short
Vpseqnum;

}

Struct StaleCachedDrawableList {

Drawable drw<>;

}

struct Reconnectres {

ReconnectEventSystemU resU<>;

WillReplayDrawableList
wrdl;

StaleCachedDrawableList
scdl;

}

union ReconnectresU switch(bools connected) {

case TRUE:

Reconnectres rr;

case FALSE:

Evstat
stat;

};

DESCRIPTION

The Reconnect request is sent by a VP Client to a VP server (possibly through an agent or proxy) in order to reconnect the VP Client back to the server. As part of the reconnect request the VP Client indicates the list of Drawables that it has cached for this Application Instance. The Server then informs the Client about the event systems it had in use, the sequence numbers both in the forward and reverse direction are reported as well. The Server then informs the VP Client that it will replay a list of drawables before it resumes. The Scdl specifies the list of Drawables that the VP Client has cached that have gone stale, while the VP Client was disconnected. This is now discarded by the VP Client.

IMPLEMENTATION

This request is used by the VP Client to reconstruct its state entirely. As the client relies entirely on the network to reconnect itself, the network must cache all information needed and the VP Client must work with the server to reestablish its state.

ERRORS

6.10 StateTransitionEvent

SYNOPSIS

StateTransitionEventargs (VPstat

ARGUMENTS

Struct StateTransitionEventargs {

SessionState old;

SessionState new;

}

RESULTS

Vpstat;

DESCRIPTION

This is used to change state by the VP Client. The new state setting results in actions that lead to a change in the state. Typically the VP Client initiates the change in the underlying session and connection state after receiving an OK reply.

IMPLEMENTATION

It is important for the VP Client to initiate the state change. The VP Client after initiating the state changemust continue to handle actions if notifications are to be expected from the client.

ERRORS

VPINVAL - arguments are invalid

6.11 SpeechServerInfo

SYNOPSIS

ARGUMENTS

RESULTS

DESCRIPTION

IMPLEMENTATION

ERRORS

7 The Application List Protocol

In the service environment of the VP client, multiple servers can exist. The VP client bootstraps itself back to its previous state using the Application List Protocol. The VP client also migrates between the various applications running on various VP servers in the service environment using the Application List Protocol.

The Application List Protocol participates in the bootstrap process to enable clients to return to their previously existing state. The VP Client using DHCP finds the host and port where the ALP resides and is running. It then starts either the ALM UI application or reconnects back to its previously running application on the VP server(getCurrent Application) or it could connect to any of the Users currently running applications (through the use of either the ALM UI or a native UI) or it could Launch a new Application.

7.1 Types and structures

typedef short AppId;

typedef string LocationURL;

enums ProgramEnvType {

PJAVA = 0,

PJAVAEXT = 1,

MIDP = 1,

CLDC = 2,

CLI_P = 3,

CLI_C = 4

};

enums FeatureSet {

VISUAL = 0,

SPEECHINPUTENABLED = 1,

SPEECHINPUTREQUIRED = 2,

SPEECHOUTPUTENABLED = 3,

SPEECHOUTPUTREQUIRED = 4,

MULTIMODAL = 5,

AUDIOENABLED = 6,

AUDIOREQIURED = 7,

VIDEOENABLED = 8,

VIDEOREQUIRED = 9

};

enums Launcher {

VPCLIENT = 0,

ALM = 1,

ALMUI = 2,

APPLICATION

};

struct Program {

ClassmarkU
CU;

short Environment;

Featureset features<>;

LocationURL
programURL;

};

struct Server {

Address Vphost;

}

union LaunchedBy switch(enums Launcher) {

case VPCLIENT:

void;

case ALM:

Server ALMhost;

case ALMUI:

Server ALMhost;

case APPLICATION:

ApplicationInstance LauncherAI;

};

struct ApplicationInstance {

AppId
aid;

Server
host;

opaque
hostcookie[4];

Program
program;

LaunchedBy
parent;

};

7.2 GetCurrentApplication

SYNOPSIS

Void (AppIU

ARGUMENTS

Void;

RESULTS

union AppIU switch(ALMstat stat) {

case ALMOK:

ApplicationInstance ai;

case ALMUILAUNCHED:

ApplicationInstance almuiai;

default:

void;

};
DESCRIPTION

This returns the current Application Instance being run by the VP Client. The VP Client bootstraps itself to continue running the application it was running before it was disconnected or turned off. The ApplicationInstance is a server/port pair where a VP Server exists. This allows the client to connect back to the Application Instance.

IMPLEMENTATION

The VP Client uses this to determine its current application at power On or following a disconnection with its environment. The ALM could sometimes launch the ALM UI application if the VP Client is configured to require such a launch and return that as the current application. This is possibly for a first time poweron. Typically, the ALM returns the VP Client to its last running application before it was powered off or disconnected. The ALM could use additional server to server protocols to obtain Information about this VP Client(this is beyond the scope of this document). The VP Client would then do a RECONNECT to the Application Instance, retrieve its prior state and proceed from there on.

ERRORS

ALMDATABASEERROR - could not retrieve state info for the VP Client

ALMPERMISSIONDENIED - the retrieval was not possible as the ALM was denied permission

7.3 GetCurrentApplicationList

SYNOPSIS

Void (AppIListU

ARGUMENTS

Void;

RESULTS

union AppIListU switch (ALMstat stat) {

case ALMOK:

ApplicationInstance ai<>;

default:

void;

};

DESCRIPTION

This returns the list of all Applications that the VP Client is currently running with information on all of them.

IMPLEMENTATION

The request is made to find all applications the VP Client is currently running. This could be used to find a particular application or to connect back to an application the user wants to use. A native application on the VP Client could also use this to list the list of VP Applications that the user has running inside the network.

The request implies the determination of permissions etc. through a server to server protocol and the server discovery mechanism is beyond the scope of this specification. However it must be said that the VP Client might have multiple air interfaces(WLAN vs. Wide Area) and could be switching from one to the other. VP Clients might still be able to discover and connect to the applications they were previously running.

ERRORS

ALMDATABASEERROR - could not retrieve state info for the VP Client

ALMPERMISSIONDENIED - the retrieval was not possible as the ALM was denied permission

7.4 LaunchApplicationManager

SYNOPSIS

Void (LaunchU

ARGUMENTS

Void;

RESULTS

union LaunchU switch(ALMstat stat) {

case ALMOK:

ApplicationInstance ai;

default:

void;

};

DESCRIPTION

This is used by the VP Client to launch an ALM UI application.

IMPLEMENTATION

The VP Client could be configured to not have the ALM automatically launch the ALM UI. The VP Client could do so when it chooses thus saving resources.

ERRORS

ALMPERMISSIONDENIED - could not launch as permission was denied

7.5 NewApplication

SYNOPSIS

NewApplicationargs (LaunchU

ARGUMENTS

Union LaunchOn switch(bools specify) {

Case TRUE:

Server serverlist<>;

Case FALSE:

Void;

}

Struct NewApplicationargs {

Program newprog;

LaunchOn whicServer;

}

RESULTS

union LaunchU switch(ALMstat stat) {

case ALMOK:

ApplicationInstance ai;

default:

void;

};

DESCRIPTION

This request asks the ALM to launch a new application. The Launch requires the application to be launched on a server. A series of servers could be specified by the VP client or it could be left empty implying that the ALM must find a server to launch the application on.

IMPLEMENTATION

This request launches a new application on an appropriate server. The ALM could use its capabilities to decide where it is to be launched. However the VP Client can refuse to connect if it does not like the server that it is actually launched on and request termination.

ERRORS

ALMPERMISSIONDENIED - could not launch as permission was denied

7.6 GetAvailableServer

SYNOPSIS

Program (ServerU

ARGUMENTS

Program;

RESULTS

Union ServerU switch(ALMstat stat) {

Case TRUE:

Server serverlist<>;

Case FALSE:

Void;

}

DESCRIPTION

This request allows the VP Client to determine a list of available servers that are capable of launching the application on. This is a simple request that allows the VP Client to find a server in the neighborhood(potentially new) and to request a launch of an application on it.

IMPLEMENTATION

The VP Client could choose to launch the application on any of the servers in the list possibly choosing an appropriate one. The request implies that security verification, environment compatibility, etc. have been done.

ERRORS

7.7 GetAvailableProgramList

SYNOPSIS

GetAvailableProgramListU (ProgramListU

ARGUMENTS

Enums listsspecified {

LISTGROUPS = 0,

LISTFORAGROUP = 1,

LISTFORGROUPS = 2,

ALLPROGRAMS = 3

};

Union GetAvailableProgramListU switch (listsspecified ls) {

Case LISTGROUPS:

Void;

Case LISTFORAGROUP:

String
ListGroup;

Case LISTFORGROUPS:

String
ListGroups<>;

Case ALLPROGRAMS:

Void;

};

RESULTS

Union ProgramListU switch (ALMStat stat) {

Case ALMOK:

Program programlist<>;

Case ALMLISTS:

String
ListGroups<>;

Default:

Void;

}

DESCRIPTION

This is a request that provides the list of immediately available programs that are available in the vicinity. ListGroups is used to send multiple groups available possibly from multiple sources.

IMPLEMENTATION

The VP Client uses ListGroups to explore its applications in its Virtual Neighborhood. The VP Client could be using a native application to obtain these lists. The ALMUI also could serve as a mechanism to access the same information and help the user browse the applications he/she can run.

ERRORS

ALMPERMISSIONDENIED - the ALM was denied permissions to access information

7.8 SetCurrentApplicationInstance

SYNOPSIS

Aid (ALMStat

ARGUMENTS

Aid;

RESULTS

ALMStat;

DESCRIPTION

The request allows the VP Client to set the current application. This causes the ALM to inform the corresponding server of an impending RECONNECT and change its own database.

IMPLEMENTATION

The VP Client uses this to switch applications back to an older application.

ERRORS

VPAIDINVAL - the Aid was invalid

7.9 TerminateApplicationInstance

SYNOPSIS

Aid (ALMStat

ARGUMENTS

Aid

RESULTS

ALMStat

DESCRIPTION

The request is used to terminate the application with the given Aid. It is intended to be a way by which the VP Client can terminate applications.

IMPLEMENTATION

This is used to terminate applications. The ALM will contact the VP Server and terminate the application and update its own database. The VP Client can then destroy all associated caches and resources on the UE.

ERRORS

ALMPERMISSIONDENIED - The VP Client does not have permission to terminate this application

7.10 GetSecurityInfo

SYNOPSIS

ARGUMENTS

RESULTS

DESCRIPTION

IMPLEMENTATION

ERRORS

8. The Speech Data Format

A variety of formats can be used for speech transfer. Multiple compression schemes exist for speech and the resulting compression and speech quality varies. VP however does not specify a format specifically for VOIP or schemes for handling voice calls although it is entirely possible that VP Client Devices might offer such capabilities.

8.1 Overview of the Various Formats

The Raw Speech Format represents speech in the raw form. It is sampled at the negotiated rate and could use mu-law compression as negotiated.

A variety of formats are possible. 3G PP has several defined formats for speech notably the AMR Speech Formats defined in [5] and its references. The capability of handsets to negotiate for the most appropriate format for Voice and multimodal applications is a useful and important requirement. The GSM based format is the most commonly used Wireless format for UEs. It is important to note that UEs need to support only one of the format if they are speech enabled, but could choose to support any number of them.

The aim of the VP Client implementation could be to choose the appropriate format given the channel capability, noise, user choice, server capability, etc. so that there is the best possible speech recognition.

8.2 Raw Speech Format

The Raw Speech Format involves sampling speech data at a specified rate (usually between 4000 and 16000 times a second). It is often the case that such data could be companded using a mu law quantizer.

Further it is possible that the codec could use one, two or even four bytes to sample the speech.

For this format, thus the specification indicates three parameters

Struct RawSpeech {

Short samplerate;

Short bitspersample;

Quantizer type;

}

8.3 ADPCM Speech Format

In ADPCM or adaptive differential pulse code modulation, speech samples are coded with the step size adaptively adjusted(based on the speech samples) and a predictor that is adaptive. The resulting speech is compressed and for the same bit rate of higher quality.

Struct ADPCM {

Short samplerate;

Quantizer type;

Short PredictionOrder;

};

8.4 GSM Speech Format

GSM uses the RPE-LTP scheme for speech compression. This uses both short and long term prediction and additional channel coding for recovery in error prone channels. The GSM speech format is a logical choice given the presence of a large number of existing handsets and the overwhelming preponderance of GSM. Multiple rates are possible with GSM although the UE might be capable of supporting only one of them.

VP Clients must ensure that they indicate the rate and class correctly.

Struct GSM {

Enums rate;

Enums class;

}

8.5 AMR Speech Formats

AMR uses algebraic CELP. AMR is defined in [5] and is used by 3G PP for low bit rate speech coding. It defines 8 different block sizes for its MR-ACELP scheme. For speech recognition, the best possible speech format, which is probably the highest rate class (12.2 kbps) is best chosen. It defines several modes for AMR speech.

Struct AMR {

Enums encodedblocksize;

 Enums mode;

}

8.6 Sphinx Speech Format

The Sphinx Speech recognition system was developed by CMU and uses homomorphic speech analysis for speech recognition. Delta Cepstral coefficients are used in Sphinx. This format is also added to enable VP Clients to send the Sphinx input format precoded at the UE.

8.7 Silence Detection and Removal

Silence Removal and detection could use the AMR - VAD schemes. Silence lengths must be specified as part of the speech code format.

Struct SilenceLength {

int milliseconds;

}

8.8 Preprocessing of Speech for Noise Removal

Discussions relating to Noise removal are currently deferred in this draft. They will be added in a subsequent draft if appropriate.

9. Multimedia Support

Multimedia support is required by various applications and its capabilities are needed in a variety of different ways. Multimedia is however an optional feature in VP Clients and it is intended to support additional stream management and software control to content, its streaming and the running of applications in the MExE service environment that relate to streaming.

Support for delivery (and management) of multimedia content on the virtual palmtop is provided via the Delivery Multimedia Integration Framework (DMIF) which is a part of the MPEG-4 standard. The primary objective in using this framework is to enable maximum reuse of existing standards and protocols, and to prevent duplication of effort and functionality. The DMIF specification provides an architecture that is immune to future changes/enhancements in delivery technology, and protects investments made in multimedia terminal/application development. Further, the DMIF architecture has been demonstrated in implementation under the MPEG-4 standard.

 The DMIF specification is a subset of the MPEG-4 specification, and deals with the delivery layer of the MPEG-4 standard. The DMIF architecture, which includes the DMIF Application Interface (DAI), the DMIF layer, and the DMIF Network Interface (DNI), provides a delivery technology-independent mechanism for real time distribution of multimedia content. MPEG-4, by design, targets multiple operating situations such as local retrieval, remote interaction, multicast etc., and multiple delivery technologies. DMIF makes this possible by providing transparent access to content, using URL addressing schemes, without regard to the underlying delivery technology used.

The MPEG-4 client application running on the VP Server is configured to decode and present (selectively) any or all of the streams (audio & video) obtained from the origin server. The origin server makes use of the DMIF architecture to package content for distribution over a variety of transport channels. The DAI , the DMIF layer and the DNI enable this capability in a media-independent and transport mechanism-independent fashion. Further the VP Server can choose to maintain over-the-air stream rate within bounds and maximize the quality for a given stream rate. Or it can choose to minimize the stream rate for a given picture quality. The VP server with a controlling application (possibly written using MPEG-J) can be configured by the user to manipulate and control streams to best suite his own needs. Further it can perform the necessary rate adaptation and error control that only an intervening edge located entity can.

9.1 Delivery Layer Abstraction

The delivery layer in DMIF consists of a two-layer multiplexing scheme and manages the synchronized delivery of streaming information from source to destination utilizing QoS features as available from the network. The first multiplexing layer enables grouping of elementary (audio & video) streams with low multiplexing overhead. This is useful, for instance, for grouping streams with similar QoS requirements. This layer is specified in part 6 of the MPEG-4 standard. The second multiplexing layer --- the transport multiplexing layer --- is not specified in MPEG-4. However, the interface to this layer is specified in the standard, and allows the transport of MPEG-4 content over a variety of transport mechanisms such as RTP (UDP, IP), ATM AAL2, H.223 (PSTN), DAB etc. The choice of the particular transport scheme is left to the service provider.

The DMIF application interface sits between the synchronization layer and the DMIF layer. The synchronization layer manages the identification and synchronization (through time-stamping) of elementary streams of different types (scene descriptors, video frames, sprites, audio etc.).The DMIF network interface sits between the DMIF layer and the transport layer, and provides a uniform interface to the upper layers which are unaware of the transport mechanism.

9.2 Client-Server Interaction

The DMIF modules at the client and server work together to provide a session-level service. DMIF includes a signaling protocol --- the DMIF Signaling Protocol --- which facilitates interaction between a remote terminal and a central server. The applications themselves are unaware of the signaling protocol. User interface commands, for example, are carried transparently by DMIF from the client to the server, and only interpreted in the application layer at the server; similarly, control messages from the server are passed as opaque data to the client where the application layer takes appropriate actions.

For playback control of multimedia streams at the client end, the application sends standard user-interface commands such as PLAY, REWIND, and PAUSE to the server where the appropriate action is taken. The signaling protocol is also useful for keeping track of session logs and other relevant information for billing and related purposes. It allows service providers to charge end users on a “per consumable unit” basis (time, kilobyte etc.)

The client could potentially include multiple DMIF instances configured to provide specific services. The user may request the selection of the appropriate DMIF instance. Alternatively, the instance may be inferred by a DMIF “filter” from the URL requested by the application. The DMIF filter, when implemented appropriately, enables the “plug and play” of different DMIF instances without the need to reset the terminal or reconnect the terminal to the network.

For peer-to-peer applications such as video conferencing, the mobile terminal must also have some minimal “server” side functionality so that the coordinating remote server can synchronize and manage multiple terminals by issuing appropriate requests.

9.3 MMS Support

MMS[4] provides a means by which multimedia messages(MMs) can be delivered to a User Agent. To support MMS, it is possible for the User Agent (in the case of a VP Client enabled UE) to run on either the UE or more appropriately on a server inside the network. The latter capability has several important advantages. It allows the User Agent to support many more formats than would otherwise be feasible. It allows the User Agent to selectively view messages, suppress streams, etc. Further, it is also possible for the MMS Relay and the UA to be closely intertwined and possibly even the same. Several other features required by MMS are also simplified and it is likely that wireless bandwidth use would be more judicious and less wasteful using this approach. Further the finer grain of control possible with this architecture is likely to make it more suitable and functional.

9 State Reestablishment and Caching

The role of state reestablishment is central to the VP Protocol. State as the protocol defines represents the total set of temporarily created information that can be lost due to a reset or power off. The VP Client can then reestablish itself to its prior state by recontacting servers and reobtaining all the information that they hold cached. The protocol requires servers to hold all the information necessary for a client to reestablish its prior state following a reset or power off. The procedures outlined however have several different steps and actions on the part of the client. The VP protocol requires servers to cache ALL requests that they sent to a client that the client might need to reestablish state on ANY of its currently active drawables. This each VP Server is responsible for maintaining state. Further VP Servers also maintain state about event systems as well as sequence numbers.

Further Clients are mobile. As they move around, their identity (for instance IP address in mobile Internet environments) might change. However this should not in any way affect their ability to restore state barring one factor, security. The security associated with application access can change as the VP Client moves. Thus an application that is visible and accessible might be available while the VP Client is inside an office(through Wireless LANs or Wide Area Services). However it might not be accessible from the outside world. Barring this, the ability to return to previously established state is a defining principle.

However, VP Clients also face the problem of both bandwidth and latency. For this reason, they tend to cache requests. These caches can persist across disconnections and possibly even across power off and power on based on the capabilities of the UE. The aim must be to ensure that these caches do not become stale (while the user disconnects).

A further implementation related issue relates to the ability of users to browse the cache of drawables. This is a recommended feature notably when there is a requirement to browse information offline. (for eg. While on the Tokyo subway!). Applications that are inherently data intensive like email and messaging might require support for this. VP Client implementations could also support the ability of users to keep certain caches persistent through user control. This might allow a user to retrieve information that he can then browse as necessary. There is no mandate for such a capability.

10 Supporting Virtual File Stores

The Virtual File Store exists for allowing users the ability to access FileSystem and Personal Space. The feature is completely optional and mainly intended to bring user content closer to users.

Most contemporary UEs, notably those that will be VP Clients will lack much permanent storage. Few will have disks or other permanent storage media. For this reason it is important for Users to have a personal file store based inside the network. This Virtual File Store could include the users content, applications, etc. The VP Client could access this information either using a VP Application that allows the user to browse his file information or by implementing NFS V4 [13] as part of the VP Client. In the latter case, the ability could be used to browse information in any environment that is local. Further on multiple classmark devices, it could be used to transfer applications and associated data to and from the network. This will enable effective management of storage which is scarce on the UE.

The Virtual File Store could also be a storehouse of the user's own content. As the user browses it and requests access(by clicking on files), the file browsing application could launch the appropriate application that can provide access to the content. This could work on remote filesets. Further the user could request movement of his filesets to different locations. Further discussion is beyond the scope of this document.

11 RPC Definition Specifications

12.1 The Graphics Protocol

12.2 The Event System Protocol

12.3 The ALM Protocol

13 Bibliography

[1] 3GPP TS 22.057: "MExE Stage 1 Description", available from www.3gpp.org.

[2] 3GPP TS 23.057: "MExE Stage 2 Description", available from www.3gpp.org.

[3] 3GPP TS 22.121: "Universal Mobile Telecommunications System (UMTS); Provision of Services in UMTS - The Virtual Home Environment: Stage 1", available from www.3gpp.org

[4] 3GPP TS 23.140: "Multimedia Messaging Service(MMS): Stage 2", available from www.3gpp.org.
[5] 3GPP TS 26.090: " Mandatory Speech Codec speech processing functions,

AMR speech codec; Transcoding functions", available from www.3gpp.org.

[6] RFC 1831, Srinivasan, R., "RPC: Remote Procedure Call Protocol Specification Version 2", August 1995, available from www.ietf.org

[7] RFC 1832, Srinivasan, R., "XDR: External Data Representation Standard", August 1995, available from www.ietf.org

[8] RFC 1833, Srinivasan, R., "Binding Protocols for ONC RPC Version 2", August 1995, available from www.ietf.org.

[9] RFC 2025, Adams, C., "The Simple Public-Key GSS-API Mechanism (SPKM)", October 1996, available from www.ietf.org.

[10] RFC 2203, Eisler, M., Chiu, A. and L. Ling, "RPCSEC_GSS Protocol Specification", August 1995, available from www.ietf.org

[11] RFC 2847, Eisler, M., "LIPKEY - A Low Infrastructure Public Key Mechanism Using SPKM", June 2000, available from www.ietf.org.

[12] RFC 2624, Shepler, S., "NFS Version 4 Design Considerations", June 1999, available from www.ietf.org.

[13] RFC 3010, S.Shepler, B.Callagen, et. al , NFS version 4 Protocol, December 2000, available from www.ietf.org.

[14] The Festival Speech Synthesis System, available at http://www.cstr.ed.ac.uk/projects/festival.

[15] Multimodal Requirements for Voice Markup Languages, W3C Working Draft 10 July 2000, available at http://www.w3.org/TR/multimodal-reqs.

[16] 3GPP TS 26.234: "Packet Switched Streaming Services: Protocols and Codecs", available from www.3gpp.org

14 Authors

14.1 Authors' Addresses

Srinivas Bharadwaj

Phone: (408) - 602 - 6555

Email: srini@virtualpalmtop.net
14.2 Acknowledgements

The author would like to specially thank Kevin Holley of British Telecommunications, the Chairman of T2 for 3G PP and Mark Cataldo, the Chairman of SWG 1 under T2 that deals with MExE for their kindness and courtesy and their dedicated efforts in ensuring that VP Technology could be introduced into 3G PP. The author also wishes to thank Dr. Ramana Rao for his contributions to the help bring out the MPEG portions of the VP document.

The author also would like to dedicate this RFC to Dr. Jhunjhunwalla, Dr. Bhaskar Ramamurthy and the rest of the TENET group at IIT Madras who worry about 800 million children (some not yet born) and to God Who worries about us all.

15 Full Copyright Statement

This Document is the intellectual property of Media Farm, Inc. and contains ideas, inventions, information and data that are owned by it. All rights are reserved.

It is currently released for limited distribution within T2 SWG1.

