
	3GPP TSG-T2
	
	T2x00139

	Chicago, USA, 24th-26th October 2000
	
	e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

	
	
	

	

	CHANGE REQUEST
	Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

	

	
	23.057
	CR
	
	Current Version:
	3.3.0
	

	
	
	
	
	

	GSM (AA.BB) or 3G (AA.BBB) specification number (
	
	(CR number as allocated by MCC support team

	

	For submission to:
	
	for approval
	X
	
	strategic
	
	(for SMG

	list expected approval meeting # here (
	for information
	
	
	non-strategic
	
	use only)

	
	
	

	Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

	

	Proposed change affects:
	(U)SIM
	
	ME
	X
	UTRAN / Radio
	
	Core Network
	

	(at least one should be marked with an X)

	

	Source:
	MExE Group
	Date:
	29/9/2000

	

	Subject:
	Classmark 3 non-security

	

	Work item:
	MExE

	

	Category:
	F
Correction
	
	Release:
	Phase 2
	

	
	A
Corresponds to a correction in an earlier release
	
	
	Release 96
	

	(only one category
	B
Addition of feature
	X
	
	Release 97
	

	shall be marked
	C
Functional modification of feature
	
	
	Release 98
	

	with an X)
	D
Editorial modification
	
	
	Release 99
	

	
	
	
	
	Release 00
	X

	

	Reason for
change:

	Introduction of a new MExE classmark based on Java2ME CLDC and MIDP. This CR introduces the changes to the non-security parts of the specification.

Further, explicit identification of the mandatory/optional aspects are identified.

	

	Clauses affected:
	2,3,4,6

	

	Other specs
	Other 3G core specifications
	
	(List of CRs:
	

	affected:
	Other GSM core specifications
	
	(List of CRs:
	

	
	MS test specifications
	
	(List of CRs:
	

	
	BSS test specifications
	
	(List of CRs:
	

	
	O&M specifications
	
	(List of CRs:
	

	

	Other
comments:
	

[image: image1.wmf]help.doc

 <--------- double-click here for help and instructions on how to create a CR.

2
References

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

[1]
GSM 01.04: "Digital cellular telecommunications system (Phase 2+); Abbreviations and acronyms".

[2]
3G TS 22.057: "MExE Stage 1 Description".

[3]
Personal Java 1.1.1, Sun Microsystems http://java.sun.com/products/personaljava/spec-1-1-1/index.html
[4]
JavaPhone API version 0.9, http://java.sun.com/products/javaphone/.

[5]
JTAPI 1.2, Sun Microsystems http://www.java.sun.com.

[6]
Wireless Application Protocol (WAP) version 1.1 http://www.wapforum.org.

[7]
vCard – The Electronic Business Card Exchange Format – Version 2.1, The Internet Mail Consortium (IMC), September 1996, http://www.imc.org/pdi/vcard-21.doc.

[8]
vCalendar – The Electronic Calendaring and Scheduling Exchange Format – Version 1.0, The Internet Mail Consortium (IMC), September 1996, http://www.imc.org/pdi/

[9]
Hypertext Transfer Protocol – HTTP/1.1, IETF document RFC2068, http://www.w3.org/Protocols/rfc2068/rfc2068

[10]
Java Mail API version 1.0.2, http://www.java.sun.com

[11]
3G TR 22.170: "Universal Mobile Telecommunications System (UMTS); Service aspects; Provision of Services in UMTS - The Virtual Home Environment".

[12]
3G TS 22.121: "Universal Mobile Telecommunications System (UMTS); Provision of Services in UMTS - The Virtual Home Environment: Stage 1".

[13]
ISO 639 International Standard - codes for the representation of language names.

[14]
3G TS 22.101: "Universal Mobile Telecommunications System (UMTS); Service Aspects; Service Principles".

[15]
CC/PP Exchange Protocol based on HTTP Extension Framework; W3C http://www.w3.org/TR/NOTE-CCPPexchange

[16]
Composite Capability/Preference Profiles (CC/PP):A user side framework for content negotiation; Available at W3C web pages.

[17]
UAProf Specification http://www.wapforum.org/what/technical.htm

[18]
JDK 1.1 security http://www.javasoft.com/products/jdk/1.1/docs/guide/security/index.html

[19]
Java 2 security http://www.javasoft.com/products/jdk/1.2/docs/guide/security/index.html

[20]
Java security tutorial http://java.sun.com/docs/books/tutorial/security1.2/overview/index.html
[21]
OCF 1.1.: "Smartcard API specified by OpenCard Consortium http://www.opencard.org

[22]
RFC 1738 Uniform Resource Locators (URL) http://www.w3.org/pub/WWW/Addressing/rfc1738.txt
[23]
The MD5 Message Digest Algorithm", Rivest, R., RFC 1321, April 1992. URL: ftp://ftp.isi.edu/in-notes/rfc1321.txt

[24]
ISO/IEC 10118-3 1996: "Information technology - Security techniques - Hash-functions - Part 3: Dedicated hash-functions".

[25]
IETF RFC 2368: "The mailto URL scheme".

[26]
ITU-T Recommendation X.509: "Information technology – Open Systems Interconnection – The Directory: Authentication framework".

[27]
GSM 11.11: "Digital cellular telecommunications system (Phase 2+); Specification of the Subscriber Identity Module – Mobile Equipment (SIM-ME) interface".

[28]
3G TS 23.107: "3rd Generation Partnership Project; Technical Specification Group Services and system Aspects QoS Concept and Architecture (3G TS 23.107)".

[29]
3GPP TS 24.007: "3rd Generation Partnership Project; Technical Specification Group Core Network; Mobile radio interface signalling layer 3; General Aspects (3G TS 24.007)".

[30]
3GPP TS 24.008: "3rd Generation Partnership Project; Universal Mobile Telecommunications System; Mobile radio interface layer 3 specification, Core Network Protocols – Stage 3 (TS 24.008)".

[31]
3GPP TS 23.060: "3rd Generation Partnership Project; Technical Specification Group Core Network; Digital cellular telecommunications system (Phase 2+); General Packet Radio Service (GPRS); Service Description; Stage 2 (3G TS 23.060)".

[32]
PKCS #15 "Cryptographic Token Information Standard" version 1.0, RSA Laboratories, April 1999
URL: ftp://ftp.rsa.com/pub/pkcs/pkcs-15/pkcs15v1.doc
[33]
RFC 2510 Internet X.509 Public Key Infrastructure January 1999.
[34]
Connected Limited Device configuration, Java 2ME version 1.0, http://java.sun.com/aboutJava/communityprocess/review/jsr030/index.html
[35]
Mobile Information Device Profile, Java 2ME version 0.9, http://java.sun.com/aboutJava/communityprocess/review/jsr037/index.html
3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document the following definitions apply:

administrator: The administrator of the MExE MS is the entity which has the control of the third party trusted domain, and all resources associated with the domain. The administrator of the device could be the user, the operator, the manufacturer, the service provider, or a third party as designated by the owner of the device.

best effort QoS (Quality of Service): The best effort QoS refers to the lowest of all QoS traffic classes. If the guaranteed QoS cannot be delivered, the bearer network delivers the QoS which can also be called best effort QoS [28].
certificate: An entity that contains the issuer's public key, identification of the issuer, identification of the signer, and possibly other relevant information. Also, a certificate contains a signed hash of the contents. The signer can be a 3rd. party other than the issuer.

delivered QoS: Actual QoS parameter values with which the content was delivered over the lifetime of a QoS session [28].

fine grain: Refers to the capabilities of the Java security system to allow applications, sections of code or Java classes to be assigned permissions to perform a specific set of privileged operations. The smallest programming element that can be given permission attributes is a Java class [19].

key pair: Key pairs are matching private and public keys. If a block of data is encrypted using the private key, the public key from the pair can be used to decrypt it. The private key is never divulged to any other party, but the public key is available, e.g. in a certificate.

negotiated QoS: In response to a QoS request, the network shall negotiate each QoS attribute to a level that is in accordance with the available network resources. After QoS negotiation, the bearer network shall always attempt to provide adequate resources to support all of the negotiated QoS profiles [31].
personal certificate: This is a certificate loaded by the user or a user application which is limited to the application that it is intended for, and is not a MExE Certificate. E.g. an e-mail application could load certificates for its usage. Personal certificates are out of scope for MExE.

phonebook: A phonebook is a dataset of personal or entity attributes. The simplest form is a set of name-number pairs as supported by GSM SIMs.
MExE: MExE (Mobile station application Execution Environment) is defined in detail in this document, but the scope of MExE does not include the operating system, or the manufacturer’s execution environment.
MExE certificate: This is a certificate used in the realisation of MExE security domains. A MExE Certificate can be used to verify downloaded MExE executables. Use of the word "certificate" in this document implies a MExE certificate. Other varieties of certificate will be explicitly qualified as a e.g. "Personal Certificate".

MExE executable: An executable is an applet, application, or executable content, which conforms to the MExE specification and may execute on the ME.

MExE Java VM: This is a standard Java virtual machine used to execute MExE Java applets and applications.

MExE native library: This is a downloaded native library that can be accessed by MExE executables.

MExE-SIM: A SIM that is capable of storing a security certificate that is accessible using standard mechanisms.
MIDP application: A MIDP application, or “MIDlet,” is one that uses only the APIs defined by the MIDP and CLDC specifications. This type of application is the focus of the MIDP specification and is expected to be the most common type of application on a MID.

MIDlet suite: A collection of MIDP Applications, or MIDlets packaged together and share resources within the context of a single Java Virtual Machine.

owner: An owner of the MExE MS. An owner could be a user, operator (e.g. where the MS is obtained as part of a subscription and the cost of the MS is subsidised), service provider, or a third party (e.g. the MS is owned by the user’s company and this company wishes to control how the MS is used).

power up event: An abstract event that occurs when the MExE MS is cold started (i.e. switched on).

QoS session: Lifetime of PDP context. The period between the opening and closing of a network connection whose characteristics are defined by a QoS profile. Multiple QoS sessions may exist, each with a different QoS profile [28].

QoS profile: A QoS profile comprises of a number of QoS parameters. A QoS profile is associated with each QoS session. The QoS profile defines the performance expectations placed on the bearer network [28].

requested QoS: A QoS profile is requested at the beginning of a QoS session. QoS modification requests are also possible during the lifetime of a QoS session [28], [31].

sandbox: A sandbox is a safe area to run Java code. Untrusted Java code executing in a sandbox has access to only certain resources [18].

service: A service (which may consist of an application or applet, and its related content) is a set of functions offered to a user by an organisation, and may be performed on the MExE MS and/or remotely.

service name: An identifier associated with a service, which could be a string, a fully qualified Java class name, a unique URI or other identifier.

session: The period between the launching of a MExE executable and its execution termination. A WAP-session is established between the mobile and the WAP Gateway. The duration of a WAP-session can range from a second to years. The WAP-session can be associated with a particular subscription in the WAP Gateway.
signature: "Signing" is the process of encrypting a hash of the data using a private key. If the signature can be decrypted using the public key, then the signature is valid.

signed JAR file: Archives of Java classes or data that contain signatures that also include a way to identify the signer in the manifest. (The Manifest contains a file which has attributes defined in it.)

subscribed QoS: The network will not grant a QoS greater than that subscribed. The QoS profile subscription parameters are held in the HLR. An end user may have several QoS subscriptions. For security and the prevention of damage to the network, the end user cannot directly modify the QoS subscription profile data [31].

user: The user of the MExE MS.

Further definitions specific to MExE are in GSM given in 3G TS 22.057 (MExE stage 1) [2].

3.2
Abbreviations

For the purposes of the present document the following abbreviations apply:

API
Application Programming Interface

APDU
Application protocol data unit

CA
Certification Authority

CC/PP
Composite Capability/Preference Profiles

Diff-serv
Differentiated Services

CGI
Common Gateway Interface

CCM
Certificate Configuration Message
CLDC
Connected Limited Device Configuration

CP-Admin
Certificate Present (in the MExE SIM) - Administrator

CP-TP
Certificate Present (in the MExE SIM) - Third Party

DHCP
Dynamic Host Configuration Protocol

GSM
Global System for Mobile Communication

GPRS
General Packet Radio Service

HTTP
HyperText Transfer Protocol

HTTPS
HyperText Transport Protocol Secure (https is http/1.1 over SSL, i.e. port 443)

IETF
Internet Engineering Task Force

IP
Internet Protocol
JAD
Java Application Descriptor

JAM
Java Application Manager

J2ME
Java 2 Micro Edition

J2SE
Java 2 Standard Edition

JNDI
Java Naming Directory Interface

JTAPI
Java Telephony Application Programming Interface

JAR file
Java Archive File
KVM
K Virtual Machine

MIDP
Mobile Information Device Profile

MIDlet
MIDP Application
MMI
Man-Machine Interface

MSE
MExE Service Environment

OCF
OpenCard Framework
OEM
Original Equipment Manufacturer
QoS
Quality of Service

PDP
Packet Data Protocol

RDF
Resource Description Format

RFC
Request For Comments

SAP
Service Access Point

SMS
Short Message Service

TLS
Transport Layer Security

TP
Third Party

UDP
User Datagram Protocol

UE
User Equipment

UI
User Interface

UMTS
Universal Mobile Telecommunications System

URL
Uniform Resource Locator

URI
Uniform Resource Identifier

USSD
Unstructured Supplementary Service Data

WAE
Wireless Application Environment

WAP
Wireless Application Protocol

WDP
Wireless Datagram Protocol
WSP
Wireless Session Protocol

WTA
Wireless Telephony Applications

WTAI
Wireless Telephony Applications Interface

WTLS
Wireless Transport Layer Security

WTP
Wireless Transaction Protocol

WWW
World Wide Web

Further abbreviations are given in 3G TS 22.057 (MExE stage 1) [2] and GSM 01.04 [1].

4
Generic MExE aspects

Support of MExE classmarks is optional.
This section defines the common aspects of all MExE compliant devices, independent of MExE technology.

Considering the wide and diverse range of current and future technology and devices that (will) use wireless communication and provide services based thereon a one-size-fits-all approach is unrealistic. Instead the present document categorises devices by giving them different MExE classmarks. In this specification the following MExE classmarks are defined:

· MExE classmark 1 - based on WAP (Wireless Application Protocol) [6] - requires limited input and output facilities (e.g. as simple as a 3 lines by 15 characters display and a numeric keypad) on the client side, and is designed to provide quick and cheap information access even over narrow and slow data connections.

· MExE classmark 2 - based on Personal-Java [3] - provides and utilises a run-time system requiring more processing, storage, display and network resources, but supports more powerful applications and more flexible MMIs.
· MExE classmark 3 – based on Java 2ME CLDC and MIDP environment [34,35] – supports Java applications running on resource constrained devices.

MExE Classmarks may also include optional support for applications from any other MExE classmark (refer to subclause 4.4).
Future classmarks may require other Java-packages, APIs, and/or support of other features such as speech-recognition, video-I/O with online (de)-compression, minimal storage requirements, high-speed local communication, etc. but these are subject to future standardisation efforts.

Content negotiation allows for flexible choice of formats available from a server or adaptation of a service to the actual classmark of a specific client device.

Bi-directional capability negotiation between the MExE Service Environment and MExE device (including MExE classmark), supports the transfer of capabilities between the client and the server.

4.1
MExE classmark 1 (WAP environment)

Support of MExE classmark 1 is optional.
The WAP forum has proposed designs for both the transport protocols on the wireless leg of the end-to-end connection (based on the Wireless Datagram Protocol (WDP), the Wireless Transaction Protocol (WTP), Wireless Transport Layer Security (WTLS) and Wireless Session Protocol (WSP)), as well as the client-side application environment, which revolves around a Wireless Markup Language (WML) browser supporting a Wireless Markup Language Script (WMLScript).
4.2
MExE classmark 2 (Personal Java environment)

Support of MExE classmark 2 is optional.
Classmark 2 specifies Personal Java enabled devices with the addition of the JavaPhone API.

The Personal Java[3] application environment is the standard Java environment optimised for consumer electronic devices designed to support World Wide Web content including Java applets. The Personal Java API is a feature level subset of J2SE with some Java packages optional and some API modifications necessary for the needs of small portable devices (for example an optimised version of the Abstract Windowing Toolkit targeted to small displays).

JavaPhone[4] is a vertical extension to the Personal Java platform that defines APIs for telephony control, messaging, address book and calendar information, etc.

4.3 MExE classmark 3 (Java 2ME CLDC environment)

Support of MExE classmark 3 is optional.
Classmark 3 MExE devices are based on the Connected Limited Device Configuration (CLDC) with the Mobile Information Device Profile (MIDP).

The Java 2 Platform Micro Edition (J2ME) is a version of the Java 2 platform targeted at consumer electronics and embedded devices. CLDC consists of a virtual machine and a set of APIs suitable for providing tailored runtime environments. The J2ME CLDC is targetted at resource constrained connected devices (e.g. memory size, processor speed etc.).
4.4
Multiple classmark support

Support of multiple MExE classmarks on a single device is optional.
A given MExE Classmark identifies support by a MExE UE for a defined level of MExE functionality as defined by that classmark.

Support of MExE classmarks by a UE shall enable flexible support of MExE functionality. A MExE UE may support MExE classmarks in one or more of the following ways:-

· single MExE classmark

a MExE UE may support any single classmark exclusively, thus examples of such MExE UEs are

· Classmark 1

· Classmark 2 or

· Classmark 3.

· multiple MExE classmarks

a MExE UE may support any multiple combination of MExE classmarks.

The support of any other functionality by a MExE UE is also possible, and is out of scope of this specification.
4.4.1
WAP support in non-Classmark 1 MExE devices

Support of WAP executables in non-classmark 1 MExE devices is optional.
To allow access to services designed for MExE Classmark 1 devices, MExE devices other than Classmark 1 will need to support full or a subset of WAP protocol as identified below. Due to the fast evolution of new technologies, support of WAP in Classmarks other than Classmark 1 is not mandated by MExE specification. However WAP is a possibility for the integrity of service provisioning as well as quick access to information by feature rich devices (e.g. Java devices).

If WAP is supported by non-Classmark 1 devices, a WAP service shall execute in the same manner as it executes in a MExE Classmark 1 UE. For that purpose, a MExE non-Classmark 1 device shall comply with data and telephony profile class (Class B) of WAP Class Conformance Requirement Specification [].
4.4.2
PersonalJava executables support in non-Classmark 2 MExE devices

Support of PersonalJava executables in non-classmark 2 MExE devices is optional.
Editor's note: Refer to T2x00078 for open issues regarding integrating multiple classmarks.

4.4.3
MIDlet support in non-Classmark 3 MExE devices

Support of MIDlet executables in non-classmark 3 MExE devices is optional.
Editor's note: Refer to T2x00078 for open issues regarding integrating multiple classmarks.
4.5
High level architecture

The following architectural model shows an example of how a GSM network uses standardised transport mechanisms to transfer MExE services between the MS and the MExE service environment, or to support the interaction between two MSs executing a MExE service. The same architectural model can be applied in 3G networks as well.

The MExE service environment could, as shown in Figure 1,consist of several service nodes each providing MExE services that can be transferred to the MS using standard Internet protocols. The MExE service environment may also include a proxy server to translate content defined in standard Internet protocols into their wireless optimised derivatives.

For the versatile support of MExE services, the network shall provide the MS with access to a range of bearer services on the radio interface to support application control and transfer from the MExE service environment.

[image: image2.wmf]GSM air interface

signalling channel

•

b-channel control

data bearer

•

mm mail control &

xfer

•

 Web access

•

software downloads

•

backup / file synch.

•

user-user applications

voice bearer

•

voice channel

SMSC

•

SMS store & forward

3rd party

services

notification

service

fax

service

e-mail

data

backup

GSM

Switching

Fabric

•

personal messaging

(

text, …)

•

mail notification

•

other notifications

Short Message Service

**Possible configuration

network access

server

•

data fan-out

•

protocol translations

Mobile Station

MExE Service Environment**

Figure 1: Generic MExE architecture

4.6
Capability and content negotiation

Support of interaction between the MExE MS and the MSE as detailed in this subclause is mandatory.
Interaction between the MExE MS and the MSE shall be supported by the use of the hypertext transfer protocol HTTP/1.1 [9], or an HTTP/1.1 derived protocol (e.g. WSP as defined in Wireless Application Protocol [6]). Communication between the MExE MS and the MSE supports:

· Capability negotiation

The MExE MS connects to the MSE by using HTTP/1.1 or an HTTP/1.1 derived protocol. Capability negotiation between the MExE MS and the MSE only takes place for the first time after the MExE MS has connected to the MSE, and the MSE is informed about the MExE MS. Without this first initial contact from the MExE MS, the MSE has no knowledge of the MExE MS, and thereafter the MSE may connect to the MExE MS by using HTTP/1.1 or an HTTP/1.1 derived protocol.

Capability negotiation represents the mechanism by which the MExE MS and the MSE interact to inform each other of the specific mechanisms, capabilities and support which each is able to provide or support within the scope of a MExE service interaction. The capability negotiation normally takes place prior to any content transfer between the two entities.

Capability negotiation is used by the MExE MS to inform the MSE of its capabilities. The MExE MS may be informed by the MSE of its use of the MExE MS’s capabilities. The MExE MS may also spontaneously inform the MSE of its capabilities (i.e. following a change in MExE support, such as removal of MExE MS from a docking station with its keyboard, mouse and monitor). A subset of characteristics which may be transferred between the MExE MS and the MSE during the capability negotiation are identified in subclause 4.6.1.1 Capability negotiation characteristics.

· Content negotiation

Content negotiation represents the means by which the MExE MS and the MSE inform each other of the requested and available form of content. If needed, the content negotiation may take place following capability negotiation between the two. The methods for content negotiation are the basic HTTP/1.1. or WSP methods explained in [9] and [6].

Content negotiation is used to select the best representation of an entity when there are multiple representations of the entity available from the MSE. The entity (e.g. a service, an image, etc) is located behind a URI, and the application in the MExE MS connects to the URI by using HTTP/1.1 or an HTTP/1.1 derived protocol. The best representation of an entity can be decided by the server (server-driven negotiation) or by the client application (agent-driven negotiation).

Both the capability and the content negotiation has the same purpose: to optimise the content according to client’s capabilities. The term "content negotiation" has been used e.g. in the HTTP specification and the HTTP/1.1. and the WSP contain headers to perform the content negotiation. However, the capability negotiation in MExE aims at extending the basic HTTP and WSP methods for content negotiation. MExE terminal is free to use both the existing HTTP/WSP content negotiation methods and the new MExE capability negotiation methods.

The content negotiation transferred between the MExE MS and the MSE is identified in subclause 4.6.2.1 Client Capability Report onwards.

4.6.1
Capability negotiation
4.6.1.1
Capability negotiation characteristics

Support of capability negotiation as detailed in this subclause is mandatory.
Method for capability negotiation is based on the CC/PP specification made by W3C, [16]. The properties and the actual schema is based on the WAP UAProf group specification [17]. The Composite Capability/ Preferences Profiles framework is intended to provide an efficient mechanism for enabling enhanced content and service negotiation through a standardised format for user agent profiles. The use of Resource Description Framework (RDF) in CC/PP allows for interoperable encoding of the profile metadata in XML and supports multiple vocabularies to provide for future extensibility. WAP UAProf is based on the CC/PP framework. The purpose of the UAProf is to specify:

· an RDF based schema and vocabulary for CC/PP in the context of WAP UAProf that includes the class definitions and semantics of attributes described in a user agent profile, and

· guidelines for schema extensibility to support a composite profile that enables future additions to the vocabulary and schema.

Not all capabilities have to be reported in the request to the server but instead, the client may point to URL(s) where the server may fetch the properties. An MSE may, or may not, use the client capability information.

The generic set of capabilities which may be negotiated between the client and the server consists of the subsequently identified properties in the UAProf schema, [17]. A MExE terminal shall support (but not be limited to) the following properties in the UAProf schema for capability negotiation:

· MexeClassmark;

· MexeSpec;

· Vendor;

· Model;

· Screensize;

· ScreenSizeChar;

· ColorCapable;

· AudioInputEncoder;

· VideoInputEncoder;

· PointingResolution;

· CcppAccept-Language;
· Keyboard;

· SoftwareNumber;

· SupportedBearers.

It is not required that a MExE terminal shall send all the above properties together when sending a request, however it shall be possible for the MExE terminal to send one or more of the above properties, with user permission.

Generally, the combination of user profile and ME logic will determine the information sent in the capability negotiation from the MExE device to the MExE Service Environment. As an example, for the support of VideoInputEncoder information the user’s profile controls if and when VideoInputEncoder information may be sent to the MExE Service Environment (e.g. never sent, always sent, only after user confirmation).

The capability negotiation process shall be used by the client to permit transfer of capabilities from the client to the server. By transferring its capabilities, the client will support efficient use of resources both over the radio interface as well as in the client or server. Capability negotiation shall be performed prior to transfer over the radio interface to verify as far as possible the ability of the client to support any services to be downloaded.

In order to transfer the capability information between the MExE MS and the MSE, CC/PP method is used with the schema defined in the WAP UAProf working group.

4.6.1.2
CC/PP over WSP (Classmark 1)

In Classmark 1 the CC/PP is carried over by using CC/PP over WSP, [17].

4.6.1.3
CC/PP over HTTP (Classmark 2)

In Classmark 2 the CC/PP is carried over by using CC/PP over HTTP, [15] and optionally CC/PP over WSP, [17].
4.6.1.4 Transfer of capability negotiation information in Classmark 3

In Classmark 3 the CC/PP is carried over by using CC/PP over HTTP, [15] and optionally CC/PP over WSP, [17].
Also MIDP itself provides a simple mechanism for applications to indicate the capabilities they require. The Java Application Descriptor File (JAD), which is a file stored and downloaded separately to the application itself, contains information such as application name, version number, JAR file size, data storage requirements etc. The Application Descriptor accompanies the JAR file and can be used to ensure prior to the actual application download that the application suits the device. The JAD file is described in more details in the section 6.2.2.2.2.
4.6.2
Content negotiation
Support of content negotiation as detailed in this subclause is optional.
4.6.2.1
Client content capability report

The client may perform content negotiation capabilities to the server by using appropriate HTTP/1.1 or WSP request headers. The following methods are available for content negotiation:

· Client software (product): User-Agent header;

· MIME media types: Accept header;

· Character set: Accept-Charset header;

· Content encoding: Accept-Encoding header;

· Language: Accept-Language header.

There is no need for MExE to specify any tokens for content negotiation, as these headers are already defined in HTTP and WSP. The formats for these headers are specified in [9] and [6].

Example:

The following HTTP request reports that the name of client software is "GSM-Phone" version "1.0". The client accepts both compiled WML and compiled WMLScript, and supports both the English and Swedish as languages.

GET / HTTP/1.1

Host: www.company.com

User-Agent: GSM-Phone/1.0

Accept: application/x-wap.wmlc, application/x-wap.wmlscriptc

Accept-Language: en, sv

...

The basic format of the User-Agent: header is: User-Agent: software-name/version. A comment can be attached enclosed in parentheses to give more specific information. For example, operating system, display size, supported software extensions, script libraries, etc. The format of the comment is, however, not specified in [9].

4.6.2.2
Server role in capability negotiation

The server may request the capabilities of a client whenever required, and shall enquire of the client’s capabilities prior to making each transaction resulting in a set of transfers to the client; the characteristics which may be reported in the client capability report are identified in the list above.

In server-driven negotiation the server signals to the client that the response entity was selected from a set of available representation. To do this, the server attaches the Vary: response header in the response to the client. The Vary: header includes a list of request headers. For example:

HTTP/1.1 200 OK

Vary: User-Agent, Accept-Language

Content-type: application/x-wap.wmlc

Content-language: en

...

Indicates that the entity is available for multiple languages and user-agents. The selected entity is the English version.

4.6.2.3
Client-driven negotiation

If the server cannot specify an optimal version for the client basing on the CC/PP sent over to the server, the server may also indicate to client which type of versions are available and let the client make the decision. This method is already available in HTTP1.1. In client-driven negotiation the client selects the best representation after having received an initial response from the server. The response from the server is a 300 Multiple Choices response and contains a list of available representations. The selection of the available representations may be done automatically by the client application or by the (human) user from a menu.

It is noted that there is an implicit overhead of (at least) one additional round-trip delay with client-driven negotiation. The client-driven negotiation will always require an additional request/response iteration, due to the fact that the initial response from the server to the client’s initial request may be a 300 Multiple choices response, or an equivalent presentation of available choices. After the user has selected one of the available options, the client sends the request for the actual content to the server.

4.7
User profile

The user profile (which may consist of sub user profiles for a user) contains the characterisation of the MExE MS as defined by the user and service provider. Further, it is also possible for multiple users of a MExE MS to each have their own user profiles. The user profile is not unique to the MExE MS, and this clause identifies the usage and content of the user profile from a MExE perspective only, and does not identify the generic support of user profiles in general. Refer to UMTS 22.101 [14] for further details on the user profile.

4.7.1
Location of, access to, and security of, the user profile

As multiple user profiles may be defined, the user is able to set up or receive calls/connections associated with different user profiles simultaneously by securely activating a user profile (with each user profile being associated with at least one unique identifier). Refer to the Security clause for further details on user profile activation.

The user’s characterisation of the MExE MS in the user profile may be modified at any time by the user and the service provider, and changes affected at the earliest possible opportunity.

The security clause shall apply to all user profiles at all times, whether activated or not

The user profile is securely managed by the MExE MS, and stored in a secure area of the MExE MS (either SIM or ME). The service provider may also retain the user profile in the network for service optimisation. User private data in the user profile may also be stored in the network, however only with the user permission.

The support of more than one user profile is not mandatory.

4.7.2
User profile and capability negotiation relationship

The user profile contains the user’s preferences. Support of the user’s preferences will depend on the capabilities of the device. If the capabilities change, then the degree of support of the user’s preferences may change too.

The capability negotiation between the MExE terminal and the MSE, as shown in Figure 2, contains those user preferences which the device is able to support.

In this way the MSE will serve a MExE terminal with the lowest common denominator of the users preferences, the terminal capabilities and the provided service characteristics and support the user’s preferences to the maximum degree.

[image: image3.wmf]MSE

capability

negotiation

store / access

user profile

(ME,SIM,MSE)

user profile

settings

User

Figure 2: Model of user profile and capability relationship

4.7.3
Support of the user profile

The user profile acts as a repository (which is always available in the MExE MS) defining the MExE MS behaviour.

MExE preferences and personalisation are supported in the user profile (e.g. UMTS portability and support of VHE defined in [12] and other 22-series specifications), which in turn is based on the Composite Capability/Preference Profile (CC/PP) specification from W3C [16].

MExE preferences and personalisation may not only be recorded directly in the user profile as supported by CC/PP (the direct referencing mechanism), but may also be retrieved from a URL (the indirect referencing mechanism).

Generally, the user profile’s CC/PP framework provides the mechanism for the standardised format of preferences, and its use of Resource Description Framework (RDF) permits the interoperable encoding of MExE preferences and personalisation. Future extensions will be supported by the W3C mechanism, allowing for evolution and development of MExE preferences and personalisation.

The set of preferences which are supported in the user profile consists of the following:

 user interface personalisation

the user’s personalisation of the user interface.

 service personalisation and management

the user’s generic service management information.

The coding and presentation of the above characteristics in the user profile is defined by the Composite Capability/Preference Profile (CC/PP) specification from W3C [16], and referenced by the MExE capability negotiation in subclause 4.4.

The following user preference information is supported by UAProf [17]. A MExE terminal shall support (but not be limited to) the following properties in the UAProf schema for user preference information:

 CcppAccept-Language

User's preference for document language

 AcceptDownloadableSoftware

User's preference for accepting downloadable software

 PreferenceForFrames

User's preference for displaying frames

 WapPushMsgPriority

User's settings for WAP Push message priorities

Also, there is support for indicating terminal's capabilities related to UI features, e.g. capability for displaying images or frames, as well as capability information about input and output methods.

E.g. the following preference information is for future consideration:

 Maximum size and time of transfer and other preferences related to transferring the content.

 User's preferences for input/output methods and other preference parameters related to user interface management.

 User's preferences for memory usage.

 Service-related parameters (eg. voice mail numbers, etc.).

4.8
User interface personalisation

Support of user interface personalisation as detailed in this subclause is optional.
The MS interface consists of the buttons, menus, screens and MMI as designed and provided by the MS manufacturer; the nature of this MS interface is naturally evolving, MS specific and proprietary to the individual manufacturers of the industry. This interface is the one normally seen by the user in normal operation of his MS. This specification does not place any requirements or limitations on the individual manufacturers’ MS interface.

The MExE MMI, in turn, is the interface available to the user to support MExE services and functionality on the MS. The nature of the MExE MMI interface, like the normal MS interface described above, is not standardised in any way, to allow for manufacturer innovation, cater for evolving market needs, and permit manufacturer differentiation. The MExE MMI, depending on different manufacturer implementations, may consist of the normal MS interface, the normal MS interface with modifications, a different interface to the normal MS interface, or some combinations thereof etc. MExE services operate within, and using the capabilities of, the MExE MMI.

User interface personalisation consists of two parts. The first part refers to the user’s ability to request, and verify, the preferred changes to the user interface; thus the user’s preferences, as supported by the specific MS, require to be recorded. The second part refers to the MExE MS’s support of the user’s preferences for the interface, within the capabilities of an MS. By defining the user interface personalisation to consist of two stages, the preferences which have been recorded by the user may be transferred (as part of the user profile, eg. CcppAccept-Language and/or PreferenceForFrames), and thereby provide portability of the user’s preferences.

4.8.1
MExE user interface personalisation

Personalisation of the user interface offers the MExE Service Environment and or the user, the ability to inform the MExE MS of the desired extent of personalisation. All support of the user interface personalisation is optional, not mandatory on any class of MS, and subject to the capabilities of the MS. Depending on the capability of the MS, the personalisation may be fully supported, partially supported, interpreted or ignored.

Personalisation of the user interface is not restricted to modifying the appearance of the MMI, but also the modification of MMI parameters (e.g. programming of the voicemail number). The user’s personalisation of the interface is retained as part of the user profile.

4.8.2
Support of MExE user interface personalisation

MExE user interface personalisation is supported via the preferences in the user profile, which in turn is based on the Composite Capability/Preference Profile (CC/PP) specification from W3C [16].

User interface personalisation may not only be reported in the CC/PP request to the server (the direct referencing mechanism), but indeed the client may point to a URL (the indirect referencing mechanism) from where the user interface personalisation preferences may be retrieved.

Generally, the user profile’s CC/PP framework provides the mechanism for the standardised format of preferences, and its use of Resource Description Framework (RDF) permits the interoperable encoding of user interface personalisation. Future extensions will be supported by the W3C mechanism, allowing for evolution and development of MExE user interface personalisation.

4.9
Management of services

Support of management of services as detailed in this subclause is mandatory.
The MExE ME shall be capable of supporting services in a standard (WAP or Java) execution environment independently of the MExE ME manufacturer. Management of services provides the user with the capability to:

· discover services;

· configure services ;

· control the transfer and execution of services;

· terminate or suspend executing services

on his MExE MS.

4.9.1 Service discovery

A MExE user is able to request (or be informed about), the range of MExE services available from the MExE server to which it is connected. Support for the request, and transfer, of information on MExE services from the MExE server is primarily provided by the use of the capability negotiation mechanism.

All services available in the network continue to be available to the user, in addition to MExE services.

An example of an alternative means of possibly receiving information on MExE services, is the use of an application on the MExE MS which the user interrogates to provide services information (from various sources), and which in turn then obtains such information and presents it to the user. Such an example is not subject to standardisation.

4.9.2
Service configuration

· The user controls whether a service transferred to the MExE MS is also automatically configured in the MS. Configuration of a service may result in changes to user interface using icons, browsers or menus as applicable depending on the capability of the MExE MS to support them. The service name may be contained in the package in which it was received (i.e. a JAR file or script), assigned by the user during configuration, or some other means. If service automatic configuration is enabled, the user is notified of the automatic service configuration once it is completed.

· In the event that there is no authorisation for the automatic configuration of a transferred service, the user is notified that it was not configured.

· The user controls which services may be automatically configured.

· Subsequent user modification of a service’s configuration (e.g. by modification of use profile settings) shall take effect at the earliest possible opportunity thereafter.

4.9.3
Service management

· The MExE MS shall support the ability to determine which services are transferred to, resident, configured or executing on the MS. The information relating to the services includes (as a minimum) the name and version.

· The user controls which services are permitted or denied to be transferred , resident, configured or executing on the MExE MS via the user profile, eg. AcceptDownloadableSoftware. The user profile permits characteristics such as security level, identification of specific services etc. to manage services on the MExE MS.

4.9.4
Service termination

· A service may terminate by itself, or be terminated by the provider of the service or by the user. The user is in charge of the service, except when the service provider may appropriately control the service as part of user support.

· The mechanism for terminating a service is out of scope of standardisation and shall be provided on a service by service basis by the provider of the service.

4.9.5
Service deletion

· A service may be deleted (i.e. removed) from the MExE with the authorisation of the user. The deletion may be initiated by the authoriser of the service or by the user.

4.10
Virtual home environment

Support of the virtual home environment is mandatory.
Virtual Home Environment (VHE) (see [11] and [12]) is defined as a concept for personalised service portability across network boundaries and between terminals. MExE is identified by VHE as one of the mechanisms which may be used to support VHE.

VHE presents the same look and feel depending on the capabilities of the serving network and the capabilities of the terminal in use, with any limitations in the terminal being indicated to the user when the terminal is changed. Services that are available/unavailable will be displayed in a way that is familiar to the user no matter what class of terminal is used.

With the general ability of the MExE requirements and functionality to support VHE requirements, MExE shall support the Virtual Home Environment system concept.

The characteristics of the VHE (to reflect any user or home environment modification of the user’s VHE) shall be stored as part of the user profile. Access and modification of the user profile) to support:

· identification of subscribed services;

· service personalisation;

· user interface personalisation;

shall be supported by the MExE APIs (when available).

4.11
User control of application connections

Support of the user control of application connections is mandatory.
· This subclause addresses the generic aspects of connection control supported by both WAP and Java classmark MExE MSs.

· In order to allow the user to maintain control over connections on his MExE MS and the ability to initiate connections, the user shall be able to terminate or suspend any active connection associated with an application in the MExE environment of the MExE MS. The user shall be able to obtain information on all connections associated with applications on the MExE MS. Behaviour of the application following termination or suspension of its connection is undefined.

· The specific support of connection control by WAP and Java classmark MExE MSs is identified in subsequent subclauses, the security aspects of connection control are identified in the security subclause, and the user control of connection authorisation is identified in the user profile subclause.

4.11
Journalling of network events

Support of the journalling of network events is mandatory.
To support the user in monitoring and maintaining a record of (potentially chargeable) network events initiated by services in the MExE environment, it shall be possible for the user to request the MExE MS to maintain a record of network events initiated by services on the MExE MS. Support of such journalling is mandatory.

Network events for the purposes of journalling, are defined as events which result in the origination of voice or data connections by a service in the MExE environment of the MExE MS. Examples of such events are:

· Sending an SMS message;

· Sending an USSD message;

· Initiating a circuit switched connection;

· Initiating a packet switched connection;

· Sending data over a packet switched connection.

The above list is not exhaustive, but includes any (potentially chargeable) network event initiated by services in the MExE environment.

The user shall be able to activate and deactivate the journalling of network events in a secure manner. The length, format and longevity of the journal is undefined and subject to manufacturers’ discretion.

The journal shall be managed by the ME, and not be accessible by MExE executables.

4.12.1

Journalling requirements

The terminal shall support the logging of network events. The user shall determine whether logging is in operation or not and the events that are logged. The size and format of the log is not the subject of this specification.

4.13

User notification

Support of user notification is optional.
It is recommended that the device should clearly display an indicator whenever network activity is in progress.

Ideally, this would be an icon on the phone's screen which is displayed whenever the device is sending/receiving SMS, USSD, data call, voice call, or packets.

However, there are certain cases when this indicator need not be displayed, especially if it is obvious by some other means that the device is performing network actions.

4.13

Quality of Service

Support of quality of service is mandatory for MExE devices supporting bearers defined by QoS as defined in this subclause is mandatory.
Quality of Service (QoS) [28] is seen by the end user as a measure of the amount of network resources given to an application by the underlying network. The network may employ a number of QoS mechanisms, but the end user / MExE executable is not involved in these. The end user / MExE executable requires an interface into the network QoS through a visible set of standard parameters.

A QoS aware MExE executable may request a QoS from the network at the beginning of a QoS session. Changes in the level of QoS provided shall be notified to the end user / MExE executable. An end user may request a change in the QoS through the MExE MS MMI. A MExE executable may have several QoS streams open simultaneously.

The MExE executable shall be able to dynamically request a change in the level of QoS at connection setup request or subsequently during the connection. The end user / MExE executable may receive a rejection to a QoS modification request, upon which the end user / MExE executable must be notified.

The end user's service level QoS subscription parameters are stored in the network, they identify the maximum permissible QoS that a user may negotiate with the network. Several QoS subscriptions may be possible for one user. MExE is neither aware nor able to determine or modify the end user's service level QoS subscriptions.

For MExE devices supporting bearers defined by QoS, the MExE execution environment shall support QoS management. QoS management may be available directly to the MExE executables themselves, or to the MExE environment.

5
WAP MExE devices

Support of MExE classmark 1 WAP devices as detailed in this subclause is optional.
WAP MExE devices shall be based on the WAP specifications [6]. In addition to the base specifications in [6], further developments made in the WAP specifications shall form part of this MExE specification.

WAP MExE devices shall implement the WAP version as specified in reference [6], or a later version, under the condition that the version of WAP is backward compatible with the version specified in reference [6].

The existing WAP specification covers security, creation and transfer of WAP executables and content, access, and execution.

5.1
High level architecture

The WAP architecture provides a scaleable and extensible environment for application development for mobile communication devices. This is achieved through a layered design of the entire protocol stack.

The key features of WAP include:

· Markup language (WML) and a script language (WMLScript) designed to create applications on the small displays of handheld devices. WML does not assume a QWERTY keyboard and a mouse is available for user input. Unlike the flat structure of HTML documents, WML documents are divided into a set of well defined units of user interactions. One unit of interaction is called a card, and services are created by letting the user navigate back and forth between cards from one or several WML documents. WML has a smaller set of markup tags that makes it more appropriate to implement in handheld devices, than, say, HTML.

· Light-weight protocol stack to minimise the required bandwidth and to guarantee that a maximum number of wireless network types can run WAP applications. For example, GSM SMS/USSD, circuit switched data (CSD), and GPRS.

· A framework for Wireless Telephony Applications (WTA) allows access to telephony functionality such as call control, phone book and messaging from within WMLScript scripts. This allows operators to develop telephony applications integrated into WML/WMLScript services.

Since WAP is based on a scalable layered architecture, each layer can develop independently of the others. This makes it possible to switch onto new bearers, to use new transport protocols, without major changes in the other layers.

5.2
Optionality

Mandatory and optional components of WAP are specified in the WAP specifications. Services and applications shall be able to determine the presence of optional parts of the functionality.

5.3
Call control

WAP telephony services are written in WML and WMLScript. The WAP Telephony API (WTAI) exposes telephony functions to service authors as a set of libraries. The WTAI function libraries can be accessed from WML as URIs, and from WMLScript as script functions. The following libraries have been specified:

· Public library
This includes functions that are available in all networks, and can be provided by any third party service provider; and not only the network operator. The user must acknowledge the function before it is carried out. Functions have been specified, which can be used e.g. to initiate a mobile originated call, send DTMF tones and add phonebook entry.

· Network Common library
This includes functions that are available in all networks, and can be provided only by the network operator. E.g. functions for advanced call control, accessing the phonebook, and sending and reading network text (SMS) have been specified.

· Network Specific library
Functions that are only available in certain types of networks, and can be provided only by the network operator. For GSM, e.g. functions for call reject, call hold, call transfer, multiparty, getting location information and sending USSD have been specified.

The WML and WMLScript author uses the WTAI libraries to create web services for mobile phones with telephony capabilities.

Call control shall be performed using WTA authenticated scripts.

5.4
Local phonebook
WAP Telephony API (WTAI) is used to access the information stored in the phonebook on the ME or the SIM. Phonebook entries consist of name, number and identity. Phonebook entries can be read, written, deleted, and searched for.

5.5
Services
WAP is a general purpose application based on World Wide Web (WWW) technologies and philosophies. Many services can be provided to both WAP clients and traditional WWW clients, from the same server. Services are created based on the same information space. The major difference is the user interface. The user interface of WAP services is realised by the Wireless Markup Language, WML [6], and has a menu tree oriented structure, instead of the traditional flat structure of HTML pages.

Typical WAP services provided to mobile phones may include (this list is not exhaustive):

	
News

Weather information

Package Tracking

Stocks
	
Telephony Services

Time Tables

Access to corporate databases

Sports

5.5.1
User interface

The user interface of WAP services is realised by the Wireless Markup Language, WML [6]. WML does not define the user interface itself, the implementation of the browser defines how the WML data is presented to the user (e.g. hyperlinks are blue and underlined). The script language, WMLScript [6], may be used to enhance the standard browsing and presentation facilities of WML with behavioural capabilities, and to access the device and its peripheral functionality.

5.5.2
Access points

Services may be hosted on standard HTTP servers and can be created with proven technologies; CGI, Java Servlets. URLs are used to address services.

The WAP network topology is shown in Figure 3.

[image: image4.wmf]WAP Gateway

WAP

Client(s)

HTTP/1.1

Server

Databases

Interfaces

Programs for

Interaction &

Dynamic content

Other Servers (e.g. proxies, firewalls)

Internet/intranet

GSM network

Other Network Nodes (e.g SMS-C)

WML

Figure 3: WAP network topology.

Mobile phones access services by sending a request with a URI to the WAP gateway. The URI is used to identify the origin server on which the service is available. The request is sent from the mobile phone by the WAP protocols over one of the available bearer networks. The WAP Gateway is a WAP to HTTP/1.1 proxy that translates the WAP request into an HTTP/1.1 request (from binary form to text). The HTTP/1.1 request is passed on to the server identified by the URI.

The HTTP server may have multiple access points to various databases and other services available in the infrastructure network. Once the request has been serviced a response is sent back to the WAP Gateway, which in turn translates it into a WAP response (from text to binary form) and sends it down to the mobile phone.

Note that WAP does not specify anything "behind" the WAP Gateway. However it is assumed that the origin server is an HTTP/1.1 server, and that the WAP Gateway has access to the TCP/IP network on which the origin server is hosted.

5.5.3
Transferring

The core of WSP [6] is a binary version of the Hypertext Transfer Protocol - HTTP/1.1 [9]. The core function of WSP is the same as for HTTP/1.1. A client sends a request to the server using an appropriate request method with a URI and information about the client. The server responds with a status code and possibly (if success) the requested content.

There is a differentiation between an origin server and a WSP server. The origin server is where the content is stored, and the WSP server is where the WSP session terminates. The WSP server is also typically the WAP gateway.

In addition to the basic HTTP/1.1 function, WSP has some functions that can not be found in HTTP/1.1, they are:

· Session Establishment and Management
Before a request is sent, the WSP client can establish a session with the server. During session establishment the client and server exchange static headers. The header are cached for the duration of the session, thus they need to be sent in every single request within the session. Static headers may be: Accept headers, User-agent header, etc. In addition, capabilities such as supported optional protocol functions, the maximum service data unit the protocol can handle, the maximum number of simultaneously outstanding requests, supported header code pages, etc. can also be exchanged during session establishment.

· Header encoding
WSP is using a compact binary header encoding to minimise the number of bytes sent over the air.

· Asynchronous transactions
WSP allows for multiple asynchronous transactions, that is, unordered transactions.

· Transaction Abort
WSP support abortion of an outstanding transaction.

· Datagram transport
WSP together with the helper protocol Wireless Transaction Protocol, WTP [9], can run over a datagram transport such as SMS or UDP. The WDP can also be used for non-IP bearers.

· Push
WSP supports the push of data from server to client. This can be done within and outside of a session. It can be done with and without acknowledgement from the client. Push of indications down to mobile phones is an essential function many wireless applications.

5.5.3.1
WSP and HTTP/1.1 Proxy Function

The WAP Architecture is a client-proxy-server architecture. The client is typically a mobile phone, the data gateway is the WAP Gateway and the server is the origin server (a standard HTTP server). The WAP Gateway translates the binary WSP header into text formatted HTTP/1.1 headers and passes them on to the origin server. In the opposite direction the WAP Gateway translates the text formatted HTTP/1.1 header into binary WSP headers. If the WAP Gateway receives a header it does not recognise it simply passes it on as an unknown header. Unknown headers that are not part of the WSP Header Code page or Extended code pages (negotiated at session establishment) are sent in plain text for the client to interpret as best it can.

6
Java MExE devices

6.1 Classmark 2 MExE devices

Support of MExE classmark 2 PersonalJava devices as detailed in this subclause is optional.
MExE Classmark 2 devices shall be based on the API for Personal Java, which defines the required and optional components of Personal Java /JavaPhone APIs that shall be used to realise a Classmark 2 compliant device.

The APIs primarily define the functions available to a Personal Java based MExE device such that services (specified in the form of Java classes and interfaces) can control such a device in a standardised way.

Many aspects of the MExE Classmark 2 API specification are optional. Services and applications shall be able to determine the presence of optional parts of the functionality. When optional parts of the functionality are implemented, the API shall be supported.

6.1.1
High level architecture

[image: image5.wmf]Required

PersonalJava APIs

Optional

PersonalJava APIs

Required

JavaPhone APIs

Optional

JavaPhone APIs

Optional Java APIs

MExE API

MExE Applications

JavaPhone API

Personal Java API

Figure 4: Basic functional architecture of a PersonalJava MExE device

The functional architecture of a Java MExE classmark 2 device is shown in Figure 4. Java applets, applications, and services access functionality via the MExE PersonalJava API. The MExE PersonalJava API is based on a combination of optional Java APIs approved by Sun Microsystems and the Wireless Profile of the JavaPhone API [4] as defined by the JavaPhone Expert Group. The JavaPhone API is based on the PersonalJava API [3] defined by Sun Microsystems.

6.1.2
High level functions

6.1.2.1
Optionality

The use of Java encourages development of modular interfaces and minimal required functionality. Additional functionality is provided by optional APIs specified in terms of the Java language. In general, optionality is specified in terms of Java packages. Packages are containers for the highest level of functionality in the Java language. In some cases, optionality is specified in terms of Java classes and interfaces. Classes and interfaces are elements contained inside packages.

The following Table 1 specifies the Sun Microsystems defined optionality of the Wireless Profile of the JavaPhone APIs. Within some of the packages, certain classes and methods may be individually specified as optional by the JavaPhone API specification.

Where a mandatory package is identified, it is implicit that any packages called by that mandatory package are also mandatory.

Table 1: Optionality of the Wireless Profile of the JavaPhone APIs

	JavaPhone API
	Java package
	Optionality

	Addressbook
	Javax.pim.addressbook
	Mandatory

	User Profile
	Javax.pim.userprofile
	Mandatory

	Calendar
	Javax.pim.calendar
	Mandatory

	Network
	Java.net
	Mandatory

	Datagram
	Javax.net.datagram
	Mandatory

	Power Monitor
	Javax.power.monitor
	Mandatory

	Power Management
	Javax.power.management
	Optional

	Install
	Javax.install
	Optional

	Communications
	Java.comm
	Optional

	SSL
	Javax.net.ssl
	Optional

	JTAPI Core Package
	Javax.telephony
	Mandatory

	JTAPI Core Capabilities Package
	Javax.telephony.capabilities
	Mandatory

	JTAPI Core Events Package
	Javax.telephony.events
	Mandatory

	JTAPI Call Control Package
	Javax.telephony.callcontrol
	Optional

	JTAPI Call Control Capabilities Package
	Javax.telephony.callcontrol.capabilities
	Optional

	JTAPI Call Control Events Package
	Javax.telephony.callcontrol.events
	Optional

	JTAPI Phone Package
	Javax.telephony.phone
	Optional

	JTAPI Phone Capabilities Package
	Javax.telephony.phone.capabilities
	Optional

	JTAPI Phone Events Package
	Javax.telephony.phone.events
	Optional

	JTAPI Mobile Package
	Javax.telephony.mobile
	Mandatory

	
	Java.math
	Optional

	
	Java.rmi
	Optional

	
	Java.rmi.dgc
	Optional

	
	Java.rmi.registry
	Optional

	
	Java.rmi.server
	Optional

	
	Java.security
	Optional

	
	Java.security.interfaces
	Optional

	
	Java.sql
	Optional

	
	Java.io
	Optional

6.1.2.2
Required and optional PersonalJava APIs

MExE classmark 2 devices shall support the PersonalJava specification [3]. The PersonalJava APIs provide a standardised and readily implementable execution environment as a means for applications, applets, and content:

· to access and personalise the user interface via the java.awt packages;

· to utilise both Internet and Intranet connections via the java.net package.

6.1.2.3
Required and optional JavaPhone APIs

The JavaPhone APIs extend the PersonalJava APIs to provide functionality unique to telephony devices. MExE classmark 2 devices shall support the Wireless Profile of the JavaPhone API specification [4]. MExE classmark 2 devices shall support all APIs specified as required by the Wireless Profile in the JavaPhone API specification. All APIs that are optional in the Wireless Profile shall be optional in MExE classmark 2 devices.

6.1.2.3.1
Application installation

MExE classmark 2 devices shall support the following JAR file manifest entries (as described in the JavaPhone specification) as described below:

 Implementation-Title

the Implementation-Title shall be used in any textual description of the application which is displayed in the UI element used to launch the application. E.g. the text displayed with an icon.

 Main-Icon

the use of icons to launch applications is optional, however if icons are used as elements to launch the application, then the icon file within the JAR file named by the Main-Icon attribute shall be displayed, and may be scaled if desired.

 Main-Class and Class-Path

when the application is launched, the MExE Java VM shall be supplied with the classpath and shall call the main() method in the class named by the Main-Class attribute.

6.1.2.3.2
Power

MExE classmark 2 devices shall support the Power Monitor package (javax.power.monitor) as specified by the JavaPhone API to access the power level of the device and receive notifications concerning changes in power states.

Note that the Power Monitor package does not specify the minimum required events that should be generated under certain circumstances. MExE classmark 2 device shall at least implement the following event generation:

· BatteryCritical

shall be generated when the battery is at a critically low level.

· BatteryNormal

shall be generated when the battery is no longer low.

All the other event generation should be supported by the implementation.

6.1.2.4
Required and optional MExE PersonalJava APIs

MExE classmark 2 devices shall not be required to support any other Java APIs.

MExE classmark 2 devices may optionally support any other Java APIs which comply with the MExE security requirements in Table 3, such as:

· OCF SmartCard API OpenCard, available from [21]. If the ME supports smartcards other than the SIM, and the smartcard is open to 3rd party applications, then the opencard.core.terminal section of the OpenCard API may be used to access the card.

6.1.2.5
Mandated services and applications

·
·
·

6.1.2.5.1
Network protocol support

Support for network protocols in MExE classmark 2 devices is specified in the following Table 2:

Table 2: Support for network protocols

	Protocol
	Optionality

	HTTP/1.1 [9]
	Mandatory

	HTTPS
	Mandatory

	Gopher
	Optional

	ftp
	Optional

	mailto [25]
	Mandatory

	File
	Optional

6.1.2.6

Datagram recipient addressing

The Datagram API (as specified by JavaPhone) may resolve server/service names using a name resolution service. The MExE Java implementation shall at least be able to resolve names using the addressbook.

The implementation of the Datagram API shall support use of the addressbook to resolve names: The addressbook entries shall be searched for items whose name matches the server/service name by the Datagram API implementation in order to resolve names to actual addresses. It shall look for an item of type "FN" with a value equal to the server name, using the following syntax:

server_name: *mostchars

e.g. "The PIZZA Hut".

Then it shall search for aggregate fields named by the service name concatenated to "X-DATAGRAM-", the field name which is named according to the following syntax:

field_name

=
"X-DATAGRAM-" service_name

service_name

=
*mostchars

Then it shall use the value of the aggregate attributes which use this field. These strings shall specify in order, the preferred and available protocols and addresses for the named server/service. The string value in each X‑DATAGRAM… field shall be formatted as so (inspired by RFC 1738 [22]):

address

=
primary_name "{" primary_addr "}" *[secondary_name "{" secondary_addr "}"]

primary_name

=
wdp_name | udp_name | sms_name | any_name

primary_addr

=
internet_addr | phone_number | port | httpurl | *unreserved

secondary_name

=
sms_name | url_name | sms_center_name | ip_name | any_name

wdp_name

=
"WDP"

udp_name

=
"UDP"

sms_name

=
"SMS"

url_name

=
"URL"

sms_center_name
=
"CENTER"

ip_name

=
"IP"

any_name

=
1*alphadigit

secondary_addr

=
internet_addr | phone_number | port | httpurl | *unreserved

internet_addr

=
hostname | hostnumber

phone_number

=
*phonechar

httpurl

=
"http://" host ["/" hpath ["?" search]]

host

=
hostname | hostnumber

hostname

=
*[domainlabel "."] toplabel

domainlabel

=
alphadigit | alphadigit *[alphadigit | "-"] alphadigit

toplabel

=
alpha | alpha *[alphadigit | "-"] alphadigit

hostnumber

=
digits "." digits "." digits "." digits

port

=
digits

hpath

=
hsegment *["/" hsegment]

hsegment

=
["~"] *[uchar | ";" | ":" | "@" | "&" | "="]

search

=
*[uchar | ";" | ":" | "@" | "&" | "="]

lowalpha

=
"a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" |

"i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" |

"q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" |

"y" | "z"

hialpha

=
"A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" |

"J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" |

"S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"

alphadigit

=
alpha | digit

alpha

=
lowalpha | hialpha

phonechar

=
"+" | digit | "#" | "*" | "C" | "D" | "c" | "d"

digits

=
1*digit

digit

=
"0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |

"8" | "9"

safe

=
"$" | "-" | "_" | "." | "+"

extra

=
"!" | "*" | "'" | "(" | ")" | ","

hex

=
digit | "A" | "B" | "C" | "D" | "E" | "F" |

"a" | "b" | "c" | "d" | "e" | "f"

escape

=
"%" hex hex

unreserved

=
alpha | digit | safe | extra

uchar

=
unreserved | escape

mostchars

=
unreserved | " "

As a minimum, the following transport/bearer combinations shall be supported if the device supports the bearer/transport combination:

	Transport/bearer combination
	Value of primary_name
	Syntax of primary_addr
	Value of secondary_name
	Syntax of secondary_addr

	WDP over SMS
	WDP
	port
	SMS
	phone_number

	SMS
	SMS
	phone_number
	
	

	WDP over HTTP
	WDP
	port
	URL
	httpurl

	UDP over IP
	UDP
	port
	IP
	internet_addr

For example:

 WAP Datagram over SMS:
"WDP=358,SMS={+358503583862}"

 SMS:

"SMS={+358503583862}"

 WDP over HTTP:

"WDP={1234},URL={http://somewhere.on.the.web/path/name}"

 UDP over IP:

"UDP={1234},IP={147.23.120.2}"

If the service centre number is specified for SMS, then the secondary_name shall be "CENTER" and secondary_addr shall be the phone number. If it is not present, then it shall be derived from the default service center.
6.2 Classmark 3 MExE devices

Support of MExE classmark 3 CLDC/MIDP devices as detailed in this subclause is optional.
MExE Classmark 3 devices are based on the J2ME Connected Limited Device Configuration (CLDC) with the Mobile Information Device Profile (MIDP).

All APIs defined by CLDC and MIDP shall be supported by a MExE classmark 3 device.

6.2.1
High level architecture

Figure 5. Functional architecture of a Classmark 3 MExE device

The functional architecture of a Classmark 3 MExE device is shown in Figure 5. The MExE API is based on the combination of CLDC APIs and MIDP APIs. OEM specific APIs are outside the scope of MExE specification. CLDC and MIDP APIs are defined in Java 2ME specified by Sun Microsystems [34,35].

6.2.2
High level functionality

Java 2ME CLDC and MIDP addresses a large market of resource-constrained devices and is aimed to provide complete end-to-end solution for creating dynamically extensible networked products and applications. It allows the use of Java programming language as the standard platform for secure delivery of dynamic content for the extensible next-generation devices.

In order to fit into various types of the devices and support extensibility, Java2ME defines in Configuration a minimum platform with a vitrual machine features and minimum libraries which are available on all devices of similar class. In a Profile Java2ME addresses the specific demand of a certain category of the devices allowing additional APIs. Profile is implemented on top of configuration (see Figure 5). Classmark 3 MExE device shall be based on the following types of configuration and profile: Connected Limited Device Configuration (CLDC) and Mobile Information Device Profile (MIDP).

6.2.2.1
Connected Limited Device Configuration (CLDC)

Classmark 3 devices shall support CLDC specification [34].

CLDC provides only high level libraries without focus on any specific device categories. Defining "the lowest common denominator" of Java technology all features included in CLDC must be generally applicable to a wide variety of the devices. CLDC does not address to a certain device category. Such features are specified in a profile. CLDC does not define any optional features.

The classes provided by CLDC are either subset of Java 2SE (Standard Edition) classes or CLDC specific classes which can be mapped onto Java 2SE. Classes belonging to the packages: Java.io, Java.lang, Java.util are a subset of corresponding Java2SE libraries, while classes specified in Javax.microedition.io are specific CLDC classes, which, however, can be mapped onto Java2SE.

Javax.microedition.io provides generic connection framework for supporting input/output and networking in a generalized and extensible manner. The framework is a functional subset of Java2SE classes which can be mapped to common low-level hardware or to any Java2SE implementation. It does not provide a set of different kinds of abstractions for different forms of communications, but rather a set of related abstractions are used at the application programming level.

The framework uses a hierarchy of Connection interfaces that group together classes of protocols with the same semantics. The actual supported protocols or implementation of the specific protocols is outside the scope of CLDC Generic Connection Framework and is maintained at the profile level.

The basic set of available Connection interfaces is the following:

- Connection

- ContentConnection

- Datagram

- DatagramConnection

- InputConnection

- OutputConnection

- StreamConnection

 - StreamConnectionNotifier

6.2.2.2
Mobile Information Device Profile (MIDP)

Java MExE device shall support MIDP specification [35]. MIDP is based on CLDC. Some of the features of CLDC are modified or extended by MIDP [35].

6.2.2.2.1
Networking

While CLDC specifies only a generic Connector used for all types of connections, MIDP extends connectivity support by providing support of the subset of the HTTP protocol. HttpConnection API provides the additional functionality to set request header, parse response headers and perform HTTP specific functions. The API must support RFC2396 (URI) and RFC2116 (HTTP1.1).
The MIDP does not provide support for Datagrams. If a Datagram API is to be implemented, the DatagramConnection interface defined in CLDC shall be used.
6.2.2.2.2
MID Applications (MIDlet)

A MIDP application (or MIDlet) uses the APIs defined by the MIDP and CLDC specifications. One or more MIDlets may be packed in one JAR file. Sharing of data between MIDlets is controlled by the individual APIs (e.g. Record Management System API).

Application Management Software provides an environment in which a MIDlet is installed, started, stopped and uninstalled. Each JAR file can be accompanied by an Application Descriptor (a text file consisting of name/value pairs), which is used to manage MIDlet and is used by MIDlet for configuration specific attributes. With the help of descriptor file, verification prior to software download is done to ensure that the MIDlet is suited to the device: Java Application Manager checks if the application already exists on the device, verifies the version number (whether an update is needed or not) and reading the JAR-file-size information ensures that there is sufficient amount of memory on the device to save the file. The minimum attributes which the Application Descriptor must contain are the following:

· MIDlet-Name

· MIDlet-Version

· MIDlet-Vendor

· MIDlet-Jar-URL

· MIDlet-Jar-Size

Mandatory and optional attributes are defined in [35]. If the mandatory attributes are not identical in the descriptor file and in the manifest file, the JAR file shall not be installed.
6.2.2.2.3
MIDlet Suites
MIDlets may be packaged together in a single JAR file, forming a MIDlet suite. MIDlets in a MIDlet suite share the classes in the JAR file and the persistent storage is the MIDP Record Management System.

MIDlets in a MIDlet suite may be discovered, transferred, installed and deleted together as a packaged set of MIDlets. The deletion of a MIDlet in a MIDlet suite may result in the deletion of the entire MIDlet suite, in which case the user shall be notified of the deletion of the MIDlet suite.
6.2.2.2.4
Record Storage

The MIDP provides a mechanism for MIDlets to persistently store data and later retrieve it. The persistent storage mechanism is called Record Management System. Record stores are created in platform-dependent locations and are not exposed to MIDlets. The record store maintains a version number, which is incremented each time the content of the record store is modified.A record store is shared between all MIDlets in a MIDlet suite.
6.2.2.3
Required and optional MExE APIs

Support of any other Java APIs besides CLDC and MIDP is not mandated in a Classmark 3 MExE device. A Classmark 3 MExE device may optionally support any other Java APIs which comply with the MExE security requirements.
7
Charging

Support charging as detailed in this subclause is optional.
7.1
Generic charging support

The standard GSM/UMTS charging records contain information sufficient to associate bearer usage and SMS/USSD messages with a subscriber.

Third party service providers and/or service providers may define charging regimes for MExE services (e.g. on a MExE or WAP server), however they are outside the scope of standardisation.

7.2
WAP charging support

The WAP protocol suite in [6], with upgrades as identified in this specification, does not specify mechanisms for charging (e.g. charging records) or subscription management. WAP is bearer independent and is running as an application on top of the bearer network. However the WAP architecture suggests that appropriate charging information can be collected in the WAP Gateway; the point of convergence for all WAP traffic.

The WAP security protocol can be used for authentication of the subscriber.

7.3
Java charging support

MExE Java devices do not require any additional specific charging (e.g. charging records) or subscription management. Java usage of network resources is bearer independent and runs as applications on top of the bearer network.

9
Quality of Service

Support of quality of service is mandatory for MExE devices supporting bearers defined by QoS as defined in this subclause is mandatory.
QoS aware MExE executables may be executing on the MExE device. To ensure correct operation with the QoS provisioning of the bearer network(s) the associated API's and the MExE QoS manager shall be supported by MExE MS supporting bearers defined by QoS – see Figure 13. Non QoS aware MExE executables shall operate with the defined QoS by the user or the network.

[image: image6.wmf]MExE QoS Manager

MExE executable

QoS

non-QoS

aware

QoS API

Network Control API

GPRS / UMTS Terminal Network Functions

End User

MMI

Figure 13: Logical MExE Terminal QoS manager elements

9.1
MExE QoS Support

A MExE QoS manager exists between the MExE executable and the Network Control API. To interface this, an API to the MExE executable is provided and another API to the network, see Figure 13. The MExE QoS functions accommodates standard methods of end to end QoS provisioning – e.g. differentiated services (Diff-serv).

For MExE devices supporting bearers defined by QoS, the MExE device shall support the following basic QoS operations:

 a mapping between the QoS requirements of the MExE executable and the network layer;

 MExE executables shall be able to indicate and interpret QoS values of the network via the MExE QoS Manager;

 MExE executables shall be able to modify the QoS dynamically;

 MExE executables shall be able to react to changes in the provided QoS;

 The end user shall be able to manage the QoS directly via the MMI.

MExE introduces two new elements to cater for QoS – the MExE QoS manager and the QoS API. The MExE QoS manager shall handle the fact that the network may not have QoS capabilities.

9.2
MExE QoS Manager

The MExE QoS manager is responsible for:

 Managing the QoS streams for MExE executables;

 Notification of the negotiated and delivered QoS to the end user / MExE executable.

The MExE QoS manager shall support the MExE QoS API according to the bearer supported by the device, and provide functions such as:

 insert additional QoS signalling parameters (e.g. Diff-serv);

 add the functionality of the MExE QoS API at best effort, if the network does not support it directly;

 translate between the QoS parameters from the MExE executable and those of the network;

 monitor the QoS delivered by the network and manage QoS requests between the MExE executable and the network;

 be informed by the MExE executable of the requested QoS traffic class ;

 be informed by the MExE executable of the lowest QoS traffic class which can be accepted by the MExE executable;

 attempt to re-negotiate the QoS if it falls below the lowest QoS traffic class.

The MExE QoS manager may request information from the network regarding the QoS available.

The MExE QoS manager does not need to know the end user's subscribed QoS, this is held within the network and used to validate a requested QoS level.

The MExE QoS manager may also be accessed through the device's MMI.

9.3
Network Control API

The network control API shall provide the QoS manager with access to the network specific QoS control (defined for GPRS/UMTS in [29] and [30].

The MExE QoS manager may perform some QoS control, if it is not provided in the network control.

9.4
QoS API

The QoS API provides the MExE executable with an interface to the QoS management. It does not require the MExE executable to have any knowledge of the underlying network, or how QoS is implemented in the network.

The QoS API shall provide the MExE executable with a standard set of parameters. Refer to [28] for details of these parameters (see note).

NOTE:
The FLOWSPEC parameters, defined by the IETF Integrated Services Working Group, provide the QoS information required by QoS capable network elements.

Table 5 shows the set of example parameters.

Table 5: Example parameters

	Parameter
	Units
	Type

	Token Bucket Rate
	bytes /sec
	32-bit IEEE floating point number

	Token Bucket Size
	bytes
	32-bit IEEE floating point number

	Peak Data Rate
	bytes/sec
	32-bit IEEE floating point number

	Minimum Policed Unit
	bytes
	32-bit integer

	Maximum Packet Size
	bytes
	32-bit integer

	Latency
	micro secs
	32-bit integer

	Delay Variation
	micro secs
	32-bit integer

	Service Type
	
	service type

As a minimum the following three parameters shall be supported by the MExE QoS manager:

 Token Bucket Rate;

 Token Bucket Size;

 Peak Data Rate.

NOTE:
The discussion of UMTS bearer service parameters as well as radio access bearer parameters is still going on. Especially the bitrate parameters and reliability parameter are under discussion [28].

If the MExE executable does not provide a full set of QoS parameters, then the MExE QoS manager shall the provide QoS parameters based on information available to it (e.g. from the MMI settings), see subclause 'Sources of UMTS Bearer Service Parameters'.

9.5
Sources of Bearer Service Parameters

A set of QoS parameters (QoS profile) specify the service provided to the user by the network. At bearer service establishment or modification different QoS profiles have to be taken into account. This is based on:

-
The UE capabilities;

-
The UE or the TE within the terminating network;

-
A QoS profile in the QoS subscription (describes the upper limits);

-
Default QoS profile (of the user or network);

-
A Network specific QoS profile characterising for example the current resource availability or other network capabilities.

9.6
QoS Streams

Several MExE executables may be executing in the MExE device, each with a different QoS requirement. Also, a MExE executable may operate several QoS streams, each with different parameter settings. The MExE QoS manager within the MExE device shall be able to deal with each stream independently.

9.7
QoS Security

Only the end user, MExE executable or the network using a QoS stream should be able to modify the QoS of that stream.

MExE Applications

 OEM APIs

 MIDP APIs

CLDC APIs

_997805625.doc
How to create a CR
Michael Sanders, 3GPP support team, (last updated 2/09/99)

1)
Open the CR cover sheet with MS Word 97. The lastest version of the CR coversheet can be found at:

ftp://ftp.3gpp.org/information/3gCRF-??.DOC

2)
Fill out all areas that are relevant on the CR cover sheet - only the areas that have yellow shading shall be filled out. See Annex A of these instructions for further detail.

3)
Open the specification to which you wish to make a change. It is very IMPORTANT to ensure that you are using the latest version of the specification to make the change. The latest versions of all approved 3G specifications is located at:

for the 3GPP: ftp://ftp.3gpp.org/specifications/ for SMG: http://docbox.etsi.org/tech-org/document/smg/specs

Do a "save as" using a file name related to the tdoc number (e.g. T3-99123.DOC).

4)
If the formatting looks incorrect (most easily noticed by the fact that there is no space between paragraphs), it may be because you do not have the correct document sheet in your MS Word style directory. All 3GPP specification use the style sheet 3GPP_70.DOT. This can be downloaded from:

ftp://ftp.3gpp.org/information/3gpp_70.dot

5)
Go to the beginning of the heading of the first subclause which you want to change. Press <CTRL><SHIFT><HOME> to select everything before that point and delete it.

6)
Switch to the window in MS word that contains your CR cover sheet and do a <CTRL>A <CTRL>C to select and copy the entire sheet (including the section break at the end). Switch back to the other window with the specification to be changed and paste it in.

7)
Between group of changed pages in the CR, insert a section break (insert / break / next page/)

8)
When all the changes have been made (using the "tools / track changes" feature of MS Word 97), the headers and page number need to be corrected other the headers will contain an error message like "error, reference not found". You can fix this by changing to page layout mode (view / page layout) to see the headers. Then, go to the menu item "view / header and footer", select the frame that contains the error message(s) ini the header and delete them (there are normally 2). Do not delete the page number in the middle. On the left side, write the spec name and current version number For example, "3G TS 21.111 version 3.0.0 (1999-04)". Go back to normal view.

9)
For each group of changes, insert the correct starting page number. The number should be that which is a clean unmodified specification. It is only a guide to the reader only and so they can be +/- 1 page number wrong. Insert the page number using the following method. Go to the line following the first section break in your CR. Choose the menu item insert / page number / format / start at and insert the correct starting page number for that group of changes. click "OK" and then "CLOSE" (don't press "OK" at this last step). Repeat this step for each section break.

10)
When you have finished making all changes, go to "tools / track changes / highlight changes" and uncheck the "track changes while editing" box, otherwise the page numbers in the headers will be difficult to read. Make sure that the two other options in this box (highlight changes on screen" and "highlight changes in printed document" are both maked "X".

Examples of expressions of prevision in 3GPP specifications

To ensure that everybody else understands your proposed chnaged the same way that you do, it is very important to keep to the following rules:

SHALL: To be used to indicate a requirement. e.g. "The ME shall reset the USIM" is correct Do not use "The ME resets the USIM" or "the ME must reset the USIM"

SHOULD: To be used to indicate recommendation. i.e. if, among several possibilities one is recommended as particularly suitable, without mentioning or excluding others, or that a certain course of action is preferred but not necessarily required, or that (in the negative form) a certain possibility or course of action is deprecated but not prohibited.

MAY: To be used to indicate permission. To be used instead of phrases such as "is permitted", "is allowed" or is permissible". The opposite of "may" is "need not".

CAN: To be used to indicate possibility and capability. To be used instead of phrases such as "be able to", "there is a possibility of" or "it is possible to".

A more detailed guide to the 3GPP drafting rules can be found on the 3GPP server at:

ftp://ftp.3gpp.org/information/drafting-rules.pdf

ANNEX A
The CR cover sheet

This annex provides further information on how to fill out the cover sheet of a CR.

The header:

a)
The header, including the TSG or Working Group, the tdoc number (normally obtinaed from the 3GPP support team) and the meeting location and date.

The title box:

b)
The change request number. This is a 3 digit number and is allocated by the 3GPP support team project manager of the relevant WG. For GSM specifications, it is prefixed with an "A"

c)
The 3G or GSM specification number (e.g. 21.111 for 3G or 12.05 for GSM).

d)
The TSG or SMG plenary meeting to which this CR will be submitted to if it gets agreed at the WG meeting.

e)
for approval/for information: one box only shall be marked with an "X"

Proposed change affects:

f)
At least one box shall be marked with an "X"

Source:

g)
The company name of the author of the CR. If the CR has already been agreed at a Working groups or sub working group, meeting, the subgroup name (and Tdoc number) should be used instead.

Subject:

h)
One line (only) of concise text that describes the subject of the CR. Details should be put under "reason for change"

good examples:
"Clarification to FETCH command"

"Alignment of operation and parameter names"

recently used

bad examples:
"correction"

"editorial correction"

"correction to TS xxx.yy"

"various improvements"

Work item:

h)
The name of the 3G work item for which the CR is relevant.

Category and release:

i)
Choose one category only

Reason:

j)
This should be 1 to 10 lines of text that describes in further detail the reasons why the change is necessary and how the change is done.

Clauses Affected:

m)
Each subclause that is affected by the change should be listed here. New subclause number can be followed by " (new) ".

Other specs affected:

n)
Other 3G core specifications: to be used if the CR is linked to a CR for another 3G specification.
Other 2G core specifications: to be used if a CR is also needed for a GSM or other 2G specification.

MS test specifications: to be used if a change is needed to the MS test specifications.

BSS test specifications: to be used if a change is needed to the base station test specifications.

O&M specifications: to be used if a change is needed to O&M specifications.

When listing other CRs in part n) use, for example, the form "21.111-CR001" or "12.05-A123"

How to create a CR for 3G or SMG specifications.

File location: http://ftp.3gpp.org/information/3gCRF-??.doc

_1004881585.doc

Network Control API

MExE QoS Manager

MExE executable

End User

MMI

QoS

non-QoS aware

QoS API

GPRS / UMTS Terminal Network Functions

_989235044.doc

Required PersonalJava APIs

Optional PersonalJava APIs

Required JavaPhone APIs

Optional JavaPhone APIs

Optional Java APIs

MExE API

MExE Applications

JavaPhone API

Personal Java API

