3GPP TSG T1/SIG #21
T1S-020054r1
Sophia Antipolis/ France, 18 – 21 February 2002

Agenda Item:
Proposals related to test methods
Title:
RLC test method for SUFI handling
Sources:
Rohde & Schwarz, Anite

Document for:
Decision

Contact:
Thomas Moosburger (Rohde & Schwarz)

Hellen Griffiths (Anite)

Abstract

The test method and TTCN implementation regarding the handling of Super Field (SUFIs) in RLC AM Status PDUs has been discussed for quite a while. At present, a test method is defined in 34.123-3, section 6.5.2 [1]. In the past two months there were discussions in MCC 160 and on the T1/SIG e-mail reflector about the advantages/disadvantages of this approach, and an alternative method using an ASN.1 “SET OF “construct was suggested.

The present document summarizes the SUFI problem and the presents the results of an “ASN.1 SET OF” investigation. It is proposed to continue with the currently defined RLC test method. Two basic implementation options are presented. T1/SIG is asked to agree on one of the options, so MCC160 can finalize the RLC test cases.

Introduction

Status PDUs are used to report the status between two RLC AM entities, e.g. by the receiver to inform the sender about missing RLC AM PDUs, by the sender to request the receiver to move the reception window, etc. [2]

A Status PDU consists of some header information to distinguish the PDU from a normal data PDU, followed by an arbitrary number of SUFIs. There are currently 8 different SUFI types defined, and these SUFIs may be in almost any order within the PDU (subject to a few restrictions, e.g. the NO_MORE and ACK SUFI mark the end of a SUFI list and are mutually exclusive). The same SUFI type can occur multiple times. Figure 1 on the next page depicts the structure of SUFIs in Status PDUs.

[image: image1.wmf]D/C | R2

always 0

Status PDU

PDU Type

STATUS = 000

SUFI 1

SUFI 1

SUFI k

....

PAD

Type

Length

Value

Oct 1

Oct 2

Oct n

SUFI

SUFI type

4 bits

The length sub-field gives the length of the variable size part of the

following value sub-field.

dep. on

value

Type=NO_MORE

Type = WINDOW

WSN

Type = ACK

LSN

Type = LIST

LENGTH

SN1

L1

SN2

L2

…

SNLENGTH

LLENGTH

Type = BITMAP

LENGTH

FSN

Bitmap

Type =

RLIST

LENGTH

FSN

CW1

CW2

…

CWLENGTH

Type = MRW_ACK

N

SN_ACK

Type = MRW

LENGTH

SN_MRW1

SN_MRW2

...

SN_MRWLENGTH

NLENGTH

Bit

Description

0000

No More Data (NO_MORE)

0001

Window Size (WINDOW)

0010

Acknowledgement (ACK)

0011

List (LIST)

0100

Bitmap (BITMAP)

0101

Relative list (Rlist)

0110

Move Receiving Window (MRW)

0111

Move Receiving Window Acknowledgement (MRW_ACK)

1000-1111

Reserved (PDUs with this encoding are invalid for this

version of the protocol)

SUFI length

Figure 1: Structure of SUFI list in Status PDU

This type of Status PDU is very difficult to check within a TTCN test suite, since the test method has to take into account every possible permutation of SUFI types. Furthermore, the contents of SUFIs have to be checked against dynamically changing values, which requires a TSO.

Two different solutions of the SUFI problem have been discussed:

1. Use of Tabular TTCN

This solution is currently defined in 34.123-3, see [1]. The SUFIs are defined as a table in TTCN, and the elements are DIRECT encoded. In the TTCN table the order and the number of elements is fixed, but omissions are possible. A TSO (o_checkPDUsAcknowleded) is defined for checking the contents of Status PDUs.

If the SS decoder cannot convert the received data into the supported structure, the SS shall terminate the test case immediately and indicate that a test case error has occurred.

Specifically, the TTCN structured type definition SuperFields only supports a maximum of one SUFI of each type in a STATUS PDU. It is valid (but unlikely for the purpose of RLC testing) for a UE to use more than one SUFI of a particular type within a STATUS PDU. If this occurs, the test case error should indicate that the UE has used data that is not supported by the current RLC ATS.

2. Use of ASN.1 SET OF

The SUFIs are defined as an ASN.1 SET OF and DIRECT encoding of the elements is used. This kind of type definition is adequate to the properties of the SUFIs which may be used in any order. This is, however, not a clean solution in TTCN and ASN.1, because it is normally not allowed to use a non-ASN.1 encoding within ASN.1. This test method would also require a TSO for checking the SUFI contents.

Comparison of both solutions

Both solutions described in the previous section are compared in the following table:

Aspect
ASN.1 SET OF
Tabular TTCN

Definition in TTCN

ASN.1 SET OF

- As the contents of SUFIs is to be checked by a TSO anyway the SUFIs could each be represented by * (wildcard).
- 1 SUFI per type
Tabular Form

Implementation option A

- Fixed order (re-ordering done by SS)
- 1 SUFIs per type

Implementation option B

- No definition required, no reordering, multiple SUFIs per type

Encoding of the SUFIs

DIRECT

- Do all TTCN tools support this?
DIRECT

- Current tools have no problems.

Receive Constraints

- Matching is performed in TTCN only
- No additional work for SS

- Only the elements expected would have to be indicated. The others could be specified with wildcards. Ambiguities and restrictions would be handled by a TSO.
The received SUFIs need to be decoded and re-ordered by the SS or by the TSO which would normally be done by the TTCN.

Checking of mutually exclusive SUFIs

A TSO would have to do this.
The SS or a TSO would have to do this.

Checking of SUFI contents
To be done by TSO.
To be done by TSO.

Advantages

- No work for the SS, the matching mechanisms of TTCN are used.

- The ordering of SUFI does not have to be tested.
- Standard TTCN is used, no tools or implementation problems expected.

- TTCN is kept simple, complexity hidden in SS or TSO

Disadvantages

- Many constraints required, thus more testing efforts results. This may not be the case if * (wildcard) is being used.

- This solution may not be supported by T1/SIG if some tool has difficulties with the non-standard encoding.

- TSO for checking mutual exclusiveness required.
- Reordering of SUFIs in SS required (impl. option A)

- Complex TSOs

- Work which should normally be done by the TTCN is to be done by the SS.

Table 1
Proposal

It is proposed to continue the implementation of the Tabular TTCN method as defined in 34.123-3 instead of taking the ASN.1 SET OF approach.

Reasons:

· The implementation of the ASN.1 SET OF test method is non-trivial, uses non-standard TTCN and possibly leads to problems with TTCN tools.

· Since a TSO for checking the SUFI contents is required anyway, it seems more suitable to keep the TTCN simple and hide the complexity of Status PDUs in the SS or TSO.

· The tabular TTCN approach is currently already in 34.123-3; therefore no changes required to the test specifications.

· Some SS manufacturers may have already implemented and verified test cases according to the present RLC test method; therefore no changes to implementations required.

Implementation Options

Provided that the proposal is approved there are two implementation options.

1. Option A (Re-ordering SUFIs in SS)

This implementation would require the SS to decode and re-order SUFIs within a STATUS PDU so that they match the supported structure defined in the TTCN structured type SuperFields. The TSO would only check the contents of SUFIs. A test case error would be raised if multiple SUFIs of the same type were sent by the UE.

Figure 2 illustrates the SUFI handling to be implemented by SS manufacturers.

[image: image2.wmf]Test Case

SS

SUFI C

SUFI A

SUFI B

...

Re-ordering

Checks for

mutually

exclusivness,

1 SUFI of each

type

Test Case

Error

TSO

o_CheckPDUsAcknowledged()

checks contents of Status PDU

AM?StatusPDU

 o_checkPDUsAcknowledged()

AM

SUFI A

SUFI B

SUFI C

...

Status PDU

SUFI A

SUFI B

SUFI C

...

TRUE / FALSE

SUFI list

OK

Error

Figure 2: Implementation Option A

2. Option B (Decoding and checking in TSO)

This implementation option would change the TTCN definition for receiving the super fields so just a PDU and not to break this down into the individual SUFI types.

This has the following advantages:

· As the super fields can be of any length, the TTCN can never check the amount of padding – so it does not matter if this a separate field or not.

· As all the checking is done within the TSO now, the constraints for the individual SUFI types are ll set to either ? or *

· The SS doesn’t have to re-order the SUFIs in the Status PDU before sending it to the TTCN

· If a UE sends more than one SUFI of the same type it won’t fail.

If the TSO for checking SUFIs became too complex, it could be split up into several smaller TSOs, e.g. one for checking SUFI types, another one for checking SUFI contents, etc.

Figure 3: Implementation Option B

References

[1]
TS 34.123-3, V1.10, 2001-09, section 6.5.2

[2]
“RLC protocol specification”
TS 25.322, V3.8.0, 2001-09

No reordering of SUFIs required

SUFI B

SUFI A

SUFI C

SUFI B

SUFI A

SUFI C

Status PDU

TSO � o_checkPDUsAcknowledged()

Decodes and checks SUFI types and contents

AM?PDU� o_checkPDUsAcknowledged()

AM

SS

Test Case

Page 5

_1072611226.vsd
Length�

Value�

SUFI length�

Oct 1�

Oct 2�

Oct n�

SUFI�

SUFI type�

D/C | R2
always 0�

Status PDU�

PDU Type
STATUS = 000�

SUFI 1�

SUFI 1�

SUFI k�

....�

PAD�

Type�

4 bits�

The length sub-field gives the length of the variable size part of the following value sub-field.�

Bit	Description
0000	No More Data (NO_MORE)
0001	Window Size (WINDOW)
0010	Acknowledgement (ACK)
0011	List (LIST)
0100	Bitmap (BITMAP)
0101	Relative list (Rlist)
0110	Move Receiving Window (MRW)
0111	Move Receiving Window Acknowledgement (MRW_ACK)
1000-1111	Reserved (PDUs with this encoding are invalid for this
	version of the protocol)
�

dep. on value�

Type = WINDOW
WSN
�

Type = ACK
LSN
�

Type=NO_MORE�

Type = LIST
LENGTH
SN1
L1
SN2
L2
�
SNLENGTH
LLENGTH�

Type = BITMAP
LENGTH
FSN
Bitmap
�

Type = RLIST
LENGTH
FSN
CW1
CW2
�
CWLENGTH
�

Type = MRW_ACK
N
SN_ACK
�

Type = MRW
LENGTH
SN_MRW1
SN_MRW2
...
SN_MRWLENGTH
NLENGTH
�

_1074952495.vsd

