Error! No text of specified style in document.
19
Error! No text of specified style in document.

IWD-004

T1S-000209

Source: MCC 160

Title: Proposal for a TTCN coding conventions for the development of 34.123-3

Version: 0.08

Summary

The present document was developed by MCC TASK 160 based on a number of previous input documents to TSG-T1 signalling subworking group. It is intended that the present document will be used as a coding standard for development of TTCN test suites for 3GPP UE conformance tests in TS 34.123-3 by MCC TASK 160, and any other developers providing voluntary contributions to the 3GPP conformance test suite. The annex portion of the present document will also be included as an informative annex to TS 34.123-3.

The following documents were combined to produce the present document.

· TIS 000030: By Rohde & Schwarz in SWG SIG meeting #9

· T1S-000003: By Anritsu in SWG SIG meeting #8

· T1S-99096: By Nokia in SWG SIG Meeting #7

· T1S-000078: By Anite Telecoms in TTCN Adhoc meeting #1

· T1S-000129: By Ericsson in SWG SIG meeting #12
Table of contents

1Summary

Table of contents
1
Outstanding issues
2
To do
3
Introduction
3
ETR 141 rules and applicability
3
RULE 1: Statement of naming conventions
3
Multiple words are separated by upper case letters at the start of each word
3
RULE 2: Coverage of naming conventions
4
RULE 3: General properties of naming conventions
4
Identifiers shall be protocol standard aligned
5
Identifiers shall be distinguishing (use of prefixes)
5
Identifiers should not be too long (use standard abbreviations)
7
RULE 4: Specific naming rules for test suite parameters/constants/variables test case variables and formal parameters
9
RULE 5: Specific naming rule for timers
9
RULE 6: Specific naming rule for PDU/ASP/structured types
9
RULE 7: Specific naming rule for PDU/ASP/structured types constraints
9
RULE 8: Specific naming rule for test suite operations
9
RULE 9: Specific naming rule for aliases
9
RULE 10: Specific naming rule for test steps
9
RULE 11: Selecting the ASN.1 format for type definitions
10
RULE 12: Further guidelines on type definitions
10
RULE 13: Specification of test suite operations
10
Test suite operations must not use global data
10
RULE 14: General aspects of specifying constraints
11
RULE 15: Relation between base constraints and modified constraints
11
RULE 16: Static and dynamic chaining
11
RULE 17: Parameterization of constraints
11
RULE 18: Constraint values
12
RULE 19: Verdict assignment in relation to the test body
12
RULE 20: Test body entry marker
12
RULE 21: State variable
12
RULE 22: State checking event sequences
12
RULE 23: Easy adaptation of test steps to test cases
12
RULE 24: Minimizing complexity of test steps
13
RULE 25: Nesting level of test steps
13
RULE 26: Recursive tree attachment
13
RULE 27: Verdict assignment within test steps
13
RULE 28: Parameterized test steps
13
RULE 29: Combining statements in a sequence of alternatives
13
RULE 30: Using relational expressions as alternatives
13
RULE 31: Loop termination
13
RULE 32: Avoiding deadlocks
13
RULE 33: Straightforward specification of test cases
13
RULE 34: Test component configuration declaration
13
RULE 35: Default trees with RETURN statement
13
3GPP ATS implementation guidelines
14
Test case groups shall reflect the TSS&TP document
14
Test case names correspond to the clause number in the prose
14
Use standard template for test case header
14
Do not use identical tags in nested CHOICE constructions
15
Incorrect usage of enumerations
15
Structured type as OCTETSTRING should not be used
15
Wildcards in PDU constraints for structured types should not be used
16
TSOs should be passed as many parameters as meaningful to facilitate their implementation
16
Specification of Encoding rules and variation should be indicated
16
Use of global data should be limited
17
Limit ATS scope to a single layer / sub-layer
17
Place system information in specially designed data structures
17
Place channel configuration in specially designed data structures
17
Limit the scope of PICS / PIXIT parameters
17
Dynamic vs. static choices
18
Definition of Pre-Ambles and Post Ambles
18
Default behaviour
18
Use system failure guard timers
18
Mapping between prose specification and individual test cases
19
Verdict assignment
19
Test suite and test case variables
19
Use of macros is forbidden
19

Outstanding issues

[Outstanding issue: Stating that all base constraints must have the ‘cb’ prefix may result in ALL constraints having this prefix, in case they are used as base constraints at a later stage during devlopment. If this occurs, the ‘b’ becomes redundant, and should be removed from the coding conventions.]
[Outstanding issue: Should local trees be parameterized?]

To do

[TODO: Use of wildcards vs. ‘any’ constraints requires some further discussion]
[TODO: Decide on rules for verdict assignment in MTCs, PTCs, test steps, and test cases. Do we want to use state variables to indicate if the test body has been reached? Define use of labels for every line with a verdict assignment to support traceability?]
[TODO: Define rules for use of test suite and test case variables, especially with regard to concurrent and modular TTCN]

Annex <?> (informative):
TTCN style guide for 3GPP ATS

 Introduction

This annex provides a set of coding standards and development guidelines for use in the development of TTCN abstract test suites for ensuring that user equipment for the 3GPP standard conforms to the relevant core specifications.

The following items are assumed to exist, but their specification is outside the scope of this annex.

· A complete unambiguous prose detailing all test cases to be implemented.

· A complete unambiguous set of core specifications.

· A complete unambiguous detailed description of all the messages that are to be sent.

· A tool or human process that can convert Test Suite Operation Definitions to physical processes within the test system or unit under test.

· An abstracted or generic application programmers interface to all hardware components in the system

· A tool for the translation and/or compilation of ISO/IEC 9646 series TTCN to run on a test platform.

It is recognised within the context of the 3GPP User Terminal that some of these items are not yet stabilised.

The structure of the present annex maps directly to the guidelines provided in ETR 141. Rules are repeated in the present annex for convenience, with additional information specific to 3GPP test suite development provided where relevant. For more detailed information or examples about the rules, see ETR 141.

In the present annex, the terms ‘should’ and ‘shall’ are frequently used. For the purpose of this annex, the following definitions apply:

Shall means that the rule must be adhered to for all ATS development. If a rule expressed in terms of ‘shall’ is not followed, either the ATS must be updated so that the rule is followed, or the rule in the coding conventions must be updated to resolve the difference.

Should means that the rule is a guideline. If a rule expressed in terms of ‘should’ is broken, a brief comment should be provided describing why the guideline does not apply.

ETR 141 rules and applicability

	RULE 1: Statement of naming conventions

	Naming conventions should be explicitly stated. Naming conventions should not exist only for a single ATS, and the reader of an ATS should not be forced to "derive" the rules implicitly. The naming conventions should be part of the ATS conventions contained in the ATS specification document.

Names used in the present annex are comprised of a prefix part and a name body part. Conventions for deriving prefixes and name bodies are described after Rule 3 in the present annex.
	RULE 2: Coverage of naming conventions

	Naming conventions stated should, as a minimum, cover the following TTCN objects:

- test suite parameters/constants/variables;

- test case variables;

- formal parameters;

- timers;

- PDU/ASP/structured types;

- PDU/ASP/structured types constraints;

- test suite operations;

- aliases;

- test case/test step identifiers.

	RULE 3: General properties of naming conventions

	a) Protocol standard aligned

When there is a relationship between objects defined in the ATS and objects defined in the protocol standard, e.g. PDU types, the same names should be used in the ATS if this does not conflict with the character set for TTCN identifiers or with other rules. In case of a conflict, similar names should be used.

b) Distinguishing

The naming conventions should be defined in such a way, that objects of different types appearing in the same context, e.g. as constraint values, can be easily distinguished.

c) Structured

When objects of a given type allow a grouping or structuring into different classes, the names of these objects should reflect the structuring, i.e. the names should be composed of 2 or more parts, indicating the particular structure elements.

d) Self-explaining

The names should be such that the reader can understand the meaning (type/value/contents) of an object in a given context. When suffixes composed of digits are used, it is normally useful to have some rule expressed explaining the meaning of the digits.

e) Consistent

The rules stated should be used consistently throughout the document, there should be no exceptions.

f) Appropriate name length

Following the above rules extensively may occasionally lead to very long names, especially when structuring is used. The names should still be easily readable. When TTCN graphical form (TTCN.GR) is used, very long names are very inconvenient.

NOTE: Also, test tools may not be able to implement very long identifier names, which is an important aspect in this context.

Multiple words are separated by upper case letters at the start of each word

Many names consist of more words, and it shall be easy to distinguish the different words building up the same name. For all TTCN Object classes this is done using the case of the letters.

This rule is mandatory for all names appearing in the body of a dynamic behaviour table, and is recommended for all other TTCN object classes.

Generally every word a name consists of shall start with an upper case letter and the rest of this word shall be in lower case letters.

E.g.: "channel" + "description" -> "ChannelDescription"

This rule also applies if a word starts after another upper case letter.

E.g. "px" + "Cell" + "A" + "Cell" + "Id" -> px_CellACellId

This rule also applies if the name has a prefix, which is always lower case.

E.g. A test case variable “sequence” + “number” -> tcv_SequenceNumber

This rule does not apply if the word is a unit, in which case the word retains it’s original case.

E.g. Power level 1.5 dBm ->PowerLvl1_5dBm

This rule does not apply if the word in the name is an acronym, in which case the word retains it’s normal case.

· If an acronym is followed by another word, an underscore shall be used to separate the acronym from the following word.

E.g.: "this" + "Is" + "SIM" + "Message" + "With" + "CC" + "And" + "RR" + "Things" + "In" + "It" -> "thisIsSIM_MessageWithCC_AndRR_ThingsInIt"

· An exception to acronyms retaining their case is if the name is a field / element / parameter in a structured type / PDU / ASP, in which case it must start with a lower case letter.

E.g. “SCH” + “info” + “element” -> “sCH_InfoElement”

For all objects used in the body of dynamic behaviour tables, use of underscores is discouraged, except for the following situations:

· As a replacement for a ‘.’. E.g. Test case that maps to prose clause 7.2.3.1 -> tc_7_2_3_1

· To separate prefixes from names.

· To separate acronyms from the following word.

· To replace hyphens when types are re-used / imported from core specifications. This applies to types imported from ASN.1 definitions, and to names derived from table definitions in core specifications.

· To separate an ASP name from the embedded PDU name when the metatype PDU is not used.
E.g RRC_DataInd_ConnAck for an RRC data indication ASP with an embedded CONNECT ACKNOWLEDGE PDU.
Identifiers shall be protocol standard aligned

To support rule 3(a), the mapping guidelines in table 1 shall be used. This mapping table also supports rule 6.

	Type
	Naming rule

	Objects of Structured Type
	Shall be derived from the name of the Information Element in the standard, if it corresponds to this (use standard acronyms where appropriate).

E.g.: "Window Size super-field" -> "WindowSizeSUFI"

	Fields in a Structured Type
	Shall be derived from the name of the same field in the corresponding Information Element in the standard. (Acronyms for the entire field name shall not be used)

E.g.: “Header Extension Type” -> “headerExtensionType” (not “HE”)

	Objects of ASP type
	Shall be derived from the name of the corresponding Service Primitive in the Standard, using any relevant abbreviations from the present annex. The full name as it appears in the core specification shall be included in parentheses after the name.

E.g.: "CRLC-SUSPEND-Conf" -> "CRLC_SuspendCnf (CRLC-SUSPEND-Conf)"

If the metatype PDU is not used, the ASP name shall reflect both the ASP, and the embedded PDU name, using an underscore to separate the ASP part from the PDU part.

E.g. DataReq_StartDTMF_Ack for an RRC-DATA-Req with an embedded START DTMF ACKNOWLEDGE PDU

	Objects of PDU type
	Shall have exactly the same name as the Message it corresponds to in the standard. If this Message is named by more words, they shall be joined, leaving the blanks out

E.g.: "AMD PDU” -> "AMDPDU"

Table 1 - Mapping guidelines between protocol standards and identifiers

Identifiers shall be distinguishing (use of prefixes)

To support rules 2, 3(b), 4, and 5, the prefixes shown in table 2 shall be used for TTCN objects. Prefixes are separated from the name by an underscore to improve readability by clearly separating the prefix from the name. This convention will also support searching operations. For example, a search for all uses of PIXIT parameters in the test suite is possible by searching for ‘px_’.

The optional <protocol> part shall be included in the name when the object is closely related to the protocol (e.g. PICS, some PIXIT parameters), it is necessary to be unambiguous or improves comprehension significantly (e.g. no need to think about protocol stacks on all used interfaces during reading). The optional <protocol> part shall be used for types defined in common modules.

	TTCN object
	Case of first character
	Prefix
	Comment

	Test Suite
	Upper
	-
	

	TTCN Module
	Upper
	-
	

	Simple Type
	Upper
	[<protocol>_]
	Note 8

	Structured Type
	Upper
	[<protocol>_]
	Note 8

	Element in Structured Type
	Lower
	-
	

	ASN.1 Type
	Upper
	[<protocol>_]
	Note 8

	Element in ASN.1 Type
	Lower
	-
	

	Test Suite Operation
	Upper
	o_[<protocol>_]
	Note

1
, 8

	TSO Procedural Definition
	Upper
	o_[<protocol>_]
	Note

1
, 8

	Formal Parameter to TSO or TSOP
	Upper
	p_
	

	Test Suite Parameter (PICS)
	Upper
	pc_[<protocol>_]
	Note 8

	Test Suite Parameter (PIXIT)
	Upper
	px_[<protocol>_]
	Note 8

	Test Case Selection Expression
	Upper
	[<protocol>_]
	Note 8

	Test Suite Constant
	Upper
	tsc_[<protocol>_]
	Note 8

	Test Suite Variable
	Upper
	tsv_[<protocol>_]
	Note 8

	Test Case Variable
	Upper
	tcv_[<protocol>_]
	Note 8

	PCO Type
	Upper
	-
	

	PCO
	Upper
	-
	Note 2

	CP
	Upper
	cp_
	Note 2

	Timer
	Upper
	t_[<protocol>_]
	Note 8

	Test Component
	Upper
	mtc_[<protocol>_] or ptc_[<protocol>_]
	Note 3, 8

	Test Component Configuration
	Upper
	-
	

	ASP Type
	Upper
	[<protocol>_]
	Note 4, 8

	Parameters within ASP Type
	Lower
	-
	Note 4

	PDU Type
	Upper
	[<protocol>_]
	Note 4, 8

	Fields within PDU Type
	Lower
	-
	Note 4

	Encoding Definition
	Upper
	enc_
	

	Encoding Variation
	Upper
	var_
	

	Invalid Field Encoding Variation
	Upper
	inv_
	

	CM Type
	Upper
	cm_
	

	Field within CM Type
	Lower
	-
	

	Alias
	Upper
	a_
	

	ASP constraint
	Upper
	ca[b|d][s|r|w]_[<protocol>_]
	Note 5, 8

	Constraint (other types)
	Upper
	c[b|d][s|r|w]_ [<protocol>_]
	Note 5, 8

	Formal Parameter for a Constraint
	Upper
	p_
	

	Test Case Group
	Upper
	<protocol>/
	Note 8

	Test Step Group
	Upper
	
	

	Test Case
	Upper
	tc_
	Note 6

	Test Step
	Upper
	(ts_|pr_|po_)<protocol>_
	Note 7, 8

	Local tree
	Upper
	lt_
	

	Defaults
	Upper
	<protocol>_
	Note 8

Table 2 - Prefixes used for TTCN objects

Note 1: Coding rules are not specified for test suite operation procedural definitions at this stage. These rules will be defined when the need arises

Note 2: A prefix is not used for PCO declarations, but is used for CP declarations. This is because PCOs and CPs will only be used in send and receive statements, and PCOs will be used more frequently than CPs. Since a PCO name or a CP name will be used on most behaviour lines, PCO names should be as short as possible – E.g. 2 to 3 characters.

Note 3: The prefix is mtc if the component role is MTC, or ptc if the component role is PTC. If multiple PTCs are used, the rest of the identifier will clarify which PTC is being referred to. E.g. ptc_Cell1, ptc_Cell2.

Note 4: This applies for both tabular and ASN.1 definitions.

Note 5: Constraint prefixes are built up from the following regular expression. c[a][b|d][s|r|w].

· ‘c’ shall always be present to indicate that the object is a constraint.

· ‘a’ shall be present for ASP constraints to distinguish them from PDU constraints.

· ‘b’ shall be present if the constraint is ever used as a base constraint. (i.e. included in the derivation path of any other constraint).

· ‘d’ shall be present if the constraint is derived from another constraint.(i.e. has an entry in it’s derivation path field)

· ‘b’ and ‘d’ cannot both be used in the same constraint, thereby limiting the derivation path to 1.

· For the purpose of the present note, the following definitions are required (Ref TR 101 666 clause 12.6.2)

· The term ‘field’ is used to represent a structured type element, an ASP parameter, or a PDU field.

· A ‘bound field’ is a field that either contains a SpecificValue, or is Omitted (-).

· An ‘unbound field’ is a field that contains any of the following matching mechanisms: Complement, AnyValue (?), AnyOrOmit (*), ValueList, Range, SuperSet, SubSet, AnyOne (?), AnyOrNone (*), Permutation, Length, or IfPresent.

· ‘s’ may optionally be present if the constraint is only used in send statements. ‘s’ shall not be present if the constraint contains any unbound fields, or any fields chained to a constraint whose prefix includes ‘w’ or ‘r’.

· ‘r’ may optionally be present if the constraint is only used in receive statements.

· ‘w’ may optionally be present to indicate that the constraint contains fields that are unbound. Before these constraints are used in SEND events, all unbound fields must either be bound by using a derived constraint, or explicitly assigned a value in the SEND event behaviour line.

· Either ‘w’ or ‘r’ shall be used if any fields in the constraint are unbound or are chained to a constraint whose prefix includes 'w' or 'r'.

Note 6: Test case names will correspond to the clause in the prose that specifies the test purpose. E.g. tc_7_2_23_2. An additional digit may be specified if more than one test case is used to achieve the test purpose. If an additional digit is required, this probably means that the test prose are not well defined.

Note 7: Test steps may optionally use the prefixes pr_ or po_ to indicate that the test step is a preamble or postamble respectively.

Note 8: Protocol abbreviations are provided in table 3. Protocol abbreviations may optionally be used to clarify the scope of TTCN objects, or to resolve conflicts when the same name is required by multiple protocols within the ATS.
If two different types exist in the ATS that represent the same information (e.g. IMSI) conversion operations shall be used to ensure consistency between the types. Also, conversion operations shall be used to avoid asking the same PIXIT question twice. For example, if a type is defined as an OCTETSTRING[4] for a NAS protocol, and the same type is represented as a BITSTRING[32] for RRC, a single PIXIT question shall be asked, and conversion operations shall be used to ensure that the same value is used for both types.

	Protocol / prefix

	BMC

	CC

	CS

	GMM

	MAC

	MM

	PDCP

	RLC

	RRC

	SMS

	SS

	TC

Table 3 – Protocol abbreviations for prefixes

Identifiers should not be too long (use standard abbreviations)

To assist in keeping TTCN identifiers shorter, table 4 provides a non-exhaustive set of standard abbreviations that shall be used when naming objects that are used in the body of dynamic behaviour tables. Consistent use of abbreviations will improve test suite readability, and assist maintenance.

	Abbreviations
	Meaning

	acs
	access

	acp
	accept

	ack
	acknowledge

	addr
	address

	(re)alloc
	(re)allocated, (re)allocation

	arg
	argument

	ass
	assignment

	auth
	authentication

	ava
	avail, available

	bCap
	bearer capability

	cau
	cause

	clg
	calling

	ch
	channel

	chk
	check

	ciph
	cipher, ciphering

	cld
	called

	clsmk
	classmark

	cmd
	command

	cmpl
	complete

	cnf
	confirm

	cfg
	configuration

	conn
	connect

	ctrl
	control

	def
	default

	descr
	description

	disc
	disconnect

	enq
	enquiry

	err
	error

	(re)est
	(re)establish

	ext
	extended

	fail
	failure

	ho
	handover

	id
	identity / identification

	ie
	information element

	iel
	information element length

	ind
	indication

	info
	information

	init
	initialize

	lvl
	level

	loc
	location

	locUpd
	location update

	max
	maximum

	mgmt
	management

	min
	minimum

	misc
	miscellaneous

	mod
	modification

	ms
	mobile station

	msg
	message

	mt
	mobile terminal

	neigh
	neighbour

	ntw
	network

	num
	number

	orig
	origin/-al

	pag
	page/-ing

	params
	parameters

	perm
	permission

	phy
	physical

	qual
	quality

	rand
	random

	ref
	reference

	reg
	register

	rej
	reject

	rel
	release

	req
	request

	rsp
	response

	rx
	receiver

	sel
	selection

	seq
	sequence

	serv
	service

	st
	state

	sysInfo
	system information

	sync
	synchronization

	sys
	system

	tx
	transmitter

Table 4 - Standard abbreviations

	RULE 4: Specific naming rules for test suite parameters/constants/variables test case variables and formal parameters

	a) The name should reflect the purpose/objective the object is used for.

b) If the type is not a predefined one, it is useful that the name reflects the type, too.

c) It could be useful, that the individual naming conventions are not the same for all object classes this rule applies to. e.g. use upper case letters for test suite parameters/constants, and use one of the other possibilities presented in ETR 141 example 1 for other object classes.

See also ETR 141 clauses 5.1-5.4 for further discussion on naming test suite parameters.
	RULE 5: Specific naming rule for timers

	If the timer is not defined in the protocol to be tested, the name should reflect the objective of the timer used for testing.

NOTE: There is no need to indicate the object type "timer" in the name, since timers only occur together with timer operations

	RULE 6: Specific naming rule for PDU/ASP/structured types

	As far as applicable, derivation rules or mapping tables should be used to relate the names of the types to the corresponding objects in the protocol or service definition.

NOTE: There may be types, e.g. erroneous PDU types, that do not relate to an object in the protocol or service definition.

Whenever names of types are derived from ASN.1 type definitions provided in the core specifications, the names shall remain the same as the ASN.1 specifications, and references shall be provided in the comment fields.
	RULE 7: Specific naming rule for PDU/ASP/structured types constraints

	Rules should be stated to derive the names from the names of the corresponding type definitions. It is often possible to use the type name plus an appropriate suffix reflecting the specific constraint value. In case of lengthy names, useful abbreviations or a defined numbering scheme can be chosen.

Constraint names begin with the appropriate prefix, followed by the first letter of each word in the type, followed by words describing the peculiarity of the constraint. E.g. Type = RadioBearerSetupPDU, constraint name could be cb_RBSP_GenericUM_DTCH.
	RULE 8: Specific naming rule for test suite operations

	The name should reflect the operation being performed.

i.e. the name should indicate an activity, not a status. This can be achieved e.g. by using appropriate prefixes like "check", "verify", etc.

	RULE 9: Specific naming rule for aliases

	The name should reflect that aspect of its expansion, that is important in the situation where the alias is used. Derivation rules should be provided to derive the alias name from its macro expansion or from the name of an embedded ASP / PDU.

See also ETR 141 clauses 6.3.6 and 9 for further guidelines on naming aliases.

	RULE 10: Specific naming rule for test steps

	The name should reflect the objective of the test step.

	RULE 11: Selecting the ASN.1 format for type definitions

	a) If the protocol standard uses ASN.1 to specify the PDUs, the ATS specifier should also use ASN.1.

b) If the protocol standard does not use ASN.1, check carefully whether features of ASN.1 that the tabular format of type definition does not present are necessary in the ATS, or could ease the design and understanding of the definitions as a whole. Check especially whether fields or parameters have to be specified, the order of appearance of which, in a received ASP/PDU, cannot be predicted. If any of these conditions apply, use ASN.1 for type and ASP/PDU type declarations.

c) Use the option of "ASN.1 ASP/PDU type Definitions by Reference" whenever applicable.

d) Example 14 shows a compatibility problem that could occur, when ASN.1 type declarations as well as tabular type declarations are used in an ATS. Use the ATS Conventions to describe how this compatibility problem is handled in the ATS, i.e. whether in expressions and assignments entities defined in ASN.1 are only related to entities defined in ASN.1 or not.

Names of ASN.1 objects shall be kept the same as the core specifications in this case, even where the names are at odds with the naming conventions adopted for other TTCN objects.
	RULE 12: Further guidelines on type definitions

	a) Use simple type or ASN.1 type definitions whenever an object of a base type with given characteristics (length, range, etc.) will be referenced more often than once.

b) Use the optional length indication in the field type or parameter type column of structured type and ASP/PDU type definitions whenever the base standard/profile restricts the length.
NOTE 1: This can often be achieved by references to simple types.

c) Map the applicable ASPs/PDUs from the service/protocol standard to corresponding ASP/PDU type definitions in the ATS.
NOTE 2: It may happen that not all ASPs/PDUs of a service/protocol standard are applicable to a particular ATS for the related protocol. It may also happen that additional ASP/PDU type declarations are necessary, e.g. to create syntactical errors.

d) Map the structure of ASPs/PDUs in the service/protocol standard to a corresponding structure in the ATS.
NOTE 3: This mapping is not always one-to-one, e.g. because a field in the PDU definition of the protocol standard is always absent under the specific conditions of an ATS. But it should normally not happen, that a structured element in the protocol standard is expanded using the "<-" macro expansion, so that the individual fields are still referenced, but the structure is lost in the ATS.

	RULE 13: Specification of test suite operations

	a) Use a test suite operation only if it cannot be substituted by other TTCN constructs.

b) Write down the rationale/objective of the test suite operation.
Reference standards if applicable.

c) Classify and simplify algorithm.
Split test suite operation if too complex.

d) Choose an appropriate specification language depending on the rationale/objective:
- predicates for Boolean tests;
- abstract data types for manipulation of ASN.1 objects;
- programming languages for simple calculation.

e) Check/proof the test suite operation:
- is the notation used known/explained;
- are all alternative paths fully specified;
- is the test suite operation returning a value in all circumstances;
- are error situations covered (empty input variables, etc.).

f) State some evident examples.

Test suite operations must not use global data

All information required by test suite operations must be passed as formal parameters. This includes test suite variables, test case variables, test suite parameters, and constraints.

	RULE 14: General aspects of specifying constraints

	a) Develop a design concept for the complete constraints part, particularly with respect to the "conflicting" features as indicated in items i) to iv) and including naming conventions (see ETR 141 Clause 6).

b) Make extensive use of the different optional "Comment" fields in the constraint declaration tables to highlight the peculiarity of each constraint.

	RULE 15: Relation between base constraints and modified constraints

	a) Define different base constraints for the send- and receive direction of a PDU (when applicable).

b) Use modified constraints preferably when only a small number of fields or parameter values are altered with respect to a given base.
NOTE 1: For SEND events the creation of a further modified constraint can sometimes be avoided, if an assignment is made in the SEND statement line, thus overwriting a particular constraint value.

c) Design the relation between base constraints and modified constraints always in connection with parameterization of constraints (see the two subsequent subclauses).
NOTE 2: Additional parameters in a constraint, introduced to avoid the declaration of further base/modified constraints can reduce the amount of constraints needed in an ATS, but then the constraint reference is getting more and more unreadable.

d) When modified constraints are used, keep the length of the derivation path small. The length of the derivation path (resulting from the number of dots in it) is a kind of nesting level, and it is known from experience that a length greater than 2 is normally difficult to overview and maintain.

Modified constraints should not have a derivation path longer than 1. A modified constraint should not alter more than 5 values with respect to a given base constraint. If a constraint is used as a base constraint, it must have the prefix ‘cb’, to warn test suite maintainers / developers that any changes to this constraint may cause side effects.

Note that if an existing constraint without the ‘cb’ prefix is to be used as a base constraint, either a new, identical constraint with an ‘cb’ prefix must be created, or the existing constraint must be renamed to include the ‘cb’ prefix in all places it is referenced in the test suite.

[Outstanding issue: Stating that all base constraints must have the ‘cb’ prefix may result in ALL constraints having this prefix, in case they are used as base constraints at a later stage during devlopment. If this occurs, the ‘b’ becomes redundant, and should be removed from the coding conventions.]
	RULE 16: Static and dynamic chaining

	a) Make a careful evaluation of which embedded PDUs are needed in ASPs/PDUs, in which (profile) environment the ATS may operate and which kind of parameterization for other parameters/fields is needed, to find an appropriate balance between the use of static and/or dynamic chaining in a particular ATS.

b) When the ATS is used in different profile environments and the types and values of embedded PDUs cannot be predicted, dynamic chaining is normally the better choice.

c) When static chaining is used, chose the name of the ASP/PDU constraint such that it reflects the peculiar value of the embedded PDU (see also the clause on naming conventions in ETR 141).

	RULE 17: Parameterization of constraints

	a) Make a careful overall evaluation of which field/parameter values are needed in ASPs and PDUs to find an appropriate balance between the aim of a comparably small number of constraint declarations and readable and understandable constraint references.

b) Keep the number of formal parameters small.
Keep in mind, that the number of formal parameters in structured/ASN.1 types Constraints will add up to the total number of ASP/PDU constraints.
A clear border for the number of formal parameters cannot be stated, but it is known from experience that a number bigger than 5 normally cannot be handled very well.

Constraints should not be passed more than five parameters. Instead, more constraints should be defined. Related parameters can be grouped in new structured types to reduce the number of parameters that must be passed to constraints.

[NOTE: The value five has been selected based on the recommendation in ETR 141 rule 17. If more parameters are required, we can update this rule, or use more than 5 parameters, and provide documentation indicating why more parameters are required.]

A constraint should not be passed parameters to that are not processed in that constraint. If for example a parameter is to be passed from a PDU constraint to a structured type constraint then the PDU constraint should be made specific and not have that parameter passed. The reason for this is that no editors as yet can trace through this mechanism and it becomes very difficult in a complex suite to see exactly what is being passed.

For example:

PduA ::= SEQUENCE {

 infoElement1 InformationElementType1,

 infoElement2 INTEGER

}

InformationElementType1 ::= SEQUENCE {

 field1 INTEGER,

 field2 INTEGER

}

cbPATypical(pField1: INTEGER; pField2: INTEGER) ::= {

 infoElement1 cIET1Typical(pField1),

 infoElement2 pField2

}

cIET1Typical(pField1: INTEGER) ::= {

 field1 pField1,

 field2 5

}

In the example constraint cbPATypical, passing pField1 through to a nested constraint is not allowed, but the use of pField2 is acceptable.

	RULE 18: Constraint values

	a) Use comments to highlight the peculiarity of the value, especially when the value is a literal, whose meaning is not apparent.

b) Use test suite constants instead of literals, when appropriate.
Normally not all literals can be defined as Test Suite Constants, but a rule by thumb is: if a literal value of a given type occurs more than once (as a constraint value or more generally in an expression), then it is useful to define it as a Test Suite Constant, letting the name reflect the value.

c) Use the length attribute when possible and when the length is not implicit in the value itself or given by the type definition (e.g. for strings containing "*").

	RULE 19: Verdict assignment in relation to the test body

	Make sure that verdict assignment within a default tree is in relation to the test body. If an unsuccessful event arising in the test body is handled by the default tree, then assign a preliminary result "(FAIL)" within the corresponding behaviour line of the default tree. If the position of the unsuccessful event is not in the test body, assign a preliminary result "(INCONCLUSIVE)". If the behaviour line handling the unsuccessful event is a leaf of the default tree, assign a final verdict instead.

	RULE 20: Test body entry marker

	The entry of the test body should be marked.

	RULE 21: State variable

	For realizing test purposes dependent on protocol states, use a variable to reflect the current state of the IUT.

	RULE 22: State checking event sequences

	Combine event sequences used for checking a state of the IUT within test steps.

	RULE 23: Easy adaptation of test steps to test cases

	For easy adaptation of a test step to test case needs, parameterize the constraints used within a test step.

Test steps may be parameterised, but with no more than five parameters. See also ETR 141 clause12.2 and rule 28. Related parameters can be grouped in new structured types to reduce the number of parameters that must be passed to constraints.

[NOTE: Again, the value five has been selected based on the recommendation in ETR 141 rule 17. If more parameters are required, we can update this rule, or use more than 5 parameters, and provide documentation indicating why more parameters are required.]

[Outstanding issue: Should local trees be parameterized?]

	RULE 24: Minimizing complexity of test steps

	Minimize the complexity of test steps either by restricting the objective of a test step to atomic confirmed service primitives or by separating event sequences which build different "logical" units into different test steps.

	RULE 25: Nesting level of test steps

	Keep the nesting level of test steps to a minimum.

	RULE 26: Recursive tree attachment

	Avoid recursive tree attachment. Where possible, use loops instead of recursive tree attachments.

	RULE 27: Verdict assignment within test steps

	If verdicts are assigned within a test step, guarantee at least the partial (i.e. not general) re-use of the test step.

	RULE 28: Parameterized test steps

	Use parameterized test steps to ensure re-use of test steps within test cases for different needs.

	RULE 29: Combining statements in a sequence of alternatives

	If there is no Boolean expression included in an alternative sequence, a statement of type UCS should never be followed by a statement of type UCS or CS within a sequence of alternatives.

	RULE 30: Using relational expressions as alternatives

	a) A relational expression should never restrict the value range of a preceding relational expression in the same alternative sequence using the same variable.

b) The value range of a relational expression should be different from the whole value range of all preceding relational expressions in the same alternative sequence using the same variable.

	RULE 31: Loop termination

	Do not use conditions for terminating loops, which depend only on the behaviour of the IUT.

	RULE 32: Avoiding deadlocks

	a) Make sure that each alternative sequence of receive events contains an OTHERWISE statement (without any qualifier) for each PCO.

b) Make sure that each alternative sequence of receive events contains at least one TIMEOUT event (implying that a corresponding timer was started).

A set of alternatives using qualifiers shall always include an alternative containing the qualifier [TRUE], to provide a default behaviour if none of the qualifiers match.

For example:
[tcv_Value = 1]

 AM ! ASP_ForValue1

 ...

[tcv_Value = 2]

 AM ! ASP_ForValue2

 ...

[TRUE]

 AM ! ASP_ForOtherValues

 ...

	RULE 33: Straightforward specification of test cases

	a) Use only event sequences leading to the test body within a preamble.

b) Handle all event sequences not leading to the test body within the default tree of the test case/step.

c) If the very same event sequence can be used to transfer the IUT from each possible state to the idle state, then realize this event sequence as a postamble.

	RULE 34: Test component configuration declaration

	Avoid recursive test component configuration declarations.

	RULE 35: Default trees with RETURN statement

	Special care should be taken by using a RETURN statement within a default tree in order to avoid an endless loop resulting from the expansion of the default tree.

3GPP ATS implementation guidelines

This clause provides a set of guidelines that must be followed during ATS development. In general, these guidelines are intended to prevent developers from making common errors, or discuss considerations that must be taken into account before using specific features of the TTCN language.
Test case groups shall reflect the TSS&TP document

Test groups shall be used to organise the test cases in the same way as the test purposes are structured in the prose specification.

The general structure of the test groups should be in the following format.

<protocol>/<group>/<subgroup>

E.g. RLC/UM/Segmentation/LengthIndicator7bit/

Test case names correspond to the clause number in the prose

Test case names are derived directly from the clause number in the prose specification. Decimal points between digits in the clause number are replaced with underscores. E.g. the test case name for the test purpose specified in clause 7.2.3.2 of 34.123-1 is tc_7_2_3_2. If more than one test case is required to achieve a test purpose, an additional digit may be added. See also ETR 141 clause 6.3.7

Use standard template for test case header

Table 5 illustrates how the Test Case dynamic behaviour header fields should be used.

	Field
	Contents

	Test Case Name:
	TC_NUMBER_OF_TESTCASE

The number of the test case, which is used in the name of the test case, is the number it has in the prose specification.

e.g.: "tc_26_13_1_3_1"

	Group:
	Is automatically filled and cannot be changed

	Purpose:
	This is taken directly from the prose specifications.

	Configuration:
	As required if concurrent TTCN is being used.

	Default
	The appropriate default

	Comments:
	First line contains:

Prose Specification: The name and relevant clause of the document with the prose specification

e.g.: Specification: TS 34.123-1, clause 7.2.2.2

Next line contains:

Specification: The names and sub clauses of relevant core specifications.

Next line contains:

Status: OK / NOT OK (+explanation if not ok)

E.g.: Status: OK

Rest of lines give comments as:

What has to be done before running this test?

E.g.: 1. Generic setup procedure must be completed before running this test.

Any special information about what might be needed for the testing system, like specific requirements for the testing system, specific hacks, certain settings etc. This field should be short (if long description is needed it must be put into Detailed Comments)

	Selection Ref:
	Left blank

	Description:
	Optional. Max 4 lines. Note 9

	Nr
	Label
	Behaviour Description
	Constraints Ref
	Verdict
	Comments

	1
	
	
	
	
	Note 10

	Detailed Comments
	Contains detailed information about test steps + additional information Note 10

Table 5 – Template for TTCN test case table header

Note 9: The description field in the test case header is used to generate the test suite overview, and should only include a brief overview of the test case with a maximum of 4 lines. For a more detailed description of the test case algorithm / parameters etc, the comments or detailed comments fields should be used.

Note 10: The comments field for each behaviour line should usually consist of a number that is a reference to a specific numbered comment in the detailed comments field. If this extra level of indirection reduces readability, brief comments can be used in the comments field for each behaviour line.

Do not use identical tags in nested CHOICE constructions

A nested CHOICE requires tags in the different alternative type lists to differ (see ISO 8824, sub clause 24.4, EXAMPLE 3, INCORRECT). ‘The tag shall be considered to be variable, ... becomes equal to the tag of the ”Type” ... from which the value was taken.‘

Example: components are defined in a nested CHOICE construction, but no distinguishing tags are used to make the difference between component types, i.e. tags for different types turn out to be identical.

Component ::=
CHOICE {

 gSMLocationRegistration_Components GSMLocationRegistration_Components,

 gSMLocationCancellation_Components GSMLoactionCancellation_Components,

 ...

}

GSMLocationRegistration_Components ::= CHOICE {

 gSMLocationRegistration_InvokeCpt [1] IMPLICIT GSMLocationRegistration_InvokeCpt,

 gSMLocationRegistration_RRCpt [2] IMPLICIT GSMLocationRegistration_RRCpt,

 gSMLocationRegistration_RECpt [3] IMPLICIT GSMLocationRegistration_RECpt,

 gSMLocationRegistration_RejectCpt [4] IMPLICIT RejectComponent

}

GSMLocationCancellation_Components ::=
 CHOICE
{

 gSMLocationCancellation_InvokeCpt [1] IMPLICIT GSMLocationCancellation_InvokeCpt,

 gSMLocationCancellation_RejectCpt [4] IMPLICIT RejectComponent

}

gSMLocationRegistrationInvokeCpt and gSMLocationCancellation_InvokeCpt have the same tag and can therefore not distinguished anymore. Note that ITEX 3.5 does not report this error.

Incorrect usage of enumerations

Enumerations may contain distinct integers only (see ISO 8824, sub clause 15.1)

Example: TypeOfNumber containing a NamedValueList in which there are non-distinct values.

TypeOfNumber ::=
ENUMERATED {

.....,

 internationalnumber (1),

 level2RegionalNumber (1),

 nationalNumber (2),

 level1RegionalNumber (2),

......

 }

Structured type as OCTETSTRING should not be used

”It is required to declare all fields of the PDUs that are defined in the relevant protocol standard, …"
TR 101 101 TTCN specification clause 11.15.1

Example: The ISDN Bearer Capability Information Element (BCAP) contents is defined as OCTETSTRING.

Example: Usage of data type BITSTRING [7..15] as data type of the Call Reference (= 7 bits or =15 bits, but not 8 bits for example) does not correspond to the specification !!).

Wildcards in PDU constraints for structured types should not be used

Values ? and * are incorrect in PDU constraints where they are used to indicate values of structured types, because they would allow any combinations of values – even incorrect ones - which is not admissible according to the specifications. It is to be kept in mind that in tabular form each field is optional! It would be better to create and use an ”any”-constraint which would deal with all the fields in detail (mandatory, IF PRESENT, etc.). See TBR 33, 34 as example.

[TODO: Use of wildcards vs. ‘any’ constraints requires some further discussion]

TSOs should be passed as many parameters as meaningful to facilitate their implementation
Parameters should be passed to TSOs to facilitate the TSO realization. If a TSO is used in various contexts, this should be reflected in the parameters passed to the TSO. Specifically, TSOs operating on well-defined (parameterized) constraints should take these constraints (including relevant parameters) as parameters if required.

Bad example: In this example, the TSO may be used in many contexts, but no information is passed to the TSO, which makes TSO realization difficult.

	
	
	L?SETUPr (...

tcv_invokeId := TSO_GET_INVOKEID (),

...)
	Sr (SU_GR3(

GSM_IncomingCallMMInfo_Invoke(...)))
	
	

Good example: In this case, the TSO is provided with information about the data object from which the invoke Id is to be extracted, and the type of component from which the invoke Id is to be extracted is identified by passing the component constraint.

	
	
	L?SETUPr (...

tcv_invokeId := TSO_GET_INVOKEID (DL_DataInd_Setup.msg, GSM_IncomingCallMMInfo_Invoke(...)),

...)
	Sr (SU_GR3(

GSM_IncomingCallMMInfo_Invoke(...)))
	
	

To calculate the invocation identification and store the result in variable tcv_invokeId the TSO has to be provided with information about the data object from which the invoke Id is to be extracted. PDU constraint SU_GR3 may contain several components. In the specific situation only one of these components is relevant.

Depending on the nature of the TSO, passing the received value, or a subcomponent of the received value may be more appropriate than passing the constraint.

Specification of Encoding rules and variation should be indicated

TTCN does not mandate encoding rules, although TTCN foresees that applicable encoding rules and encoding variations can be indicated for the data structures used in a test suite.

There are standards defining encoding rules, e.g. the ITU-T X.680 series. However, the type of encoding called ”Direct Encoding” - a bit-by-bit-mapping from the data definitions onto the data stream to be transmitted - is not defined anywhere. It therefore needs a ”home”.

TTCN should therefore define which encoding rules may legally be used by TTCN test suite specifiers. All the encoding rules defined in the X.680 series should be contained in this repertoire. Additionally an encoding rule called Direct Encoding is needed in particular for tabular TTCN.

X.680 allows to encode data objects using different length forms (short, long, indefinite). These could be used alternatively as encoding variations. Another encoding variation could be the ”minimum encoding”, accepting any of the length forms in reception, and using the shortest of the available forms in sending. The variation actually used has to be described somewhere (in the ATS).

Example: In EN 301 144-4 BER is used as encoding variation, but is in fact an encoding rule. Furthermore no default encoding is specified which would apply to those data structures for which no encoding rule or encoding variation is explicitly specified.

Use of global data should be limited

The Phase 2 ATS became extremely complex due to the global definition of data. Data should be defined locally where possible if the language allows, alternatively the names of global constraints could be given prefixes to indicate their use.

Limit ATS scope to a single layer / sub-layer

Separate ATSs should be produced to test each Layer and perhaps sub Layer. By doing this preambles and common areas particular to one sub Layer can be confined to one test suite and parallel development of test suites can be facilitated.

Place system information in specially designed data structures

System Information data could be stored in specially defined data structures, use of these structures to build PDUs may help to ensure that a consistent set of data is transmitted in all the channels in a cell.

Place channel configuration in specially designed data structures

Likewise the configuration of a ‘channel’ could be stored in similar structures. This data can then be used to configure the test system and to build Assignment messages to the UE under test. This may help avoid the situation where the TTCN creates one channel and unintentionally commands the mobile to a different, non-existent, channel.

PICS / PIXIT parameters

It is desirable to limit the scope of PICS / PIXIT parameters.

PICS / PIXIT parameters shall not include structured types. If a structured parameter is required, several parameters shall be used, one for each simple element within the type, and a constraint shall be created to combine the simple parameters into a structured type.

For example, to use the following structured type as a parameter:

	Type Name
	LocAreaId_v

	Encoding Variation
	

	Comments
	Location Area Identification Value 3G TS 24.008 cl. 10.5.1.3

	
	
	
	

	Element Name
	Type Definition
	Field Encoding
	Comments

	mcc
	HEXSTRING[3]
	
	MCC 3 digits

	mnc
	HEXSTRING[3]
	
	MNC 3 digits

	lac
	OCTETSTRING[2]
	
	LAC

	
	
	
	

	Detailed Comments
	

	The following three PIXIT parameters should be defined: Parameter Name
	Type
	PICS/PIXIT Ref
	Comments

	px_LACDef
	OCTETSTRING
	PIXIT TC
	default LAC

	px_MCCDef
	HEXSTRING
	PIXIT TC
	default MCC

	px_MNCDef
	HEXSTRING
	PIXIT TC
	default MNC

And then the following constraint can be used to combine the simple parameters into a structured parameter:

	Constraint Name
	cb_LocAreaIdDef_v

	Structured Type
	LocAreaId_v

	Derivation Path
	

	Encoding Variation
	

	Comments
	

	
	
	
	

	Element Name
	Element Value
	Element Encoding
	Comments

	mcc
	px_MCCDef
	
	

	mnc
	px_MNCDef
	
	

	lac
	px_LACDef
	
	

	
	
	
	

	Detailed Comments
	

Dynamic vs. static choices

Don’t use wildcards for static choice constraints. For example, a type that is similar for FDD and TDD should have 2 type definitions, rather than a single type that uses an ASN.1 choice. Then in the TTCN, the correct type should be selected based on test suite parameters.

E.g

[pxUseTddMode] AM ! TddSpecificAsp

 AM ?

 ...

[pxUseFddMode] AM ! FddSpecificAsp

 AM ? …

 ...

Definition of Pre-Ambles and Post Ambles

Test cases should, as far as possible, use one of a set of standard pre-ambles to place the user equipment in its initial conditions. These pre-ambles should align with the generic setup procedures in the conformance specification. All non-standard pre-ambles should be identified and added to the pre-amble library.

With pre-ambles readability is very important so they should not use other test steps to send message sequences, and they should be passed as few parameters as possible. This also makes the results log easier to read.

The prose message sequence charts should be analysed, and a catalogue of common ways in which the test cases can terminate (correctly or incorrectly) created. This catalogue should be used to create a set of post-ambles. All final verdicts should be assigned in the post-ambles.

Wherever possible, a post-amble should return the test system and the User Equipment under test to a known idle state.

Default behaviour

Defaults are test steps that are executed when ever a receive event occurs that is not expected. Not expected means that it does not match any of the defined ASP constraints at that point in the test case. The default behaviour used in test case is defined in the test case declaration. They can be defined to stop the test case by calling a standard post-amble or receive the event as OTHERWISE and RETURN back to step where the unexpected event occurred.

A strategy for dealing with unexpected behaviour involving consistent use of defaults should be developed, and applied to test cases wherever possible.

 If during a test case or test step it is necessary to change the default behaviour, the ACTIVATE statement may be used.

Use system failure guard timers

A timer should be set at the beginning of each test case to guard against system failure. Behaviour on expiry of this timer should be consistent for all test cases.

Mapping between prose specification and individual test cases

The ATS should map one-to-one between test cases and tests as described in 32.123-1. A method for ensuring that the two specifications track each other needs to be defined.

Verdict assignment

[TODO: Decide on rules for verdict assignment in MTCs, PTCs, test steps, and test cases. Do we want to use state variables to indicate if the test body has been reached? Define use of labels for every line with a verdict assignment to support traceability?]

See also ETR 141 clauses 11.2, 12.4, and 14.3.

Test suite and test case variables

[TODO: Define rules for use of test suite and test case variables, especially with regard to concurrent and modular TTCN]

Use of macros is forbidden

The use of macros is forbidden, to support migration to TTCN3.

3GPP

