TSG-T Working Group1 SWG SIG #8
 TSG-T1S#8 T1S- 000003
Morgan Hill, California, USA. 24th – 26th January 2000.

Agenda Item:
TTCN Coding Style and development guidelines

Source:
Anritsu

Title:
Proposal for a TTCN ATS development guide for the development of TS 34.123-3 (udated)

Document No.:
T1S-000003
Document for:
Agreement

Summary

The TSG-T1 Signalling subworking group is responsible for providing an abstract test suite in TTCN for testing conformance of 3GPP user equipment. Development of this test suite is a critical step in the roll-out of the new standard, as it provides an independent way of ensuring that user equipment adheres to the 3GPP core standards.

Due to the early deployment of 3GPP networks, the conformance test suite needs to be completed and available for use by the end of 2000. Although a funded team of TTCN experts has been proposed, and agreed in principle, it is unlikely that this team will be able to produce and validate the entire test suite without assistance in the form of voluntary contributions.

To assure that all contributions can be combined in a single test suite it is essential that a comprehensive set of coding rules and style guidelines are put in place. This document sets out a framework for these guidelines based upon an ETSI technical report ETR-141 [1].

References

[1] ETR 141: Methods for Testing and Specification (MTS); Protocol and profile conformance testing specifications. The Tree and Tabular Combined Notation (TTCN) style guide. ETSI, October 1994.
Scope

This document provides a set of coding standards and development guidelines for use in the development of a TTCN abstract test suite for ensuring that user equipment for the 3GPP standard conform to the relevant core specifications.

 The following items are assumed to exist, but their specification is outside the scope of this document:

(i) A complete unambiguous prose detailing all test cases to be implemented.

(ii) A complete unambiguous set of core specifications.

(iii) A complete unambiguous detailed description of all the messages that are to be sent.

(iv) A tool or human process that can convert Test Suite Operation Definitions to physical processes within the test system or unit under test.

(v) An abstracted or generic application programmers interface to all hardware components in the system
(vi) A tool for the translation and/or compilation of ISO/IEC 9646 series TTCN to run on a test platform.

It is recognised within the context of the 3GPP User Terminal that some of these items are not yet stabilised.

1.
Introduction

In order to use semantic and syntactic analysis to full benefit a top down design but bottom up declaration method is used. In this way the structure and semantics of the abstract data types used can be checked as the declaration section is built up.

Modular TTCN should be used to enable core parts of the test suite to be transferred to 3GPP members who wish to volunteer test cases. Each section, as detailed below, shall be defined in separate modules and merged.

2. Guidelines for creation of the TTCN Abstract Test Suite.

2.1
Selection of TTCN Tools

Whilst every effort should be made to ensure that the TTCN is not dependant upon the peculiarities of any particular TTCN tool set, it is essential that the test suite is known to compile, translate or run on at least one.

In the interest of time and resource, one tool set should be selected by TSG-T1/SIG as a reference to be used for language parsing and test compilation. This will not preclude the use of other tools at the discretion of 3GPP members.

2.2
General Structure

Tests should be grouped into Test Groups in accordance with the first level subheadings of TS 34.123-1 (e.g. 8.1 RRC tests, 8.2 MM tests, etc.).

2.3
Hardware functionality required by the test cases

[NOTE: this section should contain an exhaustive list of all hardware functionality required by the test cases.]

2.3.1 Support for hardware control operations

[TSG-T1/SIG need to determine which mechanism is to be used for control of test system hardware, and the unit under test.

Option 1: A set of abstract Test Suite Operations that can be adapted through the addition of supporting libraries to run on a test system.

Option 2: A layer 1 PCO that takes abstract service primitives in accordance with the layer 1 primitives defined in the core specifications [2].]

2.4
PDU and Structured Type Declarations
The TTCN declarations part defining the PDUs, Structured types and Simple types shall be written using the relevant core specifications, and shall be made available to any 3GPP member wishing to provide a voluntary test case contribution. The declarations section shall be centrally maintained and under change control of TSG-T1 SIG SWG.

A PDU shall be declared for every message that is to be sent and a structured type for every information element and sub information element that is not a simple type.

Declarations will be made in ASN.1 if the relevant core specification definitions are in ASN.1.

2.4
PCO Declarations
[NOTE: The principles for defining the set of PCOs should be decided by TSG-T1/SIG, possibly by following the Service Access Point definitions in the core specifications]

2.5
Mapping of system architecture to the ATS components (concurrent TTCN)

Concurrent TTCN may be used where it simplifies the implementation of and/or readability of a test case. To facilitate this, where a test case may be used in a parallel situation (for example as part of a multi-call test) consideration should be given to its re-use as a parallel test component.

[NOTE: A candidate list should be made of possible test components, their co-ordination points and co-ordination messages.]

2.6
Defining a message and information element catalogue

The prose specification [3] should be analysed, and each message sent, or received, by the system entered into a message catalogue. The catalogue should list for each usage of the message the contents required in each of the fields. A similar catalogue should be produced for the information elements used in the messages.

The catalogue provides the basis of the TTCN constraints’ section, and provides a common set of constraints that prevents unnecessary duplication of work.

The catalogue (and constraints’ section) should remain under change control of TSG-T1/SIG and should be centrally maintained. Test case authors who wish to use a constraint that is not provided in the catalogue should submit a change request to have the constraint added.

Where a PDU or information element has multiple constraints, the differences between the constraints should be more than a single parameter. Otherwise, consideration should be given to defining the PDU or information element constraint to pass this parameter. In this way the number of constraints is reduced without compromising readability of the test suite.

The naming of message constraints should reflect the major difference from the default, or most common version. This should always be called after the core specification name with postfix (e.g. _Std.).

If concurrent TTCN is used, the catalogue should also include CMs.

2.7
Declaration of constraints

The constraints for the simple types, information elements and PDUs should all pass the semantic checker in the reference tool set (see Section 2.1).

A constraint should not be passed parameters to that are not processed in that constraint. If for example a parameter is to be passed from a PDU constraint to a structured type constraint then the PDU constraint should be made specific and not have that parameter passed.

The reason for this is that no editors as yet can trace through this mechanism and it becomes very difficult in a complex suite to see exactly what is being passed.

Constraints should not be passed more than five parameters. Instead, more constraints should be defined.

The use of modified constraints should be avoided, as any change in the base constraint structure can produced unexpected results.

2.8
Definition of Pre-Ambles and Post Ambles.

Test cases should, as far as possible, use one of a set of standard pre-ambles to place the user equipment in its initial conditions. These pre-ambles should align with the generic setup procedures in the conformance specification. All non-standard pre-ambles should be identified and added to the pre-amble library.

With pre-ambles readability is very important so they should not use other test steps to send message sequences, and they should be passed as few parameters as possible. This also makes the results log easier to read.

The prose message sequence charts should be analysed, and a catalogue of common ways in which the test cases can terminate (correctly or incorrectly) created. This catalogue should be used to create a set of post-ambles. All final verdicts should be assigned in the post-ambles.

Wherever possible, a post-amble should return the test system and the User Equipment under test to a known idle state.

2.9
Creation of a common test step library

The main body of the test cases in the prose should be analysed for common exchanges of messages. These should be defined as test steps in a common test step library. The test steps may be parameterised, but with no more that five parameters. The test step library should be able to pass the reference semantic analyser.

Test steps in the common test step library may themselves contain common test steps from the library, however such nesting of test steps should not go beyond three levels.

2.10
Default behaviour

Defaults are test steps that are executed when ever a receive event occurs that is not expected. Not expected means that it does not match any of the defined ASP constraints at that point in the test case. The default behaviour used in test case is defined in the test case declaration. They can be defined to stop the test case by calling a standard post-amble or receive the event as OTHERWISE and RETURN back to step where the unexpected event occurred.

A strategy for dealing with unexpected behaviour involving consistent use of defaults should be developed, and applied to test cases wherever possible.

 If during a test case or test step it is necessary to change the default behaviour, the ACTIVATE statement may be used.

2.11
Timers

A timer should be set at the beginning of each test case to guard against system failure. Behaviour on expiry of this timer should be consistent for all test cases.
2.12 Re use of TTCN components and Modular TTCN.

2.12.1 Initialising The Environment.

A dedicated test step within preambles will be used to initialise the radio or test environment.

Any preparation or presetting of state machines will be made in a separate test step.

2.12.2 Test steps and Postambles.

A postamble will be used at every logical exit point in a test case.

Test steps will be used to group common exchanges of messages.

Test steps that are specific to a PCO will be grouped together.

2.12.3 User data.

When user data is passed into a message sent by the test case it should be be passed directly into a constraint as a test suite parameter (PIXIT).

2.12.4 The Definition Of modules.

For maintenance purposes TTCN objects that are expected to change and those that are not shoud be put in different modules.

Modules should be defined so there is a minimum dependency between modules.

The actual size of module will not be the controlling factor in what makes a module. Though large modules of more than 1000 tables should be spilt up into smaller modules along functional lines. In the same way modules of less than tables should be combined into bigger modules.

Module dependency cycles and mutual inclusion should be avoided.

Objects that are to be exported outside the module should be described in the module overview as should the usage and type of parameter used.

The following guide showing how an ATS could be spilt into modules is paraphrased from ETR 190:

(i) Place preambles, postambles, other test steps and test components in modules

(ii) Place ASP and PDU definitions from the core standards in a module

(iii) Split the test cases corresponding to the structure in the core standard into modules.

(iv) Place all test suite constants in a module.

(v) Place all pre-ambles in a module and allow a single import to an initialising test step module.

(vi) Place all default trees in a single module

(vii) In concurrent TTCN place all PCO specific objects in a single module

(viii) Place all error handling and Postambles in a module

(ix) Place all test steps for co-ordinating purposes in the same module.

3.
TTCN ATS Naming Conventions

The naming conventions should in general follow the guidelines in ETR 141, with the following exceptions or comments:

a) Care should be taken that PDU and other names do not become too long.

b) ETR 141lays down some guidance for the use of ASN.1. In addition to these guides, ASN.1 should be used in all circumstances that it is used in the core specifications. Names of ASN.1 objects should be kept the same as the core specifications in this case, even where the names are at odds with the naming conventions adopted for other TTCN objects.

The detailed naming conventions are TBD.

4.
Coverage

The test case coverage should be such that each clause in the prose specification (TS 34.123-1) has a matching TTCN test case.

5.
Test Suite Operations

Test suite operations may be designated as either external or internal.

 5.1 Internal TSO’s

The requirement for internal TSOs needs to be established for all test cases, and a library of common TSOs defined.

Internal TSOs should, where possible, be implemented as test steps using TTCN built in functions. This is desirable as TSOs are not allowed to have any side affects.

TSOs have to be completely self contained and as a result it is not possible to track the internals of a TSO by modifying a test suite variable as a state or progress monitor.

5.2 External TSOs

The use of external TSOs is FFS.

6.
ATS Validation.
6.1
Initial validation

An ATS can be initially evaluated by answering the following questions before proceeding to formal validation:

· Is the ATS syntactically and semantically correct.?

· Is the test suite structured in groups of test cases that logically map from the prose specification ?

· Is a test management protocol or test coordination procedure used and is it documented.?

· If concurrent TTCN is used are the co-ordination message requirements stated for each test case?

· Are these messages described as abstract service primitives.?

· Is there an API available for the environment does the TSO list provide sufficient coverage..

· Is the test step nesting level less than 3

· Are labels or GOTO’s avoided.

· Is the ATS modular according to the rules of thumb given in section 2.12.

6.2
Formal Validation

The ATS needs to be formally validated before release as an approved standard. To avoid the problems that beset the GSM ATS, this requires running the test cases on at least one type approval test set, and at least one user equipment. Ideally the test cases should be run against several different user equipment implementations, and on more than one test set.

6.3
Test Case Approval

Test cases must be formally approved by agreement in TSG Workgroup 1, Sub-working group SIG, and then in TSG Workgroup 1.
A.
Items requiring further definition

A.1
General structure of the test cases

1. Should 34.123-1 be reflected in a single ATS (GSM style) or in multiple ATS?

[Editor’s suggestion: Multiple ATS may be more confusing for the market. Would test case applicability be determined both by selecting the relevant ATS and by PICS parameters? Could groups of test cases be better managed with a single ATS and modules for each group?]

2. Definition of basic set of Test Case modules for Release 99.

Radio Resource Control Module

Mobility Management Module

Circuit Switched Call Control Module

Packet Switched Mobility Management Module*

Packet Switched Session Management Module*

Structured Procedures Module

Voice Service Module

Circuit Switched Data Service Module

Short Messaging Service Module*

Packet Switched Data Service Module*

*These modules will only be included if extra resource is available.

A2.
Generic operations for the control of tester (and possibly UE) hardware during tests.

The tester lower layers (layer1 and layer 2) often need to be controlled during the operation of a test (for example: switching channels; reconfiguration of channels; moving from signalling to user traffic bearer).

This control can be implemented as:

1. Test Suite Operations that call to external, vendor supplied routines (method used in GSM).

2. Defining Abstract Service Primitives and control PDUs that are sent through a specific PCO, based upon the ASPs in the 3GPP standards.

There are pros and cons of each method, but one needs to be selected and adhered to.

A3.
Use of TTCN for Layer 2 testing (and other tests that are not pure Layer 3 signalling)

TTCN is designed for writing Layer 3 signalling tests. Should its use be extended to Layer 2 tests (RLC and MAC) and even to other general tests, such as Low Battery Voltage, Cell selection/reselection?

A4.
Mapping between Prose specification on individual test cases

The ATS should map one-to-one between test cases and tests as described in 32.123-1. A method for ensuring that the two specifications track each other needs to be defined.

