Technical Specification Group Terminals Meeting #22, Maui, Hawaii, USA, 10 - 12 December 2003

Source:	T1
Title:	CR's to TS 34.121 v5.1.1 for approval
Agenda item:	5.1.3
Document for:	Approval

This document contains the CRs to TS 34.121 v.5.1.1. These CRs have been agreed by T1 and are put forward to TSG T for approval.

Tdoc #	Title	CR#	re v	C at	Versi on in	Versi on out	Relea se
T1-031356	CR to 34.121: Correction to Inter-system Handover from UTRAN FDD to GSM	298		F	5.1.1	5.2.0	Rel-5
T1-031357	CR to 34.121: Correction to Power control in DL, initial convergence test case	299		F	5.1.1	5.2.0	Rel-5
T1-031445	Correction to RRM test case 8.3.2.1	319		F	5.1.1	5.2.0	Rel-5
T1-031551	Correction of clause 4.2 Frequency bands	314	1	В	5.1.1	5.2.0	Rel-5
T1-031552	Clause 4.4 Channel arrangement for DS-CDMA Introduction in the 800 MHz Band	315	1	В	5.1.1	5.2.0	Rel-5
T1-031553	DS-CDMA Introduction in the 800 MHz Band	316	1	В	5.1.1	5.2.0	Rel-5
T1-031556	Correction and maintenance of Annex H and DS-CDMA Introduction in the 800 MHz Band	317	1	В	5.1.1	5.2.0	Rel-5
T1-031561	Introduction of reference to RRM test tolerances TR	300	1	F	5.1.1	5.2.0	Rel-5
T1-031562	Introduction of Test Tolerances to Cell Reselection tests 8.2.2.1 & 8.2.2.2	301	1	F	5.1.1	5.2.0	Rel-5
T1-031563	Introduction of Test Tolerances to Cell Re-selection in CELL_PCH tests 8.3.6.1 & 8.3.6.2	302	1	F	5.1.1	5.2.0	Rel-5
T1-031564	Introduction of Test Tolerances to Cell Re-selection in URA_PCH tests 8.3.7.1 & 8.3.7.2	329		F	5.1.1	5.2.0	Rel-5
T1-031565	Clarification of Downlink Physical Channel in table E.3.1	303	1	F	5.1.1	5.2.0	Rel-5
T1-031566	FDD inter-frequency cell identification and measurement reporting test case	309	1	F	5.1.1	5.2.0	Rel-5
T1-031567	Changes to section 8.4.3, TFC selection requirements for codec mode switch	310	1	F	5.1.1	5.2.0	Rel-5
T1-031568	Test requirements for RRM CPICH RSCP Intra Frequency	327	1	F	5.1.1	5.2.0	Rel-5

Measurement						
Test requirements for RRM CPICH RSCP Inter Frequency Measurement	328	1	F	5.1.1	5.2.0	Rel-5
Test requirements for RRM CPICH_Ec/Io Intra Frequency Measurement	324	1	F	5.1.1	5.2.0	Rel-5
Test requirements for RRM CPICH_Ec/Io Inter Frequency Measurement	325	1	F	5.1.1	5.2.0	Rel-5
Correction of clause 8.7.3C UE transmitted power	318	1	F	5.1.1	5.2.0	Rel-5
CR to 34.121: Correction to FDD/FDD Soft Handover test case	304	1	F	5.1.1	5.2.0	Rel-5
Correction to RRM test case 8.3.5.3	308	1	F	5.1.1	5.2.0	Rel-5
12.2 kbit/s RMC is insufficient for BLER testing	321	1	F	5.1.1	5.2.0	Rel-5
Update of initial conditions for RF test cases	320	1	F	5.1.1	5.2.0	Rel-5
Addition of two new test cases; 7.11 (Demodulation of paging channel (PCH)) and 7.12 (Detection of acquisition indicator (AI)).	307	2	F	5.1.1	5.2.0	Rel-5
Performance requirement for HSDPA skeleton section added	311	1	F	5.1.1	5.2.0	Rel-5
New test requirements for Demodulation of HS-DSCH (fixed reference channel) single link performance	312	1	F	5.1.1	5.2.0	Rel-5
New test requirements for reporting of HS-DSCH Channel Quality Indicator (CQI) AWGN propagation conditions	313	1	F	5.1.1	5.2.0	Rel-5
Correction to F.1.5 Requirements for support of RRM	306	1	F	5.2.0	5.3.0	Rel-5
Correction to W-CDMA modulated interferer definition	331		F	5.5.1	5.6.0	Rel-5
Correction on Random Access test cases	330	1	F	5.5.1	5.6.0	Rel-5
Addition to Scope clause to clarify applicability of tests to Releases	332		F	5.1.1	5.2.0	Rel-5
	Measurement Test requirements for RRM CPICH_Ec/Io Intra Frequency Measurement Test requirements for RRM CPICH_Ec/Io Inter Frequency Measurement Correction of clause 8.7.3C UE transmitted power CR to 34.121: Correction to FDD/FDD Soft Handover test case Correction to RRM test case 8.3.5.3 12.2 kbit/s RMC is insufficient for BLER testing Update of initial conditions for RF test cases Addition of two new test cases; 7.11 (Demodulation of paging channel (PCH)) and 7.12 (Detection of acquisition indicator (AI)). Performance requirement for HSDPA skeleton section added New test requirements for Demodulation of HS-DSCH (fixed reference channel) single link performance New test requirements for reporting of HS-DSCH Channel Quality Indicator (CQI) AWGN propagation conditions Correction to F.1.5 Requirements for support of RRM Correction on Random Access test cases Addition to Scope clause to clarify applicability of tests to	Measurement324Test requirements for RRM CPICH_Ec/Io Intra Frequency Measurement325Test requirements for RRM CPICH_Ec/Io Inter Frequency Measurement325Correction of clause 8.7.3C UE transmitted power318CR to 34.121: Correction to FDD/FDD Soft Handover test case304Correction to RRM test case 8.3.5.330812.2 kbit/s RMC is insufficient for BLER testing321Update of initial conditions for RF test cases320Addition of two new test cases; 7.11 (Demodulation of paging channel (PCH)) and 7.12 (Detection of acquisition indicator (AI)).311Performance requirement for HSDPA skeleton section added312New test requirements for Demodulation of HS-DSCH (fixed reference channel) single link performance313New test requirements for reporting of HS-DSCH Channel Quality Indicator (CQI) AWGN propagation conditions313Correction to W-CDMA modulated interferer definition331Correction on Random Access test cases330Addition to Scope clause to clarify applicability of tests to332	Measurement324Test requirements for RRM CPICH_Ec/Io Intra Frequency Measurement324Test requirements for RRM CPICH_Ec/Io Inter Frequency Measurement325Correction of clause 8.7.3C UE transmitted power318Correction of clause 8.7.3C UE transmitted power318Creation of clause 8.7.3C UE transmitted power304Creation of clause 8.7.3C UE transmitted power304Creation of clause 8.7.3C UE transmitted power304Correction to RRM test case 8.3.5.330812.2 kbit/s RMC is insufficient for BLER testing321Update of initial conditions for RF test cases320Addition of two new test cases; 7.11 (Demodulation of paging channel (PCH)) and 7.12 (Detection of acquisition indicator (AI)).307Performance requirement for HSDPA skeleton section added311New test requirements for Demodulation of HS-DSCH (fixed reference channel) single link performance313New test requirements for reporting of HS-DSCH Channel Quality Indicator (CQI) AWGN propagation conditions313Correction to F.1.5 Requirements for support of RRM306Correction to W-CDMA modulated interferer definition331Correction to W-CDMA modulated interferer definition331Addition to Scope clause to clarify applicability of tests to332	Measurement3241Test requirements for RRM CPICH_Ec/Io Intra Frequency Measurement3241Test requirements for RRM CPICH_Ec/Io Inter Frequency Measurement3251Correction of clause 8.7.3C UE transmitted power3181FCorrection of clause 8.7.3C UE transmitted power3181FCR to 34.121: Correction to FDD/FDD Soft Handover test case3041FCorrection to RRM test case 8.3.5.33081F12.2 kbit/s RMC is insufficient for BLER testing3211FUpdate of initial conditions for RF test cases3201FAddition of two new test cases; 7.11 (Demodulation of paging channel (PCH)) and 7.12 (Detection of acquisition indicator (AI)).3072FPerformance requirement for HSDPA skeleton section added3111FNew test requirements for Demodulation of HS-DSCH (fixed reference channel) single link performance3131FNew test requirements for reporting of HS-DSCH Channel Quality Indicator (CQI) AWGN propagation conditions3131FCorrection to F.1.5 Requirements for support of RRM3061FCorrection on Random Access test cases3301FAddition to Scope clause to clarify applicability of tests to332F	MeasurementImage: Second S	MeasurementImage: Construct of the second secon

3GPP TSG-T1 Meeting #21 Budapest, Hungary, 3 - 7 November, 2003

Tdoc **∺***T1-031356*

											CR-Form-v7
	CHANGE REQUEST										
ж		34.121	CR 298		≋ rev	-	ж	Current vers	ion: 5	.1.1	ж
For <u>HELP</u> or	ท มร	sina this for	m. see botto	om of this	page or	look i	at the	e pop-up text	over th	e ₩ svr	nbols.
	1 44	ing the fel			buge er i	00/11					
						1					
Proposed chang	je a	affects:	JICC apps₩	S .	ME X	Rac	dio A	ccess Networ	k (Core Ne	etwork
Title:	ж	CR to 34	121: Correct	tion to Inte	er-system	n Har	ndov	er from UTR/		to GSI	М
					, eyeten	i i iai	1001				
Source:	ж	Nokia									
Work item code:	: H	TEI						<i>Date:</i> ೫	20/10	/2003	
		_									
Category:	ж	F						Release: अ			
			the following o	categories:				Use <u>one</u> of			eases:
		•	rection)					2	(GSM P	,	
			responds to a		in an ear	lier re	lease		(Releas		
			dition of featur		- tura)			R97	(Releas		
			ctional modifie		ature)			R98	(Releas		
			torial modifica		otogoriaa			R99 Rel-4	(Releas		
			olanations of t 3GPP TR 21.		alegones	can		Rel-4 Rel-5	(Releas (Releas	,	
			3GFF <u>IR 21.</u>	<u>900</u> .						,	
								Rel-6	(Releas	e 6)	

Reason for change:		 The test procedure does not define clearly, when compressed mode is activated. The procedure step 9 is irrelevant, since power setting are not changed between time period T2 and T3.
Summary of change: भ		 The test procedure is defined so that measurement control information is sent before the compressed mode pattern starts. Irrelevant test procdure step 9 is modified
Consequences if not approved:	₩ T	Test procedure does not work as intended in core specification
Clauses affected:	¥ 8	3.3.4

Clauses affected:	あ 8.3.4
Other specs affected:	Y N X Other core specifications # X Test specifications # X O&M Specifications #
Other comments:	# This CR applies for R99 and later releases.

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked # contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

8.3.4 Inter-system Handover from UTRAN FDD to GSM

8.3.4.1 Definition and applicability

The UTRAN to GSM cell handover delay is defined as the time from the end of the last TTI containing an RRC message implying hard handover to the transmission on the channel of the new RAT.

The requirements and this test apply to the combined FDD and GSM UE.

8.3.4.2 Minimum requirement

The hard handover delay shall be less than 40 ms. The rate of correct handovers observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

The hard handover delay as listed in table 8.3.4.1 equals the RRC procedure delay plus the interruption time listed in table 8.3.4.2. The UE shall process the RRC procedures for the RRC HANDOVER FROM UTRAN COMMAND within 50 ms.

Table 8.3.4.1: FDD/GSM handover - handover delay

UE synchronisation status	handover delay [ms]
The UE has synchronised to the GSM cell before the	90
HANDOVER FROM UTRAN COMMAND is received	
The UE has not synchronised to the GSM cell before	190
the HANDOVER FROM UTRAN COMMAND is received	

Table 8.3.4.2: FDD/GSM handover - interruption time

Synchronisation status	Interruption time [ms]
The UE has synchronised to the GSM cell before the	40
HANDOVER FROM UTRAN COMMAND is received	
The UE has not synchronised to the GSM cell before	140
the HANDOVER FROM UTRAN COMMAND is received	

The normative reference for this requirement is TS 25.133 [2] clauses 5.4.2 and A.5.4.

8.3.4.3 Test purpose

To verify that the UE meets the minimum requirement.

8.3.4.4 Method of test

8.3.4.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

[Editor's Note: Annex G.2 must be specified also for GSM; for instance as a reference to TS 51.010-1 clause A1.2]

The test parameters are given in table 8.3.4.3, 8.3.4.4 and 8.3.4.5 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 3C shall be used.. The test consists of three successive time periods, with a time duration of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

UTRAN shall send a HANDOVER FROM UTRAN COMMAND in advance to T3 with activation time "now". In GSM Handover command contained in that message, IE starting time shall not be included. The RRC HANDOVER

FROM UTRAN COMMAND message shall be sent to the UE so that the whole message is available at the UE the RRC procedure delay prior to the beginning of T3. The RRC procedure delay is defined in TS 25.331 [8].

The requirements are also applicable for a UE not requiring compressed mode, in which case no compressed mode pattern should be sent for the parameters specifed in table 8.3.4.3.

Table 8.3.4.3: General test parameters for Correct reporting of GSM neighbours in AWGN propagation condition

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement Channel 12.2 kbps	As specified in TS 34.121 clause C.3.1
Power Control		On	
Target quality value on DTCH	BLER	0.01	
Compressed mode patterns			Only applicable for UE requiring compressed mode patterns
- GSM carrier RSSI measurement		DL Compressed mode reference pattern 2 in Set 2	As specified in TS 34.121 [1] clause C.5, table C.5.2
- GSM Initial BSIC identification		Pattern 2	As specified in clause TS 25.133 [2] 8.1.2.5.2.1 table 8.7.
- GSM BSIC re- confirmation		Pattern 2	As specified in clause TS 25.133 [2] 8.1.2.5.2.2 table 8.8.
Active cell		Cell 1	
Inter-RAT measurement quantity		GSM Carrier RSSI	
BSIC verification required		Required	
Threshold other system	dBm	-80	Absolute GSM carrier RSSI threshold for event 3B and 3C.
Hysteresis	dB	0	
Time to Trigger	ms	0	
Filter coefficient		0	
Monitored cell list size		24 FDD neighbours on Channel 1 6 GSM neighbours including ARFCN 1	Measurement control information is sent before the compressed mode patterns starts.
N Identify abort		66	Taken from TS 25.133 [2] 8.1.2.5.2.1 table 8.7.
T Reconfirm abort		5.5	Taken from TS 25.133 [2] 8.1.2.5.2.2 table 8.8.
T1	S	20	
T2	S	5	
Т3	S	5	

Parameter	Unit	Cell 1 (UTRA)				
		T1, T2, T3				
CPICH_Ec/lor	dB	-10				
PCCPCH_Ec/lor	dB	-12				
SCH_Ec/lor	dB	-12				
PICH_Ec/lor	dB	-15				
DCH_Ec/lor	dB	Note 1				
OCNS_Ec/lor	dB	Note 2				
\hat{I}_{or}/I_{oc}	dB	0				
I _{oc}	dBm/3. 84 MHz	-70				
CPICH_Ec/lo	dB	-13				
Propagation		AWGN				
Condition	AWGN					
Note 1: The DPCH level is controlled by the power control loop						
Note 2 : The power of the OCNS channel that is added shall make						
the total power from the cell to be equal to I_{or}						

Table 8.3.4.4: Cell Specific Parameters for Handover UTRAN to GSM cell case (cell 1)

Table 8.3.4.5: Cell Specific Parameters for Handover UTRAN to GSM cell case (cell 2)

Parameter	Unit	Cell	2 (GSM)
Farameter	Unit	T1	T2, T3
Absolute RF Channel Number		AR	FCN 1
RXLEV	dBm	-85	-75

8.3.4.4.2 Procedure

- 1) The RF parameters for cell 1 are set up according to T1.
- 2) The UE is switched on
- 3) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.4 and compressed mode parameters are configured as in the table 8.3.4.3. The compressed mode shall remain inactive.
- 4) The RF parameters for cell 2 are set up according to T1 and the SS configures a traffic channel
- 5) SS shall transmit a MEASUREMENT CONTROL message to cell 1
- 6) After 20 seconds, the SS shall switch the power settings from T1 to T2
- 7) UE shall transmit a MEASUREMENT REPORT message triggered by event 3C
- 8) SS shall transmit a HANDOVER FROM UTRAN COMMAND message with activation time "now" and indicating the traffic channel of the target GSM cell to the UE through DCCH of the serving UTRAN cell.
- 9) After 5 seconds, the time period T3 starts SS shall switch the power settings from T2 to T3
- 10) UE shall transmit a burst on the traffic channel of cell 2 implying that it has switched to the GSM cell. The UE sends a HANDOVER ACCESS message. If the UE transmits access bursts on the new DCCH of the target cell less than 40 ms from the beginning of time period T3, then the number of successful tests is increased by one.
- [Editor's note: TS 34.108, 7.3.4 shall specify the messages HANDOVER ACCESS, PHYSICAL INFORMATION, SABM, UA and HANDOVER COMPLETE]
- 11) After 5 seconds, the UE is switched off. Any timing information of cell 2 is deleted in the UE.

12)Repeat step 1-11 [TBD] times

Specific Message Contents

All messages indicated belowabove shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message (step 5):

Information Element/Group name	Value/Remark
Message Type (10.2.17)	
UE information elements	
-RRC transaction identifier	0
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	2
-Measurement Command (10.3.7.46)	Setup
-Measurement Reporting Mode (10.3.7.49)	
-Measurement Report Transfer Mode	AM RLC
-Periodical Reporting / Event Trigger Reporting Mode	Event trigger
-Additional measurements list (10.3.7.1)	Not Present
-CHOICE Measurement type	Inter-RAT measurement
-Inter-RAT measurement (10.3.7.27)	
-Inter-RAT measurement objects list (10.3.7.23)	Not Present
-Inter-RAT measurement quantity (10.3.7.29)	
-Measurement quantity for UTRAN quality estimate	
(10.3.7.38)	
-Filter coefficient	0
-CHOICE mode	FDD
-Measurement quantity	CPICH Ec/N0
-CHOICE system	GSM
-Measurement quantity	GSM Carrier RSSI
-Filter coefficient	0
-BSIC verification required	Required
-Inter-RAT reporting quantity (10.3.7.32)	
-Reporting cell status (10.3.7.61)	
-CHOICE reported cell	Report cells within active set or within
	virtual active set or of the other RAT
-Maximum number of reported cells	2
-CHOICE report criteria	Inter-RAT measurement reporting criteria
-Inter-RAT measurement reporting criteria (10.3.7.30)	
-Parameters required for each event	1
-Inter-RAT event identity (10.3.7.24)	Event 3C
-Threshold own system	Not Present
-W	Not Present
-Threshold other system	-80 dBm
-Hysteresis	0 dB
-Time to trigger	0 ms
-Reporting cell status (10.3.7.61)	
-CHOICE reported cell	Report cells within active set or within
	virtual active set or of the other RAT
-Maximum number of reported cells	2
Physical channel information elements	
-DPCH compressed mode status info (10.3.6.34)	Not Present Active (for all three patterns
	specified in table 8.3.4.3)

HANDOVER FROM UTRAN COMMAND message (step 8):

Information Element	Value/remark
Message Type	
UE information elements	
-RRC transaction identifier	0
-Integrity check info	Not Present
-Activation time	"now"
RB information elements	
-RAB information list	1
-RAB Info	Not present
Other information elements	
-CHOICE System type	GSM
-Frequency Band	GSM/DCS 1800 Band
-GSM message	
-Single GSM message	[TBD]
-GSM message List	GSM HANDOVER COMMAND formatted
5	as BIT STRING(1512). The contents of
	the HANDOVER COMMAND see next
	table.

HANDOVER COMMAND

Same as the HANDOVER COMMAND for M = 2 in clause 26.6.5.1 of TS 51.010, except that the CHANNEL MODE IE is included with value = speech full rate or half rate version 3

MEASUREMENT REPORT message for Inter-RAT test cases

This message is common for all inter RAT frequency test cases in clause 8.7 and is described in Annex I.

8.3.4.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

Note: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

3GPP TSG-T1 Meeting #21 Budapest, Hungary, 3 - 7 November, 2003

Tdoc **∺***T1-031357*

			CHANG	E REQ	UE	ST				CR-Form-v7
æ		34.121	CR 299	ж геv	-	Ħ	Current vers	ion: 5.	1.1	ж
For <u>HELP</u> of	n us	sing this for	rm, see bottom of th	nis page or	look	at the	pop-up text	over the	ж syr	nbols.
Proposed chang	ye a	affects: (UICC apps೫	ME	Rad	lio Ac	cess Networ	k Co	ore Ne	etwork
Title:	ж	CR to 34.	121: Correction to I	Power cont	t <mark>rol in</mark>	DL, i	nitial converg	jence tes	st case	;
Source:	Ħ	Nokia								
Work item code.	:¥	TEI					<i>Date:</i> ೫	20/10/2	2003	
Category:	¥	F (con A (con B (add C (fun D (edi Detailed exp	the following categori rection) responds to a correct dition of feature), ctional modification o torial modification) planations of the abov 3GPP <u>TR 21.900</u> .	ion in an ea f feature)		lease) R96 R97 R98 R99 Rel-4	Rel-5 the follow (GSM Ph (Release (Release (Release (Release (Release (Release (Release	ase 2) 1996) 1997) 1998) 1999) 4) 5)	ases:

Reason for change:	
	the first frame is transmitted. This change is based on 25.101 changes.
Summary of change:	
	DPCH_Ec/lor value for Test 4 is aligned with 25.101.
Consequences if	25.101 and 34.121 are inconsistent. The core requirement is not tested as
not approved:	intented.
Clauses affected:	第 7.8.2
	YN
Other specs	# X Other core specifications #
affected:	X Test specifications
	X O&M Specifications
Other comments:	# This CR is based on 25.101 CRs 261r1 (R99, R4-030840), 262r1 (Rel-4, R4-

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

applies for R99 and later releases.

1) Fill out the above form. The symbols above marked # contain pop-up help information about the field that they are closest to.

030841), 263r1 (Rel-5, R4-030842) and 264r1 (Rel-6, R4-030843). This CR

- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

7.8.2 Power control in the downlink, initial convergence

7.8.2.1 Definition and applicability

This requirement verifies that DL power control works properly during the first seconds after DPCH connection is established. The requirements and this test apply to all types of UTRA for the FDD UE.

112

7.8.2.2 Minimum requirements

For the parameters specified in table 7.8.2.1 the downlink DPCH_Ec/Ior power ratio measured values, which are averaged over 50 ms, shall be within the range specified in table 7.8.2.2 more than 90 % of the time. T1 equals to 500 ms and it starts 10 ms after the <u>uplink DPDCH connection is initiated physical channel is considered established</u>. T2 equals to 500 ms and it starts when T1 has expired. Power control is ON during the test.

The first 10 ms shall not be used for averaging, i.e. the first sample to be input to the averaging filter is at the beginning of T1. The averaging shall be performed with a sliding rectangular window averaging filter. The window size of the averaging filter is linearly increased from 0 up to 50 ms during the first 50 ms of T1, and then kept equal to 50 ms.

Parameter	Test 1	Test 2	Test 3	Test 4	Unit
Target quality value on	0,01	0,01	0,1	0,1	BLER
DTCH					
Initial DPCH_Ec/lor	-5,9	-25,9	-3	-22, <mark>4<u>8</u></mark>	dB
Information Data Rate	12,2	12,2	64	64	kbps
\hat{I}_{or}/I_{oc}	\hat{I}_{or}/I_{oc} -1				dB
I _{oc}		dBm/3,84 MHz			
Propagation condition		S	tatic		
Maximum_DL_Power (note)			7		dB
Minimum_DL_Power (note)		dB			
DL Power Control step size,		dB			
Δ_{TPC}		uБ			
Limited Power Increase	ase "Not used"				
NOTE: Power is compared	to P-CPICH a	is specified in [9].		

Table 7.8.2.1: Test parameters for downlink power control, initial convergence

Table 7.8.2.2: Requirements in downlink power	control, initial convergence
---	------------------------------

Parameter	Test 1 and Test 2	Test 3 and Test 4	Unit
$\frac{DPCH_E_c}{I_{or}} \text{ during T1}$	-18,9 ≤ DPCH_Ec/lor ≤ -11,9	$-15,1 \le DPCH_Ec/lor \le -8,1$	dB
$\frac{DPCH_E_c}{I_{or}} \text{ during T2}$	$-18,9 \le DPCH_Ec/lor \le -14,9$	$-15,1 \le DPCH_Ec/lor \le -11,1$	dB

The reference for this requirement is TS 25.101 [1] clause 8.8.2.1.

7.8.2.3 Test purpose

To verify that DL power control works properly during the first seconds after DPCH connection is established.

113

7.8.2.4 Method of test

7.8.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1) Connect SS, multipath fading simulator and an AWGN source to the UE antenna connector as shown in figure A.10.

7.8.2.4.2 Procedure

- 1) Set up call using test parameters according to table 7.8.2.1.
- 2) SS signals to UE target quality value on DTCH as specified in table 7.8.2.3. SS will vary the physical channel power in downlink according to the TPC commands from UE. Downlink power control mode (DPC_MODE) 0 shall be used.
- 3) Measure $\frac{DPCH E_c}{I_{or}}$ power ratio averaged over 50 ms during T1. T1 starts 10 ms after the uplink DPDCH

eonnection is initiated physical channel is considered established and T1 equals to 500 ms. The first 10 ms shall not be used for averaging, i.e. the first sample to be input to the averaging filter is at the beginning of T1. The averaging shall be performed with a sliding rectangular window averaging filter. The window size of the averaging filter is linearly increased from 0 up to 50 ms during the first 50 ms of T1, and then kept equal to 50 ms.

4) Measure $\frac{DPCH - E_c}{I_{or}}$ power ratio averaged over 50 ms during T2. T2 starts, when T1 has expired and T2 equals to 500 ms.

to 500 ms.

7.8.2.5 Test Requirements

The test parameters are specified in table 7.8.2.3.

Parameter	Test 1	Test 2	Test 3	Test 4	Unit	
Target quality value on	0,01	0,01	0,1	0,1	BLER	
DTCH						
Initial DPCH_Ec/lor	-5,9	-25,9	-3	-22, <mark>48</mark>	dB	
Information Data Rate	12,2	12,2	64	64	kbps	
\hat{I}_{or}/I_{oc}	-0,4				dB	
I _{oc}		dBm/3,84 MHz				
Propagation condition		S	tatic			
Maximum_DL_Power (note)			7		dB	
Minimum_DL_Power (note)			-18		dB	
DL Power Control step size,					dD	
$\Delta_{ ext{TPC}}$	1 dB					
Limited Power Increase	"Not used"					
NOTE: Power is compared	NOTE: Power is compared to P-CPICH as specified in [9].					

Table 7.8.2.3: Test parameters for downlink power control, initial convergence

- a) The downlink $\frac{DPCH_{-}E_{c}}{I_{or}}$ power ratio values shall be within the range specified in table 7.8.2.4 during T1 more than 90 % of the time.
- b) The downlink $\frac{DPCH_{-}E_{c}}{I_{or}}$ power ratio values shall be within the range specified in table 7.8.2.4 during T2 more than 90 % of the time.

Parameter	Test 1 and Test 2	Test 3 and Test 4	Unit
$\frac{DPCH_E_c}{I_{or}} \text{ during T1}$	-18,8 ≤ DPCH_Ec/lor ≤ -11,8	$-15,0 \le DPCH_Ec/lor \le -8,0$	dB
$\frac{DPCH_E_c}{I_{or}} \text{ during T2}$	$-18,8 \le DPCH_Ec/lor \le -14,8$	$-15,0 \le DPCH_Ec/lor \le -11,0$	dB

Table 7.8.2.4: Requirements in downlink power control, initial convergence

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

CHANGE REQUEST						CR-Form-v7						
æ		<mark>34.121</mark>	CR <mark>31</mark>	4	жrе	v	1	ж	Current ver	sion:	5.1.1	ж
For <u>HELP</u> or	า นะ	sing this fo	rm, see bot	tom of this	s page	or loo	ok a	at the	e pop-up tex	t over	r the ೫ syı	mbols.
Proposed chang	ie a	affects:	UICC apps	¥ <mark></mark>	ME	X F	Rad	io A	ccess Netwo	ork	Core Ne	etwork
Title:	ж	Introduci	ng new freq	uency ba	nds int	o clau	Jse	4.2				
Source:	Ħ	NTT DoC	<mark>oMo, Fujits</mark>	su, Panaso	onic							
Work item code:	ж	WT_53							Date: 3	€ <mark>11</mark>	/04/2003	
Category:	ж	F (con A (con B (ada C (fur D (eda Detailed ex	the following rection) rresponds to dition of feat ictional modific planations of 3GPP TR 2	a correctic ure), fication of f cation) f the above	on in an feature))		lease	2	of the fo (GSI (Relo (Relo (Relo (Relo	e <mark>l-5</mark> ollowing rele M Phase 2) ease 1996) ease 1997) ease 1998) ease 1999) ease 4) ease 5)	

Reason for change: ೫	Introducing DS-CDMA into 800MHz band in Japan. Frequency bands in 34.121 clause 4.2 is not consistent with 25.101.
Summary of change: ೫	Clause 4.2 Frequency bands is aligned with 25.101 clause 5.2
Consequences if # not approved:	34.121 and 25.101 are inconsistent.

Rel-6

(Release 6)

Clauses affected:	¥ 4.2	
Other specs affected:	Y N X Other core specifications % X Test specifications % X O&M Specifications	
Other comments:	¥	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

4 Frequency bands and channel arrangement

4.1 General

The information presented in this clause is based on a chip rate of 3,84 Mcps.

NOTE: Other chip rates may be considered in future releases.

4.2 Frequency bands

a) UTRA/FDD is designed to operate in either of the following paired bands:

Operating Band	UL Frequencies UE transmit, Node B receive	DL frequencies UE receive, Node B transmit
I	1920 – 1980 MHz	2110 –2170 MHz
I	1850 –1910 MHz	1930 –1990 MHz
III	1710-1785 MHz	1805-1880 MHz
IV	<u>1710-1770MHz</u>	2110-2170MHz
<u>V</u>	<u>824 – 849MHz</u>	<u>869-894MHz</u>
VI	<u>830-840 MHz</u>	<u>875-885 MHz</u>

Note: Band VI specifications are developed for use in Japan. The Band VI frequency ranges in the table are subject to coming regulatory decisions.

b) Deployment in other frequency bands is not precluded.

											?-Form-v7				
æ		34.12	21 CR	315		жre	v	1	ж	Curre	ent vers	sion:	5.1.1	¥	5
For <u>HELP</u> or	า นะ	sing this	form, se	e bottom o	of this	page	or lo	ook a	at th	e pop-	up text	t ovei	r the	ymb	ols.
Proposed chang	je a	affects:	UICC	apps೫		ME	X	Rac	lio A	ccess	Netwo	rk	Core I	Vetw	ork
Title:	ж	Intorod	ducing DS	S-CDMA 8	BOOMH	Iz into	o Cla	use	4.4	Chann	el arra	nger	nent		
Source:	ж	NTT D	oCoMo,	<mark>Fujitsu, Pa</mark>	<mark>anaso</mark>	nic									
Work item code:	ж	WT_5	3							D	ate: ¥	11	/04/2003		
Category:	Ħ	Use <u>one</u> F (A (B (C (D (Detailed	correction correspor addition o functional éditorial n explanatio	ds to a cor	rrectior on of fe) above	n in an eature))		elease	Use 2 e) F F F F F		the fo (GSI (Rela (Rela (Rela (Rela (Rela	I-5 bllowing r M Phase 2 ease 199 ease 199 ease 199 ease 4) ease 4) ease 5)	2) 5) 7) 3)	es:

Reason for change: अ	Introducing DS-CDMA into 800MHz band in Japan.
Summary of change: भ	Clause 4.4.2 Channel raster, 4.4.3 Channel number, 4.4.4 UARFCN are changed to introduce DS-CDMA into 800MHz band.
Consequences if # not approved:	Japanese regulatory can not introduce DS-CDMA into 800MHz band in Japan.
Clauses affected: #	4.4.2, 4.4.3, 4.4.4
	YN
Other specs # affected:	X Other core specifications # X Test specifications # X O&M Specifications *

Rel-6

(Release 6)

Other comments: ೫

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

4.4 Channel arrangement

4.4.1 Channel spacing

The nominal channel spacing is 5 MHz, but this can be adjusted to optimise performance in a particular deployment scenario.

4.4.2 Channel raster

The channel raster is 200 kHz, which for all bands except Band II and Band VI means that the centre frequency must be an integer multiple of 200 kHz. In Band II, 12 additional centre frequencies are specified according to the table in 4.1a and the centre frequencies for these channels are shifted 100 kHz relative to the normal raster. In Band VI, additional centre frequencies for these channels are shifted 100 kHz relative to the normal raster. In Band VI, additional kHz relative to the normal raster.

4.4.3 Channel number

The carrier frequency is designated by the UTRA Absolute Radio Frequency Channel Number (UARFCN). The values of the UARFCN are as follows.

Table 4.1: UARFCN definition

Uplink	N _u = 5 * F _{uplink}	$0,0 \text{ MHz} \le F_{uplink} \le 3 276,6 \text{ MHz}$
		where Fuplink is the uplink frequency in MHz
Downlink	N _d = 5 * F _{downlink}	0,0 MHz \leq F _{downlink} \leq 3 276,6 MHz
		where F _{downlink} is the downlink frequency in MHz

Table 4.1a: UARFCN definition (Band II additional channels)

	UARFCN	Carrier frequency [MHz]
Uplink	$N_u = 5 * (F_{uplink} - 1850.1 \text{ MHz})$	F _{uplink} = 1852.5, 1857.5, 1862.5, 1867.5,
		1872.5, 1877.5,
		1882.5, 1887.5, 1892.5, 1897.5, 1902.5, 1907.5
Downlink	$NdN_{u} = 5 * (F_{downlink} - 1850.1 \text{ MHz})$	F _{downlink} = 1932.5, 1937.5, 1942.5, 1947.5,
		1952.5, 1957.5,
		1962.5, 1967.5, 1972.5, 1977.5, 1982.5, 1987.5

Table 4.1b: UARFCN definition (Band VI additional channels)

	UARFCN	Carrier frequency [MHz]
<u>Uplink</u>	$N_{u} = 5 * (F_{uplink} - 670.1 \text{ MHz})$	<u>832.5 MHz ≤ F_{uplink} ≤837.5MHz</u>
<u>Downlink</u>	<u>Nd <mark>N</mark></u> u = 5 * (F _{downlink} – 670.1 MHz)	<u>877.5 MHz ≤ F_{downlink} ≤ 882.5 MHz</u>

4.4.4 UARFCN

The following UARFCN range shall be be supported for each paired band.

Operating Band	Uplink	Downlink
	UE transmit, Node B receive	UE receive, Node B transmit
I	9 612 to 9 888	10 562 to 10 838
II	9 262 to 9 538	9 662 to 9 938
	and	and
	12, 37, 62, 87,	412, 437, 462, 487,
	112, 137, 162, 187,	512, 537, 562, 587,
	212, 237, 262, 287	612, 637, 662, 687
III	8562 to 8913	9037 to 9388
VI	416241162 to 4188 and 812 to	4387 to 4413 and 1037 to 1062
	<u>837</u>	

Table 4.2: UTRA Absolute Radio Frequ	ency Channel Number
--------------------------------------	---------------------

æ	34.121 CR 316 #rev 1 [#]	Current vers	^{ion:} 5.1.1 [#]							
For <u>HELP</u> on	using this form, see bottom of this page or look at the	he pop-up text	over the # symbols.							
Proposed chang	e affects: UICC apps೫ ME X Radio /	Access Networ	k Core Network							
Title:	BS-CDMA Introduction in the 800 MHz Band									
Source:	NTT DoCoMo, Fujitsu, Panasonic									
Work item code:	業 <mark>WT_53</mark>	<i>Date:</i> ೫	11/04/2003							
Category:	 B Use <u>one</u> of the following categories: F (correction) A (corresponds to a correction in an earlier release B (addition of feature), C (functional modification of feature) D (editorial modification) Detailed explanations of the above categories can be found in 3GPP <u>TR 21.900</u>. 	2	Rel-5 the following releases: (GSM Phase 2) (Release 1996) (Release 1997) (Release 1998) (Release 1999) (Release 4) (Release 5)							

Reason for change:	f Introducing DS-CDMA into 800MHz band in Japan.
Summary of change:	TX–RX frequency separation, UE maximum output power, Out of band emission, Tx Spurious emissions, Reference sensitivity level, Out of-band blocking and Receiver Spurious emissions are aligned with 25.101
Consequences if	Japanese regulatory can not introduce DS-CDMA into 800MHz band in Japan.
not approved:	34.121 and 25.101 are inconsistent.
Clauses affected:	4 .3, 5.2, 5.9, 5.11, 6.3, 6.5, 6.8
	YN
Other specs	f X Other core specifications #
affected:	X Test specifications
	X O&M Specifications
Other comments:	£

Rel-6

(Release 6)

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

4.3 TX–RX frequency separation

a) UTRA/FDD is designed to operate with the following TX-RX frequency separation.

Operating Band	TX-RX frequency separation
I	190 MHz
II	80 MHz
III	95 MHz
<u>VI</u>	<u>45 MHz.</u>

I

- b) UTRA/FDD can support both fixed and variable transmit to receive frequency separation.
- c) The use of other transmit to receive frequency separations in existing or other frequency bands shall not be precluded.

{Unchanged Sections are snipped here}

5.2 Maximum Output Power

5.2.1 Definition and applicability

The nominal maximum output power and its tolerance are defined according to the Power Class of the UE.

The maximum output power is a measure of the maximum power the UE can transmit (i.e. the actual power as would be measured assuming no measurement error) in a bandwidth of at least $(1 + \alpha)$ times the chip rate of the radio access mode. The period of measurement shall be at least one timeslot.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.2.2 Minimum Requirements

The UE maximum output power shall be within the nominal value and tolerance specified in table 5.2.1 even for the multi-code transmission mode.

Operating	Power Class 1		Power Class 2		Power (Class 3	Power Class 4	
Band	Power (dBm)	Tol (dB)	Power (dBm)	Tol (dB)	Power (dBm)	Tol (dB)	Power (dBm)	Tol (dB)
Band I	+33	+1/-3	+27	+1/-3	+24	+1/-3	+21	+2/-2
Band II	-	-	-	-	+24	+1/-3	+21	+2/-2
Band III	-	-	-	-	+24	+1/-3	+21	+2/-2
Band VI					+24	<u>+1/-3</u>	<u>+21</u>	+2/-2

Table 5.2.1: Nominal Maximum Output Power

The normative reference for this requirement is TS 25.101 [23] clause 6.2.1.

5.2.3 Test purpose

To verify that the error of the UE maximum output power does not exceed the range prescribed by the nominal maximum output power and tolerance in table 5.2.1.

An excess maximum output power has the possibility to interfere to other channels or other systems. A small maximum output power decreases the coverage area.

5.2.4 Method of test

5.2.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.1.
- 2) A call is set up according to the Generic call setup procedure.
- 3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

5.2.4.2 Procedure

1

- 1) Set and send continuously Up power control commands to the UE.
- 2) Measure the mean power of the UE in a bandwidth of at least $(1 + \alpha)$ times the chip rate of the radio access mode. The mean power shall be averaged over at least one timeslot.

5.2.5 Test requirements

The maximum output power, derived in step 2), shall not exceed the range prescribed by the nominal maximum output power and tolerance in table 5.2.2.

Operating	Power	Class 1	Power	Class 2	Power	Class 3	Power Class 4	
Band	Power (dBm)	Tol (dB)	Power (dBm)	Tol (dB)	Power (dBm)	Tol (dB)	Power (dBm)	Tol (dB)
Band I	+33	+1,7/-3,7	+27	+1,7/-3,7	+24	+1,7/-3,7	+21	+2,7/-2,7
Band II	-	-	-	-	+24	+1,7/-3,7	+21	+2,7/-2,7
Band III	-	-	-	-	+24	+1,7/-3,7	+21	+2,7/-2,7
Band VI					<u>+24</u>	<u>+1,7/-3,7</u>	<u>+21</u>	<u>+2,7/-2,7</u>

Table 5.2.2: Nominal Maximum Output Power

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

{Unchanged Sections are snipped here}

5.9 Spectrum emission mask

5.9.1 Definition and applicability

The spectrum emission mask of the UE applies to frequencies, which are between 2,5 MHz and 12,5 MHz away from the UE centre carrier frequency. The out of channel emission is specified relative to the RRC filtered mean power of the UE carrier.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.9.2 Minimum Requirements

The power of any UE emission shall not exceed the levels specified in table 5.9.1.

		Minimum requirement Band I, II, III <u>, VI</u>	Additional requirements Band II	Measurement bandwidth
2,5 to 3.5		$\left\{-35 - 15 \cdot \left(\frac{\Delta f}{MHz} - 2.5\right)\right\} dBc$	-15 dBm	30 kHz (note 2)
	3,5 to 7,5	$\left\{-35-1\cdot\left(\frac{\Delta f}{MHz}-3.5\right)\right\}dBc$	-13 dBm	1 MHz (note 3)
	7,5 to 8,5	$\left\{-39-10\cdot\left(\frac{\Delta f}{MHz}-7.5\right)\right\}dBc$	-13 dBm	1 MHz (note 3)
8,5 to 12,5		-49 dBc	-13 dBm	1 MHz (note 3)
 NOTE 1: ∆f is the separation between the carrier frequency and the centre of the measuring filter. NOTE 2: The first and last measurement position with a 30 kHz filter is at ∆f equals to 2,515 MHz and 3,485 MHz. 				
NOTE 3: The first and last measurement position with a 1 MHz filter is at ∆f equals to 4 MHz and 12 MHz. As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth can be different from the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.				

The normative reference for this requirement is TS 25.101 [23] clause 6.6.2.1.1.

5.9.3 Test purpose

To verify that the power of UE emission does not exceed the prescribed limits shown in table 5.9.1.

Excess emission increases the interference to other channels or to other systems.

5.9.4 Method of test

5.9.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.1.
- 2) A call is set up according to the Generic call setup procedure.
- 3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

5.9.4.2 Procedure

- 1) Set and send continuously Up power control commands to the UE until the UE output power shall be maximum level.
- 2) Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 5.9.2. Measurements with an offset from the carrier centre frequency between 2,515 MHz and 3,485 MHz shall use a

30 kHz measurement filter. Measurements with an offset from the carrier centre frequency between 4 MHz and 12 MHz shall use 1 MHz measurement bandwidth and the result may be calculated by integrating multiple 50 kHz or narrower filter measurements. The characteristic of the filter shall be approximately Gaussian (typical spectrum analyzer filter). The centre frequency of the filter shall be stepped in contiguous steps according to table 5.9.2. The measured power shall be recorded for each step.

- 3) Measure the RRC filtered mean power centered on the assigned channel frequency.
- 4) Calculate the ratio of the power 2) with respect to 3) in dBc.

5.9.5 Test requirements

The result of clause 5.9.4.2 step 4) shall fulfil the requirements of table 5.9.2.

∆f in MHz (note 1)	Minimum requirement Band I, II, III <u>, VI</u>	Additional requirements Band II	Measurement bandwidth
2,5 to 3,5	$\left\{-33.5 - 15 \cdot \left(\frac{\Delta f}{MHz} - 2.5\right)\right\} dB$	^c -15 dBm	30 kHz (note 2)
3,5 to 7,5	$\left\{-33.5 - 1 \cdot \left(\frac{\Delta f}{MHz} - 3.5\right)\right\} dB$	² -13 dBm	1 MHz (note 3)
7,5 to 8,5	$\left\{-37.5 - 10 \cdot \left(\frac{\Delta f}{MHz} - 7.5\right)\right\} dB$	^c -13 dBm	1 MHz (note 3)
8,5 to 12,5	-47,5 dBc	-13 dBm	1 MHz (note 3)
NOTE 1: Δf is the separation betwee	een the carrier frequency and the c	entre of the mea	suring filter.
NOTE 2: The first and last measurement position with a 30 kHz filter is at ∆f equals to 2,515 MHz and 3,485 MHz.			
NOTE 3: The first and last measurement position with a 1 MHz filter is at ∆f equals to 4 MHz and 12 MHz. As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth can be different from the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.			
The lower limit shall be –48,5 dBm/3,84 MHz or which ever is higher.			

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

{Unchanged Sections are snipped here}

5.11 Spurious Emissions

5.11.1 Definition and applicability

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emission, intermodulation products and frequency conversion products, but exclude out of band emissions.

The frequency boundary and the detailed transitions of the limits between the requirement for out band emissions and spectrum emissions are based on ITU-R Recommendations SM.329.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.11.2 Minimum Requirements

These requirements are only applicable for frequencies, which are greater than 12.5 MHz away from the UE centre carrier frequency.

Frequency Bandwidth	Measurement Bandwidth	Minimum requirement
9 kHz ≤ f < 150 kHz	1 kHz	–36 dBm
150 kHz ≤ f < 30 MHz	10 kHz	–36 dBm
30 MHz ≤ f < 1 000 MHz	100 kHz	–36 dBm
1 GHz ≤ f < 12,75 GHz	1 MHz	–30 dBm

Table 5.11.1a: General spurious emissions requirements

Table 3.11.15. Additional spunous emissions requirements			
Operating Band	Frequency Bandwidth	Measurement Bandwidth	Minimum requirement
I	925 MHz ≤ f ≤ 935 MHz	100 kHz	-67 dBm (see note)
	935 MHz < f ≤ 960 MHz	100 kHz	-79 dBm (see note)
	1805 MHz ≤ f ≤ 1880 MHz	100 kHz	-71 dBm (see note)
	1893.5 MHz <f<1919.6 mhz<="" td=""><td>300 kHz</td><td>-41 dBm</td></f<1919.6>	300 kHz	-41 dBm
	-	-	-
III	925 MHz ≤ f ≤935 MHz	100 kHz	-67 dBm (see note)
	935 MHz < f ≤ 960 MHz	100 kHz	-79 dBm (see note)
	2110 MHz \leq f \leq 2170 MHz	3.84 MHz	-60 dBm (see note)
<u>VI</u>	<u>1893.5 MHz <f<1919.6 mhz<="" u=""></f<1919.6></u>	<u>300 kHz</u>	<u>-41 dBm</u>
	<u>2110 MHz ≤ f ≤ 2170 MHz</u>	<u>3.84 MHz</u>	<u>-60 dBm (see note)</u>
NOTE: The measurements are made on frequencies which are integer multiples of 200 kHz. As			
exceptions, up to five measurements with a level up to the applicable requirements defined in table 5.11.1a are permitted for each UARFCN used in the measurement			

Table 5.11.1b: Additional spurious emissions requirements

The normative reference for this requirement is TS 25.101 [23] clause 6.6.3.1.

5.11.3 Test purpose

To verify that the UE spurious emissions do not exceed described value shown in table 5.11.1a and table 5.11.1b.

Excess spurious emissions increase the interference to other systems.

5.11.4 Method of test

5.11.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.8.
- 2) A call is set up according to the Generic call setup procedure.
- 3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

5.11.4.2 Procedure

- 1) Set and send continuously Up power control commands to the UE until the UE output power shall be maximum level.
- 2) Sweep the spectrum analyzer (or equivalent equipment) over a frequency range and measure the average power of spurious emission.

5.11.5 Test requirements

The measured average power of spurious emission, derived in step 2), shall not exceed the described value in tables 5.11.2a and 5.11.2b.

These requirements are only applicable for frequencies, which are greater than 12,5 MHz away from the UE centre carrier frequency.

Frequency Bandwidth	Measurement Bandwidth	Minimum requirement
9 kHz ≤ f < 150 kHz	1 kHz	–36 dBm
150 kHz ≤ f < 30 MHz	10 kHz	–36 dBm
30 MHz ≤ f < 1 000 MHz	100 kHz	–36 dBm
1 GHz ≤ f < 12,75 GHz	1 MHz	–30 dBm

Operating Band	Frequency Bandwidth	Measurement	Minimum	
		Bandwidth	requirement	
I	925 MHz ≤ f ≤ 935 MHz	100 kHz	-67 dBm (see note)	
	935 MHz < f ≤ 960 MHz	100 kHz	-79 dBm (see note)	
	1805 MHz ≤ f ≤ 1880 MHz	100 kHz	-71 dBm (see note)	
	1893.5 MHz <f<1919.6 mhz<="" td=""><td>300 kHz</td><td>-41 dBm</td></f<1919.6>	300 kHz	-41 dBm	
II	-	-	-	
III	925 MHz ≤ f ≤935 MHz	100 kHz	-67 dBm (see note)	
	935 MHz < f ≤ 960 MHz	100 kHz	-79 dBm (see note)	
	2110 MHz \leq f \leq 2170 MHz	3.84 MHz	-60 dBm (see note)	
<u>VI</u>	<u>1893.5 MHz <f<1919.6 mhz<="" u=""></f<1919.6></u>	<u>300 kHz</u>	<u>-41 dBm</u>	
	<u>2110 MHz ≤ f ≤ 2170 MHz</u>	<u>3.84 MHz</u>	<u>-60 dBm (see note)</u>	
NOTE: The measurements are made on frequencies which are integer multiples of 200 kHz. As				
exceptions, up to five measurements with a level up to the applicable requirements				
defined in	defined in table 5.11.1a are permitted for each UARFCN used in the measurement			

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

{Unchanged Sections are snipped here}

6.2 Reference Sensitivity Level

6.2.1 Definition and applicability

The reference sensitivity level <REFSENS> is the minimum mean power received at the UE antenna port at which the Bit Error Ratio (BER) shall not exceed a specific value

The requirements and this test apply to all types of UTRA for the FDD UE.

6.2.2 Minimum Requirements

The BER shall not exceed 0,001 for the parameters specified in table 6.2.1.

Operating Band	Unit	DPCH_Ec <refsens></refsens>	<refî<sub>or></refî<sub>	
I <u>, VI</u>	dBm/3.84 MHz	-117	-106.7	
II	dBm/3.84 MHz	-115	-104.7	
	dBm/3.84 MHz	-114	-103.7	
1. For Power class 3 this shall be at the maximum output power				
For Power class 4 this shall be at the maximum output power				

The normative reference for this requirement is TS 25.101 [23] clause 7.3.1.

6.2.3 Test purpose

1

To verify that the UE BER shall not exceed 0,001 for the parameters specified in table 6.2.1.

The lack of the reception sensitivity decreases the coverage area at the far side from Node B.

6.2.4 Method of test

6.2.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.3.
- 2) A call is set up according to the Generic call setup procedure, and RF parameters are set up according to table 6.2.2.
- 3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

6.2.4.2 Procedure

- 1) Set and send continuously Up power control commands to the UE until the UE output power shall be maximum level.
- 2) Measure the BER of DCH received from the UE at the SS.

6.2.5 Test requirements

The measured BER, derived in step 2), shall not exceed 0,001.

Operating Band	Unit	DPCH_Ec <refsens></refsens>	<refî<sub>or></refî<sub>	
I <u>, VI</u>	dBm/3.84 MHz	-116.3	-106	
II	dBm/3.84 MHz	-114.3	-104	
	III dBm/3.84 MHz -113.3		-103	
 For Power class 3 this shall be at the maximum output power For Power class 4 this shall be at the maximum output power 				

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

{Unchanged Sections are snipped here}

6.5 Blocking Characteristics

6.5.1 Definition and applicability

The blocking characteristic is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or the adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occur.

The requirements in clause 6.5.2.1 and 6.5.2.2 and this test apply to all types of UTRA for the FDD UE.

The requirements in clause 6.5.2.3 and this test apply to the FDD UE supporting band II or band III.

6.5.2 Minimum Requirements

6.5.2.1 Minimum Requirements (In-band blocking)

The BER shall not exceed 0,001 for the parameters specified in table 6.5.1.

The normative reference for this requirement is TS 25.101 [23] clause 7.6.1.

NOTE: I_{blocking} (modulated) consists of the common channels needed for tests as specified in table E.4.1 and 16 dedicated data channels as specified in table E3.6.

Parameter	Unit	Level		
DPCH_Ec	dBm/3.84 MHz	<refsens>+3 dB</refsens>		
Î _{or}	dBm/3.84 MHz	<refî<sub>or> + 3 dB</refî<sub>		
I _{blocking} mean power (modulated)	dBm	-56 -44 (for F _{uw} offset ±10 MHz) (for F _{uw} offset ±15 Mł		
UE transmitted mean power	dBm	20 (for Power class 3) 18 (for Power class 4)		

Table 6.5.1: Test parameters for In-band blocking characteristics

6.5.2.2 Minimum requirements (Out of-band blocking)

The BER shall not exceed 0.001 for the parameters specified in table 6.5.2. For table 6.5.2 up to 24 exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a 1 MHz step size.

The normative reference for this requirement is TS 25.101 [23] clause 7.6.2.

Parameter	Unit	Frequency range 1	Frequency range 2	Frequency range 3		
DPCH_Ec	dBm/3.84 MHz	<refsens>+3 dB</refsens>	<refsens>+3 dB</refsens>	<refsens>+3 dB</refsens>		
Î _{or}	dBm/3.84 MHz	<refî<sub>or> + 3 dB</refî<sub>	<refî<sub>or> + 3 dB</refî<sub>	<refî<sub>or> + 3 dB</refî<sub>		
Iblocking (CW)	dBm	-44	-30	-15		
F _{uw} (Band I operation)	MHz	2050 <f <2095<br="">2185<f <2230<="" td=""><td>2025 <f <2050<br="">2230 <f <2255<="" td=""><td>1< f <2025 2255<f<12750< td=""></f<12750<></td></f></f></td></f></f>	2025 <f <2050<br="">2230 <f <2255<="" td=""><td>1< f <2025 2255<f<12750< td=""></f<12750<></td></f></f>	1< f <2025 2255 <f<12750< td=""></f<12750<>		
F _{uw} (Band II operation)	MHz	1870 <f <1915<br="">2005<f <2050<="" td=""><td>1845 <f <1870<br="">2050 <f <2075<="" td=""><td>1< f <1845 2075<f<12750< td=""></f<12750<></td></f></f></td></f></f>	1845 <f <1870<br="">2050 <f <2075<="" td=""><td>1< f <1845 2075<f<12750< td=""></f<12750<></td></f></f>	1< f <1845 2075 <f<12750< td=""></f<12750<>		
F _{uw} (Band III operation)	MHz	1745 <f <1790<br="">1895<f <1940<="" td=""><td>1720 <f 1745<br="" <="">1940<f 1965<="" <="" td=""><td>1< f <1720 1965<f<12750< td=""></f<12750<></td></f></f></td></f></f>	1720 <f 1745<br="" <="">1940<f 1965<="" <="" td=""><td>1< f <1720 1965<f<12750< td=""></f<12750<></td></f></f>	1< f <1720 1965 <f<12750< td=""></f<12750<>		
<u>F_{uw} (Band VI</u> operation)	<u>MHz</u>	<u>815 < f < 860</u> 900 < f < 945	<u>790 < f < 815</u> 945 < f < 970	<u>1 < f < 790</u> <u>970 < f < 12750</u>		
UE transmitted mean power	dBm	20 (for Power class 3) 18 (for Power class 4)				
Band I operation	For 2095 <f<2110 2170<f<2185="" 6.4.2="" 6.5.2="" adjacent="" and="" applied.<="" appropriate="" be="" blocking="" channel="" clause="" in="" in-band="" mhz="" mhz,="" or="" selectivity="" shall="" td="" the=""></f<2110>					
Band II operation	For 1915 <f<1930 1990<f<2005="" 6.4.2="" 6.5.2="" adjacent="" and="" applied<="" appropriate="" be="" blocking="" channel="" clause="" in="" in-band="" mhz="" mhz,="" or="" selectivity="" shall="" td="" the=""></f<1930>					
Band III operation	For 1790 <f<1805 1880<f<1895="" 6.4.2="" 6.5.2="" adjacent="" and="" applied.<="" appropriate="" be="" blocking="" channel="" clause="" in="" in-band="" mhz="" mhz,="" or="" selectivity="" shall="" td="" the=""></f<1805>					
Band VI operation	For 860 <f<875 6.4.2="" 6.5.2="" 885<f<900="" adjacent="" and="" applied.<="" appropriate="" be="" blocking="" channel="" clause="" in="" in-band="" mhz="" mhz,="" or="" selectivity="" shall="" td="" the=""></f<875>					

Table 6.5.2: Test parameters for Out of band blocking characteristics

6.5.2.3 Minimum requirements (Narrow band blocking)

The BER shall not exceed 0.001 for the parameters specified in table 6.5.3. This requirement is measure of a receiver's ability to receive a W-CDMA signal at its assigned channel frequency in the presence of an unwanted narrow band interferer at a frequency, which is less than the nominal channel spacing. The requirements and this test apply to UTRA for the FDD UE supporting band II or band III.

The normative reference for this requirement is TS 25.101 [23] clause 7.6.3

Parameter	Unit	Band II	Band III	
DPCH_Ec	dBm/3.84 MHz	<refsens> + 10 dB</refsens>	<refsens> + 10 dB</refsens>	
Î _{or}	dBm/3.84 MHz	<refî<sub>or> + 10 dB</refî<sub>	<refî<sub>or> + 10 dB</refî<sub>	
Iblocking (GMSK)	dBm	-57	-56	
F _{uw} (offset)	MHz	2.7	2.8	
UE transmitted mean	dBm	20 (for Power class 3)		
power	ubiii	18 (for Power class 4)		

Table 6.5.3: Test parameters for narrow band blocking

NOTE: I_{blocking} (GMSK) is an interfering signal as defined in TS 45.004. It is a GMSK modulated carrier following the structure of the GSM signals, but with all modulating bits (including the midamble period) derived directly from a random or pseudo random data stream.

6.5.3 Test purpose

To verify that the UE BER does not exceed 0,001 for the parameters specified in table 6.5.1, table 6.5.2 and table 6.5.3. For table 6.5.2 up to (24) exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a 1 MHz step size.

The lack of the blocking ability decreases the coverage area when other transmitter exists (except in the adjacent channels and spurious response).

6.5.4 Method of test

6.5.4.1 Initial conditions

For in-band case:

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

For out-of-band case:

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequency to be tested: 1 arbitrary frequency chosen from the low, mid or high range; see clause G.2.4.

For narrow-band case:

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.5.
- 2) RF parameters are set up according to table 6.5.4, table 6.5.5 and table 6.5.6.
- 3) A call is set up according to the Generic call setup procedure specified in TS34.108[3] sub clause 7.3.2, with the following exception for information elements in RADIO BEARER SETUP message. With this exception, the Power Control Algorithm for the Uplink is set to algorithm 2.
- 4) Enter the UE into loopback test mode and start the loopback test.

Table 6.5.3A Contents of RADIO BEARER SETUP message: AM or UM

Information Element	Value/Remark
CHOICE channel requirement	Uplink DPCH info
- Power Control Algorithm	Algorithm2

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

6.5.4.2 Procedure

- 1) Set the parameters of the CW generator or the interference signal generator as shown in table 6.5.4, 6.5.5 and table 6.5.6. For table 6.5.5, the frequency step size is 1 MHz.
- 2) Set the power level of UE according to the table 6.5.4, table 6.5.5, and table 6.5.6, or send the power control commands (1dB step size should be used.) to the UE until UE output power measured by Test System shall be kept at the specified power level with ±1dB tolerance.
- 3) Measure the BER of DCH received from the UE at the SS.
- 4) For table 6.5.5, record the frequencies for which BER exceed the test requirements.

6.5.5 Test requirements

For table 6.5.4, the measured BER, derived in step 2), shall not exceed 0.001. For table 6.5.5, the measured BER, derived in step 2) shall not exceed 0,001 except for the spurious response frequencies, recorded in step 3). The number of spurious response frequencies, recorded in step 3) shall not exceed 24. For table 6.5.6, the measured BER, derived in step 2), shall not exceed 0.001.

Parameter	Unit	Level		
DPCH_Ec	dBm/3.84 MHz	<refsens>+3 dB</refsens>		
Î _{or}	dBm/3.84 MHz	<refî<sub>or> + 3 dB</refî<sub>		
I _{blocking} mean power (modulated)	dBm	-56 -44 (for F _{uw} offset ±10 MHz) (for F _{uw} offset ±15 MHz		
UE transmitted mean power	dBm	20 (for Power class 3) 18 (for Power class 4)		

Table 6.5.4: Test parameters for In-band blocking characteristics

Table 6.5.5: Test parameters for	r Out of band blocking characteristics
----------------------------------	--

Parameter	Unit	Frequency range 1	Frequency range 2	Frequency range 3		
DPCH_Ec	dBm/3.84 MHz	<refsens>+3 dB</refsens>	<refsens>+3 dB</refsens>	<refsens>+3 dB</refsens>		
Î _{or}	dBm/3.84 MHz	<refî<sub>or> + 3 dB</refî<sub>	<refî<sub>or> + 3 dB</refî<sub>	<refî<sub>or> + 3 dB</refî<sub>		
Iblocking (CW)	dBm	-44	-30	-15		
F _{uw} (Band I operation)	MHz	2050 <f <2095<br="">2185<f <2230<="" td=""><td>2025 <f <2050<br="">2230 <f <2255<="" td=""><td>1< f <2025 2255<f<12750< td=""></f<12750<></td></f></f></td></f></f>	2025 <f <2050<br="">2230 <f <2255<="" td=""><td>1< f <2025 2255<f<12750< td=""></f<12750<></td></f></f>	1< f <2025 2255 <f<12750< td=""></f<12750<>		
F _{uw} (Band II operation)	MHz	1870 <f <1915<br="">2005<f <2050<="" td=""><td>1845 <f <1870<br="">2050 <f <2075<="" td=""><td>1< f <1845 2075<f<12750< td=""></f<12750<></td></f></f></td></f></f>	1845 <f <1870<br="">2050 <f <2075<="" td=""><td>1< f <1845 2075<f<12750< td=""></f<12750<></td></f></f>	1< f <1845 2075 <f<12750< td=""></f<12750<>		
F _{uw} (Band III operation)	MHz	1745 <f <1790<br="">1895<f <1940<="" td=""><td>1720 <f 1745<br="" <="">1940<f 1965<="" <="" td=""><td>1< f <1720 1965<f<12750< td=""></f<12750<></td></f></f></td></f></f>	1720 <f 1745<br="" <="">1940<f 1965<="" <="" td=""><td>1< f <1720 1965<f<12750< td=""></f<12750<></td></f></f>	1< f <1720 1965 <f<12750< td=""></f<12750<>		
<u>F_{uw} (Band VI</u> <u>operation)</u>	<u>MHz</u>	<u>815 < f < 860</u> 900 < f < 945	<u>790 < f < 815</u> 945 < f < 970	<u>1 < f < 790</u> 970 < f < 12750		
UE transmitted mean power	dBm	20 (for Power class 3) 18 (for Power class 4)				
Band I operation	For 2095 <f<2110 2170<f<2185="" 6.4.2="" 6.5.2="" adjacent="" and="" applied.<="" appropriate="" be="" blocking="" channel="" clause="" in="" in-band="" mhz="" mhz,="" or="" selectivity="" shall="" td="" the=""></f<2110>					
Band II operation	For 1915 <f<1930 1990<f<2005="" 6.4.2="" 6.5.2="" adjacent="" and="" applied<="" appropriate="" be="" blocking="" channel="" clause="" in="" in-band="" mhz="" mhz,="" or="" selectivity="" shall="" td="" the=""></f<1930>					
Band III operation	For 1790 <f<1805 1880<f<1895="" 6.4.2="" 6.5.2="" adjacent="" and="" applied.<="" appropriate="" be="" blocking="" channel="" clause="" in="" in-band="" mhz="" mhz,="" or="" selectivity="" shall="" td="" the=""></f<1805>					
Band VI operation		For 860 <f<875 6.4.2="" 6.5.2="" 885<f<900="" adjacent="" and="" applied<="" appropriate="" be="" blocking="" channel="" in="" in-band="" mhz="" mhz,="" or="" selectivity="" shall="" subclause="" td="" the=""></f<875>				

Table 6.5.6: Test parameters for narrow band blocking

Parameter	Unit	Band II	Band III	
DPCH_Ec	dBm/3.84 MHz	<refsens> + 10 dB</refsens>	<refsens> + 10 dB</refsens>	
Î _{or}	dBm/3.84 MHz	<refî<sub>or> + 10 dB</refî<sub>	<refî<sub>or> + 10 dB</refî<sub>	
Iblocking (GMSK)	dBm	-57	-56	
F _{uw} (offset)	MHz	2.7	2.8	
UE transmitted mean	dBm	20 (for Power class 3)		
power	ubili	18 (for Power class 4)		

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

{Unchanged Sections are snipped here}

6.8 Spurious Emissions

6.8.1 Definition and applicability

The spurious emissions power is the power of emissions generated or amplified in a receiver that appear at the UE antenna connector.

The requirements and this test apply to all types of UTRA for the FDD UE.

6.8.2 Minimum Requirements

The power of any narrow band CW spurious emission shall not exceed the maximum level specified in table 6.8.1 and table 6.8.2.

Table 6.8.1: General receiver spurious emission requirements

Frequency Band	Measurement Bandwidth	Maximum level	Note
30 MHz ≤ f < 1 GHz	100 kHz	-57 dBm	
$1 \text{ GHz} \le f \le 12,75 \text{ GHz}$	1 MHz	-47 dBm	

Table 6.8.2: Additional receiver spurious emission requirements

Operating band	Frequency Band	Measurement Bandwidth	Maximum level	Note
1	1 920 MHz ≤ f ≤ 1 980 MHz	3,84 MHz	-60 dBm	UE transmit band in URA_PCH, Cell_PCH and idle state
	2 110 MHz \leq f \leq 2 170 MHz	3,84 MHz	-60 dBm	UE receive band
II	1850 MHz ≤ f ≤ 1910 MHz	3.84 MHz	-60 dBm	UE transmit band in URA_PCH, Cell_PCH and idle state
	1930 MHz ≤ f ≤ 1990 MHz	3.84 MHz	-60 dBm	UE receive band
	1710 MHz ≤ f ≤ 1785 MHz	3.84 MHz	-60 dBm	UE transmit band in URA_PCH, Cell_PCH and idle state
	1805 MHz ≤ f ≤ 1880 MHz	3.84 MHz	-60 dBm	UE receive band
<u>VI</u>	<u>830 MHz ≤ f ≤ 840 MHz</u>	<u>3.84 MHz</u>	<u>-60 dBm</u>	UE transmit band in URA PCH, Cell PCH and idle state
	<u>875 MHz ≤ f ≤ 885 MHz</u>	<u>3.84 MHz</u>	<u>-60 dBm</u>	UE receive band

The reference for this requirement is TS 25.101 [1] clause 7.9.1.

6.8.3 Test purpose

To verify that the UE spurious emission meets the specifications described in clause 6.8.2.

Excess spurious emissions increase the interference to other systems.

6.8.4 Method of test

6.8.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

- 1) Connect a spectrum analyzer (or other suitable test equipment) to the UE antenna connector as shown in figure A.8.
- 2) RF parameters are setup according to table E.3.2.2.
- 3) A call is set up according to the setup procedure specified in TS34.108 [3] sub clause 7.3.3, with the following exceptions for information elements in System Information Block type3.

Information Element Value/Remark		
- Cell selection and re-selection info		
- CHOICE mode	FDD	
- Sintrasearch	0 dB	
- Sintersearch	0 dB	
- RAT List	This parameter is configurable	
- Ssearch,RAT	0 dB	
- Maximum allowed UL TX power	Power level where Pcompensation=0	

NOTE: The setup procedure (3) sets the UE into the CELL_FACH state. With this state and the SS level (2) it is ensured that UE continuously monitors the S-CCPCH and no cell reselections are performed [see 3GPP TS 25.304, clauses 5.2.3.and 5.2.6]. No transmission of the UE will interfere the measurement.

6.8.4.2 Procedure

1) Sweep the spectrum analyzer (or equivalent equipment) over a frequency range and measure the average power of spurious emission.

6.8.5 Test requirements

The all measured spurious emissions, derived in step 1), shall not exceed the maximum level specified in table 6.8.3 and table 6.8.4.

Table 6.8.3: General receiver spurious emission require

Frequency Band	Measurement Bandwidth	Maximum level	Note
30 MHz ≤ f < 1 GHz	100 kHz	-57 dBm	
$1 \text{ GHz} \leq f \leq 12,75 \text{ GHz}$	1 MHz	-47 dBm	

Operating Band	Frequency Band	Measurement Bandwidth	Maximum level	Note
I	1 920 MHz ≤ f ≤ 1 980 MHz	3,84 MHz	-60 dBm	UE transmit band in URA_PCH, Cell_PCH and idle state
	2 110 MHz ≤ f ≤ 2 170 MHz	3,84 MHz	-60 dBm	UE receive band
II	1850 MHz \leq f \leq 1910 MHz	3.84 MHz	-60 dBm	UE transmit band in URA_PCH, Cell_PCH and idle state
	1930 MHz ≤ f ≤ 1990 MHz	3.84 MHz	-60 dBm	UE receive band
111	1710 MHz ≤ f ≤ 1785 MHz	3.84 MHz	-60 dBm	UE transmit band in URA_PCH, Cell_PCH and idle state
	1805 MHz ≤ f ≤ 1880 MHz	3.84 MHz	-60 dBm	UE receive band
<u>VI</u>	<u>830 MHz ≤ f ≤ 840 MHz</u>	<u>3.84 MHz</u>	<u>-60 dBm</u>	UE transmit band in URA_PCH, Cell_PCH and idle state
	<u>875 MHz ≤ f ≤ 885 MHz</u>	<u>3.84 MHz</u>	<u>-60 dBm</u>	UE receive band

Table 6.8.4: Additional receiver spurious emission requirements

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

CHANGE REQUEST									CR-Form-v7			
¥		<mark>34.12</mark>	<mark>1</mark> CR	317	жľ	ev	1	ж	Current vers	sion:	5.1.1	ж
For <mark>HELP</mark> or	n us	sing this f	orm, see	e bottom of	this pa	ge or l	look	at the	e pop-up text	over	the	nbols.
Proposed chang	Proposed change affects: UICC apps # ME X Radio Access Network Core Network								etwork			
Title:	ж	Modifica	ation of A	Annex H for	DS-CE	oma li	ntrod	uctio	n in the 800	MHz	Band	
Source:	ж	NTT Do	CoMo, F	⁻ ujitsu, Pan	asonic							
Work item code:	ж	WT_53							<i>Date:</i> ೫	11/	04/2003	
Category:	ж	Use <u>one</u> c F (cc A (c B (a C (fu D (e Detailed e	orrection) orrespon ddition of unctional ditorial m explanatic	owing catego ds to a corre feature), modification odification) ons of the ab TR 21.900.	ection in of featu	re)		lease	Release: 第 Use <u>one</u> of 2 第 8 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	the fo (GSN (Rele (Rele (Rele (Rele (Rele	-	eases:

Reason for change: ¥	Introducing DS-CDMA into 800MHz band in Japan. TRX frequency separation of Operation band II, III and VI are differ from TRX frequency separation of Operation band I.
Summary of change: ₩	Introducing DS-CDMA into 800MHz band in Japan.
Consequences if # not approved:	TS34.121 is inconsistent with core spec. UE RF Baseline Implementation Capabilities is not clear.
Clauses affected: #	Annex H
	YN

Rel-6

(Release 6)

		Υ	Ν			
Other specs	ж		Χ	Other core specifications	ж	
affected:			Χ	Test specifications		
			Χ	O&M Specifications		
Other comments:	Ħ					

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

Annex H (normative): UE Capabilities (FDD)

H.1 Radio Access and RF Baseline Implementation Capabilities:

- NOTE 1: This clause shall be aligned with TR 25.926, UE Radio Access Capabilities regarding FDD RF parameters. These RF UE Radio Access capabilities represent options in the UE, that require signalling to the network.
- NOTE 2: In addition there are options in the UE that do not require any signalling. They are designated as UE baseline capabilities, according to TR 21.904, Terminal Capability Requirements.
- NOTE 3: Table H.1 provides the list of UE radio access capability parameters and possible values.

	UE radio access capability parameter	Value range
FDD RF parameters	UE power class	3, 4
	([23] 25.101 clause 6.2.1)	
	Tx/Rx frequency separation for frequency band I	190 MHz,
	([23] 25.101 clause 5.3)	174.8-205.2MHz
	Not applicable if UE is not operating in frequency	134.8-245.2MHz
	band I	
	Tx/Rx frequency separation for frequency band II	<u>80MHz</u>
	([1] 25.101 clause 5.3)	
	Not applicable if UE is not operating in frequency	
	band II	
	Tx/Rx frequency separation for frequency band III	<u>95MHz</u>
	([1] 25.101 clause 5.3)	
	Not applicable if UE is not operating in frequency	
	band III	
	Tx/Rx frequency separation for frequency band VI	<u>45MHz</u>
	([1] 25.101 clause 5.3)	
	Not applicable if UE is not operating in frequency	
	band VI	

Table H.1: RF UE Radio Access Capabilities

Table H.2 provides the UE baseline implementation capabilities.

NOTE 4: Table H.2 Radio frequency bands are described in section on frequency bands and channel arrangement in this document.

Table H.2: UE RF Baseline Implementation Capabilities

UE implementation capability	Value range
Radio frequency bands	I,
([23] 25.101 clause 5.2)	II,
	+
	I + III
	<u>I + VI</u>
	+
	+ +
	I + II + VI
	1 + 111 + VI
	+ + +

- The special conformance testing functions and the logical test interface as specified in TS 34.109 [4]. This issue is currently under investigation.

- Uplink reference measurement channel 12.2 kbps (FDD), TS 25.101 [1] clause A.2.1
- Downlink reference measurement channel 12.2 kbps (FDD), TS 25.101 [1] clause A.3.1.

æ	34.121 CR 300 #	rev <mark>1</mark> ^ж	Current vers	^{ion:} 5.1.1 [#]				
For <u>HELP</u> or	For HELP on using this form, see bottom of this page or look at the pop-up text over the # symbols.							
Proposed chang	affects: UICC apps೫	ME 🖌 Radio A	ccess Networ	k Core Network				
Title:	Introduction of reference to RRM	Test Tolerance	s Technical R	eport				
Source:	Racal Instruments							
Work item code:			<i>Date:</i> ೫	23/10/2003				
Category:	F Use <u>one</u> of the following categories: F (correction) A (corresponds to a correction in B (addition of feature), C (functional modification of feature) D (editorial modification) Detailed explanations of the above cat be found in 3GPP <u>TR 21.900</u> .	ıre)	2 R96 R97 R98 R99 R99 Rel-4	Rel-5 the following releases: (GSM Phase 2) (Release 1996) (Release 1997) (Release 1998) (Release 1999) (Release 4) (Release 5) (Release 6)				

Reason for change: #	The current version of 34.121 has a reference to a TR which is [FFS]				
_					
Summary of change: #	Add the Technical report to the list of references				
Consequences if #	There will be no formal method of tracing the derivation of RRM multi-cell Test				
not approved:	Tolerances				
Clauses affected: #	2 and Annex F				
Other specs ₩ affected:	Y N ✓ Other core specifications ₩ ✓ Test specifications ₩ ✓ O&M Specifications ₩				
Other comments: #					

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document.
- For a Release 1999 UE, references to 3GPP documents are to version 3.x.y.
- For a Release 4 UE, references to 3GPP documents are to version 4.x.y.
- For a Release 5 UE, references to 3GPP documents are to version 5.x.y.
- [1] 3GPP TS 25.101 "UE Radio transmission and reception (FDD)".
- [2] 3GPP TS 25.133 "Requirements for Support of Radio Resource Management (FDD)".
- [3] 3GPP TS 34.108 "Common Test Environments for User Equipment (UE) Conformance Testing".
- [4] 3GPP TS 34.109 "Terminal logical test interface; Special conformance testing functions".
- [5] 3GPP TS 25.214 "Physical layer procedures (FDD)".
- [6] 3GPP TR 21.905 "Vocabulary for 3GPP Specifications".
- [7] 3GPP TR 25.990 "Vocabulary".
- [8] 3GPP TS 25.331: "Radio Resource Control (RRC); Protocol Specification".
- [9] 3GPP TS 25.433 "UTRAN lub Interface NBAP Signalling".
- [10] ITU-R Recommendation SM.329: "Spurious emissions".
- [11] 3GPP TS 25.304: "UE Procedures in Idle Mode and Procedures for Cell Reselection in Connected Mode".
- [12] 3GPP TS 25.303: "Interlayer Procedures in Connected Mode".
- [13] 3GPP TS 25.321: "Medium Access Control (MAC) protocol specification".
- [14] 3GPP TS 25.213: "Spreading and modulation (FDD)".
- [15] 3GPP TS 25.223: "Spreading and modulation (TDD)".
- [16] ETSI ETR 273-1-2: "Improvement of radiated methods of measurement (using test sites) and evaluation of the corresponding measurement uncertainties; Part 1: Uncertainties in the measuremement of mobile radio equipment characteristics; Sub-part 2: Examples and annexes".
- [17] 3GPP TR 25.926: "UE Radio Access Capabilities".
- [18] 3GPP TR 21.904: "UE capability requirements".
- [19] 3GPP TS 25.211: "Physical channels and mapping of transport channels onto physical channels (FDD)".
- [20] 3GPP TS 05.08: "Digital cellular telecommunications system (Phase 2+); Radio subsystem link control".

[21]	3GPP TS 34.123-1: "User Equipment (UE) Conformance Specification; Part 1: Protocol Conformance Specification".
[22]	3GPP TS 25.215: "Physical Layer – Measurements (FDD)".
[23]	3GPP TS 25.101 "UE Radio transmission and reception (FDD), Release 5".
[24]	<u>3GPP TR 34.902 " Derivation of test tolerances for multi-cell Radio Resource Managemen</u> (RRM) conformance tests ".

Annex F (normative): General test conditions and declarations

The requirements of this clause apply to all applicable tests in the present document.

Many of the tests in the present document measure a parameter relative to a value that is not fully specified in the UE specifications. For these tests, the Minimum Requirement is determined relative to a nominal value specified by the manufacturer.

When specified in a test, the manufacturer shall declare the nominal value of a parameter, or whether an option is supported.

In all the relevant clauses in this clause all Bit Error Ratio (BER), Block Error Ratio (BLER), False transmit format Detection Ratio (FDR) measurements shall be carried out according to the general rules for statistical testing in clause F.6.

F.1 Acceptable uncertainty of Test System

The maximum acceptable uncertainty of the Test System is specified below for each test, where appropriate. The Test System shall enable the stimulus signals in the test case to be adjusted to within the specified range, and the equipment under test to be measured with an uncertainty not exceeding the specified values. All ranges and uncertainties are absolute values, and are valid for a confidence level of 95 %, unless otherwise stated.

A confidence level of 95 % is the measurement uncertainty tolerance interval for a specific measurement that contains 95 % of the performance of a population of test equipment.

For RF tests it should be noted that the uncertainties in clause F.1 apply to the Test System operating into a nominal 50 ohm load and do not include system effects due to mismatch between the DUT and the Test System.

F.1.5 Requirements for support of RRM

Table F.1.5: Maximum Test System Uncertainty for Radio Resource Management Tests

Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
8.3.5 Cell Re-selection in CELL_FACH		
8.3.5.1 One frequency present in the neighbour list	During T1 and T2:	
	$\frac{CPICH_E_c}{I_{or}} = \pm 0.1 \text{ dB}$	
	<i>I_{oc}</i> ±1.0 dB	
	$\frac{\text{During T1:}}{I_{or}} (2) = \pm 0.7 \text{ dB}$	
	$I_{\it or}$ (1, 3, 4, 5, 6) relative to $I_{\it or}$ (2) ±0.3 dB	
	$\frac{\text{During T2:}}{I_{or}(1)} = \pm 0.7 \text{ dB}$	
	$I_{\it or}$ (2, 3, 4, 5, 6) relative to $I_{\it or}$ (1) ±0.3 dB	
	Assumptions: a) The contributing uncertainties for lor(r loc are derived according to ETR 273-1- factor of k=2.	
	b) Within each cell, the uncertainty for lo ratio are uncorrelated to each other.	or(n), and channel power
	c) The relative uncertainties for lor(n) ac have any amount of positive correlation one (fully correlated).	
	d) Across different cells, the channel pow have any amount of positive correlation one (fully correlated).	
	e) The uncertainty for loc and lor(n) may positive correlation from zero (uncorrelation	
	f) The absolute uncertainty of lor(2) at T uncertainty of lor(1, 3, 4, 5, 6), are uncon Similarly, the absolute uncertainty of lor(uncertainty of lor(2, 3, 4, 5, 6), are uncon	rrelated to each other. (1) at T2 and the relative
	An explanation of correlation between uncert behind the assumptions, is <u>recorded in 3GPF</u> in a TR [FFS].	

Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
8.3.5.2 Two frequencies present in the neighbour list	Channel 1 during T1 and T2:	encontainty
	$\frac{CPICH_E_c}{\pm 0.1 \text{ dB}}$	
	I or	
	I_{oc} (1) ±1.0 dB	
	$\frac{\text{Channel 1 during T1:}}{I_{or}(1)} \pm 0.7 \text{ dB}$	
	I_{or} (3, 4) relative to I_{or} (1) ±0.3 dB	
	$\frac{\text{Channel 1 during T2:}}{I_{or}(1) \pm 0.7 \text{ dB}}$	
	I_{or} (3, 4) relative to I_{or} (1) ±0.3 dB	
	Channel 2 during T1 and T2:	
	$\frac{CPICH_E_c}{I_{or}} = \pm 0.1 \text{ dB}$	
	<i>I_{oc}</i> (2) ±1.0 dB	
	$\frac{\text{Channel 2 during T1:}}{I_{or}}$	
	$I_{\it or}$ (5, 6) relative to $I_{\it or}$ (2) ±0.3 dB	
	Channel 2 during T2:	
	I_{or} (2) ±0.7 dB	
	I_{or} (5, 6) relative to I_{or} (2) ±0.3 dB	
	Assumptions: a) to e): Same as for the one-frequency	test 8.3.5.1.
	f) The absolute uncertainty of lor(1) and lor(3, 4), are uncorrelated to each other. uncertainty of lor(2) and the relative unc uncorrelated to each other.	Similarly, the absolute
	g) The absolute uncertainties for lor(1) a amount of positive correlation from zero correlated).	
	h) The absolute uncertainties for loc(1) a amount of positive correlation from zero correlated).	
	An explanation of correlation between uncert behind the assumptions, is is recorded in 3G recorded in a TR [FFS].	

F.4 Derivation of Test Requirements (This clause is informative)

The Test Requirements in the present document have been calculated by relaxing the Minimum Requirements of the core specification using the Test Tolerances defined in clause F.2. When the Test Tolerance is zero, the Test Requirement will be the same as the Minimum Requirement. When the Test Tolerance is non-zero, the Test Requirements will differ from the Minimum Requirements, and the formula used for this relaxation is given in table F.4.

Test	Test Parameters in TS 25.133	Test Tolerance (TT)	Test Requirement in TS 34.121		
8.3.5 Cell Re-selection in CELL_FACH					
8.3.5.1 One frequency present in the neighbour list	Because the relationships between the Test system uncertainties and the Test Tolerances are complex, it is not possible to give a simple derivation of the Test Requirement in this document. The analysis is recorded in 3GPP TR 34 902 [24]. The analysis was performed using a spreadsheet, to be recorded in a TR [FFS].				
			Busines T1 and T0		
	During T1 and T2:	During T1 and T2:	During T1 and T2:		
	Cells 1 and 2: CPICH_Ec/lor = -10 dB PCCPCH_Ec/lor = -12 dB SCH_Ec/lor = -12 dB PICH_Ec/lor = -15 dB S-CCPCH_Ec/lor = -12 dB	+0.60 dB +0.60 dB +0.60 dB +0.60 dB +0.60 dB	Ec/lor ratio + TT Ec/lor ratio + TT Ec/lor ratio + TT Ec/lor ratio + TT Ec/lor ratio + TT		
	Cells 3, 4, 5, 6: CPICH_Ec/lor = -10 dB PCCPCH_Ec/lor = -12 dB SCH_Ec/lor = -12 dB PICH_Ec/lor = -15 dB S-CCPCH_Ec/lor = -12 dB	-0.50 dB -0.50 dB -0.50 dB -0.50 dB -0.50 dB	Ec/lor ratio + TT Ec/lor ratio + TT Ec/lor ratio + TT Ec/lor ratio + TT Ec/lor ratio + TT		
	lor(3, 4, 5, 6) = -69.73 dBm	+0.03 dB for lor(3, 4, 5, 6)	lor(3, 4, 5, 6) + TT		
	During T1:	During T1:	During T1:		
	lor(1) = -62.73 dBm lor(2) = -59.73 dBm	-0.27 dB for lor(1) +0.13 dB for lor(2)	lor(1) + TT lor(2) + TT		
	During T2:	During T2:	During T2:		
	lor(1) = -59.73 dBm lor(2) = -62.73 dBm	+0.13 dB for lor(1) -0.27 dB for lor(2)	lor(1) + TT lor(2) + TT		
8.3.5.2 Two frequencies present in the neighbour list	are complex, it is not possible	e to give a simple deriva	uncertainties and the Test Tolerances ation of the Test Requirement in this 902 [24].The analysis was performed		
	Channel 1 during T1 and	Channel 1 during	Channel 1 during T1 and T2:		
	<u>T2:</u>	T1 and T2:			
	Cell 1: CPICH_Ec/lor = -10 dB PCCPCH_Ec/lor = -12 dB SCH_Ec/lor = -12 dB PICH_Ec/lor = -15 dB S-CCPCH_Ec/lor = -12 dB	+0.60 dB +0.60 dB +0.60 dB +0.60 dB +0.60 dB	Ec/lor ratio + TT Ec/lor ratio + TT Ec/lor ratio + TT Ec/lor ratio + TT Ec/lor ratio + TT		
	Cells 3 and 4: CPICH_Ec/lor = -10 dB PCCPCH_Ec/lor = -12 dB SCH_Ec/lor = -12 dB PICH_Ec/lor = -15 dB S-CCPCH_Ec/lor = -12 dB	-0.70 dB -0.70 dB -0.70 dB -0.70 dB -0.70 dB	Ec/lor ratio + TT Ec/lor ratio + TT Ec/lor ratio + TT Ec/lor ratio + TT Ec/lor ratio + TT		

l

Table F.4.4: Derivation of Test Requirements (RRM tests)

Test	Test Parameters in	Test Tolerance	Test Requirement in TS 34.121
1001	TS 25.133	(TT)	
	Channel 1 during T1:	Channel 1 during	Channel 1 during T1:
		<u>T1:</u>	
	lor(1) = -71.85 dBm	+0.05 dB for lor(1)	lor(1) + TT
	lor(3, 4) = -76.85 dBm	+0.05 dB for lor(3,4)	lor(3, 4) + TT
	loc(1) = -70.00 dBm	0.00 dB for loc(1)	loc(1) + TT
	Channel 1 during T2:	Channel 1 during	Channel 1 during T2:
		$\underline{T2:}$	
	lor(1) = -67.75 dBm	+0.75 dB for lor(1)	lor(1) + TT
	lor(3, 4) = -74.75 dBm	-0.05 dB for lor(3, 4)	lor(3, 4) + TT
	loc(1) = -70.00 dBm	-1.60 dB for loc(1)	loc(1) + TT
	Channel 2 during T1 and	Channel 2 during	Channel 2 during T1 and T2:
	<u>T2:</u>	T1 and T2:	
	—		
	Cell 2:		
	$CPICH_Ec/lor = -10 dB$	+0.60 dB	Ec/lor ratio + TT
	PCCPCH_Ec/lor = -12 dB	+0.60 dB	Ec/lor ratio + TT
	$SCH_Ec/lor = -12 dB$	+0.60 dB	Ec/lor ratio + TT
	$PICH_Ec/lor = -15 dB$	+0.60 dB	Ec/lor ratio + TT
	S-CCPCH_Ec/lor = -12 dB	+0.60 dB	Ec/lor ratio + TT
	Cells 5 and 6:		
	CPICH_Ec/lor = -10 dB	-0.70 dB	Ec/lor ratio + TT
	$PCCPCH_Ec/lor = -12 dB$	-0.70 dB	Ec/lor ratio + TT
	$SCH_Ec/lor = -12 dB$	-0.70 dB	Ec/lor ratio + TT
	PICH Ec/lor = -15 dB	-0.70 dB	Ec/lor ratio + TT
	S-CCPCH_Ec/lor = -12 dB	-0.70 dB	Ec/lor ratio + TT
	Channel 2 during T1:	Channel 2 during	Channel 2 during T1:
		<u>T1:</u>	
	lor(2) = -67.75 dBm	+0.75 dB for lor(2)	lor(2) + TT
	lor(5, 6) = -74.75 dBm	-0.05 dB for lor(5, 6)	lor(5, 6) + TT
	loc(2) = -70.00 dBm	-1.60 dB for loc(2)	loc(2) + TT
	Channel 2 during T2:	Channel 2 during	Channel 2 during T2:
		T2:	
	lor(2) = -71.85 dBm	+0.05 dB for lor(2)	lor(2) + TT
	lor(5, 6) = -76.85 dBm	+0.05 dB for lor(5,6)	lor(5, 6) + TT
	loc(2) = -70.00 dBm	0.00 dB for loc(2)	loc(2) + TT

CHANGE REQUEST													
æ	34.121 CR 301 #rev	1 [#] Current version: 5.1.1											
For <u>HELP</u> or	using this form, see bottom of this page or loo	ok at the pop-up text over the											
Proposed chang	affects: UICC apps೫ ME ✔ F	Radio Access Network Core Network											
Title:	Introduction of Test Tolerances to Cell Re	selection tests 8.2.2.1 & 8.2.2.2											
Source:	Racal Instruments												
Work item code:		Date:											
Category:	 F Use <u>one</u> of the following categories: F (correction) A (corresponds to a correction in an earlie B (addition of feature), C (functional modification of feature) D (editorial modification) Detailed explanations of the above categories c be found in 3GPP TR 21,900. 	R97 (Release 1997) R98 (Release 1998) R99 (Release 1999)											

Reason for change: ೫	The Test requirements do not allow for the effects of test system uncertainties
Summary of change: ೫	 a) Introduction of table 8.2.2.1.3 giving correct RF conditions for test b) Revision of table 8.2.2.2.3 giving correct RF conditions for test c) Revision of Annex F.1.5 to define acceptable test system uncertainties d) Revision of Annex F.2 table F2.4 to define Test Tolerances e) Revision of Annex F.4 table F4.4 to refer to derivation of test requirements
Consequences if % not approved:	A Test system may incorrectly fail a good UE.
Clauses affected: %	8.2.2 and Annex F

Rel-6

(Release 6)

Other specs affected:	ж	Y	N > > >	Other core specifications # Test specifications O&M Specifications				
Other comments:	Ħ							

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked # contain pop-up help information about the field that they are closest to.
- Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be

downloaded from the 3GPP server under http://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

8.2.2 Cell Re-Selection

8.2.2.1 Scenario 1: Single carrier case

8.2.2.1.1 Definition and applicability

The cell re-selection delay is defined as the time from a change of cell levels to the moment when this change makes the UE camp on a new cell, and starts to send preambles on the PRACH for the RRC CONNECTION REQUEST message to perform a Location Updating procedure (MM) or Routing Area Updating procedure (GMM) on the new cell.

The requirements and this test apply to the FDD UE.

8.2.2.1.2 Minimum requirement

The cell re-selection delay shall be less than 8 s with a DRX cycle length of 1.28 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

NOTE: The cell re-selection delay can be expressed as: $T_{evaluateFDD} + T_{SI}$, where:

TevaluateFDD	See table 4.1 in TS 25.133 [2] clause 4.2.2.
T _{SI}	Maximum repetition period of relevant system info blocks that needs to be received
	by the UE to camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

The normative reference for this requirement is TS 25.133 [2] clauses 4.2.2.2 and A.4.2.1.

8.2.2.1.3 Test purpose

To verify that the UE meets the minimum requirement.

8.2.2.1.4 Method of test

8.2.2.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

This scenario implies the presence of 1 carrier and 6 cells as given in tables 8.2.2.1.1 toand 8.2.2.1.32. The UE is requested to monitor neighbouring cells on 1 carrier. The maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell shall be 1 280 ms. Cell 1 and cell 2 shall belong to different Location Areas.

	Parameter	Unit	Value	Comment
Initial	Active cell		Cell2	
condition	Neighbour cells		Cell1, Cell3, Cell4, Cell5, Cell6	
Final condition	Active cell		Cell1	
TYPE 1	NFORMATION BLOCK non GSM-MAP NAS system	-	00 80(H) → Cell 1 00 81(H) → Cell 2	This identity should be set as different value from the neigbour cell so that a Location Updating procedure(MM) or a Routing Area Updating procedure(GMM) is performed when UE selects more suitable cell in idle state.
Access Service Class (ASC#0) - Persistence value		-	1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.
HCS				Not used
DRX cycle	length	S	1,28	The value shall be used for all cells in the test.
T1		S	15	T1 need to be defined so that cell re- selection reaction time is taken into account.
T2		S	15	T2 need to be defined so that cell re- selection reaction time is taken into account.

Table 8.2.2.1.1: Scenario 1: General test parameters for Cell Re-selection single carrier multi-cell case

Parameter	Unit	C	ell 1	Ce	ll 2	Ce	ell 3	Cel	4	Ce	ell 5	Ce	II 6						
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2						
UTRA RF Channel Number		Chan	nel 1	Channe	el 1	Chan	nel 1	Channe	el 1	Chanr	nel 1	Chann	el 1						
CPICH_Ec/lor	dB	-10		-10		-10		-10		-10		-10							
PCCPCH_Ec/lor	dB	-12		-12		-12		-12		-12		-12							
SCH_Ec/lor	dB	-12		-12		-12		-12		-12		-12							
PICH_Ec/lor	dB	-15		-15		-15		-15		-15		-15							
OCNS_Ec/lor	dB	-0,94	1	-0,941		-0,941		-0,941		-0,941		-0,941							
\hat{I}_{or}/I_{oc}	dB	7,3	10,27	10,27	7,3	0,27		0,27		0,27		0,27							
<u>Îor (Note 1)</u>	<u>dBm</u>	<u>-</u> <u>62.7</u> 3	<u>-59.73</u>	<u>-59.73</u>	<u>-62.73</u>	<u>-69.73</u>	<u>-69.73</u> <u>-69.73</u>		<u>-69.73</u>	<u>3</u>	<u>-69.73</u>								
I _{oc}	dBm / 3,84 MHz	-70																	
CPICH_Ec/lo	dB	-16	-13	-13	-16	-23		-23		-23		-23							
Propagation Condition							AW	GN											
Cell_selection_and_ reselection_quality_ measure		CPIC	H E₀/N₀	CPICH	E _c /N ₀	CPICI	CPICH E _c /N ₀		CPICH E _c /N ₀		CPICH E _c /N ₀		IE₀/N₀						
Qqualmin	dB	-	20	-2	20	-	20	-20		-20		-20							
Qrxlevmin	dBm	-*	115	-1	15	-1	15	-11	5	-1	15	-1	15						
UE_TXPWR_MAX_ RACH	dB		21	2	21	2	21	21		2	21	2	1						
Qoffset2 _{s, n}	dB	C1, C1, C1,	C2: 0 C3: 0 C4: 0 C5: 0 C6: 0	C2, C2, C2,	C1: 0 C3: 0 C4: 0 C5: 0 C6: 0	C3, C3,	C3, C1: 0 C3, C2: 0 C3, C4: 0 C3, C5: 0		C4, C1: 0 C4, C2: 0 C4, C3: 0 C4, C5: 0 C4, C6: 0		C5, C1: 0 C5, C2: 0 C5, C3: 0 C5, C4: 0 C5, C6: 0		C1: 0 C2: 0 C3: 0 C4: 0 C5: 0						
Qhyst2	dB	,	0		0	0				,				,	0		0	· · · · ·)
Treselection	S		0		0		0	0			0	()						
Sintrasearch	dB	not	sent	not	sent	not	sent	not s	ent	not sent		not	not sent						

Table 8.2.2.1.2: Scenario 1: Test parameters for Cell re-selection single carrier multi cell, initial conditions

Note 1 The nominal Îor values, although not explicitly defined in 25.133 are added here since they are implied and need to be identified so that the test equipment can be configured.

- 1) The SS activates cell 1-6 with T1 defined parameters in table 8.2.2.1.32 and monitors cell 1 and 2 for random access requests from the UE.
- 2) The UE is switched on.
- 3) The SS and the UE shall perform a first registration procedure on cell2.
- 4) 15 s after step_3 has completed, the parameters are changed to that as described for T2 in table 8.2.2.1.32.
- 5) The SS waits for random access requests from the UE. If the UE responds on cell 1 within 8 s from the beginning of time period T2 then the number of successful tests is increased by one. The SS and the UE shall perform a Location Updating procedure (MM) or a Routing Area Updating procedure (GMM) on cell1.
- 6) After 15 s from the beginning of time period T2, the parameters are changed to that as described for T1 in table 8.2.2.1.32.
- 7) The SS waits for random access requests from the UE. If the UE responds on cell 2 within 8 s from the beginning of time period T1 then the number of successful tests is increased by one. The SS and the UE shall perform a Location Updating procedure(MM) or a Routing Area Updating procedure (GMM) on cell2.
- 8) After 15 s from the beginning of time period T1, the parameters are changed to that as described for T2.
- 9) Repeat step 5) to 8) [TBD] times.
- NOTE: The time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell. Since the maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell is 1280ms and the maximum RRC procedure delay for reception system information block is 100ms, 1380 ms is assumed in this test case. Therefore this gives a total of 7.78s.(Minimum requirement + 100ms), allow 8s in the test case.

8.2.2.1.5 Test requirements

For the test to pass, the total number of successful attempts shall be more than 90% with a confidence level of [FFS]% of the cases.

Parameter	Unit	C	ell 1	Ce	ll 2	C	ell 3	Cel	14	Ce	ell 5	Ce	ell 6
		<u>T1</u>	<u>T2</u>	<u>T1</u>	<u>T2</u>	<u>T1</u>	<u>T2</u>	<u>T1</u>	<u>T2</u>	<u>T1</u>	<u>T2</u>	<u>T1</u>	<u>T2</u>
UTRA RF Channel Number		<u>Chan</u>	Channel 1		Channel 1		Channel 1		Channel 1		Channel 1		<u>nel 1</u>
CPICH Ec/lor	<u>dB</u>	<u>-9.4</u>		<u>-9.4</u>		<u>-10.5</u>		<u>-10.5</u>		<u>-10.5</u>		<u>-10.5</u>	
PCCPCH_Ec/lor	<u>dB</u>	<u>-11.4</u>		<u>-11.4</u>		<u>-12.5</u>		<u>-12.5</u>		<u>-12.5</u>		<u>-12.5</u>	
<u>SCH_Ec/lor</u>	<u>dB</u>	<u>-11.4</u>		<u>-11.4</u>		<u>-12.5</u>	<u>-12.5</u>			<u>-12.5</u>		<u>-12.5</u>	
PICH_Ec/lor	<u>dB</u>	<u>-14.4</u>		<u>-14.4</u>		<u>-15.5</u>		<u>-15.5</u>		<u>-15.5</u>		<u>-15.5</u>	
OCNS_Ec/lor	<u>dB</u>	<u>-1.10</u>		<u>-1.10</u>		<u>-0.83</u>		<u>-0.83</u>		<u>-0.83</u>		<u>-0.83</u>	
\hat{I}_{or}/I_{oc} <u>Note 1</u>	<u>dB</u>	<u>7.00</u>	<u>10.40</u>	<u>10.40</u>	<u>7.00</u>	<u>0.30</u>		<u>0.30</u>		<u>0.30</u>		<u>0.30</u>	
$\hat{\underline{I}}_{or}$	<u>dBm</u>	<u>-</u> <u>63.0</u>	<u>-59.6</u>	<u>-59.6</u>	<u>-63.0</u>	<u>-69.7</u>	<u>-69.7</u> <u>-69.7</u>			<u>-69.7</u>		<u>-69.7</u>	
Ioc	<u>dBm /</u> <u>3,84 MHz</u>		<u>-70</u>										
<u>CPICH_Ec/Io_Note</u> <u>1</u>	<u>dB</u>	<u>-</u> 15.7	<u>-12.3</u>	<u>-12.3</u>	<u>-15.7</u>	<u>-23.5</u>		<u>-23.5</u>		<u>-23.5</u>		<u>-23.5</u>	

Table 8.2.2.1.3: Scenario 1: Test requirements for Cell re-selection single carrier multi cell

All other parameters and conditions specified in table 8.2.2.1.2 are unchanged.

NOTE 1: These parameters are not directly settable, but are derived by calculation from the settable parameters.

NOTE <u>2</u>: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.2.2.2 Scenario 2: Multi carrier case

8.2.2.2.1 Definition and applicability

The cell re-selection delay is defined as the time from a change of cell levels to the moment when this change makes the UE camp on a new cell, and starts to send preambles on the PRACH for the RRC CONNECTION REQUEST message to perform a Location Updating procedure(MM) or Routing Area Updating procedure (GMM) on the new cell.

The requirements and this test apply to the FDD UE.

8.2.2.2.2 Minimum requirement

The cell re-selection delay shall be less than 8 s with a DRX cycle length of 1.28 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

NOTE: The cell re-selection delay can be expressed as: $T_{evaluateFDD} + T_{SI}$, where:

T _{evaluateFDD}	See table 4.1 in TS 25.133 [2] clause 4.2.2.
Tsi	Maximum repetition period of relevant system info blocks that needs to be received by
	the UE to camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

The normative reference for this requirement is TS 25.133 [2] clauses 4.2.2.3 and A.4.2.2.

8.2.2.2.3 Test purpose

To verify that the UE meets the minimum requirement.

8.2.2.2.4 Method of test

8.2.2.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

This scenario implies the presence of 2 carriers and 6 cells as given in tables 8.2.2.2.1 to and 8.2.2.2.3.2. The UE is requested to monitor neighbouring cells on 2 carriers. The maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell shall be 1 280 ms. Cell 1 and cell 2 shall belong to different Location Areas.

F	Parameter	Unit	Value	Comment					
Initial	Active cell		Cell2						
condition	Neighbour cells		Cell1, Cell3,Cell4,						
			Cell5, Cell6						
Final	Active cell		Cell1						
condition									
SYSTEM IN	NFORMATION		00 80(H) → Cell 1	This identity should be set as different value from					
BLOCK TY	BLOCK TYPE 1		00 81(H) → Cell 2	the neigbour cell so that a Location Updating					
	- CN common GSM-MAP NAS			procedure (MM) or a Routing Area Updating					
system info	system information			procedure (GMM) is performed when UE selects					
				more suitable cell in idle state.					
Access Ser	vice Class (ASC#0)			Selected so that no additional delay is caused by					
- Persistend	ce value	-	1	the random access procedure. The value shall be					
				used for all cells in the test.					
HCS				Not used					
DRX cycle	length	S	1,28	The value shall be used for all cells in the test.					
			30	T1 need to be defined so that cell re-selection					
				reaction time is taken into account.					
	T2	S	15	T2 need to be defined so that cell re-selection					
				reaction time is taken into account.					

Table 8.2.2.2.1: Scenario 2: General test parameters for Cell Re-selection in multi carrier case

Parameter	Unit	Cel	11	Cel	2	Cell 3		C	ell 4	Cell 5		Cell 6		
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	
UTRA RF Channel Number		Chanı	nel 1	Chanı	Channel 2		Channel 1		nnel 1	Chan	nel 2	Chai	nnel 2	
CPICH_Ec/lor	dB	-1	0	-1	0	-1	0		-10	-1	0	-10		
PCCPCH_Ec/lor	dB	-1	-12		2	-1	2		-12	-1	2	-	12	
SCH_Ec/lor	dB	-1	2	-1	2	-1	2		-12	-1	2	-	12	
PICH_Ec/lor	dB	-1	5	-1	5	-1	5		-15	-1	5	-	15	
OCNS_Ec/lor	dB	-0.9	41	-0.9	41	-0.9	41	-0	.941	-0.9	41	-0.	941	
\hat{I}_{or}/I_{oc}	dB	-3.4	2.2	2.2	-3.4	-7.4	-4.8	-7.4	-4.8	-4.8	-7.4	-4.8	-7.4	
$\hat{I}_{or (Note 1)}$	<u>dBm</u>	<u>-73.39</u>	<u>-</u> <u>67.7</u> <u>5</u>	<u>-67.75</u>	<u>-</u> <u>73.3</u> 9	<u>-77.39</u>	<u>-</u> <u>74.7</u> <u>5</u>	<u>-</u> <u>77.3</u> <u>9</u>	<u>-74.75</u>	<u>-74.75</u>	<u>-</u> <u>77.3</u> 9	<u>-</u> <u>74.7</u> 5	<u>-77.39</u>	
I _{oc}	dBm / 3.84 MHz		-				-	70				-		
CPICH_Ec/lo	dB	-16	-13	-13	-16	-2	0	-20		-20		-20		
Propagation Condition							AW	/GN						
Cell_selection_and_ reselection_quality_ measure		CPICH	E _c /N ₀	CPICH	E _c /N ₀	CPICH E _c /N ₀		CPICH E _c /N ₀		CPICH E _c /N ₀		CPICH E _c /N _c		
Qqualmin	dB	-20	0	-20	0	-2	0	-	20	-2	0	-:	20	
Qrxlevmin	dBm	-11	5	-11	5	-11	5		115	-11	5	-1	15	
UE_TXPWR_MAX_ RACH	dB	21	I	21	l	21	I		21	2'	1	2	21	
Qoffset2 _{s, n}	dB	C1, C C1, C C1, C C1, C C1, C	3: 0 4: 0 5: 0	C2, C1: 0 C2, C3: 0 C2, C4: 0 C2, C5: 0 C2, C6: 0		C3, C1: 0 C3, C2: 0 C3, C4: 0 C3, C5: 0 C3, C6: 0		C4, C4, C4,	C4, C1: 0 C4, C2: 0 C4, C3: 0 C4, C5: 0 C4, C5: 0		C5, C1: 0 C5, C2: 0 C5, C3: 0 C5, C4: 0 C5, C6: 0		C6, C1: 0 C6, C2: 0 C6, C3: 0 C6, C4: 0 C6, C5: 0	
Qhyst2	dB	0		0		0		Í Í	0	0			0	
Treselection	S	0		0		0		1	0	0			0	
Sintrasearch	dB	not s	ent	not s	ent	not s	ent	not	sent	not s	ent	not	sent	
Sintersearch	dB	not s		not s	ent	not s	ent	not	sent	not s	ent	not	sent	

Table 8.2.2.2.2: Scenario 2: Test parameters for Cell re-selection multi carrier multi cell, initial conditions

Note 1 The nominal Îor values, although not explicitly defined in 25.133 are added here since they are implied and need to be identified so that the test equipment can be configured.

8.2.2.2.4.2 Procedures

- 1) The SS activates cell 1-6 with T1 defined parameters in table 8.2.2.2.3 and monitors cell 1 and 2 for random access requests from the UE.
- 2) The UE is switched on.
- 3) The SS and the UE shall perform a first location registration procedure on cell2.
- 4) 30 s after step3 has completed, the parameters are changed to that as described for T2 in table 8.2.2.2.3.
- 5) The SS waits for random access request from the UE. If the UE responds on cell 1 within 8 s from the beginning of time period T2 then the number of successful tests is increased by one. The SS and the UE shall perform a Location Updating procedure (MM) or a Routing Area Updating procedure (GMM) on cell1.
- 6) After another 15 s from the beginning of time period T2, the parameters are changed to that as described for T1 in table 8.2.2.2.3.
- 7) The SS waits for random access requests from the UE. If the UE responds on cell 2 within 8 s from the beginning of time period T1 then the number of successful tests is increased by one. The SS and the UE shall perform a Location Updating procedure (MM) or a Routing Area Updating procedure (GMM) on cell2.
- 8) After 15 s from the beginning of time period T1, the parameters are changed as described for T2.
- 9) Repeat step 5) to 8) [TBD] times.
- NOTE 1: T1 is initially 30 s to allow enough time for the UE to search for cells as it has no prior knowledge of these.
- NOTE 2: The time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell. Since the maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell is 1280ms and the maximum RRC procedure delay for reception system information block is 100ms, 1380 ms is assumed in this test case. Therefore this gives a total of 7.78s.(Minimum requirement + 100ms), allow 8s in the test case.

8.2.2.2.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

Parameter	Unit	Ce	<u>ll 1</u>	Ce	<u>II 2</u>	Ce	<u>II 3</u>	Ce	<u>II 4</u>	Ce	<u>II 5</u>	Ce	II <u>6</u>	
		<u>T1</u>	<u>T2</u>											
UTRA RF Channel Number		Chann	<u>iel 1</u>	Chann	Channel 2		Channel 1		Channel 1		<u>nel 2</u>	Channel 2		
CPICH_Ec/lor	<u>dB</u>	-9) <u>.3</u>	-9) <u>.3</u>	<u>-1</u>	<u>0.8</u>	<u>-1</u>	<u>0.8</u>	<u>-1</u>	<u>0.8</u>	<u>-1(</u>). <u>8</u>	
PCCPCH_Ec/lor	<u>dB</u>	-11	<u>1.3</u>	-1	<u>1.3</u>	<u>-1</u> :	<u>2.8</u>	<u>-1</u> :	<u>2.8</u>	-1	<u>2.8</u>	<u>-12.8</u>		
<u>SCH_Ec/lor</u>	<u>dB</u>	<u>-1</u>	<u>-11.3</u>		<u>-11.3</u>		<u>-12.8</u>		<u>-12.8</u>		<u>-12.8</u>		<u>-12.8</u>	
PICH_Ec/lor	<u>dB</u>	-14	<u>4.3</u>	<u>-14.3</u>		<u>-15.8</u>		<u>-15.8</u>		<u>-15.8</u>		<u>-15.8</u>		
OCNS_Ec/lor	<u>dB</u>	<u>-1</u> .	. <u>13</u>	<u>-1.13</u>		<u>-0.77</u>		<u>-0.77</u>		<u>-0.77</u>		<u>-0.77</u>		
\hat{I}_{or}/I_{oc} <u>Note 1</u>	<u>dB</u>	<u>-3.40</u>	<u>+4.80</u>	<u>+4.80</u>	<u>-3.40</u>	<u>-7.40</u>	<u>-3.00</u>	<u>-7.40</u>	<u>-3.00</u>	<u>-3.00</u>	<u>-7.40</u>	<u>-3.00</u>	<u>-7.40</u>	
\hat{I}_{or}	<u>dBm</u>	<u>-73.4</u>	<u>-67.0</u>	<u>-67.0</u>	<u>-73.4</u>	<u>-77.4</u>	<u>-74.8</u>	<u>-77.4</u>	<u>-74.8</u>	<u>-74.8</u>	<u>-77.4</u>	<u>-74.8</u>	<u>-77.4</u>	
loc	<u>dBm/3.8</u> <u>4 MHz</u>	<u>-70.0</u>	<u>-71.8</u>	<u>-71.8</u>	<u>-70.0</u>	<u>-70.0</u>	<u>-71.8</u>	<u>-70.0</u>	<u>-71.8</u>	<u>-71.8</u>	<u>-70.0</u>	<u>-71.8</u>	<u>-70.0</u>	
CPICH_Ec/lo_Note	<u>dB</u>	<u>-15.3</u>	<u>-11.5</u>	<u>-11.5</u>	<u>-15.3</u>	<u>-20.8</u>								

Table 8.2.2.2.3: Scenario 2: Test parameters for Cell re-selection multi carrier multi cell, test requirements

All other parameters and conditions specified in table 8.2.2.2.2 are unchanged.

NOTE 1: These parameters are not directly settable, but are derived by calculation from the settable parameters.

1

Annex F (normative): General test conditions and declarations

The requirements of this clause apply to all applicable tests in the present document.

Many of the tests in the present document measure a parameter relative to a value that is not fully specified in the UE specifications. For these tests, the Minimum Requirement is determined relative to a nominal value specified by the manufacturer.

When specified in a test, the manufacturer shall declare the nominal value of a parameter, or whether an option is supported.

In all the relevant clauses in this clause all Bit Error Ratio (BER), Block Error Ratio (BLER), False transmit format Detection Ratio (FDR) measurements shall be carried out according to the general rules for statistical testing in clause F.6.

F.1 Acceptable uncertainty of Test System

The maximum acceptable uncertainty of the Test System is specified below for each test, where appropriate. The Test System shall enable the stimulus signals in the test case to be adjusted to within the specified range, and the equipment under test to be measured with an uncertainty not exceeding the specified values. All ranges and uncertainties are absolute values, and are valid for a confidence level of 95 %, unless otherwise stated.

A confidence level of 95 % is the measurement uncertainty tolerance interval for a specific measurement that contains 95 % of the performance of a population of test equipment.

For RF tests it should be noted that the uncertainties in clause F.1 apply to the Test System operating into a nominal 50 ohm load and do not include system effects due to mismatch between the DUT and the Test System.

F.1.5 Requirements for support of RRM

Table F.1.5: Maximum Test System Uncertainty for Radio Resource Management Tests

Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty					
8.2.2 Cell Re-Selection							
8.2.2.1 Scenario 1: Single carrier case	$\frac{\text{During T1 and T2:}}{\hat{I}_{oc} / I_{oc}} \underbrace{\pm 0.3 \text{ dB}}_{\underline{I}_{oc}} \underbrace{\pm 1.0 \text{ dB}}_{\underline{I}_{oc}} \underbrace{\text{CPICH } \underline{E}_{c}}_{I_{or}} \pm 0.1 \text{ dB}$	0.1 dB uncertainty in CPICH_Ec ratio 0.3 dB uncertainty in \hat{I}_{or}/I_{oc} based on power meter					
	I_{or} $I_{oc} = \pm 1.0 \text{ dB}$ $\underline{\text{During T1:}}$ $I_{or} (2) = \pm 0.7 \text{ dB}$	measurement after the combiner The absolute error of the AWGN is specified as 1.0 dB.					
	$\frac{I_{or} (1, 3, 4, 5, 6) \text{ relative to } I_{or} (2) \pm 0.3 \text{ dB}}{\frac{\text{During T2:}}{I_{or} (1)} \pm 0.7 \text{ dB}}$						
	$\frac{I_{or}(2, 3, 4, 5, 6) \text{ relative to } I_{or}(1) \pm 0.3 \text{ dB}}{\text{Assumptions:}}$						
	a) The contributing uncertainties for lor(loc are derived according to ETR 273-1- factor of k=2.						
	b) Within each cell, the uncertainty for log ratio are uncorrelated to each other.						
	c) The relative uncertainties for lor(n) across different cells may have any amount of positive correlation from zero (uncorrelated) to one (fully correlated).						
	d) Across different cells, the channel power ratio uncertainties may have any amount of positive correlation from zero (uncorrelated) to one (fully correlated).						
	e) The uncertainty for loc and lor(n) may have any amount of positive correlation from zero (uncorrelated) to one (fully correl						
	<u>f) The absolute uncertainty of lor(2) at T1 and the relative</u> <u>uncertainty of lor(1, 3, 4, 5, 6)</u> , are uncorrelated to each other. <u>Similarly, the absolute uncertainty of lor(1) at T2 and the relative</u> <u>uncertainty of lor(2, 3, 4, 5, 6)</u> , are uncorrelated to each other.						
	An explanation of correlation between uncertainties, and of the rationale behind the assumptions, is recorded in 3GPP TR 34 902 [24].						

Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
8.2.2.2 Scenario 2: Multi carrier case	Channel 1 during T1 and T2:	0.1 dB uncertainty in
		CPICH_Ec ratio
	$\frac{\hat{I}_{or}}{I_{oc}}$ = ±0.3 dB	
	<i>H_{oc}</i> <u>±1.0 dB</u>	0.3 dB uncertainty in \hat{I}_{or}/I_{oc}
	I_{oc1}/I_{oc2} ±0.3 dB	based on power meter measurement after the
		combiner
	$\frac{CPICH_E_c}{I_{or}} = \pm 0.1 \text{ dB}$	0.3 dB uncertainty in loc1/loc2
	-	based on power meter
	I_{oc} (1) ±1.0 dB	measurement after the
		combiner
	Channel 1 during T1:	Overall error for the
	I_{or} (1) ±0.7 dB	CPICH_Ec/lo is the sum of the
		$\frac{\hat{H}_{or}}{H_{oc}}$ ratio error and the
	I_{or} (3, 4) relative to I_{or} (1) ±0.3 dB	CPICH_Ec/lor ratio.
		The checkute error of the
	Channel 1 during T2:	The absolute error of the AWGN is specified as 1.0 dB.
	I_{or} (1) ±0.7 dB	
	$I_{or}(3, 4) \text{ relative to } I_{or}(1) \pm 0.3 \text{ dB}$	
	Channel 2 during T1 and T2:	
	$\frac{CPICH_E_c}{I_{or}}_\pm 0.1 \text{ dB}$	
	<u><i>I_{oc}</i>(2) ±1.0 dB</u>	
	$\frac{\text{Channel 2 during T1:}}{I_{or}} \pm 0.7 \text{ dB}$	
	I_{or} (5, 6) relative to I_{or} (2) ±0.3 dB	
	$\frac{\text{Channel 2 during T2:}}{I_{or}}$	
	$\underbrace{I_{or}(5, 6) \text{ relative to } I_{or}(2) \pm 0.3 \text{ dB}}_{$	

Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
	Assumptions: a) to e): Same as for the one-frequency	test 8.2.2.1.
	 f) The absolute uncertainty of lor(1) and lor(3, 4), are uncorrelated to each other uncertainty of lor(2) and the relative uncorrelated to each other. g) The absolute uncertainties for lor(1) and amount of positive correlation from zero correlated). 	Similarly, the absolute certainty of lor(5, 6), are and lor(2) may have any
	h) The absolute uncertainties for loc(1) amount of positive correlation from zero correlated).	
	An explanation of correlation between u rationale behind the assumptions, is rec [24].	

F.2 Test Tolerances (This clause is informative)

The Test Tolerances defined in this clause have been used to relax the Minimum Requirements in the present document to derive the Test Requirements.

The Test Tolerances are derived from Test System uncertainties, regulatory requirements and criticality to system performance. As a result, the Test Tolerances may sometimes be set to zero.

The test tolerances should not be modified for any reason e.g. to take account of commonly known test system errors (such as mismatch, cable loss, etc.).

F.2.4 Requirements for support of RRM

Clause	Test Tolerance
8.2.2 Cell Re-Selection	
8.2.2.1 Scenario 1: Single carrier case	0.3 dB for \hat{I}_{or}/I_{oc}
	0.1 dB for CPICH_Ec/lorDuring T1 and T2
	+0.60 dB for all Cell 1 and 2 Ec/lor ratios
	<u>-0.50 dB for all Cell 3, 4, 5, 6 Ec/lor ratios</u> +0.03 dB for lor(3, 4, 5, 6)
	<u>+0.03 dB 101 101(3, 4, 5, 6)</u>
	During T1:
	<u>-0.27 dB for lor(1)</u>
	+0.13 dB for lor(2)
	During T2:
	+0.13 dB for lor(1)
	-0.27 dB for lor(2)
8.2.2.2 Scenario 2: Multi carrier case	0.3 dB for \hat{I}_{or}/I_{oc}
	0.1 dB for CPICH_Ec/lorChannel 1 during
	T1 and T2:
	+0.70 dB for all Cell 1 Ec/lor ratios
	-0.80 dB for all Cell 3 and 4 Ec/lor ratios
	Channel 1 during T1:
	-0.01 dB for lor(1)
	<u>-0.01 dB for lor(3, 4)</u>
	No change for loc(1)
	Channel 1 during T2:
	+0.75 dB for lor(1)
	-0.05 dB for lor(3, 4)
	<u>-1.80 dB for loc(1)</u>
	Channel 2 during T1 and T2:
	+0.70 dB for all Cell 2 Ec/lor ratios
	-0.80 dB for all Cell 5 and 6 Ec/lor ratios
	Observation to the instant
	Channel 2 during T1:
	<u>+0.75 dB for lor(2)</u> -0.05 dB for lor(5, 6)
	-1.80 dB for loc(2)
	Channel 2 during T2:
	<u>-0.01 dB for lor(2)</u>
	<u>-0.01 dB for lor(5, 6)</u>
	No change for loc(2)

Table F.2.4: Test Tolerances for Radio Resource Management Tests

16

F.4 Derivation of Test Requirements (This clause is informative)

The Test Requirements in the present document have been calculated by relaxing the Minimum Requirements of the core specification using the Test Tolerances defined in clause F.2. When the Test Tolerance is zero, the Test Requirement will be the same as the Minimum Requirement. When the Test Tolerance is non-zero, the Test Requirements will differ from the Minimum Requirements, and the formula used for this relaxation is given in table F.4.

Test	Test Parameters in TS 25.133	Test Tolerance (TT)	Test Requirement in TS 34.121
8.2.2 Cell Re-Selection			
8.2.2.1 Scenario 1: Single carrier case		e to give a simple deriva	uncertainties and the Test Tolerances ation of the Test Requirement in this 902 [24].
	During T1 and T2:	During T1 and T2:	During T1 and T2:
	$\frac{\text{Cells 1 and 2:}}{\text{CPICH Ec/lor = -10 dB}}$ $\frac{\text{PCCPCH}_\text{Ec/lor = -12 dB}}{\text{SCH Ec/lor = -12 dB}}$ $\frac{\text{PICH Ec/lor = -15 dB}}{\text{CH Ec/lor = -15 dB}}$	<u>+0.60 dB</u> +0.60 dB +0.60 dB +0.60 dB	$\frac{\text{Ec/lor ratio} + \text{TT}}{\text{Ec/lor ratio} + \text{TT}}$ $\frac{\text{Ec/lor ratio} + \text{TT}}{\text{Ec/lor ratio} + \text{TT}}$
	<u>Cells 3, 4, 5, 6:</u> <u>CPICH_Ec/lor = -10 dB</u> <u>PCCPCH_Ec/lor = -12 dB</u> <u>SCH_Ec/lor = -12 dB</u> <u>PICH_Ec/lor = -15 dB</u>	<u>-0.50 dB</u> <u>-0.50 dB</u> <u>-0.50 dB</u> <u>-0.50 dB</u>	$\frac{\text{Ec/lor ratio} + TT}{\text{Ec/lor ratio} + TT}$ $\frac{\text{Ec/lor ratio} + TT}{\text{Ec/lor ratio} + TT}$
	$\frac{\text{lor}(3, 4, 5, 6) = -69.73 \text{ dBm}}{\underline{CPICH}_{E_c}} = -10 \text{ dB}}$	<u>+0.03 dB for lor(3,</u> <u>4, 5, 6)</u> 0.1 dB for	<u>lor(3, 4, 5, 6) + TT</u> Formulas:
	<i>I_{oc} = -70 dBm</i>	$\frac{CPICH_E_c}{I_{or}}$ 0.3 dB for lor/loc	$\frac{CPICH_E_c}{I_{or}} = ratio - TT$
	lor/loc = 7.3 dB		I unshan rad
	Note: Parameters are valid for cell 1 at time T1 and cell 2 at time T2		I_{oc} -unchanged
			$\frac{CPICH_E_c}{I_{or}}$
	During T1:	During T1:	During T1:
	$\frac{lor(1) = -62.73 \text{ dBm}}{lor(2) = -59.73 \text{ dBm}}$ $\frac{CPICH _ E_c}{I_{or}} = -10 \text{ dB}$	<u>-0.27 dB for lor(1)</u> +0.13 dB for lor(2) 0.1 dB for CPICH_E _c	<u>lor(1) + TT</u> <u>lor(2) + TT</u> Formulas:
	$\frac{\partial r}{\partial c} = -70 \text{ dBm}$	0.3 dB for lor/loc	$\frac{CPICH_E_c}{I_{or}} = ratio + TT$
	lor/loc = 10.27 dB Note: Parameters are valid for cell 1 at time T2 and cell		loc unchanged
	2 at time T1		$\frac{\text{lor/loc} = 10.57 \text{ dB}}{\underline{CPICH}_{E_c} - 9.9 \text{ dB}}$
	During T2:	During T2:	During T2:
	$\frac{lor(1) = -59.73 \text{ dBm}}{lor(2) = -62.73 \text{ dBm}}$	+0.13 dB for lor(1) -0.27 dB for lor(2)	$\frac{\text{lor}(1) + \text{TT}}{\text{lor}(2) + \text{TT}}$
8.2.2.2 Scenario 2: Multi carrier case		e to give a simple deriva	uncertainties and the Test Tolerances ation of the Test Requirement in this 902 [24].

Table F.4.4: Derivation of Test Requirements (RRM tests)

Test	Test Parameters in TS 25.133	Test Tolerance (TT)	Test Requirement in TS 34.121
	Channel 1 during T1 and T2:	Channel 1 during T1 and T2:	Channel 1 during T1 and T2:
	<u>Cell 1:</u> <u>CPICH_Ec/lor = -10 dB</u> <u>PCCPCH_Ec/lor = -12 dB</u> <u>SCH_Ec/lor = -12 dB</u> <u>PICH_Ec/lor = -15 dB</u>	<u>+0.70 dB</u> +0.70 dB +0.70 dB +0.70 dB	$\frac{\text{Ec/lor ratio} + \text{TT}}{\text{Ec/lor ratio} + \text{TT}}$ $\frac{\text{Ec/lor ratio} + \text{TT}}{\text{Ec/lor ratio} + \text{TT}}$
	$\frac{\text{Cells 3 and 4:}}{\text{CPICH}_\text{Ec/lor} = -10 \text{ dB}}$ $\frac{\text{PCCPCH} \text{ Ec/lor} = -12 \text{ dB}}{\text{SCH} \text{ Ec/lor} = -12 \text{ dB}}$ $\frac{\text{PICH} \text{ Ec/lor} = -15 \text{ dB}}{I_{or}}$	$\frac{-0.80 \text{ dB}}{-0.80 \text{ dB}}$ $\frac{-0.80 \text{ dB}}{-0.80 \text{ dB}}$ $\frac{-0.80 \text{ dB}}{-0.80 \text{ dB}}$ $\frac{-0.1 \text{ dB for}}{I_{or}}$ $\frac{CPICH_{E_c}}{I_{or}}$ $-1000000000000000000000000000000000000$	$\frac{\text{Ec/lor ratio + TT}}{\text{Ec/lor ratio + TT}}$ $\frac{\text{Ec/lor ratio + TT}}{\text{Ec/lor ratio + TT}}$ $\frac{\text{CPICH}_{-}E_{c}}{I_{or}} = \text{ratio - TT}$
	$I_{oc} = -70 \text{ dBm}$	0.3 dB for for/foc	lor/loc = ratio - TT
	Note: Parameters are valid for cell 1 at time T1 and cell 2 at time T2		loc unchanged
			$\frac{\text{lor/loc} = -3.7 \text{ dB}}{\underline{CPICH}_{E_c}} - \frac{10.1 \text{ dB}}{\underline{I_{or}}}$
	Channel 1 during T1: lor(1) = -73.39 dBm lor(3, 4) = -77.39 dBm loc(1) = -70.00 dBm <u>CPICH _ E_c</u> = -10 dB I_{or}	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Channel 1 during T1: lor(1) + TT lor(3, 4) + TT loc(1) + TT Formulas:
	I_{or} $I_{oc} = -70 \text{ dBm}$	<u> </u>	$\frac{CPICH_E_c}{I_{or}} = \frac{1}{ratio} + TT$
	lor/loc = 2.2 dB		loc unchanged
	Note: Parameters are valid for cell 1 at time T2 and cell 2 at time T1		loc-ratio-unchanged
			$\frac{\text{lor/loc} = 2.5 \text{ dB}}{\underline{CPICH}_{E_c}} = \frac{9.9 \text{ dB}}{I_{or}}$
	Channel 1 during T2:	Channel 1 during T2:	Channel 1 during T2:
	$\frac{lor(1) = -67.75 \text{ dBm}}{lor(3, 4) = -74.75 \text{ dBm}}$ $\frac{loc(1) = -70.00 \text{ dBm}}{loc(1) = -70.00 \text{ dBm}}$	+0.75 dB for lor(1) -0.05 dB for lor(3, 4) -1.80 dB for loc(1)	$\frac{\text{lor}(1) + \text{TT}}{\text{lor}(3, 4) + \text{TT}}$ $\frac{\text{loc}(1) + \text{TT}}{\text{loc}(1) + \text{TT}}$

Test	Test Parameters in TS 25.133	Test Tolerance (TT)	Test Requirement in TS 34.121
	Channel 2 during T1 and T2:	Channel 2 during T1 and T2:	Channel 2 during T1 and T2:
	$\frac{Cell 2:}{CPICH Ec/lor = -10 dB}$ $\frac{PCCPCH Ec/lor = -12 dB}{SCH Ec/lor = -12 dB}$ $\frac{PICH Ec/lor = -15 dB}{PICH Ec/lor = -15 dB}$	+0.70 dB +0.70 dB +0.70 dB +0.70 dB	$\frac{\text{Ec/lor ratio} + \text{TT}}{\text{Ec/lor ratio} + \text{TT}}$ $\frac{\text{Ec/lor ratio} + \text{TT}}{\text{Ec/lor ratio} + \text{TT}}$
	$\frac{\text{Cells 5 and 6:}}{\text{CPICH}_\text{Ec/lor} = -10 \text{ dB}}$ $\frac{\text{PCCPCH}_\text{Ec/lor} = -12 \text{ dB}}{\text{SCH}_\text{Ec/lor} = -12 \text{ dB}}$ $\frac{\text{PICH}_\text{Ec/lor} = -15 \text{ dB}}{\text{PICH}_\text{Ec/lor} = -15 \text{ dB}}$	<u>-0.80 dB</u> <u>-0.80 dB</u> <u>-0.80 dB</u> <u>-0.80 dB</u>	Ec/lor ratio + TT Ec/lor ratio + TT Ec/lor ratio + TT Ec/lor ratio + TT
	$\frac{\text{Channel 2 during T1:}}{\text{lor}(2) = -67.75 \text{ dBm}}$ $\frac{\text{lor}(5, 6) = -74.75 \text{ dBm}}{\text{loc}(2) = -70.00 \text{ dBm}}$	Channel 2 during <u>T1:</u> +0.75 dB for lor(2) -0.05 dB for lor(5, 6) -1.80 dB for loc(2)	$\frac{\text{Channel 2 during T1:}}{\text{lor(2) + TT}}$ $\frac{\text{lor(5, 6) + TT}}{\text{loc(2) + TT}}$
	$\frac{\text{Channel 2 during T2:}}{\text{lor(2)} = -73.39 \text{ dBm}}$ $\frac{\text{lor(5, 6)} = -77.39 \text{ dBm}}{\text{loc(2)} = -70.00 \text{ dBm}}$	<u>Channel 2 during</u> <u>T2:</u> -0.01 dB for lor(2) -0.01 dB for lor(5.6) 0.00 dB for loc(2)	$\frac{\text{Channel 2 during T2:}}{\text{lor(2) + TT}}$ $\frac{\text{lor(5, 6) + TT}}{\text{loc(2) + TT}}$

			(CHANGE	EREG	UE	ST				CR-Form-v7
¥		34.121	CR	302	ж rev	1	ж	Current vers	ion:	5.1.1	ж
For <mark>HELP</mark> of	n us	sing this fo	m, see	bottom of thi	is page o	r look i	at the	e pop-up text	over	the	nbols.
Proposed chang	ye a	ffects:	JICC a	pps#	ME	<mark><!--</mark--> Rac</mark>	lio Ad	ccess Networ	·k 📃	Core Ne	etwork
Title:	ж	Introducti 8.3.6.2	on of T	est Tolerance	es to Cell	Resel	ectio	n in CELL_P	CH te	ests 8.3.6.	1&
Source:	ж	Racal Ins	trumer	nts							
Work item code.	: H							<i>Date:</i> ೫	23/	10/2003	
Category:		F (cor A (cor B (ada C (fun D (edi	rection) respond dition of ctional torial m planatio	ds to a correction feature), modification of odification) ns of the above	on in an ea feature)		elease	Release: # Use <u>one</u> of 2 (*) R96 R97 R98 R99 Rel-4 Rel-5 Rel-6	the fol (GSM (Relea (Relea (Relea (Relea (Relea	-	eases:
Reason for char	nge			equirements d							ainties

 Summary of change: #
 a) Introduction of table 8.3.6.1.3 giving correct RF conditions for test

 b) Revision of table 8.3.6.2.3 giving correct RF conditions for test

 c) Revision of Annex F.2 table F2.4 to define Test Tolerances

 d) Revision of Annex F.4 table F4.4 to refer to derivation of test requirements

 Consequences if not approved:
 #

Clauses affected:	第 <mark>8.3.6 and Annex F</mark>
Other specs affected:	Y N ℋ ✓ Other core specifications ೫ ✓ Test specifications ✓ O&M Specifications
Other comments:	% No revision necessary to Annex 1.5, since this already refers to similar clauses.

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked # contain pop-up help information about the field that they are closest to.
- Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be

downloaded from the 3GPP server under http://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

8.3.6 Cell Re-selection in CELL_PCH

8.3.6.1 One frequency present in the neighbour list

8.3.6.1.1 Definition and applicability

The cell re-selection delay is defined as the time from a change of cell levels to the moment when this change makes the UE camp on a new cell, and starts to send preambles on the PRACH for the CELL UPDATE message with cause value "cell reselection" in the new cell.

The requirements and this test apply to the FDD UE.

8.3.6.1.2 Minimum requirements

The cell re-selection delay shall be less than 8 s with a DRX cycle length of 1.28 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

NOTE: The cell re-selection delay can be expressed as: $T_{evaluateFDD} + T_{SI}$, where:

TevaluateFDD	See table 4.1 in TS 25.133 [2] clause 4.2.2.
T _{SI}	Maximum repetition period of relevant system info blocks that needs to be received
	by the UE to camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

The normative reference for this requirement is TS 25.133 [2] clauses 5.6.2 and A.5.6.1.

8.3.6.1.3 Test purpose

To verify that the UE meets the minimum requirements and is capable of camping on to a new cell, within the required time, when the preferred cell conditions change.

8.3.6.1.4 Method of test

8.3.6.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

This scenario implies the presence of 1 carrier and 6 cells as given in tables 8.3.6.1.1 to and 8.3.6.1.32. The UE is requested to monitor neighbouring cells on 1 carrier. The maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell shall be 1280 ms.

Table 8.3.6.1.1: General test parameters for Cell Re-selection in CELL_PCH, one freq. in neighbour list

	Parameter	Unit	Value	Comment
initial	Active cell		Cell2	
condition	Neighbour cells		Cell1, Cell3,Cell4,	
final condition	Active cell		Cell5, Cell6 Cell1	
Access Service Class (ASC#0) - Persistence value		-	1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.
HCS				Not used
DRX cycle	length	S	1.28	The value shall be used for all cells in the test.
T1		s 15		T1 need to be defined so that cell re-selection reaction time is taken into account.
T2		S	15	T2 need to be defined so that cell re-selection reaction time is taken into account.

Table 8.3.6.1.2: Cell specific test parameters for Cell re-selection in CELL_PCH state, one freq. in neighbour list

Parameter	Unit	Ce	ell 1	Ce	12	Cel	13	Ce	II 4	Ce	ell 5	Ce	ll 6		
Farameter	Unit	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2		
UTRA RF Channel Number		Chann	Channel 1		Channel 1 Ch		el 1	Channel 1		Channel 1		Channel 1			
CPICH_Ec/lor	dB	-10 -10		-10		-10		-10		-10		-10			
PCCPCH_Ec/lor	dB	-12		-12		-12		-12		-12		-12			
SCH_Ec/lor	dB	-12		-12		-12		-12		-12		-12			
PICH_Ec/lor	dB	-15		-15		-15		-15		-15		-15			
OCNS_Ec/lor	dB	-0.941		-0.941		-0.941		-0.941		-0.941		-0.941			
\hat{I}_{or}/I_{oc}	dB	7.3	10.27	10.27	7.3	0.27		0.27		0.27		0.27			
$\hat{I}_{or (Note 1)}$	<u>dBm</u>	<u>-62.73</u>	<u>-59.73</u>	<u>-59.73</u>	<u>-59.73</u> <u>-</u> 62.73 <u>-</u>			<u>-69.73</u>		<u>-69.73</u>	,	<u>-69.73</u>	3		
I _{oc}	dBm/ 3.84MHz	-70													
CPICH_Ec/lo	dB	-16 -13 -13 -16		-23	23 -23		-23		-23						
Propagation Condition							AW	GN							
Cell_selection_and_ reselection_quality_ measure		CPICH	E _c /N ₀	CPICH	E _c /N ₀	CPICH E ₀ /N ₀ CPICH E ₀ /N ₀		I E₀/N₀	CPICH E _c /N ₀		CPICH E _c /N ₀	4			
Qqualmin	dB	-2	20	-2	0	-20 -20		20	-20		-2	20			
Qrxlevmin	dBm	-1	15	-1	15	-11	5	-1	-115		-115		-115		
UE_TXPWR_ MAX_RACH	dBm	2	21	2	1	2′	21		21		21		1		
Qoffset2 _{s, n}	dB	C1, C1, C1,	C2: 0 C3: 0 C4: 0 C5: 0 C6: 0	C2, C1: 0 C2, C3: 0 C2, C4: 0 C2, C5: 0 C2, C6: 0		C3, C1: 0 C3, C2: 0 C3, C4: 0 C3, C5: 0 C3, C6: 0		C3, C2: 0 C4, C2 C3, C4: 0 C4, C3 C3, C5: 0 C4, C5		C5, C5, C5,	C1: 0 C2: 0 C3: 0 C4: 0 C6: 0	C6, 0 C6, 0 C6, 0 C6, 0 C6, 0	C2: 0 C3: 0 C4: 0		
Qhyst2	dB		0	C			0		0		,		0)
Treselection	S		0	0)	0		()		0	C)		
Sintrasearch	dB	not	sent	not s	sent	not s	ent	not	sent	not	not sent		sent		

Note 1 The nominal Îor values, although not explicitly defined in 25.133 are added here since they are implied and need to be identified so that the test equipment can be configured.

8.3.6.1.4.2 Procedure

1) The SS activates cell 1-6 with T1 defined parameters in table 8.3.6.1.32 and monitors cell 1 and 2 for random access requests from the UE.

5

2) The UE is switched on.

- 3) An RRC connection is set up according to the generic set-up procedure specified in TS 34.108 [3] subclause 7.3.3 to place the UE in the CELL_PCH state on Cell 2 and then the SS waits for this process to complete.
- After 15 s from the completion of step 3 or the beginning of T1, the parameters are changed to those defined for T2 in table 8.3.6.1.32.
- 5) If the UE responds on Cell 1 with a PRACH (CELL UPDATE message cause "cell reselection") within 8s, then a success is recorded, the SS shall transmit a CELL UPDATE CONFIRM message and then the procedure moves to step 7.
- 6) Since the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The SS shall then wait for a total of 15s from the beginning of T2 and if no response is received, the UE shall be switched off and the procedure returns to step 1. Otherwise the SS shall transmit a CELL UPDATE CONFIRM message and then the procedure continues with step 7.
- 7) After a total of 15 s from the beginning of T2, the parameters are changed to those defined for T1 in table 8.3.6.1.32.
- 8) If the UE responds on Cell 2 with a PRACH (CELL UPDATE message cause "cell reselection") within 8s, then a success is recorded and the procedure moves to step 10.
- 9) Since the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The SS shall then wait for a total of 15s from the beginning of T1 and if no response is received the UE shall be switched off and the procedure returns to step 1. Otherwise the SS shall transmit a CELL UPDATE CONFIRM message and then the procedure continues with step 10.
- 10) Steps 4 to 10 are repeated until a total of [50] successes and failures have been recorded.
- NOTE: The time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell. Since the maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell is 1280ms and the maximum RRC procedure delay for reception system information block is 100ms, 1380 ms is assumed in this test case. Therefore this gives a total of 7.78s (Minimum requirement + 100ms), allow 8s in the test case.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

RADIO BEARER SETUP (Step 3)

Information Element	Value/remark
RRC State Indicator	CELL PCH
UTRAN DRX cycle length coefficient	7
Downlink information for each radio link	
- Primary CPICH info	
- Primary scrambling code	100

8.3.6.1.5 Test requirements

For the test to pass, the total number of successful attempts shall be more than 90% with a confidence level of [FFS]% of the cases.

Parameter	Unit	C	Cell 1		Cell 2		Cell 3		Cell 4		ell 5	Cell 6		
		<u>T1</u>	T2	<u>T1</u>	<u>T2</u>	<u>T1</u>	<u>T1</u> <u>T2</u>		<u>T1</u> <u>T2</u>		<u>T2</u>	<u>T1</u>	T2	
UTRA RF Channel Number		<u>Chan</u>	<u>nel 1</u>	Channe	Channel 1		Channel 1		Channel 1		Channel 1		Channel 1	
CPICH_Ec/lor	<u>dB</u>	-9.4	<u>9.4</u> <u>-9.4</u> <u>-1</u>			-10.5		<u>-10.5</u>		<u>-10.5</u>		-10.5		
PCCPCH_Ec/lor	<u>dB</u>	<u>-11.4</u>		<u>-11.4</u>		<u>-12.5</u>		<u>-12.5</u>		<u>-12.5</u>		<u>-12.5</u>	-12.5	
SCH_Ec/lor	<u>dB</u>	<u>-11.4</u>	<u>-11.4</u> <u>-11.4</u>			<u>-12.5</u>		<u>-12.5</u>				<u>-12.5</u>		
PICH_Ec/lor	<u>dB</u>	<u>-14.4</u>		<u>-14.4</u>		<u>-15.5</u> <u>-15.5</u>			<u>-15.5</u>		<u>-15.5</u>			
OCNS_Ec/lor	<u>dB</u>	<u>-1.10</u>		<u>-1.10</u>		<u>-0.83</u>	<u>-0.83</u> <u>-0.83</u>			<u>-0.83</u>		<u>-0.83</u>		
\hat{I}_{or}/I_{oc} <u>Note 1</u>	<u>dB</u>	<u>7.00</u>	<u>10.40</u>	<u>10.40</u>	<u>7.00</u>	<u>0.30</u>		<u>0.30</u>		<u>0.30</u>		<u>0.30</u>		
$\underline{\hat{I}}_{or}$	<u>dBm</u>	<u>-</u> <u>63.0</u>	<u>-59.6</u>	<u>-59.6</u>	<u>-63.0</u>	<u>-69.7</u>		<u>-69.7</u>		<u>-69.7</u>		<u>-69.7</u>		
Ioc	<u>dBm /</u> <u>3,84 MHz</u>		<u>-70</u>											
<u>CPICH_Ec/lo_Note</u> <u>1</u>	<u>dB</u>	<u>-</u> 15.7	<u>-12.3</u>	<u>-12.3</u>	<u>-15.7</u>	<u>-23.5</u>		<u>-23.5</u> <u>-23.5</u>		<u>-23.5</u>		<u>-23.5</u>		

Table 8.3.6.1.3: Cell specific test requirements for Cell re-selection in CELL_PCH state, one freq. in neighbour list

All other parameters and conditions specified in table 8.3.6.1.2 are unchanged.

NOTE 1: These parameters are not directly settable, but are derived by calculation from the settable parameters.

NOTE <u>2</u>: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.3.6.2 Two frequencies present in the neighbour list

8.3.6.2.1 Definition and applicability

The cell re-selection delay is defined as the time from a change of cell levels to the moment when this change makes the UE camp on a new cell, and starts to send preambles on the PRACH for the CELL UPDATE message with cause value "cell reselection" in the new cell.

The requirements and this test apply to the FDD UE.

8.3.6.2.2 Minimum requirement

The cell re-selection delay shall be less than 8 s with a DRX cycle length of 1.28 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

NOTE: The cell re-selection delay can be expressed as: $T_{evaluateFDD} + T_{SI}$, where:

T _{evaluateFDD}	See table 4.1 in TS 25.133 [2] clause 4.2.2.
T _{SI}	Maximum repetition period of relevant system info blocks that needs to be received by
	the UE to camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

The normative reference for this requirement is TS 25.133 [2] clauses 5.6.2 and A.5.6.2.

8.3.6.2.3 Test purpose

To verify that the UE meets the minimum requirement and is capable of camping on to a new cell, within the required time, when the preferred cell conditions change.

8.3.6.2.4 Method of test

8.3.6.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

This scenario implies the presence of 2 carriers and 6 cells as given in tables 8.3.6.2.1 to and 8.3.6.2.32. The UE is requested to monitor neighbouring cells on 2 carriers. The maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell shall be 1 280 ms.

Table 8.3.6.2.1: General test parameters for Cell Re-selection in CELL_PCH, two freqs. in neighbour list

7

	Parameter	Unit	Value	Comment
initial	Active cell		Cell2	
condition	Neighbour cells		Cell1, Cell3,Cell4, Cell5, Cell6	
final condition			Cell1	
Access Service Class (ASC#0) - Persistence value		-	1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.
HCS				Not used
DRX cycle	vcle length		1.28	The value shall be used for all cells in the test.
T1		S	15	T1 need to be defined so that cell re- selection reaction time is taken into account.
T2		S	15	T2 need to be defined so that cell re- selection reaction time is taken into account.

Parameter	Unit		ell 1	Ce	ell 2	Ce	13	Ce	II 4	Cell		Ce	ell 6	
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	
UTRA RF Channel Number		Chan	hannel 1 C		Channel 2		Channel 1		Channel 1		Channel 2		Channel 2	
CPICH_Ec/lor	dB	-10	-10 -10 -1			-10		-10		-10		-10		
PCCPCH_Ec/lor	dB	-12		-12		-12		-12		-12		-12		
SCH_Ec/lor	dB	-12		-12		-12		-12		-12			-12	
PICH_Ec/lor	dB	-15		-15		-15		-15		-15		-15		
OCNS_Ec/lor	dB	-0.94	1	-0.94	1	-0.941		-0.941		-0.941	T	-0.941		
\hat{I}_{or}/I_{oc}	dB	-3.4	2.2	2.2	-3.4	-7.4	-4.8	-7.4	-4.8	-4.8	-7.4	-4.8	-7.4	
<u>Îor (Note 1)</u>	<u>dBm</u>	<u>-</u> <u>73.3</u> <u>9</u>	<u>-</u> 67.75	<u>-</u> <u>67.7</u> <u>5</u>	<u>-</u> <u>73.39</u>	<u>-</u> 77.39	<u>-</u> <u>74.7</u> <u>5</u>	<u>-</u> 77.39	<u>-</u> <u>74.75</u>	<u>-74.75</u>	<u>-</u> <u>77.39</u>	<u>-</u> <u>74.7</u> <u>5</u>	<u>-</u> <u>77.39</u>	
I _{oc}	dBm/3.8 4 MHz	-70												
CPICH_Ec/lo	dB	-16	-16 -13 -13 -16			-20		-20		-20		-20		
Propagation Condition		AWGN												
Cell_selection_ and_reselection_ quality_measure		CPIC E _c /N ₀		CPICH E _c /N ₀		CPICH E _c /N ₀		CPICH E _c /N ₀		CPICH E _c /N ₀		CPICH E _c /N ₀		
Qqualmin	dB	-:	20	-:	20	-2	0	-20		-20		-20		
Qrxlevmin	dBm	-1	15	-1	15	-11	15	-1	15	-11	5	-115		
UE_TXPWR_ MAX_RACH	dBm	2	21	2	21	2	1	21		21		2	21	
			C2: 0		C1: 0	C3, C			C1: 0	C5, C			C1: 0	
0 11 10	10		C3: 0		C3: 0	C3, C		C4, 0		C5, C			C2: 0	
Qoffset2 _{s, n}	dB		C4: 0		C4: 0	C3, C		C4, 0		C5, C C5, C			C3: 0	
C1, C5: 0 C2, C C1, C6: 0 C2, C			C3, C5: 0 C3, C6: 0			C4, C5: 0				C4: 0 C5: 0				
Qhyst2	dB		0		0	03,0		C4, C6: 0 0		C5, C6: 0 0			0	
Treselection	S S		0		0			0		0			0	
Sintrasearch	dB		sent		sent	nots		not sent		not sent		not sent		
Sintersearch	dB		sent		sent				sent	not sent		not sent		

Table 8.3.6.2.2: Cell specific test parameters for Cell re-selection in CELL_PCH state, two freqs. in neighbour list

The nominal lor values, although not explicitly defined in 25.133 are added here since they are implied Note 1 and need to be identified so that the test equipment can be configured.

8.3.6.2.4.2 Procedure

- 1) The SS activates cell 1-6 with T1 defined parameters in table 8.3.6.2.3 and monitors cell 1 and 2 for random access requests from the UE.
- 2) The UE is switched on.
- 3) A RRC connection is set up according the generic set-up procedure specified in TS 34.108 [3] subclause 7.3.3 to place the UE in CELL_PCH state on cell 2. The SS waits for this process to complete.
- 4) After 15 s from the completion of step 3 or the beginning of T1, the parameters are changed to those defined for T2 in table 8.3.6.2.3.
- 5) If the UE responds on Cell 1 with a PRACH (CELL UPDATE message cause "cell reselection") within 8s, then a success is recorded, the SS shall transmit a CELL UPDATE CONFIRM message and then the procedure moves to step 7.
- 6) Since the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The SS shall then wait for a total of 15s from the beginning of T2 and if no response is received the UE shall be switched off and the procedure returns to step 1. Otherwise the SS shall transmit a CELL UPDATE CONFIRM message and then the procedure continues with step 7.
- 7) After a total of 15 s from the beginning of T2, the parameters are changed to those defined for T1 in table 8.3.6.2.3.

- 8) If the UE responds on Cell 2 with a PRACH (CELL UPDATE message cause "cell reselection") within 8s, then a success is recorded and the procedure moves to step 10.
- 9) Since the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The SS shall then wait for a total of 15s from the beginning of T1 and if no response is received the UE shall be switched off and the procedure returns to step 1. Otherwise the SS shall transmit a CELL UPDATE CONFIRM message and then the procedure continues with step 10.
- 10) Steps 4 to 10 are repeated until a total of [50] successes and failures have been recorded.
- NOTE: The time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell. Since the maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell is 1280ms and the maximum RRC procedure delay for reception system information block is 100ms, 1380 ms is assumed in this test case. Therefore this gives a total of 7.78s(Minimum requirement + 100ms), allow 8s in the test case.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

RADIO BEARER SETUP (Step 3)

Information Element	Value/remark
RRC State Indicator	CELL PCH
UTRAN DRX cycle length coefficient	7
Downlink information for each radio link	
- Primary CPICH info	
- Primary scrambling code	100

8.3.6.2.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

Table 8.3.6.2.3: Cell specific tTest requirementsparameters for Cell re-selection in CELL_PCH state, multi carrier multi cell, two freqs. in neighbour list

Parameter	Unit	Ce	Cell 1		Cell 2		Cell 3		II 4	Cell 5		Cell 6	
		<u>T1</u>	<u>T2</u>										
<u>UTRA RF Channel</u> Number		Chann	hannel 1 C		Channel 2		Channel 1		Channel 1		<u>iel 2</u>	Channel 2	
CPICH_Ec/lor	dB	-9	-9.3		-9.3		<u>-10.8</u>		<u>-10.8</u>		<u>-10.8</u>).8
PCCPCH_Ec/lor	<u>dB</u>	-1	<u>-11.3</u>		<u>1.3</u>	-12.8		<u>-12.8</u>		<u>-12.8</u>		<u>-12.8</u>	
<u>\$CH_Ec/lor</u>	<u>dB</u>	-1	<u>-11.3</u>		<u>1.3</u>	<u>-12.8</u>		<u>-12.8</u>		<u>-12.8</u>		-12	<u>2.8</u>
PICH_Ec/lor	<u>dB</u>	-1-	<u>4.3</u>	<u>-14.3</u>		<u>-15.8</u>		<u>-15.8</u>		<u>-15.8</u>		<u>-15.8</u>	
OCNS_Ec/lor	<u>dB</u>	<u>-1</u>	. <u>13</u>	<u>-1</u> .	. <u>13</u>	<u>-0</u> .	.77	<u>-0</u> .	.77	<u>-0.</u>	.77	<u>-0.</u>	77
\hat{I}_{or}/I_{oc} <u>Note 1</u>	<u>dB</u>	<u>-3.40</u>	<u>+4.80</u>	<u>+4.80</u>	<u>-3.40</u>	<u>-7.40</u>	<u>-3.00</u>	<u>-7.40</u>	<u>-3.00</u>	<u>-3.00</u>	<u>-7.40</u>	<u>-3.00</u>	<u>-7.40</u>
\hat{I}_{or}	<u>dBm</u>	<u>-73.4</u>	<u>-67.0</u>	<u>-67.0</u>	<u>-73.4</u>	<u>-77.4</u>	<u>-74.8</u>	<u>-77.4</u>	<u>-74.8</u>	<u>-74.8</u>	<u>-77.4</u>	<u>-74.8</u>	<u>-77.4</u>
Loc	<u>dBm/3.8</u> <u>4 MHz</u>	<u>-70.0</u>	<u>-71.8</u>	<u>-71.8</u>	<u>-70.0</u>	<u>-70.0</u>	<u>-71.8</u>	<u>-70.0</u>	<u>-71.8</u>	<u>-71.8</u>	<u>-70.0</u>	<u>-71.8</u>	<u>-70.0</u>
CPICH_Ec/lo Note	<u>dB</u>	<u>-15.3</u>	<u>-11.5</u>	<u>-11.5</u>	<u>-15.3</u>	<u>-20.8</u>							

All other parameters and conditions specified in table 8.3.6.2.2 are unchanged.

NOTE 1: These parameters are not directly settable, but are derived by calculation from the settable parameters.

NOTE <u>2</u>: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

Annex F (normative): General test conditions and declarations

The requirements of this clause apply to all applicable tests in the present document.

Many of the tests in the present document measure a parameter relative to a value that is not fully specified in the UE specifications. For these tests, the Minimum Requirement is determined relative to a nominal value specified by the manufacturer.

11

When specified in a test, the manufacturer shall declare the nominal value of a parameter, or whether an option is supported.

In all the relevant clauses in this clause all Bit Error Ratio (BER), Block Error Ratio (BLER), False transmit format Detection Ratio (FDR) measurements shall be carried out according to the general rules for statistical testing in clause F.6.

F.2 Test Tolerances (This clause is informative)

The Test Tolerances defined in this clause have been used to relax the Minimum Requirements in the present document to derive the Test Requirements.

The Test Tolerances are derived from Test System uncertainties, regulatory requirements and criticality to system performance. As a result, the Test Tolerances may sometimes be set to zero.

The test tolerances should not be modified for any reason e.g. to take account of commonly known test system errors (such as mismatch, cable loss, etc.).

F.2.4 Requirements for support of RRM

Clause	Test Tolerance						
8.3.6 Cell Re-selection in CELL_PCH							
8.3.6.1 One frequency present in the	Same as 8.2.2.1						
neighbour list	$\frac{0.3 \text{ dB for } \hat{I}_{or}/I_{oc}}{2}$						
	0.1 dB for CPICH_Ec/lor						
8.3.6.2 Two frequencies present in the	Same as 8.2.2.2						
neighbour list	0.3 dB for \hat{H}_{or}/H_{oc}						
	0.1 dB for CPICH_Ec/lor						

Table F.2.4: Test Tolerances for Radio Resource Management Tests

F.4 Derivation of Test Requirements (This clause is informative)

The Test Requirements in the present document have been calculated by relaxing the Minimum Requirements of the core specification using the Test Tolerances defined in clause F.2. When the Test Tolerance is zero, the Test Requirement will be the same as the Minimum Requirement. When the Test Tolerance is non-zero, the Test Requirements will differ from the Minimum Requirements, and the formula used for this relaxation is given in table F.4.

Test	Test Parameters in TS 25.133	Test Tolerance (TT)	Test Requirement in TS 34.121
8.3.6 Cell Re-selection in CELL_PCH			
8.3.6.1 One frequency present in the neighbour list	Same as 8.2.2.1 <u>CPICH_E_c</u> = 10 dB I_{or} I_{oc} = 70 dBm lor/loc = 7.3 dB Note: Parameters are valid for cell 1 at time T1 and cell 2 at time T2	Same as 8.2.2.1 0.1 dB for <u>CPICH _ E_c</u> I_{or} 0.3 dB for lor/loc	Same as 8.2.2.1 Formulas: $\frac{CPICH _ E_c}{I_{or}} = ratio - TT$ I_{or} Ior/loc = ratio - TT $\frac{I_{oc} \text{ unchanged}}{I_{oc}}$ Ior/loc = 7 dB $\frac{CPICH _ E_c}{I_{or}} = 10.1 \text{ dB};$ I_{or}
8.3.6.2 Two frequencies present in the neighbour list	Same as 8.2.2.2 <u>CPICH_E_c</u> = -10 dB I_{or} I_{oc} = -70 dBm lor/loc = -3.4 dB Note: Parameters are valid for cell 1 at time T1 and cell 2 at time T2	$\frac{\text{Same as 8.2.2.2}}{\text{0.1 dB for}}$ $\frac{CPICH_E_c}{I_{or}}$ 0.3 dB for lor/loc	$\frac{\text{Same as 8.2.2.2}}{\text{Formulas:}}$ $\frac{\underline{CPICH}_{E_c}}{I_{or}} = \text{ratio} - \text{TT}$ $\frac{\text{Ior/loc} = \text{ratio} - \text{TT}}{\text{Ioc} \text{ unchanged}}$ $\frac{\text{Ioc} \text{ ratio} \text{ unchanged}}{\text{Ioc} \text{ ratio} \text{ unchanged}}$ $\frac{\text{Ior/loc} = -3.7 \text{ dB}}{I_{or}}$

Table F.4.4: Derivation of Test Requirements (RRM tests)

12

			(CHANGE			IE	ст	•						CR-Form-v7
			•			Q	JC	31							
ж		34.121	CR	329	жre	v	-	ж	Cu	rrent	vers	ion:	5.1	.1	Ħ
For <u>HELP</u> or	n u	sing this for	m, see	bottom of thi	is page	or la	ook .	at th	ie po	p-up	text	over	the ¥	syn	nbols.
Proposed change affects: UICC apps ₩ ME ✓ Radio Access Network Core Network															
r roposcu onung	,			.pp000	WIL .	-	nuc			55 140					
Title:	Ħ	Introducti 8.3.7.2	on of T	est Tolerance	es to Ce	ell R	esel	ectio	on in	UR/	A_PC	CH te	sts 8.3	.7.1	&
Source:	ж	Racal Ins	trumer	nts											
Work item code:	:Ж									Date	е: Ж	05/	<mark>11/200</mark>)3	
Category:	ж	F							Re	leas	е: Ж	Re	I-5		
				owing categorie	es:				L				llowing		ases:
		F (con		ds to a correctio	nn in an	earli	ier re	leas	<u>م</u>)	2 R96			/ Phase ase 19		
				feature),	on in an	cum	0/ /0	1000	0)	R97		•	ease 19		
				modification of	feature)					R98			ease 19		
				odification)	,					R99			ease 19		
				ons of the above	e catego	ries	can			Rel			ease 4)	,	
		be found in	3GPP	<u>FR 21.900</u> .						Rel	-		ease 5)		
										Rel	-6	(Rele	ease 6)		
Reason for char	nge	: X The	Test re	equirements d	o not al	llow	for	the e	effec	ts of	test s	syste	m unc	erta	inties
_										_					
Summary of cha	ang	,		tion of table 8.											

		 c) Revision of Annex F.2 table F2.4 to define Test Tolerances d) Revision of Annex F.4 table F4.4 to refer to derivation of test requirements
Consequences if not approved:	ж	A Test system may incorrectly fail a good UE.

Clauses affected:	Ж	8.3.7 and Annex F
Other specs affected:	¥	Y N ✓ Other core specifications ✓ Test specifications ✓ O&M Specifications
Other comments:	æ	No revision necessary to Annex 1.5, since this already refers to similar clauses.

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked # contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be

downloaded from the 3GPP server under http://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

8.3.7 Cell Re-selection in URA_PCH

8.3.7.1 One frequency present in the neighbour list

8.3.7.1.1 Definition and applicability

The cell re-selection delay is defined as the time from a change of cell levels to the moment when this change makes the UE camp on a new cell, and starts to send preambles on the PRACH for the URA UPDATE message with cause value "URA reselection" in the new cell.

The requirements and this test apply to the FDD UE.

8.3.7.1.2 Minimum requirement

The cell re-selection delay shall be less than 8 s with a DRX cycle length of 1.28 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

NOTE: The cell re-selection delay can be expressed as: $T_{evaluateFDD} + T_{SI}$, where:

TevaluateFDD	See table 4.1 in TS 25.133 [2] clause 4.2.2.
T _{SI}	Maximum repetition period of relevant system info blocks that needs to be received
	by the UE to camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

The normative reference for this requirement is TS 25.133 [2] clauses 5.7.2 and A.5.7.1.

8.3.7.1.3 Test purpose

To verify that the UE meets the minimum requirement and is capable of camping on to a new cell, within the required time, when the preferred cell conditions change.

8.3.7.1.4 Method of test

8.3.7.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

This scenario implies the presence of 1 carrier and 6 cells as given in tables 8.3.7.1.1 toand 8.3.7.1.32. The UE is requested to monitor neighbouring cells on 1 carrier. The maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell shall be 1 280 ms. In System Information Block Type 2 cell1 and cell 2 URA identity is set to a different value.

	Parameter	Unit	Value	Comment
Initial	Active cell		Cell2	
condition	Neighbour cells		Cell1, Cell3,Cell4, Cell5, Cell6	
Final condition	Active cell		Cell1	
SYSTEM I TYPE 2 - URA ider - URA ider	5	-	0000 0000 0000 0001(B) (Cell 1) 0000 0000 0000 0002(B) (Cell 2)	
Access Se - Persisten	rvice Class (ASC#0) ce value	-	1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.
HCS				Not used
DRX cycle	length	S	1,28	The value shall be used for all cells in the test.
T1		S	15	T1 need to be defined so that cell re- selection reaction time is taken into account.
T2		S	15	T2 need to be defined so that cell re- selection reaction time is taken into account.

Table 8.3.7.1.1: General test parameters for Cell Re-selection in URA_PCH, one freq. in neighbour list

Table 8.3.7.1.2: Cell specific test parameters for Cell re-selection in URA_PCH state, one freq. in neighbour list

Parameter	Unit	Ce	ell 1	Cell	2	C	ell 3	Cel	4	C	ell 5	Ce	ell 6		
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2		
UTRA RF Channel Number		Chanr	nel 1	Channel	Channel 1		Channel 1		el 1	Channel 1		Channel 1			
CPICH_Ec/lor	dB	-10		-10		-10		-10		-10		-10			
PCCPCH_Ec/lor	dB	-12		-12		-12		-12		-12		-12	-12		
SCH_Ec/lor	dB	-12		-12		-12		-12		-12		-12			
PICH_Ec/lor	dB	-15		-15		-15		-15		-15		-15			
OCNS_Ec/lor	dB	-0,941		-0,941		-0,941		-0,941		-0,941		-0,941			
\hat{I}_{or}/I_{oc}	dB	7,3	10,27	10,27	7,3	0,27		0,27		0,27		0,27			
$\hat{I}_{or (Note 1)}$	<u>dBm</u>	<u>-62.73</u>	<u>-59.73</u>	<u>-59.73</u>	<u>-</u> 62.73	<u>-69.7</u>	<u>'3</u>	<u>-69.73</u>		<u>-69.73</u>	<u>.</u>	<u>-69.73</u>	3		
I _{oc}	dBm / 3,84 MHz	-70			· · · · · · · · · · · · ·										
CPICH_Ec/lo	dB	-16	-13	-13	-16	-23 -23		-23	-23						
Propagation Condition							AW	GN							
Cell_selection_and_ reselection_quality_ measure		CPICH	ΗE _c /N₀	CPICH E	c∕N₀	CPICH E _c /N ₀		CPICH	E _c /N ₀	CPICH E _c /N ₀		CPICH	IE _c /N ₀		
Qqualmin	dB	-2	20	-20)	-	20	-20)	-	20	-20			
Qrxlevmin	dBm	-1	15	-11	5	-1	15	-11	5	-1	15	-1	15		
UE_TXPWR_MAX_ RACH	dB	2	21	21			21	21			21	2	:1		
Qoffset2 _{s, n}	dB	C1, C1, C1, C1,	C2: 0 C3: 0 C4: 0 C5: 0 C6: 0	C2, C C2, C C2, C	C2, C1: 0 C2, C3: 0 C2, C4: 0 C2, C5: 0 C2, C6: 0		C3, C1: 0 C3, C2: 0 C3, C4: 0 C3, C5: 0 C3, C6: 0		C3, C2: 0 C3, C4: 0 C4, C2: C4, C3: C3, C5: 0 C4, C5:		2: 0 3: 0 5: 0	C5, C5, C5,	C1: 0 C2: 0 C3: 0 C4: 0 C6: 0	C6, 0 C6, 0 C6, 0	C1: 0 C2: 0 C3: 0 C4: 0 C5: 0
Qhyst2	dB		0	0		0		0				0			
Treselection	S		0	0		_	0	0		0 0		0			
Sintrasearch	dB	not	sent	not se	ent	not	sent	not s	ent	not	sent	not	not sent		

Note 1 The nominal Îor values, although not explicitly defined in 25.133 are added here since they are implied and need to be identified so that the test equipment can be configured.

8.3.7.1.4.2 Procedure

- 1) The SS activates cell 1-6 with T1 defined parameters in table 8.3.7.1.<u>3</u>² and monitors cell 1 and 2 for random access requests from the UE.
- 2) The UE is switched on.
- 3) An RRC connection is set up according to the generic set-up procedure specified in TS 34.108 [3] subclause 7.3.3 to place the UE in the URA_PCH state on Cell 2 and then the SS waits for this process to complete.
- 4) After 15 s from the completion of step 3 or the beginning of T1, the parameters are changed to those defined for T2 in table 8.3.7.1.<u>3</u>2.
- 5) If the UE responds on Cell 1 with a PRACH (URA UPDATE message cause "URA reselection") within 8s, then a success is recorded, the SS shall transmit a URA UPDATE CONFIRM message and then the procedure moves to step 7.
- 6) Since the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The SS shall then wait for a total of 15s from the beginning of T2 and if no response is received, the UE shall be switched off and the procedure returns to step 1. Otherwise the SS shall transmit a URA UPDATE CONFIRM message and then the procedure continues with step 7.
- 7) After a total of another 15 s from the beginning of T2, the parameters are changed to those defined for T1 in table 8.3.7.1.<u>3</u>2.
- 8) If the UE responds on Cell 2 with a PRACH (URA UPDATE message cause "URA reselection") within 8s, then a success is recorded and the procedure moves to step 10.
- 9) Since the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The SS shall then wait for a total of 15s from the beginning of T1 and if no response is received the UE shall be switched off and the procedure returns to step 1. Otherwise the SS shall transmit a URA UPDATE CONFIRM message and then the procedure continues with step 10.
- 10) Steps 4 to 10 are repeated until a total of [TBD] successes and failures have been recorded.
- NOTE: The time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell. Since the maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell is 1280ms and the maximum RRC procedure delay for reception system information block is 100ms, 1380 ms is assumed in this test case. Therefore this gives a total of 7.78s(Minimum requirement + 100ms), allow 8s in the test case.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

RADIO BEARER SETUP (Step 3)

Information Element	Value/remark
RRC State Indicator	URA PCH
UTRAN DRX cycle length coefficient	7
Downlink information for each radio link	
- Primary CPICH info	
- Primary scrambling code	100

8.3.7.1.5 Test requirements

For the test to pass, the total number of successful attempts shall be more than 90% with a confidence level of [FFS]% of the cases.

Parameter	Unit	C	Cell 1		II 2	Cell 3		Cell 4		Cell 5		Cell 6		
		<u>T1</u>	<u>T2</u>	<u>T1</u>	<u>T2</u>	<u>T1</u>	<u>T2</u>	<u>T1</u> <u>T2</u>		<u>T1</u>	T2	<u>T1</u>	<u>T2</u>	
UTRA RF Channel Number		<u>Chan</u>	<u>nel 1</u>	Channe	Channel 1		Channel 1		<u>el 1</u>	Channel 1		Channel 1		
CPICH_Ec/lor	<u>dB</u>	-9.4		<u>-9.4</u>		-10.5		<u>-10.5</u>		<u>-10.5</u>		-10.5		
PCCPCH_Ec/lor	<u>dB</u>	<u>-11.4</u>		<u>-11.4</u>		<u>-12.5</u>		<u>-12.5</u>		<u>-12.5</u>		<u>-12.5</u>		
SCH_Ec/lor	<u>dB</u>	<u>-11.4</u>		<u>-11.4</u>		<u>-12.5</u> <u>-12.5</u>			<u>-12.5</u>		<u>-12.5</u>			
PICH_Ec/lor	<u>dB</u>	<u>-14.4</u>		<u>-14.4</u>		<u>-15.5</u>		<u>-15.5</u>		<u>-15.5</u>		<u>-15.5</u>		
OCNS_Ec/lor	<u>dB</u>	<u>-1.10</u>		<u>-1.10</u>		<u>-0.83</u>		<u>-0.83</u>		<u>-0.83</u>		<u>-0.83</u>		
\hat{I}_{or}/I_{oc} <u>Note 1</u>	<u>dB</u>	<u>7.00</u>	<u>10.40</u>	<u>10.40</u>	<u>7.00</u>	<u>0.30</u>		<u>0.30</u>		<u>0.30</u>		<u>0.30</u>		
$\hat{\underline{I}}_{or}$	<u>dBm</u>	<u>-</u> 63.0	<u>-59.6</u>	<u>-59.6</u>	<u>59.6</u> <u>-63.0</u>		<u>-69.7</u> <u>-69.7</u>			<u>-69.7</u>		<u>-69.7</u>		
Ioc	<u>dBm /</u> <u>3,84 MHz</u>					<u>-70</u>								
<u>CPICH_Ec/lo_Note</u> <u>1</u>	<u>dB</u>	<u>-</u> 15.7	<u>-12.3</u>	<u>-12.3</u>	<u>-12.3</u> <u>-15.7</u>		<u>-23.5</u>		<u>-23.5</u>		<u>-23.5</u>		<u>-23.5</u>	

Table 8.3.7.1.3: Cell specific test requirements for Cell re-selection in URA_PCH state, one freq. in neighbour list

All other parameters and conditions specified in table 8.3.7.1.2 are unchanged.

NOTE 1: These parameters are not directly settable, but are derived by calculation from the settable parameters.

NOTE <u>2</u>: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.3.7.2 Two frequencies present in the neighbour list

8.3.7.2.1 Definition and applicability

The cell re-selection delay is defined as the time from a change of cell levels to the moment when this change makes the UE camp on a new cell, and starts to send preambles on the PRACH for the URA UPDATE message with cause value "URA reselection" in the new cell.

The requirements and this test apply to the FDD UE.

8.3.7.2.2 Minimum requirement

The cell re-selection delay shall be less than 8 s with a DRX cycle length of 1.28 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

NOTE: The cell re-selection delay can be expressed as: $T_{evaluateFDD} + T_{SI}$, where:

T _{evaluateFDD}	See table 4.1 in TS 25.133 [2] clause 4.2.2.
T _{SI}	Maximum repetition period of relevant system info blocks that needs to be received by
	the UE to camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

The normative reference for this requirement is TS 25.133 [2] clauses 5.7.2 and A.5.7.2.

8.3.7.2.3 Test purpose

To verify that the UE meets the minimum requirement and is capable of camping on to a new cell, within the required time, when the preferred cell conditions change.

8.3.7.2.4 Method of test

8.3.7.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

This scenario implies the presence of 2 carriers and 6 cells as given in tables 8.3.7.2.1 toand 8.3.7.2.32. The UE is requested to monitor neighbouring cells on 2 carriers. The maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell shall be 1 280 ms. In System Information Block Type 2 in cell 1 and cell 2 URA identity is set to different value.

Table 8.3.7.2.1: General test parameters for Cell Re-selection in URA_PCH, two freqs. in neighbour list

	Parameter	Unit	Value	Comment
Initial	Active cell		Cell2	
condition	Neighbour cells		Cell1, Cell3,Cell4, Cell5, Cell6	
Initial condition	Active cell Cell2		Cell1	
SYSTEM I	NFORMATION		0000 0000 0000 0001(B) (Cell 1)	
BLOCK TY	′PE 2	-	0000 0000 0000 0002(B) (Cell 2)	
- URA iden	ntity list			
- URA iden	ntity			
Access Service Class (ASC#0)				Selected so that no additional delay is
 Persisten 	ice value	-	1	caused by the random access
				procedure. The value shall be used for
				all cells in the test.
HCS				Not used
DRX cycle	length	S	1,28	The value shall be used for all cells in
				the test.
	T1	S	15	T1 need to be defined so that cell re-
				selection reaction time is taken into
				account.
	T2	S	15	T2 need to be defined so that cell re-
				selection reaction time is taken into
				account.

Parameter	Unit	Cel	1	Ce	Cell 2		13	Cell 4		Cell 5		Cell 6		
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	
UTRA RF Channel		Chan	Channel 1		Channel 2		nol 1	Cha	Channel 1		Channel 2		Channel 2	
Number		Chan	Channel I				Channel 1		Channel I		Channel 2			
CPICH_Ec/lor	dB	-1	0	-1	0	-1	0	-	·10	-1	0	-10		
PCCPCH_Ec/lor	dB	-1			2		2		·12	-1			-12	
SCH_Ec/lor	dB	-1	2	-1	2	-1	2	-	·12	-1			-12	
PICH_Ec/lor	dB	-1	5	-1	15	-1	5	-	·15	-1	5		-15	
OCNS_Ec/lor	dB	-0.9	41	-0.9	941	-0.9	941	-0.	.941	-0.9)41	-(0.941	
\hat{I}_{or}/I_{oc}	dB	-3.4	2.2	2.2	-3.4	-7.4	-4.8	-7.4	-4.8	-4.8	-7.4	-4.8	-7.4	
$\hat{I}_{or(Note 1)}$	<u>dBm</u>	<u>-73.39</u>	<u>-</u> <u>67.7</u> <u>5</u>	<u>-</u> <u>67.7</u> <u>5</u>	<u>-</u> <u>73.3</u> <u>9</u>	<u>-</u> <u>77.3</u> <u>9</u>	<u>-</u> <u>74.7</u> <u>5</u>	<u>-</u> <u>77.3</u> 9	<u>-</u> <u>74.7</u> <u>5</u>	<u>-74.75</u>	<u>-</u> <u>77.3</u> <u>9</u>	<u>-</u> <u>74.7</u> <u>5</u>	<u>-77.39</u>	
I _{oc}	dBm / 3.84 MHz							-70						
CPICH_Ec/lo	dB	-16	-13	-13 -16		-20		-	20	-20		-20		
Propagation							/	WGN						
Condition							F	AWGIN						
Cell_selection_and														
-		CPICH	F ₂ /N ₂	CPICH		CPICH			CPICH		СН	CPIC	CH E₀/N₀	
reselection_quality		01 1011	-0.0	E₀/	E _c /N ₀		E _c /N ₀		E _c /N ₀		E _c /N ₀			
_measure			_		-		_							
Qqualmin	dB	-2	-	-2		-20		-20		-20		-20		
Qrxlevmin	dBm	-11	5	-1	15	-1	15	-1	115	-11	15		-115	
UE_TXPWR_MAX										-				
-	dB	21		2	1	2	1		21	2	1	21		
RACH		04.0		00.0	24.0	00.0	24.0	0.1	01.0	05.0	1.0	00	01.0	
		C1, C		C2, C		C3, 0			C1: 0	C5, C			, C1: 0	
Ooffoot2	٩D		C1, C3: 0		C3: 0	C3, 0			C2: 0	C5, C			, C2: 0	
Qoffset2 _{s, n}	dB		C1, C4: 0 C1, C5: 0		C4: 0	C3, 0 C3, 0			C3: 0 C5: 0	C5, C			, C3: 0	
		C1, C		C2, C5: 0 C2, C6: 0		C3, C			C5: 0 C6: 0	C5, C4: 0 C5, C6: 0		C6, C4: 0 C6, C5: 0		
Qhyst2	dB	01,0		02,0		03,0			0	03, 0		00	0	
Treselection	s	0		(0	0		0		
Sintrasearch	dB	not s		not					sent	not sent		nc	ot sent	
Sintersearch	dB	not s		not		not sent not sent			not sent		not sent		not sent	

Table 8.3.7.2.2: Cell specific test parameters for Cell Re-selection in URA_PCH state, two freqs. in neighbour list

Note 1 The nominal lor values, although not explicitly defined in 25.133 are added here since they are implied and need to be identified so that the test equipment can be configured.

8.3.7.2.4.2 Procedures

- 1) The SS activates cell 1-6 with T1 defined parameters in table 8.3.7.2.3 and monitors cell 1 and 2 for random access requests from the UE.
- 2) The UE is switched on.
- 3) An RRC connection is set up according the generic set-up procedure specified in TS 34.108 [3] subclause 7.3.3 to place the UE in URA_PCH state on cell 2. The SS waits for this process to complete.
- 4) After 15 s from the completion of step 3 or the beginning of T1, the parameters are changed to those defined for T2 in table 8.3.7.2.3.
- 5) If the UE responds on Cell 1 with a PRACH (URA UPDATE message cause "URA reselection") within 8s, then a success is recorded, the SS shall transmit a URA UPDATE CONFIRM message and then the procedure moves to step 7.
- 6) Since the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The SS shall then wait for a total of 15s from the beginning of T2 and if no response is received the UE shall be switched off and the procedure returns to step 1. Otherwise the SS shall transmit a URA UPDATE CONFIRM message and then the procedure continues with step 7.

- 7) After a total of 15 s from the beginning of T2, the parameters are changed to those defined for T1 in table 8.3.7.2.3.
- 8) If the UE responds on Cell 2 with a PRACH (URA UPDATE message cause "URA reselection") within 8s, then a success is recorded and the procedure moves to step 10.
- 9) Since the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The SS shall then wait for a total of 15s from the beginning of T1 and if no response is received the UE shall be switched off and the procedure returns to step 1. Otherwise the SS shall transmit a URA UPDATE CONFIRM message and then the procedure continues with step 10.

10) Steps 4 to 10 are repeated until a total of [TBD] successes and failures have been recorded.

NOTE: The time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell. Since the maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell is 1280ms and the maximum RRC procedure delay for reception system information block is 100ms, 1380 ms is assumed in this test case. Therefore this gives a total of 7.78s(Minimum requirement + 100ms), alow 8s in the test case.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

RADIO BEARER SETUP (Step 3)

Information Element	Value/remark
RRC State Indicator	URA PCH
UTRAN DRX cycle length coefficient	7
Downlink information for each radio link	
- Primary CPICH info	
- Primary scrambling code	100

8.3.7.2.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

Table 8.3.7.2.3: Cell specific tTest requirements parameters for Cell re-selection in URA_PCH state, multi carrier multi cell, two freqs. in neighbour list

Parameter	Unit	Ce	<u> 1</u>	Cell 2		Cell 3		Cell 4		Cell 5		Cell 6		
		<u>T1</u>	<u>T2</u>											
UTRA RF Channel Number		Chann	Channel 1		Channel 2		Channel 1		Channel 1		Channel 2		Channel 2	
CPICH_Ec/lor	<u>dB</u>	-9) <u>.3</u>	-9) <u>.3</u>	<u>-10.8</u>		<u>-10.8</u>		<u>-1</u> (<u>0.8</u>	<u>-10.8</u>		
PCCPCH_Ec/lor	<u>dB</u>	<u>-1</u>	<u>1.3</u>	<u>-1</u>	<u>1.3</u>	<u>-1</u> 2	<u>-12.8</u>		<u>-12.8</u>		<u>-12.8</u>		<u>-12.8</u>	
<u>SCH_Ec/lor</u>	<u>dB</u>	<u>-1</u>	<u>-11.3</u>		<u>-11.3</u>		<u>-12.8</u>		<u>-12.8</u>		<u>-12.8</u>		<u>-12.8</u>	
PICH_Ec/lor	<u>dB</u>	<u>-1</u> -	<u>4.3</u>	<u>-14.3</u>		<u>-15.8</u>		<u>-15.8</u>		<u>-15.8</u>		<u>-15.8</u>		
OCNS_Ec/lor	<u>dB</u>	<u>-1</u>	. <u>13</u>	<u>-1</u> .	. <u>13</u>	<u>-0.</u>	.77	<u>-0</u> .	.77	<u>-0</u> .	.77	<u>-0.</u>	77	
\hat{I}_{or}/I_{oc} <u>Note 1</u>	<u>dB</u>	<u>-3.40</u>	<u>+4.80</u>	<u>+4.80</u>	<u>-3.40</u>	<u>-7.40</u>	<u>-3.00</u>	<u>-7.40</u>	<u>-3.00</u>	<u>-3.00</u>	<u>-7.40</u>	<u>-3.00</u>	<u>-7.40</u>	
\hat{I}_{or}	<u>dBm</u>	<u>-73.4</u>	<u>-67.0</u>	<u>-67.0</u>	<u>-73.4</u>	<u>-77.4</u>	<u>-74.8</u>	<u>-77.4</u>	<u>-74.8</u>	<u>-74.8</u>	<u>-77.4</u>	<u>-74.8</u>	<u>-77.4</u>	
loc	<u>dBm/3.8</u> <u>4 MHz</u>	<u>-70.0</u>	<u>-71.8</u>	<u>-71.8</u>	<u>-70.0</u>	<u>-70.0</u>	<u>-71.8</u>	<u>-70.0</u>	<u>-71.8</u>	<u>-71.8</u>	<u>-70.0</u>	<u>-71.8</u>	<u>-70.0</u>	
CPICH_Ec/lo_Note	<u>dB</u>	<u>-15.3</u>	<u>-11.5</u>	<u>-11.5</u>	<u>-15.3</u>	<u>-20.8</u>								

All other parameters and conditions specified in table 8.3.7.2.2 are unchanged.

NOTE 1: These parameters are not directly settable, but are derived by calculation from the settable parameters.

NOTE <u>2</u>: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

1

Annex F (normative): General test conditions and declarations

The requirements of this clause apply to all applicable tests in the present document.

Many of the tests in the present document measure a parameter relative to a value that is not fully specified in the UE specifications. For these tests, the Minimum Requirement is determined relative to a nominal value specified by the manufacturer.

When specified in a test, the manufacturer shall declare the nominal value of a parameter, or whether an option is supported.

In all the relevant clauses in this clause all Bit Error Ratio (BER), Block Error Ratio (BLER), False transmit format Detection Ratio (FDR) measurements shall be carried out according to the general rules for statistical testing in clause F.6.

F.2 Test Tolerances (This clause is informative)

The Test Tolerances defined in this clause have been used to relax the Minimum Requirements in the present document to derive the Test Requirements.

The Test Tolerances are derived from Test System uncertainties, regulatory requirements and criticality to system performance. As a result, the Test Tolerances may sometimes be set to zero.

The test tolerances should not be modified for any reason e.g. to take account of commonly known test system errors (such as mismatch, cable loss, etc.).

F.2.4 Requirements for support of RRM

Clause	Test Tolerance
8.3.7 Cell Re-selection in URA_PCH	
8.3.7.1 One frequency present in the	Same as 8.2.2.1
neighbour list	0.3 dB for \hat{T}_{or}/I_{oc}
	0.1 dB for CPICH_Ec/lor
8.3.7.2 Two frequencies present in the	Same as 8.2.2.2
neighbour list	0.3 dB for \hat{H}_{or}/H_{oc}
	0.1 dB for CPICH_Ec/lor

Table F.2.4: Test Tolerances for Radio Resource Management Tests

F.4 Derivation of Test Requirements (This clause is informative)

The Test Requirements in the present document have been calculated by relaxing the Minimum Requirements of the core specification using the Test Tolerances defined in clause F.2. When the Test Tolerance is zero, the Test Requirement will be the same as the Minimum Requirement. When the Test Tolerance is non-zero, the Test Requirements will differ from the Minimum Requirements, and the formula used for this relaxation is given in table F.4.

Test	Test Parameters in TS 25.133	Test Tolerance (TT)	Test Requirement in TS 34.121
8.3.7 Cell Re-selection in URA_PCH			
8.3.7.1 One frequency present in the neighbour list	Same as 8.2.2.1 <u>CPICH_E_c = -10 dB</u> I_{or} I_{oc} = -70 dBm lor/loc = 7.3 dB Note: Parameters are valid for cell 1 at time T1 and cell 2 at time T2	Same as 8.2.2.1 0.1 dB for <u>CPICH_E_c</u> I_{or} 0.3 dB for lor/loc	Same as 8.2.2.1 Formulas: $\frac{CPICH _ E_c}{I_{or}} = ratio _ TT$ Ior/loc = ratio - TT $\frac{I_{oc} - unchanged}{lor/loc = 7 dB}$ $\frac{CPICH _ E_c}{I_{or}} = 10.1 dB;$
	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$ $\frac{I_{oc} = -70 \text{ dBm}}{I_{oc} = 10.27 \text{ dB}}$ Note: Parameters are valid for cell 1 at time T2 and cell 2 at time T1	0.1 dB for <u>CPICH_E_c</u> I _{or} 0.3 dB for lor/loc	Formulas: $\frac{CPICH _ E_c}{I_{or}} = ratio + TT$ Ior/loc = ratio + TT Ioc unchanged Ior/loc = 10.57 dB $\frac{CPICH _ E_c}{I_{or}} = 0.0 \text{ dB};$
8.3.7.2 Two frequencies present in the neighbour list	Same as 8.2.2.2 <u>CPICH_E_c</u> = -10 dB I_{or} I_{oc} = -70 dBm lor/loc = -3.4 dB Note: Parameters are valid for cell 1 at time T1 and cell 2 at time T2	$\frac{\text{Same as 8.2.2.2}}{0.1 \text{ dB for}}$ $\frac{CPICH_E_c}{I_{or}}$ 0.3 dB for lor/loc	$\frac{\text{Same as 8.2.2.2}}{\text{Formulas:}}$ $\frac{CPICH_E_c}{I_{or}} = \text{ratio} - \text{TT}$ $\frac{\text{Ior/loc} = \text{ratio} - \text{TT}}{\text{Ioc} - \text{unchanged}}$ $\frac{\text{Ioc} - \text{ratio} - \text{unchanged}}{\text{Ioc} - \text{ratio} - \text{unchanged}}$ $\frac{\text{Ior/loc} = -3.7 \text{ dB}}{I_{or}}$

Table F.4.4: Derivation of Test Requirements (RRM tests)

Test	Test Parameters in TS 25.133	Test Tolerance (TT)	Test Requirement in TS 34.121
	$\frac{CPICH _ E_c}{I_{or}} = -10 \text{ dB}$	$\frac{0.1 \text{ dB for}}{CPICH_E_c}$ I_{or}	$\frac{\text{Formulas:}}{I}$
	$\frac{I_{oc}}{I_{oc}} = -70 \text{ dBm}$	0.3 dB for lor/loc	lor/loc = ratio + TT loc unchanged
	Note: Parameters are valid for cell 1 at time T2 and cell 2 at time T1		loc ratio unchanged lor/loc = 2.5 dB
			$\frac{CPICH _E_c}{I_{or}} = -9.9 \text{ dB};$

CHANGE REQUEST						
ж	34.121 CR 303 #rev 1 ^{# (}	Current versi	^{on:} 5.1.1 [#]			
For <u>HELP</u> or	For <u>HELP</u> on using this form, see bottom of this page or look at the pop-up text over the X symbols.					
Proposed chang	e affects: UICC appsื⊯ ME <mark>✓</mark> Radio Aco	cess Networ	k Core Network			
Title:	Clarification on the power levels specified in Annex	ε				
Source:	# Racal Instruments					
Work item code:	¥	<i>Date:</i> ೫	23/10/2003			
Category:	 F Use <u>one</u> of the following categories: F (correction) A (corresponds to a correction in an earlier release) B (addition of feature), C (functional modification of feature) D (editorial modification) Detailed explanations of the above categories can be found in 3GPP <u>TR 21.900</u>. 	Use <u>one</u> of 1 2 R96 R97 R98 R99 Rel-4 Rel-5	Rel-5 the following releases: (GSM Phase 2) (Release 1996) (Release 1997) (Release 1998) (Release 1999) (Release 4) (Release 5) (Release 6)			

Reason for change:	f The power levels specified in annex E are ambiguous.		
Summary of change:	彩 Note added to Annex E		
Consequences if	Here The power levels specified in Annex E may be misinterpreted.		
not approved:			
Clauses affected:	光 Annex E		
	YN		
Other and an			

 Other specs
 #
 Image: Control of the core specifications
 #

 affected:
 Image: Control of the core specifications
 #
 Image: Control of the core specifications
 #

 Other comments:
 #
 Image: Control of the core specifications
 #
 Image: Control of the control of t

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

Annex E (normative): Downlink Physical Channels

E.1 General

This normative annex specifies the downlink physical channels that are needed for setting a connection and channels that are needed during a connection.

NOTE: The power level specified for each physical channel in this annex is an average power, as measured during periods when the physical channel transmission is ON (see [19] for definitions), and no DTX symbols are being transmitted on that physical channel.

E.2 Connection Set-up

Table E.2.1 describes the downlink Physical Channels that are required for connection set up.

Table E.2.1: Downlink Physical Channels required for connection set-up

Physical Channel		
CPICH		
P-CCPCH		
SCH		
S-CCPCH		
PICH		
AICH		
DPCH		

E.2.1 Measurement without dedicated connection

Table E.2.2 describes the downlink Physical Channels that are required for measurement before connection. This is applicable for the clauses 5.4.1 and 5.5.2.

Physical Channel	Power	
Îor	Test dependent pov	ver
CPICH	CPICH_Ec / lor	= -3,3 dB
P-CCPCH	P-CCPCH_Ec / lor	= -5,3 dB
SCH	SCH_Ec / lor	= -5,3 dB
PICH	PICH_Ec / lor	= -8,3 dB
S-CCPCH	S-CCPCH_Ec / lor	= -10,3 dB

E.3 During connection

The following clauses describe the downlink Physical Channels that are transmitted during a connection i.e., when measurements are done. For these measurements the offset between DPCH and SCH shall be zero chips at base station meaning that SCH is overlapping with the first symbols in DPCH in the beginning of DPCH slot structure.

E.3.1 Measurement of Tx Characteristics

Table E.3.1 is applicable for measurements on the Transmitter Characteristics (clause 5) with the exception of clauses 5.3, 5.4.1, 5.4.4 and 5.5.2.

NOTE: Applicability to clause 5.7 (Power setting in uplink compressed mode) is FFS.

Physical Channel	Power
Îor	–93 dBm / 3,84MHz
CPICH	CPICH_Ec / DPCH_Ec = 7 dB
P-CCPCH	P-CCPCH_Ec / DPCH_Ec = 5 dB
SCH	SCH_Ec / DPCH_Ec = 5 dB
PICH	PICH_Ec / DPCH_Ec = 2 dB
DPCH	–103,3 dBm / 3,84MHz

E.3.2 Measurement of Rx Characteristics

Table E.3.2.1 is applicable for measurements on the Receiver Characteristics (clause 6) with the exception of clauses 6.3 and 6.8.

Table E.3.2.1: Downlink Physical Channels transmitted during a connection

Physical Channel	Power	
CPICH	CPICH_Ec / DPCH_Ec	= 7 dB
P-CCPCH	P-CCPCH_Ec/ DPCH_Ec = 5 dB	
SCH	SCH_Ec / DPCH_Ec = 5 dB	
PICH	PICH_Ec / DPCH_Ec = 2 dB	
DPCH	Test dependent power	

Table E.3.2.2 describes the downlink Physical Channels that are required for the test of Spurious Emissions (clause 6.8). The UE is in the CELL_FACH state during the measurement.

Table E.3.2.2: Downlink Physical Channels transmitted during the measurement for Rx Spurious Emissions

Physical Channel	Power	
CPICH	–96 dBm / 3,84MHz	
P-CCPCH	P-CCPCH_Ec/ CPICH_Ec	= -2 dB
SCH	SCH_Ec / CPICH_Ec	= -2 dB
PICH	PICH_Ec / CPICH_Ec	= -5 dB

E.3.3 Measurement of Performance requirements

Table E.3.3 is applicable for measurements on the Performance requirements (clause 7), including clauses 6.3 and 5.4.4, excluding clauses 7.6.1 and 7.6.2.

Physical Channel	Power		Note
P-CPICH	P-CPICH_Ec/lor	= -10 dB	Use of P-CPICH or S-CPICH as phase reference is specified for each requirement and is also set by higher layer signalling.
S-CPICH	S-CPICH_Ec/lor	= -10 dB	When S-CPICH is the phase reference in a test condition, the phase of S-CPICH shall be 180 degrees offset from the phase of P-CPICH. When S-CPICH is not the phase reference, it is not transmitted.
P-CCPCH	P-CCPCH_Ec/lor	= -12 dB	
SCH	SCH_Ec/lor	= -12 dB	This power shall be divided equally between Primary and Secondary Synchronous channels
PICH	PICH_Ec/lor	= -15 dB	
DPCH	Test dependent powe	er	When S-CPICH is the phase reference in a test condition, the phase of DPCH shall be 180 degrees offset from the phase of P-CPICH.
OCNS	Necessary power so that total transmit power spectral density of Node B (lor) adds to one		OCNS interference consists of 16 dedicated data channels as specified in table E.3.6.
NOTE: For dynamic power correction required to compensate for the presence of transient channels, e.g. control channels, a subset of the DPCH channels may be used.			

 Table E.3.3: Downlink Physical Channels transmitted during a connection¹

Power levels are based on the assumption that multipath propagation conditions and noise source representing interference from other cells loc are turned on after the call set-up phase.

E.3.4 Connection with open-loop transmit diversity mode

Table E.3.4 is applicable for measurements for clause 7.6.1.

Note
I P-CPICH_E _c /I _{or} = -10 dB
$I P-CPICH_E_c/I_{or} = -10 \text{ dB}$
D applied
I P-CCPCH_Ec/I _{or} = -12 dB
D applied. power shall be divided oetween Primary and ary Synchronous channels
D applied
l PICH_E _c /l _{or} = –15 dB
D applied I power from both antennas
s power shall be divided ally between antennas NS interference consists of dedicated data channels as cified in Table E.3.6.

Table E.3.4: Downlink Physical Channels transmitted during a connection²

E.3.5 Connection with closed loop transmit diversity mode

table E.3.5 is applicable for measurements for clause 7.6.2.

Physical Channel	Power	Note		
P-CPICH (antenna 1)	P-CPICH_Ec1/lor = -13 dB	1. Total P-CPICH_Ec/lor = -10 dB		
P-CPICH (antenna 2)	$P-CPICH_Ec2/lor = -13 dB$			
P-CCPCH (antenna 1)	P -CCPCH_Ec1/lor = -15 dB	1. STTD applied		
P-CCPCH (antenna 2)	P -CCPCH_Ec2/lor = -15 dB	1. STTD applied, total		
		P -CCPCH_Ec/lor = -12 dB		
SCH (antenna 1 / 2)	SCH_Ec/lor = -12 dB	1. TSTD applied		
PICH (antenna 1)	$PICH_Ec1/lor = -18 dB$	1. STTD applied		
PICH (antenna 2)	$PICH_Ec2/lor = -18 dB$	STTD applied, total		
	_	$PICH_Ec/lor = -15 dB$		
DPCH	Test dependent power	1. Total power from both antennas		
OCNS	Necessary power so that total	1. This power shall be divided		
	transmit power spectral density	equally between antennas		
	of Node B (lor) adds to one	OCNS interference consists of		
		16 dedicated data channels as		
		specified in Table E.3.6.		
, , ,	wer correction required to compen-			
channels, e.g. control channels, a subset of the DPCH channels may be used.				

² Power levels are based on the assumption that multipath propagation conditions and noise source representing interference from other cells loc are turned on after the call set-up phase.

³ Power levels are based on the assumption that multipath propagation conditions and noise source representing interference from other cells loc are turned on after the call set-up phase.

Channelization Code at SF=128	Relative Level setting (dB)	DPCH Data
2	-1	The DPCH data
11	-3	for each
17	-3	channelization
23	-5	code shall be
31	-2	uncorrelated
38	-4	with each other
47	-8	and with any
55	-7	wanted signal
62	-4	over the period
69	-6	of any
78	-5	measurement.
85	-9	
94	-10	
125	-8	
113	-6	
119	0	

 Table E.3.6: DPCH Channelization Code and relative level settings for OCNS signal.

NOTE: The DPCH Channelization Codes and relative level settings are chosen to simulate a signal with realistic Peak to Average Ratio.

E.4 W-CDMA Modulated Interferer

Table E.4.1 describes the downlink Physical Control Channels that are transmitted as part of the W-CDMA modulated interferer.

Table E.4.1: Spreading Code, Timing offsets and relative level settings for W-CDMA Modulated Interferer signal control channels.

Channel Type	Spreading Factor	Channelization Code	Timing offset (x256T _{chip})	Relative level setting (dB)	NOTE
P-CCPCH	256	1	0	-1	
SCH	256	-	0	-1	The SCH power shall be divided equally between Primary and Secondary Synchronous channels
P-CPICH	256	0	0	-1	
PICH	256	16	16	-6	

See table E.3.6 for the definition of the 16 DPCH portion of the W-CDMA modulated interferer.

3GPP TSG-T1 Meeting #21 Budapest, Hungary, 3 - 7 November, 2003

Tdoc **∺***T1-031566*

											CR-Form-v7
CHANGE REQUEST											
ж	34	<mark>.121</mark>	CR	309	жre	v <mark>1</mark>	ж	Current vers	ion:	5.1.1	ж
For <u>HELP</u> on	using	this fo	rm, see	e bottom of	f this page	or look	at th	e pop-up text	over	the X sy	mbols.
Proposed change	affec	ts:	UICC a	apps#	ME	X Ra	dio A	ccess Networ	'k	Core N	etwork
Title:				test case; eporting.	8.6.2.2, FI	DD inter	r-freq	uency cell ide	entific	ation and	
Source:	€ Mo	torola									
								D (00	07	4.0.0000	
Work item code: 8	€ TE	I						<i>Date:</i> ೫	27/	10/2003	
Category: 3	Deta	F (cor A (cor B (add C (fun D (edi iiled ex	rection, respon dition o ctional itorial m planatio	owing categ) ds to a corre f feature), modification indification) ons of the at <u>TR 21.900</u> .	ection in an n of feature)			e) R96 R97 R98 R99	the fo (GSN (Rele (Rele (Rele (Rele (Rele		
Reason for chang	је: Ж	in fa	ding p		conditions			3 for correct r requency me			
Summary of chan	ge: Ж			ill add one was adde				to 34.121 an	d the	statistica	l testing
Consequences if not approved:	ж							ding progatati mented in 34		onditions	for FDD
Clauses affected:	ж	8.6.2	2.2, F.2	2.6.8							
Other specs affected:	ж	YN X		r core spec specificatio		ж					

Other comments: # This CR applies for Rel-5 and later releases.

X O&M Specifications

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked # contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

8.6.2.2 Correct reporting of neighbours in fading propagation condition

8.6.2.2.1 Definition and applicability

In the event triggered reporting period the measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit the measurement report over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH. The requirements and this test apply to the FDD UE.

The requirements and this test apply to all types of UTRA for the FDD UE for Release 5 and later releases.

8.6.2.2.2 Minimum requirements

The requirements are the same as in sub clause 8.6.2.1.2.

The normative reference for these requirements is TS 25.133 [2] clauses 8.1.2.3 and A.8.2.2.

8.6.2.2.3 Test purpose

To verify that the UE meets the minimum requirements. The test is performed in fading propagation conditions.

8.6.2.2.4 Method of test

8.6.2.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mod range; see clause G.2.4.

The test parameters are given in table 8.6.2.2.4.1 and 8.6.2.2.4.2. In the measurement control information it is indicated to the UE that event-triggered reporting 2C shall be used. The test consists of two successive time periods, each with time duration of T1 and T2 respectively.

Table 8.6.2.2.4.1: General test parameters for correct reporting of neighbours in fading propagation condition

Parameter	<u>Unit</u>	Value	<u>Comment</u>
DCH parameters		DL Reference Measurement Channel	As specified in TS 25.101 section A.3.1
		<u>12.2 kbps</u>	
Power Control		<u>On</u>	
Compressed mode		A.22 set 2 (TGPL1=12)	As specified in TS 25.101 section A.5.
Active cell		Cell 1	
Absolute Threshold	<u>dB</u>	<u>-18</u>	
(Ec/N0) for Event 2C			
<u>Hysteresis</u>	<u>dB</u>	<u>0</u>	
Time to Trigger	<u>ms</u>	<u>0</u>	
Filter coefficient		<u>0</u>	
Monitored cell list		Total 24	Measurement control information is
<u>size</u>		8 on frequency Channel 2	sent before the compressed mode
			pattern starts.
Propagation		Case 5	As specified in Annex B of TS 25.101.
<u>Condition</u>			
Frequency offset	<u>ppm</u>	<u>+/- 0.1</u>	Frequency offset between Cell 1 and
			Cell 2.
<u>T1</u>	<u>S</u>	2	
<u>T2</u>	<u>S</u>	<u>40</u>	

Table 8.6.2.2.4.2: Cell specific test parameters for correct reporting of neighbours in fading propagation condition

Parameter	<u>Unit</u>	<u>Cell 1</u>		<u>Cell 1</u>		<u>Cell 1</u>		<u>Cell 1</u>		<u>Cell 1</u>		<u>Cell 1</u>		<u>Cell 1</u>		<u>Cell 1</u>		Ce	Cell 2	
		<u>T1 T2</u>		T1 T2		T1 T2		T1 T2		T1 T2		T1 T2		T1 T2		<u>T1</u>	<u>T2</u>			
UTRA RF Channel Number		Char	nel 1	<u>Chan</u>	nel 2															
CPICH_Ec/lor	<u>DB</u>	<u>-1</u>	0	-1	0															
PCCPCH_Ec/lor	DB	-1	2	-1	2															
SCH_Ec/lor	<u>DB</u>	-1	2	-1	2															
PICH_Ec/lor	DB	-1	5	-1	<u>5</u>															
DPCH_Ec/lor	<u>DB</u>	Note 1		Note 1 N/A		<u>/A</u>														
<u>OCNS</u>		Note 2		<u>Note 2</u> <u>-0.</u>		941														
\hat{I}_{or}/I_{oc}	<u>DB</u>	<u>0</u>		<u>0</u>		<u>-Infinity</u>	<u>-1.8</u>													
I _{oc}	<u>dBm/3.84 MHz</u>	<u>z -70 -70</u>		<u>'0</u>																
CPICH_Ec/lo	DB	-13		-Infinity	<u>-14</u>															
Propagation Condition	Propagation Condition Case 5 as specified in Annex B of TS25.101																			
Note 1: The DPCH level is controlled by the power control loop																				
Note 2: The power of the OCNS channel that is added shall make the total power from the cell to																				
be equal to I _{or}																				

8.6.2.2.4.2 Procedure

1) The RF parameters are set up according to T1.

- 2) The UE is switched on.
- 3) A call is set up in AWGN conditions, according to the test procedure specified in TS 34.108 [3] sub clause 7.3.2.3.
- 4) SS shall transmit a MEASUREMENT CONTROL message.
- 5) After 2 seconds from the beginning of T1, the SS shall switch the power settings from T1 to T2.
- 6) UE shall transmit a MEASUREMENT REPORT message triggered by event 2C. The measurement reporting delay from the beginning of T2 shall be less than 36.4 s. If the UE fails to report the event within the required delay, then a failure is recorded. If the reporting delay for this event is within the required limit, the number of successful tests is increased by one.
- 7) After 40 seconds from the beginning of T2, the UE is switched off.
- 8) Repeat steps 1-7 according to Annex F.6.2 Table 6.2.8

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message:

Information Element/Group name	Value/Remark
Message Type (10.2.17)	
UE information elements	
-RRC transaction identifier	<u>0</u>
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	2
-Measurement Command (10.3.7.46)	<u>Setup</u>
-Measurement Reporting Mode (10.3.7.49)	
-Measurement Report Transfer Mode	<u>AM RLC</u>
-Periodical Reporting / Event Trigger Reporting Mode	Event trigger
-Additional measurements list (10.3.7.1)	Not Present
-CHOICE Measurement type	Inter-frequency measurement
-Inter-frequency measurement (10.3.7.16)	
-Inter-frequency measurement objects list (10.3.7.13)	
- CHOICE Inter-frequency cell removal	Not Present
- New Inter frequency cells	
 Inter frequency cell id 	<u>0</u>
- Frequency info	
- CHOICE mode	FDD
<u>UARFCN uplink(Nu)</u>	Not Present
- UARFCN downlink(Nd)	Same frequency as "Channel2" in Table
	<u>8.6.2.1.3</u>
<u>- Cell info</u>	
<u>Cell individual offset</u>	Not Present
- Reference time difference to cell	Not Present
- Read SFN indicator	TRUE
- CHOICE mode	FDD
- Primary CPICH info	
- Primary scrambling code	Set to Primary scrambling code of Cell3
- Primary CPICH Tx Power	Set to Primary CPICH Tx Power of Cell3
	described in Table 8.6.2.1.3
- Tx Diversity Indicator	FALSE
 Cell Selection and Re-selection info 	Set to Cell Selection and Re-selection info
	of Cell3
<u>- Cell for measurement</u>	Not Present
-Inter-frequency measurement quantity (10.3.7.18)	
-Intra-frequency reporting criteria	
-Intra-frequency measurement quantity (10.3.7.38)	0
-Filter coefficient (10.3.7.9)	
<u>-CHOICE mode</u>	
<u>-Measurement quantity</u>	CPICH_Ec/N0
-Inter-frequency reporting criteria	0
-Filter coefficient (10.3.7.9)	0 FDD
<u>-CHOICE mode</u>	
-Measurement quantity for frequency quality estimate -Inter-frequency reporting quantity (10.3.7.21)	CPICH_Ec/N0
	EALSE
-UTRA Carrier RSSI	FALSE
-Frequency quality estimate	FALSE
-Non frequency related cell reporting quantities (10.3.7.5)	No report
-SFN-SFN observed time difference reporting indicator	No report TPUE (Note 1)
-Cell synchronisation information reporting indicator	TRUE (Note 1)
<u>-Cell Identity reporting indicator</u>	TRUE FDD
<u>-CHOICE mode</u>	
-CPICH Ec/N0 reporting indicator	TRUE TRUE
-CPICH RSCP reporting indicator	TRUE
-Pathloss reporting indicator -Reporting cell status (10.3.7.61)	
	Not Present
-Measurement validity (10.3.7.51)	Not Present
-CHOICE report criteria	Inter-frequency measurement reporting
Inter frequency measurement reporting criteria (40.0.7.40)	<u>criteria</u>
-Inter-frequency measurement reporting criteria (10.3.7.19)	4
-Parameters required for each event	1 Event 20
-Inter-frequency event identity	Event 2C
-Threshold used frequency -W used frequency	Not present

Information Element/Group name	Value/Remark					
-Hysteresis	<u>0 dB</u>					
-Time to trigger	<u>0 ms</u>					
-Reporting cell status						
-CHOICE reported cell	Report all active set cells + cells within					
	monitored set on used frequency					
-Maximum number of reported cells	<u>3</u>					
 Parameters required for each non-used frequency 						
-Threshold non used frequency	<u>-18 dB</u>					
-W non-used frequency	1					
Physical channel information elements						
-DPCH compressed mode status info (10.3.6.34)	Not Present					
NOTE 1: The SFN-CFN observed time difference is calculated	from the OFF and Tm parameters contained					
in the IE "Cell synchronisation information ", TS 25.331, clause 10.3.7.6. According to TS 25.331,						
8.6.7.7, this IE is included in MEASUREMENT REPORT if IE "Cell synchronisation information						
reporting indicator" in IE "Cell reporting quantities" TS	25.331, clause 10.3.7.5 is set to TRUE in					
MEASUREMENT CONTROL.						

MEASUREMENT REPORT message for Inter frequency test cases

These messages are common for all inter frequency test cases and are described in Annex I.

8.6.2.2.5 Test requirements

For the test to pass, the total number of successful tests shall be at least 90%, with a confidence level of 95% of the cases According to annex F.6.2. The number of successful tests shall be on an event level, i.e. the SS shall check how many events are reported successfully out of the total number of events checked.

<u>NOTE:</u> If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

F.6 General rules for statistical testing

F.6.1 Statistical testing of receiver BER/BLER performance

F.6.1.1 Error Definition

1) Bit Error Ratio (BER)

The Bit Error Ratio is defined as the ratio of the bits wrongly received to all data bits sent. The bits are the information bits above the convolutional/turbo decoder

2) Block Error Ratio (BLER)

A Block Error Ratio is defined as the ratio of the number of erroneous blocks received to the total number of blocks sent. An erroneous block is defined as a Transport Block, the cyclic redundancy check (CRC) of which is wrong.

F.6.1.2 Test Method

Each test is performed in the following manner:

- a) Setup the required test conditions.
- b) Record the number of samples tested and the number of occurred events (bit error or block error)
- c) Stop the test at a stop criterion which is minimum test time or an early pass or an early fail event.
- d) Once the test is stopped decide according to the pass fail decision rules (subclause F.6.1.7)

F.6.1.3 Test Criteria

The test shall fulfil the following requirements:

- a) good pass fail decision
 - 1) to keep reasonably low the probability (risk) of passing a bad unit for each individual test;
 - 2) to have high probability of passing a good unit for each individual test;
- b) good balance between testtime and statistical significance
 - 3) to perform measurements with a high degree of statistical significance;
 - 4) to keep the test time as low as possible.

F.6.1.4 Calculation assumptions

F.6.1.4.1 Statistical independence

- (a) It is assumed, that error events are rare (lim BER BLER → 0) independent statistical events. However the memory of the convolutional /turbo coder is terminated after one TTI. Samples and errors are summed up every TTI. So the assumption of independent error events is justified.
- (b) In the BLER test with fading there is the memory of the multipath fading channel which interferes the statistical independence. A minimum test time is introduced to average fluctuations of the multipath fading channel. So the assumption of independent error events is justified approximately.

F.6.1.4.2 Applied formulas

The formulas, applied to describe the BER BLER test, are based on the following experiments:

(1) After having observed a certain number of errors (**ne**) the number of samples are counted to calculate BER BLER. Provisions are made (note 1) such that the complementary experiment is valid as well:

(2) After a certain number of samples (ns) the number of errors, occurred, are counted to calculate BER BLER.

Experiment (1) stipulates to use the following Chi Square Distribution with degree of freedom ne: 2*dchisq(2*NE,2*ne).

Experiment (2) stipulates to use the Poisson Distribution: dpois(ne,NE)

(NE: mean of the distribution)

To determine the early stop conditions, the following inverse cumulative operation is applied:

0.5 * qchisq(D,2*ne). This is applicable for experiment (1) and (2).

D: wrong decision risk per test step

Note: other inverse cumulative operations are available, however only this is suited for experiment (1) and (2).

F.6.1.4.3 Approximation of the distribution

The test procedure is as follows:

During a running measurement for a UE ns (number of samples) and ne (number of errors) are accumulated and from this the preliminary BER BLER is calculated. Then new samples up to the next error are taken. The entire past and the new samples are basis for the next preliminary BER BLER. Depending on the result at every step, the UE can pass, can fail or must continue the test.

As early pass- and early fail-UEs leave the statistical totality under consideration, the experimental conditions are changed every step resulting in a distribution that is truncated more and more towards the end of the entire test. Such a

Release 5

distribution can not any more be handled analytically. The unchanged distribution is used as an approximation to calculate the early fail and early pass bounds.

F.6.1.5 Definition of good pass fail decision.

This is defined by the probability of wrong decision F at the end of the test. The probability of a correct decision is 1-F.

The probability (risk) to fail a good DUT shall be \leq F according to the following definition: A DUT is failed, accepting a probability of \leq F that the DUT is still better than the specified error ratio (Test requirement).

The probability to pass a bad DUT shall be \leq F according to the following definition: A DUT is passed, accepting a probability of \leq F that the DUT is still worse than M times the specified error ratio. (M>1 is the bad DUT factor).

This definitions lead to an early pass and an early fail limit:

Early fail: ber≥ berlim_{fail}

$$ber \lim_{fail} (D, ne) = \frac{2^* ne}{qchisq(D, 2^* ne)}$$
(1)

For $ne \ge [7]$

Early pass: ber ≤berlimbad_{pass}

$$ber \lim bad_{pass}(D, ne) = \frac{2 * ne * M}{qchisq(1 - D, 2 * ne)}$$
(2)

For ne ≥ 1

With

ber (normalized BER, BLER): BER, BLER according to F.6.1.1 divided by Test requirement

D: wrong decision probability for a test step. This is a numerically evaluated fraction of F, the wrong decision probability at the end of the test. See table F.6.1.6.1.

ne: Number of error events

M: bad DUT factor see table F.6.1.6.1.

qchisq: inverse cumulative chi squared distribution

F.6.1.6 Good balance between testtime and statistical significance

Three independent test parameters are introduced into the test and shown in Table F.6.1.6.1. These are the obvious basis of test time and statistical significance. From the first two of them four dependent test parameters are derived. The third independent test parameter is justified separately.

Independe	ent test para	ameters	De	pendent test paran	neters
Test Parameter	Value	Reference	Test parameter	Value	Reference
Bad DUT factor M	[1.5]	Table F.6.1.8	Early pass/fail condition	Curves	Subclause F.6.1.5 Figure 6.1.9
Final probability of wrong pass/fail decision F	[0.2%] [0.02%, note 2]	Subclause F.6.1.5	Target number of error events	[345]	Table 6.1.8
			Probability of wrong pass/fail decision per test step D	[0.0085%] [0.0008% and 0.008%, note 2]	
			Test limit factor TL	[1.234]	Table 6.1.8
Minimum test time		Table F.6.1.6.2			

Table F.6.1.6.1 independent and dependent test parameters

The minimum test time is derived from the following justification:

1) For no propagation conditions and static propagation condition

No early fail calculated from fractional number of errors <1 (see note 1)

2) For multipath fading condition

No stop of the test until 990 wavelengths are crossed with the speed given in the fading profile.

3) For birth death propagation conditions

No stop of the test until 200 birth death transitions occur

4) For moving propagation conditions: 628 sec

This is necessary in order to pass all potential critical points in the moving propagation profile 4 times:

Maximum rake window

Maximum adjustment speed

Intersection of moving taps

Fading prof	ile	Minimum test time
Multipath propagation	3 km/h	164 sec
Multipath propagation	50 km/h	9.8 sec
Multipath propagation	120 km/h	4.1 sec
Multipath propagation	250 km/h	2 sec
Birth Death propagation	า	38.2 sec
Moving propagation		628 sec

Table F.6.1.6.2 : minimum Test time

In table F.6.1.8the minimum test time is converted in minimum number of samples.

F.6.1.7 Pass fail decision rules

No decision is allowed before the minimum test time is elapsed.

 If minimum Test time < time for target number of error events then the following applies: The required confidence level 1-F (= correct decision probability) shall be achieved. This is fulfilled at an early pass or early fail event.

For BER:

For every TTI (Transmit Time Interval) sum up the number of bits (ns) and the number if errors (ne) from the beginning of the test and calculate

BER1 (including the artificial error at the beginning of the test (Note 1))and

BER₀ (excluding the artificial error at the beginning of the test (Note 1)).

If BER₀ is above the early fail limit, fail the DUT.

If BER₁ is below the early pass limit, pass the DUT.

Otherwise continue the test

For BLER:

For every block sum up the number of blocks (ns) and the number of erroneous blocks (ne) from the beginning of the test and calculate

BLER₁ (including the artificial error at the beginning of the test (Note 1))and

BLER₀ (excluding the artificial error at the beginning of the test (Note 1)).

If BLER₁ is below the early pass limit, pass the DUT.

If BLER₀ is above the early fail limit, fail the DUT.

Otherwise continue the test

If the minimum test time ≥ time for target error events, then the test runs for the minimum test time and the decision is done by comparing the result with the test limit.

For BER:

For every TTI (Transmit Time Interval) sum up the number of bits (ns) and the number if errors (ne) from the beginning of the test and calculate BER_0

For BLER:

For every block sum up the number of blocks (ns) and the number of erroneous blocks (ne) from the beginning of the test and calculate $BLER_0$

If BER₀/BLER₀ is above the test limit, fail the DUT.

If BER₀/BLER₀ is on or below the test limit, pass the DUT.

F.6.1.8 Test conditions for BER, BLER tests

Type of test (BER)	Test requirement (BER/BLER)	Test limit (BER/BLER) = Test requirement (BER/BLER) x TL TL	Target number of error events (time)	Minimum number of samples	Prob that good unit will fail = Prob that bad unit will pass [%]	Bad unit BER/BLE R factor M
Reference Sensitivity Level	0.001	[1.234]	[345] (22.9s)	Note 1	[0.2]	[1.5]
Maximum Input Level	0.001	[1.234]	[345] (22.9s)	Note 1	[0.2]	[1.5]
Adjacent Channel Selectivity	0.001	[1.234]	[345] (22.9s)	Note 1	[0.2]	[1.5]
Blocking Characteristics Pass condition Note 2	0.001	[1.251]	[403] (26.4s)	Note 1	[0.2]	[1.5]
Blocking Characteristics Fail condition Note 2	0.001	[1.251]	[403] (26.4s)	Note 1	[0.02]	[1.5]
Spurious Response	0.001	[1.234]	[345] (22.9s)	Note 1	[0.2]	[1.5]
Intermodulation Characteristics	0.001	[1.234]	[345] (22.9s)	Note 1	[0.2]	[1.5]

Table F.6.1.8: Test conditions for a single BER/BLER tests

Type of test (BLER)	Information Bit rate	Test requirement (BER/BLER)	Test limit (BER/B LER)= Test require ment (BER/B LER)x TL	Target number of error events (time)	Minimum number of samples	Prob that bad unit will pass = Prob that good unit will fail [%]	Bad unit BER/BL ER factor M
Demodulation in Static Propagation conditions Demodulation of DCH	12.2 64 144 384	0.01 0.1 0.01 0.1 0.01 0.1 0.01	[1.234]	[345] (559.16s) (55.92s) (559.16s) (55.92s) (559.16s) (27.96s) (279.58s)	Note1	[0.2]	[1.5]
in Multi-path Fading Propagation conditions							
3km/h (Case 1, Case 2, Case 4)	12.2 64 144 384	0.01 0.1 0.01 0.1 0.01 0.1 0.01	[1.234]	[345] (559.16s) (55.92s) (55.92s) (55.92s) (55.92s) (559.16s) (27.96s) (279.58s)	[8200] [8200] [8200] [8200] [8200] [16400] [16400]	[0.2]	[1.5]
120 km/h (Case3)	12.2 64 144 384	0.01 0.1 0.01 0.1 0.01 0.1 0.1 0.01	[1.234]	[345] (559.16s) (55.92s) (55.92s) (55.92s) (55.92s) (559.16s) (27.96s) (279.58s)	[205] [205] [205] [205] [205] [205] [410] [410]	[0.2]	[1.5]
250 km/h (Case 6)	12.2 64 144 384	0.01 0.1 0.01 0.1 0.01 0.1 0.01	[1.234]	[345] (559.16s) (55.92s) (55.92s) (55.92s) (55.92s) (559.16s) (27.96s) (279.58s)	[100] [100] [100] [100] [100] [200] [200]	[0.2]	[1.5]
Demodulation of DCH in Moving Propagation conditions	12.2 64	0.01 0.01	[1.234]	[345] (559.16)	[31400] [31400]	[0.2]	[1.5]
Demodulation of DCH in Birth-Death Propagation conditions	12.2 64	0.01 0.01	[1.234]	[345] (559.16s) (559.16s)	[1910] [1910]	[0.2]	[1.5]
Demodulation of DCH in Base Station Transmit diversity modes (3 km/h, case1)	12.2	0.01	[1.234]	[345] (559.16s)	[8200]	[0.2]	[1.5]

Table F.6.1.8-2: Test conditions for BLER tests

Demodulation of DCH			[1.234]	[345]		[0.2]	[1.5]
in closed loop transmit diversity							
mode (3 km/h, case1)					_		
Mode 1	12.2	0.01		(559.16s)	[8200]		
Mode 2	12.2	0.01		(559.16s)	[8200]		
Demodulation of DCH	10.0	0.01	[1.234]	[345]	[8200]	[0.2]	[1.5]
in Site Selection Diversity	12.2	0.01		(559.16)			
Transmission Power							
Control mode							
Demodulation of DCH	40.0	0.04	[1.234]	[345]	10051	[0.2]	[1.5]
in Inter-Cell Soft Handover	12.2 64	0.01 0.1		(559.16s) (55.92s)	[205] [205]		
(120 km/h, case3)	04	0.01		(559.16s)	[205]		
(144	0.1		(55.92s)	[205]		
		0.01		(559.16s)	[205]		
	384	0.1		(27.96s)	[410]		
Combining of TPC		0.01		(279.58s) Not applicable	[410]		
commands from radio				Not applicable			
links of different radio							
link sets							
Power control in the				Not applicable			
downlink, constant							
BLER target Power control in the				Not applicable			
downlink, initial				Not applicable			
convergence							
Power control in the				Not applicable			
downlink, wind up							
effects							
Downlink compressed mode				Not applicable			
Blind transport format							
detection				[345]			
	Static	BLER FDR	[1.234]	BLER FDR		[0.2]	[1.5]
	12.2 7.95	10 ⁻² 10 ⁻⁴ 10 ⁻² 10 ⁻⁴		559.16s 932min	Note 1 Note 1		
	7.95 1.95	10^{-10} 10^{-4}		559.16s 932min 559.16s 932min	Note 1		
	1.30			009.103 902mm	NOLE I		
	Multipath						
	12.2	10^{-2} 10^{-4} 10^{-2} 10^{-4}		559.16s 932min	[205]		
	7.95	10 ⁻² 10 ⁻⁴ 10 ⁻² 10 ⁻⁴		559.16s 932min	[205]		
	1.98			559.16s 932min	[205]		

F.6.1.9 Practical Use (informative)

See figure F.6.1.9:

The early fail limit represents formula (1) in F.6.1.5. The range of validity is $[ne \ge 7, \ge 8$ in case of blocking test] to [ne = 345]

The early pass limit represents the formula (2) in F.6.1.5. The range of validity is ne=1 to [ne =345]. See note 1

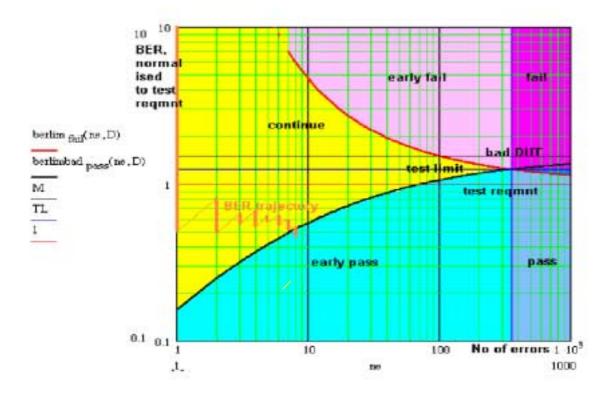
The intersection co-ordinates of both curves are : number of errors ne = [345] and test limit TL = [1.234].

The range of validity for TL is ne>345.

A typical BER BLER test, calculated form the number of samples and errors (F.6.1.2.(b)) using experimental method (1) or (2) (see F.6.1.4. calculation assumptions) runs along the yellow trajectory. With an errorless sample the trajectory goes down vertically. With an erroneous sample it jumps up right. The tester checks if the BER BLER test intersects the early fail or early pass limits. The real time processing can be reduced by the following actions:

 $BLER_0$ (excluding the artificial error at the beginning of the test (Note 1)). is calculated only in case of an error event.

 BER_0 (excluding the artificial error at the beginning of the test (Note 1)). is calculated only in case of an error event within a TTI.


So the early fail limit cannot be missed by errorless samples.

The check against the early pass limit may be done by transforming formula (2) in F.6.1.5 such that the tester checks against a Limit-Number-of-samples (NL(ne)) depending on the current number of errors (including the artificial error at the beginning of the test (Note 1)).

Early pass if

 $NL(ne) \ge \frac{qchisq(1-D,2*ne)}{2*TR*M}$

TR: test requirement (0.001)

Note 1: At the beginning of the test, an artificial error is introduced. This ensures that an ideal DUT meets the valid range of the early pass limit. In addition this ensures that the complementary experiment (F.6.1.4. bullet point (2)) is applicable as well.

For the check against the early fail limit the artificial erroneous sample, introduced at the beginning of the test, is disregarded.

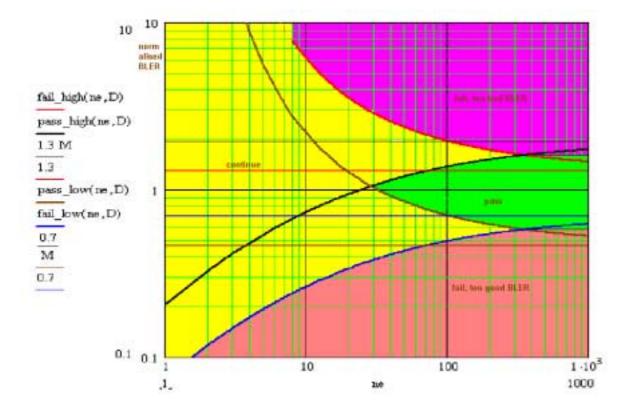
Due to the nature of the test, namely discrete error events, the early fail condition shall not be valid, when fractional errors <1 are used to calculate the early fail limit: Any early fail decision is postponed until number of errors ne \geq [7]. In the blocking test any early fail decision is postponed until number of errors ne \geq [8].

Note2: F=[0.2%] is intended to be used for a test containing a few BER/BLER tests (e.g. receiver sensitivity is repeated 12 times). For a test containing many BER/BLER tests (e.g. blocking test) this value is not appropriate for a single BER/BLER test.

The blocking test contains approx. 12750 single BER tests. A DUT on the limit will fail approx. 25 to 26 times due to statistical reasons (wrong decision probability at the end of the test F=[0.2]%). 24 fails are allowed in the blocking test but they are reserved for spurious responses. This shall be solved by the following rule:

All passes (based on F=[0.2]%) are accepted, including the wrong decisions due to statistical reasons.

An early fail limit based on F=[0.02%] instead of [0.2%] is established, that ensures that wrong decisions due to statistical reasons are reduced to 2 to 3.


These asymmetric test conditions ensure that a DUT on the test limit consumes hardly more test time for a blocking test than in the symmetric case and on the other hand discriminates sufficiently between statistical fails and spurious response cases.

F.6.1.10 Dual limit BLER tests

This annex is applicable for subclause 7.8.1 Power control in the downlink constant BLER target and subclause 7.9 Downlink compressed mode. In this tests the BLER shall stay between two limits.

Parameters for single limit	Parameters for dual limits
Specified BER BLER —	Specified BLER * 1.3 (upper test requirement)
Specified BER BLER	Specified BLER * 0.7 (lower test requirement)
	Bad DUT BLER *1.3
Bad DUT BER BLER	Bad DUT BLER *0.7
	Upper Test limit
Test limit	Lower Test limit
	Fail_high
Early fail and	Pass_high
Early pass	Pass_low
-	Fail_low

Table F.6.1.10. Parameters for single and dual limit BLER

176

Figure F.6.1.10: Dual limit BLER

F.6.1.10.1 Description of the parameters for dual limit BLER tests

(refer figure F.6.1.10)

The origin

1 (black horizontal line in the centre): this is the normalised origin BLER

The assymptotes

1.3 (red horizontal line): this is the specified upper limit of the range (BLER +30%) (upper test requirement)

0.7(blue horizontal line): this is the specified lower limit of the range (BLER-30%)(lower test requirement)

1.3*M (black horizontal line): this is M times the specified upper limit of the range (Bad DUT BLER)

0.7/M (brown horizontal line): this is 1/M times the specified lower limit. (Bad DUT BLER)

The pass/fail limits

Fail_high (bold red curve):

Definition: A momentary BLER value above this curve is with high probability above the specified upper limit: BLER +30%.

Verdict: Above: Fail due to bad BLER

Below: continue

It approaches towards 1.3(red).

Validity range 7< errors <345.

Formula:

fail_high(ne, D) := $2 \cdot \frac{\text{ne} \cdot 1.3}{\text{qchisq}(D, 2 \cdot ne)}$

Fail_low (bold blue curve):

Definition: A momentary BLER value below this curve is with high probability below the specified lower limit: BLER -30%).

177

Verdict: Above: continue

Below: Fail due to too good BLER

It approaches towards 0.7(blue).

Validity range $1 \le \text{errors} < 343$.

Formula:

fail_low(ne, D) :=
$$2 \cdot \frac{\text{ne} \cdot 0.7}{\text{qchisq}(1 - D, 2 \cdot \text{ne})}$$

Pass_high (bold black curve):

Definition: a momentary BLER value on and below this curve is with high probability below M times the specified upper limit.

Verdict: Above: continue

Below: pass for $ne \ge 29$

continue for ne < 29

It approaches 1.3*M(black).

Validity range $1 \le \text{errors} < 345$.

Formula:

pass_high (ne, D) := $2 \cdot \frac{\text{ne}}{\text{qchisq}(1 - D, 2 \cdot \text{ne})} \cdot M \cdot 1.3$

Pass_low (bold brown curve):

Definition: a momentary BLER value on and above this curve is with high probability above 1/M times the specified lower limit of the range.

Verdict: Above: pass for $ne \ge 29$,

continue for ne < 29

Below: continue

It approaches 0.7/M(brown).

Validity range 7< errors <343.

pass_low (ne, D) :=
$$2 \cdot \frac{\text{ne} \cdot \frac{0.7}{M}}{\text{qchisq}(D, 2 \cdot \text{ne})}$$

Legende formulas:

D: wrong decision risk per test step: 0.000085

M: bad DUT factor: 1.5

ne: number of errors

qchisq: inverse cumulative chi square function

Upper test limit (boarder between pink and green)1.3*1.234 = 1.6

Validity range: $345 \leq \text{errors.}$

Verdict: Above: fail due to bad BLER

Below: pass

Lower test limit (boarder between green and orange) 0.7/1.234 = 0.567

Validity range: $343 \le \text{errors}$

Verdict: Above: pass

Below: fail due to too good BLER

The intersection co-ordinates:

Fail_high (bold red curve) and Pass_high (bold black curve):

Upper target number of errors (345) and upper test limit: 1.3* 1.234

Fail_low (bold blue curve) and Pass_high (bold black curve):

Lower target number of errors (343) and lower test limit: 0.7 / 1.234

Pass_high (bold black curve) and Pass_low (bold brown curve)

Minimum number of errors (29) and optimum normalised BLER (1.049)

The ranges:

Range(pink): in this range the measurement can be stopped and the DUT is failed due to too high BLER.Range (orange): in this range the measurement can be stopped and the DUT is failed due to too low BLER.Range (yellow): in this range the measurement is undecided and must be continued.Range (green): in this range the measurement can be stopped and the DUT is passed. No final BLER result is achieved.

F.6.1.10.2 Pass fail decision rules

No decision is allowed before the minimum test time (Table F.6.1.6.2) has elapsed

1) If minimum Test time < time for target number of error events then the following applies: The required confidence level 1-F (= correct decision probability, Table F.6.1.6.2) shall be achieved. This is fulfilled at

fail_high

pass_high

pass_low

fail_low

For every block sum up the number of blocks (ns) and the number of erroneous blocks (ne) from the beginning of the test and calculate

BLER₁ (including the artificial error at the beginning of the test (Note 1, F.6.1.9))and

BLER₀ (excluding the artificial error at the beginning of the test (Note 1, F.6.1.9)).

If BLER₀ is above *fail_high*, fail the test due to too bad BLER

If BLER₁ is below *fail_low*, fail the test due to too good BLER

If BLER ₀ is on or below <i>fail_high</i>	and	if BLER ₁ is above <i>pass_high</i> , continue the test
If BLER ₀ is below <i>pass_low</i>	and	if BLER ₁ is above or on <i>fail low</i> , continue the test

If $BLER_1$ is below or on *pass_high* and if $BLER_0$ is on or above *pass_high*, pass the test

2) If the minimum test time ≥ time for target error events, then the test runs for the minimum test time and the decision is done by comparing the result with the upper and lower test limit.

If BLER₀ is above the upper test limit, fail the DUT due to too bad BLER

If BLER₁ is below the lower test limit, fail the DUT due to too good BLER

If BLER₀ is on or below the upper test limit and if BLER₁ is on or above the lower test limit, pass the DUT

F.6.1.10.3 Test conditions for dual limit BLER tests

Type of test (BLER)	Data rate, Propagation condition	Test requirement (BLER)	Test limit = Test requirement * TL TL	Target number of error events (time)	Minimum number of samples	Prob that a good unit will fail = prob that a bad unit will pass: F[%]	Bad unit factor M
Power control in the downlink, constant BLER target	12.2 kbit/s, 3km/h (case4)	0.01±30%	Upper TL: 1.3*1.234 Lower TL 0.7/1.234	Upper: 345 (431.25s) Lower 343 (1191s)	8200	0.2	Upper: 1.5 Lower 1/1.5
Downlink compressed mode	12.2kbit/s, 3km/h (case 2)	0.01±30%	Upper TL: 1.3*1.234 Lower TL 0.7/1.234	Upper: 345 (431.25s) Lower 343 (1191s)	8200	0.2	Upper: 1.5 Lower 1/1.5

Table F.6.1.10.3 Test conditions for dual limit BLER tests

F.6.2 Statistical testing of RRM delay performance

F.6.2.1 Test Method

Each test is performed in the following manner:

- a) Setup the required test conditions.
- b) Measure the delay repeated times. Start each repetition after sufficient time, such that each delay test is independent from the previous one. The delay-times, measured, are simplified to:

a good delay, if the measured delay is \leq limit.

a bad delay, if the measured delay is > limit

- c) Record the number of delays (ns), tested, and the number of bad delays (ne)
- d) Stop the test at an early pass or an early fail event.
- e) Once the test is stopped, decide according to the pass fail decision rules (subclause F.6.2.7)

F.6.2.2 Bad Delay Ratio (ER)

The Bad Delay Ratio (ER) is defined as the ratio of bad delays (ne) to all delays (ns). (1-ER is the success ratio)

F.6.2.3 Test Criteria

The test shall fulfil the following requirements:

- a) good pass fail decision
 - 1) to keep reasonably low the probability (risk) of passing a bad unit for each individual test;
 - 2) to have high probability of passing a good unit for each individual test;
- b) good balance between test-time and statistical significance
 - 3) to perform measurements with a high degree of statistical significance;
 - 4) to keep the test time as low as possible.

F.6.2.4 Calculation assumptions

F.6.2.4.1 Statistical independence

It is arranged by test conditions, that bad delays are independent statistical events.

F.6.2.4.2 Applied formulas

The specified ER is 10% in most of the cases. This stipulates to use the binomial distribution to describe the RRM delay statistics. With the binomial distribution optimal results can be achieved. However the inverse cumulative operation for the binomial distribution is not supported by standard mathematical tools. The use of the Poisson or Chi Square Distribution requires ER \rightarrow 0. Using one of this distributions instead of the binomial distribution gives sub-optimal results in the conservative sense: a pass fail decision is done later than optimal and with a lower wrong decision risk than predefined.

The formulas, applied to describe the RRM delay statistics test, are based on the following experiment:

(1) After having observed a certain number of bad delays (**ne**) the number of all delays (**ns**) are counted to calculate ER. Provisions are made (note 1) such that the complementary experiment is valid as well:

(2) After a certain number of delays (ns) the number of bad delays (ne), occurred, are counted to calculate ER.

Experiment (1) stipulates to use the Chi Square Distribution with degree of freedom ne: 2*dchisq(2*NE,2*ne).

Experiment (2) stipulates to use the Poisson Distribution: dpois(ne,NE)

(NE: mean value of the distribution)

To determine the early stop conditions, the following inverse cumulative operation is applied:

0.5 * qchisq(D,2*ne) for experiment (1) and (2)

D: wrong decision risk per test step

Note: Other inverse cumulative operations are available, however only this is suited for experiment (1) and (2).

F.6.2.4.3 Approximation of the distribution

The test procedure is as follows:

During a running measurement for a UE ns (Number of Delays) and ne (Number of bad delays) are accumulated and from this the preliminary ER is calculated. Then new samples up to the next bad delay are taken. The entire past and the new samples are basis for the next preliminary ER. Depending on the result at every step, the UE can pass, can fail or must continue the test.

As early pass- and early fail-UEs leave the statistical totality under consideration, the experimental conditions are changed every step resulting in a distribution that is truncated more and more towards the end of the entire test. Such a distribution can not any more be handled analytically. The unchanged distribution is used as an approximation to calculate the early fail and early pass bounds.

F.6.2.5 Definition of good pass fail decision.

This is defined by the probability of wrong decision F at the end of the test. The probability of a correct decision is 1- F.

The probability (risk) to fail a good DUT shall be \leq F according to the following definition: A DUT is failed, accepting a probability of \leq F that the DUT is still better than the specified bad delay ratio (Test requirement).

The probability (risk) to pass a bad DUT shall be \leq F according to the following definition: A DUT is passed, accepting a probability of \leq F that the DUT is still worse than M times the specified bad delay ratio. (M>=1 is the bad DUT factor).

This definitions lead to an early pass and an early fail limit:

Early fail: $er \ge er lim_{fail}$

Release 5

182

$$er \lim_{fail} (D, ne) = \frac{2^* ne}{qchisq(D, 2^* ne)}$$
(1)

For $ne \ge [5]$

Early pass: $er \leq erlimbad_{pass}$

$$er \lim bad_{pass}(D, ne) = \frac{2 * ne * M}{qchisq(1-D, 2*ne)}$$
(2)

For ne ≥ 1

With

er (normalized ER): ER according to F.6.2.2 divided by specified ER

- D: wrong decision probability for a test step . This is a numerically evaluated fraction of F, the wrong decision probability at the end of the test. see table F.6.2.6.1
- ne: Number of bad delays
- M: bad DUT factor see table F.6.2.6.1

qchisq: inverse cumulative chi squared distribution

F.6.2.6 Good balance between test-time and statistical significance

Two independent test parameters are introduced into the test and shown in Table F.6.2.6.1. These are the obvious basis of test time and statistical significance. From them four dependent test parameters are derived.

Independent test parameters			Dep	ameters	
Test Parameter	Value	Reference	Test parameter	Value	Reference
Bad DUT factor M	[1.5]	Table F.6.1.8	Early pass/fail condition	Curves	Subclause F.6.2.5 Figure 6.2.9
Final probability of wrong pass/fail	[5%]	Table F.6.2.8	Target number of bad delays	[154]	Table 6.2.8
decision F			Probability of wrong pass/fail decision per test step D	[0.6 %]	
			Test limit factor TL	[1.236]	Table 6.2.8

 Table F.6.2.6 independent and dependent test parameters

F.6.2.7 Pass fail decision rules

The required confidence level 1-F (= correct decision probability) shall be achieved. This is fulfilled at an early pass or early fail event. Sum up the number of all delays (ns) and the number of bad delays from the beginning of the test and calculate:

ER1 (including the artificial error at the beginning of the test (Note 1))and

 ER_0 (excluding the artificial error at the beginning of the test (Note 1)).

If ER_0 is on or above the early fail limit, fail the DUT.

If ER_1 is on or below the early pass limit, pass the DUT.

Otherwise continue the test

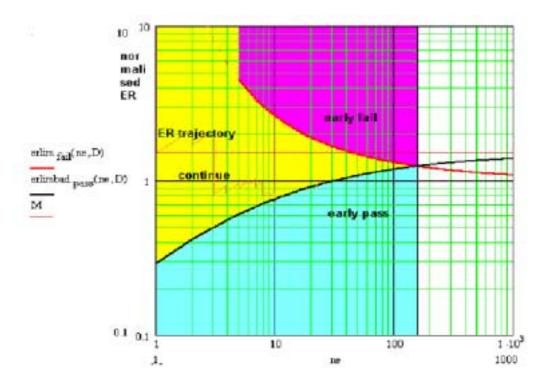
183

F.6.2.8 Test conditions for RRM delay tests, Combining of TPC commands test 1, Demodulation of Paging channel and Detection of acquisition indicator tests.

Table F.6.2.8: Test conditions for a single RRM delay tests, Combining of TPC commands test 1, Demodulation of Paging channel and Detection of Acquisition indicator tests.

Type of test	Test requirement	Test requirement	Testlimit(ER) =	Target number	Prob that good unit will	Bad unit factor M
	Delay (s)	(ER= 1- success ratio)	Test requirement (ER)x TL TL	of bad delays	fail = Prob that bad unit will pass [%]	
8.2.2 Cell recelection	8	0.1	[1.236]	[154]	[5]	[1.5]
8.2.3.1 UTRAN to GSM cell reselection, scenario 1	27.9	0.1	[1.236]	[154]	[5]	[1.5]
8.2.3.2 UTRAN to GSM cell reselection, scenario 2	9.6	0.1	[1.236]	[154]	[5]	[1.5]
8.2.4 FDD/TDD Cell reselection	8	0.1	[1.236]	[154]	[5]	[1.5]
8.3.1 FDD/FDD Soft handover	50+10*KC +100*OC ms	0.1	[1.236]	[154]	[5]	[1.5]
8.3.2 FDD FDD Hard Handover 8.3.2.1 Handover to intra frequency cell	70 ms	0.1	[1.236]	[154]	[5]	[1.5]
8.3.2.2 Handover to interfrequency cell	100ms	0.1	[1.236]	[154]	[5]	[1.5]
7.7.2 Combining of TPC commands Test 1 Note: The theory of statistical testing of RRM delay performance in clause F.6.2 is applied for test case 7.7.2 Combining of TPC commands Test 1. The success ratio for delay is replaced by the success ratio for power control sequence.	Not applicable	0.01	[1.236]	[154]	[5]	[1.5]

Demodulation of Paging Channel (PCH) applicable applicable applicable applicable (PCH) Note: The theory of statistical testing of RRM delay performance in clause F.6.2 is applied for test case 7.11 applicable applicable applicable The success ratio for delay is replaced by the success ratio for procedure step Not 0.01 [1.236] [154] [5] [1.5 7.12 Detection indicatior (Al). Not 0.01 [1.236] [154] [5] [1.5 victure step 4. 0.01 [1.236] [154] [5] [1.5 resting of RRM delay performance in clause F.6.2 is applied for test case 7.12. The success ratio for delay is replaced by the success ratio for procedure steps 4 and 10. 36.4.5 0.1 [1.236] [154] [5] [1.5 8.6.2.22.correct reporting of meighbours in fading 36.4.5 0.1 [1.236] [154] [5] [1.5	r						
success ratio for procedure step A. Image: success ratio for procedure step Image: success ratio for applicable 0.01 [1.236] [154] [5] [1.5 7.12 Detection of Acquisition applicable Not applicable 0.01 [1.236] [154] [5] [1.5 of Acquisition indicatior (Al). Note: The theory of statistical testing of RRM delay performance in clause F.6.2 is applied for test case 7.12. The success ratio for delay is replaced by the success ratio for procedure steps 4 and 10. [1.236] [154] [5] [1.5 8.6.2.2 correct reporting of fading 36.4 s s procedure secence 0.1 [1.236] [154] [5] [1.5	Paging Channel (PCH) Note: The theory of statistical testing of RRM delay performance in clause F.6.2 is applied for test case 7.11 Demodulation of Paging Channel. The success ratio for delay is	Not applicable	0.01	[1.236]	[154]	[5]	[1.5]
procedure step4.7.12 Detection of Acquisition indicatior (Al). Note: The theory of statistical testing of RRM delay performance in clause F.6.2 is applied for test case 7.12. The success ratio for delay is replaced by the success ratio for procedure steps 4 and 10.Not 0.010.01[1.236][154][5][1.58.6.2.2 correct reporting of fading36.4 s (see procedure (see neighbours in fading0.1[1.236][154][5][1.5							
4. Not 0.01 [1.236] [154] [5] [1.5 of Acquisition indicator (Al). Note: The theory of statistical testing of RRM delay performance in clause F.6.2 is applied for test case 7.12. The success ratio for delay is replaced by the success ratio for procedure steps 4 and 10. 0.1 [1.236] [154] [5] [1.5 8.6.2.2 correct reporting of neighbours in procedure fading 36.4 s 8.6.2.2.4.2 0.1 [1.236] [154] [5] [1.5							
of Acquisition indicatior (Al). Note: The theory of statistical testing of RRM delay performance in clause F.6.2 is applied for test case 7.12. The success ratio for delay is replaced by the success ratio for procedure steps 4 and 10. applicable Image: Construction of the test case 7.12. The success ratio for delay is replaced by the success ratio for procedure steps 4 and 10. 0.1 [1.236] [154] [5] [1.5 8.6.2.2 correct reporting of neighbours in fading 36.4 s (see procedure 8.6.2.2.4.2 0.1 [1.236] [154] [5] [1.5							
reporting of neighbours in fading(see procedure 8.6.2.2.4.2	of Acquisition indicatior (AI). Note: The theory of statistical testing of RRM delay performance in clause F.6.2 is applied for test case 7.12. The success ratio for delay is replaced by the success ratio for procedure steps 4 and 10.	applicable					[1.5]
condition.	8.6.2.2 correct reporting of neighbours in fading propagation	<u>(see</u> procedure	<u>0.1</u>	[1.236]	[154]	[5]	[1.5]


F.6.2.9 Practical Use (informative)

See figure F.6.2.9:

The early fail limit represents formula (1) in F.6.2.5. The range of validity is $[ne \ge 5]$ to [ne = 154]

The early pass limit represents the formula (2) in F.6.2.5. The range of validity is n=1 to [n = 154]. See note 1. The intersection co-ordinates of both curves are: target number of bad delays n = [154] and test limit TL = [1.236].

A typical delay test, calculated form the number of samples and errors (F.6.2.2) using experimental method (1) or (2) (see F.6.2.4.2. calculation assumptions) runs along the yellow trajectory. With an good delay the trajectory goes down vertically. With a bad delay it jumps up right. The tester checks if the ER test intersects the early fail or early pass limits.

Note 1: At the beginning of the test, an artificial bad delay is introduced. This ensures that an ideal DUT meets the valid range of the early pass limit. In addition this ensures that the complementary experiment (F.6.2.4.2. bullet point (2)) is applicable as well. For the check against the early fail limit the artificial bad delay sample, introduced at the beginning of the test, is disregarded.

Due to the nature of the test, namely discrete bad delay events, the early fail condition shall not be valid, when fractional bad delays <1 are used to calculate the early fail limit: Any early fail decision is postponed until number of errors ne \geq [5].

3GPP TSG-T1 Meeting #21 Budapest, Hungary, 3 - 7 November, 2003

Tdoc **∺***T1-031567*

CHANGE REQUEST									CR-Form-v7
ж	34.121	CR <mark>310</mark>	жrev	1	Ħ	Current vers	ion:	5.1.1	ж
For HELP on using this form, see bottom of this page or look at the pop-up text over the X symbols.									
Proposed change a	affects: \	JICC apps 🖁 📃	ME <mark>X</mark>	Radi	io Ac	cess Networ	'k	Core Ne	etwork
Title: Ж	CR to 34.	121: Correction to	TFC selection	on red	quire	ments for co	<mark>dec r</mark>	node swite	ch
Source: ೫	Motorola								
Work item code: %	TEI					<i>Date:</i> ೫	27/	10/2003	
Category: ⊮	F (con A (con B (add C (fun D (edi Detailed exp	the following categor rection) responds to a correct lition of feature), ctional modification of torial modification) blanations of the abor 3GPP <u>TR 21.900</u> .	tion in an ear f feature)		ease	Release: ₩ Use <u>one</u> of 2) R96 R97 R98 R99 Rel-4 Rel-5 Rel-6	the fo (GSN (Rele (Rele (Rele (Rele (Rele	•	pases:

Reason for change: # The minimum requirement for TFC selection in UE for release 5 and later releases were added to be in alignment with the core specifications.	
releases were added to be in alignment with the core specifications.	
Summary of change: # For services where a codec is used, an additional requirement for Tadapt	is
added so that the step-by- step adaptation is taken into account for release	
later releases and the statistical testing information was added to section	
	1.0.2.0.
Consequences if # The TFC selection in UE minimum requirements for UE performing step-t	w-sten
<i>not approved:</i> adaptation will not comply with the TFC core.	y stop
adaptation will not comply with the fire cole.	
Clauses affected: % 8.4.3, F.6.2.8	
Y N	
Other specs # X Other core specifications #	
affected: X Test specifications	
X O&M Specifications	

Other comments: % This CR applies for Rel-5 and later releases.

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.

- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

8.4.3 Transport format combination selection in UE

8.4.3.1 Interactive or Background, PS, UL: 64 kbps

8.4.3.1.1 Definition and applicability

When the UE estimates that a certain TFC would require more power than the maximum transmit power, it shall limit the usage of transport format combinations for the assigned transport format set, according to the functionality specified in section 11.4 in TS25.321 [13]. This in order to make it possible for the network operator to maximise the coverage. Transport format combination selection is described in section 11.4 of TS 25.321 [13].

The requirements and this test apply to all types of UTRA for the FDD UE for Release 99, Release 4, Release 5 and later releases.

8.4.3.1.2 Minimum requirements

The UE shall continuously evaluate based on the *Elimination, Recovery* and *Blocking* criteria defined below, how TFCs on an uplink DPDCH can be used for the purpose of TFC selection. The evaluation shall be performed for every TFC in the TFCS using the estimated UE transmit power of a given TFC. The UE transmit power estimation for a given TFC shall be made using the UE transmitted power measured over the measurement period, defined in 9.1.6.1 of TS 25.133 [2] as one slot, and the gain factors of the corresponding TFC.

The UE shall consider the *Elimination* criterion for a given TFC to be detected if the estimated UE transmit power needed for this TFC is greater than the Maximum UE transmitter power for at least X out of the last Y successive measurement periods immediately preceding evaluation. The MAC in the UE shall consider that the TFC is in Excess-Power state for the purpose of TFC selection.

MAC in the UE shall indicate the available bit rate for each logical channel to upper layers within T_{notify} from the moment the *Elimination* criterion was detected.

The UE shall consider the *Recovery* criterion for a given TFC to be detected if the estimated UE transmit power needed for this TFC has not been greater than the Maximum UE transmitter power for the last Z successive measurement periods immediately preceding evaluation. The MAC in the UE shall consider that the TFC is in Supported state for the purpose of TFC selection.

MAC in the UE shall indicate the available bitrate for each logical channel to upper layers within T_{notify} from the moment the *Recovery* criterion was detected.

The evaluation of the *Elimination* criterion and the *Recovery* criterion shall be performed at least once per radio frame.

The definitions of the parameters X,Y and Z which shall be used when evaluating the *Elimination* and the *Recovery* criteria when no compressed mode patterns are activated are given in Table 8.4.3.1.1.

Table 8.4.3.1.1: X, Y	, Z parameters for	TFC selection
-----------------------	--------------------	---------------

Х	Y	Z
15	30	30

The UE shall consider the *Blocking* criterion for a given TFC to be fulfilled at the latest at the start of the longest uplink TTI after the moment at which the TFC will have been in Excess-Power state for a duration of:

$$(T_{notify} + T_{modify} + T_{L1_proc})$$

where:

T_{notify} equals 15 ms

 T_{modify} equals MAX(T_{adapt_max}, T_{TTI})

T_{L1 proc} equals 15 ms

T_{adapt_max} equals MAX(T_{adapt_1}, T_{adapt_2}, ..., T_{adapt_N})

N equals the number of logical channels that need to change rate

For Release 99 and Release 4 T_{adapt_n} equals the time it takes for higher layers to provide data to MAC in a new supported bitrate, for logical channel n. Table 8.4.3.1.2 defines T_{adapt} times for different services. For services where no codec is used T_{adapt} shall be considered to be equal to 0 ms.

Table 8.4.3.1.2: Tadapt

Service	T _{adapt} [ms]
UMTS AMR	40
UMTS AMR2	60

For Release 5 and later releases $T_{adapt,n}$ equals the time it takes for higher layers to provide data to MAC in a new supported bitrate, for logical channel n. For services where no codec is used T_{adapt} shall be considered to be equal to 0 ms. For services where either UMTS AMR2 or UMTS AMR WB is used, Tadapt shall be considered to be equal to the time required to switch from the current codec mode to a new supported codec mode. In that case Tadapt equals 20 ms + 40 ms per codec mode switch. E.g. Tadapt equals 60ms if one codec mode switch is necessary and Tadapt equals 140ms if 3 codec mode switches are necessary.

 T_{TTI} equals the longest uplink TTI of the selected TFC (ms).

The Maximum UE transmitter power is defined as follows

Maximum UE transmitter power = MIN(Maximum allowed UL TX Power, UE maximum transmit power)

where

Maximum allowed UL TX Power is set by SS and defined in TS 25.331 [8], and

UE maximum transmit power is defined by the UE power class, and specified in TS 25.101 [1].

The normative reference for these requirements is TS 25.133 [2] clauses 6.4.2 and A.6.4.1.

8.4.3.1.3 Test purpose

The purpose is to verify the UE blocks (stops using) a currently used TFC when the UE output power is not sufficient to support that TFC. The test will verify the general requirement on TFC selection in section 8.4.3.1.2 for a RAB intended for packet data services, i.e. Interactive or Background, PS, UL: 64kbps as defined in TS 34.108 [3].

8.4.3.1.4 Method of test

8.4.3.1.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in Table 8.4.3.1.3, 8.4.3.1.4 and Table 8.4.3.1.5 below. The test consists of 2 successive time periods, with a time duration of T1 and T2 respectively.

Details on the UL reference RAB in table 8.4.3.1.3 and 8.4.3.1.4 can be found in TS 34.108 [3] section "Interactive or background / UL:64 DL: 64 kbps / PS RAB + UL:3.4 DL:3.4 kbps SRBs for DCCH".

165

	TFI	64 kbps RAB (20ms TTI)	DCCH 3.4kbps (40ms TTI)
TFS	TF0, bits	0x336	0x148
	TF1, bits	1x336	1x148
	TF2, bits	2x336	N/A
	TF3, bits	3x336	N/A
	TF4, bits	4x336	N/A

Table 8.4.3.1.3: UL reference RAB, Interactive or Background

Table 8.4.3.1.4: UL TFCI

TFCI	(64 kbps RAB, DCCH)
UL_TFC0	(TF0, TF0)
UL_TFC1	(TF0, TF1)
UL_TFC2	(TF1, TF0)
UL_TFC3	(TF1, TF1)
UL_TFC4	(TF2, TF0)
UL_TFC5	(TF2, TF1)
UL_TFC6	(TF3, TF0)
UL_TFC7	(TF3, TF1)
UL_TFC8	(TF4, TF0)
UL_TFC9	(TF4, TF1)

Table 8.4.3.1.5: General test parameters

Parameter	Unit	Value	Comment
TFCS size		10	
TFCS		UL_TFC0, UL_TFC1, UL_TFC2,	
		UL_TFC3, UL_TFC4, UL_TFC5,	
		UL_TFC6, UL_TFC7, UL_TFC8,	
		UL_TFC9	
Power Control		On	
Active cell		Cell 1	
Maximum allowed UL TX	dBm	21	
power			
T1	S	30	
T2	S	10	
Propagation condition		AWGN	

The radio conditions in the test shall be sufficient, so that decoding of the TPC commands can be made without errors.

The amount of available user data shall be sufficient to allow uplink transmission at the highest bit rate (UL_TFC8 or UL_TFC9) during the entire test and it shall be ensured that the UE is using UL_TFC8 or UL_TFC9 at the end of T1.

8.4.3.1.4.2 Procedure

- 1) The UE is switched on.
- 2) The SS shall signal to the UE the allowed TFCS according to table 8.4.3.1.5.
- 3) For T1=30 secs the SS shall command the UE output power to be between 14 and 15 dB below the UE Maximum allowed UL Tx power (table 8.4.3.1.5).
- 4) The SS shall start sending continuously TPC_cmd=1 to the UE for T2=10 secs (see NOTE).
- 5) The time from the beginning of T2 until the UE blocks (stops using) UL_TFC8 and UL_TFC9 shall be measured by the SS. The UE shall stop using UL_TFC8 and UL_TFC9 within 140 ms from beginning of time period T2. A success is counted, if the UE stops within 140ms. An error is counted otherwise.

6) Repeat steps 3-5-[50] times according to Annex F.6.2 Table 6.2.8.

NOTE: This will emulate that UL_TFC8 to UL_TFC9 can not be supported because the UE reaches the maximum UL Tx power and still SS is sending power-up commands.

8.4.3.1.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS] 95% of the cases.

Note: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

F.6 General rules for statistical testing

F.6.1 Statistical testing of receiver BER/BLER performance

F.6.1.1 Error Definition

1) Bit Error Ratio (BER)

The Bit Error Ratio is defined as the ratio of the bits wrongly received to all data bits sent. The bits are the information bits above the convolutional/turbo decoder

2) Block Error Ratio (BLER)

A Block Error Ratio is defined as the ratio of the number of erroneous blocks received to the total number of blocks sent. An erroneous block is defined as a Transport Block, the cyclic redundancy check (CRC) of which is wrong.

F.6.1.2 Test Method

Each test is performed in the following manner:

- a) Setup the required test conditions.
- b) Record the number of samples tested and the number of occurred events (bit error or block error)
- c) Stop the test at a stop criterion which is minimum test time or an early pass or an early fail event.
- d) Once the test is stopped decide according to the pass fail decision rules (subclause F.6.1.7)

F.6.1.3 Test Criteria

The test shall fulfil the following requirements:

- a) good pass fail decision
 - 1) to keep reasonably low the probability (risk) of passing a bad unit for each individual test;
 - 2) to have high probability of passing a good unit for each individual test;
- b) good balance between testtime and statistical significance
 - 3) to perform measurements with a high degree of statistical significance;
 - 4) to keep the test time as low as possible.

F.6.1.4 Calculation assumptions

F.6.1.4.1 Statistical independence

- (a) It is assumed, that error events are rare (lim BER BLER → 0) independent statistical events. However the memory of the convolutional /turbo coder is terminated after one TTI. Samples and errors are summed up every TTI. So the assumption of independent error events is justified.
- (b) In the BLER test with fading there is the memory of the multipath fading channel which interferes the statistical independence. A minimum test time is introduced to average fluctuations of the multipath fading channel. So the assumption of independent error events is justified approximately.

F.6.1.4.2 Applied formulas

The formulas, applied to describe the BER BLER test, are based on the following experiments:

(1) After having observed a certain number of errors (**ne**) the number of samples are counted to calculate BER BLER. Provisions are made (note 1) such that the complementary experiment is valid as well:

(2) After a certain number of samples (ns) the number of errors, occurred, are counted to calculate BER BLER.

Experiment (1) stipulates to use the following Chi Square Distribution with degree of freedom ne: 2*dchisq(2*NE,2*ne).

Experiment (2) stipulates to use the Poisson Distribution: dpois(ne,NE)

(NE: mean of the distribution)

To determine the early stop conditions, the following inverse cumulative operation is applied:

0.5 * qchisq(D,2*ne). This is applicable for experiment (1) and (2).

D: wrong decision risk per test step

Note: other inverse cumulative operations are available, however only this is suited for experiment (1) and (2).

F.6.1.4.3 Approximation of the distribution

The test procedure is as follows:

During a running measurement for a UE ns (number of samples) and ne (number of errors) are accumulated and from this the preliminary BER BLER is calculated. Then new samples up to the next error are taken. The entire past and the new samples are basis for the next preliminary BER BLER. Depending on the result at every step, the UE can pass, can fail or must continue the test.

As early pass- and early fail-UEs leave the statistical totality under consideration, the experimental conditions are changed every step resulting in a distribution that is truncated more and more towards the end of the entire test. Such a distribution can not any more be handled analytically. The unchanged distribution is used as an approximation to calculate the early fail and early pass bounds.

F.6.1.5 Definition of good pass fail decision.

This is defined by the probability of wrong decision F at the end of the test. The probability of a correct decision is 1-F.

The probability (risk) to fail a good DUT shall be \leq F according to the following definition: A DUT is failed, accepting a probability of \leq F that the DUT is still better than the specified error ratio (Test requirement).

The probability to pass a bad DUT shall be \leq F according to the following definition: A DUT is passed, accepting a probability of \leq F that the DUT is still worse than M times the specified error ratio. (M>1 is the bad DUT factor).

This definitions lead to an early pass and an early fail limit:

Early fail: ber≥ berlim_{fail}

Release 5

168

$$ber \lim_{fail} (D, ne) = \frac{2 * ne}{qchisq(D, 2 * ne)}$$
(1)

For ne \geq [7]

Early pass: ber ≤berlimbad_{pass}

$$ber \lim bad_{pass}(D, ne) = \frac{2 * ne * M}{qchisq(1 - D, 2 * ne)}$$
(2)

For ne ≥ 1

With

ber (normalized BER, BLER): BER, BLER according to F.6.1.1 divided by Test requirement

- D: wrong decision probability for a test step . This is a numerically evaluated fraction of F, the wrong decision probability at the end of the test. See table F.6.1.6.1.
- ne: Number of error events

M: bad DUT factor see table F.6.1.6.1.

qchisq: inverse cumulative chi squared distribution

F.6.1.6 Good balance between testtime and statistical significance

Three independent test parameters are introduced into the test and shown in Table F.6.1.6.1. These are the obvious basis of test time and statistical significance. From the first two of them four dependent test parameters are derived. The third independent test parameter is justified separately.

Independent test parameters			De	pendent test paran	neters
Test Parameter	Value	Reference	Test parameter	Value	Reference
Bad DUT factor M	[1.5]	Table F.6.1.8	Early pass/fail condition	Curves	Subclause F.6.1.5 Figure 6.1.9
Final probability of wrong pass/fail decision F	[0.2%] [0.02%, note 2]	Subclause F.6.1.5	Target number of error events	[345]	Table 6.1.8
			Probability of wrong pass/fail decision per test step D	[0.0085%] [0.0008% and 0.008%, note 2]	
			Test limit factor TL	[1.234]	Table 6.1.8
Minimum test time		Table F.6.1.6.2			

Table F.6.1.6.1 independent and dependent test parameters

The minimum test time is derived from the following justification:

1) For no propagation conditions and static propagation condition

No early fail calculated from fractional number of errors <1 (see note 1)

2) For multipath fading condition

No stop of the test until 990 wavelengths are crossed with the speed given in the fading profile.

3) For birth death propagation conditions

No stop of the test until 200 birth death transitions occur

4) For moving propagation conditions: 628 sec

This is necessary in order to pass all potential critical points in the moving propagation profile 4 times:

Maximum rake window

Maximum adjustment speed

Intersection of moving taps

Fading profile	Minimum test time
Multipath propagation 3 km/h	164 sec
Multipath propagation 50 km/h	9.8 sec
Multipath propagation 120 km/h	4.1 sec
Multipath propagation 250 km/h	2 sec
Birth Death propagation	38.2 sec
Moving propagation	628 sec

Table F.6.1.6.2 : minimum Test time

In table F.6.1.8the minimum test time is converted in minimum number of samples.

F.6.1.7 Pass fail decision rules

No decision is allowed before the minimum test time is elapsed.

1) If minimum Test time < time for target number of error events then the following applies: The required confidence level 1-F (= correct decision probability) shall be achieved. This is fulfilled at an early pass or early fail event.

For BER:

For every TTI (Transmit Time Interval) sum up the number of bits (ns) and the number if errors (ne) from the beginning of the test and calculate

BER₁ (including the artificial error at the beginning of the test (Note 1))and

BER₀ (excluding the artificial error at the beginning of the test (Note 1)).

If BER₀ is above the early fail limit, fail the DUT.

If BER₁ is below the early pass limit, pass the DUT.

Otherwise continue the test

For BLER:

- For every block sum up the number of blocks (ns) and the number of erroneous blocks (ne) from the beginning of the test and calculate
- BLER₁ (including the artificial error at the beginning of the test (Note 1))and

BLER₀ (excluding the artificial error at the beginning of the test (Note 1)).

If BLER₁ is below the early pass limit, pass the DUT.

If BLER₀ is above the early fail limit, fail the DUT.

Otherwise continue the test

2) If the minimum test time ≥ time for target error events, then the test runs for the minimum test time and the decision is done by comparing the result with the test limit.

For BER:

For every TTI (Transmit Time Interval) sum up the number of bits (ns) and the number if errors (ne) from the beginning of the test and calculate BER_0

For BLER:

For every block sum up the number of blocks (ns) and the number of erroneous blocks (ne) from the beginning of the test and calculate $BLER_0$

If BER₀/BLER₀ is above the test limit, fail the DUT.

If BER₀/BLER₀ is on or below the test limit, pass the DUT.

F.6.1.8 Test conditions for BER, BLER tests

Table F.6.1.8: Test conditions for a single BER/BLER tests

Type of test (BER)	Test requirement (BER/BLER)	Test limit (BER/BLER) = Test requirement (BER/BLER) x TL TL	Target number of error events (time)	Minimum number of samples	Prob that good unit will fail Prob that bad unit will pass [%]	Bad unit BER/BLE R factor M
Reference Sensitivity Level	0.001	[1.234]	[345] (22.9s)	Note 1	[0.2]	[1.5]
Maximum Input Level	0.001	[1.234]	[345] (22.9s)	Note 1	[0.2]	[1.5]
Adjacent Channel Selectivity	0.001	[1.234]	[345] (22.9s)	Note 1	[0.2]	[1.5]
Blocking Characteristics Pass condition Note 2	0.001	[1.251]	[403] (26.4s)	Note 1	[0.2]	[1.5]
Blocking Characteristics Fail condition Note 2	0.001	[1.251]	[403] (26.4s)	Note 1	[0.02]	[1.5]
Spurious Response	0.001	[1.234]	[345] (22.9s)	Note 1	[0.2]	[1.5]
Intermodulation Characteristics	0.001	[1.234]	[345] (22.9s)	Note 1	[0.2]	[1.5]

Type of test (BLER)	Information Bit rate	Test requirement (BER/BLER)	Test limit (BER/B LER)= Test require ment (BER/B LER)x TL	Target number of error events (time)	Minimum number of samples	Prob that bad unit will pass = Prob that good unit will fail [%]	Bad unit BER/BL ER factor M
Demodulation in Static Propagation conditions Demodulation of DCH in Multi-path Fading	12.2 64 144 384	0.01 0.1 0.01 0.1 0.01 0.1 0.01	[1.234]	[345] (559.16s) (55.92s) (559.16s) (55.92s) (559.16s) (27.96s) (279.58s)	Note1	[0.2]	[1.5]
Propagation conditions 3km/h (Case 1, Case 2, Case 4)	12.2 64 144	0.01 0.1 0.01 0.1	[1.234]	[345] (559.16s) (55.92s) (559.16s) (55.92s)	[8200] [8200] [8200] [8200]	[0.2]	[1.5]
	384	0.01 0.1 0.01		(559.16s) (27.96s) (279.58s)	[8200] [8200] [16400] [16400]		
120 km/h (Case3)	12.2 64 144 384	0.01 0.1 0.01 0.1 0.01 0.1 0.01	[1.234]	[345] (559.16s) (55.92s) (559.16s) (55.92s) (559.16s) (27.96s) (279.58s)	[205] [205] [205] [205] [205] [410] [410]	[0.2]	[1.5]
250 km/h (Case 6)	12.2 64 144 384	0.01 0.1 0.01 0.1 0.01 0.1 0.01	[1.234]	[345] (559.16s) (55.92s) (559.16s) (55.92s) (55.92s) (559.16s) (27.96s) (279.58s)	[100] [100] [100] [100] [100] [200] [200]	[0.2]	[1.5]
Demodulation of DCH in Moving Propagation conditions	12.2 64	0.01 0.01	[1.234]	[345] (559.16)	[31400] [31400]	[0.2]	[1.5]
Demodulation of DCH in Birth-Death Propagation conditions	12.2 64	0.01 0.01	[1.234]	[345] (559.16s) (559.16s)	[1910] [1910]	[0.2]	[1.5]
Demodulation of DCH in Base Station Transmit diversity modes (3 km/h, case1)	12.2	0.01	[1.234]	[345] (559.16s)	[8200]	[0.2]	[1.5]

Table F.6.1.8-2: Test conditions for BLER tests

Demodulation of DCH in closed loop transmit diversity			[1.234]	[345]		[0.2]	[1.5]
mode (3 km/h, case1) Mode 1	12.2	0.01		(559.16s)	[8200]		
Mode 2	12.2	0.01		(559.16s)	[8200]		
Demodulation of DCH in Site Selection Diversity Transmission Power Control mode	12.2	0.01	[1.234]	[345] (559.16)	[8200]	[0.2]	[1.5]
Demodulation of DCH in Inter-Cell Soft Handover (120 km/h, case3)	12.2 64 144 384	0.01 0.1 0.01 0.1 0.01 0.1 0.01	[1.234]	[345] (559.16s) (55.92s) (559.16s) (55.92s) (559.16s) (27.96s) (279.58s)	[205] [205] [205] [205] [205] [410] [410]	[0.2]	[1.5]
Combining of TPC commands from radio links of different radio link sets				Not applicable			
Power control in the downlink, constant BLER target				Not applicable			
Power control in the downlink, initial convergence				Not applicable			
Power control in the downlink, wind up effects				Not applicable			
Downlink compressed mode				Not applicable			
Blind transport format detection	Static 12.2 7.95 1.95 Multipath 12.2	$\begin{array}{ccc} \text{BLER} & \text{FDR} \\ 10^{-2} & 10^{-4} \\ 10^{-2} & 10^{-4} \\ 10^{-2} & 10^{-4} \\ 10^{-2} & 10^{-4} \end{array}$	[1.234]	[345] BLER FDR 559.16s 932min 559.16s 932min 559.16s 932min	Note 1 Note 1 Note 1 [205]	[0.2]	[1.5]
	7.95 1.98	$\begin{array}{ccc} 10^{-2} & 10^{-4} \\ 10^{-2} & 10^{-4} \\ 10^{-2} & 10^{-4} \end{array}$		559.16s 932min 559.16s 932min	[205] [205]		

F.6.1.9 Practical Use (informative)

See figure F.6.1.9:

The early fail limit represents formula (1) in F.6.1.5. The range of validity is $[ne \ge 7, \ge 8$ in case of blocking test] to [ne = 345]

The early pass limit represents the formula (2) in F.6.1.5. The range of validity is ne=1 to [ne =345]. See note 1

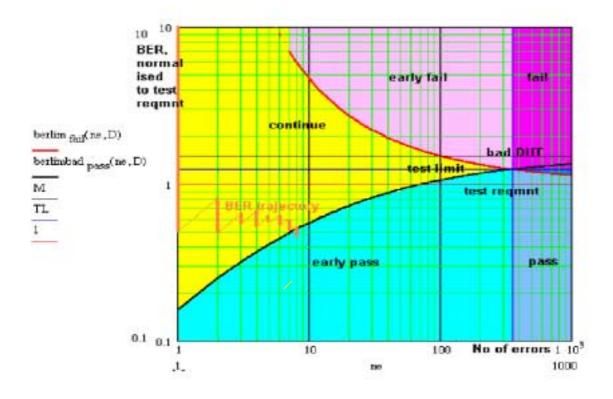
The intersection co-ordinates of both curves are : number of errors ne = [345] and test limit TL = [1.234].

The range of validity for TL is ne>345.

A typical BER BLER test, calculated form the number of samples and errors (F.6.1.2.(b)) using experimental method (1) or (2) (see F.6.1.4. calculation assumptions) runs along the yellow trajectory. With an errorless sample the trajectory goes down vertically. With an erroneous sample it jumps up right. The tester checks if the BER BLER test intersects the early fail or early pass limits. The real time processing can be reduced by the following actions:

 $BLER_0$ (excluding the artificial error at the beginning of the test (Note 1)). is calculated only in case of an error event.

 BER_0 (excluding the artificial error at the beginning of the test (Note 1)). is calculated only in case of an error event within a TTI.


So the early fail limit cannot be missed by errorless samples.

The check against the early pass limit may be done by transforming formula (2) in F.6.1.5 such that the tester checks against a Limit-Number-of-samples (NL(ne)) depending on the current number of errors (including the artificial error at the beginning of the test (Note 1)).

Early pass if

 $NL(ne) \ge \frac{qchisq(1-D,2*ne)}{2*TR*M}$

TR: test requirement (0.001)

Note 1: At the beginning of the test, an artificial error is introduced. This ensures that an ideal DUT meets the valid range of the early pass limit. In addition this ensures that the complementary experiment (F.6.1.4. bullet point (2)) is applicable as well.

For the check against the early fail limit the artificial erroneous sample, introduced at the beginning of the test, is disregarded.

Due to the nature of the test, namely discrete error events, the early fail condition shall not be valid, when fractional errors <1 are used to calculate the early fail limit: Any early fail decision is postponed until number of errors ne \geq [7]. In the blocking test any early fail decision is postponed until number of errors ne \geq [8].

Note2: F=[0.2%] is intended to be used for a test containing a few BER/BLER tests (e.g. receiver sensitivity is repeated 12 times). For a test containing many BER/BLER tests (e.g. blocking test) this value is not appropriate for a single BER/BLER test.

The blocking test contains approx. 12750 single BER tests. A DUT on the limit will fail approx. 25 to 26 times due to statistical reasons (wrong decision probability at the end of the test F=[0.2]%). 24 fails are allowed in the blocking test but they are reserved for spurious responses. This shall be solved by the following rule:

All passes (based on F=[0.2]%) are accepted, including the wrong decisions due to statistical reasons.

An early fail limit based on F=[0.02%] instead of [0.2%] is established, that ensures that wrong decisions due to statistical reasons are reduced to 2 to 3.

These asymmetric test conditions ensure that a DUT on the test limit consumes hardly more test time for a blocking test than in the symmetric case and on the other hand discriminates sufficiently between statistical fails and spurious response cases.

F.6.1.10 Dual limit BLER tests

This annex is applicable for subclause 7.8.1 Power control in the downlink constant BLER target and subclause 7.9 Downlink compressed mode. In this tests the BLER shall stay between two limits.

Parameters for single limit	Parameters for dual limits
Specified BER BLER	Specified BLER * 1.3 (upper test requirement)
	Specified BLER * 0.7 (lower test requirement)
	Bad DUT BLER *1.3
Bad DUT BER BLER	Bad DUT BLER *0.7
	Upper Test limit
Test limit	Lower Test limit
	Fail_high
Early fail and	Pass_high
Early pass	Pass_low
	Fail_low

Table F.6.1.10. Parameters for single and dual limit BLER

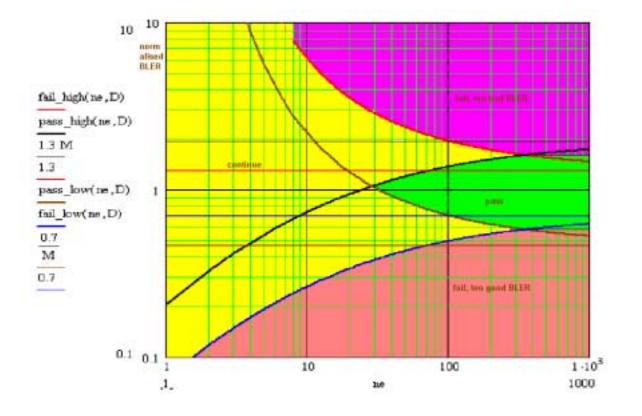


Figure F.6.1.10: Dual limit BLER

F.6.1.10.1 Description of the parameters for dual limit BLER tests

(refer figure F.6.1.10)

The origin

1 (black horizontal line in the centre): this is the normalised origin BLER

The assymptotes

1.3 (red horizontal line): this is the specified upper limit of the range (BLER +30%) (upper test requirement)

0.7(blue horizontal line): this is the specified lower limit of the range (BLER-30%)(lower test requirement)

1.3*M (black horizontal line): this is M times the specified upper limit of the range (Bad DUT BLER)

0.7/M (brown horizontal line): this is 1/M times the specified lower limit. (Bad DUT BLER)

The pass/fail limits

Fail_high (bold red curve):

Definition: A momentary BLER value above this curve is with high probability above the specified upper limit: BLER +30%.

Verdict: Above: Fail due to bad BLER

Below: continue

It approaches towards 1.3(red).

Validity range 7< errors <345.

Formula:

fail_high(ne, D) := $2 \cdot \frac{\text{ne} \cdot 1.3}{\text{qchisq}(D, 2 \cdot ne)}$

Fail_low (bold blue curve):

Definition: A momentary BLER value below this curve is with high probability below the specified lower limit: BLER -30%).

176

Verdict: Above: continue

Below: Fail due to too good BLER

It approaches towards 0.7(blue).

Validity range $1 \le \text{errors} < 343$.

Formula:

fail_low(ne, D) :=
$$2 \cdot \frac{\text{ne} \cdot 0.7}{\text{qchisq}(1 - D, 2 \cdot \text{ne})}$$

Pass_high (bold black curve):

Definition: a momentary BLER value on and below this curve is with high probability below M times the specified upper limit.

Verdict: Above: continue

Below: pass for $ne \ge 29$

continue for ne < 29

It approaches 1.3*M(black).

Validity range $1 \le \text{errors} < 345$.

Formula:

pass_high (ne, D) := $2 \cdot \frac{\text{ne}}{\text{qchisq}(1 - D, 2 \cdot \text{ne})} \cdot M \cdot 1.3$

Pass_low (bold brown curve):

Definition: a momentary BLER value on and above this curve is with high probability above 1/M times the specified lower limit of the range.

Verdict: Above: pass for $ne \ge 29$,

continue for ne < 29

Below: continue

It approaches 0.7/M(brown).

Validity range 7< errors <343.

pass_low (ne, D) := 2
$$\cdot \frac{\text{ne} \cdot \frac{0.7}{M}}{\text{qchisq}(D, 2 \cdot \text{ne})}$$

Legende formulas:

D: wrong decision risk per test step: 0.000085

M: bad DUT factor: 1.5

ne: number of errors

qchisq: inverse cumulative chi square function

Upper test limit (boarder between pink and green)1.3*1.234 = 1.6

Validity range: $345 \leq \text{errors.}$

Verdict: Above: fail due to bad BLER

Below: pass

Lower test limit (boarder between green and orange) 0.7/1.234 = 0.567

Validity range: $343 \le \text{errors}$

Verdict: Above: pass

Below: fail due to too good BLER

The intersection co-ordinates:

Fail_high (bold red curve) and Pass_high (bold black curve):

Upper target number of errors (345) and upper test limit: 1.3* 1.234

Fail_low (bold blue curve) and Pass_high (bold black curve):

Lower target number of errors (343) and lower test limit: 0.7 / 1.234

Pass_high (bold black curve) and Pass_low (bold brown curve)

Minimum number of errors (29) and optimum normalised BLER (1.049)

The ranges:

Range(pink): in this range the measurement can be stopped and the DUT is failed due to too high BLER.Range (orange): in this range the measurement can be stopped and the DUT is failed due to too low BLER.Range (yellow): in this range the measurement is undecided and must be continued.Range (green): in this range the measurement can be stopped and the DUT is passed. No final BLER result is achieved.

3GPP

F.6.1.10.2 Pass fail decision rules

No decision is allowed before the minimum test time (Table F.6.1.6.2) has elapsed

1) If minimum Test time < time for target number of error events then the following applies: The required confidence level 1-F (= correct decision probability, Table F.6.1.6.2) shall be achieved. This is fulfilled at

fail_high

pass_high

pass_low

fail_low

For every block sum up the number of blocks (ns) and the number of erroneous blocks (ne) from the beginning of the test and calculate

BLER₁ (including the artificial error at the beginning of the test (Note 1, F.6.1.9))and

BLER₀ (excluding the artificial error at the beginning of the test (Note 1, F.6.1.9)).

If BLER₀ is above *fail_high*, fail the test due to too bad BLER

If BLER₁ is below *fail_low*, fail the test due to too good BLER

If BLER ₀ is on or below <i>fail_high</i>	and	if BLER ₁ is above <i>pass_high</i> , continue the test
If BLER ₀ is below <i>pass_low</i>	and	if BLER ₁ is above or on <i>fail low</i> , continue the test

If $BLER_1$ is below or on *pass_high* and if $BLER_0$ is on or above *pass_high*, pass the test

If the minimum test time ≥ time for target error events, then the test runs for the minimum test time and the decision is done by comparing the result with the upper and lower test limit.

If BLER₀ is above the upper test limit, fail the DUT due to too bad BLER

If BLER₁ is below the lower test limit, fail the DUT due to too good BLER

If BLER₀ is on or below the upper test limit and if BLER₁ is on or above the lower test limit, pass the DUT

F.6.1.10.3 Test conditions for dual limit BLER tests

Type of test (BLER)	Data rate, Propagation condition	Test requirement (BLER)	Test limit = Test requirement * TL TL	Target number of error events (time)	Minimum number of samples	Prob that a good unit will fail = prob that a bad unit will pass: F[%]	Bad unit factor M
Power control in the downlink, constant BLER target	12.2 kbit/s, 3km/h (case4)	0.01±30%	Upper TL: 1.3*1.234 Lower TL 0.7/1.234	Upper: 345 (431.25s) Lower 343 (1191s)	8200	0.2	Upper: 1.5 Lower 1/1.5
Downlink compressed mode	12.2kbit/s, 3km/h (case 2)	0.01±30%	Upper TL: 1.3*1.234 Lower TL 0.7/1.234	Upper: 345 (431.25s) Lower 343 (1191s)	8200	0.2	Upper: 1.5 Lower 1/1.5

Table F.6.1.10.3 Test conditions for dual limit BLER tests

F.6.2 Statistical testing of RRM delay performance

F.6.2.1 Test Method

Each test is performed in the following manner:

- a) Setup the required test conditions.
- b) Measure the delay repeated times. Start each repetition after sufficient time, such that each delay test is independent from the previous one. The delay-times, measured, are simplified to:

a good delay, if the measured delay is \leq limit.

a bad delay, if the measured delay is > limit

- c) Record the number of delays (ns), tested, and the number of bad delays (ne)
- d) Stop the test at an early pass or an early fail event.
- e) Once the test is stopped, decide according to the pass fail decision rules (subclause F.6.2.7)

F.6.2.2 Bad Delay Ratio (ER)

The Bad Delay Ratio (ER) is defined as the ratio of bad delays (ne) to all delays (ns). (1-ER is the success ratio)

F.6.2.3 Test Criteria

The test shall fulfil the following requirements:

- a) good pass fail decision
 - 1) to keep reasonably low the probability (risk) of passing a bad unit for each individual test;
 - 2) to have high probability of passing a good unit for each individual test;
- b) good balance between test-time and statistical significance
 - 3) to perform measurements with a high degree of statistical significance;
 - 4) to keep the test time as low as possible.

F.6.2.4 Calculation assumptions

F.6.2.4.1 Statistical independence

It is arranged by test conditions, that bad delays are independent statistical events.

F.6.2.4.2 Applied formulas

The specified ER is 10% in most of the cases. This stipulates to use the binomial distribution to describe the RRM delay statistics. With the binomial distribution optimal results can be achieved. However the inverse cumulative operation for the binomial distribution is not supported by standard mathematical tools. The use of the Poisson or Chi Square Distribution requires ER \rightarrow 0. Using one of this distributions instead of the binomial distribution gives sub-optimal results in the conservative sense: a pass fail decision is done later than optimal and with a lower wrong decision risk than predefined.

The formulas, applied to describe the RRM delay statistics test, are based on the following experiment:

(1) After having observed a certain number of bad delays (**ne**) the number of all delays (**ns**) are counted to calculate ER. Provisions are made (note 1) such that the complementary experiment is valid as well:

(2) After a certain number of delays (ns) the number of bad delays (ne), occurred, are counted to calculate ER.

Experiment (1) stipulates to use the Chi Square Distribution with degree of freedom ne: 2*dchisq(2*NE,2*ne).

Experiment (2) stipulates to use the Poisson Distribution: dpois(ne,NE)

(NE: mean value of the distribution)

To determine the early stop conditions, the following inverse cumulative operation is applied:

0.5 * qchisq(D,2*ne) for experiment (1) and (2)

D: wrong decision risk per test step

Note: Other inverse cumulative operations are available, however only this is suited for experiment (1) and (2).

F.6.2.4.3 Approximation of the distribution

The test procedure is as follows:

During a running measurement for a UE ns (Number of Delays) and ne (Number of bad delays) are accumulated and from this the preliminary ER is calculated. Then new samples up to the next bad delay are taken. The entire past and the new samples are basis for the next preliminary ER. Depending on the result at every step, the UE can pass, can fail or must continue the test.

As early pass- and early fail-UEs leave the statistical totality under consideration, the experimental conditions are changed every step resulting in a distribution that is truncated more and more towards the end of the entire test. Such a distribution can not any more be handled analytically. The unchanged distribution is used as an approximation to calculate the early fail and early pass bounds.

F.6.2.5 Definition of good pass fail decision.

This is defined by the probability of wrong decision F at the end of the test. The probability of a correct decision is 1-F.

The probability (risk) to fail a good DUT shall be \leq F according to the following definition: A DUT is failed, accepting a probability of \leq F that the DUT is still better than the specified bad delay ratio (Test requirement).

The probability (risk) to pass a bad DUT shall be \leq F according to the following definition: A DUT is passed, accepting a probability of \leq F that the DUT is still worse than M times the specified bad delay ratio. (M>=1 is the bad DUT factor).

This definitions lead to an early pass and an early fail limit:

Early fail: $er \ge er lim_{fail}$

Release 5

181

$$er \lim_{fail} (D, ne) = \frac{2^* ne}{qchisq(D, 2^* ne)}$$
(1)

For $ne \ge [5]$

Early pass: $er \leq erlimbad_{pass}$

$$er \lim bad_{pass}(D, ne) = \frac{2 * ne * M}{qchisq(1 - D, 2 * ne)}$$
(2)

For ne ≥ 1

With

er (normalized ER): ER according to F.6.2.2 divided by specified ER

- D: wrong decision probability for a test step . This is a numerically evaluated fraction of F, the wrong decision probability at the end of the test. see table F.6.2.6.1
- ne: Number of bad delays
- M: bad DUT factor see table F.6.2.6.1

qchisq: inverse cumulative chi squared distribution

F.6.2.6 Good balance between test-time and statistical significance

Two independent test parameters are introduced into the test and shown in Table F.6.2.6.1. These are the obvious basis of test time and statistical significance. From them four dependent test parameters are derived.

Independe	ent test para	ameters	Dep	pendent test para	ameters
Test Parameter	Value	Reference	Test parameter	Value	Reference
Bad DUT factor M	[1.5]	Table F.6.1.8	Early pass/fail condition	Curves	Subclause F.6.2.5 Figure 6.2.9
Final probability of wrong pass/fail	[5%]	Table F.6.2.8	Target number of bad delays	[154]	Table 6.2.8
decision F			Probability of wrong pass/fail decision per test step D	[0.6 %]	
			Test limit factor TL	[1.236]	Table 6.2.8

Table F.6.2.6 independent and dependent test parameters

F.6.2.7 Pass fail decision rules

The required confidence level 1-F (= correct decision probability) shall be achieved. This is fulfilled at an early pass or early fail event. Sum up the number of all delays (ns) and the number of bad delays from the beginning of the test and calculate:

ER1 (including the artificial error at the beginning of the test (Note 1))and

 ER_0 (excluding the artificial error at the beginning of the test (Note 1)).

If ER_0 is on or above the early fail limit, fail the DUT.

If ER_1 is on or below the early pass limit, pass the DUT.

Otherwise continue the test

3GPP

182

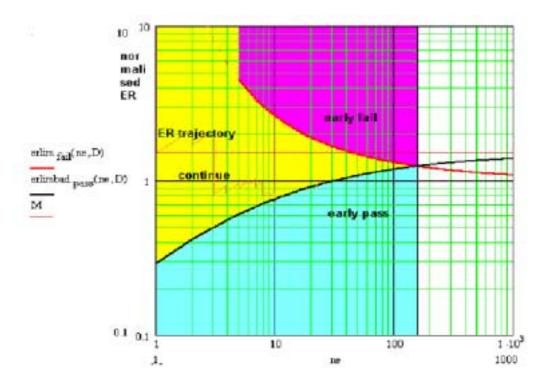
F.6.2.8 Test conditions for RRM delay tests, Combining of TPC commands test 1, Demodulation of Paging channel and Detection of acquisition indicator tests.

Table F.6.2.8: Test conditions for a single RRM delay tests, Combining of TPC commands test 1, Demodulation of Paging channel and Detection of Acquisition indicator tests.

Type of test	Test requirement	Test requirement	Testlimit(ER)	Target number	Prob that good unit will	Bad unit factor M
	Delay (s)	(ER= 1- success ratio)	Test requirement (ER)x TL TL	of bad delays	fail = Prob that bad unit will pass [%]	
8.2.2 Cell recelection	8	0.1	[1.236]	[154]	[5]	[1.5]
8.2.3.1 UTRAN to GSM cell reselection, scenario 1	27.9	0.1	[1.236]	[154]	[5]	[1.5]
8.2.3.2 UTRAN to GSM cell reselection, scenario 2	9.6	0.1	[1.236]	[154]	[5]	[1.5]
8.2.4 FDD/TDD Cell reselection	8	0.1	[1.236]	[154]	[5]	[1.5]
8.3.1 FDD/FDD Soft handover	50+10*KC +100*OC ms	0.1	[1.236]	[154]	[5]	[1.5]
8.3.2 FDD FDD Hard Handover 8.3.2.1 Handover to intra frequency cell	70 ms	0.1	[1.236]	[154]	[5]	[1.5]
8.3.2.2 Handover to interfrequency cell	100ms	0.1	[1.236]	[154]	[5]	[1.5]
7.7.2 Combining of TPC commands Test 1 Note: The theory of statistical testing of RRM delay performance in clause F.6.2 is applied for test case 7.7.2 Combining of TPC commands Test 1. The success ratio for delay is replaced by the success ratio for power control sequence.	Not applicable	0.01	[1.236]	[154]	[5]	[1.5]

Release 5

7.11 Demodulation of Paging Channel (PCH) Note: The theory of statistical testing of RRM delay performance in clause F.6.2 is applied for test case 7.11 Demodulation of Paging Channel. The success ratio for delay is replaced by the success ratio for procedure step 4.	Not applicable	0.01	[1.236]	[154]	[5]	[1.5]
7.12 Detection of Acquisition indicatior (AI). Note: The theory of statistical testing of RRM delay performance in clause F.6.2 is applied for test case 7.12. The success ratio for delay is replaced by the success ratio for procedure steps 4 and 10.	Not applicable	0.01	[1.236]	[154]	[5]	[1.5]
8.4.3. Transport format combination selection in UE.	<u>140ms</u> (<u>see</u> <u>8.4.3.1.4.2</u> <u>step 5)</u>	<u>0.1</u>	[1.236]	[154]	[5]	[1.5]


F.6.2.9 Practical Use (informative)

See figure F.6.2.9:

The early fail limit represents formula (1) in F.6.2.5. The range of validity is $[ne \ge 5]$ to [ne = 154]

The early pass limit represents the formula (2) in F.6.2.5. The range of validity is n=1 to [n = 154]. See note 1. The intersection co-ordinates of both curves are: target number of bad delays n = [154] and test limit TL = [1.236].

A typical delay test, calculated form the number of samples and errors (F.6.2.2) using experimental method (1) or (2) (see F.6.2.4.2. calculation assumptions) runs along the yellow trajectory. With an good delay the trajectory goes down vertically. With a bad delay it jumps up right. The tester checks if the ER test intersects the early fail or early pass limits.

Note 1: At the beginning of the test, an artificial bad delay is introduced. This ensures that an ideal DUT meets the valid range of the early pass limit. In addition this ensures that the complementary experiment (F.6.2.4.2. bullet point (2)) is applicable as well. For the check against the early fail limit the artificial bad delay sample, introduced at the beginning of the test, is disregarded.

Due to the nature of the test, namely discrete bad delay events, the early fail condition shall not be valid, when fractional bad delays <1 are used to calculate the early fail limit: Any early fail decision is postponed until number of errors ne \geq [5].

3GPP TSG-T1 Meeting #21 Budapest Hungary, 3th- 7th, November 2003

Tdoc **∺***T1-031604*

	CHANGE REQUES	CR-Form-v7
ж	34.121 CR 318 #rev 1	^ℋ Current version: 5.1.1 ^ℋ
For <mark>HELP</mark> or	using this form, see bottom of this page or look a	
Proposed chang		o Access Network Core Network
Title:	策 Correction of clause 8.7.3C UE transmitted po	ower
Source:	អ <mark>NTT DoCoMo, Inc.</mark>	
Work item code:	¥	Date:
Category:	 F Use <u>one</u> of the following categories: F (correction) A (corresponds to a correction in an earlier release) B (addition of feature), C (functional modification of feature) D (editorial modification) Detailed explanations of the above categories can be found in 3GPP <u>TR 21.900</u>. 	Release: % Rel-5Use one of the following releases:2(GSM Phase 2)R96(Release 1996)R97(Release 1997)R98(Release 1998)R99(Release 1999)Rel-4(Release 4)Rel-5(Release 5)Rel-6(Release 6)

Reason for change: ३	Corrected errors in the UE transmitted power test case		
_			
Summary of change: ३	 The contents of MEASUREMENT CONTROL message are corrected. The IE "Modify" in "Measurement Command" is changed to "SETUP". The contents of MEASUREMENT REPORT message are corrected. The IE "AdditionalMeasurementList" is changed to "Not present". 		
Consequences if ३ not approved:	The test case would be incorrect.		
Clauses affected:	8.7.3C		
Other specs ३ affected:	Y N X Other core specifications X Test specifications X O&M Specifications		
Other comments: ঃ	ß		

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked # contain pop-up help information about the field that they are closest to.
- Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be

downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request. NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.7.3A GSM Carrier RSSI

Void.

8.7.3B Transport channel BLER

Void.

8.7.3C UE transmitted power

8.7.3C.1 Definition and applicability

The UE transmitted power absolute accuracy is defined as difference between the UE reported value and the UE transmitted power measured by test system. The reference point for the UE transmitted power shall be the antenna connector of the UE.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.3C.2 Minimum requirements

The measurement period in CELL_DCH state is 1 slot.

Parameter	Unit	Accuracy [dB]	
Parameter		PUEMAX 24dBm	PUEMAX 21dBm
UE transmitted power=PUEMAX	dBm	+1/-3	±2
UE transmitted power=PUEMAX-1	dBm	+1.5/-3.5	±2.5
UE transmitted power=PUEMAX-2	dBm	+2/-4	±3
UE transmitted power=PUEMAX-3	dBm	+2.5/-4.5	±3.5
PUEMAX-10 UE transmitted power <puemax-3< td=""><td>dBm</td><td>+3/-5</td><td>±4</td></puemax-3<>	dBm	+3/-5	±4

Table 8.7.3C.2.1 UE transmitted power absolute accuracy

- NOTE 1: User equipment maximum output power, PUEMAX, is the maximum output power level without tolerance defined for the power class of the UE in TS 25.101 [1] section 6.2.1.
- NOTE 2: UE transmitted power is the reported value.

For each empty slot created by compressed mode, no value shall be reported by the UE L1 for those slots.

The normative reference for this requirement is TS 25.133 [2] clause 9.1.6.

8.7.3C.3 Test purpose

The purpose of this test is to verify that for any reported value of UE Transmitted Power in the range PUEMAX to PUEMAX-10 that the actual UE mean power lies within the range specified in clause 8.7.3C.2.

8.7.3C.4 Method of test

8.7.3C.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1) Connect SS to the UE antenna connector as shown in figure A.1.

The test parameters are given in Table 8.7.3C.4.1 and 8.7.3C.4.2 below. In the measurement control information it shall be indicated to the UE that periodic reporting of the UE transmitted power measurement shall be used.

Table 8.7.3C.4.1: General test parameters for UE transmitted power

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement	As specified in clause C.3.1
-		Channel 12.2 kbps	
Power Control		On	
Target quality value on DTCH	BLER	0.01	

Table 8.7.3C.4.2: Cell Spec	cific parameters for UE transmitted power
-----------------------------	---

Parameter	Unit	Cell 1			
CPICH_Ec/lor	dB	-10			
PCCPCH_Ec/lor	dB	-12			
SCH_Ec/lor	dB	-12			
PICH_Ec/lor	dB	-15			
DPCH_Ec/lor	dB	Note1			
OCNS		Note 2			
\hat{I}_{or}/I_{oc}	dB	0			
I _{oc}	dBm/3.84 MHz	-70			
CPICH_Ec/lo	dB	-13			
Propagation Condition	AWGN				
Note 1: The DPCH level is controlled by the power control loop Note 2: The power of the OCNS channel that is added shall make the total					
power from the cell to be equal to I _{or.}					

8.7.3C.4.2 Procedure

- 1) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.2.3. The RF parameters are set up according to table 8.7.3C.4.1 and 8.7.3C.4.2. Set the UE power and Maximum allowed UL TX power to the maximum power for the UE power class.
- 2) SS shall send continuously during the entire test Up power control commands to the UE.
- 3) SS shall transmit the MEASUREMENT CONTROL message as defined in the specific message contents below.

4) Decode the UE Transmitted power reported by the UE in the next available MEASUREMENT REPORT message.

- 5) Measure the mean power of the UE over a period of one timeslot.
- 6) Steps 4 and 5 shall be repeated [100] times.
- 7) Decrease the Maximum allowed UL TX power by 1 dB. The SS shall transmit the PHYSICAL CHANNEL RECONFIGURATION message, as defined in the specific message contents below.
- 8) SS shall wait for the PHYSICAL CHANNEL RECONFIGURATION COMPLETE message from the UE.

9) Repeat from step 4) until the Maximum allowed UL TX Power reaches PUEMAX-104.

Specific Message Contents

All messages indicated above shall use the same content as described in default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message:

Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	0
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	4 <u>5</u>
-Measurement Command	ModifySETUP
-CHOICE Measurement type	UE Internal measurement
-UE Internal measurement quantity	
	FDD
–-Measurement quantity	UE Transmitted power
-Filter coefficient	0
-UE Internal reporting quantity	
-UE Transmitted power	TRUE
-CHOICE mode	FDD
-UE Rx-Tx time difference	FALSE
-CHOICE report criteria	Periodical reporting criteria
-Amount of reporting	Infinity
-Reporting interval	250
-Measurement Reporting Mode	
-Measurement Report Transfer Mode	AM RLC
-Periodical Reporting / Event Trigger Reporting Mode	Periodical reporting
-AdditionalMeasurementList	Not Present
Physical channel information elements	
-DPCH compressed mode status info	Not Present

MEASUREMENT REPORT message:

Information Element	Value/remark
Message Type	
Integrity check info	The presence of this IE is dependent on PIXIT statements
	in TS 34.123-2. If integrity protection is indicated to be
	active, this IE shall be present with the values of the sub
	IEs as stated below. Else, this IE and the sub-IEs shall
	be absent.
 Message authentication code 	This IE is checked to see if it is present. The value is
	compared against the XMAC-I value computed by SS.
 - RRC Message sequence number 	This IE is checked to see if it is present. The value is
	used by SS to compute the XMAC-I value.
Measurement identity	<u>5</u>
Measured Results	
- CHOICE Measurement	UE Internal measured results
- Choice mode	<u>FDD</u>
- UE Transmitted power	Checked that this IE is present
<u>UE Rx-Tx report entries</u>	Checked that this IE is absent
Measured results on RACH	Checked that this IE is absent
Additional measured results	Checked that this IE is absent
Event results	Checked that this IE is absent

Information Element	Value/remark
Message Type	
Integrity check info	The presence of this IE is dependent on IXIT statements
	in TS 34.123-2. If integrity protection is indicated to be
	active, this IE shall be present with the values of the sub-
	IEs as stated below. Else, this IE and the sub-IEs shall
	be absent.
- Message authentication code	This IE is checked to see if it is present. The value is
Ŭ	compared against the XMAC-I value computed by SS.
	This IE is checked to see if it is present. The value is
.	used by SS to compute the XMAC-I value.
Measurement identity	4
Measured Results	
- Cell measured results	
- Cell Identity	Not present
	Checked that this IE is absent
- Cell synchronisation information	Checked that this IE is absent
- Primary scrambling code	150
	Checked that this IE is absent
	Checked that this IE is present
	Checked that this IE is absent
Measured results on RACH	Checked that this IE is absent
Additional measured results	
- UE internal measured results	
	FDD
- UE Transmitted power	Checked that this IE is present
- UE Rx-Tx report entries	Checked that this IE is absent
Event results	Checked that this IE is absent

PHYSICAL CHANNEL RECONFIGURATION message:

Information Element	Value/Remark
Message Type	
UE Information Elements	
-RRC transaction identifier	0
-Integrity check info	Not Present
-Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	Not Present
-New U-RNTI	Not Present
-New C-RNTI	Not Present
-RRC State Indicator	CELL_DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	
-CN Information info	Not Present
UTRAN mobility information elements	
-URA identity	Not Present
RB information elements	
-Downlink counter synchronisation info	Not Present
PhyCH information elements	
-Frequency info	Not Present
Uplink radio resources	
-Maximum allowed UL TX power	At the first time this value is set to PUEMAX-1.
	After the second time this value is decreased
	with 1 dB from previous value.
Downlink radio resources	
-CHOICE mode	FDD
-Downlink PDSCH information	Not Present
-Downlink information common for all radio links	Not Present
-Downlink information per radio link list	Not Present

8.7.3C.5 Test requirements

Compare each of the UE transmitted power reports against the following mean power measurement. At least 90% of the mean power measurements for any one value of reported UE transmitted power shall be within the range specified in table 8.7.3C.5.

NOTE It is not expected or required that the distribution of UE transmitted power reports is even for the 11 possible reported values.

Devemeter	l la it	Mean Power range [dB]		
Parameter	Unit	PUEMAX 24dBm	PUEMAX 21dBm	
UE transmitted power=PUEMAX	dBm	+1.7/-3.7	±2.7	
UE transmitted power=PUEMAX-1	dBm	+2.2/-4.2	±3.2	
UE transmitted power=PUEMAX-2	dBm	+2.7/-4.7	±3.7	
UE transmitted power=PUEMAX-3	dBm	+3.2/-5.2	±4.2	
UE transmitted power=PUEMAX-4	dBm	+3.7/-5.7	±4.7	
UE transmitted power=PUEMAX-5	dBm	+3.7/-5.7	±4.7	
UE transmitted power=PUEMAX-6	dBm	+3.7/-5.7	±4.7	
UE transmitted power=PUEMAX-7	dBm	+3.7/-5.7	±4.7	
UE transmitted power=PUEMAX-8	dBm	+3.7/-5.7	±4.7	
UE transmitted power=PUEMAX-9	dBm	+3.7/-5.7	±4.7	
UE transmitted power=PUEMAX-10	dBm	+3.7/-5.7	±4.7	

Table 8.7.3C.5 UE transmitted power test requirements

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

3GPP TSG-T1 Meeting #21 Budapest, Hungary, 3 - 7 November, 2003

Tdoc **∺***T1-031605*

æ	34.121 CR 304 ⊮rev 1 ^{ж (}	Current vers	^{ion:} 5.1.1 [#]				
For <u>HELP</u> of	using this form, see bottom of this page or look at the	pop-up text	over the X symbol	s.			
Proposed chang	e affects: UICC apps ೫ ME <mark>IX</mark> Radio Acc	cess Networ	k Core Netwo	rk			
Title:	CR to 34.121: Correction to FDD/FDD Soft Handov	ver test case)				
Source:	육 Ericsson, Nokia						
Work item code	₩ <mark>TEI</mark>	<i>Date:</i> ೫	5/11/2003				
Category:	 F Use <u>one</u> of the following categories: F (correction) A (corresponds to a correction in an earlier release) B (addition of feature), C (functional modification of feature) D (editorial modification) Detailed explanations of the above categories can be found in 3GPP <u>TR 21.900</u>. 	2 R96 R97 R98 R99 Rel-4 Rel-5	Rel-5 the following releases (GSM Phase 2) (Release 1996) (Release 1997) (Release 1998) (Release 1999) (Release 4) (Release 5) (Release 6)	S:			

Reason for change: 3	Interst parameters and test requirements have been modified in TS25.133.
Summary of change: ୨	 Time period T6 has been added to test parameters The test requirement is changed to average BLER=0.01±30%
Consequences if	\$ 25.133 and 34.121 are inconsistent, and the core requirement is not tested as intended.
Clauses affected:	§ 8.3.1
Other specs	Y N X Other core specifications X Test specifications X O&M Specifications
Other comments:	This CR is based on 25.133 CRs 564r2 (R99, R4-030651), 565r2 (Rel-4, R4- 030652), 566r2 (Rel-5, R4-030653) and 567r2 (Rel-6, R4-030654)

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.

- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

8.3 UTRAN Connected Mode Mobility

8.3.1 FDD/FDD Soft Handover

8.3.1.1 Definition and applicability

The active set update delay of the UE is defined as the time from the end of the last TTI containing an RRC message implying soft handover to the switch off of the old downlink DPCH.

The requirements and this test apply to the FDD UE.

8.3.1.2 Minimum requirement

The active set update delay shall be less than 60 ms in CELL_DCH state. The rate of correct soft handovers observedduring repeated tests shall be at least 90% with a confidence level of [FFS]%.

The active set update delay is defined as the time from when the UE has received the ACTIVE SET UPDATE message from UTRAN, or at the time stated through the activation time when to perform the active set update, to the time when the UE successfully uses the set of radio links stated in that message for power control.

The active set update delay is depending on the number of known cells referred to in the ACTIVE SET UPDATE message. A cell is known if either or both of the following conditions are true:

- the UE has had radio links connected to the cell in the previous (old) active set.
- the cell has been measured by the UE during the last 5 seconds and the SFN of the cell has been decoded by the UE.

And the phase reference is the primary CPICH.

The active set update delay shall be less than 50+10*KC+100*OC ms, where

KC is the number of known cells in the active set update message.

OC is the number of cells that are not known in the active set update message.

The normative reference for this requirement is TS 25.133 [2] clauses 5.1.2 and A.5.1.1.

8.3.1.3 Test purpose

To verify that the UE meets the minimum requirement.

8.3.1.4 Method of test

8.3.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in table 8.3.1.1.1 and 8.3.1.1.2 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 1A shall be used, and that CPICH Ec/Io and SFN-CFN observed time difference shall be reported together with Event 1A. The test consists of <u>five-six</u> successive time periods, with a time duration of T1, T2, T3, T4<u>, and T5 and T6</u>, respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

UTRAN shall send an Active Set Update command with activation time "now", adding cell 2 to the active set. The Active Set Update message shall be sent to the UE so that the whole message is available at the UE at the beginning of T4. The RRC procedure delay is defined in TS 25.133 [2].

Par	Parameter Unit		Value	Comment
DCH parameters			DL and UL Reference Measurement Channel 12.2 kbps	As specified in clause C.3.1 and C.2.1
Power Contr	ol		On	
Target qualit	y value on	BLER	0.01	
Initial	Active cell		Cell 1	
conditions	Neighbouring cell		Cell 2	
Final condition	Active cell		Cell 2	
Reporting rai	range dB 3		3	Applicable for event 1A and 1B
Hysteresis		dB	0	
W			1	Applicable for event 1A and 1B
Reporting de threshold	activation		0	Applicable for event 1A
Time to Trigg	ger	ms	0	
Filter coeffici	ent		0	
T1		S	5	
T2		S	3	
Т3		S	0.5	
T4 n		ms	60	This is the requirement on active set update delay, see clause 5.1.2.2, where KC=1 and OC=0.
T5		S	2 <u>10</u>	
<u>T6</u>		<u>s</u>	2	

Table 8.3.1.1.2: Cell specific test parameters for Soft handover

Parameter	Unit		Cell 1						Cell	2			
		T1	T2	T3	T4	T5	<u>T6</u>	T1	T2	T3	Τ4	T5	<u>T6</u>
CPICH_Ec/lor	dB			-10						-10)		
PCCPCH_Ec/lor	dB			-12						-12	2		
SCH_Ec/lor	dB			-12						-12	2		
PICH_Ec/lor	dB			-15						-15	5		
DPCH_Ec/lor	dB	Note1	Note1	No	te1	N/A	<u>N/A</u>	N/A	N/A	Note3	No	te1	Note1
OCNS		Note2	Note2	No	te2	-		-	-	Note2	No	te2	Note2
						0.94 <mark>1</mark>	<u>0.94</u>	0.94 1	0.941				
\hat{I}_{or}/I_{oc}	dB	0	2.91	2.9	91	2.91	<u>2.91</u>	-Inf	2.91	2.91	2.9	91	<u>2.91</u>
I _{oc}	dBm/ 3.84 MHz		-70										
CPICH_Ec/lo	dB	-13	-14	-1	4	-14	<u>-14</u>	-Inf	-14	-14	-1	4	-14
Propagation Condition			AWGN										
Relative delay of paths received	<u>chips</u>		<u>{-148 148}</u> Note 4										
from cell 2 with							110						
respect to cell 1													
Note 1: The DPCH	level is co	ontrolled by	y the powe	r contro	l loop								
Note 2: The power	of the OC	NS channe	el that is a	dded sh	all mak	the tot	al powe	r from	the cell to	be equal t	o l _{or}		
Note 3: The DPCH							•			-	01	c/lor of	Cell 1

Note 3: The DPCH level is controlled by the power control loop. The initial power shall be set equal to the DPCH_Ec/lor of Cell 1 at the end of T2.

Note 4: The relative delay of the path from cell 2 with respect to cell 1 shall always be within ±148 chip.

8.3.1.4.2 Procedure

1) The RF parameters are set up according to T1.

- 2) The UE is switched on.
- 3) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.4 without Compressed mode parameters.
- [Editor's note: subclause 7.3.4 in TS 34.108 (Message sequence chart for Handover Test procedure) is not yet specified]
- 4) SS shall transmit a MEASUREMENT CONTROL message.
- 5) 5 seconds after step4 has completed, the SS shall switch the power settings from T1 to T2.
- 6) UE shall transmit a MEASUREMENT REPORT message triggered by event 1A containing the CFN-SFN observed time difference between cell 1 and cell 2.
- 7) At the beginning of T3 the downlink DPCH of cell 2 shall be activated.
- 8) SS shall send an ACTIVE SET UPDATE message with activation time "now ", adding cell 2 to the active set. The ACTIVE SET UPDATE message shall be sent to the UE so that the whole message is available at the UE at the beginning of T4.
- 9) At the beginning of T5 the DPCH from cell 1 shall be switched off.
- 10) The UE downlink BLER shall be measured during time period T5<u>T6</u>. If the UE downlink BLER does not exceed the downlink BLER target, i.e. 1%, during time period T5 then the number of successful tests is increased by one.
- 11)5 seconds after step10 has completed, the UE is switched off. Any timing information of cell 2 is deleted in the UE.
- 12)Repeat step 1-11[TBD] times

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message (step 4):

Information Element/Group name	Value/Remark
Message Type (10.2.17)	
UE information elements	
-RRC transaction identifier	0 Not Descent
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	1
Measurement Command (10.3.7.46)	Modify
Measurement Reporting Mode (10.3.7.49)	
-Measurement Report Transfer Mode	AM RLC
-Periodical Reporting / Event Trigger Reporting Mode	Event trigger
Additional measurements list (10.3.7.1)	Not Present
CHOICE Measurement type	Intra-frequency measurement
-Intra-frequency measurement (10.3.7.36)	
-Intra-frequency measurement objects list (10.3.7.33)	Not Present
-Intra-frequency measurement quantity (10.3.7.38)	
-Filter coefficient (10.3.7.9)	0
-CHOICE mode	FDD
-Measurement quantity	CPICH_Ec/N0
-Intra-frequency reporting quantity (10.3.7.41)	
-Reporting quantities for active set cells (10.3.7.5)	
-SFN-SFN observed time difference reporting indicator	No report
-Cell synchronisation information reporting indicator	TRUE (Note 1)
-Cell Identity reporting indicator	TRUE
-CHOICE mode	FDD
-CPICH Ec/N0 reporting indicator	TRUE
-CPICH RSCP reporting indicator	TRUE
-Pathloss reporting indicator	TRUE
-Reporting quantities for monitored set cells (10.3.7.5)	
-SFN-SFN observed time difference reporting indicator	No report
-Cell synchronisation information reporting indicator	TRUE (Note 1)
-Cell Identity reporting indicator	TRUE
-CHOICE mode	FDD
-CPICH Ec/N0 reporting indicator	TRUE
-CPICH RSCP reporting indicator	TRUE
-Pathloss reporting indicator	TRUE
-Reporting quantities for detected set cells (10.3.7.5)	Not Present
-Reporting cell status (10.3.7.61)	Not Present
-Measurement validity (10.3.7.51)	Not Present
-CHOICE report criteria	Intra-frequency measurement reporting
	criteria
-Intra-frequency measurement reporting criteria (10.3.7.39)	ontonia
-Parameters required for each event	2
-Intra-frequency event identity	Event 1A
-Triggering condition 2	Active set cells and monitored set cells
-Reporting Range Constant	3 dB
-Cells forbidden to affect Reporting Range	Not Present
-W	1.0
-W	0 dB
-Threshold used frequency	Not Present
-Reporting deactivation threshold	0
-Replacement activation threshold	Not Present
-Time to trigger	0 ms
-Amount of reporting	Infinity
-Reporting interval	0 ms (Note 2)
-Reporting cell status	Not Present
-Intra-frequency event identity	Event 1B
-Triggering condition 1	Active set cells and monitored set cells
-Reporting Range Constant	3 dB
-Cells forbidden to affect Reporting Range	Not Present
-W	1.0
-Hysteresis	0 dB
	Not Present
-Threshold used frequency	
-Reporting deactivation threshold	Not Present
	Not Present Not Present

	Information Element/Group name	Value/Remark		
-Amou	nt of reporting	Not Present		
	rting interval	Not Present		
	rting cell status	Not Present		
	channel information elements			
-DPCH compressed mode status info (10.3.6.34) Not Present				
Note 1:	e 1: The SFN-CFN observed time difference is calculated from the OFF and Tm parameters contained			
in the IE "Cell synchronisation information ", TS 25.331, clause 10.3.7.6. According to TS 25.331				
8.6.7.7, this IE is included in MEASUREMENT REPORT if IE "Cell synchronisation information				
reporting indicator" in IE "Cell reporting quantities" TS 25.331, clause 10.3.7.5 is set to TRUE in				
MEASUREMENT CONTROL.				
Note 2:	Reporting interval = 0 ms means no periodical reporting	ng		

ACTIVE SET UPDATE message (step 8):

Information Element/Group name	Type and reference	Value/Remark
Message Type	Message Type	
UE information elements		
RRC transaction identifier	RRC transaction identifier	0
	10.3.3.36	
Integrity check info	Integrity check info 10.3.3.16	Not Present
Integrity protection mode info	Integrity protection mode info 10.3.3.19	Not Present
Ciphering mode info	Ciphering mode info 10.3.3.5	Not Present
Activation time	Activation time 10.3.3.1	"now".
New U-RNTI	U-RNTI 10.3.3.47	Not Present
CN information elements		
CN Information info	CN Information info 10.3.1.3	Not Present
Phy CH information elements		
Uplink radio resources		
Maximum allowed UL TX power	Maximum allowed UL TX power 10.3.6.39	33 dBm
Downlink radio resources		
Radio link addition information		Radio link addition information required for each RL to add
>Radio link addition information	Radio link addition information 10.3.6.68	
Radio link removal information		Radio link removal information required for each RL to remove
>Radio link removal information	Radio link removal information 10.3.6.69	Not Present
TX Diversity Mode	TX Diversity Mode 10.3.6.86	None
SSDT information	SSDT information 10.3.6.77	Not Present

Radio link addition information

Information Element/Group name	Need	Multi	Type and reference	Value/Remark
Primary CPICH info	MP		Primary CPICH info 10.3.6.60	Same as defined in cell2
Downlink DPCH info for each RL	MP		Downlink DPCH info for each RL 10.3.6.21	See below
TFCI combining indicator	MP		TFCI combining indicator 10.3.6.81	FALSE
SCCPCH Information for FACH	OP		SCCPCH Information for FACH 10.3.6.70	Not Present

Downlink DPCH info for each RL

Information Element/Group name	Type and reference	Value/Remark
CHOICE mode		
>FDD		
>>Primary CPICH usage for channel estimation	Primary CPICH usage for channel estimation 10.3.6.62	Primary CPICH may be used
>>DPCH frame offset	Integer(038144 by step of 256)	This should be refriected by the IE" Cell synchronisation information" in received MEASUREMENT REPORT message
>>Secondary CPICH info	Secondary CPICH info 10.3.6.73	Not Present
>>DL channelisation code		
>>>Secondary scrambling code	Secondary scrambling code 10.3.6.74	Not Present
>>>Spreading factor	Integer(4, 8, 16, 32, 64, 128, 256, 512)	128
>>>Code number	Integer(0Spreading factor - 1)	0
>>>Scrambling code change	Enumerated (code change, no code change)	No code change
>>TPC combination index	TPC combination index 10.3.6.85	0
>>SSDT Cell Identity	SSDT Cell Identity 10.3.6.76	Not Present
>>Closed loop timing adjustment mode	Integer(1, 2)	Not Present

NOTE 1: These IEs are present when the UE needs to listen to system information on FACH in CELL_DCH state.

8.3.1.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases. The average measured quality on the DTCH of the UE downlink during T6 shall be BLER =0.01±30%. The measured quality shall be averaged over number of repetitions of procedure step 10).

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

CHANGE REQUEST				
æ	34.121 CR 321	Current vers	^{ion:} 5.1.1 [#]	
For <u>HELP</u> or	using this form, see bottom of this page or look at	the pop-up text	over the X symbols.	
Proposed chang	e affects: UICC apps雅 ME Ⅹ Radio	Access Networ	k Core Network	
Title:	12.2 kbit/s RMC is insufficient for BLER testing			
Source:	Rohde & Schwarz			
Work item code:	f	<i>Date:</i> ೫	31/10/2003	
Category:	 F Use <u>one</u> of the following categories: F (correction) A (corresponds to a correction in an earlier releases (addition of feature), C (functional modification of feature) D (editorial modification) Detailed explanations of the above categories can be found in 3GPP <u>TR 21.900</u>. 	2 ase) R96 R97 R98 R99 Rel-4	R5 the following releases: (GSM Phase 2) (Release 1996) (Release 1997) (Release 1998) (Release 1999) (Release 4) (Release 5) (Release 6)	

Reason for change: ೫	The current definition of the 12.2kbit/s RMC is not usable for testing in all cases, especially for BLER testing when the UL data rate is 12.2 kbit/s sole together with higher DL data rates according to UE capability class.
Summary of change: ೫	1) The mandatory use of Test Loop 2 as sole test loop is removed
	2) An informative annex is introduced, to setup correct measurement channels for all data rate combinations in uplink and downlink.
Consequences if # not approved:	BLER Tests with (DL data rate > 12.2 kbit/s UL data rate) are impossible BLER Tests with (DL data rate = UL data rate) are ambiguous

Clauses affected:	Modified: Annex C.2.1, C.2.2, C.2.3, C.2.4, C.2.5, C.3.1 New: Annex C.6, C.6.1, C.6.2, C.6.3, C.6.4, C.6.5, C.6.6, C.6.7		
Other specs affected:	Y N % X Other core specifications % X Test specifications X O&M Specifications		
Other comments:	¥		

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked # contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

Annex C (normative): Measurement channels

C.1 General

The measurement channels in this annex are defined to derive the requirements in clauses 5, 6 and 7. The measurement channels represent example configuration of radio access bearers for different data rates.

The measurement channel for 12,2 kbps shall be supported by any UE both in up- and downlink. Support for other measurement channels is depending on the UE Radio Access capabilities.

C.2 UL reference measurement channel

C.2.1 UL reference measurement channel (12,2 kbps)

The parameters for the 12,2 kbps UL reference measurement channel are specified in table C.2.1.1, table C 2.1.2, table C 2.1.3 and table C.2.1.4. The channel coding for information is shown in figure C.2.1. When the UE test loop function is needed, the UE test loop mode 2 shall be used.

Parameter	Level	Unit
Information bit rate	12,2	kbps
DPDCH	60	kbps
DPCCH	15	kbps
DPCCH Slot Format #i	0	-
DPCCH/DPDCH power ratio	-5,46	dB
TFCI	On	-
Repetition	23	%
NOTE: Slot Format #2 is used for closed loop tests in clause 7.6.2. Slot Format #2 and		
#5 are used for site selection diversity transmission tests in subclause 7.6.3.		

Higher	RAB/Signalling RB	RAB	SRB
Layer			
RLC	Logical channel type	DTCH	DCCH
	RLC mode	ТМ	UM/AM
	Payload sizes, bit	244	88/80
	Max data rate, bps	12200	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	0	N/A
MAC	MAC header, bit	0	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	1	5
	TB sizes, bit	244	100
	TFS TF0, bits	0*244	0*100
	TF1, bits	1*244	1*100
	TTI, ms	20	40
	Coding type	Convolution Coding	Convolution Coding
	Coding Rate	1/3	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	804	360
	Uplink: Max number of bits/radio frame before	402	90
	rate matching	050	050
	RM attribute	256	256

Table C.2.1.2: UL reference measurement channel using RLC-TM for DTCH, transport channel parameters (12.2 kbps)

Table C.2.1.3: UL reference measurement channel using RLC-AM for DTCH, transport channel parameters (12.2 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	AM	UM/AM
	Payload sizes, bit	228	88/80
	Max data rate, bps	11400	2200/2000
	PDU header, bit	16	8/16
	TrD PDU header, bit	N/A	N/A
MAC	MAC header, bit	θ	4
	MAC-multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	4	5
	TB sizes, bit	2 44	100
	TFS TFO, bits	0*244	0*100
	TF1, bits	<u>1*244</u>	1*100
	TTI, ms	20	40
	Coding type	Convolution Coding	Convolution Coding
	Coding Rate	1/3	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	804	360
	Uplink: Max number of bits/radio frame before	402	90
	rate matching		
	RM attribute	256	256

Table C.2.1.34: UL reference measurement channel, TFCS (12.2 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

NOTE: The TFCs except for (TF1, TF1) are belonging to minimum set of TFCs.

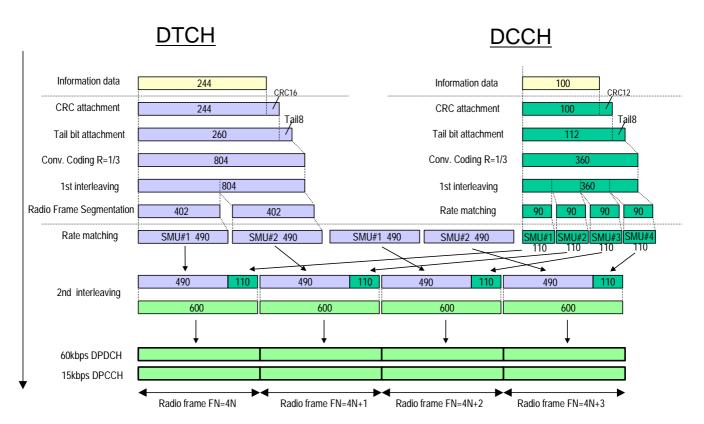


Figure C.2.1 (Informative): Channel coding of UL reference measurement channel (12,2 kbps)

C.2.2 UL reference measurement channel (64 kbps)

The parameters for the 64 kbps UL reference measurement channel are specified in table C.2.2.1, table C.2.2.2, table C.2.2.3 and table C.2.2.4. The channel coding for information is shown in figure C.2.2. When the UE test loop function is needed, the UE test loop mode 2 shall be used. This measurement channel is not currently used in the present document but can be used for future requirements.

Parameter	Level	Unit
Information bit rate	64	kbps
DPDCH	240	kbps
DPCCH	15	kbps
DPCCH Slot Format #i	0	-
DPCCH/DPDCH	-9,54	dB
TFCI	On	-
Repetition	18	%

Table C.2.2.1: UL reference measurement channel	(64 kb)	ps))
		ρο,	£

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	ТМ	UM/AM
	Payload sizes, bit	1280	88/80
	Max data rate, bps	64000	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	0	N/A
MAC	MAC header, bit	0	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	1	5
	TB sizes, bit	1280	100
	TFS TF0, bits	0*1280	0*100
	TF1, bits	1*1280	1*100
	TTI, ms	20	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	3900	360
	Uplink: Max number of bits/radio frame before rate matching	1950	90
	RM attribute	256	256

Table C.2.2.2: UL reference measurement channel using RLC-TM for DTCH, transport channel parameters (64 kbps)

Table C.2.2.3: UL reference measurement channel using RLC-AM for DTCH, transport channel parameters (64 kbps)

Higher Layer		RAB/Signalling RB	RAB	SRB
RLC	Logical channel type		DTCH	DCCH
	RLC mode		AM	UM/AM
	Payload si	zes, bit	1264	88/80
	Max data ı	ate, bps	63200	2200/2000
	PDU head	er, bit	16	8/16
	TrD PDU ł	neader, bit	N/A	N/A
MAC	MAC head	ler, bit	0	4
	MAC multiplexing		N/A	Yes
Layer 1	TrCH type		DCH	DCH
	Transport Channel Identity		1	5
	TB sizes, bit		1280	100
	TFS	TF0, bits	0*1280	0*100
		TF1, bits	1*1280	1*100
	TTI, ms		20	40
	Coding typ	e	Turbo Coding	Convolution Coding
	Coding Ra	te	N/A	1/3
	CRC, bit Max number of bits/TTI after channel coding		16	12
			3900	360
	Uplink: Ma rate match	x number of bits/radio frame before	1950	90
	RM attribu	0	256	256

Table C.2.2.4: UL reference measurement channel, TFCS (64 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

NOTE: The TFCs except for (TF1, TF1) are belonging to minimum set of TFCs.

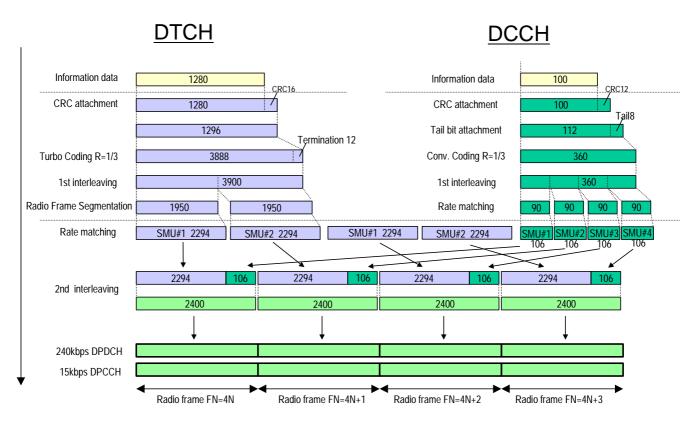


Figure C.2.2 (Informative): Channel coding of UL reference measurement channel (64 kbps)

C.2.3 UL reference measurement channel (144 kbps)

The parameters for the 144 kbps UL reference measurement channel are specified in table C.2.3.1, table C.2.3.2, table C.2.3.3 and table C.2.3.4. The channel coding for information is shown in figure C.2.3. When the UE test loop function is needed, the UE test loop mode 2 shall be used. This measurement channel is not currently used in the present document but can be used for future requirements.

Parameter	Level	Unit
Information bit rate	144	kbps
DPDCH	480	kbps
DPCCH	15	kbps
DPCCH Slot Format #i	0	-
DPCCH/DPDCH power ratio	-11,48	dB
TFCI	On	-
Repetition	8	%

Higher Layer		RAB/Signalling RB	RAB	SRB
RLC	Logical channel type		DTCH	DCCH
	RLC mod	e	ТМ	UM/AM
	Payload s	izes, bit	2880	88/80
	Max data	rate, bps	144000	2200/2000
	PDU head	ler, bit	N/A	8/16
	TrD PDU	header, bit	0	N/A
MAC	MAC header, bit		0	4
	MAC multiplexing		N/A	Yes
Layer 1	TrCH type		DCH	DCH
	Transport Channel Identity		1	5
	TB sizes, bit		2880	100
	TFS	TF0, bits	0*2880	0*100
		TF1, bits	1*2880	1*100
	TTI, ms		20	40
	Coding type		Turbo Coding	Convolution Coding
	Coding Rate		N/A	1/3
	CRC, bit		16	12
	Max number of bits/TTI after channel coding		8700	360
	Uplink: Max number of bits/radio frame before rate matching		4350	90
	RM attribu	ite	256	256

Table C.2.3.2: UL reference measurement channel using RLC-TM for DTCH, transport channel parameters (144 kbps)

Table C.2.3.3: UL reference measurement channel using RLC-AM for DTCH, transport channel parameters (144 kbps)

Higher Layer	RAB/Signalling RB		RAB	SRB
RLC	Logical ch	annel type	DTCH	DCCH
	RLC mode		AM	UM/AM
	Payload si	zes, bit	2864	88/80
	Max data ı	ate, bps	143200	2200/2000
	PDU head	er, bit	16	8/16
	TrD PDU ł	neader, bit	N/A	N/A
MAC	MAC head	ler, bit	0	4
	MAC multi	plexing	N/A	Yes
Layer 1	TrCH type		DCH	DCH
	Transport Channel Identity		1	5
	TB sizes, bit		2880	100
	TFS	TF0, bits	0*2880	0*100
		TF1, bits	1*2880	1*100
	TTI, ms		20	40
	Coding typ		Turbo Coding	Convolution Coding
	Coding Ra	te	N/A	1/3
	CRC, bit		16	12
	Max number of bits/TTI after channel coding		8700	360
		x number of bits/radio frame before	4350	90
	rate match			
	RM attribu	te	256	256

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

NOTE: The TFCs except for (TF1, TF1) are belonging to minimum set of TFCs.

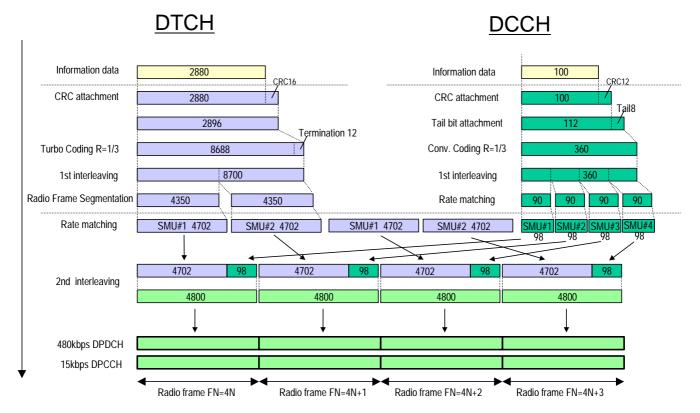


Figure C.2.3 (Informative): Channel coding of UL reference measurement channel (144 kbps)

C.2.4 UL reference measurement channel (384 kbps)

The parameters for the 384 kbps UL reference measurement channel are specified in table C.2.4.1, table C.2.4.2, table C.2.4.3 and table C.2.4.4. The channel coding for information is shown in figure C.2.4. When the UE test loop function is needed, the UE test loop mode 2 shall be used. This measurement channel is not currently used in the present document but can be used for future requirements.

Parameter	Level	Unit
Information bit rate	384	kbps
DPDCH	960	kbps
DPCCH	15	kbps
DPCCH Slot Format #i	0	-
DPCCH/DPDCH power ratio	-11,48	dB
TFCI	On	-
Puncturing	18	%

Higher	RAB/Signalling RB	RAB	SRB
Layer			
RLC	Logical channel type	DTCH	DCCH
	RLC mode	ТМ	UM/AM
	Payload sizes, bit	3840	88/80
	Max data rate, bps	384000	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	0	N/A
MAC	MAC header, bit	0	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	1	5
	TB sizes, bit	3840	100
	TFS TF0, bits	0*3840	0*100
	TF1, bits	1*3840	1*100
	TTI, ms	10	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	11580	360
	Uplink: Max number of bits/radio frame before	11580	90
	rate matching		
	RM attribute	256	256

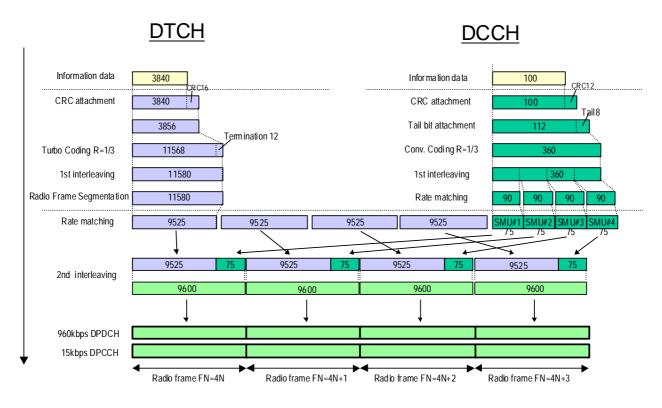

Table C.2.4.2: UL reference measurement channel using RLC-TM for DTCH, transport channel parameters (384 kbps)

Table C.2.4.3: UL reference measurement channel using RLC-AM for DTCH, transport channel parameters (384 kbps)

Higher Layer	RAB/Signalling RB		RAB	SRB
RLC	Logical ch	annel type	DTCH	DCCH
	RLC mode		AM	UM/AM
	Payload si	zes, bit	3824	88/80
	Max data ı	ate, bps	382400	2200/2000
	PDU head	er, bit	16	8/16
	TrD PDU ł	neader, bit	N/A	N/A
MAC	MAC head	ler, bit	0	4
	MAC multi	plexing	N/A	Yes
Layer 1	TrCH type		DCH	DCH
	Transport Channel Identity		1	5
	TB sizes, I	pit	3840	100
	TFS	TF0, bits	0*3840	0*100
		TF1, bits	1*3840	1*100
	TTI, ms		10	40
	Coding typ	e	Turbo Coding	Convolution Coding
	Coding Ra	te	N/A	1/3
	CRC, bit		16	12
	Max number of bits/TTI after channel coding		11580	360
	Uplink: Ma rate match	x number of bits/radio frame before ing	11580	90
	RM attribu	te	256	256

Table C.2.4.4: UL reference measurement channel, TFCS (384 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

NOTE: The TFCs except for (TF1, TF1) are belonging to minimum set of TFCs.

Figure C.2.4 (informative): Channel coding of UL reference measurement channel (384 kbps)

C.2.5 UL reference measurement channel (768 kbps)

The parameters for the UL measurement channel for 768 kbps are specified in table C.2.5.1, table C.2.5.2, table C.2.5.3 and table C.2.5.4. When the UE test loop function is needed, the UE test loop mode 2 shall be used.

Parameter	Level	Unit
Information bit rate	2*384	kbps
DPDCH ₁	960	kbps
DPDCH ₂	960	kbps
DPCCH	15	kbps
DPCCH Slot Format #i	0	-
DPCCH/DPDCH power ratio	-11.48	dB
TFCI	On	-
Puncturing	18	%

Table C.2.5.1: UL reference measurement channel, physical parameters (768 kbps)

Higher	RAB/Signalling RB	RAB	SRB	
Layer				
RLC	Logical channel type	DTCH	DCCH	
	RLC mode	ТМ	UM/AM	
	Payload sizes, bit	7680	88/80	
	Max data rate, bps	768000	2200/2000	
	PDU header, bit	N/A	8/16	
	TrD PDU header, bit	0	N/A	
MAC	MAC header, bit	0	4	
	MAC multiplexing	N/A	Yes	
Layer 1	TrCH type	DCH	DCH	
	Transport Channel Identity	1	5	
	TB sizes, bit	3840	100	
	TFS TF0, bits	0*3840	0*100	
	TF1, bits	2*3840	1*100	
	TTI, ms	10	40	
	Coding type	Turbo Coding	Convolution Coding	
	Coding Rate	N/A	1/3	
	CRC, bit	16	12	
	Max number of bits/TTI after channel coding	23160	360	
	Uplink: Max number of bits/radio frame before rate matching	23160	90	
	RM attribute	256	256	

Table C.2.5.2: UL reference measurement channel using RLC-TM for DTCH, transport channel parameters (768 kbps)

Table C.2.5.3: UL reference measurement channel using RLC-AM for DTCH, transport channel parameters (768 kbps)

Higher Layer	RAB/Signalling RB		RAB	SRB
RLC	Logical channel type		DTCH	DCCH
	RLC mode		ТМ	UM/AM
	Payload sizes, bit		7664	88/80
	Max data rate, bps		766400	2200/2000
	PDU header, bit		16	8/16
	TrD PDU ł	neader, bit	N/A	N/A
MAC	MAC header, bit		0	4
	MAC multi	plexing	N/A	Yes
Layer 1	TrCH type		DCH	DCH
	Transport Channel Identity		1	5
	TB sizes, bit		3840	100
	TFS	TF0, bits	0*3840	0*100
		TF1, bits	2*3840	1*100
	TTI, ms		10	40
	Coding typ	0e	Turbo Coding	Convolution Coding
	Coding Ra	ite	N/A	1/3
	CRC, bit		16	12
	Max number of bits/TTI after channel coding		23160	360
	Uplink: Ma rate match	ix number of bits/radio frame before	23160	90
	RM attribu	C	256	256

Table C.2.5.4: UL reference measurement channel, TFCS (768 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

NOTE: The TFCs except for (TF1, TF1) are belonging to minimum set of TFCs.

C.3 DL reference measurement channel

C.3.1 DL reference measurement channel (12.2 kbps)

The parameters for the 12,2 kbps DL reference measurement channel are specified in table C.3.1.1, table C.3.1.2, table C.3.1.3 and table C.3.1.4. The channel coding is detailed in figure C.3.1. For the RLC configuration of AM DCCHs Timer_STATUS_Periodic shall not be set in RRC CONNECTION SETUP message used in test procedure for RF test as defined in TS34.108 clause 7.3. This is to prevent unexpected DCHs from being transmitted through such RLC entities when the timer has expired in order to sure that the required TFC from the minimum set of TFCs can continuously convey a DCH for DTCH during the test.

Table C.3.1.1: DL reference measurement channel (12.2 kbps	5)
---	-----------	----

Parameter	Level	Unit
Information bit rate	12.2	kbps
DPCH	30	ksps
Slot Format #I	11	-
TFCI	On	
Power offsets PO1, PO2 and PO3	0	dB
DTX position	Fixed	-

Table C.3.1.2: DL reference measurement channel using RLC-TM for DTCH, transport channel parameters (12.2 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	TM	UM/AM
	Payload sizes, bit	244	88/80
	Max data rate, bps	12200	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	0	N/A
MAC	MAC header, bit	0	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	6	10
	TB sizes, bit	244	100
	TFS TF0, bits	0*244	0*100
	TF1, bits	1*244	1*100
	TTI, ms	20	40
	Coding type	Convolution Coding	Convolution Coding
	Coding Rate	1/3	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	804	360
	RM attribute	256	256

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	AM	UM/AM
	Payload sizes, bit	228	88/80
	Max data rate, bps	11400	2200/2000
	PDU header, bit	16	8/16
	TrD PDU header, bit	N/A	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	6	10
	T B sizes, bit	2 44	100
	TFS TF0, bits	0*244	0*100
	TF1, bits	1*244	1*100
	TTI, ms	20	40
	Coding type	Convolution Coding	Convolution Coding
	Coding Rate	1/3	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	804	360
	RM attribute	256	256

Table C.3.1.3: DL reference measurement channel using RLC-AM for DTCH, transport channel parameters (12.2 kbps)

Table C.3.1.34: DL reference measurement channel, TFCS (12.2 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

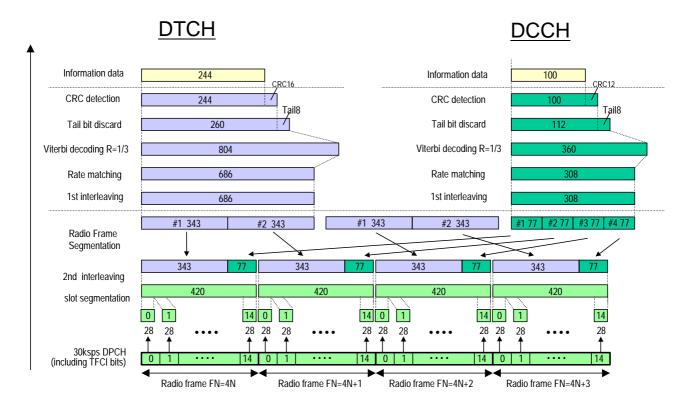


Figure C.3.1 (informative): Channel coding of DL reference measurement channel (12,2 kbps)

C.3.2 DL reference measurement channel (64 kbps)

The parameters for the DL reference measurement channel for 64 kbps are specified in table C.3.2.1, table C.3.2.2, table C.3.2.3 and table C.3.2.4. The channel coding is detailed in figure C.3.2. For the RLC configuration of AM DCCHs Timer_STATUS_Periodic shall not be set in RRC CONNECTION SETUP message used in test procedure for RF test as defined in TS34.108 clause 7.3. This is to prevent unexpected DCHs from being transmitted through such RLC entities when the timer has expired in order to sure that the required TFC from the minimum set of TFCs can continuously convey a DCH for DTCH during the test.

Parameter	Level	Unit
Information bit rate	64	kbps
DPCH	120	ksps
Slot Format #i	13	-
TFCI	On	-
Power offsets PO1, PO2 and PO3	0	dB
DTX position	Fixed	-

Table C.3.2.1: DL reference	e measurement	channel	(64 kbps)
-----------------------------	---------------	---------	-----------

Table C.3.2.2: DL reference measurement channel using RLC-TM for DTCH, transport channel parameters (64 kbps)

Higher Layer		RAB/Signalling RB	RAB	SRB
RLC	Logical cha	annel type	DTCH	DCCH
	RLC mode	9	ТМ	UM/AM
	Payload si	zes, bit	1280	88/80
	Max data r	ate, bps	64000	2200/2000
	PDU head	er, bit	N/A	8/16
	TrD PDU h	neader, bit	0	N/A
MAC	MAC head	er, bit	0	4
	MAC multi	plexing	N/A	Yes
Layer 1	TrCH type		DCH	DCH
	Transport Channel Identity TB sizes, bit TFS TF0, bits		6	10
			1280	100
			0*1280	0*100
		TF1, bits	1*1280	1*100
	TTI, ms		20	40
	Coding typ	e	Turbo Coding	Convolution Coding
	Coding Rate CRC, bit		N/A	1/3
			16	12
	Max numb	er of bits/TTI after channel coding	3900	360
	RM attribu	te	256	256

Table C.3.2.3: DL reference measurement channel using RLC-AM for DTCH, transport channel
parameters (64 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	AM	UM/AM
	Payload sizes, bit	1264	88/80
	Max data rate, bps	63200	2200/2000
	PDU header, bit	16	8/16
	TrD PDU header, bit	N/A	N/A
MAC	MAC header, bit	0	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	6	10
	TB sizes, bit	1280	100
	TFS TF0, bits	0*1280	0*100
	TF1, bits	1*1280	1*100
	TTI, ms	20	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	3900	360
	RM attribute	256	256

Table C.3.2.4: DL reference measurement channel, TFCS (64 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

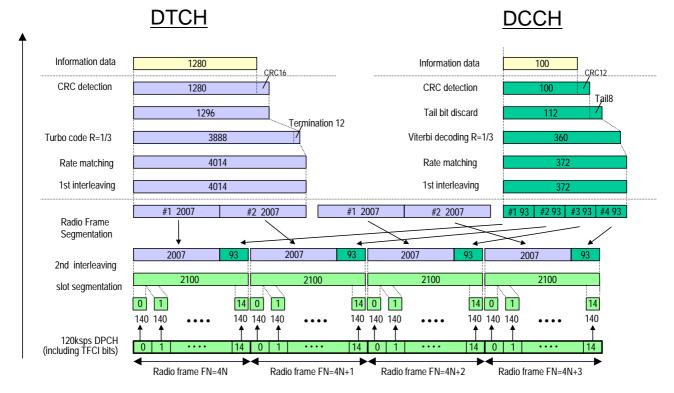


Figure C.3.2 (informative): Channel coding of DL reference measurement channel (64 kbps)

C.3.3 DL reference measurement channel (144 kbps)

The parameters for the DL reference measurement channel for 144 kbps are specified in table C.3.3.1, table C.3.3.2, table C.3.3.3 and table C.3.3.4. The channel coding is detailed in figure C.3.3. For the RLC configuration of AM DCCHs Timer_STATUS_Periodic shall not be set in RRC CONNECTION SETUP message used in test procedure for RF test as defined in TS34.108 clause 7.3. This is to prevent unexpected DCHs from being transmitted through such RLC entities when the timer has expired in order to sure that the required TFC from the minimum set of TFCs can continuously convey a DCH for DTCH during the test.

Parameter	Level	Unit
Information bit rate	144	kbps
DPCH	240	ksps
Slot Format #i	14	-
TFCI	On	
Power offsets PO1, PO2 and PO3	0	dB
DTX position	Fixed	-

Table C.3.3.2: DL reference measurement channel using RLC-TM for DTCH, transport channel parameters (144 kbps)

Higher Layer		RAB/Signalling RB	RAB	SRB
RLC	Logical cha	annel type	DTCH	DCCH
	RLC mode	9	ТМ	UM/AM
	Payload si	zes, bit	2880	88/80
	Max data r	ate, bps	144000	2200/2000
	PDU head	er, bit	N/A	8/16
	TrD PDU h	neader, bit	0	N/A
MAC	MAC head	er, bit	0	4
	MAC multi	plexing	N/A	Yes
Layer 1	TrCH type		DCH	DCH
	Transport Channel Identity TB sizes, bit		6	10
			2880	100
	TFS	TF0, bits	0*2880	0*100
		TF1, bits	1*2880	1*100
	TTI, ms Coding type Coding Rate CRC, bit		20	40
			Turbo Coding	Convolution Coding
			N/A	1/3
			16	12
	Max numb	er of bits/TTI after channel coding	8700	360
	RM attribu	te	256	256

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	AM	UM/AM
	Payload sizes, bit	2864	88/80
	Max data rate, bps	143200	2200/2000
	PDU header, bit	16	8/16
	TrD PDU header, bit	N/A	N/A
MAC	MAC header, bit	0	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	6	10
	TB sizes, bit	2880	100
	TFS TF0, bits	0*2880	0*100
	TF1, bits	1*2880	1*100
	TTI, ms	20	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	8700	360
	RM attribute	256	256

Table C.3.3.3: DL reference measurement channel using RLC-AM for DTCH, transport channel parameters (144 kbps)

Table C.3.3.4: DL reference measurement channel, TFCS (144 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

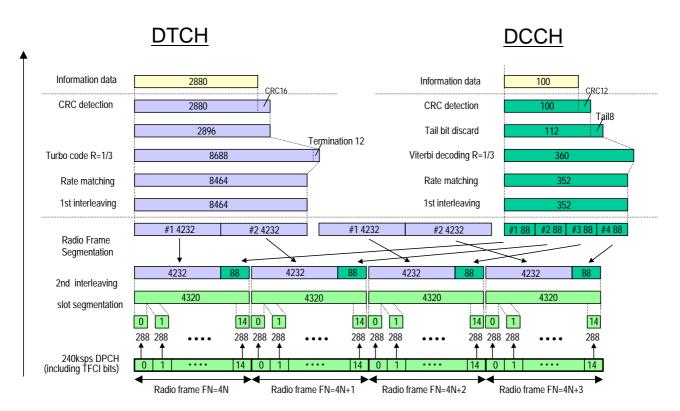


Figure C.3.3 (informative): Channel coding of DL reference measurement channel (144 kbps)

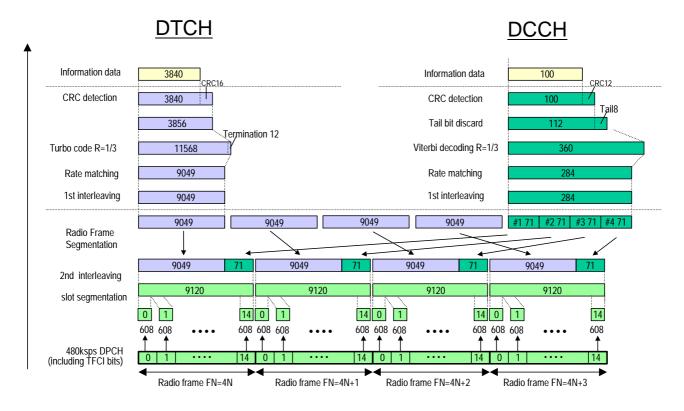
C.3.4 DL reference measurement channel (384 kbps)

The parameters for the DL reference measurement channel for 384 kbps are specified in table C.3.4.1, table C.3.4.2, table C.3.4.3 and table C.3.4.4. The channel coding is shown for information in figure C3.4. For the RLC configuration of AM DCCHs Timer_STATUS_Periodic shall not be set in RRC CONNECTION SETUP message used in test procedure for RF test as defined in TS34.108 clause 7.3. This is to prevent unexpected DCHs from being transmitted through such RLC entities when the timer has expired in order to sure that the required TFC from the minimum set of TFCs can continuously convey a DCH for DTCH during the test.

Parameter	Level	Unit
Information bit rate	384	kbps
DPCH	480	ksps
Slot Format #i	15	-
TFCI	On	-
Power offsets PO1, PO2 and PO3	0	dB
DTX position	Fixed	-

Table C.3.4.1: DL reference measurement channel, physical parameters (384 kbps)

Table C.3.4.2: DL reference measurement channel using RLC-TM for DTCH, transport channel parameters (384 kbps)


Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	TM	UM/AM
	Payload sizes, bit	3840	88/80
	Max data rate, bps	384000	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	0	N/A
MAC	MAC header, bit	0	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	6	10
	TB sizes, bit	3840	100
	TFS TF0, bits	0*3840	0*100
	TF1, bits	1*3840	1*100
	TTI, ms	10	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	11580	360
	RM attribute	256	256

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	AM	UM/AM
	Payload sizes, bit	3824	88/80
	Max data rate, bps	382400	2200/2000
	PDU header, bit	16	8/16
	TrD PDU header, bit	N/A	N/A
MAC	MAC header, bit	0	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	6	10
	TB sizes, bit	3840	100
	TFS TF0, bits	0*3840	0*100
	TF1, bits	1*3840	1*100
	TTI, ms	10	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	11580	360
	RM attribute	256	256

Table C.3.4.3: DL reference measurement channel using RLC-AM for DTCH, transport channel parameters (384 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

C.4 Reference measurement channel for BTFD performance requirements

C.4.1 UL reference measurement channel for BTFD performance requirements

The parameters for UL reference measurement channel for BTFD are specified in table C.4.1.1, table C.4.1.2, table C.4.1.3 and table C.4.1.4.

Parameter	Level	Unit
Information bit rate	12.8k, 10.8k, 8.55k, 8.0k,	kbps
	7.3k, 6.5k, 5.75k, 5.35k,	
	2.55k	
DPCCH	15	kbps
DPCCH Slot Format #i	0	-
DPCCH/DPDCH power ratio	-5.46 (12.8k - 7.3k)	dB
	-2.69 (6.5k – 2.55k)	
TFCI	On	-
Puncturing Limit	100	%

Table C.4.1.1: UL reference measurement channel physical parameters for BTFD

Table C.4.1.2: UL reference measurement channel, transport channel parameters for SRB

Higher Layer	RAB/Signalling RB	SRB
RLC	Logical channel type	DCCH
	RLC mode	UM/AM
	Payload sizes, bit	88/80
	Max data rate, bps	2200/2000
	PDU header, bit	8/16
	TrD PDU header, bit	N/A
MAC	MAC header, bit	4
	MAC multiplexing	Yes
Layer 1	TrCH type	DCH
	Transport Channel Identity	10
	TB sizes, bit	100
	TFS TF0, bits	0*100
	TF1, bits	1*100
	TTI, ms	40
	Coding type	Convolution Coding
	Coding Rate	1/3
	CRC, bit	12
	Max number of bits/TTI after	360
	channel coding	
	Uplink: Max number of bits/radio	90
	frame before rate matching	
	RM attribute	256

Higher Layer	RAB/Signalling RB	12.8k /10.8k/8.55k/8.0k/7.3k/6.5k/5.75k/5.35k/2.55k
RLC	Logical channel type	DTCH
	RLC mode	ТМ
	Payload sizes, bi	256, 216, 171, 160, 146, 130, 115, 107, 51, 12
	Max data rate, bp	s 12200
	PDU header, bit	N/A
	TrD PDU header, bit	0
MAC	MAC header, bit	0
	MAC multiplexing	N/A
Layer 1	TrCH type	DCH
	Transport Channe Identity	el 1
	TB sizes, bit	256, 216, 171, 160, 146, 130, 115, 107, 51,12
	TFS TF0 b	t 0x256
	TF1 b	t 1x256
	TF2 b	
	TF3 b	
	TF4 b	
	TF5 b	
	TF6 b	
	TF7 b	
	TF8 b	
	TF9 b	
	TF10 bit	1x12
	TTI, ms	20
	Coding type	CC
	Coding Rate	1/3
	CRC, bit	0
	RM attribute	256

Table C.4.1.3: UL reference measurement channel using RLC-TM for DTCH, transport channel parameters

Table C.4.1.4: UL reference measurement channel, TFCS

TFCS size	22
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF2, TF0), (TF3, TF0), (TF4, TF0), (TF5, TF0), (TF6, TF0), (TF7, TF0),
	(TF8, TF0), (TF9, TF0), (TF10, TF0), (TF0, TF1), (TF1, TF1), (TF2, TF1), (TF3, TF1), (TF4,
	TF1), (TF5, TF1), (TF6, TF1), (TF7, TF1), (TF8, TF1), (TF9, TF1), (TF10, TF1)

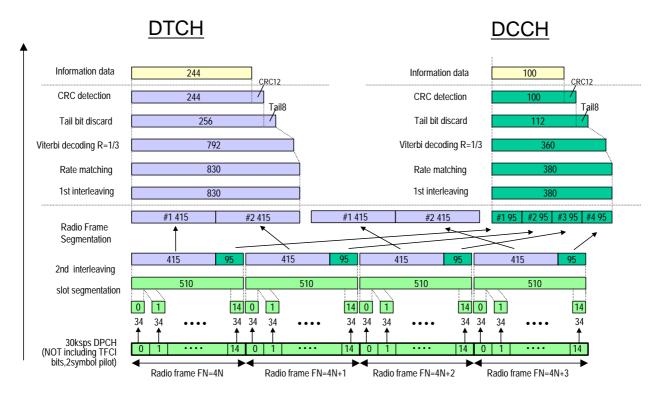
NOTE: The TFCs except for (TF1, TF1), (TF2, TF1), (TF3, TF1), (TF4, TF1), (TF5, TF1), (TF6, TF1), (TF7, TF1), (TF8, TF1), (TF9, TF1) and (TF10, TF1) are belonging to minimum set of TFCs.

C.4.2 DL reference measurement channel for BTFD performance requirements

The parameters for DL reference measurement channel for BTFD are specified in table C.4.2.1, table C.4.2.2, table C.4.2.3 and table C.4.2.4. The channel coding for information is shown in figures C.4.1, C.4.2, and C.4.3. For the RLC configuration of AM DCCHs Timer_STATUS_Periodic shall not be set in RRC CONNECTION SETUP message used in test procedure for RF test as defined in TS34.108 clause 7.3. This is to prevent unexpected DCHs from being transmitted through such RLC entities when the timer has expired in order to sure that the required TFC from the minimum set of TFCs can continuously convey a DCH for DTCH during the test.

Parameter	Rate 1	Rate 2	Rate 3	Unit
Information bit rate	12,2	7,95	1,95	kbps
DPCH		30		ksps
Slot Format #i		8		-
TFCI		Off		-
Power offsets PO1, PO2 and PO3	0		dB	
DTX position	Fixed		-	

Table C.4.2.2: DL reference measurement channel	transport channel parameters for SRB
Table C.4.2.2. DL Telefence measurement channel	


Higher Layer	R	AB/Signalling RB	SRB
RLC	Logical	channel type	DCCH
	RLC mo	de	UM/AM
	Payload	sizes, bit	88/80
	Max dat	a rate, bps	2200/2000
	PDU he	ader, bit	8/16
	TrD PDI	J header, bit	N/A
MAC	MAC he	ader, bit	4
	MAC mu	Iltiplexing	Yes
Layer 1	TrCH type		DCH
_	Transpo	rt Channel Identity	20
	TB sizes	s, bit	100
	TFS	TF0, bits	0*100
		TF1, bits	1*100
	TTI, ms		40
	Coding t		Convolution Coding
	Coding		1/3
	CRC, bi	t	12
	Max nur	nber of bits/TTI after	360
	channel	<u> </u>	
		Max number of bits/radio efore rate matching	90
	RM attri	bute	256

Higher Layer	RAB/Signalling RB	12.2k/10.2k/7.95k/7.4k/6.7k/5.9k/5.15k/4.75k/1.95k
RLC	Logical channel type	DTCH
	RLC mode	ТМ
	Payload sizes, bit	244, 204, 159, 148, 134, 118, 103, 95, 39
	Max data rate, bps	12200
	PDU header, bit	N/A
	TrD PDU header, bit	0
MAC	MAC header, bit	0
	MAC multiplexing	N/A
Layer 1	TrCH type	DCH
	Transport Channel Identity	1
	TB sizes, bit	244, 204, 159, 148, 134, 118, 103, 95, 39,0
	TFS TF0 bit	1x0
	TF1 bit	1x244
	TF2 bit	1x204
	TF3 bit	1x159
	TF4 bit	1x148
	TF5 bit	1x134
	TF6 bit	1x118
	TF7 bit	1x103
	TF8 bit	1x95
	TF9 bit	1x39
	TTI, ms	20
	Coding type	
	Coding Rate	<u> </u>
	CRC, bit RM attribute	256
	Rivi attribute	230

Table C.4.2.3: DL reference measurement channel using RLC-TM for DTCH, transport channel parameters

Table C.4.2.4: DL reference measurement channel, TFCS

TFCS size	20
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF2, TF0), (TF3, TF0), (TF4, TF0), (TF5, TF0), (TF6, TF0), (TF7, TF0),
	(TF8, TF0), (TF9, TF0), (TF0, TF1), (TF1, TF1), (TF2, TF1), (TF3, TF1), (TF4, TF1), (TF5, TF1),
	(TF6, TF1), (TF7, TF1), (TF8, TF1), (TF9, TF1),

FigureC.4.1 (informative): Channel coding of DL reference measurement channel for BTFD (Rate 1)

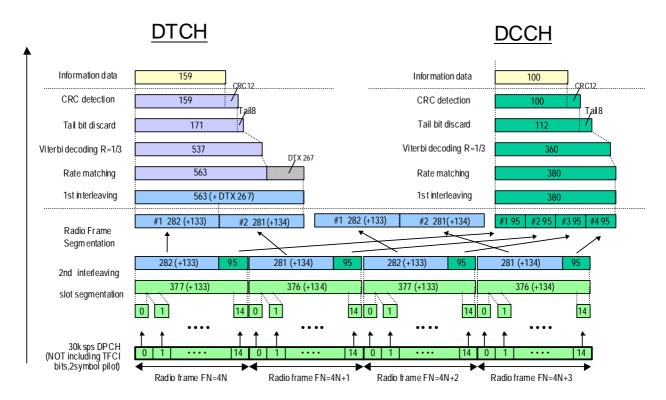


Figure C.4.2 (informative): Channel coding of DL reference measurement channel for BTFD (Rate 2)

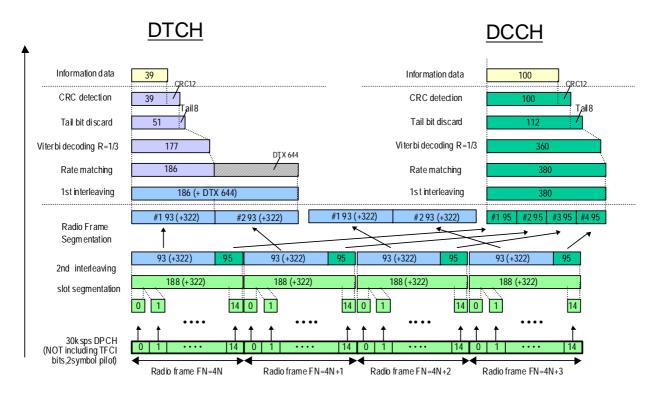


Figure C.4.3 (informative): Channel coding of DL reference measurement channel for BTFD (Rate 3)

< End of modification >

< new annex >

C.6 Auxiliary measurement channels (informative)

C.6.1 Introduction

<u>BLER tests with (UL data rate \leq DL data rate) need special attention. This annex defines a choice of measurement channels for all UL-DL –data-rate combinations.</u>

C.6.2 Channel combinations for BLER measurements

Table C.6.2 Measurement channels for BLER tests for UL DL data rate combinations

' <u></u>	UL:	RMC 12.2kbit/s	RMC 64kbit/s	RMC 144kbit/s	RMC 384kbit/s
DL:					

RMC 12.2kbit/s 1)	RLC TM, TL2, (UL CRC off, see C.6.3)	RLC TM, TL2	RLC TM, TL2	RLC TM, TL2
RMC 64kbit/s	RLC AM using AUXMC, See C.6.7 (ACK/NACK count)	RLC TM, TL2, (UL CRC off, see C.6.4)	RLC TM, TL2	RLC TM, TL2
RMC 144kbit/s	RLC AM using AUXMC, See C.6.7 (ACK/NACK count)	RLC AM (ACK/NACK count)	RLC TM, TL2, (UL CRC off, see C.6.5)	RLC TM, TL2
RMC 384kbit/s	RLC AM using AUXMC, See C.6.7 (ACK/NACK count)	RLC AM (ACK/NACK count)	RLC AM (ACK/NACK count)	RLC TM, TL2, (UL CRC off, see C.6.6)

Note : In the red and blue area BLER is tested by ACK/NACK counting.

The side condition in all Performance Tests, maximum uplink power, can be fulfilled by closing TL1.

In the grey and green area BLER is tested by observing the looped back data field containing the DL Data and DL CRC closing TL2.

C.6.3 UL-CRC off for 12.2 kbit/s RMC

<u>Higher</u> Layer	RAB/Signalling RB	RAB	<u>SRB</u>
RLC	Logical channel type	DTCH	DCCH
	RLC mode	TM	UM/AM
	Payload sizes, bit	<u>260</u>	<u>88/80</u>
	Max data rate, bps	<u>13000</u>	<u>2200/2000</u>
	PDU header, bit	<u>N/A</u>	<u>8/16</u>
	TrD PDU header, bit	<u>0</u>	<u>N/A</u>
MAC	MAC header, bit	<u>0</u>	<u>4</u>
	MAC multiplexing	<u>N/A</u>	<u>Yes</u>
Layer 1	TrCH type	DCH	<u>DCH</u>
	Transport Channel Identity	1	<u>5</u>
	<u>TB sizes, bit</u>	<u>260</u>	<u>100</u>
	TFS TF0, bits	<u>0*260</u>	<u>0*100</u>
	TF1, bits	<u>1*260</u>	<u>1*100</u>
	<u>TTI, ms</u>	<u>20</u>	<u>40</u>
	Coding type	Convolution Coding	Convolution Coding
	Coding Rate	<u>1/3</u>	<u>1/3</u>
	CRC, bit	<u>0</u>	<u>12</u>
	Max number of bits/TTI after channel coding	<u>804</u>	<u>360</u>
	Uplink: Max number of bits/radio frame before rate matching	<u>402</u>	<u>90</u>
	<u>RM attribute</u>	<u>256</u>	<u>256</u>

Table C.6.3 12.2 kbit/s RMC (13 kbit/s RMC)

C.6.4 UL-CRC off for 64 kbit/s RMC

Table C.6.4 64 kbit/s RMC (64.8 kbit/s RMC)

<u>Higher</u> Layer	RAB/Signalling RB	RAB	<u>SRB</u>
RLC	Logical channel type	DTCH	DCCH
<u></u>	RLC mode	TM	UM/AM
	Payload sizes, bit	1296	88/80
	Max data rate, bps	<u>64800</u>	<u>2200/2000</u>
	PDU header, bit	<u>N/A</u>	<u>8/16</u>
	TrD PDU header, bit	<u>0</u>	<u>N/A</u>
MAC	MAC header, bit	<u>0</u>	<u>4</u>
	MAC multiplexing	<u>N/A</u>	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	<u>1</u>	<u>5</u>
	<u>TB sizes, bit</u>	<u>1296</u>	<u>100</u>
	TFS TFO, bits	<u>0*1296</u>	<u>0*100</u>
	TF1, bits	<u>1*1296</u>	<u>1*100</u>
	<u>TTI, ms</u>	<u>20</u>	<u>40</u>
	Coding type	<u>Turbo Coding</u>	Convolution Coding
	Coding Rate	<u>N/A</u>	<u>1/3</u>
	CRC, bit	<u>0</u>	<u>12</u>
	Max number of bits/TTI after channel coding	<u>3900</u>	<u>360</u>
	Uplink: Max number of bits/radio frame before	<u>1950</u>	<u>90</u>
	rate matching		
	RM attribute	<u>256</u>	<u>256</u>

C.6.5 UL-CRC off for 144 kbit/s RMC

Table C.6.5 144 kbit/s RMC (144.8 kbit/s RMC)

<u>Higher</u> Layer	RAB/Signalling RB	RAB	<u>SRB</u>
RLC	Logical channel type	DTCH	DCCH
	RLC mode	TM	UM/AM
	Payload sizes, bit	<u>2896</u>	<u>88/80</u>
	Max data rate, bps	<u>144800</u>	<u>2200/2000</u>
	PDU header, bit	<u>N/A</u>	<u>8/16</u>
	TrD PDU header, bit	<u>0</u>	<u>N/A</u>
MAC	MAC header, bit	<u>0</u>	<u>4</u>
	MAC multiplexing	<u>N/A</u>	Yes
Layer 1	TrCH type	<u>DCH</u>	<u>DCH</u>
	Transport Channel Identity	<u>1</u>	<u>5</u>
	TB sizes, bit	<u>2896</u>	<u>100</u>
	TFS TFO, bits	<u>0*2896</u>	<u>0*100</u>
	TF1, bits	<u>1*2896</u>	<u>1*100</u>
	<u>TTI, ms</u>	<u>20</u>	<u>40</u>
	Coding type	<u>Turbo Coding</u>	Convolution Coding
	Coding Rate	<u>N/A</u>	<u>1/3</u>
	<u>CRC, bit</u>	<u>0</u>	<u>12</u>
	Max number of bits/TTI after channel coding	<u>8700</u>	<u>360</u>
	Uplink: Max number of bits/radio frame before	<u>4350</u>	<u>90</u>
	rate matching		
	RM attribute	<u>256</u>	<u>256</u>

C.6.6 UL-CRC off for 384 kbit/s RMC

Table C.6.6 384 kbit/s RMC (385.6 kbit/s RMC)

<u>Higher</u> Layer	RAB/Signalling RB	RAB	<u>SRB</u>
RLC	Logical channel type	DTCH	DCCH
	RLC mode	TM	UM/AM
	Payload sizes, bit	<u>3856</u>	88/80
	Max data rate, bps	<u>385600</u>	<u>2200/2000</u>
	PDU header, bit	<u>N/A</u>	<u>8/16</u>
	TrD PDU header, bit	<u>0</u>	<u>N/A</u>
MAC	MAC header, bit	<u>0</u>	<u>4</u>
	MAC multiplexing	<u>N/A</u>	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	<u>1</u>	<u>5</u>
	<u>TB sizes, bit</u>	<u>3856</u>	<u>100</u>
	TFS TFO, bits	<u>0*3856</u>	<u>0*100</u>
	TF1, bits	<u>1*3856</u>	<u>1*100</u>
	<u>TTI, ms</u>	<u>10</u>	<u>40</u>
	Coding type	<u>Turbo Coding</u>	Convolution Coding
	Coding Rate	<u>N/A</u>	<u>1/3</u>
	CRC, bit	<u>0</u>	<u>12</u>
	Max number of bits/TTI after channel coding	<u>11580</u>	<u>360</u>
	Uplink: Max number of bits/radio frame before	<u>11580</u>	<u>90</u>
	rate matching		
	RM attribute	<u>256</u>	<u>256</u>

C.6.7 Aux Measurement Channel for RMC 12.2 kbit/s with AM-RLC

Table C.6.7 Aux-MC with AM-RLC for low capability UEs

Higher Layer		RAB/Signalling RB	RAB	<u>SRB</u>
<u>RLC</u>	Logical channel type		DTCH	DCCH
	RLC mode	2	<u>AM</u>	<u>UM/AM</u>
	Payload s	izes, bit	<u>224</u>	<u>88/80</u>
	Max data	rate, bps	<u>11200</u>	<u>2200/2000</u>
	PDU head	ler, bit	<u>16</u>	<u>8/16</u>
	TrD PDU	header, bit	<u>N/A</u>	<u>N/A</u>
MAC	MAC header, bit		<u>0</u>	<u>4</u>
	MAC mult	iplexing	<u>N/A</u>	<u>Yes</u>
Layer 1	er 1 TrCH type		DCH	<u>DCH</u>
	Transport	Channel Identity	<u>1</u>	<u>5</u>
	TB sizes,	<u>bit</u>	<u>240</u>	<u>100</u>
	TFS TF0, bits		<u>0*240</u>	<u>0*100</u>
		TF1, bits	<u>1*240</u>	<u>1*100</u>
	<u>TTI, ms</u>		<u>20</u>	<u>40</u>
	Coding typ	<u>)e</u>	Convolution Coding	Convolution Coding
	Coding Ra	ate	<u>1/3</u>	<u>1/3</u>
	CRC, bit		<u>16</u>	<u>12</u>
	Max numb	per of bits/TTI after channel coding	<u>792</u>	<u>360</u>
	Uplink: Ma	ax number of bits/radio frame before	<u>396</u>	<u>90</u>
	rate match	ning		
	RM attribu	<u>ite</u>	<u>256</u>	<u>256</u>

3GPP TSG-T Meeting #21

1

Tdoc ж T1-031613

Budapest, Hung	gary, 3 ^{ra} -	7 ^m Novembe	er 2003				
		CHAN	GE REQ	UEST			CR-Form-v7
¥	<mark>34.121</mark>	CR 307	ж геv	2 [#]	Current versi	^{ion:} 5.1.1	Ħ
For <u>HELP</u> on L	using this fo	rm, see bottom o	of this page or	look at the	e pop-up text	over the 🛱 sy	mbols.
Proposed change	affects:	UICC apps೫	ME	Radio A	ccess Networ	k 📃 Core N	etwork
Title: #		of two new test c tection of acquisi			on of paging o	channel (PCH)) and
Source: ¥							
Work item code: ₩	RANimp [.]	test			<i>Date:</i> ೫	24/10/2003	
Category: ₩	F (co. A (co B (ao C (fui D (co Detailed ex	the following categorection) rresponds to a corredition of feature), nctional modification itorial modification) planations of the a 3GPP <u>TR 21.900</u> .	rection in an ear n of feature)		Use <u>one</u> of 1 2 R96 R97 R98 R99 Rel-4 Rel-5	Rel-5 the following rel (GSM Phase 2, (Release 1996) (Release 1997) (Release 1999) (Release 4) (Release 5) (Release 6)	
Reason for change		test cases in 25. ection of acquisiti					t
Summary of chang	ge:	will add two new	test cases (7.	11 and 7.	<mark>12) to 34.121.</mark>		
Consequences if not approved:		ts for Demodulati cator (AI) are not				ection of acqu	isition
Clauses affected:	<mark>೫ 7.11</mark>	, 7.12, C.7, F.1.4	<mark>, F.2.3, F.4, F</mark>	.6.2.8			
Other specs Affected:	¥ N 光 ス ス ス ス ス	Other core spe Test specificati	ons	ж			
Other comments:	<mark>೫ Tes</mark>	t cases introcuce	<mark>d in this CR a</mark>	e applical	ble for Rel-4 a	and later relea	ses.

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

Error! No text of specified style in document.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

2

7.11 Demodulation of Paging Channel (PCH)

7.11.1 Definition and applicability

The receiver characteristics of paging channel are determined by the probability of missed paging message (Pm-p). PCH is mapped into the S-CCPCH and it is associated with the transmission of Paging Indicators (PI) to support efficient sleep-mode procedures.

The requirements and this test apply to all types of UTRA for the FDD UE for Release 4 and later releases.

7.11.2 Minimum requirements

For the parameters specified in table 7.11.1 the average probability of missed paging (Pm-p) shall be below the specified value in table 7.11.2 Power of downlink channels other than S-CCPCH and PICH are as defined in Table E.3.3 of Annex E. S-CCPCH structure is as defined in Annex C.7.

Parameter	<u>Unit</u>	Test 1 Test 2		
Number of paging indicators per frame (Np)	1	<u>72</u>		
Phase reference	- 1	P-CPICH		
I _{oc}	<u>dBm/3.84 MHz</u>	<u>-60</u>		
\hat{I}_{or}/I_{oc}	<u>dB</u>	<u>-1</u> <u>-3</u>		
Propagation condition		Static Case 3		

Table 7.11.1: Parameters for PCH detection

Table 7.11.2: Test requirements for PCH detection

Test Number	S-CCPCH_Ec/lor	PICH_Ec/lor	Pm-p
<u>1</u>	<u>-14.8</u>	<u>-19</u>	<u>0.01</u>
<u>2</u>	<u>-9.8</u>	<u>-12</u>	<u>0.01</u>

The reference for this requirement is TS 25.101 [1] clause 8.12.1.

7.11.3 Test purpose

To verify that average probability of missed paging (Pm-p) does not exceed a specified value.

7.11.4 Method of test

7.11.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

Connect the SS and AWGN noise source to the UE antenna connector as shown in figure A.9 in the case of test
 Connect the SS, multipath fading simulator and an AWGN noise source to the UE antenna connector as shown in figure A.10 in the case of test 2.

4

2) Set the test parameters for test 1-2 as specified in tables 7.11.1 and 7.11.2. In the case of test 2, Setup fading simulator as fading condition case 3 which are described in table D.2.2.1. Power of downlink channels other than S-CCPCH and PICH are as defined in table E.3.3. S-CCPCH structure is as defined in Annex C.7.

7.11.4.2 Procedure

- 1) The UE is switched on.
- 2) An RRC connection is set up according to the generic set-up procedure specified in TS 34.108 [3] subclause 7.3.3 to place the UE in the CELL_PCH state.
- 3) The SS transmits the Paging type 1 message with used paging identity being a UTRAN identity and including the UE's assigned U-RNTI
- 4) If the UE responds with CELL UPDATE message within 8 seconds, then a success is recorded. If the UE does not respond with CELL UPDATE message within 8 seconds, a failure is recorded.
- 5) Repeat steps 3-4 according to Annex F.6.2 table 6.2.8.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

RADIO BEARER SETUP (STEP 2)

Information Element	Value/remark
RRC State Indicator	CELL PCH
UTRAN DRX cycle length coefficient	<u>6</u>
Downlink information for each radio link	
- Primary CPICH info	
- Primary scrambling code	<u>100</u>

7.11.5 Test requirements

The test parameters and requirements are specified in tables 7.11.1 and 7.11.2. The average probability of missed paging (Pm-p) (test procedure step 4) shall not exceed a specified value.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7.12 Detection of Acquisition Indicator (AI)

7.12.1 Definition and applicability

The receiver characteristics of Acquisition Indicator (AI) are determined by the probability of false alarm Pfa and probability of correct detection Pd. Pfa is defined as a conditional probability of detection of AI signature given that a AI signature was not transmitted. Pd is defined as a conditional probability of correct detection of AI signature given that the AI signature is transmitted.

The requirements and this test apply to all types of UTRA for the FDD UE for Release 4 and later releases.

7.12.2 Minimum requirements

For the parameters specified in table 7.12.1 the Pfa and 1-Pd shall not exceed the specified values in table 7.12.2. Power of downlink channels other than AICH is as defined in Table E.3.3 of Annex E.

Parameter	<u>Unit</u>	Test 1
Phase reference	-	P-CPICH
I _{oc}	<u>dBm/3.84 MHz</u>	<u>-60</u>
Number of other transmitted AI signatures on AICH	=	<u>0</u>
\hat{I}_{or}/I_{oc}	<u>dB</u>	<u>-1</u>
AICH_Ec/lor	<u>dB</u>	<u>-22.0</u>
AICH Power Offset	<u>dB</u>	<u>-12.0</u>
Propagation condition	Ξ	<u>Static</u>

Table 7.12.1: Parameters for AI detection

Note that AICH Ec/Ior can not be set. Its value is calculated from other parameters and it is given for information only. (AICH_Ec/Ior = AICH Power Offset + CPICH_Ec/Ior)

Table 7.12.2: Test requirements for AI detection

Test Number	<u>Pfa</u>	<u>1-Pd</u>
<u>1</u>	<u>0.01</u>	<u>0.01</u>

The reference for this requirement is TS 25.101 [1] clause 8.13.1.

7.12.3 Test purpose

To verify that average probability of false detection of AI (Pfa) and average probability of missed AI (1-Pd) do not exceed specified values.

7.12.4 Method of test

7.12.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect the SS and AWGN noise source to the UE antenna connector as shown in figure A.9.
- 2) Set the test parameters for test 1 as specified in tables 7.12.1 and 7.12.4. Power of downlink channels other than AICH are as defined in Table E.3.3 of Annex E.

			-
Parameter	<u>Unit</u>	<u>Set 1</u>	Set 2
Maximum number of preamble ramping cycles(Mmax)		<u>32</u>	2
Maximum number of preambles in one preamble cycle (preamble retrans max)		<u>32</u>	<u>12</u>
Back-off time (Tb01)	<u>ms</u> #TTI	<u>N/A</u> <u>10</u>	<u>N/A</u> <u>10</u>
Power ramp step when no acquisition indicator is received (power offset p0)	<u>dB</u>	1	<u>3</u>

Table 7.12.3 UE parameters for AI test

6

Table 7.12.4 SS parameters for AI test

Parameter	<u>Unit</u>	Value
Primary CPICH DL TX power	<u>dBm</u>	<u>-8</u>
UL interference	<u>dBm</u>	<u>-92</u>
SIR in open loop power control (Constant value)	<u>dB</u>	<u>-10</u>

See reference TS25.331 [8] clause 8.5.7 Open loop power control to calculate Pinitial. See also reference TS25.214 [5] subclause 6 step 6.3.

7.12.4.2 Procedure

- 1) The UE is switched on.
- 2) The SS and the UE shall perform location registration procedure as specified in TS34.108 [3] clause 7.2.2. UE parameters are set as defined in table 7.12.3 Set 1.
- 3) SS activates continuous paging and sends the Paging type 1 message with used paging identity being a UTRAN identity and including the UE's assigned U-RNTI
- 4) UE starts transmitting RACH preambles at level P=Pinitial.
- 5) SS does not send AI. If UE sends a new preamble a success for calculating Pfa is recorded. This step is repeated until UE stops sending preambles.
- 6) UE stops sending preambles. If number of sent preambles in the preamble cycle < preamble_retrans_max a failure for calculating Pfa is recorded and test continues from step 3. If number of preamble cycles M ≠ Mmax, a new preamble cycle is initiated and test continues from step 4. If number of preamble cycles M = Mmax then test continues from step 3.</p>
- 7) Repeat steps 5-6 according to Annex F.6.2 table 6.2.8.
- 8) UE parameters are set as defined in table 7.12.3 Set 2.
- 9) SS activates continuous paging and sends the Paging type 1 message with used paging identity being a UTRAN identity and including the UE's assigned U-RNTI.
- 10) UE starts transmitting RACH preambles.
- 11) SS responds with AI signature containing NACK in AICH.
- 12) If UE stops sending preambles success for calculating Pd is recorded. If UE does not stop sending preambles, a failure for calculating Pd is recorded.
- 13) Repeat steps 11-12 according to Annex F.6.2 table 6.2.8.

7.12.5 Test requirements

The test parameters are specified in tables 7.12.1, 7.12.3 and 7.12.4. Probability of false detection (Pfa) tested in steps 5-6 and probability of missed AI (1-Pd) tested in step 12 shall not exceed the values specified in Table 7.12.2.

NOTE:If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance appliedfor this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of
how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8

C.7 DL reference parameters for PCH tests

The parameters for the PCH demodulation tests are specified in table C.7.1 and table C.7.2.

Table C.7.1: Physical channel parameters for S-CCPCH

Parameter	<u>Unit</u>	Level
Channel bit rate	<u>Kbps</u>	<u>60</u>
Channel symbol rate	<u>Ksps</u>	<u>30</u>
Slot Format #I	<u>_</u>	<u>4</u>
<u>TFCI</u>	1	<u>OFF</u>
Power offsets of TFCI and Pilot fields relative to data field	<u>dB</u>	<u>0</u>

Table C.7.2: Transport channel parameters for S-CCPCH

Parameter	PCH
Transport Channel Number	<u>1</u>
Transport Block Size	<u>240</u>
Transport Block Set Size	<u>240</u>
Transmission Time Interval	<u>10 ms</u>
Type of Error Protection	Convolution Coding
Coding Rate	<u>1/2</u>
Rate Matching attribute	<u>256</u>
Size of CRC	<u>16</u>
Position of TrCH in radio frame	fixed

10

F.1.4 Performance requirement

Table F.1.4: Maximum Test System Uncertainty for Performance Requirements

Clause	Maximum T	est System Uncertainty	Derivation of Test System Uncertainty
7.2 Demodulation in Static Propagation Condition	$\frac{\hat{I}_{or}/I_{oc}}{I_{oc}}$ $\frac{DPCH_E_c}{I_{or}}$	±0.3 dB ±1.0 dB ±0.1 dB	0.1 dB uncertainty in DPCH_Ec ratio 0.3 dB uncertainty in \hat{I}_{or}/I_{oc} based on power meter measurement after the combiner
			Overall error is the sum of the \hat{I}_{or}/I_{oc} ratio error and the DPCH_Ec/lor ratio but is not RSS for simplicity. The absolute error of the AWGN loc is not important for any tests in clause 7 but is specified as 1.0 dB.
7.3 Demodulation of DCH in multipath Fading Propagation conditions	$\frac{\hat{I}_{or}/I_{oc}}{I_{oc}}$ $\frac{DPCH_E_c}{I_{or}}$	±0.56 dB ±1.0 dB ±0.1 dB	Worst case gain uncertainty due to the fader from the calibrated static profile is ± 0.5 dB In addition the same ± 0.3 dB \hat{I}_{or}/I_{oc} ratio error as 7.2. These are uncorrelated so can be RSS. Overall error in \hat{I}_{or}/I_{oc} is $(0.5^2$
7.4 Demodulation of DCH in Moving Propagation conditions	$ \frac{\hat{I}_{or}/I_{oc}}{I_{oc}} \\ \frac{DPCH_E_c}{I_{or}} $	±0.6 dB ±1.0 dB ±0.1 dB	+ 0.3 ²) ^{0.5} = 0.6 dB Same as 7.3
7.5 Demodulation of DCH in Birth-Death Propagation conditions	$ \frac{\hat{I}_{or}/I_{oc}}{I_{oc}} \\ \frac{DPCH_E_c}{I_{or}} $	±0.6 dB ±1.0 dB ±0.1 dB	Same as 7.3
7.6.1 Demodulation of DCH in open loop Transmit diversity mode	$\frac{\hat{I}_{or}/I_{oc}}{I_{oc}}$ $\frac{DPCH_E_c}{I_{or}}$	±0.8 dB ±1.0 dB ±0.1 dB	Worst case gain uncertainty due to the fader from the calibrated static profile is ± 0.5 dB per outputIn addition the same ± 0.3 dB \hat{I}_{or}/I_{oc} ratio error as 7.2.These are uncorrelated so can be RSS.Overall error in \hat{I}_{or}/I_{oc} is $(0.5^2 + 0.5^2 + 0.3^2)^{0.5} = 0.768$ dB.

12

Clause	Maximum T	est System Uncertainty	Derivation of Test System Uncertainty
7.6.2 Demodulation of DCH in closed	\hat{I}_{or}/I_{oc}	±0.8 dB	Same as 7.6.1
loop Transmit diversity mode	I _{oc}	±1.0 dB	
	$\frac{DPCH_E_c}{I_{or}}$	±0.1 dB	
7.6.3, Demodulation of DCH in site	\hat{I}_{or}/I_{oc}	±0.8 dB	Same as 7.6.1
selection diversity Transmission power control mode	I _{oc}	±1.0 dB	
	$\frac{DPCH_E_c}{I_{or}}$	±0.1 dB	
7.7.1 Demodulation in inter-cell soft	\hat{I}_{or}/I_{oc}	±0.8 dB	Same as 7.6.1
Handover	I _{oc}	±1.0 dB	
	$\frac{DPCH_E_c}{I_{or}}$	±0.1 dB	
7.7.2 Combining of TPC commands Test	lor1,lor2	±1.0 dB	Test is looking for changes in
1	$\frac{DPCH_E_c}{I_{or}}$	±0.1 dB	power – need to allow for relaxation in criteria for power
			step of probably 0.1 dB to 0.4 dB
7.7.2 Combining of TPC commands Test	\hat{I}_{or}/I_{oc}	±0.8 dB	Same as 7.6.1
2	I _{oc}	±1.0 dB	
	$\frac{DPCH_E_c}{I_{or}}$	±0.1 dB	
7.8.1 Power control in downlink constant	\hat{I}_{or}/I_{oc}	±0.6 dB	Same as 7.3
BLER target	I _{oc}	±1.0 dB	
	$\frac{DPCH_E_c}{I_{or}}$ \hat{I}_{or}/I_{or}	±0.1 dB	
7.8.2, Power control in downlink initial	\hat{I}_{or}/I_{oc}	±0.6 dB	Same as 7.3
convergence	I_{oc}	±1.0 dB	
	$\frac{DPCH_E_c}{I_{or}}$	±0.1 dB	
7.8.3, Power control in downlink: wind up	\hat{I}_{or}/I_{oc}	±0.6 dB	Same as 7.3
effects	I_{oc}	±1.0 dB	
	$\frac{DPCH_E_c}{I_{or}}$	±0.1 dB	
7.9 Downlink compressed mode	\hat{I}_{or}/I_{oc}	±0.6 dB	Same as 7.3
	I_{oc}	±1.0 dB	
	$\frac{DPCH_E_c}{I_{or}}$	±0.1 dB	
7.10 Blind transport format detection	\hat{I}_{or}/I_{oc}	±0.3 dB	Same as 7.2
Tests 1, 2, 3	I_{or}/I_{oc}	±1.0 dB	
	$\frac{DPCH_E_c}{I_{or}}$	±0.1 dB	
	- Or		

Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
7.10 Blind transport format detection Tests 4, 5, 6	\hat{I}_{or}/I_{oc} ±0.6 dB I_{oc} ±1.0 dB	Same as 7.3
	$\frac{DPCH_E_c}{I_{or}} = \pm 0.1 \text{ dB}$	
7.11 Demodulation of paging channel (PCH)	TBD	
7.12 Detection of acquisition indicator (AI)	TBD	

F.2.3 Performance requirements

Clause	Test Tolerance
7.2 Demodulation in Static Propagation	0.3 dB for \hat{I}_{ac}/I_{ac}
Condition	0.1 dB for DPCH_Ec/lor
7.3 Demodulation of DCH in multipath	0.6 dB for \hat{I}_{or}/I_{oc}
Fading Propagation conditions	0.1 dB for DPCH_Ec/lor
7.4 Demodulation of DCH in Moving	0.6 dB for \hat{I}_{ar}/I_{ac}
Propagation conditions	0.1 dB for DPCH_Ec/lor
7.5 Demodulation of DCH in Birth-Death	0.6 dB for \hat{I}_{ac}/I_{ac}
Propagation conditions	0.1 dB for DPCH_Ec/lor
7.6.1 Demodulation of DCH in open loop	0.8 dB for \hat{I}_{or}/I_{oc}
Transmit diversity mode	0.1 dB for DPCH_Ec/lor
7.6.2 Demodulation of DCH in closed	0.8 dB for \hat{I}_{or}/I_{oc}
loop Transmit diversity mode	0.1 dB for DPCH_Ec/lor
7.6.3, Demodulation of DCH in site	0.8 dB for \hat{I}_{or}/I_{oc}
selection diversity Transmission power control mode	0.1 dB for DPCH_Ec/lor
7.7.1 Demodulation in inter-cell soft	0.8 dB for \hat{I}_{or}/I_{oc}
Handover conditions	0.1 dB for DPCH Ec/lor
7.7.2 Combining of TPC commands Test	0 dB for lor1, lor2
1	0.1 dB for DPCH_Ec/lor
7.7.2 Combining of TPC commands Test	0.8 dB for \hat{I}_{or}/I_{oc}
2	0.1 dB for DPCH_Ec/lor
7.8.1 Power control in downlink constant	0.6 dB for \hat{I}_{or}/I_{oc}
BLER target	0.1 dB for DPCH_Ec/lor
7.8.2, Power control in downlink initial	0.6 dB for \hat{I}_{or}/I_{oc}
convergence	0.1 dB for DPCH_Ec/lor
7.8.3, Power control in downlink: wind up	0.6 dB for \hat{I}_{or}/I_{oc}
effects	0.1 dB for DPCH_Ec/lor
7.9 Downlink compressed mode	0.6 dB for \hat{I}_{or}/I_{oc}
	0.1 dB for DPCH_Ec/lor
7.10 Blind transport format detection	0.3 dB for \hat{I}_{or}/I_{oc}
Tests 1, 2, 3	0.1 dB for DPCH_Ec/lor
7.10 Blind transport format detection	0.6 dB for \hat{I}_{or}/I_{oc}
Tests 4, 5, 6	0.1 dB for DPCH_Ec/lor
7.11 Demodulation of paging channel	TBD
(PCH) 7.12 Detection of acquisition indicator (AI)	ТВD
	100

Table F.2.3: Test Tolerances for Performance Requirements.

Test Minimum Requirement in TS Test Test Requirement in TS 34.121					
1631	25.101	Tolerance (TT)	rest Nequirement in 15 54.121		
7.2 Demodulation of DPCH in static conditions	$\frac{DPCH_E_c}{I_{or}} \text{ -5.5 to -16.6 dB}$ $I_{oc} = -60 \text{ dBm}$	$\frac{0.1 \text{ dB}}{\text{for}}$ $\frac{DPCH_E_c}{I_{or}}$	Formulas: $\frac{DPCH_E_c}{I_{or}} = \text{ratio} + \text{TT}$ $\hat{I}_{or}/I_{oc} = \text{ratio} + \text{TT}$		
	$\hat{I}_{or}/I_{oc} = -1 \text{ dB}$	0.3 dB for \hat{I}_{or}/I_{oc}	I _{oc} unchanged		
			$\hat{I}_{or}/I_{oc} = -0.7 \text{ dB}$		
			$\frac{DPCH_E_c}{I_{or}}$ -5.4 to -16.5 dB:		
7.3 Demodulation of DPCH in multi-path fading propagation conditions Tests 1-4	$\frac{DPCH_E_c}{I_{or}}$ -2.2 to -15.0	0.1 dB for $\underline{DPCH_E_c}$			
	<i>I_{oc}</i> = -60 dBm	I _{or}	\hat{I}_{or}/I_{oc} + ratio + TT		
	$\hat{I}_{or}/I_{oc} = 9 \text{ dB to } -3 \text{ dB}$	0.6 dB for \hat{I}_{or}/I_{oc}	I _{oc} unchanged		
			\hat{I}_{or}/I_{oc} = 9.6 to –2.4 dB		
			$\frac{DPCH_E_c}{I_{or}}$ -2.1 to -14.9 dB:		
7.3 Demodulation of DPCH in multi-path fading propagation conditions Tests 5-8	$\frac{DPCH_E_c}{I_{or}}$ -3.2 to -7.7 dB	0.1 dB for $\frac{DPCH_E_c}{I_{or}}$	Formulas: $\frac{DPCH_E_c}{I_{or}} = \text{ratio} + TT$		
	$I_{oc} = -60 \text{ dBm}$		\hat{I}_{or}/I_{oc} = ratio + TT		
	\hat{I}_{or}/I_{oc} = 6 dB to -3 dB	0.6 dB for \hat{I}_{or}/I_{oc}	I_{oc} unchanged		
			\hat{I}_{or}/I_{oc} = 6.6 to -2.4 dB		
			$\frac{DPCH_E_c}{I_{or}}$ -3.1 to -7.6 dB:		
7.3 Demodulation of DPCH in multi-path fading propagation conditions Tests 9-12	$\frac{DPCH_E_c}{I_{or}}$ -4.4 to -11.8 dB	0.1 dB for \underline{DPCH}_E_c	Formulas: $\frac{DPCH_E_c}{I_{or}} = \text{ratio} + \text{TT}$		
	<i>I_{oc}</i> = -60 dBm	I _{or}	\hat{I}_{or}/I_{oc} = ratio + TT		
	$\hat{I}_{or}/I_{oc} = 6 \text{ dB to } -3 \text{ dB}$	0.6 dB for \hat{I}_{or}/I_{oc}	I_{oc} unchanged		
			$\hat{I}_{or}/I_{oc} = 6.6 \text{ to } -2.4 \text{ dB}$		
			$\frac{DPCH_E_c}{I_{or}}$ -4.3 to -11.7 dB:		

Table F.4.3: Derivation of Test Requirements (Performance tests)

Test	Minimum Requirement in TS 25.101	Test Tolerance (TT)	Test Requirement in TS 34.121
7.3 Demodulation of DPCH in multi-path fading propagation conditions Tests 13-16	$\frac{DPCH_E_c}{I_{or}} -2.2 \text{ to } -15.0 \text{ dB}$ $I_{oc} = -60 \text{ dBm}$	0.1 dB for $\frac{DPCH_E_c}{I_{or}}$	Formulas: $\frac{DPCH_E_c}{I_{or}} = \text{ratio} + \text{TT}$ $\hat{I}_{or}/I_{oc} = \text{ratio} + \text{TT}$
	$\hat{I}_{or}/I_{oc} = 9 \text{ dB}$	0.6 dB for \hat{I}_{or}/I_{oc}	I_{oc} unchanged $\hat{I}_{or}/I_{oc} = 9.6$ $\frac{DPCH_E_c}{I_{or}}$ -2.1 to -14.9 dB:
7.3 Demodulation of DPCH in multi-path fading propagation conditions Tests 17-20	$\frac{DPCH_E_c}{I_{or}} -1.4 \text{ to } -8.8 \text{ dB}$ $I_{oc} = -60 \text{ dBm}$ $\hat{I}_{or}/I_{oc} = 6 \text{ to } -3 \text{ dB}$	0.1 dB for $\frac{DPCH_E_c}{I_{or}}$ 0.6 dB for \hat{I}_{or}/I_{oc}	Formulas: $\frac{DPCH_E_c}{I_{or}} = \text{ratio} + \text{TT}$ $\hat{I}_{or}/I_{oc} = \text{ratio} + \text{TT}$ $I_{oc} \text{ unchanged}$ $\hat{I}_{or}/I_{oc} = 6.6 \text{ to } -2.4 \text{ dB}$ $\frac{DPCH_E_c}{I_{or}} -1.3 \text{ to } -8.7 \text{ dB}:$
7.4 Demodulation of DPCH in moving propagation conditions	$\frac{DPCH_E_c}{I_{or}} -10.9 \text{ to } -14.5$ $I_{oc} = -60 \text{ dBm}$ $\hat{I}_{or}/I_{oc} = -1 \text{ dB}$	0.1 dB for $\frac{DPCH_E_c}{I_{or}}$ 0.6 dB for \hat{I}_{or}/I_{oc}	Formulas: $\frac{DPCH_E_c}{I_{or}} = \text{ratio} + \text{TT}$ $\hat{I}_{or}/I_{oc} = \text{ratio} + \text{TT}$ $I_{oc} \text{ unchanged}$ $\hat{I}_{or}/I_{oc} = -0.4 \text{ dB}$ $\frac{DPCH_E_c}{I_{or}} -10.8 \text{ to} -14.4 \text{ dB}$
7.5 Demodulation of DPCH birth-death propagation conditions	$\frac{DPCH_E_c}{I_{or}} -8.7 \text{ to } -12.6 \text{ dB}$ $I_{oc} = -60 \text{ dBm}$ $\hat{I}_{or}/I_{oc} = -1 \text{ dB}$	0.1 dB for $\frac{DPCH_E_c}{I_{or}}$ 0.6 dB for \hat{I}_{or}/I_{oc}	Formulas: $\frac{DPCH_E_c}{I_{or}} = \text{ratio} + \text{TT}$ $\hat{I}_{or}/I_{oc} = \text{ratio} + \text{TT}$ $I_{oc} \text{ unchanged}$ $\hat{I}_{or}/I_{oc} = -0.4 \text{ dB}$ $\frac{DPCH_E_c}{I_{or}} -18.6 \text{ to } -12.5 \text{ dB}:$

Test	Minimum Requirement in TS 25.101	Test Tolerance	Test Requirement in TS 34.121
	23.101	(TT)	
7.6.1 Demodulation of DPCH in transmit diversity propagation conditions	$\frac{DPCH_E_c}{I_{or}} \text{ -16.8 dB}$	0.1 dB for \underline{DPCH}_E_c	Formulas: $\frac{DPCH_E_c}{I_{or}} = \text{ratio} + \text{TT}$ $\hat{I}_{or}/I_{oc} = \text{ratio} + \text{TT}$
	$I_{oc} = -60 \text{ dBm}$	I _{or} 0.8 dB for	\hat{I}_{or}/I_{oc} = ratio + TT
	$\hat{I}_{or}/I_{oc} = 9 \text{ dB}$	\hat{I}_{or}/I_{oc}	I_{oc} unchanged
			\hat{I}_{or}/I_{oc} = 9.8 dB
			$\frac{DPCH_E_c}{I_{or}}$ -16.7 dB:
7.6.2 Demodulation of DCH in closed loop Transmit diversity	$\frac{DPCH_E_c}{I_{or}}$ -18 to -18.3 dB	0.1 dB for \underline{DPCH}_E_c	Formulas: $\frac{DPCH_E_c}{I_{or}} = \text{ratio} + \text{TT}$
mode	I_{oc} = - 60 dBm	I _{or}	\hat{I}_{or}/I_{oc} = ratio + TT
	\hat{I}_{or}/I_{oc} = 9 dB	0.8 dB for \hat{I}_{or}/I_{oc}	I_{oc} unchanged
			\hat{I}_{or}/I_{oc} = 9.8 dB
			$\frac{DPCH_E_c}{I_{or}}$ -17.9 to -18.2 dB:
7.6.3, Demodulation of DCH in site selection diversity Transmission	$\frac{DPCH_E_c}{I_{or}}$ -5.0 to -10.5 dB	0.1 dB for $DPCH_E_c$	Formulas: $\frac{\underline{DPCH}_E_c}{I_{or}} = \text{ratio} + \text{TT}$ $\hat{I}_{or}/I_{oc} = \text{ratio} + \text{TT}$
power control mode	<i>I_{oc}</i> = - 60 dBm		\hat{I}_{or}/I_{oc} = ratio + TT
	$\hat{I}_{or}/I_{oc} = 0$ to -3 dB	0.8 dB for \hat{I}_{or}/I_{oc}	I_{oc} unchanged
			\hat{I}_{or}/I_{oc} = 0.8 to -2.2 dB
			$\frac{DPCH_E_c}{I_{or}}$ -4.9 to -10.4 dB:
7.7.1 Demodulation in inter-cell soft Handover	$\frac{DPCH_E_c}{I_{or}}$ -5.5 to -15.2 dB	0.1 dB for $DPCH_E_c$	Formulas: $\frac{DPCH_E_c}{I_{or}} = \text{ratio} + \text{TT}$
	$I_{oc} = -60 \text{ dBm}$	I _{or}	\hat{I}_{or}/I_{oc} = ratio + TT
	$\hat{I}_{or}/I_{oc} = \text{Ior2/Ioc} = 6 \text{ to } 0 \text{ dB}$	0.8 dB for \hat{I}_{or}/I_{oc}	I_{oc} unchanged
			\hat{I}_{or}/I_{oc} = 6.8 to 0.8 dB
			$\frac{DPCH_E_c}{I_{or}} \text{ -5.4 to -15.4 dB:}$

Test	Minimum Requirement in TS 25.101	Test Tolerance (TT)	Test Requirement in TS 34.121
7.7.2 Combining of TPC commands Test 1	$\frac{DPCH_E_c}{I_{or}} \text{ -12 dB}$ lor1 and lor2 -60dBm	0.1 dB for $\frac{DPCH_E_c}{I_{or}}$	Formulas: $\frac{DPCH_E_c}{I_{or}} = \text{ratio} + \text{TT}$
		0dB for lor1 and lor2	$\frac{DPCH_E_c}{I_{or}} = -11.9 \text{ dB}:$ lor1 = -60dBm lor2 = -60dBm
			The absolute levels of lor1 and lor2 are not important to this test.
7.7.2 Combining of TPC commands Test 2	$\frac{DPCH_E_c}{I_{or}} -12 \text{ dB}$	0.1 dB for $\frac{DPCH_E_c}{I_{or}}$	Formulas: $\frac{DPCH_E_c}{I_{or}} = \text{ratio} + \text{TT}$
	$I_{oc} = -60 \text{ dBm}$ $\hat{I}_{or} / I_{oc} = 0 \text{ dB}$	0.8 dB for \hat{I}_{or}/I_{oc}	\hat{I}_{oc}/I_{oc} = ratio + TT I_{oc} unchanged
			$\hat{I}_{or}/I_{oc} = 0.8 \text{ dB}$
			$\frac{DPCH_E_c}{I_{or}}$ -11,9 dB:
7.8.1 Power control in downlink constant BLER target	$\frac{DPCH_E_c}{I_{or}}$ -9 to -16 dB	0.1 dB for $\frac{DPCH_E_c}{I}$	
	$I_{oc} = -60 \text{ dBm}$ $\hat{I}_{or} / I_{oc} = 9 \text{ to } -1 \text{ dB}$	<i>I</i> _{or} 0.6 dB for	\hat{I}_{or}/I_{oc} = ratio + TT I_{oc} unchanged
	or l oc	\hat{I}_{or}/I_{oc}	$\hat{I}_{or}/I_{oc} = 9.6 \text{ to } -0.4 \text{ dB}$
			$\frac{DPCH_E_c}{I_{or}}$ -8.9 to -15.9 dB:
7.8.2, Power control in downlink initial convergence	$\frac{DPCH_E_c}{I_{or}}$ -8.1 to -18.9 dB	0.1 dB for \underline{DPCH}_E_c	Formulas: $\frac{DPCH_E_c}{I_{or}} = \text{ratio} + \text{TT}$
	<i>I_{oc}</i> = - 60 dBm	I _{or}	\hat{I}_{or}/I_{oc} = ratio + TT
	$\hat{I}_{or}/I_{oc} = -1 \text{ dB}$	0.6 dB for \hat{I}_{or}/I_{oc}	<i>I_{oc}</i> unchanged
			\hat{I}_{or}/I_{oc} = -0.4 dB
			$\frac{DPCH_E_c}{I_{or}}$ -8.0 to -18.8 dB:

Test	Minimum Requirement in TS 25.101	Test Tolerance (TT)	Test Requirement in TS 34.121
7.8.3, Power control in downlink: wind up effects	$\frac{DPCH_E_c}{I_{or}} - 13.3 \text{ dB}$	$\begin{array}{c} 0.1 \text{ dB} \\ \text{for} \\ \underline{DPCH_E_c} \\ I_{or} \end{array}$	Formulas: $\frac{DPCH_E_c}{I_{or}} = \text{ratio} + \text{TT}$ $\hat{I}_{or}/I_{oc} = \text{ratio} + \text{TT}$
	$I_{oc} = -60 \text{ dBm}$ $\hat{I}_{or}/I_{oc} = 5 \text{ dB}$	$\frac{1}{\hat{I}_{or}} = \frac{1}{\hat{I}_{oc}}$	I_{or}/I_{oc} = ratio + TT I_{oc} unchanged
			$\hat{I}_{or}/I_{oc} = 5.6 \text{ dB}$ $\underline{DPCH_E_c}$ -13.2 dB:
7.9 Downlink compressed mode	$\frac{DPCH_E_c}{I_{or}}$ Test 1 -14.6 dB Test 3 -15.2 dB $I_{oc} = -60$ dBm $\hat{I}_{or}/I_{oc} = 9$ dB	0.1 dB for $\frac{DPCH_E_c}{I_{or}}$ 0.6 dB for \hat{I}_{or}/I_{oc}	\hat{I}_{or}/I_{oc} = ratio + TT I_{oc} unchanged
7.10 Blind transport	\underline{DPCH}_{E_c} -17.7 to -18.4 dB	0.1 dB	$\hat{I}_{or}/I_{oc} = 9.6 \text{ dB}$ $\frac{DPCH_E_c}{I_{or}}$ Test 1 -14.5 dB Test 3 -15.1 dB: Formulas:
format detection Tests 1, 2, 3	I_{or} $I_{oc} = -60 \text{ dBm}$	for $\frac{DPCH_E_c}{I_{or}}$	$DPCH_E_c$ = ratio + TT
	\hat{I}_{or}/I_{oc} = -1 dB	0.3 dB for \hat{I}_{or}/I_{oc}	I_{oc} unchanged \hat{I}_{or}/I_{oc} = -0.7 dB
7.10 Blind transport	DPCH E LOS DE T	0.1 dB	$\frac{DPCH_E_c}{I_{or}}$ -17.6 to –18.3 dB: Formulas:
format detection Tests 4, 5, 6	$\frac{DPCH_E_c}{I_{or}} -13.0 \text{ to } -13.8 \text{ dB}$	for $\frac{DPCH_E_c}{I_{or}}$	$DPCH_{-}E_{c} = ratio + TT$
	$I_{oc} = -60 \text{ dBm}$ $\hat{I}_{or}/I_{oc} = -3 \text{ dB}$	0.6 dB for \hat{I}_{or}/I_{oc}	I_{or}/I_{oc} = Tailo + TT I_{oc} unchanged
			$\hat{I}_{or}/I_{oc} = -2.4 \text{ dB}$
7.11 Demodulation of	TBD		$\frac{DPCH_{-}E_{c}}{I_{or}}$ -12.9 to -13.7 dB:
paging channel (PCH) 7.12 Detection of acquisition indicator (AI)	TBD		

20

F.6.2.8 Test conditions for RRM delay tests, and Combining of TPC commands test 1, Demodulation of Paging channel and Detection of acquisition indicator tests.

Table F.6.2.8: Test conditions for a single RRM delay tests, and Combining of TPC commands test 1. Demodulation of Paging channel and Detection of Acquisition indicator tests.

						.
Type of test	Test requirement Delay (s)	Test requirement (ER= 1- success ratio)	Testlimit(ER) = Test requirement (ER)x TL TL	Target number of bad delays	Prob that good unit will fail = Prob that bad unit will pass [%]	Bad unit factor M
8.2.2 Cell recelection	8	0.1	[1.236]	[154]	[5]	[1.5]
8.2.3.1 UTRAN to GSM cell reselection, scenario 1	27.9	0.1	[1.236]	[154]	[5]	[1.5]
8.2.3.2 UTRAN to GSM cell reselection, scenario 2	9.6	0.1	[1.236]	[154]	[5]	[1.5]
8.2.4 FDD/TDD Cell reselection	8	0.1	[1.236]	[154]	[5]	[1.5]
8.3.1 FDD/FDD Soft handover	50+10*KC +100*OC ms	0.1	[1.236]	[154]	[5]	[1.5]
8.3.2 FDD FDD Hard Handover 8.3.2.1 Handover to intra frequency cell	70 ms	0.1	[1.236]	[154]	[5]	[1.5]
8.3.2.2 Handover to interfrequency cell	100ms	0.1	[1.236]	[154]	[5]	[1.5]
7.7.2 Combining of TPC commands Test 1 Note: The theory of statistical testing of RRM delay performance in clause F.6.2 is applied for test case 7.7.2 Combining of TPC commands Test 1. The success ratio for delay is replaced by the success ratio for power control sequence.	Not applicable	0.01	[1.236]	[154]	[5]	[1.5]

7.11 Demodulation of Paging Channel (PCH) Note: The theory of statistical testing of RRM delay performance in clause F.6.2 is applied for test case 7.11 Demodulation of Paging Channel. The success ratio for delay is replaced by the success ratio for procedure step	<u>Not</u> <u>applicable</u>	<u>0.01</u>	[1.236]	[154]	[5]	[1.5]
<u>4.</u> <u>7.12 Detection</u> <u>of Acquisition</u> <u>indicatior (AI).</u> <u>Note: The theory</u> <u>of statistical</u> <u>testing of RRM</u> <u>delay</u> <u>performance in</u> <u>clause F.6.2 is</u> <u>applied for test</u> <u>case 7.12. The</u> <u>success ratio for</u> <u>delay is</u> <u>replaced by the</u> <u>success ratio for</u> <u>procedure steps</u> <u>5.6 and 12.</u>	Not applicable	<u>0.01</u>	[1.236]	[154]	[5]	[1.5]

Error! No text of specified style in document.

-

23

CHANGE REQUEST										CR-Form-v7
ж	3	<mark>4.121</mark>	CR	311	жrev	1	Ħ	Current vers	^{ion:} 5.1.1	ж
For <u>HELP</u> o	For <u>HELP</u> on using this form, see bottom of this page or look at the pop-up text over the <i>X</i> symbols.									ymbols.
Proposed chang	ge aff	ects: l	JICC a	ррѕж	ME <mark>X</mark>	Rad	A oib	ccess Networ	k Core I	Network
Title:	1 X	New perfo	ormanc	<mark>e requiremen</mark>	ts for HSE	DPA :	section	on added		
Source:	ж <mark>I</mark>	<u>Motorola</u>								
Work item code	: Ж <mark> </mark>	HSDPA-T	est					<i>Date:</i> ೫	28 Sept 20	03
Category:	De	F (corr F (corr A (corr B (add C (fund D (edited etailed exp	rection) respond lition of ctional r torial mo planation	wing categories the to a correction feature), modification of the odification) ns of the above $\overline{R 21.900}$.	on in an ear feature)		elease	2 R96 R97 R98 R99 R99 Rel-4	Rel-5 the following r (GSM Phase 2 (Release 1999 (Release 1999 (Release 1999 (Release 4) (Release 5) (Release 6)	2) 6) 7) 8)

Reason for change: ೫		Support of HSDPA for FDD
Summary of change:	: R	Changes to include HSDPA abbreviations, definitions and equations, measurement channels, propagation conditions and downlink physical channels. Plus new sections added, to allow additional tests required for support of HSDPA.
Consequences if not approved:	Ħ	HSDPA cannot be tested.
Clauses affected:	ж	3.1, 3.3, 3.4, Annex C, Annex D, Annex E and a new section 9 added for performance requirements for HSDPA.
	Г	YN

		Υ	Ν		
Other specs	ж			Other core specifications #	
affected:				Test specifications O&M Specifications	
				-	
Other comments:	ж	Т	his	CR applies for Rel-5 and later rele	ases.

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked # contain pop-up help information about the field that they are closest to.
- Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be

downloaded from the 3GPP server under http://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

3 Definitions, symbols, abbreviations and equations

Definitions, symbols, abbreviations and equations used in the present document are listed in TR 21.905 [5] and TR 25.990 [6].

Terms are listed in alphabetical order in this clause.

3.1 Definitions

For the purpose of the present document, the following additional terms and definitions apply:

Maximum Output Power: This is a measure of the maximum power the UE can transmit (i.e. the actual power as would be measured assuming no measurement error) in a bandwidth of at least $(1 + \alpha)$ times the chip rate of the radio access mode. The period of measurement shall be at least one timeslot.

Nominal Maximum Output Power: This is the nominal power defined by the UE power class.

Mean power: When applied to a W-CDMA modulated signal this is the power (transmitted or received) in a bandwidth of at least $(1 + \alpha)$ times the chip rate of the radio access mode. The period of measurement shall be at least one timeslot unless otherwise stated.

RRC filtered mean power: The mean power as measured through a root raised cosine filter with roll-off factor α and a bandwidth equal to the chip rate of the radio access mode.

NOTE 1: The RRC filtered mean power of a perfectly modulated W-CDMA signal is 0.246 dB lower than the mean power of the same signal.

NOTE 2: The roll-off factor α is defined in 25.101 clause 6.8.1.

Throughput: Number of information bits per second excluding CRC bits successfully received on HS-DSCH by a HSDPA capable UE.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

[...] Values included in square bracket must be considered for further studies, because it means that a decision about that value was not taken

3.3 Abbreviations

For the purpose of the present document, the following additional abbreviations apply:

AFC	Automatic Frequency Control
ASD	Acceleration Spectral Density
ATT	Attenuator
BER	Bit Error Ratio
BLER	Block Error Ratio
BTFD	Blind Transport Format Detection
CQI	Channel Quality Indicator
EVM	Error Vector Magnitude
FDR	False transmit format Detection Ratio. A false Transport Format detection occurs when the
	receiver detects a different TF to that which was transmitted, and the decoded transport block(s)
	for this incorrect TF passes the CRC check(s).
HSDPA	High Speed Downlink Packet Access
HS-DSCH	High Speed Downlink Shared Channel
HS-PDSCH	High Speed Physical Downlink Shared Channel
HARQ	Hybrid ARQ sequence
HYB	Hybrid

IM	Intermodulation
ITP	Initial Transmission Power control mode
OBW	Occupied Bandwidth
OCNS	Orthogonal Channel Noise Simulator, a mechanism used to simulate the users or control signals on
	the other orthogonal channels of a downlink
PAR	Peak to Average Ratio
P-CCPCH	Primary Common Control Physical Channel
P-CPICH	Primary Common Pilot Channel
PCDE	Peak Code Domain Error
RBW	Resolution Bandwidth
RRC	Root-Raised Cosine
S-CCPCH	Secondary Common Control Physical Channel
S-CPICH	Secondary Common Pilot Channel
SCH	Synchronisation Channel consisting of Primary and Secondary synchronisation channels
SS	System Simulator; see Annex A for description
TGCFN	Transmission Gap Connection Frame Number
TGD	Transmission Gap Distance
TGL	Transmission Gap Length
TGPL	Transmission Gap Pattern Length
TGPRC	Transmission Gap Pattern Repetition Count
TGSN	Transmission Gap Starting Slot Number

3.4 Equations

For the purpose of the present document, the following additional equations apply:

$\frac{CPICH_E_c}{I_{or}}$	The ratio of the received energy per PN chip of the CPICH to the total transmit power spectral
07	density at the Node B (SS) antenna connector.
$\frac{DPCH_E_c}{E_c}$	The ratio of the transmit energy per PN chip of the DPCH to the total transmit power spectral
I _{or}	density at the Node B (SS) antenna connector.
$\frac{DPCCH_E_c}{I_{or}}$	The ratio of the transmit energy per PN chip of the DPCCH to the total transmit power spectral
1 _{or}	density at the Node B (SS) antenna connector.
$\frac{DPDCH_E_c}{I_{or}}$	The ratio of the transmit energy per PN chip of the DPDCH to the total transmit power spectral
1 _{or}	density at the Node B (SS) antenna connector.
F _{uw}	Frequency of unwanted signal. This is specified in bracket in terms of an absolute frequency(s) or a frequency offset from the assigned channel frequency.
I _{Node_B}	Interference signal power level at Node B in dBm, which is broadcasted on BCH.
I _{oac}	The power spectral density (integrated in a bandwidth of $(1+\alpha)$ times the chip rate and normalized to the chip rate) of the adjacent frequency channel as measured at the UE antenna connector.
I _{oc}	The power spectral density (integrated in a noise bandwidth equal to the chip rate and normalized to the chip rate) of a band limited white noise source (simulating interference from cells, which are not defined in a test procedure) as measured at the UE antenna connector.
I _{or}	The total transmit power spectral density (integrated in a bandwidth of $(1+\alpha)$ times the chip rate and normalized to the chip rate) of the downlink signal at the Node B antenna connector
Î _{or}	The received power spectral density (integrated in a bandwidth of $(1+\alpha)$ times the chip rate and normalized to the chip rate) of the downlink signal as measured at the UE antenna connector.
I _{ouw}	Unwanted signal power level.

- *P-CCPCH_E_c* Average (note) energy per PN chip for P-CCPCH.
- $\frac{P-CCPCH}{I_o} \frac{E_c}{I_o}$ The ratio of the received P-CCPCH energy per chip to the total received power spectral density at the UE antenna connector.
- $\frac{P CCPCH _ E_c}{I_{or}}$ The ratio of the average (note) transmit energy per PN chip for the P-CCPCH to the total transmit power spectral density.
- P- $CPICH_E_c$ Average (note) energy per PN chip for P-CPICH.
- $PICH_E_c$ Average (note) energy per PN chip for PICH.
- $\frac{PICH_{-}E_{c}}{I_{or}}$ The ratio of the received energy per PN chip of the PICH to the total transmit power spectral density at the Node B (SS) antenna connector.

 R
 Number of information bits per second excluding CRC bits successfully received on HS-DSCH by a HSDPA capable UE.

<REFSENS> Reference sensitivity

- <REF $\hat{I}_{or}>$ Reference \hat{I}_{or}
- SCH_E_c Average (note) energy per PN chip for SCH.
- S- $CPICH_E_c$ Average (note) energy per PN chip for S-CPICH.
- NOTE: Averaging period for energy/power of discontinuously transmitted channels should be defined.
- NOTE: The units of Power Spectral Density (PSD) are extensively used in this document. PSD is a function of power versus frequency and when integrated across a given bandwidth, the function represents the mean power in such a bandwidth. When the mean power is normalised to (divided by) the chip-rate it represents the mean energy per chip. Some signals are directly defined in terms of energy per chip, (DPCH_E_c and P-CPICH_E_c) and others defined in terms of PSD (I_{oac} , I_{oc} , and \hat{I}_{or}). There also exist quantities that are a ratio of energy per chip to PSD (DPCH_E_c/I_{or}, E_c/I_{or} etc.). This is the common practice of relating energy magnitudes in communication systems.

It can be seen that if both energy magnitudes in the ratio are divided by time, the ratio is converted from an energy ratio to a power ratio, which is more useful from a measurement point of view. It follows that an energy per chip of X dBm/3.84 MHz can be expressed as a mean power per chip of X dBm. Similarly, a signal PSD of Y dBm/3.84 MHz can be expressed as a signal power of Y dBm.

9 Performance requirements for HSDPA

9.1 General

The performance requirements for the UE in this clause are specified for the measurement channels specified in Annex C, the propagation conditions specified in Annex D and the Down link Physical channels specified in Annex E.

9.2 Demodulation of HS-DSCH (Fixed Reference Channel)

- 9.2.1 Single Link Performance
- 9.2.2 Open Loop Diversity Performance
- 9.2.3 Closed Loop Diversity Performance
- 9.3 Reporting of Channel Quality Indicator
- 9.3.1 AWGN Propagation Conditions
- 9.3.2 Fading Propagation Conditions
- 9.4 HS-SCCH Detection Performance

Annex C (normative): Measurement channels

C.1 General

The measurement channels in this annex are defined to derive the requirements in clauses 5, 6 and 7. The measurement channels represent example configuration of radio access bearers for different data rates.

The measurement channel for 12,2 kbps shall be supported by any UE both in up- and downlink. Support for other measurement channels is depending on the UE Radio Access capabilities.

C.2 UL reference measurement channel

C.2.1 UL reference measurement channel (12,2 kbps)

The parameters for the 12,2 kbps UL reference measurement channel are specified in table C.2.1.1, table C 2.1.2, table C 2.1.3 and table C.2.1.4. The channel coding for information is shown in figure C.2.1. When the UE test loop function is needed, the UE test loop mode 2 shall be used.

Parameter	Level	Unit			
Information bit rate	12,2	kbps			
DPDCH	60	kbps			
DPCCH	15	kbps			
DPCCH Slot Format #i	0	-			
DPCCH/DPDCH power ratio	-5,46	dB			
TFCI	On	-			
Repetition	23	%			
NOTE: Slot Format #2 is used for closed loop tests in clause 7.6.2. Slot Format #2 and					
#5 are used for site selection diversity transmission tests in subclause 7.6.3.					

Table C.2.1.1: UL reference measurement channel physical parameters (12,2 kbps)

Higher	RAB/Signalling RB	RAB	SRB
Layer			
RLC	Logical channel type	DTCH	DCCH
	RLC mode	ТМ	UM/AM
	Payload sizes, bit	244	88/80
	Max data rate, bps	12200	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	0	N/A
MAC	MAC header, bit	0	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	1	5
	TB sizes, bit	244	100
	TFS TF0, bits	0*244	0*100
	TF1, bits	1*244	1*100
	TTI, ms	20	40
	Coding type	Convolution Coding	Convolution Coding
	Coding Rate	1/3	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	804	360
	Uplink: Max number of bits/radio frame before	402	90
	rate matching		
	RM attribute	256	256

Table C.2.1.2: UL reference measurement channel using RLC-TM for DTCH, transport channel parameters (12.2 kbps)

Table C.2.1.3: UL reference measurement channel using RLC-AM for DTCH, transport channel parameters (12.2 kbps)

Higher Layer		RAB/Signalling RB	RAB	SRB
RLC	Logical cha	annel type	DTCH	DCCH
	RLC mode		AM	UM/AM
	Payload si	zes, bit	228	88/80
	Max data r	ate, bps	11400	2200/2000
	PDU head	er, bit	16	8/16
	TrD PDU h	neader, bit	N/A	N/A
MAC	MAC head	er, bit	0	4
	MAC multi	plexing	N/A	Yes
Layer 1	TrCH type		DCH	DCH
	Transport Channel Identity		1	5
	TB sizes, bit		244	100
	TFS	TF0, bits	0*244	0*100
		TF1, bits	1*244	1*100
	TTI, ms		20	40
	Coding typ	e	Convolution Coding	Convolution Coding
	Coding Ra	te	1/3	1/3
	CRC, bit		16	12
	Max numb	er of bits/TTI after channel coding	804	360
	Uplink: Ma rate match	x number of bits/radio frame before ing	402	90
	RM attribu		256	256

Table C.2.1.4: UL reference measurement channel, TFCS (12.2 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

NOTE: The TFCs except for (TF1, TF1) are belonging to minimum set of TFCs.

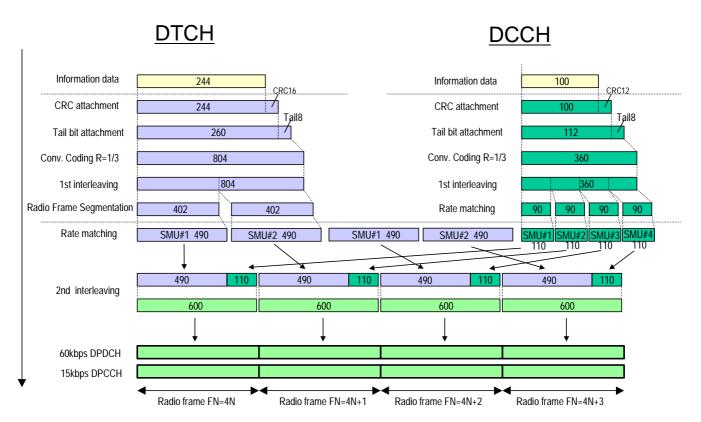


Figure C.2.1 (Informative): Channel coding of UL reference measurement channel (12,2 kbps)

C.2.2 UL reference measurement channel (64 kbps)

The parameters for the 64 kbps UL reference measurement channel are specified in table C.2.2.1, table C.2.2.2, table C.2.2.3 and table C.2.2.4. The channel coding for information is shown in figure C.2.2. When the UE test loop function is needed, the UE test loop mode 2 shall be used. This measurement channel is not currently used in the present document but can be used for future requirements.

Parameter	Level	Unit
Information bit rate	64	kbps
DPDCH	240	kbps
DPCCH	15	kbps
DPCCH Slot Format #i	0	-
DPCCH/DPDCH	-9,54	dB
TFCI	On	-
Repetition	18	%

Table C.2.2.1: UL reference measurement channel (64 kbps)

Higher	RAB/Signalling RB	RAB	SRB
Layer			
RLC	Logical channel type	DTCH	DCCH
	RLC mode	ТМ	UM/AM
	Payload sizes, bit	1280	88/80
	Max data rate, bps	64000	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	0	N/A
MAC	MAC header, bit	0	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	1	5
	TB sizes, bit	1280	100
	TFS TF0, bits	0*1280	0*100
	TF1, bits	1*1280	1*100
	TTI, ms	20	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	3900	360
	Uplink: Max number of bits/radio frame before	1950	90
	rate matching		
	RM attribute	256	256

Table C.2.2.2: UL reference measurement channel using RLC-TM for DTCH, transport channel parameters (64 kbps)

Table C.2.2.3: UL reference measurement channel using RLC-AM for DTCH, transport channel parameters (64 kbps)

Higher Layer		RAB/Signalling RB	RAB	SRB
RLC	Logical ch	annel type	DTCH	DCCH
	RLC mode		AM	UM/AM
	Payload si	zes, bit	1264	88/80
	Max data	ate, bps	63200	2200/2000
	PDU head	er, bit	16	8/16
	TrD PDU ł	neader, bit	N/A	N/A
MAC	MAC head	ler, bit	0	4
	MAC multi	plexing	N/A	Yes
Layer 1	TrCH type		DCH	DCH
	Transport Channel Identity		1	5
	TB sizes, I	pit	1280	100
	TFS	TF0, bits	0*1280	0*100
		TF1, bits	1*1280	1*100
	TTI, ms		20	40
	Coding type		Turbo Coding	Convolution Coding
	Coding Ra	te	N/A	1/3
	CRC, bit		16	12
	Max numb	er of bits/TTI after channel coding	3900	360
	Uplink: Ma rate match	x number of bits/radio frame before ing	1950	90
	RM attribu	te	256	256

Table C.2.2.4: UL reference measurement channel, TFCS (64 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

NOTE: The TFCs except for (TF1, TF1) are belonging to minimum set of TFCs.

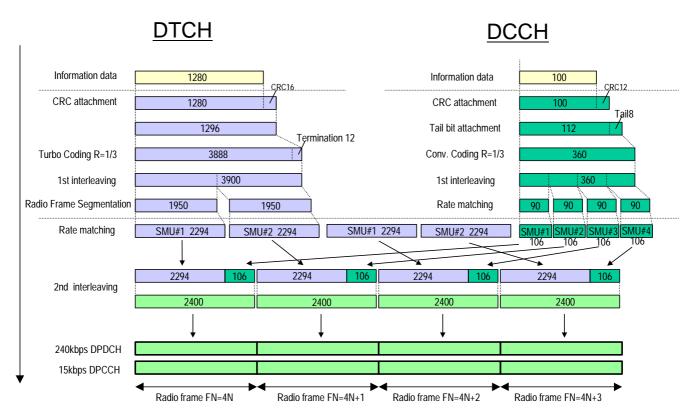


Figure C.2.2 (Informative): Channel coding of UL reference measurement channel (64 kbps)

C.2.3 UL reference measurement channel (144 kbps)

The parameters for the 144 kbps UL reference measurement channel are specified in table C.2.3.1, table C.2.3.2, table C.2.3.3 and table C.2.3.4. The channel coding for information is shown in figure C.2.3. When the UE test loop function is needed, the UE test loop mode 2 shall be used. This measurement channel is not currently used in the present document but can be used for future requirements.

Parameter	Level	Unit
Information bit rate	144	kbps
DPDCH	480	kbps
DPCCH	15	kbps
DPCCH Slot Format #i	0	-
DPCCH/DPDCH power ratio	-11,48	dB
TFCI	On	-
Repetition	8	%

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	ТМ	UM/AM
	Payload sizes, bit	2880	88/80
	Max data rate, bps	144000	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	0	N/A
MAC	MAC header, bit	0	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	1	5
	TB sizes, bit	2880	100
	TFS TF0, bits	0*2880	0*100
	TF1, bits	1*2880	1*100
	TTI, ms	20	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	8700	360
	Uplink: Max number of bits/radio frame before	4350	90
	rate matching		
	RM attribute	256	256

Table C.2.3.2: UL reference measurement channel using RLC-TM for DTCH, transport channel parameters (144 kbps)

Table C.2.3.3: UL reference measurement channel using RLC-AM for DTCH, transport channel parameters (144 kbps)

Higher Layer		RAB/Signalling RB	RAB	SRB
RLC	Logical ch	annel type	DTCH	DCCH
	RLC mode		AM	UM/AM
	Payload si	zes, bit	2864	88/80
	Max data	rate, bps	143200	2200/2000
	PDU head	er, bit	16	8/16
	TrD PDU ł	neader, bit	N/A	N/A
MAC	MAC head	ler, bit	0	4
	MAC multi	plexing	N/A	Yes
Layer 1	TrCH type		DCH	DCH
	Transport Channel Identity		1	5
	TB sizes, I	oit	2880	100
	TFS	TF0, bits	0*2880	0*100
		TF1, bits	1*2880	1*100
	TTI, ms		20	40
	Coding typ	0e	Turbo Coding	Convolution Coding
	Coding Ra	ite	N/A	1/3
	CRC, bit		16	12
	Max numb	er of bits/TTI after channel coding	8700	360
	Uplink: Ma rate match	ix number of bits/radio frame before ing	4350	90
	RM attribu	C	256	256

Table C.2.3.4: UL reference measurement channel, TFCS (14	44 kbps)
---	----------

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

NOTE: The TFCs except for (TF1, TF1) are belonging to minimum set of TFCs.

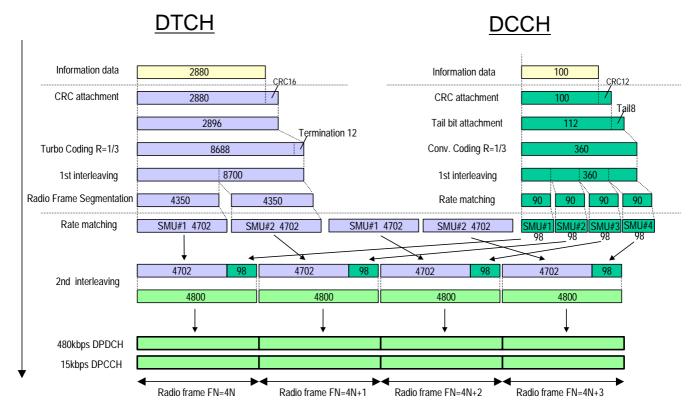


Figure C.2.3 (Informative): Channel coding of UL reference measurement channel (144 kbps)

C.2.4 UL reference measurement channel (384 kbps)

The parameters for the 384 kbps UL reference measurement channel are specified in table C.2.4.1, table C.2.4.2, table C.2.4.3 and table C.2.4.4. The channel coding for information is shown in figure C.2.4. When the UE test loop function is needed, the UE test loop mode 2 shall be used. This measurement channel is not currently used in the present document but can be used for future requirements.

Parameter	Level	Unit
Information bit rate	384	kbps
DPDCH	960	kbps
DPCCH	15	kbps
DPCCH Slot Format #i	0	-
DPCCH/DPDCH power ratio	-11,48	dB
TFCI	On	-
Puncturing	18	%

Table C.2.4.1: UL reference measurement ch	annel (384 kbps)
--	------------------

Higher	RAB/Signalling RB	RAB	SRB
Layer			
RLC	Logical channel type	DTCH	DCCH
	RLC mode	ТМ	UM/AM
	Payload sizes, bit	3840	88/80
	Max data rate, bps	384000	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	0	N/A
MAC	MAC header, bit	0	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	1	5
	TB sizes, bit	3840	100
	TFS TF0, bits	0*3840	0*100
	TF1, bits	1*3840	1*100
	TTI, ms	10	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	11580	360
	Uplink: Max number of bits/radio frame before	11580	90
	rate matching		
	RM attribute	256	256

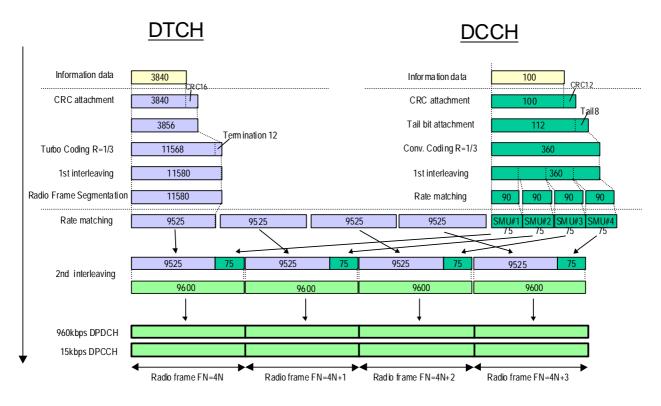

Table C.2.4.2: UL reference measurement channel using RLC-TM for DTCH, transport channel parameters (384 kbps)

Table C.2.4.3: UL reference measurement channel using RLC-AM for DTCH, transport channel parameters (384 kbps)

Higher Layer		RAB/Signalling RB	RAB	SRB
RLC	Logical channel type		DTCH	DCCH
	RLC mode		AM	UM/AM
	Payload si	zes, bit	3824	88/80
	Max data ı	ate, bps	382400	2200/2000
	PDU head	er, bit	16	8/16
	TrD PDU ł	neader, bit	N/A	N/A
MAC	MAC head	ler, bit	0	4
	MAC multiplexing		N/A	Yes
Layer 1	TrCH type		DCH	DCH
	Transport Channel Identity		1	5
	TB sizes, bit TFS TF0, bits		3840	100
			0*3840	0*100
		TF1, bits	1*3840	1*100
	TTI, ms		10	40
	Coding type		Turbo Coding	Convolution Coding
	Coding Rate		N/A	1/3
	CRC, bit		16	12
	Max number of bits/TTI after channel coding		11580	360
	Uplink: Ma rate match	x number of bits/radio frame before	11580	90
	RM attribu	0	256	256

Table C.2.4.4: UL reference measurement channel, TFCS (384 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

NOTE: The TFCs except for (TF1, TF1) are belonging to minimum set of TFCs.

Figure C.2.4 (informative): Channel coding of UL reference measurement channel (384 kbps)

C.2.5 UL reference measurement channel (768 kbps)

The parameters for the UL measurement channel for 768 kbps are specified in table C.2.5.1, table C.2.5.2, table C.2.5.3 and table C.2.5.4. When the UE test loop function is needed, the UE test loop mode 2 shall be used.

Parameter	Level	Unit
Information bit rate	2*384	kbps
DPDCH ₁	960	kbps
DPDCH ₂	960	kbps
DPCCH	15	kbps
DPCCH Slot Format #i	0	-
DPCCH/DPDCH power ratio	-11.48	dB
TFCI	On	-
Puncturing	18	%

Table C.2.5.1: UL reference measurement channel, physical parameters (768 kbps)

Higher	RAB/Signalling RB	RAB	SRB
Layer			
RLC	Logical channel type	DTCH	DCCH
	RLC mode	ТМ	UM/AM
	Payload sizes, bit	7680	88/80
	Max data rate, bps	768000	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	0	N/A
MAC	MAC header, bit	0	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
-	Transport Channel Identity	1	5
	TB sizes, bit	3840	100
	TFS TF0, bits	0*3840	0*100
	TF1, bits	2*3840	1*100
	TTI, ms	10	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	23160	360
	Uplink: Max number of bits/radio frame before	23160	90
	rate matching		
	RM attribute	256	256

Table C.2.5.2: UL reference measurement channel using RLC-TM for DTCH, transport channel parameters (768 kbps)

Table C.2.5.3: UL reference measurement channel using RLC-AM for DTCH, transport channel parameters (768 kbps)

Higher Layer		RAB/Signalling RB	RAB	SRB
RLC	Logical channel type		DTCH	DCCH
	RLC mode		ТМ	UM/AM
	Payload si	zes, bit	7664	88/80
	Max data ı	rate, bps	766400	2200/2000
	PDU head	er, bit	16	8/16
	TrD PDU ł	neader, bit	N/A	N/A
MAC	MAC head	ler, bit	0	4
	MAC multiplexing		N/A	Yes
Layer 1	TrCH type		DCH	DCH
	Transport Channel Identity		1	5
	TB sizes, bit		3840	100
	TFS	TF0, bits	0*3840	0*100
		TF1, bits	2*3840	1*100
	TTI, ms		10	40
	Coding type		Turbo Coding	Convolution Coding
	Coding Rate		N/A	1/3
	CRC, bit		16	12
	Max number of bits/TTI after channel coding		23160	360
	Uplink: Ma rate match	ix number of bits/radio frame before	23160	90
	RM attribu	C	256	256

Table C.2.5.4: UL reference measurement channel, TFCS (768 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

NOTE: The TFCs except for (TF1, TF1) are belonging to minimum set of TFCs.

C.3 DL reference measurement channel

C.3.1 DL reference measurement channel (12.2 kbps)

The parameters for the 12,2 kbps DL reference measurement channel are specified in table C.3.1.1, table C.3.1.2, table C.3.1.3 and table C.3.1.4. The channel coding is detailed in figure C.3.1. For the RLC configuration of AM DCCHs Timer_STATUS_Periodic shall not be set in RRC CONNECTION SETUP message used in test procedure for RF test as defined in TS34.108 clause 7.3. This is to prevent unexpected DCHs from being transmitted through such RLC entities when the timer has expired in order to sure that the required TFC from the minimum set of TFCs can continuously convey a DCH for DTCH during the test.

Table C.3.1.1: DL reference measurement channel (12.2 kbps	5)
---	-----------	----

Parameter	Level	Unit
Information bit rate	12.2	kbps
DPCH	30	ksps
Slot Format #I	11	-
TFCI	On	
Power offsets PO1, PO2 and PO3	0	dB
DTX position	Fixed	-

Table C.3.1.2: DL reference measurement channel using RLC-TM for DTCH, transport channel parameters (12.2 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	ТМ	UM/AM
	Payload sizes, bit	244	88/80
	Max data rate, bps	12200	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	0	N/A
MAC	MAC header, bit	0	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	6	10
	TB sizes, bit	244	100
	TFS TF0, bits	0*244	0*100
	TF1, bits	1*244	1*100
	TTI, ms	20	40
	Coding type	Convolution Coding	Convolution Coding
	Coding Rate	1/3	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	804	360
	RM attribute	256	256

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	AM	UM/AM
	Payload sizes, bit	228	88/80
	Max data rate, bps	11400	2200/2000
	PDU header, bit	16	8/16
	TrD PDU header, bit	N/A	N/A
MAC	MAC header, bit	0	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	6	10
	TB sizes, bit	244	100
	TFS TF0, bits	0*244	0*100
	TF1, bits	1*244	1*100
	TTI, ms	20	40
	Coding type	Convolution Coding	Convolution Coding
	Coding Rate	1/3	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	804	360
	RM attribute	256	256

Table C.3.1.3: DL reference measurement channel using RLC-AM for DTCH, transport channel parameters (12.2 kbps)

Table C.3.1.4: DL reference measurement channel, TFCS (12.2 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

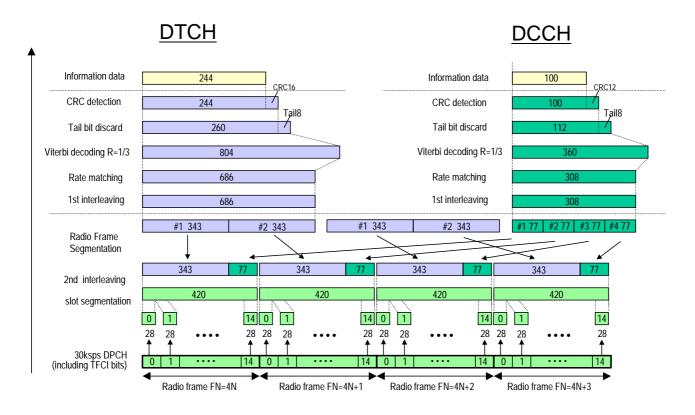


Figure C.3.1 (informative): Channel coding of DL reference measurement channel (12,2 kbps)

C.3.2 DL reference measurement channel (64 kbps)

The parameters for the DL reference measurement channel for 64 kbps are specified in table C.3.2.1, table C.3.2.2, table C.3.2.3 and table C.3.2.4. The channel coding is detailed in figure C.3.2. For the RLC configuration of AM DCCHs Timer_STATUS_Periodic shall not be set in RRC CONNECTION SETUP message used in test procedure for RF test as defined in TS34.108 clause 7.3. This is to prevent unexpected DCHs from being transmitted through such RLC entities when the timer has expired in order to sure that the required TFC from the minimum set of TFCs can continuously convey a DCH for DTCH during the test.

Parameter	Level	Unit
Information bit rate	64	kbps
DPCH	120	ksps
Slot Format #i	13	-
TFCI	On	-
Power offsets PO1, PO2 and PO3	0	dB
DTX position	Fixed	-

Table C.3.2.1: DL reference	e measurement	channel	(64 kbps)
-----------------------------	---------------	---------	-----------

Table C.3.2.2: DL reference measurement channel using RLC-TM for DTCH, transport channel parameters (64 kbps)

Higher Layer		RAB/Signalling RB	RAB	SRB
RLC	Logical cha	annel type	DTCH	DCCH
	RLC mode	9	ТМ	UM/AM
	Payload si	zes, bit	1280	88/80
	Max data r	ate, bps	64000	2200/2000
	PDU head	er, bit	N/A	8/16
	TrD PDU h	neader, bit	0	N/A
MAC	MAC head	er, bit	0	4
	MAC multi	plexing	N/A	Yes
Layer 1	TrCH type		DCH	DCH
	Transport Channel Identity		6	10
	TB sizes, b	Dit	1280	100
	TFS	TF0, bits	0*1280	0*100
		TF1, bits	1*1280	1*100
	TTI, ms		20	40
	Coding type		Turbo Coding	Convolution Coding
	Coding Ra	te	N/A	1/3
	CRC, bit		16	12
	Max numb	er of bits/TTI after channel coding	3900	360
	RM attribu	te	256	256

Table C.3.2.3: DL reference measurement channel using RLC-AM for DTCH, transport channel			
parameters (64 kbps)			

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	AM	UM/AM
	Payload sizes, bit	1264	88/80
	Max data rate, bps	63200	2200/2000
	PDU header, bit	16	8/16
	TrD PDU header, bit	N/A	N/A
MAC	MAC header, bit	0	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	6	10
	TB sizes, bit	1280	100
	TFS TF0, bits	0*1280	0*100
	TF1, bits	1*1280	1*100
	TTI, ms	20	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	3900	360
	RM attribute	256	256

Table C.3.2.4: DL reference measurement channel, TFCS (64 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

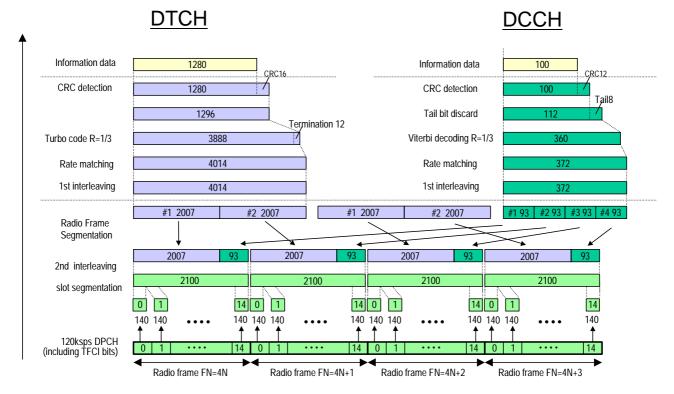


Figure C.3.2 (informative): Channel coding of DL reference measurement channel (64 kbps)

C.3.3 DL reference measurement channel (144 kbps)

The parameters for the DL reference measurement channel for 144 kbps are specified in table C.3.3.1, table C.3.3.2, table C.3.3.3 and table C.3.3.4. The channel coding is detailed in figure C.3.3. For the RLC configuration of AM DCCHs Timer_STATUS_Periodic shall not be set in RRC CONNECTION SETUP message used in test procedure for RF test as defined in TS34.108 clause 7.3. This is to prevent unexpected DCHs from being transmitted through such RLC entities when the timer has expired in order to sure that the required TFC from the minimum set of TFCs can continuously convey a DCH for DTCH during the test.

Parameter	Level	Unit
Information bit rate	144	kbps
DPCH	240	ksps
Slot Format #i	14	-
TFCI	On	
Power offsets PO1, PO2 and PO3	0	dB
DTX position	Fixed	-

Table C.3.3.1: DL reference	ence measurement	channel (144kbps)
-----------------------------	------------------	-------------------

Table C.3.3.2: DL reference measurement channel using RLC-TM for DTCH, transport channel parameters (144 kbps)

Higher Layer		RAB/Signalling RB	RAB	SRB
RLC	Logical cha	annel type	DTCH	DCCH
	RLC mode	9	ТМ	UM/AM
	Payload si	zes, bit	2880	88/80
	Max data r	ate, bps	144000	2200/2000
	PDU head	er, bit	N/A	8/16
	TrD PDU h	neader, bit	0	N/A
MAC	MAC head	er, bit	0	4
	MAC multi	plexing	N/A	Yes
Layer 1	TrCH type		DCH	DCH
	Transport Channel Identity		6	10
	TB sizes, b	Dit	2880	100
	TFS	TF0, bits	0*2880	0*100
		TF1, bits	1*2880	1*100
	TTI, ms		20	40
	Coding type		Turbo Coding	Convolution Coding
	Coding Rate		N/A	1/3
	CRC, bit		16	12
	Max numb	er of bits/TTI after channel coding	8700	360
	RM attribu	te	256	256

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	AM	UM/AM
	Payload sizes, bit	2864	88/80
	Max data rate, bps	143200	2200/2000
	PDU header, bit	16	8/16
	TrD PDU header, bit	N/A	N/A
MAC	MAC header, bit	0	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	6	10
	TB sizes, bit	2880	100
	TFS TF0, bits	0*2880	0*100
	TF1, bits	1*2880	1*100
	TTI, ms	20	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	8700	360
	RM attribute	256	256

Table C.3.3.3: DL reference measurement channel using RLC-AM for DTCH, transport channel parameters (144 kbps)

Table C.3.3.4: DL reference measurement channel, TFCS (144 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

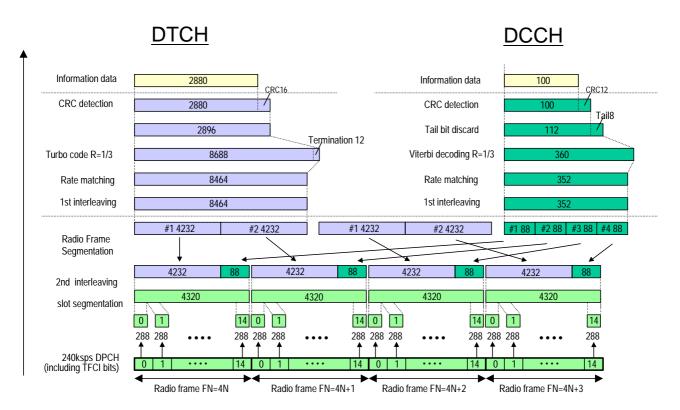


Figure C.3.3 (informative): Channel coding of DL reference measurement channel (144 kbps)

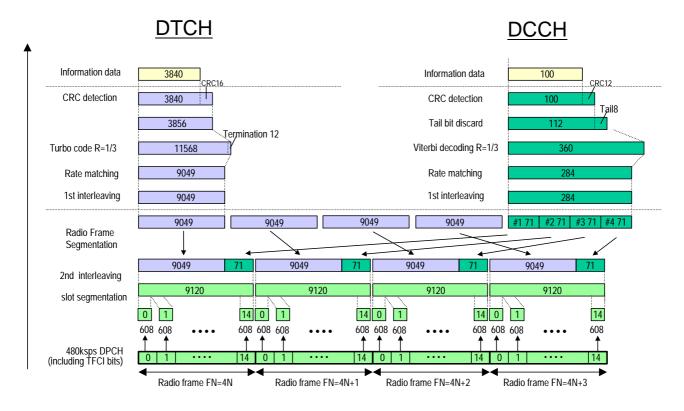
C.3.4 DL reference measurement channel (384 kbps)

The parameters for the DL reference measurement channel for 384 kbps are specified in table C.3.4.1, table C.3.4.2, table C.3.4.3 and table C.3.4.4. The channel coding is shown for information in figure C3.4. For the RLC configuration of AM DCCHs Timer_STATUS_Periodic shall not be set in RRC CONNECTION SETUP message used in test procedure for RF test as defined in TS34.108 clause 7.3. This is to prevent unexpected DCHs from being transmitted through such RLC entities when the timer has expired in order to sure that the required TFC from the minimum set of TFCs can continuously convey a DCH for DTCH during the test.

Parameter	Level	Unit
Information bit rate	384	kbps
DPCH	480	ksps
Slot Format #i	15	-
TFCI	On	-
Power offsets PO1, PO2 and PO3	0	dB
DTX position	Fixed	-

 Table C.3.4.1: DL reference measurement channel, physical parameters (384 kbps)

Table C.3.4.2: DL reference measurement channel using RLC-TM for DTCH, transport channel parameters (384 kbps)


Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	TM	UM/AM
	Payload sizes, bit	3840	88/80
	Max data rate, bps	384000	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	0	N/A
MAC	MAC header, bit	0	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	6	10
	TB sizes, bit	3840	100
	TFS TF0, bits	0*3840	0*100
	TF1, bits	1*3840	1*100
	TTI, ms	10	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	11580	360
	RM attribute	256	256

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	AM	UM/AM
	Payload sizes, bit	3824	88/80
	Max data rate, bps	382400	2200/2000
	PDU header, bit	16	8/16
	TrD PDU header, bit	N/A	N/A
MAC	MAC header, bit	0	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	6	10
	TB sizes, bit	3840	100
	TFS TF0, bits	0*3840	0*100
	TF1, bits	1*3840	1*100
	TTI, ms	10	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	11580	360
	RM attribute	256	256

Table C.3.4.3: DL reference measurement channel using RLC-AM for DTCH, transport channel parameters (384 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

C.4 Reference measurement channel for BTFD performance requirements

C.4.1 UL reference measurement channel for BTFD performance requirements

The parameters for UL reference measurement channel for BTFD are specified in table C.4.1.1, table C.4.1.2, table C.4.1.3 and table C.4.1.4.

Parameter	Level	Unit
Information bit rate	12.8k, 10.8k, 8.55k, 8.0k,	kbps
	7.3k, 6.5k, 5.75k, 5.35k,	
	2.55k	
DPCCH	15	kbps
DPCCH Slot Format #i	0	-
DPCCH/DPDCH power ratio	-5.46 (12.8k - 7.3k)	dB
	-2.69 (6.5k – 2.55k)	
TFCI	On	-
Puncturing Limit	100	%

Table C.4.1.1: UL reference measurement channel physical parameters for BTFD

Table C.4.1.2: UL reference measurement channel, transport channel parameters for SRB

Higher Layer	RAB/Signalling RB	SRB
RLC	Logical channel type	DCCH
	RLC mode	UM/AM
	Payload sizes, bit	88/80
	Max data rate, bps	2200/2000
	PDU header, bit	8/16
	TrD PDU header, bit	N/A
MAC	MAC header, bit	4
	MAC multiplexing	Yes
Layer 1	TrCH type	DCH
-	Transport Channel Identity	10
	TB sizes, bit	100
	TFS TF0, bits	0*100
	TF1, bits	1*100
	TTI, ms	40
	Coding type	Convolution Coding
	Coding Rate	1/3
	CRC, bit	12
	Max number of bits/TTI after	360
	channel coding	
	Uplink: Max number of bits/radio frame before rate matching	90
	RM attribute	256

Higher Layer	RAB/Signalling RB		12.8k /10.8k/8.55k/8.0k/7.3k/6.5k/5.75k/5.35k/2.55k
RLC	Logical channel type		DTCH
	RLC mode		ТМ
	Payload siz	es. bit	256, 216, 171, 160, 146, 130, 115, 107, 51, 12
	Max data ra		12200
	PDU heade		N/A
	TrD PDU he bit	eader,	0
MAC	MAC heade	ər, bit	0
	MAC multip		N/A
Layer 1	TrCH type	×	DCH
	Transport C Identity	Channel	1
	TB sizes, bi	it	256, 216, 171, 160, 146, 130, 115, 107, 51,12
	TFS	TF0 bit	0x256
	-	TF1 bit	1x256
		TF2 bit	1x216
		TF3 bit	1x171
		TF4 bit	1x160
		TF5 bit	1x146
	-	TF6 bit	1x130
		TF7 bit	1x115
		TF8 bit	1x107
		TF9 bit	1x51
		TF10 bit	1x12
	TTI, ms		20
	Coding type	е	CC
	Coding Rat		1/3
	CRC, bit		0
	RM attribute	е	256

Table C.4.1.3: UL reference measurement channel using RLC-TM for DTCH, transport channel parameters

Table C.4.1.4: UL reference measurement channel, TFCS

TFCS size	22
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF2, TF0), (TF3, TF0), (TF4, TF0), (TF5, TF0), (TF6, TF0), (TF7, TF0),
	(TF8, TF0), (TF9, TF0), (TF10, TF0), (TF0, TF1), (TF1, TF1), (TF2, TF1), (TF3, TF1), (TF4,
	TF1), (TF5, TF1), (TF6, TF1), (TF7, TF1), (TF8, TF1), (TF9, TF1), (TF10, TF1)

NOTE: The TFCs except for (TF1, TF1), (TF2, TF1), (TF3, TF1), (TF4, TF1), (TF5, TF1), (TF6, TF1), (TF7, TF1), (TF8, TF1), (TF9, TF1) and (TF10, TF1) are belonging to minimum set of TFCs.

1

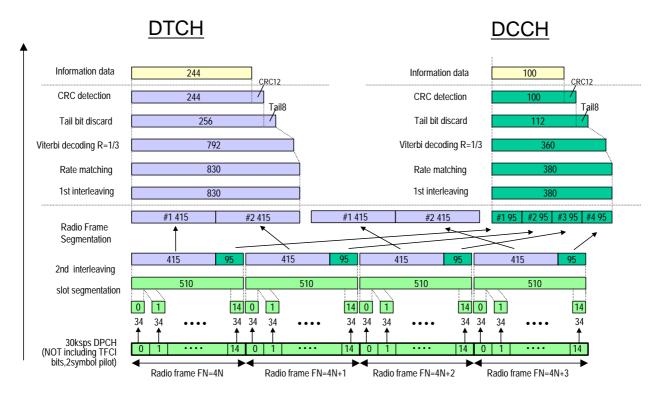
C.4.2 DL reference measurement channel for BTFD performance requirements

The parameters for DL reference measurement channel for BTFD are specified in table C.4.2.1, table C.4.2.2, table C.4.2.3 and table C.4.2.4. The channel coding for information is shown in figures C.4.1, C.4.2, and C.4.3. For the RLC configuration of AM DCCHs Timer_STATUS_Periodic shall not be set in RRC CONNECTION SETUP message used in test procedure for RF test as defined in TS34.108 clause 7.3. This is to prevent unexpected DCHs from being transmitted through such RLC entities when the timer has expired in order to sure that the required TFC from the minimum set of TFCs can continuously convey a DCH for DTCH during the test.

Parameter	Rate 1	Rate 2	Rate 3	Unit
Information bit rate	12,2	7,95	1,95	kbps
DPCH		30		ksps
Slot Format #il	8		-	
TFCI		Off		-
Power offsets PO1, PO2 and PO3	0			dB
DTX position		Fixed		-

Table C.4.2.1: DL reference measurement channel physical parameters for BTFD

Table C.4.2.2: DL reference measurement channel	. transpo	ort channel	parameters for SRB
Tuble 0.4.2.2. DE reference measurement onarmer	,		purumeters for one


Higher Layer	RAB/Signalling RB		SRB		
RLC	Logical c	hannel type	DCCH		
	RLC mod	le	UM/AM		
	Payload :	sizes, bit	88/80		
	Max data	rate, bps	2200/2000		
	PDU hea	der, bit	8/16		
	TrD PDU	header, bit	N/A		
MAC	MAC hea	der, bit	4		
	MAC mul	tiplexing	Yes		
Layer 1	TrCH typ	e	DCH		
-		t Channel Identity	20		
	TB sizes,	bit	100		
	TFS	TF0, bits	0*100		
		TF1, bits	1*100		
	TTI, ms		40		
	Coding ty	rpe	Convolution Coding		
	Coding R	ate	1/3		
	CRC, bit		12		
	Max num	ber of bits/TTI after	360		
	channel o				
		ax number of bits/radio fore rate matching	90		
	RM attrib		256		

Higher Layer	RAB/Signalling RB	12.2k/10.2k/7.95k/7.4k/6.7k/5.9k/5.15k/4.75k/1.95k
RLC	Logical channel type	DTCH
	RLC mode	ТМ
	Payload sizes, bit	244, 204, 159, 148, 134, 118, 103, 95, 39
	Max data rate, bps	12200
	PDU header, bit	N/A
	TrD PDU header, bit	0
MAC	MAC header, bit	0
	MAC multiplexing	N/A
Layer 1	TrCH type	DCH
	Transport Channel Identity	1
	TB sizes, bit	244, 204, 159, 148, 134, 118, 103, 95, 39,0
	TFS TF0 bit	1x0
	TF1 bit	1x244
	TF2 bit	1x204
	TF3 bit	1x159
	TF4 bit	1x148
	TF5 bit	1x134
	TF6 bit	1x118
	TF7 bit	1x103
	TF8 bit	1x95
	TF9 bit	1x39
	TTI, ms	20 CC
	Coding type	1/3
	Coding Rate CRC, bit	1/3
	RM attribute	256
L		230

Table C.4.2.3: DL reference measurement channel using RLC-TM for DTCH, transport channel parameters

Table C.4.2.4: DL reference measurement channel, TFCS

TFCS size	20
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF2, TF0), (TF3, TF0), (TF4, TF0), (TF5, TF0), (TF6, TF0), (TF7, TF0),
	(TF8, TF0), (TF9, TF0), (TF0, TF1), (TF1, TF1), (TF2, TF1), (TF3, TF1), (TF4, TF1), (TF5, TF1),
	(TF6, TF1), (TF7, TF1), (TF8, TF1), (TF9, TF1),

FigureC.4.1 (informative): Channel coding of DL reference measurement channel for BTFD (Rate 1)

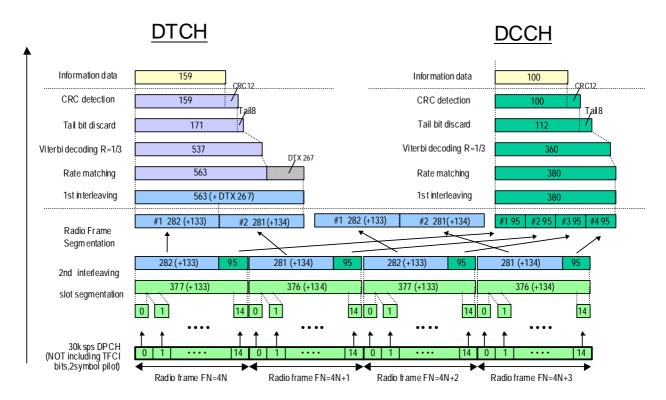


Figure C.4.2 (informative): Channel coding of DL reference measurement channel for BTFD (Rate 2)

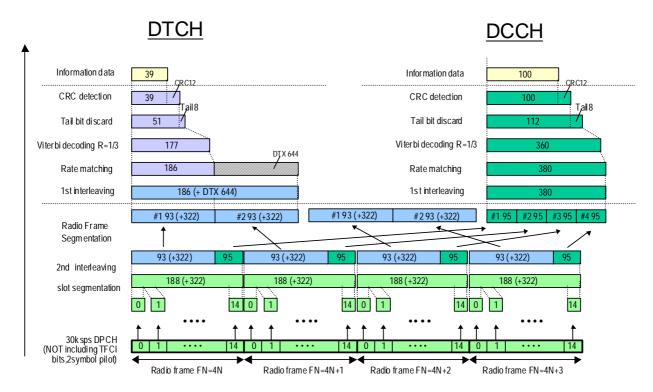


Figure C.4.3 (informative): Channel coding of DL reference measurement channel for BTFD (Rate 3)

C.5 DL reference compressed mode parameters

Parameters described in table C.5.1 are used in some test specified in TS 25.101 while parameters described in table C.5.2 are used in some tests specified in TS 25.133.

Set 1 parameters in table C.5.1 are applicable when compressed mode by spreading factor reduction is used in downlink. Set 2 parameters in table C.5.1 are applicable when compressed mode by puncturing is used in downlink.

Parameter	Set 1	Set 2	Note
TGSN (Transmission Gap Starting Slot Number)	11	11	
TGL1 (Transmission Gap Length 1)	7	7	
TGL2 (Transmission Gap Length 2)	-	-	Only one gap in use.
TGD (Transmission Gap Distance)	0	0	Only one gap in use.
TGPL1 (Transmission Gap Pattern Length)	4	4	
TGPL2 (Transmission Gap Pattern Length)	-	-	Only one pattern in use.
TGPRC (Transmission Gap Pattern Repetition Count)	NA	NA	Defined by higher layers
TGCFN (Transmission Gap Connection Frame Number):	NA	NA	Defined by higher layers
UL/DL compressed mode selection	DL & UL	DL & UL	2 configurations possible DL &UL / DL
UL compressed mode method	SF/2	SF/2	
DL compressed mode method	SF/2	Puncturing	
Downlink frame type and Slot format	11B	11A	
Scrambling code change	No	No	
RPP (Recovery period power control mode)	0	0	
ITP (Initial transmission power control mode)	0	0	

Table C.5.1: Compressed mode reference	pattern 1 parameters
--	----------------------

Table C.5.2: Compressed mode reference pattern 2 parameters

Parameter	Set 1	Set 2	Set 3	Note
TGSN (Transmission Gap Starting Slot Number)	4	4	10	
TGL1 (Transmission Gap Length 1)	7	7	10	
TGL2 (Transmission Gap Length 2)	-	-	-	Only one gap in use.
TGD (Transmission Gap Distance)	0	0	0	
TGPL1 (Transmission Gap Pattern Length)	3	12	11	
TGPL2 (Transmission Gap Pattern Length)	-	-	-	Only one pattern in use.
TGPRC (Transmission Gap Pattern Repetition Count)	NA	NA	NA	Defined by higher layers
TGCFN (Transmission Gap Connection Frame Number):	NA	NA	NA	Defined by higher layers
UL/DL compressed mode selection	DL & UL	DL & UL	DL & UL	2 configurations possible. DL & UL / DL
UL compressed mode method	SF/2	SF/2	SF/2	
DL compressed mode method	SF/2	SF/2	Puncturing	
Downlink frame type and Slot format	11B	11B	11A	
Scrambling code change	No	No	No	
RPP (Recovery period power control mode)	0	0	0	
ITP (Initial transmission power control mode)	0	0	0	

C.8 DL reference channel parameters for HSDPA tests

C.8.1 Fixed Reference Channel (FRC)

C.8.1.1 Fixed Reference Channel Definition H-Set 1

Table C.8.1.1: Fixed Reference Channel H-Set 1

Parameter	<u>Unit</u>	<u>Va</u>	lue
Nominal Avg. Inf. Bit Rate	<u>kbps</u>	<u>534</u>	777
Inter-TTI Distance	<u>TTI's</u>	<u>3</u>	<u>3</u>
Number of HARQ Processes	Proces	2	2
Information Bit Payload (N _{INF})	<u>ses</u> Bits	<u>3202</u>	<u>4664</u>
Number Code Blocks	Blocks	1	<u>1</u>
Binary Channel Bits Per TTI	Bits	<u>4800</u>	<u>7680</u>
Total Available SML's in UE	SML's	<u>19200</u>	<u>19200</u>
Number of SML's per HARQ Proc.	SML's	<u>9600</u>	<u>9600</u>
Coding Rate		<u>0.67</u>	<u>0.61</u>
Number of Physical Channel Codes	Codes	<u>5</u>	4
Modulation		QPSK	16QAM

Inf. Bit Payload	320	02								
CRC Addition	320	02	24 CI	RC						
Code Block		-								
Segmentation	3	226								
Turbo-Encoding					0070					40
(R=1/3)					9678					12 Tail Bits
1st Rate Matching					9600					
RV Selection			4800							
Physical Channel Segmentation	960									
Figure	e C.8.1: Co	ding rate	for F	ixed r	eference C	hann	el H-Se	et 1 (QPSI	K)	
	Г			_						
Inf.	Bit Payload	4664								
CF	RC Addition	4664		24 CR	С					
C	ode Block _L									
	gmentation	4688								
	R=1/3)	14064 12 Tail Bits							Tail Bits	
	ite Matching	9600								
	-									
KV	Selection			7680						
	al Channel	1920	Ţ							
Figuro	C 8 2: Cor	ling rate	for Ei	vod ro	ference Ch			1 (16 0 4	M)	
rigure	<u>0.0.2. 000</u>	ing rate		<u>xeu re</u>					<u>(IVI)</u>	
				Defin		0	<u>^</u>			
<u>C.8.1.2 Fixed R</u>	eterenc	e Char	inei	Defir	nition H-	Set	<u> </u>			
	Table	C.8.1.2:	Fixed	d Refe	rence Char	nnel I	I-Set 2			
								1		
Ne		arameter			<u>Unit</u>			<u>ue</u>		
	<u>minal Avg. Ir</u> er-TTI Distar				<u>kbps</u> TTI's		<u>801</u> 2	<u>1166</u> 2		
	mber of HAF		205		Processes	9	3	3		
	ormation Bit				Bits	-	<u>3</u> 202	<u>5</u> 4664		
		_	INF							
	mber Code I ary Channe		T I		Blocks Bits		<u>1</u> 4800	<u>1</u> 7680		
	ary Channel al Available				SML's		<u>4800</u> 28800	28800		
	mber of SML			20	SML'S		<u>9600</u>	<u>28800</u> <u>9600</u>		
	ding Rate						<u>9000</u> 0.67	<u>9000</u> 0.61		
	mber of Phy	sical Chan	nel Co	odes	Codes		5	4		
	dulation	ciour oriun			00000			<u>+</u> 16QAM		
					L					

Inf. Bit Payload	32	02	7						
CRC Addition	32	02	24 CF	20					
Code Block	02								
Segmentation	3	226							
Turbo-Encoding									
(R=1/3)					9678				12 Tail Bits
1st Rate Matching					9600				
RV Selection			4800						
Physical Channel Segmentation	960								
Figure	C.8.3: Co	ding rate	for Fi	ixed Re	eference Ch	annel H-	Set 2 (QP	SK)	
<u>- </u>									
Inf.	Bit Payload	4664							
CP	C Addition	4664							
	ode Block	4004							
	gmentation	4688							
	-Encoding		14064 12 Tail Bits						
	R=1/3) L								
1st Ra	te Matching	9600							
RV	Selection	Selection 7680							
	al Channel	1920							
<u>Figure</u>	<u>C.8.4: Coc</u>	ling rate	for Fix	<u>ked Re</u>	ierence Cha	annel H-S	<u>Set 2 (16Q</u>	<u>AM)</u>	
<u>C.8.1.3 Fixed R</u>	eterenc	e Char	nel	Defin	ition H-S	<u>et 3</u>			
	Table	• C.8.1.3:	Fixed	l Refer	ence Chanr	nel H-Set	3		
								1	
		<u>Parameter</u> I Avg. Inf. E			<u>Unit</u> kbps	<u>Va</u> 1601	lue 2332		
Int	ter-TTI Dista		DIL Kale	2	TTI's	1	<u>2332</u> 1		
	umber of HA		sses		Processes	6	6		
	formation Bi				Bits	3202	4664		
	umber Code		INF		Blocks	1	1		
	nary Chann		тті		Bits	4800	7680		
	tal Available				SML's	57600	57600		
	umber of SN			OC.	SML's	9600	9600		
	oding Rate					0.67	0.61		
	umber of Ph	<u>ysical</u> Cha	nnel Co	odes	<u>Codes</u>	5	4		
	odulation					QPSK	<u>16QAM</u>		
								-	

Inf. Bit Payload	32	02	7					
CRC Addition	32	02	24 CRC					
Code Block								
Segmentation	3	3226						
Turbo-Encoding				9678				12 Tail Bits
(R=1/3)				5070				
1st Rate Matching				960	0			
RV Selection			4800					
Physical Channel Segmentation	960							
Figur	e C 8 5' Co	ding rate	for Fixe	d referei	nce Channel I	I-Set 3 (C	PSK)	
rigur	<u>e 0.0.3. 00</u>					<u>1-3et 3 (6</u>		
	r							
Inf	Bit Payload	4664						
C	RC Addition	4664	24	CRC				
C	ode Block							
	gmentation	468	38					
	o-Encoding R=1/3)				14064		1	2 Tail Bits
	ate Matching				9600			7
	- L							
R	/ Selection		768	30				
	cal Channel	1920						
			·					
Figure	<u> C.8.6: Co</u>	ding rate	tor Fixed	<u>reteren</u>	<u>ce Channel H</u>	-Set 3 (16	<u>SQAM)</u>	
<u>C.8.1.4</u> Fixed R	terenc	e Char	nel De	finitior	<u>n H-Set 4</u>			
	Tabl	e C 8 1 4·	Fixed Re	ference	Channel H-S	et 4		
	<u></u>							
	Nominal A	Param vg. Inf. Bit			Unit kbpc	<u>Value</u> <u>534</u>		
	Inter-TTI D		Nale		<u>kbps</u> TTI's	<u>2</u>		
		HARQ Pro	ocesses		Processes	2		
	Information	n Bit Payloa	ad (N_{INF})		<u>Bits</u>	<u>3202</u>		
		ode Blocks			Blocks	<u>1</u>		
		annel Bits F			<u>Bits</u>	<u>4800</u>		
		able SML's			<u>SML's</u>	<u>14400</u>		
	Number of Coding Ra	SML's per	HARQ Pro	<u></u>	<u>SML's</u>	<u>7200</u> <u>0.67</u>		
		Physical C	Channel Co	des	Codes	<u>0.67</u> <u>5</u>		
	Modulation							
	Note: This	test case v			inter-TTI distan	ce and		
	there	efore HS-PI	DSCH tran		<u>shall be as follo</u>			
		X0X000X0			DSCH is transm	itted to		
		<u>JE and '0' r</u>						
			-		-			

Inf. Bit Payload	3202				
CRC Addition	3202	24 CRC			
Code Block Segmentation	3226				
Turbo-Encoding (R=1/3)		967	8		12 Tail Bits
1st Rate Matching		7200			
RV Selection		4800			
Physical Channel Segmentation	960				
Fi	gure C.8.7: Coding r	ate for Fixed R	eference Chan	nel H-Set 4	
<u></u>					
C.8.1.5 Fixed R	oforonco Chan	nol Dofinitio	n H Sot 5		
<u>C.o. 1.3 FIXEU R</u>			<u>п п-зег з</u>		
	Table C.8.1.5: I	Fixed Referenc	e Channel H-Se	<u>et 5</u>	
	Parame	ter	Unit	Value	
-	Nominal Avg. Inf. Bit R		kbps	801	
	Inter-TTI Distance		TTI's	1	
	Number of HARQ Proc	cesses	Processes	3	
	Information Bit Payload		Bits	3202	
	Number Code Blocks		Blocks	1	
-	Binary Channel Bits Pe	or TTI	Bits	<u>4800</u>	
	Total Available SML's		SML's	<u>28800</u>	
-	Number of SML's per H	TARQ PIUC.	<u>SML's</u>	<u>9600</u>	
-	Coding Rate		Order	<u>0.67</u>	
	Number of Physical Ch	nannel Codes	Codes	5	
	Modulation			<u>QPSK</u>	
	Note: This test case ve				
		SCH transmission	shall be as follow	<u>vs:</u>	
	00XXX000XXX				
	where 'X' marks T UE and '0' marks		DSCH is allocated	d to the	
l					
Inf. Bit Payload	3202]			
CRC Addition	3202	24 C R C			
Code Block					
Segmentation	3226				
Turbo-Encoding (R=1/3)		967	8		12 Tail Bits
1st Rate Matching		96	00		
RV Selection		4800			
	L				
Physical Channel Segmentation	960				

Figure C.8.8: Coding rate for Fixed Reference Channel H-Set 5

Annex D (normative): Propagation Conditions

D.1 General

D.2 Propagation Conditions

D.2.1 Static propagation condition

The propagation for the static performance measurement is an Additive White Gaussian Noise (AWGN) environment. No fading and multi-paths exist for this propagation model.

D.2.2 Multi-path fading propagation conditions

Table D.2.2.1 shows propagation conditions that are used for the performance measurements in multi-path fading environment. All taps have classical Doppler spectrum.

	se 1, 3km/h	Case 2, speed 3 km/h		Cas speed 12	se 3, 0 km/h	Case 4, * Case 5, speed 3 km/h speed 50 km/h			se 6, 50 km/h		
Relative	Average	Relative	Average	Relative	Average	Relative	Average	Relative	Average	Relative	Average
Delay	Power	Delay	Power	Delay	Power	Delay	Power	Delay	Power	Delay	Power
[ns]	[dB]	[ns]	[dB]	[ns]	[dB]	[ns]	[dB]	[ns]	[dB]	[ns]	[dB]
0	0	0	0	0	0	0	0	0	0	0	0
976	-10	976	0	260	-3	976	0	976	-10	260	-3
		20000	0	521	-6					521	-6
				781	-9					781	-9

 Table D.2.2.1: Propagation conditions for multi-path fading environments

NOTE: Case 5 is only used in Requirements for support of RRM.

Table D.2.2.1A shows propagation conditions that are used for HSDPA performance measurements in multi-path fading environment.

Table D.2.2.1A: Propagation Conditions for multi-path fading environments for HSDPA

Spee	ITU Pedestrian A Speed 3km/h (PA3)		edestrian B ed 3km/h (PB3)	Speed	<u>hicular A</u> <u>I 30km/h</u> A30)	ITU vehicular A Speed 120km/h (VA120)	
Relative Delay [ns]	Relative Mean Power [dB]	Relative Delay [ns]	Relative Mean Power [dB]	<u>Relative</u> <u>Delay</u> [ns]	Relative Mean Power [dB]	Relative Delay [ns]	<u>Relative</u> <u>Mean Power</u> [dB]
<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
<u>110</u>	<u>-9.7</u>	<u>200</u>	<u>-0.9</u>	<u>310</u>	<u>-1.0</u>	<u>310</u>	<u>-1.0</u>
<u>190</u>	<u>-19.2</u>	<u>800</u>	<u>-4.9</u>	<u>710</u>	<u>-9.0</u>	<u>710</u>	<u>-9.0</u>
<u>410</u>	<u>-22.8</u>	<u>1200</u>	<u>-8.0</u>	<u>1090</u>	<u>-10.0</u>	<u>1090</u>	<u>-10.0</u>
		<u>2300</u>	<u>-7.8</u>	<u>1730</u>	<u>-15.0</u>	<u>1730</u>	<u>-15.0</u>
		<u>3700</u>	<u>-23.9</u>	<u>2510</u>	<u>-20.0</u>	<u>2510</u>	<u>-20.0</u>

D.2.3 Moving propagation conditions

The dynamic propagation conditions for the test of the baseband performance are non fading channel models with two taps. The moving propagation condition has two taps, one static, Path0, and one moving, Path1. The time difference between the two paths is according Equation D.2.3.1. The taps have equal strengths and equal phases.

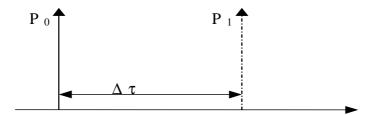


Figure D.2.3.1: The moving propagation conditions

$$\Delta \tau = B + \frac{A}{2} (1 + \sin(\Delta \omega \cdot t))$$

Equation D.2.3.1

The parameters in the equation are shown in.

А	5 µs
В	1 µs
Δω	$40 \cdot 10^{-3} \text{ s}^{-1}$

D.2.4 Birth-Death propagation conditions

The dynamic propagation conditions for the test of the baseband performance is a non fading propagation channel with two taps. The moving propagation condition has two taps, Path1 and Path2 while alternate between 'birth' and 'death'. The positions the paths appear are randomly selected with an equal probability rate and are shown in figure D.2.4.1.

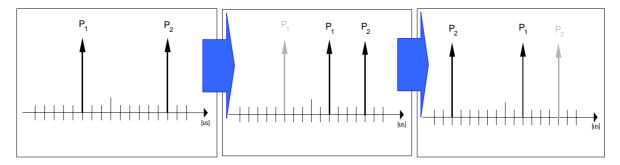


Figure D.2.4.1: Birth death propagation sequence

- NOTE1: Two paths, Path1 and Path2 are randomly selected from the group [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5] μs. The paths have equal strengths and equal phases.
- NOTE 2: After 191 ms, Path1 vanishes and reappears immediately at a new location randomly selected from the group [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5] μs but excludes the point Path2.
- NOTE 3: After additional 191 ms, Path2 vanishes and reappears immediately at a new location randomly selected from the group [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5] µs but excludes the point Path1.
- NOTE 4: The sequence in 2) and 3) is repeated.

Annex E (normative): Downlink Physical Channels

E.1 General

This normative annex specifies the downlink physical channels that are needed for setting a connection and channels that are needed during a connection.

E.2 Connection Set-up

Table E.2.1 describes the downlink Physical Channels that are required for connection set up.

Table E.2.1: Downlink Physical Channels required for connection set-up

Physical Channel
CPICH
P-CCPCH
SCH
S-CCPCH
PICH
AICH
DPCH

E.2.1 Measurement without dedicated connection

Table E.2.2 describes the downlink Physical Channels that are required for measurement before connection. This is applicable for the clauses 5.4.1 and 5.5.2.

Physical Channel		Power
Îor	Test dependent pov	ver
CPICH	CPICH_Ec / lor	= -3,3 dB
P-CCPCH	P-CCPCH_Ec / lor	= -5,3 dB
SCH	SCH_Ec / lor	= -5,3 dB
PICH	PICH_Ec / lor	= -8,3 dB
S-CCPCH	S-CCPCH_Ec / lor	= -10,3 dB

E.3 During connection

The following clauses describe the downlink Physical Channels that are transmitted during a connection i.e., when measurements are done. For these measurements the offset between DPCH and SCH shall be zero chips at base station meaning that SCH is overlapping with the first symbols in DPCH in the beginning of DPCH slot structure.

E.3.1 Measurement of Tx Characteristics

Table E.3.1 is applicable for measurements on the Transmitter Characteristics (clause 5) with the exception of clauses 5.3, 5.4.1, 5.4.4 and 5.5.2.

NOTE: Applicability to clause 5.7 (Power setting in uplink compressed mode) is FFS.

Physical Channel	Power	
Îor	–93 dBm / 3,84MHz	
CPICH	CPICH_Ec / DPCH_Ec	= 7 dB
P-CCPCH	P-CCPCH_Ec / DPCH_Ec	= 5 dB
SCH	SCH_Ec / DPCH_Ec	= 5 dB
PICH	PICH_Ec / DPCH_Ec	= 2 dB
DPCH	–103,3 dBm / 3,84MHz	

 Table E.3.1: Downlink Physical Channels transmitted during a connection

E.3.2 Measurement of Rx Characteristics

Table E.3.2.1 is applicable for measurements on the Receiver Characteristics (clause 6) with the exception of clauses 6.3 and 6.8.

Table E.3.2.1: Downlink Physical Channels transmitted during a connection

Physical Channel	Power	
CPICH	CPICH_Ec / DPCH_Ec	= 7 dB
P-CCPCH	P-CCPCH_Ec/ DPCH_Ec	= 5 dB
SCH	SCH_Ec / DPCH_Ec	= 5 dB
PICH	PICH_Ec / DPCH_Ec	= 2 dB
DPCH	Test dependent power	

Table E.3.2.2 describes the downlink Physical Channels that are required for the test of Spurious Emissions (clause 6.8). The UE is in the CELL_FACH state during the measurement.

Table E.3.2.2: Downlink Physical Channels transmitted during the measurement for Rx Spurious Emissions

Physical Channel	Power	
CPICH	–96 dBm / 3,84MHz	
P-CCPCH	P-CCPCH_Ec/ CPICH_Ec	= -2 dB
SCH	SCH_Ec / CPICH_Ec	= -2 dB
PICH	PICH_Ec / CPICH_Ec	= -5 dB

E.3.3 Measurement of Performance requirements

Table E.3.3 is applicable for measurements on the Performance requirements (clause 7), including clauses 6.3 and 5.4.4, excluding clauses 7.6.1 and 7.6.2.

Physical Channel	Power		Note
P-CPICH	P-CPICH_Ec/lor	= -10 dB	Use of P-CPICH or S-CPICH as phase reference is specified for each requirement and is also set by higher layer signalling.
S-CPICH	S-CPICH_Ec/lor	= -10 dB	When S-CPICH is the phase reference in a test condition, the phase of S-CPICH shall be 180 degrees offset from the phase of P-CPICH. When S-CPICH is not the phase reference, it is not transmitted.
P-CCPCH	P-CCPCH_Ec/lor	= -12 dB	
SCH	SCH_Ec/lor	= -12 dB	This power shall be divided equally between Primary and Secondary Synchronous channels
PICH	PICH_Ec/lor	= -15 dB	
DPCH	Test dependent power		When S-CPICH is the phase reference in a test condition, the phase of DPCH shall be 180 degrees offset from the phase of P-CPICH.
OCNS	Necessary power so that total transmit power spectral density of Node B (lor) adds to one		OCNS interference consists of 16 dedicated data channels as specified in table E.3.6.
NOTE: For dynamic power correction required to compensate for the presence of transient channels, e.g. control channels, a subset of the DPCH channels may be used.			

Table E.3.3: Downlink Physical Channels transmitted during a connection ¹	1
--	---

¹ Power levels are based on the assumption that multipath propagation conditions and noise source representing interference from other cells loc are turned on after the call set-up phase.

E.3.4 Connection with open-loop transmit diversity mode

Table E.3.4 is applicable for measurements for clause 7.6.1.

Physical Channel	Power	Note	
P-CPICH (antenna 1)	$P-CPICH_E_{c1}/I_{or} = -13 \text{ dB}$	1. Total P-CPICH_E _c /I _{or} = -10 dB	
P-CPICH (antenna 2)	P-CPICH_ $E_{c2}/I_{or} = -13 \text{ dB}$		
P-CPICH (antenna 1)	$P-CPICH_E_{c1}/I_{or} = -13 \text{ dB}$	1. Total P-CPICH_E _c /I _{or} = -10 dB	
P-CPICH (antenna 2)	$P-CPICH_E_{c2}/I_{or} = -13 \text{ dB}$		
P-CCPCH (antenna 1)	$P-CCPCH_Ec_1/I_{or} = -15 \text{ dB}$	1. STTD applied	
P-CCPCH (antenna 2)	$P-CCPCH_Ec_2/I_{or} = -15 \text{ dB}$	2. Total P-CCPCH_Ec/I _{or} = -12 dB	
SCH (antenna 1 / 2)	$SCH_E_c/I_{or} = -12 dB$	 TSTD applied. This power shall be divided 	
		equally between Primary and Secondary Synchronous channels	
PICH (antenna 1)	$PICH_E_{c1}/I_{or} = -18 \text{ dB}$	1. STTD applied	
PICH (antenna 2)	$PICH_{E_{c2}}/I_{or} = -18 \text{ dB}$	2. Total PICH_ $E_c/I_{or} = -15 \text{ dB}$	
DPCH	Test dependent power	 STTD applied Total power from both antennas 	
OCNS	Necessary power so that total transmit power spectral density of Node B (I _{or}) adds to one	 This power shall be divided equally between antennas OCNS interference consists of 16 dedicated data channels as specified in Table E.3.6. 	
NOTE: For dynamic power correction required to compensate for the presence of transient channels, e.g. control channels, a subset of the DPCH channels may be used.			

Table E.3.4: Downlink Physical Channels transmitted during a connection²

E.3.5 Connection with closed loop transmit diversity mode

table E.3.5 is applicable for measurements for clause 7.6.2.

Physical Channel	Power	Note	
P-CPICH (antenna 1)	P-CPICH_Ec1/lor = -13 dB	1. Total P-CPICH_Ec/lor = -10 dB	
P-CPICH (antenna 2)	P-CPICH_Ec2/lor = -13 dB		
P-CCPCH (antenna 1)	P-CCPCH_Ec1/lor = -15 dB	1. STTD applied	
P-CCPCH (antenna 2)	$P-CCPCH_Ec2/lor = -15 dB$	1. STTD applied, total	
		P -CCPCH_Ec/lor = -12 dB	
SCH (antenna 1 / 2)	SCH_Ec/lor = -12 dB	1. TSTD applied	
PICH (antenna 1)	$PICH_Ec1/lor = -18 dB$	1. STTD applied	
PICH (antenna 2)	$PICH_Ec2/lor = -18 dB$	STTD applied, total	
		$PICH_Ec/lor = -15 dB$	
DPCH	Test dependent power	1. Total power from both antennas	
OCNS	Necessary power so that total	1. This power shall be divided	
	transmit power spectral density	equally between antennas	
	of Node B (lor) adds to one	2. OCNS interference consists of	
		16 dedicated data channels as	
		specified in Table E.3.6.	
NOTE: For dynamic power correction required to compensate for the presence of transient			
channels, e.g. control channels, a subset of the DPCH channels may be used.			

² Power levels are based on the assumption that multipath propagation conditions and noise source representing interference from other cells Ioc are turned on after the call set-up phase.

³ Power levels are based on the assumption that multipath propagation conditions and noise source representing interference from other cells loc are turned on after the call set-up phase.

Channelization Code at SF=128	Relative Level setting (dB)	DPCH Data
2	-1	The DPCH data
11	-3	for each
17	-3	channelization
23	-5	code shall be
31	-2	uncorrelated
38	-4	with each other
47	-8	and with any
55	-7	wanted signal
62	-4	over the period
69	-6	of any
78	-5	measurement.
85	-9	
94	-10	
125	-8]
113	-6	
119	0	

Table E.3.6: DPCH Channelization Code and relative level settings for OCNS signal.

NOTE: The DPCH Channelization Codes and relative level settings are chosen to simulate a signal with realistic Peak to Average Ratio.

E.4 W-CDMA Modulated Interferer

Table E.4.1 describes the downlink Physical Control Channels that are transmitted as part of the W-CDMA modulated interferer.

Table E.4.1: Spreading Code, Timing offsets and relative level settings for W-CDMA Modulated Interferer signal control channels.

Channel Type	Spreading Factor	Channelization Code	Timing offset (x256T _{chip})	Relative level setting (dB)	NOTE
P-CCPCH	256	1	0	-1	
SCH	256	-	0	-1	The SCH power shall be divided equally between Primary and Secondary Synchronous channels
P-CPICH	256	0	0	-1	
PICH	256	16	16	-6	

See table E.3.6 for the definition of the 16 DPCH portion of the W-CDMA modulated interferer.

E.5 HSDPA DL Physical channels

E.5.1 Downlink Physical Channels connection set-up

Table E.5.1 is applicable for the measurements for tests in subclause 9.2.1 and 9.3. Table E.5.2 is applicable for the measurements for tests in subclause 9.2.2. Table E.5.3 is applicable for the measurements for tests in subclause 9.2.3. Table E.5.4 is applicable for the measurements for tests in subclause 9.4.

Table E.5.1: Downlink physical channels for HSDPA receiver testing for Single Link performance.

<u>Physical</u> Channel	Parameter	Value	<u>Note</u>
P-CPICH	P-CPICH_Ec/lor	<u>-10dB</u>	
P-CCPCH	P-CCPCH_Ec/lor	<u>-12dB</u>	Mean power level is shared with SCH.
<u>SCH</u>	SCH_Ec/lor	<u>-12dB</u>	Mean power level is shared with P-CCPCH – SCH includes P- and S-SCH, with power split between both. P-SCH code is S_dl,0 as per [14] S-SCH pattern is scrambling code group 0
PICH	PICH_Ec/lor	-15dB	
DPCH	DPCH_Ec/lor	Test-specific	12.2 kbps DL reference measurement channel as defined in Annex C.3.1
HS-SCCH_1	HS-SCCH_Ec/lor	Test-specific	Specifies fraction of Node-B radiated power transmitted when TTI is active (i.e. due to minimum inter-TTI interval).
HS-SCCH_2	HS-SCCH_Ec/lor	<u>DTX'd</u>	No signalling scheduled, or power radiated, on this HS-SCCH, but signalled to the UE as present.
HS-SCCH_3	HS-SCCH_Ec/lor	DTX'd	As HS-SCCH_2.
HS-SCCH_4	HS-SCCH_Ec/lor	<u>DTX'd</u>	As HS-SCCH_2.
HS-PDSCH	HS-PDSCH_Ec/lor	Test-specific	1
<u>OCNS</u>		Necessary power so that total transmit power spectral density of Node <u>B (lor) adds to</u> one	OCNS interference consists of 6 dedicated data channels as specified in table E.5.5

Table E.5.2: Downlink physical channels for HSDPA receiver testing for Open Loop Transmit Diversity performance.

Physical Channel	Parameter	Value	Note
P-CPICH (antenna 1)	P-CPICH_Ec1/lor	-13dB	1. Total P-CPICH_Ec/lor = -10dB
P-CPICH (antenna 2)	P-CPICH_Ec2/lor	<u>-13dB</u>	
P-CCPCH (antenna 1)	P-CCPCH_Ec1/lor	<u>-15dB</u>	1. STTD applied.
P-CCPCH (antenna 2)	P-CCPCH Ec2/lor	<u>-15dB</u>	2. Total P-CCPCH Ec/lor is –12dB.
SCH (antenna 1/2)	SCH Ec/lor	<u>-12dB</u>	1. TSTD applied.
			2. Power divided equally between primary and secondary SCH.
PICH (antenna 1)	PICH Ec1/lor	-18dB	1. STTD applied.
PICH (antenna 2)	PICH Ec2/lor	-18dB	2. Total PICH Ec/lor is –15dB.
DPCH	DPCH Ec/lor	Test-specific	1. STTD applied.
HS-SCCH 1	HS-SCCH_Ec/lor	Test-specific	1. STTD applied.
			2. Specifies fraction of Node-B radiated
			power transmitted when TTI is active (i.e.
			due to minimum inter-TTI interval).
HS-SCCH 2	HS-SCCH_Ec/lor	<u>DTX'd</u>	1. UE assumes STTD applied.
			2. No signalling scheduled, or power
			radiated, on this HS-SCCH, but signalled to
			the UE as present.
HS-SCCH 3	<u>HS-SCCH_Ec/lor</u>	DTX'd	<u>1. As HS-SCCH_2.</u>
HS-SCCH_4	HS-SCCH_Ec/lor	DTX'd	2. As HS-SCCH_2.
<u>HS-PDSCH</u>	HS-PDSCH_Ec/lor	Test-specific	<u>1. STTD applied.</u>
<u>OCNS</u>		Necessary	1. STTD applied.
		power so	2. Balance of power I or the Node-B is
		that total	
		<u>transmit</u>	assigned to OCNS.
		power	3. Power divided equally between antennas.
		<u>spectral</u>	
		density of	
		Node B (lor)	
		adds to one	

Table E.5.3: Downlink physical channels for HSDPA receiver testing for Closed Loop Transmit Diversity (Mode-1) performance.

Physical Channel	Parameter	Value	Note
P-CPICH (antenna 1)	P-CPICH_Ec1/lor	<u>-13dB</u>	1. Total P-CPICH_Ec/lor = -10dB
P-CPICH (antenna 2)	P-CPICH_Ec2/lor	<u>-13dB</u>	
P-CCPCH (antenna 1)	P-CCPCH_Ec1/lor	<u>-15dB</u>	1. STTD applied.
P-CCPCH (antenna 2)	P-CCPCH Ec2/lor	<u>-15dB</u>	2. Total P-CCPCH Ec/lor is –12dB.
SCH (antenna 1/2)	SCH_Ec/lor	<u>-12dB</u>	1. TSTD applied.
			2. Power divided equally between primary
			and secondary SCH.
PICH (antenna 1)	PICH_Ec1/lor	<u>-18dB</u>	1. STTD applied.
PICH (antenna 2)	PICH_Ec2/lor	<u>-18dB</u>	2. Total PICH Ec/lor is –15dB.
DPCH	DPCH_Ec/lor	Test-specific	<u>1. CL1 applied.</u>
HS-SCCH 1	HS-SCCH_Ec/lor	Test-specific	1. [TBD] applied.
			2. Specifies fraction of Node-B radiated
			power transmitted when TTI is active (i.e.
			due to minimum inter-TTI interval).
HS-SCCH 2	HS-SCCH_Ec/lor	<u>DTX'd</u>	1. UE assumes [TBD] applied.
			2. No signalling scheduled, or power
			radiated, on this HS-SCCH, but signalled to
			the UE as present.
HS-SCCH 3	HS-SCCH Ec/lor	DTX'd	<u>1. As HS-SCCH_2.</u>
HS-SCCH_4	HS-SCCH_Ec/lor	DTX'd	2. As HS-SCCH_2.
<u>HS-PDSCH</u>	HS-PDSCH_Ec/lor	Test-specific	1. CL1 applied.
<u>OCNS</u>		Necessary	1. STTD applied.
		power so	2. Balance of power I_{or} of the Node-B is
		that total	
		<u>transmit</u>	assigned to OCNS.
		power	3. Power divided equally between antennas.
		spectral	
		density of	
		Node B (lor)	
		adds to one	

Parameter	Units	Value	Comment
$\underline{CPICH} E_c / I_{or}$	DB	<u>-10</u>	
$\underline{CCPCH} E_c / I_{or}$	<u>DB</u>	<u>-12</u>	Mean power level is shared with SCH.
<u>SCH</u> E _c / I _{or}	<u>DB</u>	<u>-12</u>	Mean power level is shared with P- CCPCH – SCH includes P- and S-SCH, with power split between both. P-SCH code is S dl,0 as per [14] S-SCH pattern is scrambling code group 0
<u>PICH</u> E_c / I_{or}	<u>DB</u>	<u>-15</u>	
$\underline{HS}_{DSCH-1} E_c / I_{or}$	<u>DB</u>	<u>-10</u>	HS-DSCH associated with HS-SCCH-1
$\frac{\text{HS-DSCH-2}}{E_c/I_{or}}$	<u>DB</u>	DTX	HS-DSCH associated with HS-SCCH-2
$\frac{\text{HS-DSCH-3}}{E_c} I_{or}$	<u>DB</u>	DTX	HS-DSCH associated with HS-SCCH-3
$\frac{\text{HS-DSCH-4}}{E_c} I_{or}$	<u>DB</u>	DTX	HS-DSCH associated with HS-SCCH-4
$\underline{DPCH} E_c / I_{or}$	<u>DB</u>	<u>-8</u>	12.2 kbps DL reference measurement channel as defined in Annex C.3.1
$\underline{HS-SCCH-1} E_c / I_{or}$	<u>DB</u>	Test Specific	<u>All HS-SCCH's allocated equal</u> E_c / I_{or}
$\underline{HS-SCCH-2} E_c / I_{or}$	DB		<u>Specifies</u> E_c / I_{or} when TTI is active.
$\underline{HS\text{-}SCCH-3}E_c/I_{or}$	<u>DB</u>]	
$\underline{HS}\underline{SCCH}\underline{4}_{c}/I_{or}$	<u>DB</u>		
$\underline{OCNS} E_c / I_{or}$	<u>DB</u>	Remaining power at Node-B (including HS- SCCH power allocation when HS-SCCH's inactive).	OCNS interference consists of 6 dedicated data channels as specified in table E.5.5

Table E.5.4: Downlink physical channels for HSDPA receiver testing for HS-SCCH detection performance

E.5.2 OCNS Definition

The selected channelization codes and relative power levels for OCNS transmission during for HSDPA performance assessment are defined in Table E.5.5. The selected codes are designed to have a single length-16 parent code.

|--|

Channelization Code at SF=128	Relative Level setting (dB)	DPCH Data
<u>2</u>	<u>-6</u>	The DPCH data for each
<u>3</u>	<u>-8</u>	channelization code shall be
<u>4</u>	<u>-8</u>	uncorrelated with each other and
<u>5</u>	<u>-10</u>	with any wanted signal over the
<u>6</u>	<u>-7</u>	period of any measurement.
7	-9	

Т1-031625 ж

•		CE	R-Form-v7					
	CHANGE REQUEST							
ж	34.121 CR 312 #rev 1 [#]	Current version: 5.1.1	£					
For <u>HELP</u> on	using this form, see bottom of this page or look at t	he pop-up text over the	ools.					
Proposed change	e affects: UICC apps೫ ME X Radio	Access Network Core Netw	vork					
Title:	New test requirements for Demodulation of HS- single link performance	DSCH (fixed reference channel))					
Source:	f Motorola							
Work item code:	HSDPA-Test	Date:						
Category:	 B Use <u>one</u> of the following categories: F (correction) A (corresponds to a correction in an earlier relea B (addition of feature), C (functional modification of feature) D (editorial modification) Detailed explanations of the above categories can be found in 3GPP <u>TR 21.900</u>. 	Release: # Rel-5 Use <u>one</u> of the following releas 2 (GSM Phase 2) se) R96 (Release 1996) R97 (Release 1997) R98 (Release 1998) R99 (Release 1999) Rel-4 (Release 4) Rel-5 (Release 5) Rel-6 (Release 6)	ses:					

Reason for change:	# Addition of tests in support of HSDPA for FDD
Summary of change:	How section added, with tests required for support of HSDPA.
Consequences if	# HSDPA cannot be tested.
not approved:	
Clauses affected:	光 9.2.1
	YN
Other specs	新 Other core specifications
affected:	Test specifications
	O&M Specifications

Other comments: # This CR is linked to the approval of CR 311. Also this CR applies for Rel-5 and later releases.

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

9.2.1 Single Link Performance

9.2.1.1 Definition and applicability

The receiver single link performance of the High Speed Physical Downlink Shared Channel (HS-DSCH) in different multi-path fading environments are determined by the information bit throughput R.

The UE shall be tested only according to the data rate, supported. The data-rate corresponding requirements shall apply to the UE.

The requirements and this test apply to all types of UTRA for the FDD UE for Release 5 and later releases that support HSDPA.

9.2.1.2 Minimum requirements

<u>Requirements for a particular UE belonging to certain HS-DSCH category are determined according to Table 9.2.1.1.</u> <u>During the Fixed Reference Channel (FRC) tests the behaviour of the Node-B emulator in response to the ACK/NACK signalling field of the HS-DPCCH is specified in Table 9.2.1.2.</u>

Table 9.2.1.1: Mapping between HS-DSCH category and FRC

HS-DSCH category	Corresponding requirement
Category 1	<u>H-Set 1</u>
Category 2	<u>H-Set 1</u>
Category 3	<u>H-Set 2</u>
Category 4	<u>H-Set 2</u>
Category 5	<u>H-Set 3</u>
Category 6	<u>H-Set 3</u>
Category 11	H-Set 4
Category 12	<u>H-Set 5</u>

Table 9.2.1.2: Node-B Emulator Behaviour in response to ACK/NACK/DTX

HS-DPCCH ACK/NACK	Node-B Emulator Behaviour
Field State	
ACK	ACK: new transmission using 1 st redundancy version (RV)
NACK	NACK: retransmission using the next RV (up to the maximum permitted number or RV's)
DTX	DTX: retransmission using the RV previously transmitted to the same H-ARQ process

For the parameters specified in Table 9.2.1.3, 9.2.1.5, 9.2.1.7 the requirements are specified in terms of minimum information bit throuhput R as shown in Table 9.2.1.4, 9.2.1.6, 9.2.1.8, and 9.2.1.9 for QPSK and 16QAM and for the DL reference channels specified in Annex C.8.1.

Table 9.2.1.3: Test Parameters for Testing QPSK FRCs H-Set 1/H-Set 2/H-Set 3

Parameter	<u>Unit</u>	Test 1	Test 2	Test 3	Test 4
Phase reference	Phase reference dBm/3.84 MHz		P-CPICH		
			<u>-6</u>	<u>0</u>	
Redundancy and constellation version coding sequence			<u>{0,2</u> ,	<u>5,6}</u>	
Maximum number of HARQ transmission			4		

Table 9.2.1.4: Minimum requirement QPSK, Fixed Reference Channel (FRC) H-Set 1/2/3

Test	Propagation	n Reference value						
Number	Conditions	HS-PDSCH	<u>T-put_R_(kbps) *</u>	<u>T-put_R_(kbps) *</u>				
		E_c / I_{or} (dB)	$\hat{I}_{or} / I_{oc} = 0 \text{ dB}$	$\hat{I}_{or}/I_{oc} = 10 \text{ dB}$				
1	PA3	<u>-6</u>	<u>65</u>	<u>309</u>				
<u> </u>	<u>1 A0</u>	<u>-3</u>	<u>N/A</u>	<u>423</u>				
2	PB3	<u>-6</u>	<u>23</u>	<u>181</u>				
<u> </u>	<u>1 D5</u>	<u>-3</u>	<u>138</u>	<u>287</u>				
2	VA30	<u>-6</u>	<u>22</u>	<u>190</u>				
<u>3</u>	<u>VA30</u>	<u>-3</u>	<u>142</u>	<u>295</u>				
4	V/A 100	-6	<u>13</u>	<u>181</u>				
<u>4</u>	<u>VA120</u>	<u>-3</u>	<u>140</u>	275				
* Notes:	1) The reference	value R is for the Fixed Ref	erence Channel (FRC) H-Set	1				
	2) For Fixed Refe	rence Channel (FRC) H-Se	et 2 the reference values for R	should be scaled				
	(multiplied by 1.5	and rounding to the neares	t integer t-put in kbps, where	values of i+1/2 are				
	rounded up to i+1, i integer)							
	3) For Fixed Refe	rence Channel (FRC) H-Se	t 3 the reference values for R	should be scaled				
	(multiplied by 3 ar	nd rounding to the nearest i	nteger t-put in kbps, where va	lues of i+1/2 are rounded				
	up to i+1, i integer	<u>r)</u>						

Table 9.2.1.5: Test Parameters for Testing 16-QAM FRCs H-Set 1/H-Set 2/H-Set 3

Parameter	<u>Unit</u>	Test 1	Test 2	Test 3	Test 4
Phase reference	<u>dBm/3.84 MHz</u>		P-CF	PICH	
		<u>-60</u>			
Redundancy and constellation version coding sequence	constellation version		<u>{6,2,1,5}</u>		
Maximum number of HARQ transmission			4	<u> </u>	

Table 9.2.1.6: Minimum requirement 16QAM, Fixed Reference Channel (FRC) H-Set 1/2/3

Test	Propagation	ropagation Reference value					
<u>Number</u>	<u>Conditions</u>	$\frac{\text{HS-PDSCH}}{E_c / I_{or}} (\text{dB})$	$\frac{\text{T-put } R}{\hat{I}_{or} / I_{oc}} = 10 \text{ dB}$				
<u>1</u>	PA3	-6 -3	<u>198</u> <u>368</u>				
<u>2</u>	PB3	<u>-6</u> -3	<u>34</u> 219				
<u>3</u>	<u>VA30</u>	- <u>6</u> -3	<u>47</u> 214				
<u>4</u>	<u>VA120</u>	-6 -3	<u>28</u> <u>167</u>				

* Notes:	1)The reference value R is for the Fixed Reference Channel (FRC) H-Set 1
	2) For Fixed Reference Channel (FRC) H-Set 2 the reference values for R
	should be scaled (multiplied by 1.5 and rounding to the nearest integer t-put in
	kbps, where values of i+1/2 are rounded up to i+1, i integer)
	3) For Fixed Reference Channel (FRC) H-Set 3 the reference values for R
	should be scaled (multiplied by 3 and rounding to the nearest integer t-put in
	kbps, where values of i+1/2 are rounded up to i+1, i integer)

Table 9.2.1.7: Test Parameters for Testing QPSK FRCs H-Set 4/H-Set 5

Parameter	Unit	Test 1	Test 3	Test 4		
Phase reference			<u>P-C</u>	PICH		
I _{oc}	<u>dBm/3.84 MHz</u>	<u>-60</u>				
Redundancy and constellation version coding sequence			<u>{0,2</u>	<u>,5,6}</u>		
Maximum number of HARQ transmission				<u>4</u>		

Table 9.2.1.8: Minimum requirement QPSK, Fixed Reference Channel (FRC) H-Set 4

Test	Propagation	Reference value						
<u>Number</u>	Conditions	$\frac{\text{HS-PDSCH}}{E_c/I_{or}}$	$\frac{\text{T-put } R (kbps) *}{\hat{I}_{or} / I_{oc} = 0 \text{ Db}}$	$\frac{\text{T-put } R \text{ (kbps) *}}{\hat{I}_{or} / I_{oc} = 10 \text{ dB}}$				
1	PA3	<u>-6</u>	72	340				
<u> </u>	<u>PA3</u>	<u>-3</u>	<u>N/A</u>	<u>439</u>				
2	PB3	- <mark>-</mark>	<u>24</u>	<u>186</u>				
<u> </u>	<u>FD3</u>	- <u>3</u>	<u>142</u>	<u>299</u>				
2	<u>VA30</u>	<u>-6</u>	<u>19</u>	<u>183</u>				
<u>3</u>	<u>VA30</u>	<u>-3</u>	<u>148</u>	<u>306</u>				
4	VA120	<u>-6</u>	<u>11</u>	<u>170</u>				
<u>4</u>	<u>vai20</u>	<u>-3</u>	<u>144</u>	<u>284</u>				
* Notes: 1) The reference value R is for the Fixed Reference Channel (FRC) H-Set 4								

Table 9.2.1.9: Minimum requirement QPSK, Fixed Reference Channel (FRC) H-Set 5

Test	Propagation				
<u>Number</u>	<u>Conditions</u>	$\frac{\text{HS-PDSCH}}{E_c/I_{or}}$	$\frac{\text{T-put } R}{\hat{I}_{or} / I_{oc}} = 0 \text{ dB}$	$\frac{\text{T-put } R \text{ (kbps) *}}{\hat{I}_{or} / I_{oc} = 10 \text{ dB}}$	
1	<u>PA3</u>	-6	<u>98</u>	<u>464</u>	
<u> </u>	<u>FA3</u>	<u> </u>	<u>221</u>	<u>635</u>	
2	PB3	<u> </u>	<u>35</u>	<u>272</u>	
<u>2</u>		- <u>3</u>	<u>207</u>	<u>431</u>	
2	VA30	-6	<u>33</u>	<u>285</u>	
<u>3</u>	<u>VA30</u>	<mark>.</mark>	<u>213</u>	<u>443</u>	
4	VA120	6	<u>20</u>	<u>272</u>	
<u>4</u>	<u>VA120</u>	<mark>.</mark>	<u>210</u>	<u>413</u>	
	* Notes: 1) The	e reference value R is for the	ne Fixed Reference Channel (FRC) H-Set 5	

The reference for this requirement is TS 25.101 [1] clauses 9.2.1.1, 9.2.1.2 and 9.2.1.3.

9.2.1.3 Test purpose

To verify the ability of the receiver to receive a predefined test signal, representing a multi-path fading channel with information bit throughput R not exceeding a specified value.

9.2.1.4	Method of test
9.2.1.4.1	Initial conditions
<u>FFS</u>	
9.2.1.4.2	Procedure
<u>FFS</u>	
<u>9.2.1.5</u>	Test Requirements
<u>FFS</u>	

Т1-031426 ж

Budupest 0 1									
CHANGE REQUEST									
ж	34.121 CR 313 #rev 1 [#]	Current version: 5.1.1							
For HELP on using this form, see bottom of this page or look at the pop-up text over the % symbols. Proposed change affects: UICC apps% MEX Radio Access Network Core Network									
Title:	New test requirements for reporting of HS-DSC AWGN propagation conditions	H Channel Quality Indicator (CQI)							
Source:	# Motorola								
Work item code:	₭ HSDPA-Test	Date:							
Category:	 B Use <u>one</u> of the following categories: F (correction) A (corresponds to a correction in an earlier releating B (addition of feature), C (functional modification of feature) D (editorial modification) Detailed explanations of the above categories can be found in 3GPP <u>TR 21.900</u>. 	Release: %Rel-5Use oneof the following releases:2(GSM Phase 2)ase)R96(Release 1996)R97(Release 1997)R98(Release 1998)R99(Release 1999)Rel-4(Release 4)Rel-5(Release 5)Rel-6(Release 6)							

Reason for change: ३	Addition of tests in support of HSDPA for FDD
Summary of change: 3	New section added, with tests required for support of HSDPA.
Consequences if a	HSDPA cannot be tested.
not approved:	
Clauses affected: 3	9.3.1

Other specs affected:	Ħ	Y	Other core Test spec O&M Spe		ж	
Other comments:	Ħ		CR is linke releases.	d to the approva	al of CF	R 311. Also this CR applies for Rel-5 and

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

9.3.1 AWGN Propagation Conditions

9.3.1.1 Definition and applicability

The reporting accuracy of channel quality indicator (CQI) under AWGN environments is determined by the reporting variance and the BLER performance using the transport format indicated by the reported CQI median.

The UE shall be tested only according to the data rate, supported. The data-rate-corresponding requirements shall apply to the UE.

The requirements and this test apply to all types of UTRA for the FDD UE for Release 5 and later releases that support HSDPA.

9.3.1.2 Minimum requirements

For the parameters specified in Table 9.3.1.1 and 9.3.1.2, the the reported CQI value shall be in the range of +/-2 of the reported median more than 90% of the time. If the HS-PDSCH packet error rate (PER) using transport format indicated by median CQI is less than 0.1, PER using transport format indicated by (median CQI +2) shall be larger than 0.1. If the HS-PDSCH packet error rate (PER) using transport format indicated by median CQI is larger than 0.1, PER using transport format indicated by median CQI is larger than 0.1, PER using transport format indicated by median CQI is larger than 0.1, PER using transport format indicated by median CQI is larger than 0.1, PER using transport format indicated by (median CQI -1) shall be less than 0.1.

Parameter	<u>Unit</u>	<u>Test 1</u>	Test 2	Test 3		
\hat{I}_{or} / I_{oc}	<u>dB</u>	<u>0</u> <u>5</u>		<u>10</u>		
I _{oc}	<u>dBm/3.84 MHz</u>		<u>-60</u>			
Phase reference	=		P-CPICH			
$\underline{\text{HS-PDSCH}} E_c / I_{or} (*)$	<u>dB</u>		<u>-3</u>			
<u>HS-SCCH</u> E_c / I_{or}	<u>dB</u>		<u>-10</u>			
$\underline{DPCH} E_c / I_{or}$	<u>dB</u>		<u>-10</u>			
Maximum number of H-ARQ transmission	-	1				
Number of HS-SCCH set to be monitored	Ξ	1				
CQI feedback cycle	<u>ms</u>	<u>2</u>				
CQI repetition factor		<u>1</u>				
HS-DSCH transmission pattern	=	<u>"XOOXOOX" to incorporate inter-TTI=3</u> <u>UEs, where "X" indicates TTI in which HS-</u> <u>PDSCH is allocated to the UE, and "O"</u> indicates DTX				
Note2: TF for HS-PDSC based on mediar	wer offset "T" is co H is configured acc CQI, median CQI ers are configured	cording to the -1, median C	reported CQI sta QI+2 are used.	Other physical		

Table 9.3.1.1: Test Parameter for CQI: categories 1-6

Parameter	<u>Unit</u>	Test 1	Test 2				
\hat{I}_{or} / I_{oc}	<u>dB</u>	<u>0</u>	<u>5</u>				
I _{oc}	<u>dBm/3.84 MHz</u>	<u>-60</u>	<u>)</u>				
Phase reference	-	P-CP	ICH				
$\underline{HS-PDSCH} E_c / I_{or} (\overset{*}{})$	<u>dB</u>	<u>-3</u>					
<u>HS-SCCH</u> E_c / I_{or}	<u>dB</u>	<u>-1(</u>	<u>)</u>				
$\underline{DPCH} E_c / I_{or}$	<u>dB</u>	<u>-1(</u>	<u>)</u>				
Maximum number of H-ARQ transmission	=	1					
Number of HS-SCCH set to be monitored	<u>_</u>	<u>1</u>					
CQI feedback cycle	<u>ms</u>	2					
CQI repetition factor	-	1					
HS-DSCH transmission pattern	2	<u>"XOOXOOX", where "X" indicates TTI in</u> which HS-PDSCH is allocated to the UE, and "O" indicates DTX					
Note1: Measurement p	Note1: Measurement power offset "Γ" is configured by RRC accordingly						
	Note2: TF for HS-PDSCH is configured according to the reported CQI statistics. TF						
	based on median CQI, median CQI -1, median CQI+2 are used. Other						
physical chann table described		nfigured according to th	e CQI maping				

Table 9.3.1.2: Test Parameter for CQI: categories 11,12

The reference for this requirement is TS 25.101 [1] clauses 9.3.1.1 and 9.2.1.2.

9.3.1.3 Test purpose

To verify the UE reciver is capable of reporting the channel quality indicator (CQI) under AWGN by the reporting variance and the BLER performance using the transport format indicated by the reported CQI median such that CQI reported by the UE falls within the acceptable range.

9.3.1.4 Method of test

9.3.1.4.1 Initial conditions

<u>FFS</u>

9.3.1.4.2 Procedure

<u>FFS</u>

9.3.1.5 Test Requirements

<u>FFS</u>

3GPP TSG-T1 Meeting #21 Budapest ,Hungary, 03 November – 07 November

Tdoc #T1-031627

CHANGE REQUEST							CR-Form-v7				
ж		<mark>34.121</mark>	CR	306	ж re \	/ 1	ж	Current vers	sion:	5.1.1	ж
For <mark>HELP</mark> or	For HELP on using this form, see bottom of this page or look at the pop-up text over the <i>X</i> symbols.										
Proposed chang	ye a	ffects: (JICC a	pps#	ME[X Ra	adio A	Access Netwo	rk	Core Ne	etwork
Title:	ж	Correction	n to F.′	1.5 Requireme	ents for	suppo	ort of	RRM			
Source:	ж	Anritsu									
Work item code:	:Ж							<i>Date:</i> ೫	6/11/	2003	
Category:		Use <u>one</u> of F (cor A (cor B (ado C (fun D (edi	rection) respond lition of ctional torial m planatio	ds to a correction feature), modification of the odification of the odification of the odification of the above of the abo	n in an (feature)			Release: # Use <u>one</u> of 2 8e) R96 R97 R98 R99 Rel-4 Rel-5 Rel-6	the follo (GSM I (Releas (Releas (Releas	owing rele Phase 2) se 1996) se 1997) se 1998) se 1999) se 4) se 5)	eases:

Reason for change:	ж	Incorrect description in F.1.5 Requirements.
Summary of change	:¥	Update of F.1.5.
Consequences if not approved:	Ħ	F.1.5 Requirements will not be valid for test cases.
Clauses affected:	ж	Annex F.1.5

Other specs affected:	ж	Y	Χ	Other core specifications # Test specifications O&M Specifications	
Other comments:	ж				

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

F.1.5 Requirements for support of RRM

Table F.1.5: Maximum Test System Uncertainty for Radio Resource Management Tests

Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
8.2 Idle Mode Tasks		
8.2.2 Cell Re-Selection		
8.2.2.1 Scenario 1: Single carrier case	$ \begin{array}{ccc} \hat{I}_{or}/I_{oc} & \pm 0.3 \text{ dB} \\ I_{oc} & \pm 1.0 \text{ dB} \\ \underline{CPICH _ E_c} & \pm 0.1 \text{ dB} \end{array} $	0.1 dB uncertainty in CPICH_Ec ratio
	$\frac{CPICH_E_c}{I_{or}} = \pm 0.1 \text{ dB}$	0.3 dB uncertainty in \hat{I}_{or}/I_{oc}
		based on power meter measurement after the combiner
		The absolute error of the AWGN is specified as 1.0 dB.
8.2.2.2 Scenario 2: Multi carrier case	\hat{I}_{or}/I_{oc} ±0.3 dB I_{oc} ±1.0 dB	0.1 dB uncertainty in CPICH_Ec ratio
	I_{oc1}/I_{oc2} ±0.3 dB	0.3 dB uncertainty in \hat{I}_{or}/I_{oc}
	$\frac{CPICH_E_c}{I_{or}} = \pm 0.1 \text{ dB}$	based on power meter measurement after the combiner
		0.3 dB uncertainty in loc1/loc2 based on power meter measurement after the combiner
		Overall error for the CPICH_Ec/lo is the sum of the \hat{I}_{or}/I_{oc} ratio error and the CPICH_Ec/lor ratio.
		The absolute error of the AWGN is specified as 1.0 dB.
8.2.3 UTRAN to GSM Cell Re-Selection		

Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
8.2.3.1 Scenario 1: Both UTRA and GSM level changed	$ \begin{array}{ccc} \hat{I}_{or}/I_{oc} & \pm 0.3 \text{ dB} \\ I_{oc}/RXLEV & \pm 0.3 \text{ dB} \\ I_{oc} & \pm 1.0 \text{ dB} \end{array} $	0.1 dB uncertainty in CPICH_Ec ratio
	RXLEV ±1.0 dB	0.3 dB uncertainty in \hat{I}_{or}/I_{oc}
	$\frac{CPICH_E_c}{I_{or}} = \pm 0.1 \text{ dB}$	based on power meter measurement after the combiner
		0.3 dB uncertainty in loc/RXLEV based on power meter measurement after the combiner
		The absolute error of the AWGN is specified as 1.0 dB.
		The absolute error of the RXLEV is specified as 1.0 dB.
8.2.3.2 Scenario 2: Only UTRA level changed	$ \begin{array}{ccc} \hat{I}_{or}/I_{oc} & \pm 0.3 \text{ dB} \\ I_{oc}/RXLEV & \pm 0.3 \text{ dB} \\ I_{oc} & \pm 1.0 \text{ dB} \\ RXLEV & \pm 1.0 \text{ dB} \end{array} $	Same as 8.2.3.1
	$\frac{CPICH _ E_c}{I_{or}} = \pm 0.1 \text{ dB}$	
8.2.4 FDD/TDD cell re-selection	$ \begin{array}{ccc} \hat{I}_{or}/I_{oc} & \pm 0.3 \text{ dB} \\ I_{oc} & \pm 1.0 \text{ dB} \\ I_{oc1}/I_{oc2} & \pm 0.3 \text{ dB} \end{array} $	Same as 8.2.2.2
	$\frac{CPICH_E_c}{I_{or}} = \pm 0.1 \text{ dB}$	
8.3 UTRAN Connected Mode Mobility		
8.3.1 FDD/FDD Soft Handover	TBD	No test case
8.3.2 FDD/FDD Hard Handover 8.3.3 FDD/TDD Handover	TBD TBD	
8.3.4 Inter-system Handover fromform UTRAN FDD to GSM	TBD	
8.3.5 Cell Re-selection in CELL_FACH		

Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
8.3.5.1 One frequency present in the neighbour list	$\frac{During T1 and T2:}{CPICH _ E_c} = \pm 0.1 dB$	
	I I I I I I I I I I I I I I I I I I I	
	I_{oc} ±1.0 dB	
	$\frac{\text{During T1:}}{I_{or}(2)} \pm 0.7 \text{ dB}$	
	I_{or} (1, 3, 4, 5, 6) relative to I_{or} (2) ±0.3 dB	
	$\frac{\text{During T2:}}{I_{or}(1)} \pm 0.7 \text{ dB}$	
	I_{or} (2, 3, 4, 5, 6) relative to I_{or} (1) ±0.3 dB	
	Assumptions: a) The contributing uncertainties for lor(r loc are derived according to ETR 273-1- factor of k=2.	
	b) Within each cell, the uncertainty for lo ratio are uncorrelated to each other.	r(n), and channel power
	c) The relative uncertainties for lor(n) ac any amount of positive correlation from a (fully correlated).	
	d) Across different cells, the channel por have any amount of positive correlation one (fully correlated).	
	e) The uncertainty for loc and lor(n) may positive correlation from zero (uncorrelation	
	f) The absolute uncertainty of lor(2) at T uncertainty of lor(1, 3, 4, 5, 6), are uncon Similarly, the absolute uncertainty of lor(uncertainty of lor(2, 3, 4, 5, 6), are uncon	rrelated to each other. (1) at T2 and the relative
	An explanation of correlation between uncert behind the assumptions, is to be recorded in	

Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
8.3.5.2 Two frequencies present in the	Channel 1 during T1 and T2:	
neighbour list	$\frac{CPICH _ E_c}{+0.1 \text{ dB}}$	
	$\frac{1}{I_{or}} = \frac{1}{1} \frac{1}{$	
	or	
	I_{oc} (1) ±1.0 dB	
	Channel 1 during T1:	
	$I_{or}(1)$ ±0.7 dB	
	I_{or} (3, 4) relative to I_{or} (1) ±0.3 dB	
	Channel 1 during T2:	
	$I_{or}(1)$ ±0.7 dB	
	I_{or} (3, 4) relative to I_{or} (1) ±0.3 dB	
	Channel 2 during T1 and T2:	
	$\frac{CPICH _E_c}{1 \text{ dB}}$	
	$\frac{1}{I_{or}} = \pm 0.1 \text{ dB}$	
	I_{oc} (2) ±1.0 dB	
	Channel 2 during T1:	
	$I_{or}(2)$ ±0.7 dB	
	$I_{\it or}$ (5, 6) relative to $I_{\it or}$ (2) ±0.3 dB	
	Channel 2 during T2:	
	I_{or} (2) ±0.7 dB	
	$I_{\it or}$ (5, 6) relative to $I_{\it or}$ (2) $$ ±0.3 dB	
	Assumptions: a) to e): Same as for the one-frequency	test 8.3.5.1.
	f) The absolute uncertainty of lor(1) and	
	lor(3, 4), are uncorrelated to each other, uncertainty of lor(2) and the relative unc uncorrelated to each other.	Similarly, the absolute
	g) The absolute uncertainties for lor(1) a amount of positive correlation from zero correlated).	
	h) The absolute uncertainties for loc(1) amount of positive correlation from zero correlated).	
	An explanation of correlation between uncer behind the assumptions, is to be recorded in	
8.3.5.3 Cell Re-selection to GSM 8.3.6 Cell Re-selection in CELL_PCH	TBD	
8.3.6.1 One frequency present in the	Same as 8.2.2.1	Same as 8.2.2.1
neighbour list		

Clause	Maximum Test System Uncertainty	Derivation of Test System
		Uncertainty
8.3.6.2 Two frequencies present in the neighbour list	Same as 8.2.2.2	Same as 8.2.2.2
8.3.7 Cell Re-selection in URA_PCH 8.3.7.1 One frequency present in the	Same as 8.2.2.1	Same as 8.2.2.1
neighbour list 8.3.7.2 Two frequencies present in the neighbour list	Same as 8.2.2.2	Same as 8.2.2.2
8.4 RRC Connection Control	TBD	
8.4.1 RRC Re-establishment delay	TBD	
8.4.2 Random Access	Settings. \hat{I}_{or}/I_{oc} ±0.3 dB	0.1 dB uncertainty in AICH_Ec ratio
	I_{oc} ±1.0 dB	0.3 dB uncertainty in $\hat{I}_{\it or}/I_{\it oc}$
	$\frac{AICH_E_c}{I_{or}}$ ±0.1 dB	based on power meter measurement after the combiner
		Overall error is the sum of the
		$\hat{I}_{_{or}}/I_{_{oc}}$ ratio error and the AICH_Ec/lor ratio.
		The absolute error of the AWGN is specified as 1.0 dB
	Measurements: Power difference. ± 1dB Maximum Power: same as 5.5.2	Power difference: Assume symmetric meas error ±1.0 dB comprising RSS of: - 0.7 dB downlink error plus -0.7 dB meas error.
		Maximum Power: Assume asymmetric meas error -1.0 dB / 0.7 dB comprising RSS of: -0.7 dB downlink error plus -0.7 dB meas error, and +0.7 dB for upper limit
8.4.3 Transport format combination selection in UE	TBD	
8.5 Timing and Signalling Characteristics		
8.5.1 UE Transmit Timing	<i>I_{or}</i> ±1.0 dB	0.1 dB uncertainty in DPCH_Ec ratio
	I_{or1}/I_{or2} ±0.3 dB	
	$\frac{DPCH_E_c}{I_{or}} = \pm 0.1 \text{ dB}$	0.3 dB uncertainty in lor1/lor2 based on power meter measurement after the combiner
		The absolute error of the lor is specified as 1.0 dB.
8.6 UE Measurements Procedures		
8.6.1 FDD intra frequency measurements 8.6.1.1 Event triggered reporting in	TBD	
AWGN propagation conditions 8.6.1.2 Event triggered reporting of	ТВD	
multiple neighbours in AWGN propagation condition		
8.6.1.3 Event triggered reporting of two detectable neighbours in AWGN propagation condition	TBD	

	Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
fading propagati	eporting of neighbours in on condition	TBD	
8.6.2 FDD inter	frequency measurements		
8.6.2.1 Correct r AWGN propagat	eporting of neighbours in	TBD	
Fading propagat	eporting of neighbours in ion condition	TBD	
8.6.3 TDD meas		TBD	
8.6.3.1Correct re neighbours in Al condition	eporting of TDD WGN propagation	TBD	
8.6.4 GSM Meas	surement	TBD	
8.7 Measuremer Requirements	nts Performance		
8.7.1 CPICH RS			0
accuracy	juency measurements	\hat{I}_{or}/I_{oc} ±0.3 dB I_{oc} ±1.0 dB	Same as 8.2.2.1
		$\frac{CPICH _E_c}{+0.1 \text{ dB}}$	
9712 Inter free	uency measurement	I_{or} ±0.3 dB	Same as 8.2.2.2
accuracy	dency measurement	I_{oc} ±0.3 dB I_{oc} ±1.0 dB	Same as 0.2.2.2
		I_{oc1}/I_{oc2} ±0.3 dB	
		CPICH E	
		$\frac{I - C}{I_{or}} = \pm 0.1 \text{ dB}$	
8.7.2 CPICH Ec/			
8.7.4 <u>2</u> .1 Intra fre	equency measurements	\hat{I}_{or}/I_{oc} ±0.3 dB I_{oc} ±1.0 dB	Same as 8.2.2.1
		$\frac{CPICH _ E_c}{\Box} = \pm 0.1 \text{ dB}$	
		$\frac{1-1-1-1-c}{I_{or}} = \pm 0.1 \text{ dB}$	
8.7.42.2 Inter fre accuracy	equency measurement	$\frac{I_{or}}{\hat{I}_{or}/I_{oc}} = \pm 0.3 \text{ dB}$	Same as 8.2.2.2
		I_{oc} ±1.0 dB I_{oc1}/I_{oc2} ±0.3 dB	
		$\frac{CPICH - E_c}{C} \rightarrow 0.1 \text{ dB}$	
		$\frac{1}{I_{or}} = \frac{1}{2} \frac{1}{L_{or}} = \pm 0.1 \text{ dB}$	
8.7.3 <mark>A</mark> UTRA Ca	arrier RSSI	\hat{I}_{or}/I_{oc} ±0.3 dB	0.3 dB uncertainty in \hat{I}_{or}/I_{oc}
		I_{oc} ±1.0 dB I_{oc1}/I_{oc2} ±0.3 dB	based on power meter measurement after the combiner
			0.3 dB uncertainty in loc1/loc2 based on power meter measurement after the combiner
			The absolute error of the AWGN is specified as 1.0 dB
8.7.3A GSM Car	rier RSSI	TBD	
8.7.3B Transpor	t channel BLER	TBD	
8.7.3C UE Trans	smitted power	Mean power measurement ±0,7 dB	Downlink parameters are unimportant.

Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
8.7.4 SFN-CFN observed time difference	TBD	
8.7.5 SFN-SFN observed time difference	TBD	
8.7.6 UE Rx-Tx time difference	\hat{I}_{or}/I_{oc} ±0.3 dB	0.3 dB uncertainty in \hat{I}_{or}/I_{oc}
	<i>I_{oc}</i> ±1.0 dB	based on power meter measurement after the
	Rx-Tx Timing Accuracy [±0.5 chip]	combiner
		The absolute error of the AWGN is specified as 1.0 dB.
8.7.7 Observed time difference to GSM cell	TBD	
8.7.8 P-CCPCH RSCP	TBD	

3GPP TSG-T WG1 Meeting #21 Budapest, Hungary, 3 - 7 November 2003

Tdoc #T1-031652

CHANGE REQUEST					
¥	34.121 CR 331	Current versior	^{n:} 5.1.1 [#]		
For <mark>HELP</mark> or	using this form, see bottom of this page or look at the	pop-up text ov	ver the X symbols.		
Proposed chang	e affects: UICC apps# ME X Radio Acc	cess Network	Core Network		
Title:	Correction to W-CDMA modulated interferer definit	ion			
Source:	# Agilent Technologies				
Work item code:	¥	Date: ೫ 🤞	6/11/2003		
Category:	 F Use one of the following categories: F (correction) A (corresponds to a correction in an earlier release) B (addition of feature), C (functional modification of feature) D (editorial modification) Detailed explanations of the above categories can be found in 3GPP <u>TR 21.900</u>. 	2 (G R96 (R R97 (R R98 (R R99 (R Rel-4 (R Rel-5 (R	Rel-5 e following releases: GSM Phase 2) Release 1996) Release 1997) Release 1998) Release 1999) Release 4) Release 5) Release 6)		

Reason for change: ೫	The control channels for the W-CDMA modulated interferer definition are not defined relative to the overall interferer power level.
Summary of change: Ж	In table E.4 the power of the control channels is modified to be relative to the power of the interferer.
Consequences if # not approved:	The current definition does not define the relative power between the control channel part and the OCNS part of the modulated interferer. Without this change the signal cannot be reliably generated and this may have consequences on the reliability of the tests that use the W-CDMA modulated interferer.

Clauses affected:	육 Annex E.4		
Other specs affected:	Y N % X Other core specifications % Test specifications 34.121 O&M Specifications 34.121		
Other comments:	X		

How to create CRs using this form: Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

1) Fill out the above form. The symbols above marked & contain pop-up help information about the field that they are closest to.

- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

E.4 W-CDMA Modulated Interferer

The W-CDMA modulated interferer consists of the downlink physical control channels defined in table E.4.1 plus the OCNS channels defined in Table E.3.6. The relative power of the OCNS channels shall be such that the power of the total signal adds up to one. In this subclause Ior refers to the power of the interferer. Table E.4.1 describes the downlink-Physical Control Channels that are transmitted as part of the W CDMA modulated interferer.

Table E.4.1: Spreading Code, Timing offsets and relative level settings for W-CDMA Modulated Interferer signal control channels.

Channel Type	Spreading Factor	Channelization Code	Timing offset (x256T _{chip})	Relative level setting (dB)Power	NOTE
P-CCPCH	256	1	0	$\frac{P-CCPCH Ec/lor = -10}{dB-1}$	
SCH	256	-	0	<u>SCH_Ec/lor = –10 dB</u> -4	The SCH power shall be divided equally between Primary and Secondary Synchronous channels
P-CPICH	256	0	0	$\frac{P-CPICH Ec/lor = -10}{dB-1}$	
PICH	256	16	16	$\underline{PICH}\underline{Ec/lor} = \underline{-15 \text{ dB}}\underline{-6}$	

See table E.3.6 for the definition of the 16 DPCH portion of the W-CDMA modulated interferer.

3GPP TSG-T1 Meeting #21 Budapest,Hungary, 03 November – 07 November

Tdoc **∺***T1-031692*

	CHANGE REQUEST					
ж	<mark>34.121</mark> CR <mark>330</mark> ⊮r	ev <mark>1</mark> [#]	Current vers	^{ion:} 5.1.1 [#]		
For <mark>HELP</mark> or	n using this form, see bottom of this pag	ge or look at t	he pop-up text	over the X symbols.		
Proposed chang	e affects: UICC apps೫ №	IE X Radio	Access Networ	k Core Network		
Title:	# Correction on Random Access test	cases				
Source:	육 Anritsu					
Work item code:	æ		<i>Date:</i> ೫	7 /11/2003		
Category:	 F Use <u>one</u> of the following categories: F (correction) A (corresponds to a correction in a B (addition of feature), C (functional modification of feature) D (editorial modification) Detailed explanations of the above cate be found in 3GPP <u>TR 21.900</u>. 	re)	2 rse) R96 R97 R98 R99	Rel-5 the following releases: (GSM Phase 2) (Release 1996) (Release 1997) (Release 1998) (Release 1999) (Release 4) (Release 5) (Release 6)		

Reason for change:	# UE transmit power may reach 0dBm limit defined by "Maximum allowed UL TX power" parameter before completing the preamble cycle, and a good UE can not test correctly.
Summary of change.	 1) The value of Maximum allowed UL TX power on Table 8.4.2.1.2 is changed from 0dBm to +21dBm. 2) Change Table 8.4.2.1.6 to Correct behaviour when reaching maximum transmit power.
Consequences if not approved:	第 A good UE may not test correctly and may fail the test.

Clauses affected:	%
Other specs affected:	Y N X Other core specifications X X Test specifications X X O&M Specifications X
Other comments:	# This CR applies for R99 and for later releases.

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.

- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

8.4.2 Random Access

8.4.2.1 Correct behaviour when receiving an ACK

8.4.2.1.1 Definition and applicability

The random access procedure is used when establishing the layer 1 communication between the UE and UTRAN. The random access shall provide a fast access but without disturbing ongoing connections. The random access is specified in clause 6 of TS 25.214 [5] and the control of the RACH transmission is specified in clause 11.2 of TS 25.321. A random access transmit sequence is described in clause 6.7.2 of TS 25.303.

8.4.2.1.2 Minimum Requirements

The UE shall have capability to calculate initial power according to the open loop algorithm and apply this power level at the first preamble and increase the power on additional preambles. The absolute power applied to the first preamble shall have an accuracy as specified in table 6.3 of TS 25.101 [1]. The relative power applied to additional preambles shall have an accuracy as specified in clause 6.5.2.1 of 25.101 [1].

The absolute power applied to the first preamble shall be -30 dBm with an accuracy as specified in clause 6.4.1.1 of TS 25.101 [1]. The accuracy is \pm 9dB in the case of normal condition or \pm 12dB in the case of extreme condition.

There are two relative powers, one is the power difference for preamble ramping and another is the power difference between last preamble part and message part. From the test parameter in the table 8.4.2.1.2, the test requirement of the power difference for all preamble ramping is 3dB (Power offset P0). The accuracy is ± 2 dB as specified in clause 6.5.2.1 of 25.101 [1]. The test requirement of the power difference between 10th preamble PRACH and message part is 3 dB (note). The accuracy is ± 2 dB as specified in clause 6.5.2.1 of 25.101 [1].

NOTE: In order to calculate the power difference between 10^{th} preamble PRACH and message part by using Power offset P _{p-m} in the table 8.4.2.1.2, the gain factors of PRACH message part are needed. The gain factor β_d is set to15. The temporary gain factor β_c is set to 15.

The UE shall stop transmitting preambles upon a ACK on the AICH has been received and then transmit a message. The UE shall transmit 10 preambles and 1 message.

The normative reference for this requirements is TS 25.133 [2] clauses 6.3.2 and A.6.2.2.1.

8.4.2.1.3 Test purpose

The purpose of this test is to verify that the behaviour of the random access procedure is according to the requirements and that the PRACH power settings are within specified limits.

8.4.2.1.4 Method of test

8.4.2.1.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1) Connect the SS to the UE antenna connector as shown in figure A.1 in the case of the PRACH power measurement. And in the case of the function test of the random access procedure, connect the SS to the UE antenna connector as shown in figure A.8. A spectrum analyzer is set to 0 span mode.

See TS 34.108 [3] for details regarding generic call setup procedure.

Parameter	Unit	Cell 1
UTRA RF Channel Number		Channel 1
CPICH_Ec/lor	dB	-10
PCCPCH_Ec/lor	dB	-12
SCH_Ec/lor	dB	-12
Number of other transmitted Acquisition Indicators	-	0
AICH_Ec/lor	dB	-10
PICH_Ec/lor	dB	-15
OCNS_Ec/lor when an AI is not transmitted	dB	-0,941
OCNS_Ec/lor when an AI is transmitted	dB	-1,516
\hat{I}_{or}/I_{oc}	dB	0
I _{oc}	dBm/3. 84 MHz	-70
CPICH_Ec/lo	dB	-13
Propagation Condition		AWGN

The test parameters "System Information Block (SIB) type 5 (ASC #0)" defined in clause 6.1 of TS 34.108 [3], shall be used in all random access tests (see note). Crucial parameters for the test requirements are repeated in tables 8.4.2.1.2 and A.8.4.3.1.3 and these overrule the parameters defined in SIB type 5.

NOTE: A parameter of AC-to-ASC mapping(AC0-9) in SIB5 of clause 6.1 of TS 34.108 [3] shall be set to 0 in the case of all random access tests. The EFACC of Type A, which is specified in clause 8.3.2.15 of TS 34.108 [3], shall be selected.

Parameter	Unit	Value
Access Service Class		
(ASC#0)		
	01	1
- Persistence value		
Maximum number of preamble		2
ramping cycles (M _{max}).		
Maximum number of		12
preambles in one preamble		
ramping cycle		
(Preamble Retrans Max)		
The backoff time T_{B01}	ms	N/A
N _{B01min=} N _{B01max}	#TTI	10
Power step when no	dB	3
acquisition indicator is		
received		
(Power offset P0)		
Power offset between the last	dB	0
transmitted preamble and the		
control part of the message		
(Power offset P p-m)	<u>i</u>	
Maximum allowed UL TX	dBm	<u> 021</u>
power		

Table 8.4.2.1.2: UE parameters for Random Access test

Parameter	Unit	Value
Primary CPICH DL TX power	dBm	-8
UL interference	dBm	-92
SIR in open loop power	dB	-10
control (Constant value)		
AICH Power Offset	dB	0

8.4.2.1.4.2 Procedure

1) A call is set up according to the Generic call setup procedure. The test parameters are set up according to table 8.4.2.1.1, table 8.4.2.1.2 and table 8.4.2.1.3. The PRACH procedure within the call setup is used for the test. It is necessary that an ACK on the AICH shall be transmitted after 10 preambles have been received by the SS

2) Set the TX output level of the SS to obtain \hat{I}_{or} at the UE antenna connector. \hat{I}_{or} shall be according to table 8.4.2.1.4.

<u>32</u>)Measure the first PRACH preamble output power, the each power difference for preamble ramping and the power difference between 10^{th} preamble PRACH and message part of the UE according to annex B.

43) Measure the number of the preamble part and the message part by using a spectrum analyzer.

8.4.2.1.5 Test requirements

The accuracy of the first preamble as specified in clause 6.4.1.1 of TS 25.101 [1] shall not be verified in this test. It is verified under the section 5.4.1, Open loop power control.

There are two relative powers, one is the power difference for preamble ramping and another is the power difference between last preamble part and message part. From the test parameter in the table 8.4.2.1.2, the test requirement of the power difference for all preamble ramping is 3dB (Power offset P0). The accuracy is ± 3 dB. The test requirement of the power difference between 10th preamble PRACH and message part (control + data) is 3 dB (note). The accuracy is ± 3 dB

Table 8.4.2.1.4:Test requirement for power difference

			Power difference between 10th preamble PRACH and message part (control+data)		
Test requirement	3dB	±3 dB	3dB	±3 dB	

NOTE: In order to calculate the power difference between 10th preamble PRACH and message part by using Power offset P _{p-m} in the table 8.4.2.1.2, the gain factors of PRACH message part are needed. The gain factor β_d is set to 15. The temporary gain factor β_c is set to 15.

The UE shall stop transmitting preambles upon a ACK on the AICH has been received and then transmit a message. The UE shall transmit 10 preambles and 1 message.

Parameter	Unit	Cell 1
UTRA RF Channel Number		Channel 1
CPICH_Ec/lor	dB	-10
PCCPCH_Ec/lor	dB	-12
SCH_Ec/lor	dB	-12
Number of other transmitted Acquisition Indicators	-	0
AICH_Ec/lor	dB	-10
PICH_Ec/lor	dB	-15
OCNS_Ec/lor when an AI is not transmitted	dB	-0,941
OCNS_Ec/lor when an AI is transmitted	dB	-1,516
\hat{I}_{or}/I_{oc}	dB	0
I _{oc}	dBm/3. 84 MHz	-70
CPICH_Ec/lo	dB	-13
Propagation Condition		AWGN

Table 8.4.2.1.5: RF Parameters for Random Access test

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.4.2.2 Correct behaviour when receiving an NACK

8.4.2.2.1 Definition and applicability

The random access procedure is used when establishing the layer 1 communication between the UE and UTRAN. The random access shall provide a fast access but without disturbing ongoing connections. The random access is specified in clause 6 of TS 25.214 and the control of the RACH transmission is specified in clause 11.2 of TS 25.321. A random access transmit sequence is described in clause 6.7.2 of TS 25.303.

8.4.2.2.2 Minimum Requirements

The UE shall stop transmitting preambles upon a NACK on the AICH has been received and then repeat the ramping procedure when the back off timer T_{B01} expires.

The UE shall transmit 10 preambles in the first ramping cycle and no transmission shall be done by the UE within 100 ms after the NACK has been transmitted by the SS. Then the UE shall start the second preamble ramping cycle.

The normative reference for this requirements is TS 25.133 [2] clauses 6.3.2 and A.6.2.2.2.

8.4.2.2.3 Test purpose

The purpose of this test is to verify that the behaviour of the random access procedure is according to the requirements.

8.4.2.2.4 Method of test

8.4.2.2.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1) Connect the SS to the UE antenna connector as shown in figure A.8. A spectrum analyzer is set to 0 span mode.

See TS 34.108 [3] for details regarding generic call setup procedure.

8.4.2.2.4.2 Procedure

 A call is set up according to the Generic call setup procedure. The test parameters are set up according to table 8.4.2.1.1, table 8.4.2.1.2 and table 8.4.2.1.3. The PRACH procedure within the call setup is used for the test. It is necessary that an NACK on the AICH shall be transmitted after 10 preambles have been received by the SS

2)Set the TX output level of the SS to obtain \hat{I}_{or} at the UE antenna connector. \hat{I}_{or} shall be according to table 8.4.2.1.4.

<u>3)2)</u>Measure the number of the preamble part and the time delay between 10th preamble in the first ramping cycle and first preamble in the second ramping cycle by using a spectrum analyzer.

8.4.2.2.5 Test requirements

The UE shall stop transmitting preambles upon a NACK on the AICH has been received and then repeat the ramping procedure when the back off timer T_{B01} expires.

The UE shall transmit 10 preambles in the first ramping cycle and no transmission shall be done by the UE within 100 ms after the NACK has been transmitted by the SS. Then the UE shall start the second preamble ramping cycle.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.4.2.3 Correct behaviour at Time-out

8.4.2.3.1 Definition and applicability

The random access procedure is used when establishing the layer 1 communication between the UE and UTRAN. The random access shall provide a fast access but without disturbing ongoing connections. The random access is specified in clause 6 of TS 25.214 and the control of the RACH transmission is specified in clause 11.2 of TS 25.321. A random access transmit sequence is described in clause 6.7.2 of TS 25.303.

8.4.2.3.2 Minimum Requirements

The UE shall stop transmit preambles when reaching the maximum number of preambles allowed in a cycle. The UE shall then repeat the ramping procedure until the maximum number of preamble ramping cycles are reached. No ACK/NACK shall be sent by SS during this test.

The UE shall transmit 2 preambles cycles, consisting of 12 preambles in each preamble cycle.

The normative reference for this requirements is TS 25.133 [2] clauses 6.3.2 and A.6.2.2.3.

8.4.2.3.3 Test purpose

The purpose of this test is to verify that the behaviour of the random access procedure is according to the requirements.

8.4.2.3.4 Method of test

8.4.2.3.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1) Connect the SS to the UE antenna connector as shown in figure A.8. A spectrum analyzer is set to 0 span mode.

See TS 34.108 [3] for details regarding generic call setup procedure.

Parameter	Unit	Value
Access Service Class		
(ASC#0)		
	01	4
- Persistence value		
Maximum number of preamble		2
ramping cycles (M_{max}).		
Maximum number of		12
preambles in one preamble		
ramping cycle		
(Preamble Retrans Max)		
The backoff time T _{B01}	ms	N/A
-N _{B01min=} N _{B01max}	#TTI	10
Power step when no	d₿	3
acquisition indicator is		
received		
(Power offset P0)		
Power offset between the last	d₿	0
transmitted preamble and the		
control part of the message		
(Power offset P p-m)		
Maximum allowed UL TX	dBm	21
power		

Table 8.4.2.1.6: UE parameters for correct behaviour at Time-out test

8.4.2.3.4.2 Procedure

 A call is set up according to the Generic call setup procedure. The test parameters are set up according to table 8.4.2.1.1, table 8.4.2.1.<u>3-2</u>, and table 8.4.2.1.<u>53</u>. The PRACH procedure within the call setup is used for the test. It is necessary that SS shall transmit no AICH.

2)Set the TX output level of the SS to obtain \hat{I}_{or} at the UE antenna connector. \hat{I}_{or} shall be according to table 8.4.2.1.1.

<u>3)2)</u>Measure the number of the preamble part by using a spectrum analyzer.

8.4.2.3.5 Test requirements

The UE shall stop transmit preambles when reaching the maximum number of preambles allowed in a cycle. The UE shall then repeat the ramping procedure until the maximum number of preamble ramping cycles are reached. No ACK/NACK shall be sent by SS during this test.

The UE shall transmit 2 preambles cycles, consisting of 12 preambles in each preamble cycle.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.4.2.4 Correct behaviour when reaching maximum transmit power

8.4.2.4.1 Definition and applicability

The random access procedure is used when establishing the layer 1 communication between the UE and UTRAN. The random access shall provide a fast access but without disturbing ongoing connections. The random access is specified in clause 6 of TS 25.214 and the control of the RACH transmission is specified in clause 11.2 of TS 25.321. A random access transmit sequence is described in clause 6.7.2 of TS 25.303.

8.4.2.4.2 Minimum Requirements

The UE shall not exceed the maximum allowed UL TX power configured by the SS. No ACK/NACK shall be sent by SS during this test.

The absolute power of any preambles belonging to the first or second preamble cycle shall not exceed 0 dBm with more than specified in section 6.5 of TS 25.133.

The normative reference for this requirements is TS 25.133 [2] clauses 6.3.2 and A.6.2.2.4.

8.4.2.4.3 Test purpose

The purpose of this test is to verify that the PRACH power settings are within specified limits.

8.4.2.4.4 Method of test

8.4.2.4.4.1 Initial condition

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1) Connect the SS to the UE antenna connector as shown in figure A.1.

See TS 34.108 [3] for details regarding generic call setup procedure.

Table 8.4.2.1.6: UE parameters for correct behaviour when reaching maximum transmit power

Parameter	Unit	Value
Access Service Class (ASC#0)		
- Persistence value	<u>01</u>	1
Maximum number of preamble ramping cycles (M _{max}).		2
Maximum number of preambles in one preamble ramping cycle (Preamble Retrans Max)		<u>12</u>
<u>The backoff time T_{B01}</u> <u>N_{B01min=}N_{B01max}</u>	<u>ms</u> <u>#TTI</u>	<u>N/A</u> <u>10</u>
Power step when no acquisition indicator is received (Power offset P0)	<u>dB</u>	3
Power offset between the last transmitted preamble and the control part of the message (Power offset P p-m)	<u>dB</u>	<u>0</u>
Maximum allowed UL TX power	<u>dBm</u>	<u>0</u>

8.4.2.4.4.2

- Procedure
- 1) A call is set up according to the Generic call setup procedure. The test parameters are set up according to table 8.4.2.1.1, table 8.4.2.1.2-3 and table 8.4.2.1.36. The PRACH procedure within the call setup is used for the test. It is necessary that SS shall transmit no AICH.
- 2) Set the TX output level of the SS to obtain \hat{I}_{or} at the UE antenna connector. \hat{I}_{or} shall be according to table 8.4.2.1.4.
- <u>32</u>)Measure the all PRACH preamble output power of the UE according to annex B.

8.4.2.4.5 Test requirements

The UE shall not exceed the maximum allowed UL TX power configured by the SS. No ACK/NACK shall be sent by SS during this test.

The absolute power of any preambles belonging to the first or second preamble cycle shall not exceed 0 dBm with more than the tolerance specified in section 6.5 of TS 25.133.

Table 8.4.2.4:Test requirement for maximum preamble power

	Maximum preamble power		
Test requirement	0dBm	+2.7, -3 dB	

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

3GPP TSG-T WG1 Meeting #21 Budapest, Hungary, 3 - 7 November 2003

Tdoc **∺***T1-031694*

CHANGE REQUEST									
¥	34.121 CR 332	rev <mark>-</mark> ^{ж ر}	Current versic	^{m:} 5.1.1 [#]					
For <u>HELP</u> or	sing this form, see bottom of this p	page or look at the _l	pop-up text o	ver the ¥ symbols.					
Proposed chang	affects: UICC apps೫	ME X Radio Acc	ess Network	Core Network					
Title:	Addition to Scope clause to clar	fy applicability of te	ests to Releas	Ses					
Source:	Spirent Communications								
Work item code:	Rel 5		Date: ೫	6/11/2003					
Category:	 F Use <u>one</u> of the following categories: F (correction) A (corresponds to a correction B (addition of feature), C (functional modification of feature) D (editorial modification) Detailed explanations of the above correction be found in 3GPP <u>TR 21.900</u>. 	n an earlier release) ture)	2 ((R96 () R97 () R98 () R99 () Rel-4 () Rel-5 ()	Rel-5 e following releases: GSM Phase 2) Release 1996) Release 1997) Release 1998) Release 1999) Release 4) Release 5) Release 6)					

Reason for change: ೫	It is unclear for which Releases the tests are applicable				
Summary of change: ℜ	An additional clarification is added to the Scope clause.				
Consequences if 🛛 🕱	Those not familiar with the history of the document may be unclear which tests				
not approved:	are applicable to which Release				
Clauses affected: #	Scope				
	ΥΝ				
Other specs अ					
affected:	X Test specifications X O&M Specifications				
Other comments: #	This change has become necessary now that 34.121 effectively only has one version common to all Releases				

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked # contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

1 Scope

The present document specifies the measurement procedures for the conformance test of the user equipment (UE) that contain transmitting characteristics, receiving characteristics and performance requirements in addition to requirements for support of RRM (Radio Resource Management) in FDD mode.

The requirements are listed in different clauses only if the corresponding parameters deviate. More generally, tests are only applicable to those mobiles that are intended to support the appropriate functionality. To indicate the circumstances in which tests apply, this is noted in the "*definition and applicability*" part of the test.

For example only Release 5 and later UE declared to support HSDPA shall be tested for this functionality. In the event that for some tests different conditions apply for different releases, this is indicated within the text of the test itself.

3GPP TSG-T WG1 Meeting #21 Budapest, Hungary, November 3rd-7th, 2003

Tdoc **∺***T1-031445*

CHANGE REQUEST									
æ	<mark>34.121</mark> CR	<mark>319</mark>	ж rev	- *	ß Curr	rent versio	^{on:} 5.1.1	ж	
For <u>HELP</u> or	using this form, se	ee bottom of this	s page or l	ook at	the pop	o-up text o	over the X sy	mbols.	
Proposed chang	affects: UICC	apps#	MEX	Radio	Access	s Network	Core Ne	etwork	
Title:	Correction to R	RM test case 8	.3.2.1						
Source:	Ericsson								
Work item code:	TEI				l	Date: ೫	23/10/2003		
Category:	B (addition of	n) nds to a correctio of feature), Il modification of f modification) ions of the above	n in an earl eature)		Us ase)	2 ((R96 (l R97 (l R98 (l R99 (l Rel-4 (l Rel-5 (l	REL-5 ne following rel GSM Phase 2) Release 1996) Release 1998) Release 1999) Release 4) Release 5) Release 5) Release 6)		

Reason for change: ೫	RRM handover test cases need to be adopted to generic set up procedure					
Summary of change: ೫	Test case 8.3.2.1 FDD/FDD Hard Handover to intra-frequency cell:					
	 Test procedure, step 3), removed editor's note regarding missing specification in 34.108 of generic set up procedure. Note! The details for the generic set up procedure have been added by CR to 34.108 in T1-031449 (R99) and T1-031450 (Rel-4). Reference in specific message content for MEASUREMENT REPORT changed to default message for intra-frequency 					
Consequences if % not approved:	Test case incomplete					
Clauses affected: #	8.3.2.1					
Other specs ℜ affected:	YNXOther core specifications#XTest specifications#XO&M Specifications•					
Other comments: #	Affects REL-5, REL-4 and R99.					

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked # contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

8.3.2 FDD/FDD Hard Handover

8.3.2.1 FDD/FDD Hard Handover to intra-frequency cell

8.3.2.1.1 Definition and applicability

The hard handover delay of the UE is defined as the time from the end of the last TTI containing an RRC message implying hard handover to the transmission of the new uplink DPCCH.

The requirements and this test apply to the FDD UE.

8.3.2.1.2 Minimum requirement

The interruption time shall be less than 110 ms in CELL_DCH state in the single carrier case. The rate of correct handovers observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

The hard handover delay $D_{handover}$ equals the RRC procedure delay defined in TS 25.331 clause 13.5.2 plus the interruption time stated in TS 25.133 clause 5.2.2.2 as follows:

The interruption time, i.e. the time between the last TTI containing a transport block on the old DPDCH and the time the UE starts transmission of the new uplink DPCCH, is depending on whether the target cell is known for the UE or not.

If intra-frequency hard handover is commanded or inter-frequency hard handover is commanded when the UE does not need compressed mode to perform inter-frequency measurements, the interruption time shall be less than T_{interrupt1}

 $T_{interrupt1} = T_{IU} + 40 + 20 * KC + 150 * OC + 10 * F_{max} ms$

where

 T_{IU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be up to one frame (10 ms).

KC is the number of known target cells in the message, and

OC is the number of target cells that are not known in the message.

 F_{max} denotes the maximum number of radio frames within the transmission time intervals of all transport channels that are multiplexed into the same CCTrCH.

Note: The figure 40 ms is the time required for measuring the downlink DPCCH channel as stated in TS 25.214 clause 4.3.1.2.

In the interruption requirement T_{interrupt1} a cell is known if either or both of the following conditions are true:

- the UE has had radio links connected to the cell in the previous (old) active set
- the cell has been measured by the UE during the last 5 seconds and the SFN of the cell has been decoded by the UE.

The normative reference for this requirement is TS 25.133 [2] clauses 5.2.2 and A.5.2.1.

8.3.2.1.3 Test purpose

To verify that the UE meets the minimum requirement.

8.3.2.1.4 Method of test

8.3.2.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in table 8.3.2.1.1 and 8.3.2.1.2 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 1A and 1B shall be used, and that CPICH Ec/Io and SFN-CFN observed timed difference shall be reported together with Event 1A. The test consists of three successive time periods, with a time duration of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

UTRAN shall send a PHYSICAL CHANNEL RECONFIGURATION with activation time "now" with one active cell, cell 2. The Physical Channel reconfiguration message shall be sent to the UE so that the whole message is available at the UE the RRC procedure delay prior to the beginning of T3. The RRC procedure delay is defined in TS 25.331 [8].

N312 shall have the smallest possible value i.e. only one insync is required.

Parameter		Unit	Value	Comment
DCH paramet	DCH parameters		DL and UL Reference	As specified in clause C.3.1 and C.2.1
-			Measurement Channel 12.2 kbps	
Power Control			On	
Target quality DTCH	value on	BLER	0.01	
Initial	Active cell		Cell 1	
conditions	Neighbourin g cell		Cell 2	
Final condition	Active cell		Cell 2	
Reporting range	ge	dB	3	Applicable for event 1A and 1B
Hysteresis		dB	0	
W			1	Applicable for event 1A and 1B
Reporting dea threshold	ctivation		0	Applicable for event 1A
Time to Trigge	er	ms	0	
Filter coefficient			0	
T1		S	5	
T2		S	5	
T3		S	5	

Table 8.3.2.1.1: General test parameters for Handover to intra-frequency cell

Parameter	Unit	Cell 1				Cell 2			
		T1	T2	Т3	T1	T2	T3		
CPICH_Ec/lor	dB		-10			-10			
PCCPCH_Ec/lor	dB		-12			-12			
SCH_Ec/lor	dB		-12			-12			
PICH_Ec/lor	dB		-15			-15			
DPCH_Ec/lor	dB	Note1	Note1	Note3	N/A	N/A	Note1		
OCNS		Note2	Note2	Note2	-0.941	-0.941	Note2		
\hat{I}_{or}/I_{oc}	dB	0	0 6.97 -Infinity 5.97				97		
I _{oc}	dBm/ 3.84 MHz		-70						
CPICH_Ec/lo	dB		-13		-Infinity	-1	14		
Propagation Condition		AWGN							
Note 2: The pow	er of the O	CNS channel t	ne power contro hat is added sh trolled by the po	all make the tot	al power from th p.	e cell to be equ	ial to $I_{\rm or}$		

8.3.2.1.4.2 Procedure

1) The RF parameters are set up according to T1.

- 2) The UE is switched on.
- 3) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.4.
- [Editor's note: subclause 7.3.4 in TS 34.108 (Message sequence chart for Handover Test procedure) is not yet specified]
- 4) SS shall transmit a MEASUREMENT CONTROL message.
- 5) 5 seconds after step4 has completed, the SS shall switch the power settings from T1 to T2
- 6) UE shall transmit a MEASUREMENT REPORT message triggered by event 1A
- 7) SS shall transmit a PHYSICAL CHANNEL RECONFIGURATION message with activation time set to "now". SS shall transmit the whole message such that it will be available at the UE no later than a period equals to the RRC procedure delay (= 80 ms) prior to the beginning of T3.
- 8) After 5 seconds from the beginning of time period T2, the SS shall switch the power settings from T2 to T3
- 9) UE shall transmit a PHYSICAL CHANNEL RECONFIGURATION COMPLETE message on the UL DCCH of cell 2. If the UE transmits the UL DPCCH to cell 2 less than 110 ms from the beginning of time period T3 then the number of successful tests is increased by one.
- 10) After 5 seconds from the beginning of time period T3, the UE is switched off. Any timing information of cell 2 is deleted in the UE.
- 11)Repeat step 1-10 [TBD] times

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message (step 4):

Information Element/Group name	Value/Remark
Message Type (10.2.17)	
UE information elements	
-RRC transaction identifier	0 Not Present
-Integrity check info Measurement Information elements	Not Present
-Measurement Identity	1
-Measurement Command (10.3.7.46)	Modify
-Measurement Reporting Mode (10.3.7.49)	Modify
-Measurement Report Transfer Mode	AM RLC
-Periodical Reporting / Event Trigger Reporting Mode	Event trigger
-Additional measurements list (10.3.7.1)	Not Present
-CHOICE Measurement type	Intra-frequency measurement
-Intra-frequency measurement (10.3.7.36)	
-Intra-frequency measurement objects list (10.3.7.33)	Not Present
 Intra-frequency measurement quantity (10.3.7.38) 	
-Filter coefficient (10.3.7.9)	0
-CHOICE mode	FDD
-Measurement quantity	CPICH_Ec/N0
-Intra-frequency reporting quantity (10.3.7.41)	
-Reporting quantities for active set cells (10.3.7.5)	No report
-SFN-SFN observed time difference reporting indicator -Cell synchronisation information reporting indicator	No report TRUE (Note 1)
-Cell Identity reporting indicator	TRUE
-CHOICE mode	FDD
-CPICH Ec/N0 reporting indicator	TRUE
-CPICH RSCP reporting indicator	TRUE
-Pathloss reporting indicator	TRUE
-Reporting quantities for monitored set cells (10.3.7.5)	
-SFN-SFN observed time difference reporting indicator	No report
-Cell synchronisation information reporting indicator	TRUE (Note 1)
-Cell Identity reporting indicator	TRUE
-CHOICE mode	FDD
-CPICH Ec/N0 reporting indicator	TRUE
-CPICH RSCP reporting indicator	TRUE
-Pathloss reporting indicator	TRUE
-Reporting quantities for detected set cells (10.3.7.5) -Reporting cell status (10.3.7.61)	Not Present Not Present
-Measurement validity (10.3.7.51)	Not Present
-CHOICE report criteria	Intra-frequency measurement reporting
	criteria
-Intra-frequency measurement reporting criteria (10.3.7.39)	
-Parameters required for each event	2
-Intra-frequency event identity	Event 1A
-Triggering condition 2	Active set cells and monitored set cells
-Reporting Range Constant	3 dB
-Cells forbidden to affect Reporting Range	Not Present
-W	
-Hysteresis	0 dB
-Threshold used frequency -Reporting deactivation threshold	Not Present 0
-Replacement activation threshold	Not Present
-Time to trigger	0 ms
-Amount of reporting	Infinity
-Reporting interval	0 ms (Note 2)
-Reporting cell status	Not Present
-Intra-frequency event identity	Event 1B
-Triggering condition 1	Active set cells and monitored set cells
-Reporting Range Constant	3 dB
-Cells forbidden to affect Reporting Range	Not Present
-W	1.0
-Hysteresis	0 dB
-Hysteresis -Threshold used frequency	Not Present
-Hysteresis -Threshold used frequency -Reporting deactivation threshold	Not Present Not Present
-Hysteresis -Threshold used frequency	Not Present

	Information Element/Group name	Value/Remark		
-Amou	int of reporting	Not Present		
-Repo	rting interval	Not Present		
-Repo	rting cell status	Not Present		
Physical	channel information elements			
-DPCH co	ompressed mode status info (10.3.6.34)	Not Present		
Note 1:				
Note 2:				

PHYSICAL CHANNEL RECONFIGURATION message (step 7):

Information Element	Value/Remark
Message Type	
UE Information Elements	
-RRC transaction identifier	0 Not Present
-Integrity check info -Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	"now"
-New U-RNTI	Not Present
-New C-RNTI	Not Present
-RRC State Indicator	CELL_DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	
-CN Information info	Not Present
UTRAN mobility information elements	
-URA identity	Not Present
RB information elements	
-Downlink counter synchronisation info	Not Present
PhyCH information elements	
-Frequency info (10.3.6.36) -CHOICE mode	FDD
	Same uplink UARFCN as used for cell 2
-UARFCN uplink(Nu) -UARFCN downlink(Nd)	Same downlink UARFCN as used for cell 2
Uplink radio resources	
-Maximum allowed UL TX power	33 dBm
-CHOICE channel requirement	Uplink DPCH info
-Uplink DPCH info (10.3.6.88)	-F
-Uplink DPCH power control info (10.3.6.91)	
-CHOICE mode	FDD
-DPCCH power offset	-6dB
- PC Preamble	1 frame
- SRB delay	7 frames
- Power Control Algorithm	Algorithm1
- TPC step size	1dB
-CHOICE mode	FDD
-Scrambling code type	
-Scrambling code number -Number of DPDCH	0 (0 to 16777215)
	Not Present(1) 64
-Spreading factor -TFCI existence	TRUE
-Number of FBI bit	Not Present(0)
-Puncturing Limit	TBD
Downlink radio resources	
-CHOICE mode	FDD
-Downlink PDSCH information	Not Present
-Downlink information common for all radio links (10.3.6.24)	
-Downlink DPCH info common for all RL (10.3.6.18)	
-Timing indicator	Initialise
-CFN-targetSFN frame offset	Not Present
-Downlink DPCH power control information (10.3.6.23)	
-DPC mode	0 (single)
-CHOICE mode	FDD
-Power offset P _{Pilot-DPDCH}	TBD
-DL rate matching restriction information	Not Present
-Spreading factor	128 Fixed
-Fixed or Flexible Position -TFCI existence	Fixed TRUE
-CHOICE SF	128
-Number of bits for Pilot bits(SF=128,256)	8
-CHOICE mode	o FDD
-DPCH compressed mode info (10.3.6.33)	Not Present
-TX Diversity mode (10.3.6.86)	None
-SSDT information (10.3.6.77)	Not Present
-Default DPCH Offset Value (10.3.6.16)	0
-Downlink information per radio link list	1
-Downlink information for each radio link (10.3.6.27)	

Information Element	Value/Remark
-CHOICE mode	FDD
-Primary CPICH info (10.3.6.60)	
-Primary scrambling code	350
-PDSCH with SHO DCH info (10.3.6.47)	Not Present
-PDSCH code mapping (10.3.6.43)	Not Present
-Downlink DPCH info for each RL (10.3.6.21)	
-CHOICE mode	FDD
-Primary CPICH usage for channel estimation	Primary CPICH may be used
-DPCH frame offset	0 chips
-Secondary CPICH info	Not Present
-DL channelisation code	
-Secondary scrambling code	1
-Spreading factor	128
-Code number	0
-Scrambling code change	No change
-TPC combination index	0
- SSDT Cell Identity	Not Present
 Closed loop timing adjustment mode 	Not Present
- SCCPCH information for FACH (10.3.6.70)	Not Present

MEASUREMENT REPORT message for Intraer frequency test cases

This message is common for all intraer frequency test cases in clause 8.7 and is described in Annex I.

8.3.2.1.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

Note: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

								CR-Form-v7				
			(CHANG	E R	EQ	UE	ST				
ж		34.121	CR	327	жr	ev	1	ж	Current ve	ersion:	5.1.1	ж
											-	
For HELP on	For HELP on using this form, see bottom of this page or look at the pop-up text over the # symbols.									nbols.		
			,						- 111			
							1_			. —	.	
Proposed chang	e ai	ffects:	JICC a	pps೫	M	EX	Rac	dio A	ccess Netw	ork	Core Ne	etwork
Title:	ж	Test Reg	uireme	nts for RRM	CPICH	HRS	CP Ir	ntra F	requency	Measu	rement	
		10011109			01 101		. .	in a i	requertey	nouou		
Source:	ж	Rohde &	Schwa	rz								
Work item code:	ж								Date:	Ж <mark>24</mark>	/10/2003	
Category:	ж	F							Release:		•	
	l			wing categori	ies:				Use <u>one</u>		ollowing rele	eases:
		•	rection)						2	•	M Phase 2)	
				ds to a correct	tion in a	n earl	lier re	elease			ease 1996)	
				feature),					R97		ease 1997)	
		•		modification o	f featur	e)			R98	•	ease 1998)	
				odification)					R99		ease 1999)	
				ns of the abov	ve cate	gories	can		Rel-4		ease 4)	
	Ł	be found in	3GPP	T <u>R 21.900</u> .					Rel-5		ease 5)	
									Rel-6	(Rele	ease 6)	

Reason for change: ೫	The Test Requirements have to include the reporting resolution.
Summary of change: 🕱	The reporting resolution is included.
Consequences if 🛛 🕱	Test could fail "good UEs" because Test Requirements do not include additional
not approved:	reporting resolution.
Clauses affected: ೫	8.7.1.1
	ΥΝ
Other specs ж	X Other core specifications %
affected:	X Test specifications
	X O&M Specifications

Other comments: ೫

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

8.7.1 CPICH RSCP

8.7.1.1 Intra frequency measurements accuracy

8.7.1.1.1 Absolute accuracy requirement

8.7.1.1.1.1 Definition and applicability

The absolute accuracy of CPICH RSCP is defined as the CPICH RSCP measured from one cell compared to the actual CPICH RSCP power from same cell.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.1.1.1.2 Minimum Requirements

The accuracy requirements in table 8.7.1.1.1.1 are valid under the following conditions:

- CPICH_RSCP1 $|_{dBm} \ge -114 \text{ dBm}.$

$$- \frac{I_o}{(\hat{I}_{or})}\Big|_{in\ dB} - \left(\frac{CPICH_E_c}{I_{or}}\right)\Big|_{in\ dB} \le 20dB$$

Table 8.7.1.1.1.1: CPICH_RSCP Intra frequency absolute accuracy

		Accura	Conditions	
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]
CPICH RSCP	dBm	±6	±9	-9470
CFICH_K3CF	dBm	±8	±11	-7050

The normative reference for this requirement is TS 25.133 [2] clauses 9.1.1.1.1 and A.9.1.1.2.

8.7.1.1.1.3 Test purpose

The purpose of this test is to verify that the CPICH RSCP absolute measurement accuracy is within the specified limits in clause 8.7.1.1.1.2. This measurement is for handover evaluation, DL open loop power control, UL open loop control and for the calculation of pathloss.

- 8.7.1.1.1.4 Method of test
- 8.7.1.1.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

In this case all cells are on the same frequency. CPICH RSCP intra frequency absolute accuracy requirements are tested by using test parameters in table 8.7.1.1.1.2.

Parameter	Unit	Tes	st 1	Tes	st 2	Tes	st 3	
Farameter	Onit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2	
UTRA RF Channel number		Chan	nel 1	Channel 1		Channel 1		
CPICH_Ec/lor	dB	-1	0	-1	0	-1	0	
PCCPCH_Ec/lor	dB	-1	2	-1	2	-1	2	
SCH_Ec/lor	dB	-1	2	-1	2	-1	2	
PICH_Ec/lor	dB	-1	-15		5	-15		
DPCH_Ec/lor	dB	-15	-	-15	-	-15	-	
OCNS_Ec/lor	dB	-1.11	-0.94	-1.11	-0.94	-1.11	-0.94	
loc	dBm/ 3.84 MHz	-75	.54	-59.98		-97.47		
Îor/loc	dB	4	0	9	0	0	-6.53	
CPICH RSCP, Note 1	dBm	-81.5	-85.5	-60.98	-69.88	-107.47	-114.0	
lo, Note 1	dBm/3.84 MHz	-6	69	-5	50	-9)4	
Propagation condition	-	AW	GN	AW	'GN	AW	GN	
NOTE 1: CPICH RSCP and lo levels have been calculated from other parameters for information purposes. They								
are not settable parameters themselves.								
Tests shall be done sequentially.						parameters	for tests	
2 and 3 shall be set within 5 second	2 and 3 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.							

Table 8.7.1.1.1.2: CPICH RSCP Intra frequency parameters

8.7.1.1.1.4.2 Procedure

- 1) A call is set up according to the test procedure specified in TS 34.108 [3] clause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.1.1.1.4.
- 2) SS shall transmit MEASUREMENT CONTROL message.
- 3) UE shall transmit periodically MEASUREMENT REPORT messages.
- 4) SS shall check CPICH_RSCP value in MEASUREMENT REPORT messages. CPICH RSCP power of Cell 1 reported by UE is compared to actual CPICH RSCP power for each MEASUREMENT REPORT message.
- 5) SS shall count number of MEASUREMENT REPORT messages transmitted by UE. After 1000 MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.1.1.1.4 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, step 4) above is repeated. After further 1000 MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.1.1.1.4 for Test 3. While RF parameters are being set up, MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.1.1.1.4 for Test 3. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, step 4) above is repeated.
- 6) After further 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit RRC CONNECTION RELEASE message.
- 7) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message for Intra frequency measurement (Step 1):

Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	0
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	1
-Measurement Command	Modify
-Measurement Reporting Mode	
 Measurement Report Transfer Mode 	Acknowledged mode RLC
 Periodical Reporting / Event Trigger Reporting 	Periodical reporting
Mode	
-Additional measurement list	Not Present
-CHOICE Measurement Type	Intra-frequency measurement
-Intra-frequency measurement	
 Intra-frequency measurement objects list 	Not Present
-Intra-frequency measurement quantity	
-Filter coefficient	0
-CHOICE mode	FDD
-Measurement quantity	CPICH RSCP
 Intra-frequency reporting quantity 	
 Reporting quantities for active set cells 	
 SFN-SFN observed time difference reporting 	
indicator	No report
 Cell synchronisation information reporting 	
indicator	TRUE
 Cell Identity reporting indicator 	TRUE
-CHOICE mode	FDD
-CPICH Ec/N0 reporting indicator	TRUE
-CPICH RSCP reporting indicator	TRUE
-Pathloss reporting indicator	TRUE
 Reporting quantities for monitored set cells 	
 SFN-SFN observed time difference reporting 	No report
indicator	
 Cell synchronisation information reporting 	FALSE
indicator	
 Cell Identity reporting indicator 	TRUE
-CHOICE mode	FDD
-CPICH Ec/N0 reporting indicator	TRUE
-CPICH RSCP reporting indicator	TRUE
-Pathloss reporting indicator	TRUE
-Reporting quantities for detected set cells	Not Present
-Reporting cell status	
-CHOICE reported cell	Report all active set cells + cells within
	monitored set on used frequency
-Maximum number of reported cells	Virtual/active set cells + 2
-Measurement validity	Not Present
-CHOICE report criteria	Periodical reporting criteria
-Amount of reporting	Infinity
-Reporting interval	250 ms
Physical channel information elements	
-DPCH compressed mode status info	Not Present

MEASUREMENT REPORT message for Intra frequency test cases

This message is common for all intra frequency test cases in clause 8.7 and is described in Annex I.

8.7.1.1.1.5 Test requirements

The CPICH RSCP measurement accuracy shall meet the requirements in clause 8.7.1.1.1.2.

Parameter Unit		Accur	Conditions	
Farameter	Unit	Normal condition	Extreme condition	lo [dBm]
CPICH RSCP	dBm	±7.4	±10.4	-9470
	dBm	±9.4	±12.4	-7050

Table 8.7.1.1.1.3: CPICH_RSCP Intra frequency absolute accuracy, test requirement

Table 8.7.1.1.1.4: CPICH RSCP Intra frequency test parameters

Parameter	Unit	Tes	st 1	Tes	st 2	Tes	st 3	
Faranieter	Unit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2	
UTRA RF Channel number		Char	nel 1	Char	nel 1	Channel 1		
CPICH_Ec/lor	dB	-1	0	-1	0	-1	0	
PCCPCH_Ec/lor	dB	-1	2	-1	2	-1	2	
SCH_Ec/lor	dB	-1	-12		-12		2	
PICH_Ec/lor	dB	-15		-15		-15		
DPCH_Ec/lor	dB	-15	-	-15	-	-15	-	
OCNS_Ec/lor	dB	-1.11	-0.94	-1.11	-0.94	-1.11	-0.94	
loc	dBm/ 3.84 MHz	-74.54		-74.54 -61,6		-96	.47	
Îor/loc	dB	4.3	0.3	9.3	0.3	0.3	-6.23	
CPICH RSCP, Note 1	dBm	-80.2	-84.2	-62.3	-71.3	-106.17	-112.7	
lo, Note 1	dBm	-67.8		-67.8 -51,4		1,4	-92	2,8
Propagation condition	-	AWGN		AWGN		AWGN		
NOTE 1: CPICH RSCP and lo	levels have been calc	ulated fron	n other par	ameters fo	or informati	on purpose	es. They	

are not settable parameters themselves.

Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for tests 2 and 3 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.

The reported values for the absolut intra frequency CPICH RSCP measurement shall meet the requirements in table 8.7.1.1.1.5.

Table 8.7.1.1.1.5: CPICH_RSCP Intra frequency absolute accuracy requirements for the reported values

	Test 1	Test 2	Test 3
Normal Conditions			
Lowest reported value	CPICH_RSCP_26	CPICH_RSCP_44	CPICH_RSCP_2
Highest reported value	CPICH_RSCP_45	CPICH_RSCP_63	CPICH_RSCP_17
Extreme Conditions			
Lowest reported value	CPICH_RSCP_23	CPICH_RSCP_41	CPICH_RSCP_0
Highest reported value	CPICH_RSCP_48	CPICH_RSCP_66	CPICH_RSCP_20

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.7.1.1.2 Relative accuracy requirement

8.7.1.1.2.1 Definition and applicability

The relative accuracy of CPICH RSCP is defined as the CPICH RSCP measured from one cell compared to the CPICH RSCP measured from another cell on the same frequency.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.1.1.2.2 Minimum Requirements

The accuracy requirements in table 8.7.1.1.2.1 are valid under the following conditions:

- CPICH_RSCP1,2 $|_{dBm} \ge -114 \text{ dBm}.$

$$-\left|CPICH _RSCP1\right|_{in \, dBm} - CPICH _RSCP2\right|_{in \, dBm}\right| \le 20 \, dB$$

$$- \frac{I_o}{\left(\hat{I}_{or}\right)}\Big|_{in\ dB} - \left(\frac{CPICH_E_c}{I_{or}}\right)\Big|_{in\ dB} \le 20dB$$

Table 8.7.1.1.2.1: CPICH_RSCP Intra frequency relative accuracy

		Accura	Conditions	
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]
CPICH_RSCP	dBm	±3	±3	-9450

The normative reference for this requirement is TS 25.133 [2] clauses 9.1.1.1.2 and A.9.1.1.2.

8.7.1.1.2.3 Test purpose

The purpose of this test is to verify that the CPICH RSCP relative measurement accuracy is within the specified limits in clause 8.7.1.1.2.2. This measurement is for handover evaluation, DL open loop power control, UL open loop control and for the calculation of pathloss.

8.7.1.1.2.4 Method of test

8.7.1.1.2.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

In this case all cells are on the same frequency. CPICH RSCP intra frequency relative accuracy requirements are tested by using test parameters in table 8.7.1.1.2.

8.7.1.1.2.4.2 Procedure

- 1) A call is set up according to the test procedure specified in TS 34.108 [3] clause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.1.1.1.2.
- 2) SS shall transmit MEASUREMENT CONTROL message.
- 3) UE shall transmit periodically MEASUREMENT REPORT messages.
- 4) SS shall check CPICH_RSCP value of Cell 1 and Cell 2 in MEASUREMENT REPORT messages. CPICH RSCP power value measured from Cell 1 is compared to CPICH RSCP power value measured from Cell 2 for each MEASUREMENT REPORT message.
- 5) The result of step 3) is compared to actual power level difference of CPICH RSCP of Cell 1 and Cell 2.
- 6) SS shall count number of MEASUREMENT REPORT messages transmitted by UE. After 1000 MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.1.1.2.3 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, steps 4) and 5) above are repeated. After further 1000 MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.1.1.2.3 for Test 3. While RF parameters are being set up, MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.1.1.2.3 for Test 3. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, steps 4) and 5) above are repeated.
- 7) After further 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit RRC CONNECTION RELEASE message.
- 8) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.

CR page 6

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message for Intra frequency measurement in clause 8.7.1.1.1.4.2 is used.

MEASUREMENT REPORT message for Intra frequency test cases

This message is common for all intra frequency test cases in clause 8.7 and is described in Annex I.

8.7.1.1.2.5 Test requirements

The CPICH RSCP measurement accuracy shall meet the requirements in table 8.7.1.1.2.2.

Table 8.7.1.1.2.2: CPICH_RSCP Intra frequency relative accuracy, test requirements

Parameter	Unit	Accura	Conditions	
Falameter	Falameter Onit		Extreme condition	lo [dBm]
CPICH_RSCP	dBm	±3.8	±3.8	-9450

Table 8.7.1.1.2.3: CPICH RSCP Intra frequency test parameters

Unit	Cell 1 Chan	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2	
-10	Chan						
-10	•	Channel 1		Channel 1		Channel 1	
dB	-10		-10		-10		
dB	-12		-12		-12		
dB -12		-12		-12			
dB -15		-15		-15			
dB	-15	-	-15	-	-15	-	
dB	-1.11	-0.94	-1.11	-0.94	-1.11	-0.94	
dBm/ 3.84 MHz	-74.54		-61,6		-96.47		
dB	4.3	0.3	9.3	0.3	0.3	-6.23	
dBm	-80.2	-84.2	-62.3	-71.3	-106.17	-112.7	
dBm	-67.8		-51	1,4	-92	2,8	
-	AWGN		AWGN		AWGN		
	dB dB dB dBm/ 3.84 MHz dB dBm dBm -	dB -1 dB -15 dB -15 dB -1.11 dBm/ 3.84 MHz -74 dB 4.3 dBm -80.2 dBm -67 - AW	dB -12 dB -15 dB -15 dB -1.11 dBm/ 3.84 MHz -74.54 dBm 4.3 0.3 dBm -80.2 -84.2 dBm -67.8 - AWGN	dB -12 -1 dB -15 -1 dB -15 -15 dB -1.11 -0.94 dBm/ 3.84 MHz -74.54 -67 dB 4.3 0.3 9.3 dBm -80.2 -84.2 -62.3 dBm -67.8 -57 - AWGN AW	dB -12 -12 dB -15 -15 dB -15 -15 dB -15 - dB -15 - dB -15 - dB -1.11 -0.94 dBm/ 3.84 MHz -74.54 -61,6 dB 4.3 0.3 9.3 0.3 dBm -80.2 -84.2 -62.3 -71.3 dBm -67.8 -51,4 - - AWGN AWGN -	dB -12 -12 -1 dB -15 -15 -1 dB -15 -15 -1 dB -15 - -15 -1 dB -15 - -15 -15 dB -1.11 -0.94 -1.11 -0.94 -1.11 dBm/ 3.84 MHz -74.54 -61,6 -96. dB 4.3 0.3 9.3 0.3 0.3 dBm -80.2 -84.2 -62.3 -71.3 -106.17 dBm -67.8 -51,4 -92	

NOTE 1: CPICH RSCP and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for tests 2 and 3 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.

The reported values for the relative intra frequency CPICH RSCP measurement shall meet the requirements in table 8.7.1.1.2.4.

Table 8.7.1.1.2.4: CPICH_RSCP Intra frequency relative accuracy requirements for the reported values

	Test 1	Test 2	Test 3				
Normal Conditions							
Lowest reported value cell 2	CPICH_RSCP_(x - 8)	CPICH_RSCP_(x - 13)	<u>CPICH_RSCP_(x - 11)</u>				
Highest reported value cell 2	CPICH_Ec/No_x	<u>CPICH_Ec/No_(x - 5)</u>	<u>CPICH_Ec/No_(x - 3)</u>				
Extreme Conditions							
Lowest reported value cell2	CPICH_RSCP_(x - 8)	CPICH_RSCP_(x - 13)	CPICH_RSCP_(x - 11)				
Highest reported value cell2	CPICH_Ec/No_x	CPICH_Ec/No_(x - 5)	<u>CPICH_Ec/No_(x - 3)</u>				
CPICH_RSCP_x is the reported value of cell 1							

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

	CHANGE REQUEST		CR-Form-v7
æ	34.121 CR 328 #rev 1 [#]	Current versi	^{ion:} 5.1.1 [#]
For <u>HELP</u> or	using this form, see bottom of this page or look at the	pop-up text	over the X symbols.
Proposed chang	e affects: UICC apps ೫ ME <mark>X</mark> Radio Aco	cess Networ	k Core Network
Title:	# Test Requirements for RRM CPICH RSCP Inter Fi	requency Me	asurement
Source:	K Rohde & Schwarz		
Work item code:	Here and the second	<i>Date:</i> ೫	24/10/2003
Category:	 F Use <u>one</u> of the following categories: F (correction) A (corresponds to a correction in an earlier release) B (addition of feature), C (functional modification of feature) D (editorial modification) Detailed explanations of the above categories can be found in 3GPP <u>TR 21.900</u>. 	2 R96 R97 R98 R99 Rel-4 Rel-5	R5 the following releases: (GSM Phase 2) (Release 1996) (Release 1997) (Release 1998) (Release 1999) (Release 4) (Release 5) (Release 6)

Reason for change: 9	The Test Requirements have to include the reporting resolution.				
Reason for change. 8	The rest Requirements have to include the reporting resolution.				
Summary of change: #	The reporting resolution is included.				
, ,					
Consequences if #	Test could fail "good UEs" because Test Requirements do not include additional				
not approved:	reporting resolution.				
not approved.					
Clauses affected: #	8.7.1.2				
	YN				
Other specs #	X Other core specifications #				
affected:	X Test specifications				
	X O&M Specifications				
Other comments: ೫					

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

8.7.1 CPICH RSCP

.....

8.7.1.2 Inter frequency measurement accuracy

8.7.1.2.1 Relative accuracy requirement

8.7.1.2.1.1 Definition and applicability

The relative accuracy of CPICH RSCP in inter frequency case is defined as the CPICH RSCP measured from one cell compared to the CPICH RSCP measured from another cell on a different frequency.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.1.2.1.2 Minimum Requirements

The accuracy requirements in table 8.7.1.2.1.1 are valid under the following conditions:

- CPICH_RSCP1,2 $|_{dBm} \ge -114 \text{ dBm}$.

-
$$|CPICH _RSCP1|_{in \, dBm} - CPICH _RSCP2|_{in \, dBm}| \le 20 \, dB$$
.

- | Channel 1_Io|_{dBm/3.84 MHz} -Channel 2_Io|_{dBm/3.84 MHz} | \leq 20 dB.

$$- \frac{I_o}{\left(\hat{I}_{or}\right)}\Big|_{in\ dB} - \left(\frac{CPICH_E_c}{I_{or}}\right)\Big|_{in\ dB} \le 20dB.$$

Table 8.7.1.2.1.1: CPICH_RSCP Inter frequency relative accuracy

		Accur	Accuracy [dB]		
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]	
CPICH_RSCP	dBm	±6	±6	-9450	

The normative reference for this requirement is TS 25.133 [2] clauses 9.1.1.2.1 and A.9.1.1.2.

8.7.1.2.1.3 Test purpose

The purpose of this test is to verify that the CPICH RSCP relative measurement accuracy is within the specified limits in clause 8.7.1.2.1.2. This measurement is for handover evaluation, DL open loop power control, UL open loop control and for the calculation of pathloss.

8.7.1.2.1.4 Method of test

8.7.1.2.1.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

In this case both cells are on different frequencies and compressed mode is applied. The gap length is 7, detailed definition is in clause C.5, set 1 of table C.5.2 except for TGRRC and TGCFN. TGPRC and TGCFN shall set to "Infinity" and "(Current CFN + (256 - TTI/10msec))mod 256". CPICH RSCP inter frequency relative accuracy requirements are tested by using test parameters in table 8.7.1.2.1.2.

Parameter	Unit	Test 1		Test 2	
Parameter	Unit	Cell 1	Cell 2	Cell 1	Cell 2
UTRA RF Channel number		Channel 1	Channel 2	Channel 1	Channel 2
CPICH_Ec/lor	dB	-1	0	-10	
PCCPCH_Ec/lor	dB	-1	2	-12	
SCH_Ec/lor	dB	-1	2	-12	
PICH_Ec/lor	dB	-15		-15	
DPCH_Ec/lor	dB	-15	-	-15	-
OCNS_Ec/lor	dB	-1.11	-0.94	-1.11	-0.94
loc	dBm/ 3.84 MHz	-60.00	-60.00	-84.00	-94.46
Îor/loc	dB	9.54	9.54	0	-9.54
CPICH RSCP, Note 1	dBm	-60.46	-60.46	-94.0	-114.0
lo, Note 1	dBm/3.84 MHz	-50.00	-50.00	-81.0	-94.0
Propagation condition	- AWGN AWGN				
NOTE 1: CPICH RSCP and	o levels have be	en calculated fro	m other parame	eters for informa	ation
purposes. They are	not settable par	ameters themsel	ves.		
Tests shall be done sequentia	llv. Test 1 shall b	e done first. Afte	er test 1 has bee	en executed test	t parameters

Table 8.7.1.2.1.2: CPICH RSCP Inter frequency parameters

Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for test 2 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.

8.7.1.2.1.4.2 Procedure

- 1) A call is set up according to the test procedure specified in TS 34.108 [3] clause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.1.2.1.4.
- 2) SS shall transmit PHYSICAL CHANNEL RECONFIGURATION message.
- 3) UE shall transmit PHYSICAL CHANNEL RECONFIGURATION COMPLETE message.
- 4) SS shall transmit MEASUREMENT CONTROL message for intra frequency measurement and transmit MEASUREMENT CONTROL message for inter frequency measurement.
- 5) UE shall transmit periodically MEASUREMENT REPORT messages.
- 6) SS shall check CPICH_RSCP value of Cell 1 and Cell 2 in MEASUREMENT REPORT messages. CPICH RSCP power value measured from Cell 1 is compared to CPICH RSCP power value measured from Cell 2 for each MEASUREMENT REPORT message.
- 7) The result of step 5) is compared to actual power level difference of CPICH RSCP of Cell 1 and Cell 2.
- 8) SS shall count number of MEASUREMENT REPORT messages transmitted by UE. After 1000 MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.1.2.1.4 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, steps 6) and 7) above are repeated.
- 9) After further 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit RRC CONNECTION RELEASE message.
- 10) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

PHYSICAL CHANNEL RECONFIGURATION message for Inter frequency measurement (step 1):

Information Element	Value/Remark
Message Type	
UE Information Elements	
-RRC transaction identifier	0
-Integrity check info	Not Present
-Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	Not Present
-New U-RNTI	Not Present
-New C-RNTI	Not Present
-RRC State Indicator	CELL DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	
-CN Information info	Not Present
UTRAN mobility information elements	
-URA identity	Not Present
RB information elements	
-Downlink counter synchronisation info	Not Present
PhyCH information elements	
-Frequency info	Not Present
Uplink radio resources	
-Maximum allowed UL TX power	Not Present
- CHOICE channel requirement	Not Present
Downlink radio resources	
-CHOICE mode	FDD
-Downlink PDSCH information	Not Present
-Downlink PDSCH information -Downlink information common for all radio links	Not Present
	Not Drospat
-Downlink DPCH info common for all RL	Not Present
-CHOICE mode	FDD
-DPCH compressed mode info	
-Transmission gap pattern sequence	
-TGPSI	1
-TGPS Status Flag	Activate
-TGCFN	(Current CFN + (256 – TTI/10msec))mod 256
-Transmission gap pattern sequence	
-Transmission gap pattern sequence configuration parameters	
-TGMP	EDD magaurament
	FDD measurement
-TGPRC	Infinity
-TGSN	4
-TGL1	7
-TGL2	Not Present
-TGD	0
-TGPL1	3
-TGPL2	Not Present
-RPP	Mode 0
-ITP	Mode 0
-CHOICE UL/DL mode	UL and DL
 Downlink compressed mode method 	SF/2
-Uplink compressed mode method	SF/2
-Downlink frame type	В
-DeltaSIR1	3.0
-DeltaSIRafter1	3.0
-DeltaSIR2	Not Present
-DeltaSIRafter2	Not Present
-N Identify abort	Not Present
-T Reconfirm abort	Not Present
-TX Diversity Mode	Not Present
-SSDT information	Not Present
-Default DPCH Offset Value	Not Present
-Downlink information per radio link list	
-Downlink information for each radio link	FDD
-Choice mode	FDD
-Primary CPICH info	
-Primary scrambling code	100

-PDSCH with SHO DCH Info	Not Present
-PDSCH code mapping	Not Present
-Downlink DPCH info for each RL	
-CHOICE mode	FDD
-Primary CPICH usage for channel estimation	Primary CPICH may be used
-DPCH frame offset	Set to value Default DPCH Offset Value (as
	currently stored in SS) mod 38400
-Secondary CPICH info	Not Present
-DL channelisation code	
-Secondary scrambling code	Not Present
-Spreading factor	128
-Code number	0
-Scrambling code change	No code change
-TPC combination index	0
-SSDT Cell Identity	Not Present
-Closed loop timing adjustment mode	Not Present
-SCCPCH Information for FACH	Not Present

First MEASUREMENT CONTROL message for Intra frequency measurement (Step 3):

Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	0
	Not Present
-Integrity check info	
Measurement Information elements	1
-Measurement Identity	
-Measurement Command	Modify
-Measurement Reporting Mode	A alva avula data dura da DLO
- Measurement Report Transfer Mode	Acknowledged mode RLC
- Periodical Reporting / Event Trigger Reporting	Periodical reporting
Mode	Not Present
-Additional measurement list	
-CHOICE Measurement Type	Intra-frequency measurement
-Intra-frequency measurement	
- Intra-frequency measurement objects list	Net Dresent
-Intra-frequency cell info list	Not Present
-Intra-frequency measurement quantity	
-Filter coefficient	0 FDD
-CHOICE mode	
-Measurement quantity	CPICH RSCP
-Intra-frequency reporting quantity	
-Reporting quantities for active set cells	
-SFN-SFN observed time difference reporting	No report
indicator	No report
-Cell synchronisation information reporting indicator	TRUE
	TRUE
-Cell Identity reporting indicator	
-CHOICE mode -CPICH Ec/N0 reporting indicator	FDD TRUE
	TRUE
-CPICH RSCP reporting indicator -Pathloss reporting indicator	TRUE
-Reporting quantities for monitored set cells	TRUE
-SFN-SFN observed time difference reporting	No report
indicator	No report
	FALSE
-Cell synchronisation information reporting indicator	FALSE
-Cell Identity reporting indicator	TRUE
-CHOICE mode	FDD
-CPICH Ec/N0 reporting indicator	TRUE
-CPICH EC/NO reporting indicator	TRUE
-Pathloss reporting indicator	TRUE
-Reporting quantities for detected set cells	Not Present
-Reporting cell status	
-CHOICE reported cell	Report all active set cells + cells within
	monitored set on used frequency
-Maximum number of reported cells	Virtual/active set cells + 2
-Measurement validity	Not Present
-CHOICE report criteria	Periodical reporting criteria
-Amount of reporting	Infinity
-Reporting interval	250 ms
Physical channel information elements	
-DPCH compressed mode status info	Not Present
-DF GH Compressed mode status into	

Second MEASUREMENT CONTROL message for Inter frequency measurement (step 3):

Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	0
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	2
-Measurement Command	Setup
-Measurement Reporting Mode	
- Measurement Report Transfer Mode	Acknowledged mode RLC
- Periodical Reporting / Event Trigger Reporting	Periodical reporting
Mode	
-Additional measurement list	Not Present
-CHOICE Measurement Type	Inter-frequency measurement
-Inter-frequency measurement object list	
-CHOICE Inter-frequency cell removal	Not Present
-New inter-frequency cells	Cell 2 information is included
-Cell for measurement	Not Present
-Inter-frequency measurement quantity	
-CHOICE reporting criteria	Inter-frequency reporting criteria
-Filter coefficient	0
-CHOICE mode	FDD
-Measurement quantity for frequency quality	CPICH RSCP
estimate	
-Inter-frequency reporting quantity	
-UTRA Carrier RSSI	TRUE
-Frequency quality estimate	TRUE
-Non frequency related cell reporting quantities	
-SFN-SFN observed time difference reporting	No report
indicator	
-Cell synchronisation information reporting	TRUE
indicator	
-Cell Identity reporting indicator	TRUE
-CHOICE mode	FDD
-CPICH Ec/N0 reporting indicator	TRUE
-CPICH RSCP reporting indicator	TRUE
-Pathloss reporting indicator	TRUE
-Reporting cell status	
-CHOICE reported cell	Report all active set cells + cells within
	monitored set on used frequency
-Maximum number of reported cells	Virtual/active set cells + 2
-Measurement validity	Not Present
-Inter-frequency set update	Not Present
-CHOICE report criteria	Periodical reporting criteria
-Amount of reporting	Infinity
-Reporting interval	500 ms
Physical channel information elements	
-DPCH compressed mode status info	Not Present

MEASUREMENT REPORT message for Inter frequency test cases

This message is common for all inter frequency test cases in clause 8.7 and is described in Annex I.

8.7.1.2.1.5 Test requirements

The CPICH RSCP measurement accuracy shall meet the requirements in table 8.7.1.2.1.4.

Table 8.7.1.2.1.3: CPICH_RSCP Inter frequency relative accuracy, test requirements

Parameter	Unit Accuracy [dB]		Accuracy [dB]		
Falameter	Onic	Normal condition Extreme condition		lo [dBm]	
CPICH_RSCP	dBm	±7.1	±7.1	-9450	

Table 8.7.1.2.1.4: CPICH RSCF	Inter frequency tests parameters
-------------------------------	----------------------------------

Parameter	Unit	Unit Test 1		Te	st 2
Farameter	Unit	Cell 1	Cell 1 Cell 2		Cell 2
UTRA RF Channel number		Channel 1	Channel 2	Channel 1	Channel 2
CPICH_Ec/lor	dB	-1	0	-1	10
PCCPCH_Ec/lor	dB	-1	2	-*	2
SCH_Ec/lor	dB	-1	2	-*	2
PICH_Ec/lor	dB	-1	5	-*	15
DPCH_Ec/lor	dB	-15	-	-15	-
OCNS_Ec/lor	dB	-1.11	-0.94	-1.11	-0.94
loc	dBm/ 3.84 MHz	-61.6	-61.6	-83.00	-93.46
Îor/loc	dB	9.84	9.84	0.3	-9.24
CPICH RSCP, Note 1	dBm	-61.8	-61.8	-92.7	-112.7
Io, Note 1	dBm	-51.3	-51.3	-79.8	-93.0
Propagation condition	- AWGN AWGN				
NOTE 1: CPICH RSCP and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.					
Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters					

I ests shall be done sequentially. Lest 1 shall be done first. After test 1 has been executed test parameters for test 2 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.

The reported values for the relative inter frequency CPICH RSCP measurement shall meet the requirements in table 8.7.1.2.1.5.

Table 8.7.1.2.1.5: CPICH_RSCP Inter frequency relative accuracy requirements for the reported values

	Test 1	Test 2		
Normal Conditions				
Lowest reported value cell 2	CPICH_RSCP_(x - 8)	<u>CPICH_RSCP_(x - 28)</u>		
Highest reported value cell 2	<u>CPICH_Ec/No_(x + 8)</u>	<u>CPICH Ec/No (x - 12)</u>		
Extreme Conditions				
Lowest reported value cell2	CPICH_RSCP_(x - 8)	<u>CPICH_RSCP_(x - 28)</u>		
Highest reported value cell2	<u>CPICH_Ec/No_(x + 8)</u>	<u>CPICH Ec/No (x - 12)</u>		
CPICH_RSCP_x is the reported value of cell 1				

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

Tdoc #T1-031570

CHANGE REQUEST					
æ	<mark>34.121</mark> CR <mark>324</mark> ⊯rev <mark>1</mark> [⊮] (Current vers	^{ion:} 5.1.1 [#]		
For <u>HELP</u> or	using this form, see bottom of this page or look at the	pop-up text	over the X symbols.		
Proposed chang	e affects: UICC apps器 ME <mark>X</mark> Radio Aco	cess Networ	k Core Network		
Title:	Test Requirements for RRM CPICH Ec/lo Intra Fre	equency Mea	asurement		
Source:	Rohde & Schwarz, Nokia				
Work item code:	H	<i>Date:</i> ೫	27/10/2003		
Category:	 F Use <u>one</u> of the following categories: F (correction) A (corresponds to a correction in an earlier release) B (addition of feature), C (functional modification of feature) D (editorial modification) Detailed explanations of the above categories can be found in 3GPP <u>TR 21.900</u>. 	2	R5 the following releases: (GSM Phase 2) (Release 1996) (Release 1997) (Release 1998) (Release 1999) (Release 4) (Release 5) (Release 6)		

Reason for change:	The Test Requirements have to include the reporting resolution. The relative differences between physical channels in test parameters are not equal to the relative differences, given in minimum requirements
Summary of change:	The reporting resolution is included. The power levels of physical channels are modified.
Consequences if	Hest could fail "good UEs" because Test Requirements do not include additional
-	S
not approved:	reporting resolution.
Clauses affected:	₭ 8.7.2.1
Chauses ancolea.	0.7.2.1
Other specs affected:	YN#XXOther core specificationsXTest specificationsXO&M Specifications
Other comments:	₭

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

8.7.2 CPICH Ec/lo

8.7.2.1 Intra frequency measurements accuracy

8.7.2.1.1 Absolute accuracy requirement

8.7.2.1.1.1 Definition and applicability

The absolute accuracy of CPICH Ec/Io is defined as the CPICH Ec/Io measured from one cell compared to the actual CPICH_Ec/Io power ratio from same cell.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.2.1.1.2 Minimum Requirements

The accuracy requirements in table 8.7.2.1.1.1 are valid under the following conditions:

- CPICH_RSCP1 $|_{dBm} \ge -114 \text{ dBm}.$

$$- \frac{I_o}{\left(\hat{I}_{or}\right)\Big|_{in\ dB}} - \left(\frac{CPICH_E_c}{I_{or}}\right)\Big|_{in\ dB} \le 20dB.$$

Table 8.7.2.1.1.1: CPICH_Ec/lo Intra frequency absolute accuracy, minimum requirements

		Accuracy [dB]		Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]
CPICH_Ec/lo	dB	\pm 1,5 for -14 \leq CPICH Ec/lo \pm 2 for -16 \leq CPICH Ec/lo < -14 \pm 3 for -20 \leq CPICH Ec/lo < -16	±3	-9450

The normative reference for this requirement is TS 25.133 [2] clause 9.1.2.1.1.

8.7.2.1.1.3 Test purpose

The purpose of this test is to verify that the CPICH Ec/Io absolute measurement accuracy is within the specified limits in clause 8.7.2.1.1.2. This measurement is for Cell selection/re-selection and for handover evaluation.

8.7.2.1.1.4 Method of test

8.7.2.1.1.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

In this case all cells are on the same frequency. CPICH Ec/Io intra frequency absolute accuracy requirements are tested by using the test parameters in table 8.7.2.1.1.2.

Parameter	Unit	Tes	st 1	Tes	st 2	Tes	st 3
Farameter	Onit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2
UTRA RF Channel number		Chan	nel 1	Channel 1		Channel 1	
CPICH_Ec/lor	dB	-1	0	-10		-1	0
PCCPCH_Ec/lor	dB	-1	2	-1	2	-1	2
SCH_Ec/lor	dB	-1	2	-1	2	-1	2
PICH_Ec/lor	dB	-1	5	-1	5	-1	5
DPCH_Ec/lor	dB	-15	-	-15	-	-6	-
OCNS_Ec/lor	dB	-1.11	-0.94	-1.11	-0.94	.2.56	-0.94
loc	dBm/ 3.84 MHz	-56	.98	-89	.07	-94	.98
Îor/loc	dB	3.0	3.0	-2.9	-2.9	-9.0	-9.0
CPICH Ec/lo, Note 1	dBm	-14.0	-14.0	-16.0	-16.0	-20.0	-20.0
lo, Note 1	dBm/3.84 MHz	-5	50	-8	36	-9)4
Propagation condition	-	AWGN AWGN		AW	'GN		
NOTE 1: CPICH Ec/lo and lo levels have been calculated from other parameters for information purposes. They							
are not settable parameters themselves.							
Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for tests							
2 and 3 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.							

Table 8.7.2.1.1.2: CPICH_Ec/lo Intra frequency parameters

8.7.2.1.1.4.2 Procedure

- 1) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.2.1.1.5.
- 2) SS shall transmit MEASUREMENT CONTROL message.
- 3) UE shall transmit periodically MEASUREMENT REPORT messages.
- 4) SS shall check CPICH_Ec/No value in MEASUREMENT REPORT messages. According to table 8.7.2.1.1.3 the SS calculates CPICH_Ec/Io power ratio of Cell 1, which is compared to the actual CPICH Ec/Io power ratio from the same cell for each MEASUREMENT REPORT message.
- 5) SS shall count number of MEASUREMENT REPORT messages transmitted by UE. After 1000 MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.2.1.1.5 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, step 4) above is repeated. After further 1000 MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.2.1.1.5 for Test 3. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, step 4) above is repeated.
- 6) After further 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit RRC CONNECTION RELEASE message.
- 7) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.

Reported value	Measured quantity value	Unit
CPICH_Ec/No _00	CPICH Ec/lo < -24	dB
CPICH_Ec/No _01	-24 ≤ CPICH Ec/lo < -23.5	dB
CPICH_Ec/No _02	-23.5 ≤ CPICH Ec/lo < -23	dB
CPICH_Ec/No _47	-1 ≤ CPICH Ec/lo < -0.5	dB
CPICH_Ec/No _48	-0.5 ≤ CPICH Ec/lo < 0	dB
CPICH_Ec/No _49	0 ≤ CPICH Ec/lo	dB

Table 8.7.2.1.1.3: CPICH Ec/lo measurement report mapping

Specific Message Contents

All messages indicated above shall use the same content as described in default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL	message for Intra free	quency measurement	(Step 1):

Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	0
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	1
-Measurement Command	Modify
-Measurement Reporting Mode	Acknowledged mode RLC
- Measurement Report Transfer Mode	Periodical reporting
- Periodical Reporting / Event Trigger Reporting	
Mode	Not Present
-Additional measurement list	Intra-frequency measurement
-CHOICE Measurement Type	
-Intra-frequency measurement	
- Intra-frequency measurement objects list	Not Present
-Intra-frequency measurement quantity	
-Filter coefficient	0
-CHOICE mode	FDD
-Measurement quantity	CPICH RSCP
-Intra-frequency reporting quantity	
-Reporting quantities for active set cells	
-SFN-SFN observed time difference reporting	
indicator	No report
-Cell synchronisation information reporting	
indicator	TRUE
-Cell Identity reporting indicator	TRUE
-CHOICE mode	FDD
-CPICH Ec/N0 reporting indicator	TRUE
-CPICH RSCP reporting indicator	TRUE
-Pathloss reporting indicator	TRUE
 Reporting quantities for monitored set cells 	
-SFN-SFN observed time difference reporting	No report
indicator	
-Cell synchronisation information reporting	FALSE
indicator	
-Cell Identity reporting indicator	FALSE
-CHOICE mode	FDD
-CPICH Ec/N0 reporting indicator	FALSE
-CPICH RSCP reporting indicator	FALSE
-Pathloss reporting indicator	FALSE
-Reporting quantities for detected set cells	Not Present
-Reporting cell status	
-CHOICE reported cell	Report all active set cells + cells within
	monitored set on used frequency
-Maximum number of reported cells	Virtual/active set cells + 2
-Measurement validity	Not Present
-CHOICE report criteria	Periodical reporting criteria
-Amount of reporting	Infinity
-Reporting interval	250 ms
Physical channel information elements	Not Descent
-DPCH compressed mode status info	Not Present

MEASUREMENT REPORT message for Intra frequency test cases

This message is common for all intra frequency test cases in clause 8.7 and is described in Annex I.

8.7.2.1.1.5 Test requirements

The CPICH Ec/Io measurement accuracy shall meet the requirements in clause 8.7.2.1.1.2. The effect of assumed thermal noise and noise generated in the receiver (–99 dBm) shall be added into the required accuracy defined in subclause 8.7.2.1.1.2 as shown in table 8.7.2.1.1.4.

		Accuracy [dB]		Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]
CPICH Ec/lo	dB	-3.11.9 for -14 ≤ CPICH Ec/lo -3.62.4 for -16 ≤ CPICH Ec/lo < -14 -4.63.4 for -20 ≤ CPICH Ec/lo < -16	-4.63.4	-9487
	UB	\pm 1.95 for -14 \leq CPICH Ec/lo \pm 2.4 for -16 \leq CPICH Ec/lo < -14 \pm 3.4 for -20 \leq CPICH Ec/lo < -16	± 3.4	-8750

The normative reference for this requirement is TS 25.133 [2] clause A.9.1.2.2.

Parameter	Unit	Tes	Test 1		Test 2		Test 3	
Falameter	Unit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2	
UTRA RF Channel number		Char	nel 1	Channel 1		Channel 1		
CPICH_Ec/lor	dB	-9	.7	-9.8		-9.9		
PCCPCH_Ec/lor	dB	- 12	11.7	- 12	1 <u>1.8</u>	- 12	<u>11.9</u>	
SCH_Ec/lor	dB	- 12	11.7	- <u>11.</u>	<u>8</u> 12	- 12	<u>11.9</u>	
PICH_Ec/lor	dB	- 15	- 15 14.7		- 15 14.8		<u>14.9</u>	
DPCH_Ec/lor	dB	- 15 14.7	-	- 15 14.8	-	- 6 5.9	-	
OCNS_Ec/lor	dB	-1. 15 2	- 0.98 <u>1.02</u>	-1.1 <mark>37</mark>	-0.9 <mark>79</mark>	2. 57<u>64</u>	-0.9 <mark>57</mark>	
loc	dBm/ 3.84 MHz	-5	-58.5 -89.07		-93.98			
Îor/loc	dB	3.3	3.3	-2.6	-2.6	-8.7	-8.7	
CPICH Ec/lo, Note 1	dBm	-13.6	-13.6	-15.6	-15.6	-19.6	-19.6	
Io, Note 1	dBm	-5	1.3	-85.85 -92.9		2.9		
Propagation condition	-	AWGN AWGN AWGN		'GN				
NOTE 1: CPICH Ec/lo and lo levels have been calculated from other parameters for information purposes. They								

are not settable parameters themselves. Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for tests 2 and 3 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.

The reported values for the absolut intra frequency CPICH Ec/Io measurement shall meet the requirements in table 8.7.2.1.1.6.

Table 8.7.2.1.1.6: CPICH_Ec/lo Intra frequency absolute accuracy requirements for the reported values

	Test 1	Test 2	Test 3
Normal Conditions			
Lowest reported value	CPICH Ec/No 17	CPICH_Ec/No_12	CPICH_Ec/No_0
Highest reported value	CPICH_Ec/No_25	CPICH_Ec/No_22	CPICH_Ec/No_16
Extreme Conditions		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Lowest reported value	CPICH Ec/No 14	CPICH_Ec/No_10	CPICH_Ec/No_0
Highest reported value	CPICH Ec/No 28	CPICH_Ec/No_24	CPICH_Ec/No_16

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.7.2.1.2 Relative accuracy requirement

8.7.2.1.2.1 Definition and applicability

The relative accuracy of CPICH Ec/Io is defined as the CPICH Ec/Io measured from one cell compared to the CPICH Ec/Io measured from another cell on the same frequency.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.2.1.2.2 Minimum Requirements

The accuracy requirements in table 8.7.2.1.2.1 are valid under the following conditions:

- CPICH_RSCP1,2 $|_{dBm} \ge -114 \text{ dBm}.$

-
$$|CPICH _RSCP1|_{in \, dBm} - CPICH _RSCP2|_{in \, dBm} | \le 20 dB$$
.

$$- \frac{I_o}{(\hat{I}_{or})}\Big|_{in\ dB} - \left(\frac{CPICH_E_c}{I_{or}}\right)\Big|_{in\ dB} \le 20dB$$

Table 8.7.2.1.2.1: CPICH_Ec/lo Intra frequency relative accuracy

		Accuracy [dB	Conditions	
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]
CPICH_Ec/lo	dB	$\pm 1,5$ for -14 \leq CPICH Ec/lo ± 2 for -16 \leq CPICH Ec/lo $<$ -14 ± 3 for -20 \leq CPICH Ec/lo $<$ -16	±3	-9450

The normative reference for this requirement is TS 25.133 [2] clauses 9.1.2.1.2 and A.9.1.2.2.

8.7.2.1.2.3 Test purpose

The purpose of this test is to verify that the CPICH Ec/Io relative measurement accuracy is within the specified limits in clause 8.7.2.1.2.2. This measurement is for Cell selection/re-selection and for handover evaluation.

8.7.2.1.2.4 Method of test

8.7.2.1.2.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

In this case all cells are in the same frequency. CPICH Ec/Io intra frequency relative accuracy requirements are tested by using test parameters in table 8.7.2.1.1.2.

8.7.2.1.2.4.2 Procedure

- 1) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.2.1.1.3.
- 2) SS shall transmit MEASUREMENT CONTROL message.
- 3) UE shall transmit periodically MEASUREMENT REPORT messages.
- 4) SS shall check CPICH_Ec/No value of Cell 1 and Cell 2 in MEASUREMENT REPORT messages. According to table 8.7.2.1.1.3 the SS calculates CPICH_Ec/Io power ratio of Cell 1 and Cell 2. CPICH_Ec/Io power ratio

value measured from Cell 1 is compared to CPICH_Ec/Io power ratio value measured from Cell 2 for each MEASUREMENT REPORT message.

- 5) The result of step 3) is compared to actual power level difference of CPICH_Ec/Io of Cell 1 and Cell 2.
- 6) SS shall count number of MEASUREMENT REPORT messages transmitted by UE. After 1000 MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.2.1.1.3 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, steps 4) and 5) above are repeated. After further 1000 MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.2.1.1.3 for Test 3. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, steps 4) and 5) above are repeated.
- 7) After further 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit RRC CONNECTION RELEASE message.
- 8) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message for Intra frequency measurement in clause 8.7.2.1.1.4.2 is used.

MEASUREMENT REPORT message for Intra frequency test cases

This message is common for all intra frequency test cases in clause 8.7 and is described in Annex I.

8.7.2.1.2.5 Test requirements

The CPICH Ec/Io measurement accuracy shall meet the requirements in table 8.7.2.1.2.2.

Table 8.7.2.1.2.2: CPICH_Ec/lo Intra frequency relative accuracy

Parameter	Unit	Accuracy [dB]	Conditions	
Falameter	Onic	Normal condition	Extreme condition	lo [dBm]
	dB	± 2.3 for -14 \leq CPICH Ec/lo		-9450
CPICH_Ec/lo		± 2.8 for -16 \leq CPICH Ec/lo < -14	±3.8	
		± 3.8 for -20 \leq CPICH Ec/lo < -16		

Table 8.7.2.1.2.3: CPICH_E	Ec/lo Intra frequency tests parame	eters
----------------------------	------------------------------------	-------

Parameter	Unit	Tes	st 1	Test 2		Test 3	
Farameter	Unit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2
UTRA RF Channel number		Chan	nel 1	Channel 1		Channel 1	
CPICH_Ec/lor	dB	-9	.7	-9	.8	-9.9	
PCCPCH_Ec/lor	dB	- 12	11.7	- 12	<u>11.8</u>	- 12 11.9	
SCH_Ec/lor	dB	- 12	11.7	- 12	<u>11.8</u>	- <u>12</u>	11. <u>9</u>
PICH_Ec/lor	dB	- 15 14.7		- 15 14.8		- 15 14.9	
DPCH_Ec/lor	dB	- 15 14.7	-	- 15 14.8	-	- <mark>6</mark> 5.9	-
OCNS_Ec/lor	dB	-1. 15 2	- 0.98 <u>1.02</u>	-1.1 <mark>37</mark>	-0.9 <mark>79</mark>	<u>-</u> 2. 57<u>64</u>	-0.9 <mark>57</mark>
loc	dBm/ 3.84 MHz	-58.5 -89.07		-93.98			
Îor/loc	dB	3.3	3.3	-2.6	-2.6	-8.7	-8.7
CPICH Ec/lo, Note 1	dBm	-13.6	-13.6	-15.6	-15.6	-19.6	-19.6
lo, Note 1	dBm	dBm -51,3 -85.85 -92.9				2.9	
Propagation condition	- AWGN AWGN AWGN				'GN		
NOTE 1: CPICH Ec/lo and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.							

Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for tests 2 and 3 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.

The reported values for the relative intra frequency CPICH Ec/Io measurement shall meet the requirements in table 8.7.2.1.2.4.

Table 8.7.2.1.2.4: CPICH_Ec/lo Intra frequency relative accuracy requirements for the reported values

	<u>Test 1</u>	Test 2	<u>Test 3</u>		
Normal Conditions					
Lowest reported value cell 2	<u>CPICH_Ec/No_(x - 5)</u>	<u>CPICH_Ec/No_(x - 6)</u>	<u>CPICH_Ec/No_(x - 8)</u>		
Highest reported value cell 2	CPICH_Ec/No_(x+ 5)	<u>CPICH_Ec/No_(x - 6)</u>	<u>CPICH_Ec/No_(x+ 8)</u>		
Extreme Conditions					
Lowest reported value cell2	<u>CPICH_Ec/No_(x - 8)</u>	<u>CPICH_Ec/No_(x - 8)</u>	<u>CPICH_Ec/No_(x - 8)</u>		
Highest reported value cell2	CPICH_Ec/No_(x + 8)	CPICH_Ec/No_(x+ 8)	CPICH_Ec/No_(x+ 8)		
CPICH Ec/No x is the reported value of cell 1					

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

CHANGE REQUEST											CR-Form-v7	
æ	3	<mark>4.121</mark>	CR	325	жľ	ev	1	ж	Current ve	ersion:	5.1.1	ж
For HELP on using this form, see bottom of this page or look at the pop-up text over the X symbols.												
Proposed chang	ie affe	ects: l	JICC a	pps#	Μ	EX	Rac	lio Ad	ccess Netw	vork	Core Ne	etwork
Title:	жT	est Req	uireme	nts for RRM	I CPICH	H Ec/I	<mark>o Int</mark>	er Fr	equency N	leasure	ement	
Source:	<mark>೫ R</mark>	ohde &	<mark>Schwa</mark>	rz								
Work item code:	ж								Date:	೫ <mark>27/</mark>	/10/2003	
Category:	De	F (con A (cor B (add C (fun D (edi tailed exp	rection) respond dition of ctional in torial m planatio	owing categor ds to a correc feature), modification (odification) ns of the abo <u>FR 21.900</u> .	tion in a	e)		elease	2	of the fo (GSN (Rela (Rela (Rela (Rela (Rela (Rela	ollowing rela M Phase 2) ease 1996) ease 1997) ease 1998) ease 1999) ease 4) ease 5) ease 6)	

Reason for change: ೫	The Test Requirements have to include the reporting resolution.						
Summary of change: #	The reporting resolution is included.						
Consequences if 🛛 🕱	Test could fail "good UEs" because Test Requirements do not include additional						
not approved:	reporting resolution.						
Clauses affected: #	8.7.2.2						
Other specs ℜ affected:	Y N X Other core specifications # X Test specifications # X O&M Specifications #						
Other comments: ೫							

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

8.7.2 CPICH Ec/lo

...

- 8.7.2.2 Inter frequency measurement accuracy
- 8.7.2.2.1 Void
- 8.7.2.2.2 Relative accuracy requirement
- 8.7.2.2.2.1 Definition and applicability

The relative accuracy of CPICH Ec/Io in the inter frequency case is defined as the CPICH Ec/Io measured from one cell compared to the CPICH Ec/Io measured from another cell on a different frequency.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.2.2.2.2 Minimum Requirements

The accuracy requirements in table 8.7.2.2.2.1 are valid under the following conditions:

- CPICH_RSCP1,2 $|_{dBm} \ge -114 \text{ dBm}.$
- $|CPICH _RSCP1|_{in \, dBm} CPICH _RSCP2|_{in \, dBm}| \le 20 \, dB$.
- | Channel 1_Io|_{dBm/3.84 MHz} -Channel 2_Io|_{dBm/3.84 MHz} | \leq 20 dB.

$$- \frac{I_o}{\left(\hat{I}_{or}\right)}\Big|_{in\ dB} - \left(\frac{CPICH_E_c}{I_{or}}\right)\Big|_{in\ dB} \le 20dB.$$

Table 8.7.2.2.2.1: CPICH_Ec/lo Inter frequency relative accuracy, minimum requirements

		Accuracy [dB		Conditions
Parameter	Unit	Normal condition	lo [dBm/3.84 MHz]	
	dB	\pm 1.5 for -14 \leq CPICH Ec/lo		-9450
CPICH_Ec/lo		± 2 for -16 \leq CPICH Ec/lo < -14	±3	
		± 3 for -20 \leq CPICH Ec/lo < -16		

The normative reference for this requirement is TS 25.133 [2] clauses 9.1.2.2.2 and A.9.1.2.2.

8.7.2.2.2.3 Test purpose

The purpose of this test is to verify that the CPICH Ec/Io relative measurement accuracy is within the specified limits in clause 8.7.2.2.2.2. This measurement is for Cell selection/re-selection and for handover evaluation.

8.7.2.2.2.4 Method of test

8.7.2.2.2.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

In this case both cells are in different frequency and compressed mode is applied. The gap length is 7, detailed definition is in clause C.5, set 1 of table C.5.2 except for TGRRC and TGCFN. TGPRC and TGCFN shall set to

"Infinity" and "(Current CFN + (256 – TTI/10msec))mod 256". CPICH Ec/Io inter frequency relative accuracy requirements are tested by using test parameters in table 8.7.2.2.2.

Parameter	Unit	Tes	st 1	Tes	st 2	Tes	st 3	
Falailletei	Onic	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2	
UTRA RF Channel number		Channel 1	Channel 2	Channel 1	Channel 2	Channel 1	Channel 2	
CPICH_Ec/lor	dB	-1	0	-1	10	-10		
PCCPCH_Ec/lor	dB	-1	2	-1	12	-1	2	
SCH_Ec/lor	dB	-1	2	-1	12	-1	2	
PICH_Ec/lor	dB	-1	15	-1	15	-1	5	
DPCH_Ec/lor	dB	-15	-	-6	-	-6	-	
OCNS_Ec/lor	dB	-1.11	-0.94	-2.56	-0.94	-2.56	-0.94	
loc	dBm/ 3.84 MHz	-52.22	-52.22	-87.27	-87.27	-94.46	-94.46	
Îor/loc	dB	-1.75	-1.75	-4.7	-4.7	-9.54	-9.54	
CPICH Ec/lo, Note 1	dBm	-14.0	-14.0	-16.0	-16.0	-20.0	-20.0	
lo, Note 1	dBm/3.84 MHz	-50	-50	-86	-86	-94	-94	
Propagation condition	-	- AWGN AWGN AWGN						
NOTE 1: CPICH Ec/lo and lo levels have been calculated from other parameters for information purposes. They								
are not settat	are not settable parameters themselves.							
	Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for tests 2 and 3 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.							

8.7.2.2.2.4.2 Procedure

- 1) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.2.2.2.4.
- 2) SS shall transmit PHYSICAL CHANNEL RECONFIGURATION message.
- 3) UE shall transmit PHYSICAL CHANNEL RECONFIGURATION COMPLETE message.
- 4) SS shall transmit a MEASUREMENT CONTROL message for intra frequency measurement and transmit another MEASUREMENT CONTROL message for inter frequency measurement.
- 5) UE shall transmit periodically MEASUREMENT REPORT messages.
- 6) SS shall check CPICH_Ec/No value of Cell 1 and Cell 2 in MEASUREMENT REPORT messages. According to table 8.7.2.1.1.3 the SS calculates CPICH_Ec/Io power ratio of Cell 1 and Cell 2. CPICH_Ec/Io power ratio measured from Cell 1 is compared to CPICH_Ec/Io power value measured from Cell 2 for each MEASUREMENT REPORT message.
- 7) The result of step 6) is compared to actual power level difference of CPICH_Ec/Io of Cell 1 and Cell 2.
- 8) SS shall count number of MEASUREMENT REPORT messages transmitted by UE. After 1000 MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.2.2.2.4 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, steps 6) and 7) above are repeated. After further 1000 MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.2.2.2.4 for Test 3. While RF parameters are being set up, MEASUREMENT REPORT messages from UE, the RF parameters are set up according to table 8.7.2.2.2.4 for Test 3. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, steps 6) and 7) above are repeated.
- 9) After 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit RRC CONNECTION RELEASE message.

10) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.

Specific Message Contents

All messages indicated above shall use the same content as described in default message content in clause 9 of 34.108 [3], with the following exceptions:

PHYSICAL CHANNEL RECONFIGURATION message for Inter frequency measurement (step 1):

Information Element	Value/Remark
Message Type	
UE Information Elements	
-RRC transaction identifier	0
-Integrity check info	Not Present
-Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	Not Present
-New U-RNTI	Not Present
-New C-RNTI	Not Present
-RRC State Indicator	CELL DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	
-CN Information info	Not Present
UTRAN mobility information elements	
-URA identity	Not Present
RB information elements	
-Downlink counter synchronisation info	Not Present
PhyCH information elements	Not resent
-Frequency info	Not Present
Uplink radio resources	
-Maximum allowed UL TX power	Not Present
- CHOICE channel requirement	Not Present
Downlink radio resources	Not i leselit
-CHOICE mode	FDD
-Downlink PDSCH information	Not Present
-Downlink PDSCH information -Downlink information common for all radio links	Not Present
	Not Drospat
-Downlink DPCH info common for all RL	Not Present
-CHOICE mode	FDD
-DPCH compressed mode info	
-Transmission gap pattern sequence	
-TGPSI	1
-TGPS Status Flag	Activate
-TGCFN	(Current CFN + (256 – TTI/10msec))mod 256
-Transmission gan pattern sequence	
-Transmission gap pattern sequence configuration parameters	
-TGMP	EDD maggurament
	FDD measurement
-TGPRC	Infinity
-TGSN	4
-TGL1	7
-TGL2	Not Present
-TGD	0
-TGPL1	3
-TGPL2	Not Present
-RPP	Mode 0
-ITP	Mode 0
-CHOICE UL/DL mode	UL and DL
 Downlink compressed mode method 	SF/2
 -Uplink compressed mode method 	SF/2
-Downlink frame type	В
-DeltaSIR1	3.0
-DeltaSIRafter1	3.0
-DeltaSIR2	Not Present
-DeltaSIRafter2	Not Present
-N Identify abort	Not Present
-T Reconfirm abort	Not Present
-TX Diversity Mode	Not Present
-SSDT information	Not Present
-Default DPCH Offset Value	Not Present
-Devalue DFCH Offset value -Downlink information per radio link list	
-Downlink information for each radio link	
	EDD
-Choice mode	FDD
-Primary CPICH info	
-Primary scrambling code	100

-PDSCH with SHO DCH Info	Not Present
-PDSCH code mapping	Not Present
-Downlink DPCH info for each RL	
-CHOICE mode	FDD
-Primary CPICH usage for channel estimation	Primary CPICH may be used
-DPCH frame offset	Set to value Default DPCH Offset Value (as
	currently stored in SS) mod 38400
-Secondary CPICH info	Not Present
-DL channelisation code	
-Secondary scrambling code	Not Present
-Spreading factor	128
-Code number	0
-Scrambling code change	No code change
-TPC combination index	0
-SSDT Cell Identity	Not Present
-Closed loop timing adjustment mode	Not Present
-SCCPCH Information for FACH	Not Present

First MEASUREMENT CONTROL message for Intra frequency measurement (Step 3):

Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	0
-Integrity check info	Not Present
Measurement Information elements	Not resent
-Measurement Identity	1
-Measurement Command	Modify
-Measurement Reporting Mode	Modify
- Measurement Report Transfer Mode	Acknowledged mode RLC
- Periodical Reporting / Event Trigger Reporting	Periodical reporting
Mode	T enoulear reporting
-Additional measurement list	Not Present
-CHOICE Measurement Type	Intra-frequency measurement
-Intra-frequency measurement	
- Intra-frequency measurement objects list	
-Intra-frequency cell info list	Not Present
-Intra-frequency measurement quantity	Not Tresent
-Filter coefficient	0
-CHOICE mode	FDD
-Measurement quantity	CPICH RSCP
-Intra-frequency reporting quantity	
-Reporting quantities for active set cells	
-SFN-SFN observed time difference reporting	
indicator	No report
-Cell synchronisation information reporting	
indicator	TRUE
-Cell Identity reporting indicator	TRUE
-CHOICE mode	FDD
-CPICH Ec/N0 reporting indicator	TRUE
-CPICH RSCP reporting indicator	TRUE
-Pathloss reporting indicator	TRUE
-Reporting quantities for monitored set cells	
-SFN-SFN observed time difference reporting	No report
indicator	
-Cell synchronisation information reporting	FALSE
indicator	
-Cell Identity reporting indicator	TRUE
-CHOICE mode	FDD
-CPICH Ec/N0 reporting indicator	TRUE
-CPICH RSCP reporting indicator	TRUE
-Pathloss reporting indicator	TRUE
-Reporting quantities for detected set cells	Not Present
-Reporting cell status	
-CHOICE reported cell	Report all active set cells + cells within
	monitored set on used frequency
-Maximum number of reported cells	Virtual/active set cells + 2
-Measurement validity	Not Present
-CHOICE report criteria	Periodical reporting criteria
-Amount of reporting	Infinity
-Reporting interval	250 ms
Physical channel information elements	
-DPCH compressed mode status info	Not Present

Second MEASUREMENT CONTROL message for Inter frequency measurement (step 3):

Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	0
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	2
-Measurement Command	Setup
-Measurement Reporting Mode	
- Measurement Report Transfer Mode	Acknowledged mode RLC
- Periodical Reporting / Event Trigger Reporting	Periodical reporting
Mode	
-Additional measurement list	Not Present
-CHOICE Measurement Type	Inter-frequency measurement
-Inter-frequency measurement	
-Inter-frequency cell info list	
-CHOICE Inter-frequency cell removal	Not Present
-New inter-frequency cells	Cell 2 information is included
-Cell for measurement	Not Present
-Inter-frequency measurement quantity	
-CHOICE reporting criteria	Inter-frequency reporting criteria
-Filter coefficient	0
-CHOICE mode	FDD
 Measurement quantity for frequency quality 	CPICH RSCP
estimate	
-Inter-frequency reporting quantity	
-UTRA Carrier RSSI	TRUE
-Frequency quality estimate	TRUE
-Non frequency related cell reporting quantities	
-SFN-SFN observed time difference reporting	No report
indicator	
-Cell synchronisation information reporting	TRUE
indicator	
-Cell Identity reporting indicator	TRUE
-CHOICE mode	FDD
-CPICH Ec/N0 reporting indicator	TRUE
-CPICH RSCP reporting indicator	TRUE
-Pathloss reporting indicator	TRUE
-Reporting cell status	Depart all active act calls is salls within
-CHOICE reported cell	Report all active set cells + cells within
Maximum number of reported calls	monitored set on used frequency
-Maximum number of reported cells	Virtual/active set cells + 2
-Measurement validity	Not Present
-Inter-frequency set update	Not Present
-CHOICE report criteria	Periodical reporting criteria
-Amount of reporting -Reporting interval	Infinity 500 ms
	000 1115
Physical channel information elements	Not Procent
-DPCH compressed mode status info	Not Present

MEASUREMENT REPORT message for Intra frequency test cases

This message is common for all inter frequency test cases in clause 8.7 and is described in Annex I.

8.7.2.2.2.5 Test requirements

The CPICH Ec/Io measurement accuracy shall meet the requirements in clause 8.7.2.2.2.2. The effect of assumed thermal noise and noise generated in the receiver (–99 dBm) shall be added into the required accuracy defined in clause 8.7.2.2.2.2 as shown in table 8.7.2.2.2.3.

		Accuracy [dB]	Conditions	
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]
		-3.52.3 for -14 \leq CPICH Ec/lo -4.02.8 for -16 \leq CPICH Ec/lo < -14 -5.03.8 for -20 \leq CPICH Ec/lo < -16	-5.03.8	-9487
CPICH_Ec/lo	dB	± 2.3 for -14 \leq CPICH Ec/lo ± 2.8 for -16 \leq CPICH Ec/lo < -14 ± 3.8 for -20 \leq CPICH Ec/lo < -16	± 3.8	-8750

Table 8.7.2.2.2.3: CPICH	Ec/lo Inter freque	ency relative accuracy	, test requirements
		chey relative accuracy	, toot requirements

The normative reference for this requirement is TS 25.133 [2] clause A.9.1.2.2.

Parameter	Unit	Tes	st 1	Tes	st 2	Test 3		
Falameter	Unit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2	
UTRA RF Channel number		Channel 1	Channel 2	Channel 1	Channel 2	Channel 1	Channel 2	
CPICH_Ec/lor	dB	-1	0	-1	-10		-10	
PCCPCH_Ec/lor	dB	-1	2	-12		-12		
SCH_Ec/lor	dB	-1	2	-12		-12		
PICH_Ec/lor	dB	-1	15	-1	5	-15		
DPCH_Ec/lor	dB	-15	-	-6	-	-6	-	
OCNS_Ec/lor	dB	-1.12	-0.95	-2.55	-0.94	-2.55	-0.94	
loc	dBm/ 3.84 MHz	-53.5	-53.5	-86.27	-86.27	-93.46	-93.46	
Îor/loc	dB	-1.45	-1.45	-4.4	-4.4	-9.24	-9.24	
CPICH Ec/lo, Note 1	dBm	-13.8	-13.8	-15.7	-15.7	-19.7	-19.7	
lo, Note 1	dBm	-51.15	-51.15	-84.9	-84.9	-93	-93	
Propagation condition	-	AW	'GN	AW	'GN	AW	'GN	
NOTE 1: CPICH Ec/lo	and lo levels l	nave been ca	Iculated from	other parame	eters for infor	mation purpo	ses. They	
are not settab	ole parameters	themselves.		·			-	
Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for tests 2 and 3 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.								

Table 8.7.2.2.2.4: CPICH Ec/lo Inter frequency tests parameters

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

The reported values for the relative inter frequency CPICH Ec/Io measurement shall meet the requirements in table 8.7.2.2.2.5.

Table 8.7.2.2.2.5: CPICH_Ec/lo Inter frequency relative accuracy requirements for the reported values

	Test 1	Test 2	Test 3				
Normal Conditions							
Lowest reported value cell 2	CPICH Ec/No (x -5)	CPICH_Ec/No_(x - 6)	<u>tbd</u>				
Highest reported value cell 2	CPICH_Ec/No_(x+5)	$CPICH_Ec/No_(x + 6)$	tbd				
Extreme Conditions							
Lowest reported value cell2	CPICH_Ec/No_(x - 8)	CPICH_Ec/No_(x - 8)	tbd				
Highest reported value cell2	CPICH_Ec/No_(x + 8)	CPICH_Ec/No_(x + 8)	tbd				
CPICH_Ec/No_x is the reported value of cell 1							

3GPP TSG-T WG1 Meeting #21 Budapest, Hungary, November 3rd-7th, 2003

Tdoc **∺***T1-031606*

CHANGE REQUEST								
¥	34.121 CR 308	≭rev <mark>1</mark> [≭]	Current vers	^{ion:} 5.1.1 [#]				
For <mark>HELP</mark> or	sing this form, see bottom of this	age or look at th	he pop-up text	over the X symbols.				
Proposed chang	affects: UICC apps ⊮	ME X Radio A	Access Networ	k Core Network				
Title:	Correction to RRM test case 8	.3.5.3						
Source:	Ericsson							
Work item code:	TEI		<i>Date:</i> ೫	5/11/2003				
Category:	 F Use <u>one</u> of the following categories F (correction) A (corresponds to a correction B (addition of feature), C (functional modification of feature) D (editorial modification) Detailed explanations of the above be found in 3GPP <u>TR 21.900</u>. 	n in an earlier releas eature)	2 R96 R97 R98 R99 Rel-4 Rel-5	REL-5 the following releases: (GSM Phase 2) (Release 1996) (Release 1997) (Release 1998) (Release 1999) (Release 4) (Release 5) (Release 6)				

Reason for change: ೫	Test procedure not complete
Summary of change: ೫	 Initial conditions: a. Statement added that the location area for the two cells shall be different (to cause location update procedure to be triggered after cell reselection to GSM/UTRA.
	 Test procedure: a. Step 5 updated to reflect that location update procedure is performed after cell reselection to the GSM cell.
	 Step 8 updated to add that location update procedure is perfromed after cell reselection to the UTRA cell.
	c. Step 1 references to tables corrected
	3. The value of T_{RA} is proposed to be set to 10 ms corresponding to 2 GSM radio frames (assuming configuration of GSM cell allows the UE to transmit RACH access bursts in every radio frame).
Consequences if # not approved:	Test case incomplete

Clauses affected: # 8.3.5.3

Other specs affected:	ж	Y	Χ	Other core specifications Test specifications O&M Specifications	Ħ	
Other comments:	ж	Α	ffec	ts REL-5, REL-4 and R99.		

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

8.3.5.3 Cell Reselection to GSM

8.3.5.3.1 Definition and applicability

The cell re-reselection delay is defined as the time from the beginning of time period T2, to the moment when the UE starts to transmit the random access in Cell 2 (the GSM cell).

This requirements and this test apply to UE supporting FDD PS and GSM GPRS.

8.3.5.3.2 Minimum requirements

The cell re-selection delay shall be less than $5.5 + T_{RA}$ s.

The rate of correct reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed

$$T_{\text{reselection, GSM}} = T_{\text{identify,GSM}} + T_{\text{measurement, GSM}} + 40 + T_{\text{BCCH}} + T_{\text{RA}} \text{ ms}$$

where:

$T_{identify,GSM}$	Specified in TS 25.133 [2] clause 8.4.2.5.2.1, here it is 2880 ms
T _{measurement, GSM}	Specified in TS 25.133 [2] clause 5.5.2.1.4, here it is 640 ms
T _{BCCH}	According to TS 05.08 [xx], the maximum time allowed to read the BCCH data, when being synchronized to a BCCH carrier, is 1.9 s.
T _{RA}	The additional delay caused by the random access procedure in the GSM cell, is <u>10 ms (2 GSM radio frames)</u> [TBD].

These requirements assume radio conditions to be sufficient, so reading of system information can be done without errors.

The normative reference for this requirement is TS 25.133 [2] clauses 5.5.2.1.4 and A.5.5.3.

8.3.5.3.3 Test purpose

The purpose of this test is to verify the requirement for the cell re-selection delay in CELL_FACH state.

8.3.5.3.4 Method of test

8.3.5.3.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in table 8.3.5.3.1 to 8.3.5.3.5. This scenario implies the presence of 1 UTRAN serving cell, and 1 GSM cell to be re-selected. <u>The UTRAN cell and the GSM cell are set to belong to different location areas.</u> <u>The GSM cell shall be set up to allow UE to transmit radio access burst in every GSM radio frame</u>. The UE is requested to monitor neighbouring cells on 1 UMTS carrier and 6 GSM cells.

Parameter		Unit	Value	Comment
Initial condition	al condition Active cell Cell1		Cell1	
	Neighbour cell		Cell2	
Final condition Active cell			Cell2	
HCS	•			Not used
Neighbour cell list size			24 FDD neighbours on Channel 1	
C .			6 GSM neighbours including ARFCN 1	
T1		S	5	
T2		S	10	

Table 8.3.5.3.1: General test parameters for UTRAN to GSM Cell Re-selection

The transport and physical parameters of the S-CCPCH carrying the FACH are defined in Table 8.3.5.3.2 and Table Table 8.3.5.3.3.

Parameter	Unit	Level
Channel bit rate	Kbps	60
Channel symbol rate	Ksps	30
Slot Format #I	-	4
TFCI	-	OFF
Power offsets of TFCI and Pilot fields relative to data field	DB	0

Table 8.3.5.3.2: Physical channel parameters for S-CCPCH.

Parameter	FACH
Transport Channel Number	1
Transport Block Size	240
Transport Block Set Size	240
Transmission Time Interval	10 ms
Type of Error Protection	Convolution Coding
Coding Rate	1/2
Rate Matching attribute	256
Size of CRC	16
Position of TrCH in radio frame	Fixed

Parameter	Unit	Cell 1	Cell 1 (UTRA)			
		T1	T2			
UTRA RF Channel		Char	nol 1			
Number						
CPICH_Ec/lor	DB	-1	0			
PCCPCH_Ec/lor	DB	-1	2			
SCH_Ec/lor	DB		2			
PICH_Ec/lor	DB		5			
S-CCPCH_Ec/lor	DB		2			
OCNS_Ec/lor	DB	-1.2	295			
\hat{I}_{or}/I_{oc}	DB	0	-5			
I _{oc}	dBm/3.84 MHz	-7	0			
CPICH_Ec/lo	DB	-13	-16.2			
CPICH_RSCP	DBm	-80	-85			
Propagation Condition		AW	GN			
Cell_selection_and_						
reselection_quality_mea		CPICH	I Ec/lo			
sure						
Qqualmin	DB	-2				
Qrxlevmin	DBm	-1	15			
UE_TXPWR_MAX_ RACH	DBm	2	1			
Qoffset1 _{s, n}	DB	C1, 0	C2: 0			
Qhyst1	DB)			
Treselection	S	()			
Ssearch _{RAT}	DB	Not	sent			
IE "FACH Measurement occasion info"		Se	ent			
FACH Measurement						
occasion cycle length		:	3			
coefficient						
Inter-frequency FDD		E ^ 1	05			
measurement indicator		FAI	-9F			
Inter-frequency TDD		FALSE				
measurement indicator						
indicators		Included				
>RAT type		GS	SM			

 Table 8.3.5.3.4: Cell re-selection UTRAN to GSM cell case (cell 1)

Table 8.3.5.3.5: Cell re-selection UTRAN to GSM cell case (cell 2)

Parameter	Unit	Cell 2 (GSM)		
		T1	T2	
Absolute RF Channel Number		ARFCN	11	
RXLEV	DBm	-90	-75	
RXLEV_ACCESS_ MIN	DBm	-104		
MS_TXPWR_MAX_ CCH	DBm	33		

8.3.5.3.4.2 Procedure

- 1) The SS activates cell 1-2 with RF parameters set up according to T1 in tables 8.3.5.43.4 and 8.3.5.43.5.
- 2) The UE is switched on.
- 3) An RRC connection is set up according to the signalling sequence in the generic set-up procedure specified in TS 34.108 [3] subclause 7.3.3 to place the UE in CELL_FACH and the SS waits for this process to complete.
- 4) After 5 seconds from completion of step3 or the beginning of T1, the parameters are changed to those defined for T2 in tables 8.3.5.1.4 and 8.3.5.1.5.

- 5) The SS waits for random access requests from the UE. If the UE responds on cell 2 within 5.51 s ([TBD=5.5 s + T_{RA}]s) from the beginning of time period T2 then a success is recorded and the SS completes the location update cell update procedure in GSM and the procedure continues with step 7.
- 6) Since the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The SS shall then wait for a total of 10s from the beginning of T2 and if no response is received, the UE shall be switched off and the procedure returns to step 1. Otherwise the SS completes the <u>location update eell update</u> procedure in GSM and the procedure continues with step 7.
- 7) After 10 s from the beginning of time period T2, the parameters are changed to those defined for T1 in tables 8.3.5.1.4 and 8.3.5.1.5.
- 8) The SS waits for random access requests from the UE on cell 1. <u>The SS completes the location update</u> <u>procedure in UTRA</u>
- 9) Repeat step 3) to 8) [TBD] times.

8.3.5.3.5 Test requirements

For the test to pass, the total number of successful attempts shall be more than 90% with a confidence level of [FFS]% of the cases.

Note: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

3GPP TSG-T WG1 Meeting #21 Budapest, Hungary, November 3rd-7th, 2003

Tdoc **#***T1-031612*

					_				CR-Form-v7
		CHANGE R	EQU	ES	T				
æ		<mark>34.121</mark> CR <mark>320</mark> ⊮r	ev 1	1 [#]	€	Current vers	ion:	5.1.1	ж
For HELP or	n us	sing this form, see bottom of this page	ne or loo	k at	the	e pop-up text	over	the ¥ svr	nbols.
For HELP on using this form, see bottom of this page or look at the pop-up text over the % symbols. Proposed change affects: UICC apps % MEX Radio Access Network Core Network									
Title:	ж	Update of initial conditions for RF t	est case	es					
Source:	Ħ	Ericsson							
Work item code:	: X	TEI				<i>Date:</i> ೫	5/1	1/2003	
Category:	ж	 F Use <u>one</u> of the following categories: F (correction) A (corresponds to a correction in a B (addition of feature), C (functional modification of feature) D (editorial modification) Detailed explanations of the above cate be found in 3GPP <u>TR 21.900</u>. 	re)		ase) R96 R97 R98 R99 Rel-4 Rel-5	the fo (GSN (Rele (Rele (Rele (Rele (Rele	-	eases:

Reason for change: ೫	The initial conditions for RF testing are not defined. For some test cases the RF testing conditions are such that a UE will not find the cell. Furthermore, all cell parameters are not given in some of the test cases.		
Summary of change: ℜ	The initialisation of two testcases are corrected so that the UE initially relatively fast will find the network and so that all relevant cell parameters are defined.		
	1. Test case 5.4.1 Open Loop Power Control:		
	a. Initial channel conditions are set so that CPICH_RSCP is larger than -85 dBm. This makes it easy to find the cell, in cell selection requirement in 25.304, the high quality criterion is fulfilled for measured CPICH_RSCP>-95 dBm. A margin of 10 dB is proposed to simplify the cell detection and for the inaccuracy of the measurement.		
	b. Also the parameters Qqualmin and Qrxlevmin are defined so that the cell is suitable throughout the test. Otherwise the cell may be lost for the test at the Rx Sensitivity level.		
	2. Test case 6.2 RF sensitivity test:		
	 Initial channel conditions are set so that CPICH_RSCP is larger than –85 dBm. The cell parameters are defined as the default parameters. 		
Consequences if # not approved:	If the tests follows the initial power settings in 34.108 and 34.121, the UE may not find the network. Furthermore all cell parametes are not defined. Therefore test cases may fail a conformant UE.		

Clauses affected: Other specs affected:	# 5.4.1.4.1, 6.2.4.1 # X Other core specifications # X Test specifications 34.108 X O&M Specifications 34.108			
Other comments:	육 Affects REL-5, REL-4 and R99.			

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked # contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

<Start of first modified section>

5.4.1 Open Loop Power Control in the Uplink

5.4.1.1 Definition and applicability

Open loop power control in the uplink is the ability of the UE transmitter to set its output power to a specific value. This function is used for PRACH transmission and based on the information from Node B using BCCH and the downlink received signal power level of the CPICH. The information from Node B includes transmission power of CPICH and uplink interference power level.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.4.1.2 Minimum requirements

The UE open loop power is defined as the mean power in a timeslot or ON power duration, whichever is available.

The UE open loop power control tolerance is given in table 5.4.1.1.

Table 5.4.1.1: Open loop power control tolerance

Normal conditions	±9 dB
Extreme conditions	±12 dB

The reference for this requirement is TS 25.101 [1] clause 6.4.1.

5.4.1.3 Test purpose

The power measured by the UE of the received signal and the signalled BCCH information are used by the UE to control the power of the UE transmitted signal with the target to transmit at the lowest power acceptable for proper communication.

The test stresses the ability of the receiver to measure the received power correctly over the receiver dynamic range.

The test purpose is to verify that the UE open loop power control tolerance does not exceed the described value shown in table 5.4.1.1.

An excess error of the open loop power control decreases the system capacity.

5.4.1.4 Method of test

5.4.1.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.1.
- 2) Channel conditions are initially set up with received CPICH_RSCP >-85 dBm. The relative power level of downlink physical channels to I_{or} are set up according to clause E.2.1. The parameter settings of the cell are set up according to Table 5.4.1.2X.
- 3) Switch on the phone.
- 4) After the UE has performed registration and entered idle mode, \hat{I}_{or} is set up according to table 5.4.1.2. The relative power level of downlink physical channels to I_{or} are set up according to clause E.2.1

5) 2) A call is set up according to the Generic call setup procedure, in [3] clause 7.3.1 with channel conditions according the test parameters in table 5.4.1.3, and \hat{I}_{or} is set up according to table 5.4.1.2. The relative power level of

4

downlink physical channels to I_{or} are set up according to clause E.2.1. The RACH procedure within the call setup is used for the test.

See TS 34.108 [3] for details regarding generic call setup procedure.

Table 5.4.1.2X: Settings for the serving cell

Parameter	<u>Unit</u>	Cell 1
Cell type		Serving cell
UTRA RF Channel Number		Channel 1
<u>Qqualmin</u>	<u>dB</u>	<u>-24</u>
<u>Qrxlevmin</u>	<u>dBm</u>	<u>-115</u>
UE TXPWR MAX RACH	<u>dBm</u>	<u>21</u>

Table 5.4.1.2: Test parameters for Open Loop Power Control (UE)

Parameter	Level / Status	Unit	
Î _{or}	See table 5.4.1.3	dBm / 3,84 MHz	

Table 5.4.1.3: Test parameters for Open Loop Power Control (SS)

Parameter	RX Upper dynamic end	RX-middle	RX-Sensitivity level	
Î _{or} (note 3)	–25,0 dBm / 3,84 MHz	–65,7 dBm / 3,84 MHz	-106,7 dBm / 3,84 MHz	
CPICH_RSCP (notes 3 and 4)	–28,3 dBm	–69 dBm	–110 dBm	
Primary CPICH DL TX power	+19 dBm	+28 dBm	+19 dBm	
Simulated path loss = Primary CPICH DL TX power – CPICH_RSCP	+47,3 dB	+97 dB	+129 dB	
UL interference	–75 dBm	–101 dBm	–110 dBm	
Constant Value	-10 dB	–10 dB	-10 dB	
Expected nominal UE TX power (note 5)				
 NOTE 1: While the SS transmit power shall cover the receiver input dynamic range, the logical parameters: Primary CPICH DL TX power, UL interference, Constant Value are chosen to achieve a UE TX power, located within the TX output power dynamic range of a class 4 UE. NOTE 2: Nominal TX output power 9 dBm allows to check the open loop power algorithm within the entire tolerance 				
range (9 dBm ± 12 dB; 9 dBm + 12 dB = 21 dBm = max power class 4). NOTE 3: The power level of S-CCPCH should be defined because S-CCPCH is transmitted during Preamble RACH transmission period. The power level of S-CCPCH is temporarily set to –10,3 dB relative to I _{or} . However, it is necessary to check whether the above S-CCPCH level is enough to establish a connection with the reference measurement channels.				
NOTE 5: The Expected nomin	 The purpose of this parameter is to calculate the Expected nominal UE TX power. The Expected nominal UE TX power is calculated by using the equation in the clause 8.5.7 Open Loop Power Control of TS 25.331 [8]. 			

5.4.1.4.2 Procedure

- 1) Set the TX output level of the SS to obtain \hat{I}_{or} at the UE antenna connector. \hat{I}_{or} shall be according to table 5.4.1.3 (-25 dBm / 3,84 MHz).
- 2) Measure the first RACH preamble mean power of the UE.
- 3) Repeat the above measurement for all SS levels in table 5.4.1.3.

5.4.1.5 Test requirements

The deviation with respect to the Expected nominal UE TX power (table 5.4.1.3), derived in step 2), shall not exceed the prescribed tolerance in table 5.4.1.1.

<End of modified section>

<Start of next modified section>

6.2 Reference Sensitivity Level

6.2.1 Definition and applicability

The reference sensitivity level <REFSENS> is the minimum mean power received at the UE antenna port at which the Bit Error Ratio (BER) shall not exceed a specific value

The requirements and this test apply to all types of UTRA for the FDD UE.

6.2.2 Minimum Requirements

The BER shall not exceed 0,001 for the parameters specified in table 6.2.1.

Operating Band	Unit	DPCH_Ec <refsens></refsens>	<refî<sub>or></refî<sub>
I	dBm/3.84 MHz	-117	-106.7
II	dBm/3.84 MHz	-115	-104.7
111	dBm/3.84 MHz	-114	-103.7
 For Power class 3 this shall be at the maximum output power For Power class 4 this shall be at the maximum output power 			

 Table 6.2.1: Test parameters for Reference Sensitivity Level

The normative reference for this requirement is TS 25.101 [23] clause 7.3.1.

6.2.3 Test purpose

To verify that the UE BER shall not exceed 0,001 for the parameters specified in table 6.2.1.

The lack of the reception sensitivity decreases the coverage area at the far side from Node B.

6.2.4 Method of test

6.2.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.3.
- 2) Channel conditions are initially set up with received CPICH_RSCP >-85 dBm. The relative power level of downlink physical channels to I_{or} are set up according to clause E.2.1. The parameter settings of the cell are set up according to TS 34.108, clause 6.1.5 for "Default settings for a serving cell in a single cell environment".
- 3) Switch on the phone.

<u>4)</u> <u>2)</u> A call is set up according to the Generic call setup procedure and in [3] clause 7.3.1.

5) The RF parameters are set up according to table 6.2.2.

<u>6)</u> <u>3)</u> Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

6

6.2.4.2 Procedure

- 1) Set and send continuously Up power control commands to the UE until the UE output power shall be maximum level.
- 2) Measure the BER of DCH received from the UE at the SS.

6.2.5 Test requirements

The measured BER, derived in step 2), shall not exceed 0,001.

Operating Band	Unit	DPCH_Ec <refsens></refsens>	<refî<sub>or></refî<sub>
I	dBm/3.84 MHz	-116.3	-106
II	dBm/3.84 MHz	-114.3	-104
	dBm/3.84 MHz	-113.3	-103
 For Power class 3 this shall be at the maximum output power For Power class 4 this shall be at the maximum output power 			

Table 6.2.2: Test parameters for Reference Sensitivity Level

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

<End of modified section>