Technical Specification Group Terminals Meeting #21, Frankfurt, Germany, 17 - 19 September 2003

Source:	T1
Title:	CR's to TS 34.121 v3.13.0 and 4.0.0 for approval
Agenda item:	5.1.3
Document for:	Approval

The two following CRs, approved in principle at TSG T, were missing in TP-030189. This document provides them.

Tdoc #	CR #	Rev	Phase	Title	cat	Versio n in	Versi on out	WI	Conclusion
<u>T1-031235</u>	294	0	Rel-99	CR to delete the technical content of 34.121 Rel 99 and replace it by a pointer to the gathered releases document	F	3.13.0	3.14.0	TEI	Approved.
<u>T1-031236</u>	295	0	Rel-4	CR to delete the technical content of 34.121 Rel 4 and replace it by a pointer to the gathered releases document	А	4.0.0	4.1.0	TEI4	Approved.

				CR-Form-v7	
	CHANGE REQUEST				
æ	34.121 CR 294 ⊮r	ev - [#]	Current vers	^{ion:} 3.13.0 ^ж	
For <mark>HELP</mark> on	using this form, see bottom of this pag	ge or look at the	e pop-up text	over the X symbols.	
	-	-		-	
Proposed change	affects: UICC apps#	1E Radio A	ccess Networ	k Core Network	
Froposeu change					
Title: 3	CR to delete the technical content	of 34.121 Rel 9	99 and replac	e it by a pointer to the	
	gathered releases document				
•					
Source: 3	6 T1				
Work item code: a	6 TEI		Date: ೫	11/09/2003	
WORK REIT CODE.	6 1 🗆 1		Date. #	11/09/2003	
Category: 3	f F		Release: ೫	R99	
	Use one of the following categories:		Use one of	the following releases:	
	F (correction)		2	(GSM Phase 2)	
	A (corresponds to a correction in a	an earlier release	e) R96	(Release 1996)	
	B (addition of feature),		R97	(Release 1997)	
	C (functional modification of feature	re)	R98	(Release 1998)	
	D (editorial modification)	,	R99	(Release 1999)	
	Detailed explanations of the above cate	gories can	Rel-4	(Release 4)	
	be found in 3GPP TR 21.900.	•	Rel-5	(Release 5)	
			Rel-6	(Release 6)	
				·	

Reason for change: ೫	The Release 99, Release 4 and Release 5 versions of this document are very similar and do not justify to maintain three different versions. For this reason, T1#20 decided to cover Releases 99, 4 and 5 by a single version, the version 5, where clear indications are made for text applying to specific release(s). All the other text apllies by default to the three releases.
Summary of change: ೫	All the technical content of 3.13.0 is replaced by a pointer to the version 5 of this TS.
Consequences if % not approved:	Useless overhead of maintenance work will have to be performed to provide three new versions of this TR when one can cover Releases 99, 4 and 5.
Clauses affected: #	All

Clauses affected:	あ All
Other	
Other specs	彩 X Other core specifications ポ
affected:	X Test specifications
	X O&M Specifications
Other comments:	Submitted directly by MCC to TSG T#21 following T1#20 decision.

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.

- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

The present document specifies the measurement procedures for the conformance test of the user equipment (UE) that contain transmitting characteristics, receiving characteristics and performance requirements in FDD mode.

2 References, Definitions and Technical Content

3GPP TS 34.121Version 5 covers all Release 99 aspects.

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- -For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same-Release as the present document.*
- [1] 3GPP TS 25.101 "UE Radio transmission and reception (FDD), Release 99".
- [2] 3GPP TS 25.133 "Requirements for Support of Radio Resource Management (FDD)".
- [3] 3GPP TS 34.108 "Common Test Environments for User Equipment (UE) Conformance Testing".
- [4] 3GPP TS 34.109 "Terminal logical test interface; Special conformance testing functions".
- [5] 3GPP TS 25.214 "Physical layer procedures (FDD)".
- [6] 3GPP TR 21.905 "Vocabulary for 3GPP Specifications".
- [7] 3GPP TR 25.990 "Vocabulary".
- [8] 3GPP TS 25.331: "Radio Resource Control (RRC); Protocol Specification".
- [9] 3GPP TS 25.433 "UTRAN lub Interface NBAP Signalling".
- [10] ITU R Recommendation SM.329: "Spurious emissions".
- [11] 3GPP TS 25.304: "UE Procedures in Idle Mode and Procedures for Cell Reselection in Connected Mode".
- [12] 3GPP TS 25.303: "Interlayer Procedures in Connected Mode".
- [13] 3GPP TS 25.321: "Medium Access Control (MAC) protocol specification".
- [14] 3GPP TS 25.213: "Spreading and modulation (FDD)".
- [15] 3GPP TS 25.223: "Spreading and modulation (TDD)".
- [16] ETSI ETR 273 1-2: "Improvement of radiated methods of measurement (using test sites) and evaluation of the corresponding measurement uncertainties; Part 1: Uncertainties in the measuremement of mobile radio equipment characteristics; Sub-part 2: Examples and annexes".
- [17] 3GPP TR 25.926: "UE Radio Access Capabilities".
- [18] 3GPP TR 21.904: "UE capability requirements".
- [19] 3GPP TS 25.211: "Physical channels and mapping of transport channels onto physical channels (FDD)".

[20]	-3GPP TS 05.08: "Digital cellular telecommunications system (Phase 2+); Radio subsystem link- control".
[21]	- 3GPP TS 34.123 1: "User Equipment (UE) Conformance Specification; Part 1: Protocol Conformance Specification".
[22]	-3GPP TS 25.215: "Physical Layer - Measurements (FDD)".
[23]	- 3GPP TS 25.101 "UE Radio transmission and reception (FDD), Release 5".

3 Definitions, symbols, abbreviations and equations

Definitions, symbols, abbreviations and equations used in the present document are listed in TR 21.905 [5] and TR 25.990 [6].

Terms are listed in alphabetical order in this clause.

3.1 Definitions

For the purpose of the present document, the following additional terms and definitions apply:

Maximum Output Power: This is a measure of the maximum power the UE can transmit (i.e. the actual power as would be measured assuming no measurement error) in a bandwidth of at least $(1 + \alpha)$ times the chip rate of the radio-access mode. The period of measurement shall be at least one timeslot.

Nominal Maximum Output Power: This is the nominal power defined by the UE power class.

Mean power: When applied to a W CDMA modulated signal this is the power (transmitted or received) in a bandwidth of at least $(1 + \alpha)$ times the chip rate of the radio access mode. The period of measurement shall be at least one timeslot-unless otherwise stated.

RRC filtered mean power: The mean power as measured through a root raised cosine filter with roll off factor α and a bandwidth equal to the chip rate of the radio access mode.

NOTE 1: The RRC filtered mean power of a perfectly modulated W CDMA signal is 0.246 dB lower than the mean power of the same signal.

NOTE 2: The roll off factor α is defined in 25.101 clause 6.8.1.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

[...] Values included in square bracket must be considered for further studies, because it means that a decision about that value was not taken

3.3 Abbreviations

For the purpose of the present document, the following additional abbreviations apply:

AFC	Automatic Frequency Control
ASD	Acceleration Spectral Density
ATT	-Attenuator
BER	Bit Error Ratio
BLER	Block Error Ratio
BTFD	Blind Transport Format Detection
EVM	Error Vector Magnitude

FDR	False transmit format Detection Ratio. A false Transport Format detection occurs when the
	receiver detects a different TF to that which was transmitted, and the decoded transport block(s)
	for this incorrect TF passes the CRC check(s).
HYB	- Hybrid
IM	
HTP	Initial Transmission Power control mode
OBW	
OCNS	Orthogonal Channel Noise Simulator, a mechanism used to simulate the users or control signals on
	the other orthogonal channels of a downlink
PAR	Peak to Average Ratio
P CCPCH	Primary Common Control Physical Channel
P CPICH	Primary Common Pilot Channel
PCDE	Peak Code Domain Error
RBW	Resolution Bandwidth
RRC	
S-CCPCH	
S-CPICH	<u>Secondary Common Pilot Channel</u>
SCH	Synchronisation Channel consisting of Primary and Secondary synchronisation channels
SS	System Simulator; see Annex A for description
TGCFN	Transmission Gap Connection Frame Number
TGD	Transmission Gap Distance
TGL	Transmission Gap Length
TGPL	Transmission Gap Pattern Length
TGPRC	Transmission Gap Pattern Repetition Count
TGSN	Transmission Gap Starting Slot Number

3.4 Equations

For the purpose of the present document, the following additional equations apply:

$\frac{CPICH_E_c}{I_{or}}$	The ratio of the received energy per PN chip of the CPICH to the total transmit power spectral-
	density at the Node B (SS) antenna connector.
$\frac{DPCH_E_c}{I_{or}}$	The ratio of the transmit energy per PN chip of the DPCH to the total transmit power spectral-
r or	density at the Node B (SS) antenna connector.
$\frac{DPCCH_E_c}{I_{or}}$	The ratio of the transmit energy per PN chip of the DPCCH to the total transmit power spectral-
1 or	density at the Node B (SS) antenna connector.
\underline{DPDCH}_{E_c}	The ratio of the transmit energy per PN chip of the DPDCH to the total transmit power spectral
I _{or}	density at the Node B (SS) antenna connector.
F _{uw}	Frequency of unwanted signal. This is specified in bracket in terms of an absolute frequency(s) or a frequency offset from the assigned channel frequency.
I _{Node_B}	Interference signal power level at Node B in dBm, which is broadcasted on BCH.
I _{oac}	The power spectral density (integrated in a bandwidth of $(1+\alpha)$ times the chip rate and normalized- to the chip rate) of the adjacent frequency channel as measured at the UE antenna connector.
I _{ee}	The power spectral density (integrated in a noise bandwidth equal to the chip rate and normalized to the chip rate) of a band limited white noise source (simulating interference from cells, which are not defined in a test procedure) as measured at the UE antenna connector.
I _{or}	The total transmit power spectral density (integrated in a bandwidth of $(1+\alpha)$ times the chip rate- and normalized to the chip rate) of the downlink signal at the Node B antenna connector

Î _{of}	The received power spectral density (integrated in a bandwidth of $(1+\alpha)$ times the chip rate and normalized to the chip rate) of the downlink signal as measured at the UE antenna connector.
I _{ouw}	Unwanted signal power level.
P-CCPCH_E _c _	_Average (note) energy per PN chip for P-CCPCH.
$\frac{P-CCPCH}{I_o} \frac{E_c}{I_o}$	The ratio of the received P-CCPCH energy per chip to the total received power spectral density at-
	the UE antenna connector.
$\frac{P - CCPCH _ E_c}{I_{or}}$	The ratio of the average (note) transmit energy per PN chip for the P CCPCH to the total transmit-
or	power spectral density.
P-CPICH_E _c	_Average (note) energy per PN chip for P CPICH.
PICH_E _c	_Average (note) energy per PN chip for PICH.
$\frac{PICH_E_c}{I_{or}}$	The ratio of the received energy per PN chip of the PICH to the total transmit power spectral-
	density at the Node B (SS) antenna connector.
	Reference sensitivity
\leftarrow REF $\tilde{I}_{or} \rightarrow$	Reference $\hat{\mathbf{H}}_{or}$
SCH_E _c	_Average (note) energy per PN chip for SCH.
<u>S-CPICH_E</u> e	Average (note) energy per PN chip for S-CPICH.
NOTE: Aver	aging period for energy/power of discontinuously transmitted channels should be defined.
powe powe t he m P-CP ratio	mits of Power Spectral Density (PSD) are extensively used in this document. PSD is a function of r versus frequency and when integrated across a given bandwidth, the function represents the mean- r in such a bandwidth. When the mean power is normalised to (divided by) the chip rate it represents ean energy per chip. Some signals are directly defined in terms of energy per chip, (DPCH_E _e and ICH_E _e) and others defined in terms of PSD (I _{one} , I _{oe} , and \hat{I}_{or}). There also exist quantities that are a of energy per chip to PSD (DPCH_E _e A _{or} , E _e A _{or} etc.). This is the common practice of relating energy itudes in communication systems.
an en an en	be seen that if both energy magnitudes in the ratio are divided by time, the ratio is converted from- ergy ratio to a power ratio, which is more useful from a measurement point of view. It follows that ergy per chip of X dBm/3.84 MHz can be expressed as a mean power per chip of X dBm. Similarly, nal PSD of Y dBm/3.84 MHz can be expressed as a signal power of Y dBm.
4 Fre	equency bands and channel arrangement
4.1 Ge	neral

The information presented in this clause is based on a chip rate of 3,84 Meps.

NOTE: Other chip rates may be considered in future releases.

4.2 Frequency bands

a) UTRA/FDD is designed to operate in either of the following paired bands:

Operating Band	UL Frequencies UE transmit, Node B receive	DL frequencies UE receive, Node B transmit
+	1920 – 1980 MHz	2110 –2170 MHz
H H	1850 – 1910 MHz	1930 – 1990 MHz
#	1710-1785 MHz	1805-1880 MHz

b) Deployment in other frequency bands is not precluded.

4.3 TX-RX frequency separation

a) UTRA/FDD is designed to operate with the following TX RX frequency separation.

Operating Band	TX-RX frequency separation
+	190 MHz
#	80 MHz
##	95 MHz

b) UTRA/FDD can support both fixed and variable transmit to receive frequency separation.

c) The use of other transmit to receive frequency separations in existing or other frequency bands shall not beprecluded.

4.4 Channel arrangement

4.4.1 Channel spacing

The nominal channel spacing is 5 MHz, but this can be adjusted to optimise performance in a particular deploymentscenario.

4.4.2 Channel raster

The channel raster is 200 kHz, which for all bands except Band II means that the centre frequency must be an integer multiple of 200 kHz. In Band II, 12 additional centre frequencies are specified according to the table in 4.1a and the centre frequencies for these channels are shifted 100 kHz relative to the normal raster.

4.4.3 Channel number

The carrier frequency is designated by the UTRA Absolute Radio Frequency Channel Number (UARFCN). The values of the UARFCN are as follows.

Table 4.1: UARFCN definition

Uplink	N _u = <u>5*</u> F _{uplink} -	0,0 MHz ≤ F_{uplink} ≤ 3 276,6 MHz
		where F _{uplink} is the uplink frequency in MHz
Downlink	Nd = 5 * F _{downlink}	0,0 MHz ≤ F_{downlink} ≤ 3 276,6 MHz
		where F _{downlink} is the downlink frequency in MHz

	UARFCN	Carrier frequency [MHz]
Uplink	N _u = <u>5 * (F_{uplink} – 1850.1 MHz)</u>	F _{uplink} = 1852.5, 1857.5, 1862.5, 1867.5,
		1872.5, 1877.5,
		1882.5, 1887.5, 1892.5, 1897.5, 1902.5, 1907.4
Downlink	N _u = <u>5 * (F_{downlink} – 1850.1 MHz)</u>	F _{downlink} = 1932.5, 1937.5, 1942.5, 1947.5,
		1952.5, 1957.5,
		1962.5, 1967.5, 1972.5, 1977.5, 1982.5, 1987.5

Table 4.1a: UARFCN definition (Band II additional channels)

4.4.4 UARFCN

The following UARFCN range shall be be supported for each paired band.

Table 4.2: UTRA Absolute Radio Frequency Channel Number

Operating Band	Uplink- UE transmit, Node B- receive	Downlink UE receive, Node B- transmit
+	9 612 to 9 888	10 562 to 10 838
#	9 262 to 9 538 and 12, 37, 62, 87, 112, 137, 162, 187, 212, 237, 262, 287	9 662 to 9 938 - and 412, 437, 462, 487, 512, 537, 562, 587, 612, 637, 662, 687
##	8562 to 8913	9037 to 9388

5 Transmitter Characteristics

5.1 General

Transmitting performance test of the UE is implemented during communicating with the SS via air interface. The procedure is using normal call protocol until the UE is communicating on traffic channel basically. On the traffic channel, the UE provides special function for testing that is called Logical Test Interface and the UE is tested using this function. (Refer to TS 34.109 [4]).

Transmitting or receiving bit/symbol rate for test channel is shown in table 5.1.

Table 5 1	Rit / S	wmbol	rate for	Toet (hannol
		ymbor		10310	Juliu

Type of User- Information	User bit rate	DL DPCH symbol rate	UL DPCH bit rate	Remarks
1 2,2 kbps- reference- measurement- channel	12,2 kbps	30 ksps	60 kbps	Standard Test

Unless detailed the transmitter characteristic are specified at the antenna connector of the UE. For UE with integral antenna only, a reference antenna with a gain of 0 dBi is assumed. Transmitter characteristics for UE(s) with multiple-antennas/antenna connectors are FFS.

The UE antenna performance has a significant impact on system performance, and minimum requirements on the antenna efficiency are therefore intended to be included in future versions of the present document. It is recognised that different requirements and test methods are likely to be required for the different types of UE.

All the parameters in clause 5 are defined using the UL reference measurement channel (12,2 kbps) specified in clause C.2.1 and unless stated otherwise, with the UL power control ON.

The common RF test conditions of Tx Characteristics are defined in clause E.3.1, and each test conditions in this clause (clause 5) should refer clause E.3.1. Individual test conditions are defined in the paragraph of each test.

5.2 Maximum Output Power

5.2.1 Definition and applicability

The nominal maximum output power and its tolerance are defined according to the Power Class of the UE.

The maximum output power is a measure of the maximum power the UE can transmit (i.e. the actual power as would be measured assuming no measurement error) in a bandwidth of at least $(1 + \alpha)$ times the chip rate of the radio accessmode. The period of measurement shall be at least one timeslot.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.2.2 Minimum Requirements

The UE maximum output power shall be within the nominal value and tolerance specified in table 5.2.1 even for the multi-code transmission mode.

Operating	Power (Class 1	Power Class 2		1 Power Class 2 Power Class 3		Power Class 4	
Band	Power (dBm)	Tol (dB)	Power (dBm)	Tol (dB)	Power (dBm)	Tol (dB)	Power (dBm)	Tol (dB)
Band I	+33	+1/-3	+27	+1/-3	+24	+1/-3	+21	+2/-2
Band II	-	-	-	-	+24	+1/-3	+21	+2/-2
Band III	-	-	-	-	+24	+1/-3	+21	+2/-2

Table 5.2.1: Nominal Maximum Output Power

The normative reference for this requirement is TS 25.101 [23] clause 6.2.1.

5.2.3 Test purpose

To verify that the error of the UE maximum output power does not exceed the range prescribed by the nominalmaximum output power and tolerance in table 5.2.1.

An excess maximum output power has the possibility to interfere to other channels or other systems. A small maximum output power decreases the coverage area.

5.2.4 Method of test

5.2.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

1) Connect the SS to the UE antenna connector as shown in figure A.1.

- 2) A call is set up according to the Generic call setup procedure.
- 3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

5.2.4.2 Procedure

1) Set and send continuously Up power control commands to the UE.

2) Measure the mean power of the UE in a bandwidth of at least $(1 + \alpha)$ times the chip rate of the radio accessmode. The mean power shall be averaged over at least one timeslot.

5.2.5 Test requirements

The maximum output power, derived in step 2), shall not exceed the range prescribed by the nominal maximum outputpower and tolerance in table 5.2.2.

Operating	Power	Class 1	Power Class 2		ower Class 2 Power Class 3		Power Class 4	
Band	Power	Tol	Power	Tol	Power	Tol	Power	Tol
	(dBm)	(dB)	(dBm)	(dB)	(dBm)	(dB)	(dBm)	(dB)
Band I	+33	+1,7/-3,7	+27	+1,7/-3,7	+24	+1,7/-3,7	+21	+2,7/-2,7
Band II	-	-	4	-	+2 4	+1,7/-3,7	+21	+2,7/-2,7
Band III	-	-	-	-	+2 4	+1,7/-3,7	+21	+2,7/-2,7

Table 5.2.2: Nominal Maximum Output Power

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

5.3 Frequency Error

5.3.1 Definition and applicability

The frequency error is the difference between the RF modulated carrier frequency transmitted from the UE and the assigned frequency. The UE transmitter tracks to the RF carrier frequency received from the Node B. These signals will-have an apparent error due to Node B frequency error and Doppler shift. In the later case, signals from the Node B must be averaged over sufficient time that errors due to noise or interference are allowed for within the minimum-requirements specified in 5.3.2.

The UE shall use the same frequency source for both RF frequency generation and the chip clock.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.3.2 Minimum Requirements

The UE modulated carrier frequency shall be accurate to within $\pm 0,1$ ppm observed over a period of one timeslotcompared to the carrier frequency received from the Node B.

The normative reference for this requirement is TS 25.101 [1] clause 6.3.

5.3.3 Test purpose

To verify that the UE carrier frequency error does not exceed ±0,1 ppm.

An excess error of the carrier frequency increases the transmission errors in the up link own channel.

This test verifies the ability of the receiver to derive correct frequency information for the transmitter, when locked to the DL carrier frequency.

5.3.4 Method of test

5.3.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH, vibration; see clauses G.2.1, G.2.2 and G.2.3.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.1.
- 2) A call is set up according to the Generic call setup procedure, and RF parameters (DPCH_Ec and Îor) are set up according to table 5.3. The relative power level of other downlink physical channels to the DPCH_Ec are set up according to clause E.3.1.
- 3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

Table 5.3: Test parameters for Frequency Error

Parameter	Level / Status	Unit
DPCH_Ec	_117	dBm / 3,84 MHz
∔ _{0f}	- 106,7	dBm / 3,84 MHz

5.3.4.2 Procedure

- 1) Set and send continuously Up power control commands to the UE until the UE reaches its maximum outputpower.
- 2) Measure the frequency error delta f, at the UE antenna connector using the Global In Channel Tx test (annex B).

5.3.5 Test Requirements

For all measurements, the frequency error, derived in step 2), shall not exceed $\pm (0,1 \text{ ppm} + 10 \text{ Hz})$.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

5.4 Output Power Dynamics in the Uplink

Power control is used to limit the interference level.

5.4.1 Open Loop Power Control in the Uplink

5.4.1.1 Definition and applicability

Open loop power control in the uplink is the ability of the UE transmitter to set its output power to a specific value. This function is used for PRACH transmission and based on the information from Node B using BCCH and the downlink-received signal power level of the CPICH. The information from Node B includes transmission power of CPICH and uplink interference power level.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.4.1.2 Minimum requirements

The UE open loop power is defined as the mean power in a timeslot or ON power duration, whichever is available.

The UE open loop power control tolerance is given in table 5.4.1.1.

Table 5.4.1.1: Open loop power control tolerance

Normal conditions	±9 dB
Extreme conditions	±12 dB

The reference for this requirement is TS 25.101 [1] clause 6.4.1.

5.4.1.3 Test purpose

The power measured by the UE of the received signal and the signalled BCCH information are used by the UE tocontrol the power of the UE transmitted signal with the target to transmit at the lowest power acceptable for propercommunication.

The test stresses the ability of the receiver to measure the received power correctly over the receiver dynamic range.

The test purpose is to verify that the UE open loop power control tolerance does not exceed the described value shown in table 5.4.1.1.

An excess error of the open loop power control decreases the system capacity.

5.4.1.4 Method of test

5.4.1.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

1) Connect the SS to the UE antenna connector as shown in figure A.1.

2) A call is set up according to the Generic call setup procedure, and Î_{or} is set up according to table 5.4.1.2. The relative power level of downlink physical channels to I_{or} are set up according to clause E.2.1. The RACH procedure within the call setup is used for the test.

See TS 34.108 [3] for details regarding generic call setup procedure.

Table 5.4.1.2: Test parameters for Open Loop Power Control (UE)

Parameter	Level / Status	Unit
Î _{OF}	See table 5.4.1.3	dBm / 3,84 MHz

Table 5.4.1.3: Test parameters for Open Loop Power Control (SS)

Parameter	RX Upper dynamic end	RX-middle	RX-Sensitivity level
Î _{or} (note 3)	- 25,0 dBm / 3,84 MHz	- 65,7 dBm / 3,84 MHz	- 106,7 dBm / 3,84 MHz
CPICH_RSCP (notes 3 and 4)	- 28,3 dBm	- 69 dBm	- 110 dBm
Primary CPICH DL TX power	+19 dBm	+28 dBm	+19 dBm
Simulated path loss = Primary	+47,3 dB	+97 dB	+129 dB
CPICH DL TX power -			
CPICH_RSCP			
UL interference	- 75 dBm	- 101 dBm	- 110 dBm
Constant Value	–10 dB	–10 dB	–10 dB
Expected nominal UE TX	-37,7 dBm	-14 dBm	+9 dBm (note 2)
power (note 5)			
NOTE 1: While the SS transmit			
	UL interference, Constant Val		JE TX power, located within
the TX output power of	lynamic range of a class 4 UE	.	
NOTE 2: Nominal TX output po	wer 9 dBm allows to check the	e open loop power algorithm	within the entire tolerance
	}; 9 dBm + 12 dB = 21 dBm = 		
NOTE 3: The power level of S-	CCPCH should be defined bea	cause S-CCPCH is transmitte	d during Preamble RACH
transmission period.	The power level of S-CCPCH is	s temporarily set to 10,3 dB	relative to I _{or} . However, it
is necessary to check	whether the above S-CCPCH	level is enough to establish	a connection with the
reference measureme	ent channels.	-	
NOTE 4: The purpose of this pa	arameter is to calculate the Ex	pected nominal UE TX powe	r.
NOTE 5: The Expected nomina			
Power Control of TS 2			
	174		

5.4.1.4.2 Procedure

- 1) Set the TX output level of the SS to obtain \hat{I}_{or} at the UE antenna connector. \hat{I}_{or} shall be according to table 5.4.1.3-(-25 dBm/3,84 MHz).
- 2) Measure the first RACH preamble mean power of the UE.
- 3) Repeat the above measurement for all SS levels in table 5.4.1.3.

5.4.1.5 Test requirements

The deviation with respect to the Expected nominal UE TX power (table 5.4.1.3), derived in step 2), shall not exceed the prescribed tolerance in table 5.4.1.1.

5.4.2 Inner Loop Power Control in the Uplink

5.4.2.1 Definition and applicability

Inner loop power control in the uplink is the ability of the UE transmitter to adjust its output power in accordance with one or more TPC commands received in the downlink.

The power control step is the change in the UE transmitter output power in response to a single TPC command, TPC_cmd, derived at the UE.

This clause does not cover all the requirements of compressed mode or soft handover.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.4.2.2 Minimum requirements

The UE transmitter shall have the capability of changing the output power with a step size of 1 dB, 2 dB and 3 dBaccording to the value of Δ_{TPC} or Δ_{RP-TPC} , in the slot immediately after the TPC_cmd can be derived.

- a) The transmitter output power step due to inner loop power control shall be within the range shown intable 5.4.2.1.
- b) The transmitter aggregate output power step due to inner loop power control shall be within the range shown in table 5.4.2.2. Here a TPC_cmd group is a set of TPC_cmd values derived from a corresponding sequence of TPC commands of the same duration.

The inner loop power step is defined as the relative power difference between the mean power of the original (reference) timeslot and the mean power of the target timeslot, not including the transient duration. The transient duration is from 25µs before the slot boundary to 25µs after the slot boundary.

TPC_cmd	Transmitter power control range (all units are in dB)							
	1 dB st	ep size	2 dB st	ep size	3 dB st	ep size		
	Lower Upper		Lower	Upper	Lower	Upper		
+1	+0,5	+1,5	+1	+3	+1,5	+4,5		
θ	-0,5	+0,5	-0,5	+0,5	-0,5	+0,5		
-1	- 0,5	-1,5	-1	_3	-1,5	-4,5		

Table 5.4.2.1: Transmitter power control range

TPC_cmd group	Transmitter power control range after 10 equal TPC_cmd group (all units are in dB)			control rai equal TF grou (all units d	a re in dB)	
	1 dB step size 2 dB step size		3 dB step size			
	Lower	Upper	Lower	Upper	Lower	Upper
+1	+8	+12	+16	+24	+16	+26
θ	-1	+1	-1	+1	-1	+1
	8	-12	_16	_2 4	16	_26
0,0,0,0,+1	+6	+14	N/A	N/A	N/A	N/A
0,0,0,0,-1	-6	_1 4	N/A	N/A	N/A	N/A

Table 5.4.2.2: Transmitter aggregate power control tolerance

The UE shall meet the above requirements for inner loop power control over the power range bounded by the Minimum output power as defined in clause 5.4.3.2, and the Maximum output power supported by the UE (i.e. the actual power as would be measured assuming no measurement error). This power shall be in the range specified for the power class of the UE in clause 5.2.2.

NOTE: 3 dB inner loop power control steps are only used in compressed mode.

The reference for this requirement is TS 25.101 [1] clause 6.4.2.1.1.

The requirements for the derivation of TPC_cmd are detailed in TS 25.214 [5] clauses 5.1.2.2.2 and 5.1.2.2.3.

5.4.2.3 Test purpose

- To verify that the UE inner loop power control size and response is meet to the described value shown inclause 5.4.2.2.
- To verify that TPC_cmd is correctly derived from received TPC commands.

An excess error of the inner loop power control decreases the system capacity.

The UE shall be tested for the requirements for inner loop power control over the power range bounded by the Minpower threshold for test and the Max power threshold for test.

The Min power threshold for test is defined as the Minimum Output Power Test Requirement (clause 5.4.3.5).

The Max power threshold for test is defined as the Measured Maximum output power of the UE in the relevant Step of the test (using the same method as in clause 5.2.4.2 step 2) minus the Test Tolerance specified for test 5.2 Maximum Output Power in table F.2.1.

For the final power step adjacent to the Min or Max power threshold for test, the lower step size requirement does not apply.

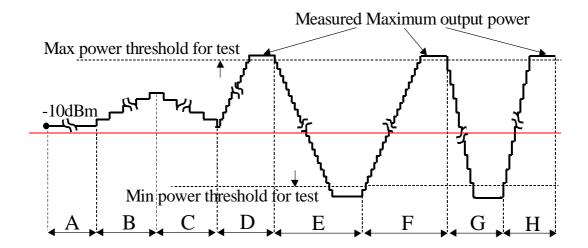
5.4.2.4 Method of test

5.4.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.1.
- 2) A call is set up according to the Generic call setup procedure specified in TS34.108 [3] sub clause 7.3.2, with the following exception for information elements in RADIO BEARER SETUP message. With this exception, the Power Control Algorithm for the Uplink is set to algorithm 2.


Table 5.4.2.4.1: Contents of RADIO BEARER SETUP message: AM or UM

Information Element	Value/Remark
CHOICE channel requirement	Uplink DPCH info
	Algorithm 2

3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

5.4.2.4.2 Procedure

Figure 5.4.2.4 Inner Loop Power Control Test Steps

- 1) Before proceeding with paragraph (2) (Step A) below, set the output power of the UE, measured at the UE antenna connector, to be in the range 10 ± 9 dBm. This may be achieved by setting the downlink signal (Î_{or}) to yield an appropriate open loop output power and/or by generating suitable downlink TPC commands from the SS.
- 2) Step A: Transmit a sequence of at least 30 and no more than 60 TPC commands, which shall commence at a frame boundary and last for a whole number of frames, and which shall contain:

 - at least one set of 5 consecutive "0" commands which does not commence in the 1st, 6th or 11th slots of aframe;
 - at least one set of 5 consecutive "1" commands which does not commence in the 1st, 6th or 11th slots of a frame.

The following is an example of a suitable sequence of TPC commands:

- 3) Step B: Transmit a sequence of 50 TPC commands with the value 1.
- 4) Step C: Transmit a sequence of 50 TPC commands with the value 0.
- 5) Step D: Transmit the PHYSICAL CHANNEL RECONFIGURATION message to reconfigure the uplinkchannel in order to set the Power Control Algorithm to algorithm 1, and the TPC step size to 1 dB. Contents of the message is specified in the table 5.4.2.4.2.A. After the PHYSICAL CHANNEL RECONFIGURATION-COMPLETE message from the UE is received, transmit a sequence of TPC commands with the value 1 until the UE output power is above the maximum power threshold.

6) Step E: Transmit a sequence of 150 (note 1) TPC commands with the value 0.

- 7) Step F: Transmit a sequence of 150 (note 1) TPC commands with the value 1.
- 8) Step G: Transmit the PHYSICAL CHANNEL RECONFIGURATION message to reconfigure the uplinkchannel in order to set the TPC step size to 2 dB (with the Power Control Algorithm remaining as algorithm 1). Contents of the message is specified in the table 5.4.2.4.2.B. After the PHYSICAL CHANNEL RECONFIGURATION COMPLETE message from the UE is received, transmit a sequence of TPC commandswith the value 1 until the UE output power is above the maximum power threshold. Transmit a sequence of 75-(note 1) TPC commands with the value 0.
- 9) Step H: Transmit a sequence of 75 (note 1) TPC commands with the value 1.
- 10) During steps A to H the mean power of every slot shall be measured, with the following exceptions:
 - In steps D and F, measurement of the mean power is not required in slots after the 10th-slot after the meanpower has exceeded the maximum power threshold;
 - In steps E and G, measurement of the mean power is not required in slots after the 10th slot after the meanpower has fallen below the minimum power threshold.
- The transient periods of 25 μs before each slot boundary and 25 μs after each slot boundary shall not be included in the power measurements.
- NOTE 1: These numbers of TPC commands are given as examples. The actual number of TPC commandstransmitted in these steps shall be at least 10 more than the number required to ensure that the UE reachesthe relevant maximum or minimum power threshold in each step, as shown in figure 5.4.2.4.
- NOTE 2: In order to make it more practical to measure the entire power control dynamic range (between min power threshold and max power threshold with suitable margins), it is permissible to segment the power control-sequences into smaller subsequence. For example, Step E can be divided into different stages while still fulfilling the purpose of the test to measure the entire dynamic range.

Table 5.4.2.4.2.A: PHYSICAL CHANNEL RECONFIGURATION message for step D (step 5)

Information Element	Value/Remark
Message Type	
UE Information Elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
-Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	Not Present
-New U-RNTI	Not Present-
-New C-RNTI	Not Present
-RRC State Indicator	CELL_DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	
-CN Information info	Not Present
UTRAN mobility information elements	
-URA identity	Not Present
RB information elements	
-Downlink counter synchronisation info	Not Present
PhyCH information elements	
-Frequency info	Not Present
Uplink radio resources	
-Maximum allowed UL TX power	Not Present
-CHOICE channel requirement	Uplink DPCH info
Uplink DPCH power control info	
CHOICE mode	FDD
	-6dB
PC Preamble	1 frame
	7 frames
Power Control Algorithm	Algorithm 1
	1dB
CHOICE mode	FDD
Scrambling code type	Long
Scrambling code number	θ [~]
Number of DPDCH	4
spreading factor	64
TFCI existence	TRUE
Number of FBI bits	Not Present(0)
Puncturing Limit	4
Downlink radio resources	
-CHOICE mode	FDD
Downlink PDSCH information	Not Present
-Downlink information common for all radio links	Not Present
-Downlink information per radio link list	Not Present

Table 5.4.2.4.2.B: PHYSICAL CHANNEL RECONFIGURATION message for step G (step 8)

Information Element	Value/Remark
Message Type	
UE Information Flowents	
UE Information Elements -RRC transaction identifier	
	θ Ν. Ι. Β. Ι. Ι.
-Integrity check info	Not Present
-Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	Not Present
-New U-RNTI	Not Present
-New C-RNTI	Not Present
-RRC State Indicator	CELL_DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	
-CN Information info	Not Present
UTRAN mobility information elements	
-URA identity	Not Present
RB information elements	
-Downlink counter synchronisation info	Not Present
PhyCH information elements	
-Frequency info	Not Present
Uplink radio resources	
-Maximum allowed UL TX power	Not Present
-CHOICE channel requirement	Uplink DPCH info
Uplink DPCH power control info	
	FDD
	-6dB
PC Preamble	1 frame
	7 frames
Power Control Algorithm	Algorithm 1
	2dB
-CHOICE mode	FDD
Scrambling code type	Long
Scrambling code number	θ
Number of DPDCH	4
spreading factor	64
TFCI existence	TRUE
Number of FBI bits	Not Present(0)
Puncturing Limit	4
Downlink radio resources	
-CHOICE mode	FDD
Downlink PDSCH information	Not Present
-Downlink information common for all radio links	Not Present
-Downlink information per radio link list	Not Present

5.4.2.5 Test requirements

Table 5.4.2.5.1: Transmitter power control range

TPC_cmd		Transmitter power control range (all units are in dB)				
	1 dB st	ep size	2 dB st	ep size	3 dB st	ep size
	Lower	Upper	Lower	Upper	Lower	Upper
+1	+0,4	+1,6	+0,85	+3,15	+1,3	+4,7
θ	-0,6	+0,6	-0,6	+0,6	-0,6	+0,6
-1	-0,4	-1,6	-0,85	-3,15	_1,3	-4,7

TPC_cmd group	Transmitter power control range after 10 equal TPC_cmd group (all units are in dB)			control rai	-	
	1 dB step size 2 dB step size		3 dB step size			
	Lower	Upper	Lower	Upper	Lower	Upper
+1	+7,7	+12,3	+15,7	+24,3	+15,7	+26,3
θ	-1,1	+1,1	-1,1	+1,1	_1,1	+1,1
	7,7	-12,3	- 15,7	_24,3	- 15,7	-26,3
0,0,0,0,+1	+5,7	+14,3	N/A	N/A	N/A	N/A
0,0,0,0,-1	_5,7	_14,3	N/A	N/A	N/A	N/A

Table 5.4.2.5.2: Transmitter aggregate power control tolerance

- a) During Step A, the difference in mean power between adjacent slots shall be within the prescribed range for a TPC_end of 0, as given in table 5.4.2.5.1.
- b) During Step A, the change in mean power over 10 consecutive slots shall be within the prescribed range for a TPC_cmd group of 0, as given in table 5.4.2.5.2.
- c) During Step B, the difference in mean power between adjacent slots shall be within the prescribed range given in table 5.4.2.5.1, given that every 5th TPC_cmd should have the value +1, with a step size of 1 dB, and all other TPC_cmd should have the value 0.
- d) During Step B, the change in mean power over 50 consecutive slots shall be within the prescribed range for a TPC_cmd group of {0,0,0,0,+1}, as given in table 5.4.2.5.2.
- e) During Step C, the difference in mean power between adjacent slots shall be within the prescribed range given in table 5.4.2.5.1, given that every 5th TPC_cmd should have the value -1, with a step size of 1 dB, and all other TPC_cmd should have the value 0.
- f) During Step C, the change in mean power over 50 consecutive slots shall be within the prescribed range for a TPC_cmd group of {0,0,0,0, 1}, as given in table 5.4.2.5.2.
- g) During Step E, the difference in mean power between adjacent slots shall be within the prescribed range given in table 5.4.2.5.1 for a TPC_cmd of -1 and step size of 1 dB. This applies when the original (reference) timeslot-power and the target timeslot power are between the Min power threshold for test and the Max power threshold-for test derived from the Measured Maximum output power in Step D. For the power step adjacent to the Min or-Max power threshold for test, the lower step size requirement does not apply.
- h) During Step E, the change in mean power over 10 consecutive slots shall be within the prescribed range for a TPC_cmd group of -1, and step size of 1 dB as given in table 5.4.2.5.2. This applies when the original (reference) timeslot power and the target timeslot power are between the Min power threshold for test and the Max power threshold for test derived from the Measured Maximum output power in Step D. The power step adjacent to the Min or Max power threshold for test should not be part of the 10 consecutive slots tested.
- i) During Step F, the difference in mean power between adjacent slots shall be within the prescribed range given in table 5.4.2.5.1 for a TPC_cmd of +1 and step size of 1 dB. This applies when the original (reference) timeslot-power and the target timeslot power are between the Min power threshold for test and the Max power threshold for test derived from the Measured Maximum output power in Step F. For the power step adjacent to the Min or-Max power threshold for test, the lower step size requirement does not apply.
- j) During Step F, the change in mean power over 10 consecutive slots shall be within the prescribed range for a TPC_cmd group of +1, and step size of 1 dB as given in table 5.4.2.5.2. This applies when the original (reference) timeslot power and the target timeslot power are between the Min power threshold for test and the Max power threshold for test derived from the Measured Maximum output power in Step F. The power step-adjacent to the Min or Max power threshold for test should not be part of the 10 consecutive slots tested.

- k) During Step G, the difference in mean power between adjacent slots shall be within the prescribed range given in table 5.4.2.5.1 for a TPC_cmd of -1 and step size of 2 dB. This applies when the original (reference) timeslotpower and the target timeslot power are between the Min power threshold for test and the Max power thresholdfor test derived from the Measured Maximum output power in Step F. For the power step adjacent to the Min or-Max power threshold for test, the lower step size requirement does not apply.
- I) During Step G, the change in mean power over 10 consecutive slots shall be within the prescribed range for a TPC_cmd group of -1, and step size of 2 dB as given in table 5.4.2.5.2. This applies when the original (reference) timeslot power and the target timeslot power are between the Min power threshold for test and the Max power threshold for test derived from the Measured Maximum output power in Step F. The power step-adjacent to the Min or Max power threshold for test should not be part of the 10 consecutive slots.
- m) During Step H, the difference in mean power between adjacent slots shall be within the prescribed range given in table 5.4.2.5.1 for a TPC_emd of +1 and step size of 2 dB. This applies when the original (reference) timeslot-power and the target timeslot power are between the Min power threshold for test and the Max power threshold for test derived from the Measured Maximum output power in Step H. For the power step adjacent to the Min or-Max power threshold for test, the lower step size requirement does not apply.
- n) During Step H, the change in mean power over 10 consecutive slots shall be within the prescribed range for a TPC_cmd group of +1, and step size of 2 dB as given in table 5.4.2.5.2. This applies when the original (reference) timeslot power and the target timeslot power are between the Min power threshold for test and the Max power threshold for test derived from the Measured Maximum output power in Step H. The power step-adjacent to the Min or Max power threshold for test should not be part of the 10 consecutive slots tested.
- NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

5.4.3 Minimum Output Power

5.4.3.1 Definition and applicability

The minimum controlled output power of the UE is when the power control setting is set to a minimum value. This is when both the inner loop and open loop power control indicate a minimum transmit output power is required.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.4.3.2 Minimum Requirements

The minimum output power is defined as the mean power in one timeslot. The minimum transmit power shall be less-than -50 dBm.

The normative reference for this requirement is TS 25.101 [1] clause 6.4.3.1.

5.4.3.3 Test purpose

To verify that the UE minimum transmit power is less than -50 dBm.

An excess minimum output power increases the interference to other channels, and decreases the system capacity.

5.4.3.4 Method of test

5.4.3.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

1) Connect the SS to the UE antenna connector as shown in figure A.1.

2) A call is set up according to the Generic call setup procedure.

3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

5.4.3.4.2 Procedure

1) Set and send continuously Down power control commands to the UE.

2) Measure the mean power of the UE.

5.4.3.5 Test requirements

The measured power, derived in step 2), shall be less than -49 dBm.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

5.4.4 Out-of-synchronisation handling of output power

5.4.4.1 Definition and applicability

The UE shall monitor the DPCCH quality in order to detect a loss of the signal on Layer 1, as specified in-TS 25.214 [5]. The thresholds Q_{out} and Q_{in} specify at what DPCCH quality levels the UE shall shut its power off andwhen it shall turn its power on respectively. The thresholds are not defined explicitly, but are defined by the conditionsunder which the UE shall shut its transmitter off and turn it on, as stated in this clause.

The DPCCH quality shall be monitored in the UE and compared to the thresholds Q_{out} and Q_{in} for the purpose of monitoring synchronization. The threshold Q_{out} should correspond to a level of DPCCH quality where no reliable detection of the TPC commands transmitted on the downlink DPCCH can be made. This can be at a TPC command error ratio level of e.g. 30%. The threshold Q_{in} should correspond to a level of DPCCH quality where detection of the TPC commands transmitted on the downlink DPCCH is significantly more reliable than at Q_{out} . This can be at a TPC command error ratio level of e.g. 20%.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.4.4.2 Minimum Requirements

When the UE estimates the DPCCH quality over the last 160 ms period to be worse than a threshold Q_{out} , the UE shall shut its transmitter off within 40 ms. The UE shall not turn its transmitter on again until the DPCCH quality exceeds an acceptable level Q_{in} . When the UE estimates the DPCCH quality over the last 160 ms period to be better than a threshold Q_{in} , the UE shall again turn its transmitter on within 40 ms.

The UE transmitter shall be considered "off" if the transmitted power is below the level defined in subclause 6.5.1 (Transmit off power). Otherwise the transmitter shall be considered as "on".

The normative reference for this requirement is TS 25.101 [1] clause 6.4.4.1.

The quality levels at the thresholds Q_{out} and Q_{in} correspond to different signal levels depending on the downlinkconditions DCH parameters. For the conditions in table 5.4.4.1, a signal with the quality at the level Q_{out} can begenerated by a DPCCH_Ec/Ior ratio of -25 dB, and a signal with Q_{in} by a DPCCH_Ec/Ior ratio of -21 dB. The DLreference measurement channel (12.2) kbps specified in subclause C.3.1 and with static propagation conditions. The downlink physical channels, other than those specified in table 5.4.4.1, are as specified in table E.3.3 of Annex E.

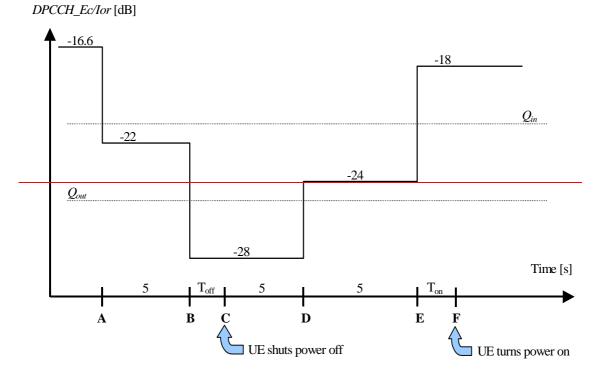

Parameter	Value	Unit
$\frac{\hat{H}_{or}}{I_{oc}}$	-1	dB
-I _{oc}	-60	dBm / 3,84 MHz
$\frac{DPDCH_E_c}{I_{or}}$	See Figure 5.4.4.1: Before point A –16,6 — After point A Not defined See note in clause 5.4.4.3	dB
$\frac{DPCCH_E_c}{I_{or}}$	See table 5.4.4.2	d₽
Information Data Rate	12,2	kbps

Table 5.4.4.1: DCH parameters for test of Out-of-synch handling test case

Table 5.4.4.2: Minimum Requirements for DPCCH_Ec/lor levels

Clause from figure 5.4.4.1	DPCCH_Ec/lor	Unit
Before A	-16,6	d₽
A to B	-22,0	d₽
B to D	-28,0	d₿
D to E	-24,0	d₽
After E	-18,0	d₿

Figure 5.4.4.1 shows an example scenario where the DPCCH_Ec/Ior ratio varies from a level where the DPCH is demodulated under normal conditions, down to a level below Q_{out} where the UE shall shut its power off and then back-up to a level above Q_{in} where the UE shall turn the power back on.

Figure 5.4.4.1: Test case for out-of-synch handling in the UE.

In this test case, the requirements for the UE are that:

1. The UE shall not shut its transmitter off before point B.

2. The UE shall shut its transmitter off before point C, which is Toff = 200 ms after point B.

3. The UE shall not turn its transmitter on between points C and E.

4. The UE shall turn its transmitter on before point F, which is Ton = 200 ms after point E.

The reference for this test case is TS 25.101 [1] clause 6.4.4.2.

5.4.4.3 Test purpose

To verify that the UE monitors the DPCCH quality and turns its transmitter on or off according to DPCCH level diagram specified in figure 5.4.4.1.

NOTE: DPDCH_Ec/I_{or} after point A is not defined in table 5.4.4.1. However it is assumed that DPDCH and DPCCH power level are same on DL 12,2 kbps reference measurement channel for testing. (PO1, PO2, and PO3 are zero.)

5.4.4.4 Method of test

5.4.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.1.
- 2) A call is set up according to the Generic call setup procedure, with the following exception for information elements in System Information Block type 1 specified in TS 34.108 [3] subclause 6.1.0b.

Table 5.4.4.2A: System Information Block type 1 message

Information Element	Value/Remark
UE Timers and constants in connected mode	
- T313	15 seconds
- N313	200

3) DCH parameters are set up according to table 5.4.4.1 with DPCCH_Ec/Ior ratio level at 16,6 dB. The other RF parameters are set up according to clause E.3.3.

4) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

5.4.4.4.2 Procedure

- 1) The SS sends continuously Up power control commands to the UE until the UE transmitter power reachmaximum level.
- 2) The SS controls the DPCCH_Ec/Ior ratio level according to clause 'A to B' as defined in table 5.4.4.3. The SS monitors the UE transmitted power for 5 seconds and verifies that the UE transmitter is not switched off during this time.
- 3) The SS controls the DPCCH_Ec/Ior ratio level according to clause 'B to D' as defined in table 5.4.4.3. The SS waits 200 ms and then verifies that the UE transmitter has been switched off.
- 4) The SS monitors the UE transmitted power for 5 seconds and verifies that the UE transmitter is not switched on during this time.
- 5) The SS controls the DPCCH_Ec/Ior ratio level according to clause 'D to E' as defined in table 5.4.4.3. The SS monitors the UE transmitted power for 5 s and verifies that the UE transmitter is not switched on during this time.
- 6) The SS controls the DPCCH_Ec/Ior ratio level according to clause 'After E' as defined in table 5.4.4.3. The SSwaits 200 ms and then verifies that the UE transmitter has been switched on.

5.4.4.5 Test requirements

Table 5.4.4.3: Test Requirements for DPCCH_Ec/lor levels

Clause from figure 5.4.4.1	DPCCH_Ec/lor-	Unit
Before A	-16,6	dB
A to B	-21,6	dB
B to D	-28,4	dB
D to E	-24,4	d₿
After E	-17,6	dB

To pass the test, steps 1 through 6 of the procedure in clause 5.4.4.4.2 must be fulfilled.

The UE transmitter off criterion and its tolerances is defined in clause 5.5.1 (Transmit off power).

The UE transmitter on criterion and its tolerances is defined in clause 5.4.3 (Minimum Output Power). The UE transmitter is considered to be on if the UE transmitted power is higher than minimum output power.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Test Requirement has been relaxed by the Test Tolerance is given in clause F.4.

5.5 Transmit ON/OFF Power

5.5.1 Transmit OFF Power

5.5.1.1 Definition and applicability

Transmit OFF power is defined as the RRC filtered mean power when the transmitter is off. The transmit OFF powerstate is when the UE does not transmit. During transmission gaps in UL compressed mode, the UE is not considered tobe in the OFF state.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.5.1.2 Minimum Requirements

The requirement for the transmit OFF power shall be less than -56 dBm.

The normative reference for this requirement is TS 25.101 [1] clause 6.5.1.1.

5.5.1.3 Test purpose

To verify that the UE transmit OFF power is less than -56 dBm.

An excess transmit OFF power increases the interference to other channels, and decreases the system capacity.

5.5.1.4 Method of test

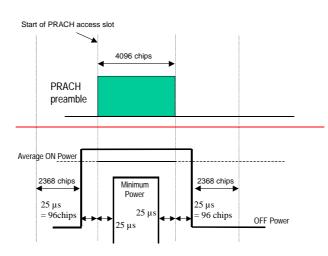
This test is covered by clause 5.5.2 Transmit ON/OFF Time mask.

5.5.1.5 Test requirements

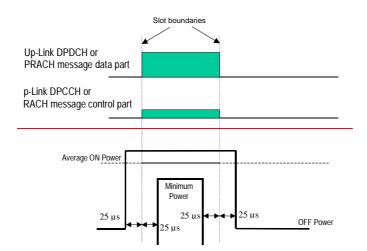
The measured RRC filtered mean power shall be less than -55 dBm.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

5.5.2 Transmit ON/OFF Time mask


5.5.2.1 Definition and applicability

The time mask for transmit ON/OFF defines the ramping time allowed for the UE between transmit OFF power and transmit ON power. Possible ON/OFF scenarios are PRACH, CPCH or uplink compressed mode.


The requirements and this test apply to all types of UTRA for the FDD UE.

5.5.2.2 Minimum requirements

The transmit power levels versus time shall meet the mask specified in figure 5.5.1 for PRACH preambles, and the mask in figure 5.5.2 for all other cases. The off signal is defined as the RRC filtered mean power.

Figure 5.5.1: Transmit ON/OFF template for PRACH preambles

Figure 5.5.2: Transmit ON/OFF template for all other On/Off cases

OFF Power is defined in clause 5.5.1.2.

ON power is defined as the mean power. The specification depends on each possible case.

- -First preamble of PRACH: Open loop accuracy (table 5.4.1.1).
- During preamble ramping of the RACH and between final RACH preamble and RACH message part: Accuracy depending on size of the required power difference (table 5.5.2.1).
- After transmission gaps in compressed mode: Accuracy as in table 5.7.1.

⁻ Power step to Maximum Power: Maximum power accuracy (table 5.2.1).

Table 5.5.2.1: Transmitter power difference tolerance for RACH preamble ramping, and between final RACH preamble and RACH message part

Power difference size <u>∆P [dB]</u>	Transmitter power difference tolerance- [dB]
θ	±1
4	±1
2	±1,5
3	±2
4 <u>≤∆P≤10</u>	±2,5
<u>11 ≤ ∆P ≤ 15</u>	±3,5
16 ≤ ΔΡ ≤ 20	±4,5
<u>21 ≤ ∆P</u>	±6,5

The reference for this requirement is TS 25.101 [1] clause 6.5.2.1.

This is tested using PRACH operation.

5.5.2.3 Test purpose

To verify that the UE transmit ON/OFF power levels versus time meets the described mask shown in figure 5.5.1 and figure 5.5.2.

An excess error of transmit ON/OFF response increases the interference to other channels, or increases transmissionerrors in the up link own channel.

5.5.2.4 Method of test

5.5.2.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.1.
- 2) A call is set up according to the Generic call setup procedure, and \hat{I}_{or} is are set up according to table 5.5.2.2. The relative power level of downlink physical channels to I_{or} are set up according to clause E.2.1.

The RACH procedure within the call setup is used for the test. The number of the available subchannels should belimited to one. This ensures that the preamble sequence is known to the SS. The preamble retransmission shall be atleast 3. The power ramping step size shall be 1 dB. Note that the maximum number of preamble retransmissions islimited to 5 due to the fact that the commanded uplink power exceeds the allowed uplink power of more than 6 dB. The-SS shall not send either an ACK or a NACK.

See TS 34.108 [3] for details regarding generic call setup procedure.

Table 5.5.2.2: Test parameters for Transmit ON/OFF Time mask (UE)

Parameter	Level / Status	Unit
Î _{or}	See table 5.5.2.3	dBm / 3,84 MHz

Parameter	Power Class 1	Power Class 2	Power Class 3	Power Class 4	Unit
Î _{or} (note 1)	- 106,7	- 106,7	- 106,7	- 106,7	dBm / 3,84 MHz
CPICH_RSCP (notes 1 and 2)	-110	-110	-110	-110	dBm
Primary CPICH DL TX power	+19	+19	+19	+19	dBm
Simulated path loss = Primary CPICH DL TX power - CPICH_RSCP	+129	+129	+129	+129	dB
UL interference	- 86	- 92	- 95	- 98	dBm
Constant Value	_10	_10	_10	-10	dB
Expected nominal UE TX- power (note 3)	+33	+27	+2 4	+21	dBm
NOTE 1: The power level of S-CCPCH should be defined because S-CCPCH is transmitted during Preamble RACH					
transmission period. The power level of S-CCPCH is temporarily set to -10,3 dB relative to Ior. However, it is-					
necessary to check whether the above S-CCPCH level is enough to establish a connection with the					
reference measurement channels.					
NOTE 2: The purpose of this parameter is to calculate the Expected nominal UE TX power.					
NOTE 3: The Expected nominal UE TX power is calculated by using the equation in the clause 8.5.7 Open Loop					
Power Control of TS 25.331 [8].					

Table 5.5.2.3: Test parameters for Transmit ON/OFF Time mask (SS)

5.5.2.4.2 Procedure

- 1) Set the TX output level of the SS to obtain \hat{I}_{or} at the UE antenna connector and select the test parameters of table 5.5.2.3 according to the power class. \hat{I}_{or} shall be according to table 5.5.2.3 (-106,7 dBm / 3,84 MHz).
- 2) Measure the mean power (ON power) of the UE on the first RACH preamble or two consecutive RACH preambles. The measurements shall not include the transient periods. From the occurrence of the first RACH preamble the SS shall predict the following RACH preamble timing.
- 3) Measure the RRC filtered mean power (OFF power) in a 2368 chip time interval before a transient period of 25μs (96 chips) prior to a RACH preamble (ON power). Measure the RRC filtered mean power (OFF power) in a 2368 chip time interval after a transient period of 25 μs (96 chips) after a RACH preamble (ON power).

5.5.2.5 Test requirements

The deviation with respect to the Expected nominal UE TX power (table 5.5.2.3), derived in step 2), shall not exceed the prescribed upper tolerance in table 5.2.2 (clause 5.2.5) and lower tolerance in table 5.4.1.1. (clause 5.4.1.2) for the first preamble, or shall meet the tolerance in table 5.5.2.1 for two consecutive preambles.

The measured RRC filtered mean power, derived in step 3), shall be less than 55 dBm. (clause 5.5.1.5).

5.6 Change of TFC

5.6.1 Definition and applicability

A change of TFC (Transport Format Combination) in uplink means that the power in the uplink varies according to the change in data rate. DTX, where the DPCH is turned off, is a special case of variable data, which is used to minimise the interference between UE(s) by reducing the UE transmit power when voice, user or control information is not-present.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.6.2 Minimum requirements

A change of output power is required when the TFC, and thereby the data rate, is changed. The ratio of the amplitudebetween the DPDCH codes and the DPCCH code will vary. The power step due to a change in TFC shall be calculated in the UE so that the power transmitted on the DPCCH shall follow the inner loop power control. The step in totaltransmitted power (DPCCH + DPDCH) shall then be rounded to the closest integer dB value. A power step exactlyhalf way between two integer values shall be rounded to the closest integer of greater magnitude. The accuracy of the power step, given the step size is specified in table 5.6.1. The power change due to a change in TFC is defined as therelative power difference between the mean power of the original (reference) timeslot and the mean power of the targettimeslot, not including the transient duration. The transient duration is from 25 μ s before the slot boundary to 25 μ s after the slot boundary.

Power control step size (Up or down) <u>AP [dB]</u>	Transmitter power step tolerance [dB]
θ	±0,5
4	±0,5
2	±1,0
3	±1,5
4 <u>≤ ∆P ≤ 10</u>	±2,0
11 ≤ ΔΡ ≤ 15	±3,0
16 ≤ ΔΡ ≤ 20	±4,0
<u>21 ≤ ∆P</u>	±6,0

Table 5.6.1: Transmitter power step tolerance

Clause C.2.1 defines the UL reference measurement channels (12,2 kbps) for TX test and the power ratio between DPCCH and DPDCH as -5,46 dB. Therefore, only one power control step size is selected as minimum requirement from table 5.6.1. The accuracy of the power step, given the step size is specified in table 5.6.2.

Table 5.6.2: Transmitter power step tolerance for test

Quantized amplitude ratios	Power control step size (Up or	Transmitter power step-	
β _c and β _d	down) ΔΡ [dB]	tolerance [dB]	
β₆ = 0,5333, β_d = 1,0	7-	±2	

The transmit power levels versus time shall meet the mask specified in figure 5.6.1.

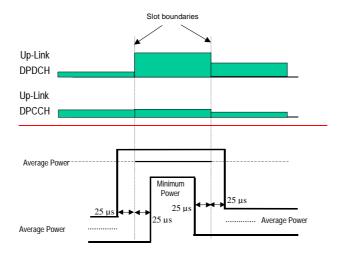
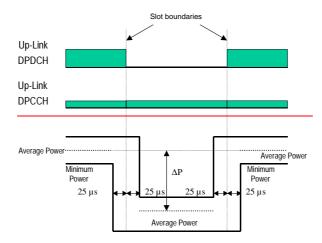



Figure 5.6.1: Transmit template during TFC change

The UL reference measurement channel (12,2 kbps) is a fixed rate channel. Therefore, DTX, where the DPDCH isturned off, is tested, as shown in figure 5.6.2.

Figure 5.6.2: Transmit template during DTX

The reference for this requirement is TS 25.101 [1] clause 6.5.3.1.

5.6.3 Test purpose

To verify that the tolerance of power control step size does not exceed the described value shown in table 5.6.2.

To verify that the DTX ON/OFF power levels versus time meets the described mask shown in figure 5.6.2.

5.6.4 Method of test

5.6.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.1.
- 2) A call is set up according to the Generic call setup procedure. The Uplink DPCH Power Control Info shallspecify the Power Control Algorithm as algorithm 2 for interpreting TPC commands.
- 3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

5.6.4.2 Procedure

- 1) Set the attenuation in the downlink signal (\hat{I}_{or}) to yield an open loop output power, measured at the UE antenna connector, of 0 dBm.
- 2) Send alternating "0" and "1" TPC commands in the downlink so as to satisfy the condition of obtaining TPC_cmd = 0.
- 3) Using the Tester, measure the mean power at the antenna connector of the UE in two cases, both DPDCH and DPCCH are ON and only DPCCH is ON. The measurements shall not include the transient periods.

5.6.5 Test requirements

The difference in mean power between DPDCH ON and OFF, derived in step 3), shall not exceed the prescribed range in table 5.6.2.

5.7 Power setting in uplink compressed mode

5.7.1 Definition and applicability

Compressed mode in uplink means that the power in uplink is changed.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.7.2 Minimum requirements

A change of output power is required during uplink compressed frames since the transmission of data is performed in a shorter interval. The ratio of the amplitude between the DPDCH codes and the DPCCH code will also vary. The power step due to compressed mode shall be calculated in the UE so that the energy transmitted on the pilot bits during each transmitted slot shall follow the inner loop power control.

Thereby, the power during compressed mode, and immediately afterwards, shall be such that the mean power of the DPCCH follows the steps due to inner loop power control combined with additional steps of $10Log_{10}(N_{pilot,prev} \neq N_{pilot,curr})$ dB where $N_{pilot,prev}$ is the number of pilot bits in the previously transmitted slot, and $N_{pilot,curr}$ is the current-number of pilot bits per slot.

The resulting step in total transmitted power (DPCCH +DPDCH) shall then be rounded to the closest integer dB value. A power step exactly half way between two integer values shall be rounded to the closest integer of greatest magnitude. The accuracy of the power step, given the step size, is specified in table 5.6.1 in clause 5.6.2. The power step is defined as the relative power difference between the mean power of the original (reference) timeslot and the mean power of the target timeslot, when neither the original timeslot nor the reference timeslot are in a transmission gap. The transient-duration is not included, and is from 25 µs before the slot boundary to 2 5µs after the slot boundary.

In addition to any power change due to the ratio $N_{pilot.prev} / N_{pilot.curr,}$ the mean power of the DPCCH in the first slot after a compressed mode transmission gap shall differ from the mean power of the DPCCH in the last slot before the transmission gap by an amount Δ_{RESUME} , where Δ_{RESUME} is calculated as described in clause 5.1.2.3 of TS 25.214 [5].

The resulting difference in the total transmitted power (DPCCH + DPDCH) shall then be rounded to the closest integer dB value. A power difference exactly half way between two integer values shall be rounded to the closest integer of greatest magnitude. The accuracy of the resulting difference in the total transmitted power (DPCCH + DPDCH) after a transmission gap of up to 14 slots shall be as specified in table 5.7.1.

Power difference (Up or down) AP [dB]	Transmitter power step- tolerance after a transmission gap [dB]
<u>∆P ≤ 2</u>	+/3
3	+/- 3
$4 \le \Delta P \le 10$	+/- 3.5
11 ≤ ΔΡ ≤ 15	+/- 4
16 ≤ ΔΡ ≤ 20	+/- 4.5
<u>21 ≤ Δ</u> Ρ	+/- 6.5

Table 5.7.1: Transmitter power difference tolerance after a transmission gap of up to 14 slots

The power difference is defined as the difference between the mean power of the original (reference) timeslot before the transmission gap and the mean power of the target timeslot after the transmission gap, not including the transient durations. The transient durations at the start and end of the transmission gaps are each from 25 μ s before the slot boundary to 25 μ s after the slot boundary.

The transmit power levels versus time shall meet the mask specified in figure 5.7.1.

The reference for this requirement is TS 25.101 [1] clause 6.5.4.1.

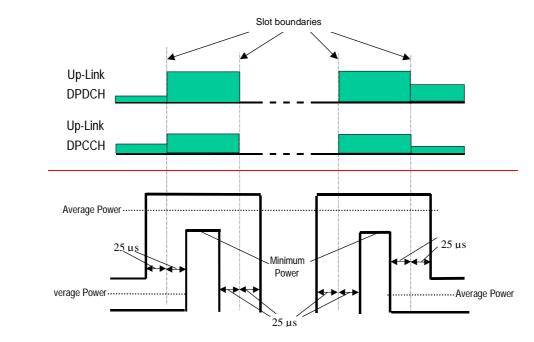


Figure 5.7.1: Transmit template during Compressed mode

For RPL (Recovery Period Length) slots after the transmission gap, where RPL is the minimum out of the transmissiongap length and 7 slots, the UE shall use the power control algorithm and step size specified by the signalled Recovery-Period Power Control Mode (RPP), as detailed in TS 25.214 [5] clause 5.1.2.3.

When nominal 3 dB power control steps are used in the recovery period, the transmitter mean power steps due to innerloop power control shall be within the range shown in table 5.7.2, and the transmitter aggregate mean power step due toinner loop power control shall be within the range shown in table 5.7.3, excluding any other power changes due, forexample, to changes in spreading factor or number of pilot bits.

TPC_cmd	Transmitter power control range for 3dB step size		
	Lower	Upper	
+1	+1,5 dB	+4,5 dB	
θ	- 0,5 dB	+0,5 dB	
-1	- 1,5 dB	-4,5 dB	

Table 5.7.2: Transmitter power control range for 3dB step size

Table 5.7.3: Transmitter aggregate power control range for 3dB step size

TPC_cmd group	Transmitter power control range- after 7 equal TPC_cmd groups		
	Lower	Upper	
+1	+16 dB	+26 dB	
0	- 1 dB	+1 dB	
-1	–16 dB	-26 dB	

The reference for this requirement is TS 25.101 [1] clause 6.4.2.1.1.

5.7.3 Test purpose

To verify that the changes in uplink transmit power in compressed mode are within the prescribed tolerances.

Excess error in transmit power setting in compressed mode increases the interference to other channels, or increases transmission errors in the uplink.

5.7.4 Method of test

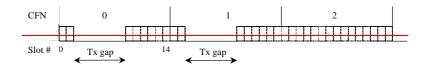
5.7.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.1.
- 2) A call is set up according to the Generic call setup procedure. The 12,2 kbps UL reference measurement channel is used, with gain factors $\beta_e = 0,5333$ and $\beta_d = 1,0$ in non compressed frames. Slot formats 0 and 0B are used on the uplink DPCCH.
- 3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.


5.7.4.2 Procedure

- NOTE: CFNs are given in this procedure for reference as examples only. A fixed offset may be applied to the CFNs.
- Before proceeding with step (3) below, set the output power of the UE, measured at the UE antenna connector, to be in the range 36 ± 9 dBm. This may be achieved by setting the downlink signal (Îor) to yield an appropriate open loop output power and/or by generating suitable downlink TPC commands from the SS.
- 2) Transmit the PHYSICAL CHANNEL RECONFIGURATION message to set the uplink power controlparameters to use Algorithm 1 and a step size of 2 dB,and to set the compressed mode parameters shown in table 5.7.5. The contents of the message are specified in table 5.7.9. This set of compressed mode parameters definesthe compressed mode pattern which is used to test the implementation of:
 - a) in steps (3) and (4), upward 3 dB output power steps and the implementation of a downward power changewhen resuming transmission after a compressed mode gap, and
 - b) in steps (7) and (8), downward 3dB output power steps and the implementation of an upward power changewhen resuming transmission after a compressed mode gap.

Parameter	Meaning	Value
TGPRC	Number of transmission gap patterns within the Transmission-	4
	Gap Pattern Sequence	
TGCFN	Connection Frame Number of the first frame of the first pattern	θ
	within the Transmission Gap Pattern Sequence	
TGSN	Slot number of the first transmission gap slot within the TGCFN	2
TGL1	Length of first transmission gap within the transmission gap pattern	7 slots
TGL2	Length of second transmission gap within the transmission gap- pattern	7 slots
TGD	Duration between the starting slots of two consecutive	15 slots
	transmission gaps within a transmission gap pattern	
TGPL1	Duration of transmission gap pattern 1	3 frames
TGPL2	Duration of transmission gap pattern 2	Omit
RPP	Recovery Period Power Control Mode	Mode 1
HTP	Initial Transmit Power Mode	Mode 1
UL/DL Mode	Defines whether only DL, only UL, or combined UL/DL-	UL/DL
	compressed mode is used	
Downlink Compressed Mode Method	Method for generating downlink compressed mode gap	SF/2
Uplink Compressed Mode Method	Method for generating uplink compressed mode gap	SF/2
Scrambling code change	Indicates whether the alternative scrambling code is used	No code change
Downlink frame type	Downlink compressed frame structure	A
DeltaSIR	Delta in DL SIR target value to be set in the UE during compressed frames	θ
DeltaSIRafter	Delta in DL SIR target value to be set in the UE one frame after the compressed frames	θ

Table 5.7.5: Parameters for pattern A for compressed mode test

The resulting compressed mode pattern is shown in figure 5.7.2.

Figure 5.7.2: Pattern A for compressed mode test

3) After the PHYSICAL CHANNEL RECONFIGURATION COMPLETE message from the UE is received, transmit TPC commands on the downlink as shown in table 5.7.6.

Table 5.7.6: TPC commands transmitted in downlink

CFN	TPC commands in downlink
θ	0111111
4	11101010
2	101010101010101

4) Measure the mean power in the following slots, not including the 25 µs transient periods at the start and end of each slot:

CFN 0: Slots # 9,10,11,12,13,14 CFN 1: Slots # 0,1,9

5) Re start the test. Before proceeding with step (7) below, set the output power of the UE, measured at the UE antenna connector, to be in the range 2 ± 9 dBm. This may be achieved by setting the downlink signal (Îor) to-

yield an appropriate open loop output power and/or by generating suitable downlink TPC commands from the SS.

6) Repeat step (2) above, with the exception that TGCFN = 3 in table 5.7.5 and table 5.7.9.

7) After the PHYSICAL CHANNEL RECONFIGURATION COMPLETE message from the UE is received, transmit TPC commands on the downlink as shown in table 5.7.7.

Table 5.7.7: TPC commands transmitted in downlink

CFN	TPC commands in downlink	
3	0100000	
4	00010101	
5	010101010101010	

8) Measure the mean power in the following slots, not including the 25 μs transient periods at the start and end of each slot:

CFN 3: Slots # 9,10,11,12,13,14 CFN 4: Slots # 0,1,9

- 9) Re start the test. Before proceeding with step (11) below, set the output power of the UE, measured at the UE antenna connector, to be in the range 10 ± 9 dBm. This may be achieved by setting the downlink signal (Îor) to yield an appropriate open loop output power and/or by generating suitable downlink TPC commands from the SS.
- 10) Transmit the PHYSICAL CHANNEL RECONFIGURATION message to set the uplink power controlparameters to use Algorithm 1 and a step size of 1 dB, and to set the compressed mode parameters shown intable 5.7.8. The contents of the message are specified in table 5.7.10. This set of compressed mode parameters defines the compressed mode pattern which is used to test the implementation of power steps at the start and endof compressed frames, and the implementation of a zero power change when resuming transmission after acompressed mode gap.

Parameter	Meaning	Value
TGPRC	Number of transmission gap patterns within the Transmission-	4
	Gap Pattern Sequence	
TGCFN	Connection Frame Number of the first frame of the first pattern-	7
	within the Transmission Gap Pattern Sequence	
TGSN	Slot number of the first transmission gap slot within the TGCFN	8
TGL1	Length of first transmission gap within the transmission gap- pattern	14 slots
TGL2	Length of second transmission gap within the transmission gap- pattern	omit
TGD	Duration between the starting slots of two consecutive	θ
	transmission gaps within a transmission gap pattern	
TGPL1	Duration of transmission gap pattern 1	4 frames
TGPL2	Duration of transmission gap pattern 2	Omit
RPP	Recovery Period Power Control Mode	Mode 0
1TP	Initial Transmit Power Mode	Mode 0
UL/DL Mode	Defines whether only DL, only UL, or combined UL/DL	UL/DL
	compressed mode is used	
Downlink Compressed Mode Method	Method for generating downlink compressed mode gap	SF/2
Uplink Compressed Mode Method	Method for generating uplink compressed mode gap	SF/2
Scrambling code change	Indicates whether the alternative scrambling code is used	No code change
Downlink frame type	Downlink compressed frame structure	A
DeltaSIR	Delta in DL SIR target value to be set in the UE during compressed frames	θ
DeltaSIRafter	Delta in DL SIR target value to be set in the UE one frame after the compressed frames	θ

Table 5.7.8: Parameters for pattern B for compressed mode test

The resulting compressed mode pattern is shown in figure 5.7.3.

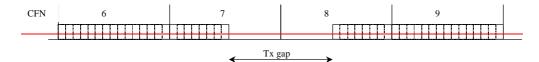


Figure 5.7.3: Pattern B for compressed mode test

11) After the PHYSICAL CHANNEL RECONFIGURATION COMPLETE message from the UE is received, transmit TPC commands on the downlink as shown in table 5.7.8.

Table 5.7.8: TPC commands transmitted in downlink

CFN	TPC commands in downlink
6	0000000000111
7	1111111
8	0000000
9	00011111111111

12)Measure the mean power in the following slots, not including the 25 µs transient periods at the start and end of each slot:

 CFN 6:
 Slot # 14

 CFN 7:
 Slots # 0 and 7

 CFN 8:
 Slots # 7 and 14

 CFN 9:
 Slot # 0

Table 5.7.9: PHYSICAL CHANNEL RECONFIGURATION message (step 2)

Information Element	Value/Remark
Message Type	randon Cinark
UE Information Elements	
-RRC transaction identifier	0 Not Present
-Integrity check info -Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	Not Present
-New U-RNTI	Not Present
-New C-RNTI	Not Present
-RRC State Indicator	CELL_DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	
-CN Information info	Not Present
UTRAN mobility information elements	
-URA identity	Not Present
RB information elements	
-Downlink counter synchronisation info	Not Present
PhyCH information elements	
-Frequency info	Not Present
Uplink radio resources	Not Descent
-Maximum allowed UL TX power	Not Present
-CHOICE channel requirement	Uplink DPCH info
-Uplink DPCH power control info	
	-6dB
	1 frame
	7 frames
Power Control Algorithm	Algorithm 1
	2dB
-CHOICE mode	FDD
Scrambling code type	Long
Scrambling code number	θ
Number of DPDCH	4
spreading factor	64
TFCI existence	TRUE
Number of FBI bits	Not Present(0)
Puncturing Limit	1
Downlink radio resources	555
-CHOICE mode Downlink PDSCH information	FDD Not Descent
	Not Present
-Downlink information common for all radio links -Downlink DPCH info common for all RL	Not Present
	FDD
	4
	Activate
	θ
Transmission gap pattern sequence-	
configuration parameters	
TGMP	FDD measurement
	4
	2
TGL1	7
	7
	1 5
TGPL1 -TGPL2	-3 Not Present
	Not Present Mode 1
	Mode 1 Mode 1
	UL and DL
	SE/2
	SF/2 SF/2
	A

	0
Donaon tanton i	θ
	Not Present
	Not Present-
	Not Present
	Not Present
TX Diversity Mode	Not Present
	Not Present
Default DPCH Offset Value	Not Present
-Downlink information per radio link list	
- Downlink information for each radio link	
Choice mode	FDD
Primary CPICH info	
Primary scrambling code	100
PDSCH with SHO DCH Info	Not Present
PDSCH code mapping	Not Present
Downlink DPCH info for each RL	
	FDD
Primary CPICH usage for channel estimation	Primary CPICH may be used
	Set to value Default DPCH Offset Value (as
	currently stored in SS) mod 38400
	Not Present
	Not Present
	128
Code number	θ
	No code change
	θ
	Not Present
	Not Present
SCCPCH Information for FACH	Not Present

Table 5.7.10: PHYSICAL CHANNEL RECONFIGURATION message (step 10)

Information Element	Value/Remark
Message Type	
UE Information Elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
-Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	Not Present
-New U-RNTI	Not Present
-New C-RNTI	Not Present
-RRC State Indicator	CELL_DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	Net Decent
-CN Information info	Not Present
UTRAN mobility information elements	Net Dresent
-URA identity RB information elements	Not Present
-Downlink counter synchronisation info	Not Present
PhyCH information elements	
-Frequency info	Not Present
Uplink radio resources	
-Maximum allowed UL TX power	Not Present
-CHOICE channel requirement	Uplink DPCH info
Uplink DPCH power control info	
	EDD
	-6dB
	1 frame
	7 frames
Power Control Algorithm	Algorithm 1
	1dB
CHOICE mode	FDD
Scrambling code type	Long
Scrambling code number	θ
Number of DPDCH	4
spreading factor	64
TFCI existence	TRUE
Number of FBI bits	Not Present(0)
Puncturing Limit	4
Downlink radio resources	
-CHOICE mode	FDD
Downlink PDSCH information	Not Present
-Downlink information common for all radio links	
Downlink DPCH info common for all RL	Not Present
CHOICE mode	FDD
DPCH compressed mode info	
Transmission gap pattern sequence	1
	+ Activate
	Z
	+
configuration parameters	
-TGMP	EDD-measurement
	1
	8
	14
	Not Present
TGD	θ
	4
	Not Present
	Mode 0
	Mode 0
	UL and DL
	SF/2
	SF/2

	θ
	θ
	Not Present
TX Diversity Mode	Not Present
	Not Present
Default DPCH Offset Value	Not Present
-Downlink information per radio link list	
- Downlink information for each radio link	
Choice mode	FDD
Primary CPICH info	
Primary scrambling code	100
PDSCH with SHO DCH Info	Not Present
PDSCH code mapping	Not Present
Downlink DPCH info for each RL	
	FDD
Primary CPICH usage for channel estimation	Primary CPICH may be used
	Set to value Default DPCH Offset Value (as
	currently stored in SS) mod 38400
Secondary CPICH info	Not Present
	Not Present
	128
Code number	θ
	No code change
	θ
	Not Present
Closed loop timing adjustment mode	Not Present
SCCPCH Information for FACH	Not Present

5.7.5 Test requirements

For ease of reference, the following uplink output power measurements are defined in figure 5.7.4. In this figure:

- ----P_e is the RRC filtered mean power in an uplink transmission gap, excluding the 25 μs transient periods.
- $-P_a$ is the mean power in the last slot before a compressed frame (or pair of compressed frames), excluding the 25 µs transient periods.
- -P_b is the mean power in the first slot of a compressed frame, excluding the 25 µs transient periods.
- -P_e is the mean power in the last slot before a transmission gap, excluding the 25 µs transient periods.
- ---P_d is the mean power in the first slot after a transmission gap, excluding the 25 μs transient periods.
- P_e is the mean power in the last slot of a compressed frame, excluding the 25 μs transient periods.
- $-P_{\rm f}$ is the mean power in the first slot after a compressed frame (or pair of compressed frames), excluding the 25 µs transient periods.

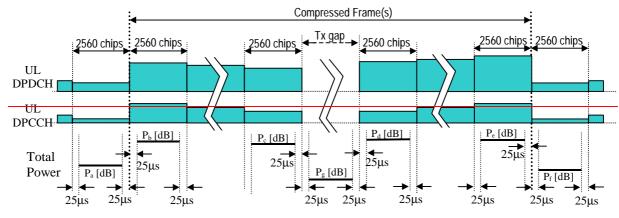


Figure 5.7.4: Uplink transmit power in uplink compressed mode

- 1. At the boundary between CFN 6 and CFN 7, $P_b P_a$ shall be within the range $+4 \pm 2 \text{ dB}$.
- 2. In slot #9 of CFN 1, the power difference $P_d P_e$ from the power in slot #1 of CFN 1 shall be within the range -11 ± 4 dB.
- 3. In slot #9 of CFN 4, the power difference $P_d P_c$ from the power in slot #1 of CFN 4 shall be within the range +11 ± 4 dB.
- 4. In slot #7 of CFN 8, the power difference $P_d P_e$ from the power in slot #7 of CFN 7 shall be within the range $0 \pm 3 \text{ dB}$.

5. (void)

- 6. At the boundary between CFN 8 and CFN 9, $P_{f} P_{e}$ shall be within the range 4 ± 2 dB.
- 7. In the slots between slot #10 of CFN 0 and slot #1 of CFN 1 inclusive, the change in mean power from the previous slot shall be within the range given in table 5.7.2 for TPC_cmd = +1.
- 8. The aggregate change in mean power from slot #9 of CFN 0 to slot #1 of CFN 1 shall be within the range given in table 5.7.3 for TPC_cmd = +1.
- 9. In the slots between slot #10 of CFN 3 and slot #1 of CFN 4 inclusive, the change in mean power from the previous slot shall be within the range given in table 5.7.2 for TPC_emd = 1.
- 10. The aggregate change in mean power from slot #9 of CFN 3 to slot #1 of CFN 4 shall be within the range given in table 5.7.3 for TPC_cmd = 1.

5.8 Occupied Bandwidth (OBW)

5.8.1 Definition and applicability

Occupied bandwidth is a measure of the bandwidth containing 99 % of the total integrated power of the transmittedspectrum, centred on the assigned channel frequency.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.8.2 Minimum Requirements

The occupied channel bandwidth shall be less than 5 MHz based on a chip rate of 3,84 Mcps.

The normative reference for this requirement is TS 25.101 [1] clause 6.6.1.

5.8.3 Test purpose

To verify that the UE occupied channel bandwidth is less than 5 MHz based on a chip rate of 3,84 Mcps.

Excess occupied channel bandwidth increases the interference to other channels or to other systems.

5.8.4 Method of test

5.8.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

1) Connect the SS to the UE antenna connector as shown in figure A.1.

2) A call is set up according to the Generic call setup procedure.

3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

5.8.4.2 Procedure

- 1) Set and send continuously Up power control commands to the UE until the UE output power shall be maximum level.
- 2) Measure the power spectrum distribution within two times or more range over the requirement for Occupied-Bandwidth specification centring on the current carrier frequency with 30 kHz or less RBW. The characteristicof the filter shall be approximately Gaussian (typical spectrum analyzer filter).
- 3) Calculate the total power within the range of all frequencies measured in '2)' and save this value as "Total Power".
- 4) Sum up the power upward from the lower boundary of the measured frequency range in '2)' and seek the limitfrequency point by which this sum becomes 0,5 % of "Total Power" and save this point as "Lower Frequency".
- 5) Sum up the power downward from the upper boundary of the measured frequency range in '2)' and seek the limit frequency point by which this sum becomes 0,5 % of "Total Power" and save this point as "Upper Frequency".
- 6) Calculate the difference ("Upper Frequency" "Lower Frequency" = "Occupied Bandwidth") between two limit frequencies obtained in '4)' and '5)'.

5.8.5 Test Requirements

The measured Occupied Bandwidth, derived in step 6), shall not exceed 5 MHz.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

5.9 Spectrum emission mask

5.9.1 Definition and applicability

The spectrum emission mask of the UE applies to frequencies, which are between 2,5 MHz and 12,5 MHz away from the UE centre carrier frequency. The out of channel emission is specified relative to the RRC filtered mean power of the UE carrier.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.9.2 Minimum Requirements

The power of any UE emission shall not exceed the levels specified in table 5.9.1.

A	in MHz (note 1)	Minimum requirement Band I, II, III	Additional requirements Band II	Measurement- bandwidth
	2,5 to 3.5	$\left\{ \underbrace{-35-15}_{MHz} \underbrace{\Delta f}_{2.5} \right\} dBc$	-15 dBm	30 kHz (note 2)
	3,5 to 7,5	$\left\{\begin{array}{cc} 35 & 1 & \left(\begin{array}{c} \Delta f & \\ MHz & \end{array}\right)\right\} dBc$	-13 dBm	1 MHz (note 3)
	7,5 to 8,5	$\left\{ \underbrace{-39-10}_{MHz} \underbrace{\Delta f}_{7.5} \right\} dBc$	-13 dBm	1 MHz (note 3)
	8,5 to 12,5	-49 dBc	-13 dBm	1 MHz (note 3)
 NOTE 1: Af is the separation between the carrier frequency and the centre of the measuring filter. NOTE 2: The first and last measurement position with a 30 kHz filter is at ∆f equals to 2,515 MHz and 3,485 MHz. NOTE 3: The first and last measurement position with a 1 MHz filter is at ∆f equals to 4 MHz and 12 MHz. As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth can be different from the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth. 				

Table 5.9.1: Spectrum Emission Mask Requirement

The normative reference for this requirement is TS 25.101 [23] clause 6.6.2.1.1.

5.9.3 Test purpose

To verify that the power of UE emission does not exceed the prescribed limits shown in table 5.9.1.

Excess emission increases the interference to other channels or to other systems.

5.9.4 Method of test

5.9.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.1.
- 2) A call is set up according to the Generic call setup procedure.
- 3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

5.9.4.2 Procedure

- 1) Set and send continuously Up power control commands to the UE until the UE output power shall be maximum level.
- 2) Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 5.9.2. Measurements with an offset from the carrier centre frequency between 2,515 MHz and 3,485 MHz shall use a

30 kHz measurement filter. Measurements with an offset from the carrier centre frequency between 4 MHz and 12 MHz shall use 1 MHz measurement bandwidth and the result may be calculated by integrating multiple-50 kHz or narrower filter measurements. The characteristic of the filter shall be approximately Gaussian (typicalspectrum analyzer filter). The centre frequency of the filter shall be stepped in contiguous steps according totable 5.9.2. The measured power shall be recorded for each step.

3) Measure the RRC filtered mean power centered on the assigned channel frequency.

4) Calculate the ratio of the power 2) with respect to 3) in dBc.

5.9.5 Test requirements

The result of clause 5.9.4.2 step 4) shall fulfil the requirements of table 5.9.2.

<u>Af in MHz (note 1)</u>	Minimum requirement- Band I, II, III	Additional- requirements Band-II	Measurement bandwidth
2,5 to 3,5	$\left\{-33.5-15\cdot\left(\frac{\Delta f}{MHz}-2.5\right)\right\}dB$	^c - 15 dBm	30 kHz (note 2)
3,5 to 7,5	$\left\{\begin{array}{cc} 33.5 & 1 & \left(\begin{array}{c} \Delta f \\ MHz \end{array}\right) \right\} dB$	² - 13 dBm	1 MHz (note 3)
7,5 to 8,5	$\left\{ -37.5 - 10 \cdot \left(\frac{\Delta f}{MHz} - 7.5 \right) \right\} dB$	^с - 13 dВm	1 MHz (note 3)
8,5 to 12,5	- 47,5 dBc	-13 dBm	1 MHz (note 3)
NOTE 1: Af is the separation betwee	en the carrier frequency and the c	entre of the mea	suring filter.
NOTE 2: The first and last measure	ement position with a 30 kHz filter	i s at ∆f equals to	2,515 MHz and
3,485 MHz.			
NOTE 3: The first and last measurement position with a 1 MHz filter is at ∆f equals to 4 MHz and 12			
MHz. As a general rule, the resolution bandwidth of the measuring equipment should be			
equal to the measurement bandwidth. To improve measurement accuracy, sensitivity and			
efficiency, the resolution bandwidth can be different from the measurement bandwidth. When			
the resolution bandwidth is smaller than the measurement bandwidth, the result should be-			
integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.			
The lower limit shall be -48,5 dBm/3,84 MHz or which ever is higher.			

Table 5.9.2: Spectrum Emission Mask Requirement

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

5.10 Adjacent Channel Leakage Power Ratio (ACLR)

5.10.1 Definition and applicability

ACLR is the ratio of the RRC filtered mean power centred on the assigned channel frequency to the RRC filtered meanpower centred on an adjacent channel frequency.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.10.2 Minimum Requirements

If the adjacent channel RRC filtered mean power is greater than -50dBm then the ACLR shall be higher than the value-specified in table 5.10.1.

Power Class	UE channel	ACLR limit
3	+5 MHz or -5 MHz	33 dB
3	+10 MHz or -10 MHz	4 3 dB
4	+5 MHz or -5 MHz	33 dB
4	+10 MHz or 10 MHz	4 3 dB

Table 5.10.1: UE ACLR

NOTE 1: The requirement shall still be met in the presence of switching transients.

NOTE 2: The ACLR requirements reflect what can be achieved with present state of the art technology.

NOTE 3: Requirement on the UE shall be reconsidered when the state of the art technology progresses.

The normative reference for this requirement is TS 25.101 [1] clause 6.6.2.2.1.

5.10.3 Test purpose

To verify that the UE ACLR does not exceed prescribed limit shown in table 5.10.1.

Excess ACLR increases the interference to other channels or to other systems.

5.10.4 Method of test

5.10.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

1) Connect the SS to the UE antenna connector as shown in figure A.1.

2) A call is set up according to the Generic call setup procedure.

3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

5.10.4.2 Procedure

- 1) Set and send continuously Up power control commands to the UE until the UE output power shall be maximum level.
- 2) Measure the RRC filtered mean power.
- 3) Measure the RRC filtered mean power of the first adjacent channels and the second adjacent channels.
- 4) Calculate the ratio of the power between the values measured in '2)'and '3)'.

5.10.5 Test requirements

If the measured adjacent channel RRC filtered mean power, derived in step 3), is greater than -50,0 dBm then the measured ACLR, derived in step 4), shall be higher than the limit in table 5.10.2.

Power Class	UE channel	ACLR limit
3	+5 MHz or –5 MHz	32,2 dB
3	+10 MHz or -10 MHz	4 2,2 dB
4	+5 MHz or –5 MHz	32,2 dB
4	+10 MHz or 10 MHz	4 2,2 dB

Table 5.10.2: UE ACLR

NOTE 1: The requirement shall still be met in the presence of switching transients.

NOTE 2: The ACLR requirements reflect what can be achieved with present state of the art technology.

NOTE 3: Requirement on the UE shall be reconsidered when the state of the art technology progresses.

NOTE 4: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

5.11 Spurious Emissions

5.11.1 Definition and applicability

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emission, intermodulation products and frequency conversion products, but exclude out of band emissions.

The frequency boundary and the detailed transitions of the limits between the requirement for out band emissions and spectrum emissions are based on ITU R Recommendations SM.329.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.11.2 Minimum Requirements

These requirements are only applicable for frequencies, which are greater than 12.5 MHz away from the UE centrecarrier frequency.

Table 5.11.1a: General spurious emissions requirements

Frequency Bandwidth	Measurement Bandwidth	Minimum requirement
9 kHz ≤ f < 150 kHz	1 kHz	- 36 dBm
150 kHz ≤ f < 30 MHz	10 kHz	–36 dBm
30 MHz ≤ f < 1 000 MHz	100 kHz	–36 dBm
1 GHz ≤ f < 12,75 GHz	1 MHz	- 30 dBm

Operating Band	Frequency Bandwidth	Measurement Bandwidth	Minimum- requirement		
+	925 MHz <u>≤</u> <u>f</u> <u>≤</u> 935 MHz	100 kHz	-67 dBm (see note)		
	935 MHz < f ≤ 960 MHz	100 kHz	-79 dBm (see note)		
	1805 MHz ≤ f ≤ 1880 MHz	100 kHz	-71 dBm (see note)		
	1893.5 MHz <f<1919.6 del="" mhz<=""></f<1919.6>	300 kHz	-41 dBm		
H H	-	-	-		
#	925 MHz ≤ f ≤935 MHz	100 kHz	-67 dBm (see note)		
	935 MHz < f ≤ 960 MHz	100 kHz	-79 dBm (see note)		
2110 MHz ≤ f ≤ 2170 MHz 3.84 MHz -60 dBm (see note)					
NOTE: The measurements are made on frequencies which are integer multiples of 200 kHz. As-					
exceptions, up to five measurements with a level up to the applicable requirements					
defined in table 5.11.1a are permitted for each UARFCN used in the measurement					

Table 5.11.1b: Additional spurious emissions requirements

The normative reference for this requirement is TS 25.101 [23] clause 6.6.3.1.

5.11.3 Test purpose

To verify that the UE spurious emissions do not exceed described value shown in table 5.11.1a and table 5.11.1b.

Excess spurious emissions increase the interference to other systems.

5.11.4 Method of test

5.11.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

1) Connect the SS to the UE antenna connector as shown in figure A.8.

2) A call is set up according to the Generic call setup procedure.

3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

5.11.4.2 Procedure

- 1) Set and send continuously Up power control commands to the UE until the UE output power shall be maximum level.
- 2) Sweep the spectrum analyzer (or equivalent equipment) over a frequency range and measure the average powerof spurious emission.

5.11.5 Test requirements

The measured average power of spurious emission, derived in step 2), shall not exceed the described value in tables 5.11.2a and 5.11.2b.

These requirements are only applicable for frequencies, which are greater than 12,5 MHz away from the UE centrecarrier frequency.

Table 5.11.2a: General spurious emissions test requirements

Frequency Bandwidth	Measurement Bandwidth	Minimum requirement
9 kHz ≤ f < 150 kHz	1 kHz	- 36 dBm
150 kHz ≤ f < 30 MHz	10 kHz	–36 dBm
30 MHz ≤ f < 1 000 MHz	100 kHz	–36 dBm
1 GHz ≤ f < 12,75 GHz	1 MHz	- 30 dBm

Table 5.11.2b: Additiona	I spurious emission	s test requirements

Operating Band	Frequency Bandwidth	Measurement- Bandwidth	Minimum- requirement				
ŧ	925 MHz <u>≤</u> f <u></u> 	100 kHz	-67 dBm (see note)				
	935 MHz < f ≤ 960 MHz	100 kHz	-79 dBm (see note)				
	1805 MHz ≤ f ≤ 1880 MHz	100 kHz	-71 dBm (see note)				
	1893.5 MHz <f<1919.6 del="" mhz<=""></f<1919.6>	300 kHz	-41 dBm				
H H	-	-	-				
#	925 MHz ≤ f ≤935 MHz	100 kHz	-67 dBm (see note)				
	935 MHz < f ≤ 960 MHz	100 kHz	-79 dBm (see note)				
	2110 MHz ≤ f ≤ 2170 MHz 3.84 MHz -60 dBm (see note)						
NOTE: The measurements are made on frequencies which are integer multiples of 200 kHz. As							
exceptions, up to five measurements with a level up to the applicable requirements- defined in table 5.11.1a are permitted for each UARFCN used in the measurement							

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

5.12 Transmit Intermodulation

5.12.1 Definition and applicability

The transmit intermodulation performance is a measure of the capability of the transmitter to inhibit the generation of signals in its non linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna.

UE(s) transmitting in close vicinity of each other can produce intermodulation products, which can fall into the UE, or Node B receive band as an unwanted interfering signal. The UE transmit intermodulation attenuation is defined by the ratio of the RRC filtered mean power of the wanted signal to the RRC filtered mean power of the intermodulation product when an interfering CW signal is added at a level below the wanted signal.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.12.2 Minimum Requirements

The UE transmit intermodulation shall not exceed the described value in table 5.12.1.

Table 5.12.1: Transmit Intermodulation

CW Signal Frequency Offset from Transmitting Carrier	5MHz	10MHz
Interference CW Signal Level	- 40 dBc	
Intermodulation Product	- 31 dBc	-41 dBc

The normative reference for this requirement is TS 25.101 [1] clause 6.7.1.

5.12.3 Test purpose

To verify that the UE transmit intermodulation does not exceed the described value in table 5.12.1.

An excess transmit intermodulation increases transmission errors in the up link own channel when other transmitterexists nearby.

5.12.4 Method of test

5.12.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1) Connect the SS to the UE antenna connector as shown in figure A.2.

2) A call is set up according to the Generic call setup procedure.

3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

5.12.4.2 Procedure

1) Set and send continuously Up power control commands to the UE until the UE output power shall be maximumlevel.

2) Set the frequency of the CW generator to the offset 1 or offset 2 as shown in table 5.12.2.

3) Measure the RRC filtered mean power of the UE.

4) Search the intermodulation product signal, then measure the RRC filtered mean power of transmitting intermodulation, and calculate the ratio with the power measured in step 3).

5) Repeat the measurement with another tone offset.

5.12.5 Test requirements

The ratio derived in step 4), shall not exceed the described value in table 5.12.2.

Table 5.12.2: Transmit Intermodulation

CW Signal Frequency Offset from Transmitting Carrier	5MHz	10MHz
Interference CW Signal Level	-40 dBc	
Intermodulation Product	[-31 + TT] [-41 + TT] dBc dBc	

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

5.13 Transmit Modulation

5.13.1 Error Vector Magnitude (EVM)

5.13.1.1 Definition and applicability

The Error Vector Magnitude is a measure of the difference between the reference waveform and the measuredwaveform. This difference is called the error vector. Both waveforms pass through a matched Root Raised Cosine filterwith bandwidth 3,84 MHz and roll-off α =0,22. Both waveforms are then further modified by selecting the frequency, absolute phase, absolute amplitude and chip clock timing so as to minimise the error vector. The EVM result is definedas the square root of the ratio of the mean error vector power to the mean reference power expressed as a %. Themeasurement interval is one timeslot.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.13.1.2 Minimum Requirements

The EVM shall not exceed 17,5 % for the parameters specified in table 5.13.1.

Table 5.13.1: Parameters for EVM

Parameter	Level / Status	Unit
Output power	<u>≥ –20</u>	dBm
Operating conditions	Normal conditions	
Power control step size	4	dB

The normative reference for this requirement is TS 25.101 [1] clause 6.8.2.1.

5.13.1.3 Test purpose

To verify that the EVM does not exceed 17,5 % for the specified parameters in table 5.13.1.

An excess EVM increases transmission errors in the up link own channel.

5.13.1.4 Method of test

5.13.1.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH, vibration; see clauses G.2.1, G.2.2 and G.2.3.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

1) Connect the SS to the UE antenna connector as shown in figure A.1.

2) A call is set up according to the Generic call setup procedure.

3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

5.13.1.4.2 Procedure

- 1) Set and send continuously Up power control commands to the UE until the UE output power shall be maximum level.
- 2) Measure the EVM using Global In Channel Tx Test (annex B).
- 3) Set the power level of UE to 20dBm or send Down power control commands (1dB step size should be used.) to the UE until UE output power shall be 20dBm with ±1dB tolerance.
- 4) Repeat step 2).

5.13.1.5 Test requirements

The measured EVM, derived in step 2) and 4), shall not exceed 17,5 %. for parameters specified in table 5.13.1-Parameters for EVM.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

5.13.2 Peak code domain error

5.13.2.1 Definition and applicability

The Peak Code Domain Error is computed by projecting power of the error vector (as defined in clause 5.13.1.1) onto the code domain at a specific spreading factor. The Code Domain Error for every code in the domain is defined as the ratio of the mean power of the projection onto that code, to the mean power of the composite reference waveform expressed in dB. The Peak Code Domain Error is defined as the maximum value for the Code Domain Error for all codes. The measurement interval is one timeslot.

The requirements and this test apply only to the UE in which the multi code transmission is provided.

5.13.2.2 Minimum Requirements

The peak code domain error shall not exceed 15 dB at spreading factor 4 for the parameters specified in table 5.13.3. The requirements are defined using the UL reference measurement channel (768 kbps) specified in clause C.2.5.

Parameter	Level / Status	Unit
Output power	<u>≥ –20</u>	dBm
Operating conditions	Normal conditions	
Power control step size	4	dB

Table 5.13.3: Parameters for Peak code domain error

The normative reference for this requirement is TS 25.101 [1] clause 6.8.3.1.

5.13.2.3 Test purpose

To verify that the UE peak code domain error does not exceed 15 dB for the specified parameters in table 5.13.3.

An excess peak code domain error increases transmission errors in the up link own channel.

5.13.2.4 Method of test

5.13.2.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

1) Connect the SS to the UE antenna connector as shown in figure A.1.

- 2) A call is set up according to the Generic call setup procedure, and RF parameters are set up according to table 5.13.4.
- 3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

Table 5.13.4: Test parameters for Peak code domain error

Parameter	Level / Status	Unit
Operating conditions	Normal conditions	
Uplink signal	multi-code	
Information bit rate	2*384	kbps
Power control step size	4	dB

5.13.2.4.2 Procedure

- 1) Set and send continuously Up power control commands to the UE until the UE output power shall be maximum level.
- 2) Measure the Peak code Domain error using Global In-Channel Tx-Test (annex B).
- 3) Set the power level of UE to 20dBm or send Down power control commands (1dB step size should be used.) to the UE until UE output power shall be 20dBm with ±1dB tolerance.

4) Repeat step 2).

5.13.2.5 Test requirements

The measured Peak code domain error, derived in step 2) and 4), shall not exceed 14 dB.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4

6 Receiver Characteristics

6.1 General

Receiving performance test of the UE is implemented during communicating with the SS via air interface. The procedure is using normal call protocol until the UE is communicating on traffic channel basically. On the traffic channel, the UE provides special function for testing that is called Logical Test Interface and the UE is tested using this function (Refer to TS 34.109 [4])

Transmitting or receiving bit/symbol rate for test channel is shown in table 6.1.

Table 6.1: Bit / Symbol rate for Test Channel

Type of User- Information	User bit rate	DL DPCH symbol rate	UL DPCH bit rate	Remarks
12,2 kbps- reference- measurement- channel	12,2 kbps	30 ksps	60 kbps	Standard Test

Unless otherwise stated the receiver characteristics are specified at the antenna connector of the UE. For UE(s) with an integral antenna only, a reference antenna with a gain of 0 dBi is assumed. UE with an integral antenna may be taken into account by converting these power levels into field strength requirements, assuming a 0 dBi gain antenna. Receiver characteristics for UE(s) with multiple antennas/antenna connectors are FFS.

The UE antenna performance has a significant impact on system performance, and minimum requirements on the antenna efficiency are therefore intended to be included in future versions of the present document. It is recognised that different requirements and test methods are likely to be required for the different types of UE.

All the parameters in clause 6 are defined using the DL reference measurement channel (12,2 kbps) specified in clause C.3.1 and unless stated otherwise, with DL power control OFF.

The common RF test conditions of Rx Characteristics are defined in clause E.3.2, and each test conditions in this clause (clause 6) should refer clause E.3.2. Individual test conditions are defined in the paragraph of each test.

All Bit Error ratio (BER) measurements in clause 6 shall be performed according to the general rules for statistical testing in Annex F.6

6.2 Reference Sensitivity Level

6.2.1 Definition and applicability

The reference sensitivity level <REFSENS> is the minimum mean power received at the UE antenna port at which the Bit Error Ratio (BER) shall not exceed a specific value

The requirements and this test apply to all types of UTRA for the FDD UE.

6.2.2 Minimum Requirements

The BER shall not exceed 0,001 for the parameters specified in table 6.2.1.

Table 6.2.1: Test parameters for Reference Sensitivity Level

Operating Band	Unit	DPCH_Ec <refsens>-</refsens>	<refî<sub>or></refî<sub>	
ŧ	dBm/3.84 MHz	-117	-106.7	
#	dBm/3.84 MHz	-115	-104.7	
##	dBm/3.84 MHz	-114	-103.7	
1.For Power class 3 this shall be at the maximum output power 2.For Power class 4 this shall be at the maximum output power				

The normative reference for this requirement is TS 25.101 [23] clause 7.3.1.

6.2.3 Test purpose

To verify that the UE BER shall not exceed 0,001 for the parameters specified in table 6.2.1.

The lack of the reception sensitivity decreases the coverage area at the far side from Node B.

6.2.4 Method of test

6.2.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.3.
- 2) A call is set up according to the Generic call setup procedure, and RF parameters are set up according to table 6.2.2.
- 3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

6.2.4.2 Procedure

1) Set and send continuously Up power control commands to the UE until the UE output power shall be maximumlevel.

2) Measure the BER of DCH received from the UE at the SS.

6.2.5 Test requirements

The measured BER, derived in step 2), shall not exceed 0,001.

Operating Band	Unit	DPCH_Ec < REFSENS≻	<refî<sub>er></refî<sub>	
4	dBm/3.84 MHz	-116.3	-106	
#	dBm/3.84 MHz	-114.3	-10 4	
#	dBm/3.84 MHz	-113.3	-103	
3.For Power class 3 this shall be at the maximum output power 4.For Power class 4 this shall be at the maximum output power				

Table 6.2.2: Test parameters for Reference Sensitivity Level

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

6.3 Maximum Input Level

6.3.1 Definition and applicability

This is defined as the maximum mean power received at the UE antenna port, which shall not degrade the specified BER performance.

The requirements and this test apply to all types of UTRA for the FDD UE.

6.3.2 Minimum requirements

The BER shall not exceed 0.001 for the parameters specified in table 6.3.

The reference for this requirement is TS 25.101 [1] clause 7.4.1.

NOTE: Since the spreading factor is large (10log(SF)=21dB), the majority of the total input signal consists of the OCNS interference. The structure of OCNS signal is defined in clause E.3.3.

6.3.3 Test purpose

To verify that the UE BER shall not exceed 0,001 for the parameters specified in table 6.3.

The lack of the maximum input level decreases the coverage area at the near side from Node B.

6.3.4 Method of test

6.3.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.3.
- 2) RF parameters are set up according to table 6.3 and table E.3.3.
- 3) A call is set up according to the Generic call setup procedure specified in TS34.108[3] sub clause 7.3.2, with the following exception for information elements in RADIO BEARER SETUP message. With this exception, the Power Control Algorithm for the Uplink is set to algorithm 2.

4) Enter the UE into loopback test mode and start the loopback test.

Table 6.3A Contents of RADIO BEARER SETUP message: AM or UM

Information Element	Value/Remark
CHOICE channel requirement	Uplink DPCH info
	Algorithm2

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

Table 6.3: Test parameters for Maximum Input Level

Parameter	Level / Status	Unit
Î _{Of}	-25	dBm / 3,84MHz
$\frac{DPCH_E_c}{I_{or}}$	-19	d₽
UE transmitted mean power	20 (for Power class 3) 18 (for Power class 4)	dBm

6.3.4.2 Procedure

- Set the power level of UE according to the table 6.3 or send the power control commands (1dB step size should be used.) to the UE until UE output power measured by Test System shall be kept at the specified power level with ±1dB tolerance.
- 2) Measure the BER of DCH received from the UE at the SS.

6.3.5 Test requirements

The measured BER, derived in step 1), shall not exceed 0,001.

6.4 Adjacent Channel Selectivity (ACS)

6.4.1 Definition and applicability

Adjacent Channel Selectivity (ACS) is a measure of a receiver's ability to receive a W-CDMA signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

The requirements and this test apply to all types of UTRA for the FDD UE.

6.4.2 Minimum Requirements

For the UE of power class 3 and 4, the BER shall not exceed 0,001 for the parameters specified in table 6.4.1. This testcondition is equivalent to the ACS value 33 dB.

Parameter	Level / Status	Unit
DPCH_Ec	-103	dBm / 3,84 MHz
Î _{or}	-92,7	dBm / 3,84 MHz
l _{oac} mean power (modulated)	-52	dBm-
F _{uw} (offset)	-5 or +5	MHz
UE transmitted mean power	20 (for Power class 3)	dBm
	18 (for Power class 4)	

Table 6.4.1: Test parameters for Adjacent Channel Selectivity

The normative reference for this requirement is TS 25.101 [1] clause 7.5.1.

NOTE: The I_{oac} (modulated) signal consists of the common channels needed for tests as specified in table E.4.1and 16 dedicated data channels as specified in table E.3.6.

6.4.3 Test purpose

To verify that the UE BER does not exceed 0,001 for the test parameters specified in table 6.4.1.

The lack of the ACS decreases the coverage area when other transmitter exists in the adjacent channel.

6.4.4 Method of test

6.4.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.4.
- 2) RF parameters are set up according to table 6.4.2.
- 3) A call is set up according to the Generic call setup procedure specified in TS34.108[3] sub clause 7.3.2, with the following exception for information elements in RADIO BEARER SETUP message. With this exception, the Power Control Algorithm for the Uplink is set to algorithm 2.
- 4) Enter the UE into loopback test mode and start the loopback test.

Table 6.4.1A Contents of RADIO BEARER SETUP message: AM or UM

Information Element	Value/Remark
CHOICE channel requirement	Uplink DPCH info
	Algorithm2

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

6.4.4.2 Procedure

1) Set the parameters of the interference signal generator as shown in table 6.4.2.

- 2) Set the power level of UE according to the table 6.4.2 or send the power control commands (1dB step size should be used.) to the UE until UE output power measured by Test System shall be kept at the specified power-level with ±1dB tolerance.
- 3) Measure the BER of DCH received from the UE at the SS.

6.4.5 Test requirements

The measured BER, derived in step 1), shall not exceed 0,001.

Table 6.4.2: Test parameters for Adjacent Channel Selectivity

Parameter	Level / Status	Unit
DPCH_Ec	-103	dBm / 3,84 MHz
Î _{OF}	-92,7	dBm / 3,84 MHz
l _{oac} mean power (modulated)	-52	dBm
F _{uw} (offset)	-5 or +5	MHz
UE transmitted mean power	20 (for Power class 3)	dBm
	18 (for Power class 4)	

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

6.5 Blocking Characteristics

6.5.1 Definition and applicability

The blocking characteristic is a measure of the receiver's ability to receive a wanted signal at its assigned channelfrequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or theadjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occur.

The requirements in clause 6.5.2.1 and 6.5.2.2 and this test apply to all types of UTRA for the FDD UE.

The requirements in clause 6.5.2.3 and this test apply to the FDD UE supporting band II or band III.

6.5.2 Minimum Requirements

6.5.2.1 Minimum Requirements (In-band blocking)

The BER shall not exceed 0,001 for the parameters specified in table 6.5.1.

The normative reference for this requirement is TS 25.101 [23] clause 7.6.1.

NOTE: I_{blocking} (modulated) consists of the common channels needed for tests as specified in table E.4.1 and 16 dedicated data channels as specified in table E3.6.

Table 6.5.1: Test parameters for In-band blocking characteristics

Parameter	Unit	Level		
DPCH_Ec	dBm/3.84 MHz	<refsens>+3 dB</refsens>		
Î _{or}	dBm/3.84 MHz	≺REFÎ₀> + 3 dB		
l _{blocking} mean power- (modulated)	dBm	- 56 -44 (for F _{uw} offset ±10 MHz) (for F _{uw} offset ±15 MH		
UE transmitted mean power	dBm	20 (for Power class 3) 18 (for Power class 4)		

6.5.2.2 Minimum requirements (Out of-band blocking)

The BER shall not exceed 0.001 for the parameters specified in table 6.5.2. For table 6.5.2 up to 24 exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a 1 MHz step size.

The normative reference for this requirement is TS 25.101 [23] clause 7.6.2.

Parameter	Unit	Frequency range 1	Frequency range 2	Frequency range 3
DPCH_Ec	dBm/3.84- MHz	<refsens>+3 dB</refsens>	<refsens>+3 dB</refsens>	<refsens>+3 dB</refsens>
Î _{or}	dBm/3.84- MHz	< REFÎ₀₅> + 3 dB	<refî₀⊧> + 3 dB</refî₀⊧>	< REFÎ₀⊧> + 3 dB
Holocking (CW)	dBm	-44	-30	-15
F _{uw} (Band I- operation)	MHz	2050<f <2095<="" del=""> 2185<f <2230<="" del=""></f></f>	2025 <f <2050<="" del=""> 2230 <f <2255<="" del=""></f></f>	1 < f <2025 2255<f<12750< del=""></f<12750<>
F _{uw} (Band II operation)	MHz	1870<f <1915<="" del=""> 2005<f <2050<="" del=""></f></f>	1845 <f <1870<="" del=""> 2050 <f <2075<="" del=""></f></f>	1< f <1845 2075<f<12750< del=""></f<12750<>
F _{uw} (Band III- operation)	MHz	1745 <f <1790<="" del=""> 1895<f <1940<="" del=""></f></f>	1720 <f 1745<="" <="" del=""> 1940<f 1965<="" <="" del=""></f></f>	1< f <1720 1965<f<12750< del=""></f<12750<>
UE transmitted- mean power	dBm	20 (for Power class 3) 18 (for Power class 4)		
Band I operation	For 2095 <f<2110 2170<f<2185="" 6.4.2="" 6.5.2="" adjacent="" and="" applied.<="" appropriate="" be="" blocking="" channel="" clause="" in="" in-band="" mhz="" mhz,="" or="" selectivity="" shall="" td="" the=""></f<2110>			
Band II operation	For 1915 <f<1930 1990<f<2005="" and="" appropriate="" blocking="" in-band="" mhz="" mhz,="" or<br="" the="">adjacent channel selectivity in clause 6.5.2 and clause 6.4.2 shall be applied</f<1930>			
Band III operation	For 1790 <f<1805 1880<f<1895="" and="" appropriate="" blocking="" in-band="" mhz="" mhz,="" or<br="" the="">adjacent channel selectivity in clause 6.5.2 and clause 6.4.2 shall be applied.</f<1805>			

Table 6.5.2: Test parameters for Out of band blocking characteristics

6.5.2.3 Minimum requirements (Narrow band blocking)

The BER shall not exceed 0.001 for the parameters specified in table 6.5.3. This requirement is measure of a receiver's ability to receive a W CDMA signal at its assigned channel frequency in the presence of an unwanted narrow band-interferer at a frequency, which is less than the nominal channel spacing. The requirements and this test apply to UTRA-for the FDD UE supporting band II or band III.

The normative reference for this requirement is TS 25.101 [23] clause 7.6.3

Table 6.5.3: Test parameters for narrow band blocking

Parameter	Unit	Band II	Band III
DPCH_Ec	dBm/3.84 MHz	<refsens> + 10 dB</refsens>	<refsens> + 10 dB</refsens>
Î _{or}	dBm/3.84 MHz	<refî₀r> + 10 dB</refî₀r>	< REFÎ₀r> + 10 dB
I _{blocking} (GMSK)	dBm	-57	-56
F _{uw} (offset)	MHz	2.7	2.8
UE transmitted mean	dBm	20 (for Power class 3)	
power		18 (for Power class 4)	

NOTE: I_{blocking} (GMSK) is an interfering signal as defined in TS 45.004. It is a GMSK modulated carrier following the structure of the GSM signals, but with all modulating bits (including the midamble period) derived directly from a random or pseudo random data stream.

6.5.3 Test purpose

To verify that the UE BER does not exceed 0,001 for the parameters specified in table 6.5.1, table 6.5.2 and table 6.5.3. For table 6.5.2 up to (24) exceptions are allowed for spurious response frequencies in each assigned frequency channelwhen measured using a 1 MHz step size.

The lack of the blocking ability decreases the coverage area when other transmitter exists (except in the adjacent channels and spurious response).

6.5.4 Method of test

6.5.4.1 Initial conditions

For in band case:

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

For out of band case:

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequency to be tested: 1 arbitrary frequency chosen from the low, mid or high range; see clause G.2.4.

For narrow band case:

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.5.
- 2) RF parameters are set up according to table 6.5.4, table 6.5.5 and table 6.5.6.
- 3) A call is set up according to the Generic call setup procedure specified in TS34.108[3] sub clause 7.3.2, with the following exception for information elements in RADIO BEARER SETUP message. With this exception, the Power Control Algorithm for the Uplink is set to algorithm 2.

4) Enter the UE into loopback test mode and start the loopback test.

Table 6.5.3A Contents of RADIO BEARER SETUP message: AM or UM

Information Element	Value/Remark
CHOICE channel requirement	Uplink DPCH info
	Algorithm2

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

6.5.4.2 Procedure

- 1) Set the parameters of the CW generator or the interference signal generator as shown in table 6.5.4, 6.5.5 and table 6.5.6. For table 6.5.5, the frequency step size is 1 MHz.
- 2) Set the power level of UE according to the table 6.5.4, table 6.5.5, and table 6.5.6, or send the power control commands (1dB step size should be used.) to the UE until UE output power measured by Test System shall be kept at the specified power level with ±1dB tolerance.
- 3) Measure the BER of DCH received from the UE at the SS.
- 4) For table 6.5.5, record the frequencies for which BER exceed the test requirements.

6.5.5 Test requirements

For table 6.5.4, the measured BER, derived in step 2), shall not exceed 0.001. For table 6.5.5, the measured BER, derived in step 2) shall not exceed 0,001 except for the spurious response frequencies, recorded in step 3). The number of spurious response frequencies, recorded in step 3) shall not exceed 24. For table 6.5.6, the measured BER, derived in step 2), shall not exceed 0.001.

Parameter	Unit	Level		
DPCH_Ec	dBm/3.84 MHz	<refsens>+3 dB</refsens>		
Î _{or}	dBm/3.84 MHz	< REFÎ₀r> + 3 dB		
l _{blocking} mean power (modulated)	dBm	- 56 -44 (for F _{uw} offset ±10 MHz) (for F _{uw} offset ±15 MHz)		
UE transmitted mean power	dBm	20 (for Power class 3) 18 (for Power class 4)		

Table 6.5.4: Test parameters for In-band blocking characteristics

Table 6.5.5: Test parameters for Out of band blocking characteristics

Parameter	Unit	Frequency range 1	Frequency range 2	Frequency range 3
DPCH_Ec	dBm/3.84 MHz	<refsens>+3 dB</refsens>	<refsens>+3 dB</refsens>	<refsens>+3 dB</refsens>
Î _{or}	dBm/3.84 MHz	< REFÎ₀r> + 3 dB	< REFÎ₀ > + 3 dB	< REFÎ_{or}> + 3 dB
Holocking (CW)	dBm	-44	-30	-15
F _{uw} (Band I- operation)	MHz	2050<f <2095<="" del=""> 2185<f <2230<="" del=""></f></f>	2025 <f <2050<="" del=""> 2230 <f <2255<="" del=""></f></f>	1 < f <2025 2255<f<12750< del=""></f<12750<>
F _{uw} (Band II- operation)	MHz	1870<f <1915<="" del=""> 2005<f <2050<="" del=""></f></f>	1845 <f <1870<="" del=""> 2050 <f <2075<="" del=""></f></f>	1< f <1845 2075<f<12750< del=""></f<12750<>
F _{uw} (Band III- operation)	MHz	1745 <f <1790<="" del=""> 1895<f <1940<="" del=""></f></f>	1720 <f 1745<="" <="" del=""> 1940<f 1965<="" <="" del=""></f></f>	1< f <1720 1965<f<12750< del=""></f<12750<>
UE transmitted mean power	dBm 20 (for Power class 3) 18 (for Power class 4)			
Band I operation	For 2095 <f<2110 2170<f<2185="" and="" appropriate="" blocking="" in-band="" mhz="" mhz,="" or<br="" the="">adjacent channel selectivity in clause 6.5.2 and clause 6.4.2 shall be applied.</f<2110>			
Band II operation	For 1915 <f<1930 1990<f<2005="" and="" appropriate="" blocking="" in-band="" mhz="" mhz,="" or<br="" the="">adjacent channel selectivity in clause 6.5.2 and clause 6.4.2 shall be applied</f<1930>			
Band III operation	For 1790 <f<1805 1880<f<1895="" and="" appropriate="" band="" blocking="" in="" mhz="" mhz,="" or<br="" the="">adjacent channel selectivity in clause 6.5.2 and clause 6.4.2 shall be applied.</f<1805>			

Table 6.5.6: Test parameters for narrow band blocking

Parameter	Unit	Band II	Band III
DPCH_Ec	dBm/3.84 MHz	REFSENS> + 10 dB	REFSENS> + 10 dB
Î _{of}	dBm/3.84 MHz	<refî₀⊧> + 10 dB</refî₀⊧>	<refî₀r> + 10 dB</refî₀r>
I _{blocking} (GMSK)	dBm	-57	-56
F _{uw} (offset)	MHz	2.7	2.8
UE transmitted mean	dBm	20 (for Power class 3)	
power	UDIII	18 (for Power class 4)	

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

6.6 Spurious Response

6.6.1 Definition and applicability

Spurious response is a measure of the receiver's ability to receive a wanted signal on its assigned channel frequencywithout exceeding a given degradation due to the presence of an unwanted CW interfering signal at any other frequencyat which a response is obtained i.e. for which the out of band blocking limit is not met.

The requirements and this test apply to all types of UTRA for the FDD UE.

6.6.2 Minimum Requirements

The BER shall not exceed 0,001 for the parameters specified in table 6.6.1.

The normative reference for this requirement is TS 25.101 [23] clause 7.7.1.

Table 6.6.1: Test parameters for Spurious Response

Parameter	Level	Unit
DPCH_Ec	<refsens> +3 dB</refsens>	dBm / 3,84MHz
Î _{Of}	<refî₀r> +3 dB</refî₀r>	dBm / 3,84MHz
I _{blocking} (CW)	-44	dBm
Fuw	Spurious response frequencies	MHz
UE transmitted mean power-	20 (for Power class 3)	dBm
	18 (for Power class 4)	

6.6.3 Test purpose

To verify that the UE BER does not exceed 0,001 for the parameters specified in table 6.6.1.

The lack of the spurious response ability decreases the coverage area when other unwanted interfering signal exists at any other frequency.

6.6.4 Method of test

6.6.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequency to be tested: the same frequency as chosen in clause 6.5.4.1 for Blocking characteristics out of band case.

- 1) Connect the SS to the UE antenna connector as shown in figure A.6.
- 2) RF parameters are set up according to table 6.6.2.
- 3) A call is set up according to the Generic call setup procedure specified in TS 34.108 [3] sub clause 7.3.2, with the following exception for information elements in RADIO BEARER SETUP message. With this exception, the Power Control Algorithm for the Uplink is set to algorithm 2.
- 4) Enter the UE into loopback test mode and start the loopback test.

Table 6.6.1A Contents of RADIO BEARER SETUP message: AM or UM

Information Element	Value/Remark
CHOICE channel requirement	Uplink DPCH info
	Algorithm2

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

6.6.4.2 Procedure

- 1) Set the parameter of the CW generator as shown in table 6.6.2. The spurious response frequencies are determined in step 3) of clause 6.5.4.2.
- 2) Set the power level of UE according to the table 6.6.2 or send the power control commands (1dB step size should be used.) to the UE until UE output power measured by Test System shall be kept at the specified power-level with ±1dB tolerance.
- 3) Measure the BER of DCH received from the UE at the SS.

6.6.5 Test requirements

The measured BER, derived in step 2), shall not exceed 0,001.

Table 6.6.2: Test parameters for Spurious Response

Parameter	Level	Unit
DPCH_Ec	<refsens> +3 dB</refsens>	dBm / 3,84MHz
Î _{Of}	<refî₀⊧> +3 dB</refî₀⊧>	dBm / 3,84MHz
I _{blocking} (CW)	-44	dBm
Fuw	Spurious response frequencies	MHz
UE transmitted mean power-	20 (for Power class 3)	dBm
	18 (for Power class 4)	

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

6.7 Intermodulation Characteristics

6.7.1 Definition and applicability

Third and higher order mixing of the two interfering RF signals can produce an interfering signal in the band of the desired channel. Intermodulation response rejection is a measure of the capability of the receiver to receive a wanted-signal on its assigned channel frequency in the presence of two or more interfering signals which have a specific-frequency relationship to the wanted signal.

The requirements and this test apply to all types of UTRA for the FDD UE. The test parameters in tables 6.7.2 and 6.7.4 applies to the FDD UE supporting Band II and Band III.

6.7.2 Minimum Requirements

The BER shall not exceed 0,001 for the parameters specified in table 6.7.1 and in table 6.7.2.

The normative reference for this requirement is TS 25.101 [23] clause 7.8.1 and clause 7.8.2.

NOTE: I_{ouw2} (modulated) consists of the common channels needed for tests as specified in table E.4.1 and 16dedicated data channels as specified in table E.3.6.

Parameter	Le	vel	Unit
DPCH_Ec	<refse< td=""><td>IS> +3 dB</td><td>dBm / 3,84 MHz</td></refse<>	IS> +3 dB	dBm / 3,84 MHz
Î _{or}	<refî<sub>0</refî<sub>	,> +3 dB	dBm / 3,84 MHz
I _{ouw1-} (CW)	_	4 6	dBm
l _{ouw2} mean power_ (modulated)	_	4 6	dBm-
F _{uw1} (offset)	10	-10	MHz
F _{uw2} (offset)	20	-20	MHz
UE transmitted mean power	20 (for Pov	ver class 3)	dBm
	18 (for Pov	ver class 4)	

Table 6.7.1: Test parameters for Intermodulation Characteristics

Table 6.7.2: Test parameters for narrow band intermodulation characteristics

Parameter	Unit	Band II		Ba	nd III
DPCH_Ec	dBm/3.84 MHz	<refsens>+ 10 dB</refsens>		<refsens>+ 10 dB</refsens>	
Î _{or}	dBm/3.84 MHz	≺REFÎ_{or}>	<mark>⊷ + 10 dB</mark>	<mark>{≺REFÎ</mark> ₀	_• > +10 dB
I _{ouw1} (CW)	dBm	-4	14	-	4 3
I _{euw2} (GMSK)	dBm	-4	14	-	43
F _{uw1} (offset)	MHz	3.5	-3.5	3.6	-3.6
<mark>F_{uw2} (offset)</mark>	MHz	5.9	-5.9	6.0	-6.0
UE transmitted mean	dBm		20 (for Pov	ver class 3)	
power	UDIII	18 (for Pov		wer class 4)	

NOTE: I_{ouw2}(GMSK) is an interfering signal as defined in TS 45.004. It is a GMSK modulated carrier followingthe structure of the GSM signals, but with all modulating bits (including the midamble period) deriveddirectly from a random or pseudo random data stream.

6.7.3 Test purpose

To verify that the UE BER does not exceed 0,001 for the parameters specified in table 6.7.1 and in table 6.7.2.

The lack of the intermodulation response rejection ability decreases the coverage area when two or more interfering signals, which have a specific frequency relationship to the wanted signal, exist.

6.7.4 Method of test

6.7.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.7.
- 2) RF parameters are set up according to table 6.7.3 and table 6.7.4.
- 3) A call is set up according to the Generic call setup procedure specified in TS 34.108 [3] sub clause 7.3.2, with the following exception for information elements in RADIO BEARER SETUP message. With this exception, the Power Control Algorithm for the Uplink is set to algorithm 2.
- 4) Enter the UE into loopback test mode and start the loopback test.

Table 6.7.2A Contents of RADIO BEARER SETUP message: AM or UM

Information Element	Value/Remark
CHOICE channel requirement	Uplink DPCH info
	Algorithm2

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

6.7.4.2 Procedure

- 1) Set the parameters of the CW generator and interference signal generator as shown in table 6.7.3 and in table 6.7.4.
- 2) Set the power level of UE according to the tables 6.7.3, and table 6.7.4 or send the power control commands-(1dB step size should be used.) to the UE until UE output power measured by Test System shall be kept at the specified power level with ±1dB tolerance.
- 3) Measure the BER of DCH received from the UE at the SS.

6.7.5 Test requirements

The measured BER, derived in step 1), shall not exceed 0,001.

Table 6.7.3: Test parameters for Intermodulation Characteristics

Parameter	Le	vel	Unit
DPCH_Ec	<refsen< th=""><th>IS> +3 dB</th><th>dBm / 3.84 MHz</th></refsen<>	IS> +3 dB	dBm / 3.84 MHz
Î _{or}	≺REFÎ ₀r	> +3 dB	dBm / 3.84 MHz
↓ _{ouw1} (CW)		16	dBm
l _{ouw2} mean power (modulated)		16	dBm
<mark>F_{uw1} (offset)</mark>	10	-10	MHz
<mark>F_{uw2} (offset)</mark>	20	-20	MHz
UE transmitted mean power	20 (for Pov	ver class 3)	dBm
	18 (for Pov	ver class 4)	

Table 6.7.4: Test parameters for narrow band intermodulation characteristics

Parameter	Unit	Ban	d-II	Bar	Band III	
DPCH_Ec	DdBm/3.84 MHz	DdBm/3.84 MHz < REFSENS>+ 10 dB		<refsens>+ 10 dB</refsens>		
Î _{or}	DdBm/3.84 MHz	DdBm/3.84 MHz < REFÎ₀,> + 10 dB		[<refî₀,> +10 dB</refî₀,>		
I _{ouw1} (CW)	dBm	-4-	4		4 3	
I _{ouw2} (GMSK)	dBm	-4	4	_	43	
F _{uw1} (offset)	MHz	3.5	-3.5	3.6	-3.6	
F _{uw2} (offset)	MHz	5.9	-5.9	6.0	-6.0	
UE transmitted mean	dBm		20 (for Pov	ver class 3)		
power			18 (for Pov	ver class 4)		

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

6.8 Spurious Emissions

6.8.1 Definition and applicability

The spurious emissions power is the power of emissions generated or amplified in a receiver that appear at the UE antenna connector.

The requirements and this test apply to all types of UTRA for the FDD UE.

6.8.2 Minimum Requirements

The power of any narrow band CW spurious emission shall not exceed the maximum level specified in table 6.8.1 and table 6.8.2.

Frequency Band	Measurement Bandwidth	Maximum- level	Note
30 MHz ≤ f < 1 GHz	100 kHz	-57 dBm	
<u>1 GHz ≤ f ≤ 12,75 GHz</u>	1 MHz	-47 dBm	

Table 6.8.1: General receiver spurious emission requirements

Table 6.8.2: Additional receiver spurious emission requirements

Operating band	Frequency Band	Measurement Bandwidth	Maximum level	Note
ŧ	1 920 MHz ≤ f ≤ 1 980 MHz	3,84 MHz	-60 dBm	UE transmit band in URA_PCH, Cell_PCH and idle state
	2 110 MHz ≤ f ≤ 2 170 MHz	3,84 MHz	-60 dBm	UE receive band
#	1850 MHz ≤ f ≤ 1910 MHz	3.84 MHz	-60 dBm	UE transmit band in URA_PCH, Cell_PCH and idle state
	1930 MHz ≤ f ≤ 1990 MHz	3.84 MHz	-60 dBm	UE receive band
##	1710 MHz ≤ f ≤ 1785 MHz	3.84 MHz	-60 dBm	UE transmit band in URA_PCH, Cell_PCH and idle state
	1805 MHz ≤ f ≤ 1880 MHz	3.84 MHz	-60 dBm	UE receive band

The reference for this requirement is TS 25.101 [1] clause 7.9.1.

6.8.3 Test purpose

To verify that the UE spurious emission meets the specifications described in clause 6.8.2.

Excess spurious emissions increase the interference to other systems.

6.8.4 Method of test

6.8.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

- 1) Connect a spectrum analyzer (or other suitable test equipment) to the UE antenna connector as shown infigure A.8.
- 2) RF parameters are setup according to table E.3.2.2.
- 3) A call is set up according to the setup procedure specified in TS34.108 [3] sub clause 7.3.3, with the following exceptions for information elements in System Information Block type3.

Information Element	Value/Remark
- Cell selection and re-selection info	
CHOICE mode	FDD
Sintrasearch	0 dB
Sintersearch	0 dB
RAT List	This parameter is configurable
	0 dB
Maximum allowed UL TX power	Power level where Pcompensation=0

NOTE: The setup procedure (3) sets the UE into the CELL_FACH state. With this state and the SS level (2) it is ensured that UE continuously monitors the S CCPCH and no cell reselections are performed [see 3GPP TS 25.304, clauses 5.2.3.and 5.2.6]. No transmission of the UE will interfere the measurement.

6.8.4.2 Procedure

1) Sweep the spectrum analyzer (or equivalent equipment) over a frequency range and measure the average powerof spurious emission.

6.8.5 Test requirements

The all measured spurious emissions, derived in step 1), shall not exceed the maximum level specified in table 6.8.3 and table 6.8.4.

Table 6.8.3: General receiver spurious emission requirements

Frequency Band	Measurement	Maximum	Note
	Bandwidth	level	
30 MHz ≤ f < 1 GHz	100 kHz	-57 dBm	
1 GHz ≤ f ≤ 12,75 GHz	1 MHz	-47 dBm	

Table 6.8.4: Additional receiver spurious emission requirements

Operating Band	Frequency Band	Measurement Bandwidth	Maximum level	Note
ŧ	1 920 MHz ≤ f ≤ 1 980 MHz	3,84 MHz	-60 dBm	UE transmit band in URA_PCH, Cell_PCH and idle state
	2 110 MHz ≤ f ≤ 2 170 MHz	3,84 MHz	-60 dBm	UE receive band
#	1 850 MHz ≤ f ≤ 1910 MHz	3.84 MHz	-60 dBm	UE transmit band in- URA_PCH, Cell_PCH- and idle state
	1930 MHz ≤ f ≤ 1990 MHz	3.84 MHz	-60 dBm	UE receive band
#	1 710 MHz ≦ f ≤ 1785 MHz	3.84 MHz	-60 dBm	UE transmit band in URA_PCH, Cell_PCH and idle state
	1 805 MHz ≤ f ≤ 1880 MHz	3.84 MHz	-60 dBm	UE receive band

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7 Performance requirements

7.1 General

The performance requirements for the UE in this clause are specified for the measurement channels specified in annex C and table 7.1.1, the propagation conditions specified in clause 7.1.2 and the Down link Physical channels-specified in annex D. Unless stated otherwise, DL power control is OFF.

The method for Block Error Ratio (BLER) measurement is specified in 3GPP TS 34.109 [4].

Type of User Information	User bit rate	DL DPCH symbol rate	DL DPCH bit rate	TTI (ms)
12,2 kbps- reference- measurement-	12,2 kbps	30 ksps	60 kbps	20
channel 64/144/384 kbps reference measurement channel	64 kbps	120 ksps	240 kbps	20
144kbps- reference- measurement- channel	144 kbps	240 ksps	480 kbps	20
384 kbps- reference- measurement- channel	384 kbps	4 80 ksps	960 kbps	10

Table 7.1.1: Bit / Symbol rate for Test Channel

The common RF test conditions of Performance requirement are defined in clause E.3.3, and each test conditions in this clause (clause 7) should refer clause E.3.3. Individual test conditions are defined in the paragraph of each test.

All Block Error ratio (BLER) measurements in clause 7 shall be performed according to the general rules for statistical testing in Annex F.6

7.1.1 Measurement Configurations

In all measurements UE should transmit with maximum power while receiving signals from Node B. This is guaranteed by the measurement configurations defined in Annex C (i.e. if the DTCH DCH TFS consists of a single transport format, it is not blocked by the UE as stated in 3GPP TS 25.331). Chip Rate is specified to be 3,84 MHz.

It as assumed that fields inside DPCH have the same energy per PN chip. Also, if the power of S CCPCH is notspecified in the test parameter table, it should be set to zero. The power of OCNS should be adjusted that the powerratios ($E_e A_{or}$) of all specified forward channels add up to one.

Measurement configurations for different scenarios are shown in figure A.9, figure A.10 and figure A.11.

7.1.2 Definition of Additive White Gaussian Noise (AWGN) Interferer

The minimum bandwidth of the AWGN interferer shall be 1,5 times chip rate of the radio access mode (e.g. 5,76 MHzfor a chip rate of 3,84 Mcps). The flatness across this minimum bandwidth shall be less than $\pm 0,5$ dB and the peak to average ratio at a probability of 0,001 % shall exceed 10 dB.

7.2 Demodulation in Static Propagation conditions

7.2.1 Demodulation of Dedicated Channel (DCH)

7.2.1.1 Definition and applicability

The receive characteristic of the Dedicated Channel (DCH) in the static environment is determined by the Block Error Ratio (BLER). BLER is specified for each individual data rate of the DCH. DCH is mapped into the Dedicated Physical Channel (DPCH).

The UE shall be tested only according to the data rate, supported. The data rate corresponding requirements shall apply to the UE.

7.2.1.2 Minimum requirements

For the parameters specified in table 7.2.1.1 the average downlink <u>DPCH</u> $_{E_c}$ power ratio shall be below the specified I_{or} value for the BLER shown in table 7.2.1.2. These requirements are applicable for TFCS size 16.

Table 7.2.1.1: DCH parameters in static propagation conditions

Parameter	Test 1	Test 2	Test 3	Test 4	Unit
Phase reference	P-CPICH				
$\frac{\hat{I}_{or}}{I_{oc}}$	-1				dB
-I _{oc}	-60			dBm / 3,84 MHz	
Information Data Rate	12,2	64	144	384	kbps

Table 7.2.1.2: DCH requirements in static propagation conditions

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
4	–16,6 dB	40 ⁻²
2	–13,1 dB	10⁻¹
	–12,8 dB	10⁻²
3	- 9,9 dB	10⁻¹
	- 9,8 dB	10⁻²
4	- 5,6 dB	10⁻¹
	- 5,5 dB	10⁻²

The reference for this requirement is TS 25.101 [1] clause 8.2.3.1.

7.2.1.3 Test purpose

To verify the ability of the receiver to receive a predefined test signal, representing a static propagation channel for the wanted and for the co-channel signals from serving and adjacent cells, with a BLER not exceeding a specified value.

7.2.1.4 Method of test

7.2.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1. Connect the SS and an AWGN noise source to the UE antenna connector as shown in figure A.9.

2. Set up a call according to the Generic call setup procedure.

3. Set the test parameters for test 1 4 as specified in table 7.2.1.3.

4. Enter the UE into loopback test mode and start the loopback test.

7.2.1.4.2 Procedures

1. Measure BLER of DCH.

 I_{or}

7.2.1.5 Test requirements

For the parameters specified in table 7.2.1.3 the average downlink <u>DPCH</u> $_{E_c}$ power ratio shall be below the specified I_{or} value for the BLER shown in table 7.2.1.4. These requirements are applicable for TFCS size 16.

Table 7.2.1.3: DCH parameters in static propagation conditions

Parameter	Test 1	Test 2	Test 3	Test 4	Unit
Phase reference	P-CPICH				
$\frac{\hat{I}_{or}}{I_{oc}}$	_0,7				d₿
-I _{oc}	-60			dBm / 3,84 MHz	
Information Data Rate	12,2	64	144	384	kbps

Table 7.2.1.4: DCH requirements in static propagation conditions

Test Number	$DPCH _ E_c$	BLER
	I _{or}	
4	–16,5 dB	10⁻²
2	–13,0 dB	10⁻¹
	-12,7 dB	10⁻²
3	- 9,8 dB	10⁻¹
	- 9,7 dB	10⁻²
4	- 5,5 dB	10⁻¹
	- 5,4 dB	10 ⁻²

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7.3 Demodulation of DCH in Multi-path Fading Propagation conditions

7.3.1 Single Link Performance

7.3.1.1 Definition and applicability

The receive characteristics of the Dedicated Channel (DCH) in different multi-path fading environments are determinedby the Block Error Ratio (BLER) values. BLER is measured for the each of the individual data rate specified for the DPCH. DCH is mapped into in Dedicated Physical Channel (DPCH).

The UE shall be tested only according to the data rate, supported. The data rate corresponding requirements shall apply to the UE.

7.3.1.2 Minimum requirements

For the parameters specified in tables 7.3.1.1, 7.3.1.3, 7.3.1.5, 7.3.1.7 and 7.3.1.9 the average downlink <u>DPCH</u> $_{e}$ -

power ratio shall be below the specified value for the BLER shown in tables 7.3.1.2, 7.3.1.4, 7.3.1.6, 7.3.1.8 and 7.3.1.10. These requirements are applicable for TFCS size 16.

Table 7.3.1.1: DCH parameters in multi-path fading propagation conditions (Case 1)

Parameter	Test 1	Test 2	Test 3	Test 4	Unit
Phase reference	P-CPICH				
$\frac{\hat{I}_{or}}{I_{oc}}$	9			dB	
-I _{oc}	_60			dBm / 3,84 MHz	
Information Data Rate	12,2	64	144	384	kbps

Table 7.3.1.2: DCH requirements in multi-path fading propagation conditions (Case 1)

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
4	- 15,0 dB	10⁻²
2	- 13,9 dB	10⁻¹
	- 10,0 dB	10⁻²
3	- 10,6 dB	10⁻¹
	-6,8 dB	10⁻²
4	-6,3 dB	10⁻¹
	-2,2 dB	10⁻²

Table 7.3.1.3: DCH parameters in multi-path fading propagation conditions (Case 2)

Parameter	Test 5	Test 6	Test 7	Test 8	Unit
Phase reference	P-CPICH				
$\frac{\hat{I}_{or}}{I_{oc}}$	-3	-3	З	6	dB
-I _{oc}		_60			dBm / 3,84 MHz
Information Data Rate	12,2	64	1 44	384	kbps

Table 7.3.1.4: DCH requirements in multi-path fading propagation conditions (Case 2)

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
5	_7,7 dB	40 ⁻²
6	- 6,4 dB	10⁻¹
	-2,7 dB	10⁻²
7	- 8,1 dB	10 ⁻¹ 10 ⁻²
	_5,1 dB	10⁻²
8	-5,5 dB	4
	-3,2 dB	10⁻⁺ 10⁻²

Table 7.3.1.5: DCH parameters in multi-path fading propagation conditions (Case 3)

Parameter	Test 9	Test 10	Test 11	Test 12	Unit
Phase reference	P-CPICH				
\hat{H}_{or}/H_{oc}	_3	-3	ą	6	dB
-I _{oc}	-60			dBm / 3,84 MHz	
Information Data Rate	12,2	64	144	384	kbps

Test Number	$DPCH _E_c$	BLER
	I _{or}	
9	–11,8 dB	10⁻²
10	_8,1 dB	40 ⁻¹
	_7,4 dB	10⁻²
	- 6,8 dB	10 ⁻³
11	- 9,0 dB	10⁻¹
	- 8,5 dB	10⁻²
	- 8,0 dB	10 ⁻³
12	_5,9 dB	10⁻¹
	_5,1 dB	10⁻²
	_4,4 dB	10⁻³

Table 7.3.1.6: DCH requirements in multi-path fading propagation conditions (Case 3)

Table 7.3.1.7: DCH parameters in multi-path fading propagation conditions (Case 1) with S-CPICH

Parameter	Test 13	Test 14	Test 15	Test 16	Unit
Phase reference	S-CPICH				
$\frac{\hat{I}_{or}}{I_{oc}}$	9			d₽	
-I _{oc}	-60			dBm / 3,84 MHz	
Information Data Rate	12,2	64	144	384	kbps

Table 7.3.1.8: DCH requirements in multi-path fading propagation conditions (Case 1) with S-CPICH

Test Number	$DPCH _ E_c$	BLER
	I _{or}	
13	-15,0 dB	40 ⁻²
14	-13,9 dB	10⁻¹
	-10,0 dB	10⁻²
15	-10,6 dB	10⁻¹
	-6,8 dB	10⁻²
16	-6,3 dB	10⁻¹
	-2,2 dB	40 ⁻²

Table 7.3.1.9: DCH parameters in multi-path fading propagation conditions (Case 6)

Parameter	Test 17	Test 18	Test 19	Test 20	Unit
Phase reference	P-CPICH				
$\frac{\hat{I}_{or}}{I_{oc}}$	ሳ	ሳ	3	6	dB
-I _{oc}	-60			dBm / 3,84 MHz	
Information Data Rate	12,2	6 4	144	38 4	kbps

Table 7.3.1.10: DCH requirements in multi-path fading propagation conditions (Case 6)

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
17	-8,8 dB	10⁻²
	-5,1 dB	10⁻¹
18	-4,4 dB	10⁻²⁻
	-3,8 dB	10⁻³⁻
	-6,0 dB	10 ⁺⁺
19	-5,5 dB	10⁻²⁻
	-5,0 dB	10⁻³⁻
	-2,9 dB	10⁻¹⁻
20	-2,1 dB	10 ⁻²
	-1,4 dB	10⁻³⁻

The reference for this requirement is TS 25.101 [1] clause 8.3.1.1.

7.3.1.3 Test purpose

To verify the ability of the receiver to receive a predefined test signal, representing a multi-path fading propagationchannel for the wanted and for the co-channel signals from serving and adjacent cells, with a BLER not exceeding a specified value.

7.3.1.4 Method of test

7.3.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1. Connect the SS, multi-path fading simulator and an AWGN noise source to the UE antenna connector as shown in figure A.10.
- 2. Set up a call according to the Generic call setup procedure.
- 3. Set the test parameters for test 1 20 as specified table 7.3.1.11, table 7.3.1.13, table 7.3.1.15, table 7.3.1.17 and table 7.3.1.19.
- 4. Enter the UE into loopback test mode and start the loopback test.
- 5. Setup fading simulators as fading condition case 1, case 2, case 3 and case 6, which are described in table D.2.2.1.

7.3.1.4.2 Procedures

1. Measure BLER of DCH.

7.3.1.5 Test requirements

For the parameters specified in tables 7.3.1.11, 7.3.1.13, 7.3.1.15, 7.3.1.17 and 7.3.1.19 the average downlink $\underline{DPCH _ E_c}_{Power ratio shall be below the specified value for the BLER shown in tables 7.3.1.12, 7.3.1.14, 7.3.1.16, I_{or}$

7.3.1.18 and 7.3.1.20. These requirements are applicable for TFCS size 16.

Table 7.3.1.11: DCH parameters in multi-path fading propagation conditions (Case 1)

Parameter	Test 1	Test 2	Test 3	Test 4	Unit
Phase reference		P-C			
$\frac{\hat{I}_{or}}{I_{oc}}$		9,6			dB
-I _{oc}	_60			dBm / 3,84 MHz	
Information Data Rate	12,2	64	144	384	kbps

Table 7.3.1.12: DCH requirements in multi-path fading propagation conditions (Case 1)

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
4	- 14,9 dB	40 ⁻²
2	- 13,8 dB	10⁻¹
	- 9,9 dB	10⁻²
3	- 10,5 dB	10⁻¹
	-6,7 dB	10⁻²
4	-6,2 dB	10⁻¹
	_2,1 dB	10⁻²

Table 7.3.1.13: DCH parameters in multi-path fading propagation conditions (Case 2)

Parameter	Test 5	Test 6	Test 7	Test 8	Unit
Phase reference		P-CP			
$\frac{\hat{I}_{or}}{I_{oc}}$	-2,4	-2,4	3,6	6,6	dB
-I _{oc}	_60				dBm / 3,84 MHz
Information Data Rate	12,2	64	144	384	kbps

Table 7.3.1.14: DCH requirements in multi-path fading propagation conditions (Case 2)

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
5	_7,6 dB	10⁻²
6	- 6,3 dB	10⁻¹
	- 2,6 dB	10⁻²
7	- 8,0 dB	10⁻¹
	-5,0 dB	10⁻²
8	_5,4 dB	10⁻¹
	_3,1 dB	10⁻²

Table 7.3.1.15: DCH parameters in multi-path fading propagation conditions (Case 3)

Parameter	Test 9	Test 10	Test 11	Test 12	Unit
Phase reference					
$\frac{\hat{I}_{or}}{I_{oc}}$	-2,4	-2,4	3,6	6,6	d₿
-I _{oc}	-60				dBm / 3,84 MHz
Information Data Rate	12,2	64	144	384	kbps

Test Number	<u>DPCH $_E_c$</u>	BLER
	I _{or}	
Ð	-11,7 dB	10⁻²
10	-8,0 dB	10⁻¹
	-7,3 dB	10⁻²
	- 6,7 dB	10⁻³
11	- 8,9 dB	10⁻¹
	- 8,4 dB	10⁻²
	- 7,9 dB	10⁻³
12	-5,8 dB	10⁻¹
	_5,0 dB	10⁻² 10⁻³
	-4,3 dB	10 ⁻³

Table 7.3.1.16: DCH requirements in multi-path fading propagation conditions (Case 3)

Table 7.3.1.17: DCH parameters in multi-path fading propagation conditions (Case 1) with S-CPICH

Parameter	Test 13	Test 14	Test 15	Test 16	Unit
Phase reference		S-CI			
$\frac{\hat{I}_{or}}{I_{oc}}$	9,6				d₽
-I _{oc}	-60				dBm / 3,84 MHz
Information Data Rate	12,2	64	144	384	kbps

Table 7.3.1.18: DCH requirements in multi-path fading propagation conditions (Case 1) with S-CPICH

Test Number	$DPCH _ E_c$	BLER
	I _{or}	
13	-14,9 dB	10⁻²
14	-13,8 dB	10⁻¹
	-9,9 dB	10⁻²
15	-10,5 dB	10 ⁻¹
	-6,7 dB	10⁻²
16	-6,2 dB	10⁻¹
	-2,1 dB	40 ⁻²

Table 7.3.1.19: DCH parameters in multi-path fading propagation conditions (Case 6)

Parameter	Test 17	Test 18	Test 19	Test 20	Unit
Phase reference	P-CPICH				
$\frac{\hat{I}_{or}}{I_{oc}}$	-2,4	-2,4	3,6	6,6	dB
-I _{oc}	-60			dBm / 3,84 MHz	
Information Data Rate	12,2	6 4	1 44	38 4	kbps

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
17	-8,7 dB	10⁻²
	-5,0 dB	10⁻¹
18	-4,3 dB	10 ⁻²
	-3,7 dB	10 ⁻³
	-5,9 dB	10 ⁻¹
19	-5,4 dB	10⁻
	-4,9 dB	10 **
	-2,8 dB	10⁻¹⁻
20	-2,0 dB	10 ⁻² 10 ⁻³
	-1,3 dB	10⁻³⁻

Table 7.3.1.20: DCH requirements in multi-path fading propagation conditions (Case 6)

7.4 Demodulation of DCH in Moving Propagation conditions

7.4.1 Single Link Performance

7.4.1.1 Definition and applicability

The receive single link performance of the Dedicated Channel (DCH) in dynamic moving propagation conditions are determined by the Block Error Ratio (BLER) values. BLER is measured for the each of the individual data rate specified for the DPCH. DCH is mapped into Dedicated Physical Channel (DPCH).

The UE shall be tested only according to the data rate, supported. The data rate corresponding requirements shall apply to the UE.

7.4.1.2 Minimum requirements

For the parameters specified in table 7.4.1.1 the average downlink- DPCH _ E_c -power ratio shall be below the specified-

 I_{or}

value for the BLER shown in table 7.4.1.2.

Table 7.4.1.1: DCH parameters in moving propagation conditions

Parameter	Test 1	Test 2	Unit
Phase reference	P-CI		
$\frac{\hat{I}_{or}}{I_{oc}}$	_	4	dB
-I _{oc}	-4	30	dBm / 3,84 MHz
Information Data Rate	12,2	64	kbps

Table 7.4.1.2: DCH requirements in moving propagation conditions

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
4	–14,5 dB	10⁻²
2	–10,9 dB	10⁻²

The reference for this requirement is TS 25.101 [1] clause 8.4.1.1.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7.4.1.3 Test purpose

To verify the ability of the receiver to receive a predefined test signal, representing a moving propagation channel for the wanted and for the co-channel signals from serving and adjacent cells, with a BLER not exceeding a specified value.

7.4.1.4 Method of test

7.4.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1. Connect the SS and an AWGN noise source to the UE antenna connector as shown in figure A.10.

2. Set up a call according to the Generic call setup procedure.

3. Set the test parameters as specified in table 7.4.1.3.

4. Enter the UE into loopback test mode and start the loopback test.

5. Setup fading simulator as moving propagation condition, which is described in clause D.2.3.

7.4.1.4.2 Procedures

1. Measure BLER of DCH.

7.4.1.5 Test requirements

For the parameters specified in table 7.4.1.3 the average downlink- DPCH _E_c -power ratio shall be below the specified-

 I_{or}

value for the BLER shown in table 7.4.1.4.

Table 7.4.1.3: DCH parameters in moving propagation conditions

Parameter	Test 1	Test 2	Unit
Phase reference	P-CI	PICH	
$\frac{\hat{I}_{or}}{I_{oc}}$	-6	dB	
-I _{oc}	-4	30	dBm / 3,84 MHz
Information Data Rate	12,2	64	kbps

Table 7.4.1.4: DCH requirements in moving propagation conditions

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
4	- 14,4 dB	10⁻²
2	- 10,8 dB	10⁻²

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7.5 Demodulation of DCH in Birth-Death Propagation conditions

7.5.1 Single Link Performance

7.5.1.1 Definition and applicability

The receive single link performance of the Dedicated Channel (DCH) in dynamic birth death propagation conditions are determined by the Block Error Ratio (BLER) values. BLER is measured for the each of the individual data rate specified for the DPCH. DCH is mapped into Dedicated Physical Channel (DPCH).

The UE shall be tested only according to the data rate, supported. The data rate corresponding requirements shall apply to the UE.

7.5.1.2 Minimum requirements

For the parameters specified in table 7.5.1.1 the average downlink- DPCH _ E_c -power ratio shall be below the specified-

value for the BLER shown in table 7.5.1.2.

Table 7.5.1.1: DCH parameters in birth-death propagation conditions

Parameter	Test 1	Test 2	Unit
Phase reference	P-CF	PICH	
\hat{I}_{or}/I_{oc}		1	dB
-I _{oc}	-€	90	dBm / 3,84 MHz
Information Data Rate	12,2	6 4	kbps

Table 7.5.1.2: DCH requirements in birth-death propagation conditions

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
4	–12,6 dB	10⁻²
2	-8,7 dB	10⁻²

The reference for this requirement is TS 25.101 [1] clause 8.5.1.1.

7.5.1.3 Test purpose

To verify the ability of the receiver to receive a predefined test signal, representing a birth death propagation channelfor the wanted and for the co-channel signals from serving and adjacent cells, with a BLER not exceeding a specifiedvalue.

7.5.1.4 Method of test

7.5.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1. Connect the SS and an AWGN noise source to the UE antenna connector as shown in figure A.10.

2. Set up a call according to the Generic call setup procedure.

3. Set the test parameters as specified in table 7.5.1.3.

4. Enter the UE into loopback test mode and start the loopback test.

5. Setup fading simulator as birth death propagation condition, which is described in clause D.2.4.

7.5.1.4.2 Procedures

1. Measure BLER of DCH.

7.5.1.5 Test requirements

For the parameters specified in table 7.5.1.3 the average downlink- DPCH _ E_c - power ratio shall be below the specified-I

value for the BLER shown in table 7.5.1.4.

Table 7.5.1.3: DCH parameters in birth-death propagation conditions

Parameter	Test 1	Test 2	Unit
Phase reference	P-CF	PICH	
\hat{I}_{or}/I_{oc}	ዋ	,4	dB
-I _{oc}	-)0	dBm / 3,84 MHz
Information Data Rate	12,2	64	kbps

Table 7.5.1.4: DCH requirements in birth-death propagation conditions

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
4	–12,5 dB	10⁻²
2	-8,6 dB	10⁻²

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7.6 Demodulation of DCH in downlink Transmit diversity modes

7.6.1 Demodulation of DCH in open-loop transmit diversity mode

7.6.1.1 Definition and applicability

The receive characteristic of the Dedicated Channel (DCH) in open loop transmit diversity mode is determined by the Block Error Ratio (BLER). DCH is mapped into in Dedicated Physical Channel (DPCH).

The requirements and this test apply to all types of UTRA for the FDD UE.

7.6.1.2 Minimum requirements

For the parameters specified in table 7.6.1.1 the average downlink	DPCH _ E_ power ratio shall be below the specified
	I _{or}

value for the BLER shown in table 7.6.1.2.

Table 7.6.1.1: Test parameters for DCH reception in a open-loop transmit diversity scheme (Propagation condition: Case 1)

Parameter	Test 1	Unit
Phase reference	P-CPICH	
$\frac{\hat{I}_{or}}{I_{oc}}$	9	dB
- H _{oc}	-60	dBm / 3,84 MHz
Information data rate	12,2	kbps

Table 7.6.1.2: Test requirements for DCH reception in open-loop transmit diversity scheme

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
	(antenna 1/2)	
4	–16,8 dB	10⁻²

The reference for this requirement is TS 25.101 [1] clause 8.6.1.1.

7.6.1.3 Test purpose

To verify that UE reliably demodulates the DPCH of the Node B while open loop transmit diversity is enabled during the connection.

7.6.1.4 Method of test

7.6.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect SS, multi-path fading simulators and an AWGN source to the UE antenna connector as shown infigure A.12.
- 2) Set up a call according to the Generic call setup procedure specified in TS 34.108 [3] clause 7.3.2, with the exceptions for information elements listed in table 7.6.1.3. With these exceptions, open loop transmit diversity mode is activated.
- 3) RF parameters are set up according to table 7.6.1.4 and table E 3.4.
- 4) Enter the UE into loopback test mode and start the loopback test.
- 5) Set up fading simulators as fading condition case 1, which is described in table D.2.2.1.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

Table 7.6.1.3: Specific Message Contents for open-loop transmit diversity mode

SYSTEM INFORMATION BLOCK TYPE5

Information Element	Value/remark
PRACH system information list	
- AICH info	
- STTD Indicator	TRUE
Secondary CCPCH system information	
- PICH info	
- STTD Indicator	TRUE
- Secondary CCPCH info	
- STTD Indicator	TRUE
Primary CCPCH info	
- CHOICE mode	FDD
TX Diversity indicator	TRUE

RRC CONNECTION SETUP

Information Element	Value/remark
Downlink information common for all radio links	
CHOICE mode	FDD
- TX Diversity Mode	STTD,
Downlink DPCH info for each RL	
- CHOICE mode	FDD
- Downlink DPCH info for each RL	
 Closed loop timing adjustment mode 	4

RADIO BEARER SETUP

Information Element	Value/remark
Downlink information common for all radio links	
- Choice mode	FDD
- TX Diversity Mode	STTD
Downlink DPCH info for each RL	
- CHOICE mode	FDD
- Downlink DPCH info for each RL	
 Closed loop timing adjustment mode 	4

7.6.1.4.2 Procedure

1) Measure BLER in points specified in table 7.6.1.5.

7.6.1.5 Test Requirements

For the parameters specified in table 7.6.1.4 the average downlink <u>DPCH $_{E_c}$ power ratio shall be below the specified</u> I_{or}

value for the BLER shown in table 7.6.1.5.

Table 7.6.1.4: Test parameters for DCH reception in a open-loop transmit diversity scheme (Propagation condition: Case 1)

Parameter	Test 1	Unit
Phase reference	P-CPICH	
$\frac{\hat{I}_{or}}{I_{oc}}$	9,8	dB
-I _{oc}	-60	dBm / 3,84 MHz
Information data rate	12,2	kbps

Table 7.6.1.5: Test requirements for DCH reception in open-loop transmit diversity scheme

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
	(antenna 1/2)	
4	–16,7 dB	10⁻²

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7.6.2 Demodulation of DCH in closed loop transmit diversity mode

7.6.2.1 Definition and applicability

The receive characteristic of the dedicated channel (DCH) in closed loop transmit diversity mode is determined by the Block Error Ratio (BLER). DCH is mapped into in Dedicated Physical Channel (DPCH).

The requirements and this test apply to all types of UTRA for the FDD UE.

7.6.2.2 Minimum requirements

For the parameters specified in table 7.6.2.1 the average downlink- DPCH _E_ - power ratio shall be below the specified-

Ι

value for the BLER shown in table 7.6.2.2.

Table 7.6.2.1: Test Parameters for DCH Reception in closed loop transmit diversity mode (Propagation condition: Case 1)

Parameter	Test 1 (Mode 1)	Test 2 (Mode 2)	Unit
$\frac{\hat{I}_{or}}{I_{oc}}$	8	9	d₿
-I _{oc}	-60	-60	dBm / 3,84 MHz
Information data rate	12,2	12,2	kbps
Feedback error ratio	4	4	%
Closed loop timing adjustment- mode	4	4	-

Table 7.6.2.2: Test requirements for DCH reception in closed loop transmit diversity mode

Test Number $DPCH _ E_c$ (see note) I_{or}		BLER
4	–18,0 dB	10⁻²
2 -18,3 dB		10⁻²
NOTE: This is the total power from both antennas. Power- sharing between antennas are closed loop mode- dependent as specified in TS 25.214 [5].		

The reference for this requirement is TS 25.101 [1] clause 8.6.2.1.

7.6.2.3 Test purpose

To verify that UE reliably demodulates the DPCH of the Node B while closed loop transmit diversity is enabled during the connection.

7.6.2.4 Method of test

7.6.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect SS, multi-path fading simulators and an AWGN source to the UE antenna connector as shown infigure A.12.
- 2) Set up a call according to the Generic call setup procedure specified in TS 34.108 [3] clause 7.3.2, with the exceptions for information elements listed in table 7.6.2.3. With these exceptions, closed loop transmit diversity-mode is activated.
- 3) RF parameters are set up according to table 7.6.2.1 and table E 3.5.
- 4) Enter the UE into loopback test mode and start the loopback test.
- 5) Set up fading simulators as fading condition case 1, which is described in table D.2.2.1.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

Table 7.6.2.3: Specific Message Contents for closed loop transmit diversity mode

SYSTEM INFORMATION BLOCK TYPE5

Information Element	Value/remark
PRACH system information list	
- AICH info	
- STTD Indicator	TRUE
Secondary CCPCH system information	
- PICH info	
- STTD Indicator	TRUE
- Secondary CCPCH info	
- STTD Indicator	TRUE
Primary CCPCH info	
- CHOICE mode	FDD
- TX Diversity indicator	TRUE

RRC CONNECTION SETUP for Closed loop mode1

Information Element	Value/remark
Downlink information common for all radio links	
- CHOICE mode	FDD
- TX Diversity Mode	Closed loop mode1
Downlink DPCH info for each RL	
- CHOICE mode	FDD
- Downlink DPCH info for each RL	
 Closed loop timing adjustment mode 	4

RRC CONNECTION SETUP for Closed loop mode2

Information Element	Value/remark
Downlink information common for all radio links	
- CHOICE mode	FDD
- TX Diversity Mode	Closed loop mode2
Downlink DPCH info for each RL	
- CHOICE mode	FDD
- Downlink DPCH info for each RL	
 Closed loop timing adjustment mode 	4

RADIO BEARER SETUP for Closed loop mode1

Information Element	Value/remark
Downlink information common for all radio links	
- Choice mode	FDD
- TX Diversity Mode	Closed loop mode1
Downlink DPCH info for each RL	
	FDD
- Downlink DPCH info for each RL	
 Closed loop timing adjustment mode 	4

RADIO BEARER SETUP for Closed loop mode2

Information Element	Value/remark
Downlink information common for all radio links	
- Choice mode	FDD
- TX Diversity Mode	Closed loop mode2
Downlink DPCH info for each RL	
- CHOICE mode	FDD
- Downlink DPCH info for each RL	
 Closed loop timing adjustment mode 	4

7.6.2.4.2 Procedure

1) Measure BLER in points specified in table 7.6.2.2.

7.6.2.5 Test Requirements

For the parameters specified in table 7.6.2.4 the average downlink- DPCH _ E_c - power ratio shall be below the specified-

 I_{or}

value for the BLER shown in table 7.6.2.5.

Table 7.6.2.4: Test Parameters for DCH Reception in closed loop transmit diversity mode (Propagation condition: Case 1)

Parameter	Test 1 (Mode 1)	Test 2 (Mode 2)	Unit
$\frac{\hat{H}_{or}}{I_{oc}}$	9,8	9,8	dB
-I _{oc}	-60	-60	dBm / 3,84 MHz
Information data rate	12,2	12,2	kbps
Feedback error ratio	4	4	%
Closed loop timing adjustment	4	4	-
mode			

Table 7.6.2.5: Test requirements for DCH reception in closed loop transmit diversity mode

Test Number	$\frac{DPCH _E_c}{I_{or}} (\text{see note})$	BLER
1	-17,9 dB	10⁻²
2	–18,2 dB	10⁻²
NOTE: This is the total power from both antennas. Power- sharing between antennas are closed loop mode- dependent as specified in TS 25.214 [5].		

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7.6.3 Demodulation of DCH in Site Selection Diversity Transmission Power Control mode

7.6.3.1 Definition and applicability

The bit error characteristics of UE receiver is determined in Site Selection Diversity Transmission Power Control (SSDT) mode. Two Node B emulators are required for this performance test. The delay profiles of signals received from different base stations are assumed to be the same but time shifted by 10 chip periods.

The requirements and this test apply to all types of UTRA for the FDD UE.

7.6.3.2 Minimum requirements

The downlink physical channels and their relative power to Ior are the same as those specified in clause E.3.3irrespective of Node Bs and the test cases. DPCH_Ec/Ior value applies whenever DPDCH in the cell is transmitted. In-Test 1 and Test 3, the received powers at UE from two Node Bs are the same, while 3dB offset is given to one that comes from one of Node Bs for Test 2 and Test 4 as specified in table 7.6.3.1.

For the parameters specified in table 7.6.3.1 the average downlink <u>DPCH</u> $_{E_c}$ power ratio shall be below the specified I_{or}

value for the BLER shown in table 7.6.3.2.

Table 7.6.3.1: DCH parameters in multi-path propagation conditions during SSDT mode (Propagation condition: Case 1)

Parameter	Test 1	Test 2	Test 3	Test 4	Unit
Phase reference		P-CI	PICH	•	
\hat{H}_{or1}/H_{oc}	θ	-3	θ	θ	dB
$\frac{\hat{I}_{or2}}{I_{oc}}$	θ	θ	θ	-3	dB
I _{oc}	-60			dBm / 3,84 MHz	
Information Data Rate	12,2	12,2	12,2	12,2	kbps
Cell ID code word error ratio- in uplink (note)	4	4	4	4	%
Number of FBI bits assigned to "S" Field	4	4	2	2	
Code word Set	Long	Long	Short	Short	
UL DPCCH slot Format	# 2		#	5	

NUTE: The code word errors are introduced independently in both uplink channels.

Table 7.6.3.2: DCH requirements in multi-path propagation conditions during SSDT Mode

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
4	- 7,5 dB	10⁻²
2	6,5 dB	10⁻²
3	–10,5 dB	10⁻²
4	-9,2 dB	40 ⁻²

The reference for this requirement is TS 25.101 [1] clause 8.6.3.1.

7.6.3.3 Test purpose

To verify that UE reliably demodulates the DPCH of the selected Node B while site selection diversity is enabled during soft handover.

7.6.3.4 Method of test

7.6.3.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect two SS's, multi-path fading simulators and an AWGN source to the UE antenna connector as shown infigure A.11.
- 2) Activate one of two cells (Cell 1).
- 3) Set up a call according to the Generic call setup procedure specified in TS 34.108 [3] clause 7.3.2, with the exceptions for information elements listed in table 7.6.3.3A. With these exceptions, necessary information for SSDT mode is sent to the UE.
- 4) Activate the other cell (Cell 2) on the other SS.
- 5) RF parameters are set up according to table 7.6.3.4 and table 7.6.3.5
- 6) After receiving MEASUREMENT REPORT message from the UE, send the ACTIVESET UPDATE message from Cell 1 to the UE in order to activate SSDT mode. Contents of the message is specified in table 7.6.3.3B
- 7) Enter the UE into loopback test mode and start the loopback test.
- 8) Set up fading simulators as fading condition case 1, which is described in table D.2.2.1.

Table 7.6.3.3A: Specific Message Contents for SSDT mode

RRC CONNECTION SETUP for Test 1 and Test 2

Information Element	Value/remark
Downlink information common for all radio links	
- CHOICE mode	FDD
- SSDT information	
- S field	4
- Code Word Set	long
Downlink DPCH info for each RL	
- CHOICE mode	FDD
- Downlink DPCH info for each RL	
- SSDT Cell Identity	a

RRC CONNECTION SETUP for Test 3 and Test 4

Information Element	Value/remark
Downlink information common for all radio links	
- CHOICE mode	FDD
- SSDT information	
- S field	2
- Code Word Set	short
Downlink DPCH info for each RL	
- CHOICE mode	FDD
- Downlink DPCH info for each RL	
- SSDT Cell Identity	a

RADIO BEARER SETUP for Test 1 and Test 2

Information Element	Value/remark
Downlink information common for all radio links	
- CHOICE mode	FDD
- SSDT information	
- S field	4
- Code Word Set	long
Downlink DPCH info for each RL	
- CHOICE mode	FDD
- Downlink DPCH info for each RL	
- SSDT Cell Identity	a

RADIO BEARER SETUP for Test 3 and Test 4

Information Element	Value/remark
Downlink information common for all radio links	
- CHOICE mode	FDD
- SSDT information	
- S field	2
- Code Word Set	short
Downlink DPCH info for each RL	
- CHOICE mode	FDD
- Downlink DPCH info for each RL	
- SSDT Cell Identity	a

Table 7.6.3.3B: Message Contents of ACTIVESET UPDATE message

ACTIVESET UPDATE for Test 1 and Test 2

Information Element/Group name	Value/Remark
Message Type (10.2.17)	
UE information elements	
- RRC transaction identifier	θ
- Integrity check info	Not Present
- Activation time	"now".
- New U-RNTI	Not Present
CN information elements	
- CN Information info	Not Present
Phy CH information elements	
Uplink radio resources	
- Maximum allowed UL TX power	33 dBm
Downlink radio resources	
- Radio link addition information	4
 Radio link addition information 	
- Primary CPICH info	Same as defined in Cell2
 Downlink DPCH info for each RL 	
- CHOICE mode	FDD
 Primary CPICH usage for channel estimation 	Primary CPICH may be used
- DPCH frame offset	This should be refriected by the IE" Cell synchronisation
	information" in received MEASUREMENT REPORT
	message
- Secondary CPICH info	Not Present
- DL channelisation code	
 Secondary scrambling code 	Not Present
 Spreading factor 	128
- Code number	θ
- Scrambling code change	No code change
- TPC combination index	θ
- SSDT Cell Identity	b
- Closed loop timing adjustment mode	Not Present
- TFCI combining indicator	FALSE
- SCCPCH Information for FACH	Not Present
- Radio link removal information	Not Present
- TX Diversity Mode	None
- SSDT information	
- S field	4
- Code Word Set	long

ACTIVESET UPDATE for Test 3 and Test 4

Information Element/Group name	Value/Remark
Message Type (10.2.17)	
UE information elements	
- RRC transaction identifier	θ
- Integrity check info	Not Present
- Activation time	"now".
- New U-RNTI	Not Present
CN information elements	
- CN Information info	Not Present
Phy CH information elements	
Uplink radio resources	
- Maximum allowed UL TX power	33 dBm
Downlink radio resources	
- Radio link addition information	4
 Radio link addition information 	
- Primary CPICH info	Same as defined in Cell2
- Downlink DPCH info for each RL	
- CHOICE mode	FDD
 Primary CPICH usage for channel estimation 	Primary CPICH may be used
- DPCH frame offset	This should be refriected by the IE" Cell synchronisation
	information" in received MEASUREMENT REPORT
	message
- Secondary CPICH info	Not Present
- DL channelisation code	
- Secondary scrambling code	Not Present
- Spreading factor	128
- Code number	θ
- Scrambling code change	No code change
- TPC combination index	θ
- SSDT Cell Identity	b .
- Closed loop timing adjustment mode	Not Present
- TFCI combining indicator	FALSE
- SCCPCH Information for FACH	Not Present
- Radio link removal information	Not Present
- TX Diversity Mode	None
- SSDT information	
- S field	2 short
- Code Word Set	short

7.6.3.4.2 Procedure

Measure BLER in points specified in table 7.6.3.4.

7.6.3.5 Test Requirements

For the parameters specified in table 7.6.3.4 the average downlink <u>DPCH</u> <u>E</u> power ratio shall be below the specified

 I_{or}

value for the BLER shown in table 7.6.3.5.

Table 7.6.3.4: DCH parameters in multi-path propagation conditions during SSDT mode (Propagation condition: Case 1)

Parameter	Test 1	Test 2	Test 3	Test 4	Unit
Phase reference		P-C	PICH	•	
\hat{I}_{or1}/I_{oc}	0,8	-2,2	0,8	0,8	dB
\hat{I}_{or2}/I_{oc}	0,8	0,8	0,8	-2,2	dB
-I _{oc}			60		dBm / 3,84 MHz
Information Data Rate	12,2	12,2	12,2	12,2	kbps
Cell ID code word error ratio- in uplink (note)	4	4	4	4	%
Number of FBI bits assigned to "S" Field	1	4	2	2	
Code word Set	Long	Long	Short	Short Short	
UL DPCCH slot Format	#2 #5				
NOTE: The code word errors are introduced independently in both uplink channels.					

Table 7.6.3.5: DCH requirements in multi-path propagation conditions during SSDT mode

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
4	_7,4 dB	10⁻²
2	- 6,4 dB	10⁻²
3	- 10,4 dB	10⁻²
4	- 9,1 dB	40 ⁻²

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7.7 Demodulation in Handover conditions

7.7.1 Demodulation of DCH in Inter-Cell Soft Handover

7.7.1.1 Definition and applicability

The bit error ratio characteristics of UE is determined during an inter cell soft handover. During the soft handover a UE receives signals from different Base Stations. A UE has to be able to demodulate two P CCPCH channels and to combine the energy of DCH channels. Delay profiles of signals received from different Base Stations are assumed to be the same but time shifted by 10 chips.

The receive characteristics of the different channels during inter cell handover are determined by the Block Error Ratio-(BLER) values.

The UE shall be tested only according to the data rate, supported. The data rate corresponding requirements shall apply to the UE.

7.7.1.2 Minimum requirements

For the parameters specified in table 7.7.1.1 the average downlink- DPCH _E_c -power ratio shall be below the specified-

 I_{or}

value for the BLER shown in table 7.7.1.2.

Table 7.7.1.1: DCH parameters in multi-path propagation conditions during Soft Handoff (Case 3)

Parameter	Test 1	Test 2	Test 3	Test 4	Unit
Phase reference	P-CPICH				
\hat{I}_{or1}/I_{oc} and \hat{I}_{or2}/I_{oc}	θ	θ	æ	6	dB
-H _{oc}	-60			dBm / 3,84 MHz	
Information Data Rate	12,2	64	144	384	kbps

Table 7.7.1.2: DCH requirements in multi-path propagation conditions during Soft Handoff (Case 3)

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
4	–15,2 dB	40 ⁻²
2	–11,8 dB	10⁻¹
	–11,3 dB	10⁻²
3	- 9,6 dB	10⁻¹
	- 9,2 dB	10⁻²
4	- 6,0 dB	10⁻¹
	- 5,5 dB	10⁻²

The reference for this requirement is TS 25.101 [1] clause 8.7.1.1.

7.7.1.3 Test purpose

To verify that the BLER does not exceed the value at the DPCH_Ec/Ior specified in table 7.7.1.2.

7.7.1.4 Method of test

7.7.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

[TBD]

7.7.1.4.2 Procedures

- 1) Connect the SS, multi-path fading simulator and an AWGN noise source to the UE antenna connector as shownin figure A.11.
- 2) Set up the call.
- 3) Set the test parameters for test 1 4 as specified in table 7.7.1.3.
- 4) Count, at the SS, the number of information blocks transmitted and the number of correctly received information blocks at the UE.
- 5) Measure BLER of DCH channel.

7.7.1.5 Test requirements

For the parameters specified in table 7.7.1.3 the average downlink- DPCH _E, power ratio shall be below the specified-

I

value for the BLER shown in table 7.7.1.4.

Table 7	.7.1.3: DCH parameters i	in multi-pa	th propaga	ation cond	itions dur	ing Soft Handoff (Case 3)
	Paramotor	Toot 1	Tost 2	Toot 2	Tost 4	Unit	

Parameter	Test 1	Test 2	Test 3	Test 4	Unit Unit
Phase reference	P-CPICH				
\hat{I}_{or1}/I_{oc} and \hat{I}_{or2}/I_{oc}	0,8	0,8	3,8	6,8	dB
-I _{oc}	-60			dBm / 3,84 MHz	
Information Data Rate	12,2	64	144	384	kbps

Table 7.7.1.4: DCH requirements in multi-path propagation conditions during Soft Handoff (Case 3)

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
4	–15,1 dB	40 ⁻²
2	–11,7 dB	10⁻¹
	–11,2 dB	10⁻²
3	- 9,5 dB	10⁻¹
	- 9,1 dB	10⁻²
4	- 5,9 dB	10⁻¹
	- 5,4 dB	10⁻²

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7.7.2 Combining of TPC commands from radio links of different radio link sets

7.7.2.1 Definition and applicability

When a UE is in soft handover, multiple TPC commands may be received in each slot from different cells in the activeset. In general, the TPC commands transmitted in the same slot in the different cells may be different and need to be combined to give TPC_cmd as specified in TS 25.214 [5], in order to determine the required uplink power step.

The requirements and this test apply to all types of UTRA for the FDD UE.

7.7.2.2 Minimum requirements

Test parameters are specified in table 7.7.2.1. The delay profiles of the signals received from the different cells are the same but time shifted by 10 chips.

For Test 1, the sequence of uplink power changes between adjacent slots shall be as shown in table 7.7.2.2 over the 4consecutive slots more than 99% of the time. Note that this case is without an additional noise source I_{oc}.

For Test 2, the Cell1 and Cell2 TPC patterns are repeated a number of times. If the transmitted power of a given slot is increased compared to the previous slot, then a variable "Transmitted power UP" is increased by one, otherwise a variable "Transmitted power DOWN" is increased by one. The requirements for "Transmitted power UP" and "Transmitted power DOWN" are shown in table 7.7.2.3.

Parameter	Test 1	Test 2	Unit
Phase reference	P-C	-	
DPCH_Ec/lor	-12		dB
\hat{I}_{or1} and \hat{I}_{or2}	-60		dBm / 3,84 MHz
-I _{oc}	60		dBm / 3,84 MHz
Power-Control-Algorithm	Algorithm 1		-
Cell 1 TPC commands- over 4 slots	(0,0,1,1)		-
Cell 2 TPC commands- over 4 slots	{0,1,0,1}		-
Information Data Rate	12,2		Kbps
Propagation condition	Static without AWGN source I_oc	Multi-path- fading case 3	-

Table 7.7.2.1: Parameters for TPC command combining

Table 7.7.2.2: Requirements for Test 1

Test Number	Required power changes over the 4 consecutive slots	
4	Down, Down, Down, Up	

Table 7.7.2.3: Requirements for Test 2

Test Number	Ratio	Ratio-
	(Transmitted power UP) /	(Transmitted power DOWN)
	(Total number of slots)	/ (Total number of slots)
2	≥0,25	≥0,5

The reference for this requirement is TS 25.101 [1] clause 8.7.2.1.

7.7.2.3 Test purpose

To verify that the combining of TPC commands received in soft handover results in TPC_emd being derived so as tomeet the requirements stated in tables 7.7.2.2 and 7.7.2.3.

7.7.2.4 Method of test

7.7.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1) Connect two SS's to the UE antenna connector as shown in figure A.13.

2) Set the test parameters as specified in table 7.7.2.4 for Test 1.

3) Set up a call according to the Generic Call Setup procedure.

4) Signal the uplink DPCH power control parameters to use Algorithm 1 and a step size of 1dB.

5) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding the generic call setup procedure and loopback test.

7.7.2.4.2 Procedures

- Before proceeding with paragraph (2), set the output power of the UE, measured at the UE antenna connector, to be in the range 10 ± 9 dBm. This may be achieved by setting the downlink signal (Î_{or}) to yield an appropriate open loop output power and/or by generating suitable downlink TPC commands from the SSs.
- 2) Send the following sequences of TPC commands in the downlink from each SS over a period of 5 timeslots:

	Downlink TPC commands						
	Slot #0	Slot #0 Slot #1 Slot #2 Slot #3 Slot #4					
SS1	θ	θ	θ	4	4		
SS2	φ	θ	4	Φ	4		

3) Measure the mean power at the UE antenna connector in timeslots # 0, 1, 2, 3 and 4, not including the 25 µs transient periods at the start and end of each slot.

4) Repeat step 3) according to Annex F.6.2 Table F.6.2.8.

5) End test 1 and disconnect UE.

6) Connect two SS's and an AWGN source to the UE antenna connector as shown in figure A.11.

7) Initialise variables "Transmitted power UP" and "Transmitted power DOWN" to zero.

8) Set the test parameters as specified in table 7.7.2.4 for Test 2.

9) Set up a call according to the Generic Call Setup procedure.

10)Signal the uplink DPCH power control parameters to use Algorithm 1 and a step size of 1 dB.

11)Enter the UE into loopback test mode and start the loopback test.

12)Perform the following steps a) to d) [15] times:

a) Before proceeding with step b), set the output power of the UE, measured at the UE antenna connector, to be in the range 10 ± 9 dBm. This may be achieved by generating suitable downlink TPC commands from the SSs.

b) Send the following sequences of TPC commands in the downlink from each SS over a period of 33 timeslots:

	Downlink TPC commands		
SS1	100110011001100110011001100110011		
\$\$2	10101010101010101010101010101010101010		

e) Measure the mean power at the UE antenna connector in each timeslot, not including the 25 µs transientperiods at the start and end of each slot.

d) For each timeslot from the 2nd timeslot to the 33rd timeslot inclusive:-

- if the mean power in that timeslot is greater than or equal to the mean power in the previous timeslot plus-0,5 dB, increment "Transmitted power UP" by 1;
- if the mean power in that timeslot is less than or equal to the mean power in the previous timeslot minus 0,5 dB, increment "Transmitted power DOWN" by 1.

7.7.2.5 Test requirements

Test parameters are specified in table 7.7.2.4. The delay profiles of the signals received from the different cells are the same but time shifted by 10 chips.

Parameter	Test 1	Test 2	Unit
Phase reference	P-C	-	
DPCH_Ec/lor	_1	dB	
\hat{I}_{or1} and \hat{I}_{or2}	-60 -59.2		dBm / 3,84 MHz
-I _{oc}	60		dBm / 3,84 MHz
Power-Control-Algorithm	Algor	-	
Cell 1 TPC commands- over 4 slots	(0,0,1,1)		-
Cell 2 TPC commands- over 4 slots	{0,1,0,1}		-
Information Data Rate	12,2		Kbps
Propagation condition	$\frac{\text{Static without}}{\text{AWGN source}}$ $\frac{I_{oc}}{1}$	Multi-path fading case 3	_

Table 7.7.2.4: Parameters for TPC command combining-

- 1) In Step 3) of clause 7.7.2.4.2, the mean power in slot #1 shall be less than or equal to the mean power in slot #0minus 0,5 dB.
- 2) In Step 3) of clause 7.7.2.4.2, the mean power in slot #2 shall be less than or equal to the mean power in slot #1minus 0,5 dB.
- 3) In Step 3) of clause 7.7.2.4.2, the mean power in slot #3 shall be less than or equal to the mean power in slot #2minus 0,5 dB.
- 4) In Step 3) of clause 7.7.2.4.2, the mean power in slot #4 shall be greater than or equal to the mean power in slot #3 plus 0,5 dB.
- 5) The sequence of test requirements 1 4 shall be fulfilled more than 99% of the time.
- 6) At the end of the test, "Transmitted power UP" shall be greater than or equal to [95] and "Transmitted power DOWN" shall be greater than or equal to [210].
- NOTE 1: The test limits in requirement (6) have been computed to give a confidence level of [99,7] % that a UEwhich follows the core requirements will pass. The number of timeslots has been chosen to get a goodcompromise between the test time and the risk of passing a bad UE.
- NOTE 2: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7.8 Power control in downlink

Power control in the downlink is the ability of the UE receiver to converge to required link quality set by the networkwhile using as low power as possible in downlink. If a BLER target has been assigned to a DCCH (See clause C.3), then it has to be such that outer loop is based on DTCH and not on DCCH.

7.8.1 Power control in the downlink, constant BLER target

7.8.1.1 Definition and applicability

Power control in the downlink is the ability of the UE receiver to converge to required link quality set by the networkwhile using as low power as possible in downlink. If a BLER target has been assigned to a DCCH (See clause C.3), then it has to be such that outer loop is based on DTCH and not on DCCH. The requirements and this test apply to alltypes of UTRA for the FDD UE.

7.8.1.2 Minimum requirements

For the parameters specified in table 7.8.1.1 the downlink <u>DPCH</u> $_{E_c}$ power ratio measured values, which are averaged I_{or}

over one slot, shall be below the specified value in table 7.8.1.2 more than 90% of the time. BLER shall be as shown in table 7.8.1.2. Power control in downlink is ON during the test.

Table 7.8.1.1: Test parameter for downlink power control, constant BLER target

Parameter	Test 1	Test 2	Unit		
$\frac{\hat{H}_{or}}{I_{oc}}$	9	-1	dB		
I _{oc}	-60		dBm / 3,84 MHz		
Information Data Rate	12	<u>2,2</u>	kbps		
Target quality on DTCH	0,01		BLER		
Propagation condition	Case 4				
Maximum_DL_Power (note)	7		dB		
Minimum_DL_Power (note)	-18		d₿		
DL Power Control step size, A _{TPC}	4		dB		
Limited Power Increase	"Not used"		-		
NOTE: Power is compared to P-CPICH as specified in [9].					

Table 7.8.1.2: Requirements in downlink power control, constant BLER target

Parameter	Test 1	Test 2	Unit
$\frac{DPCH _ E_c}{I_{or}}$	-16,0	-9,0	₿
Measured quality on- DTCH	0,01 ± 30 %	0,01 ± 30 %	BLER

The reference for this requirement is TS 25.101 [1] clause 8.8.1.1.

7.8.1.3 Test purpose

To verify that the UE receiver is capable of converging to required link quality set by network while using as low power as possible.

7.8.1.4 Method of test

7.8.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect SS, multipath fading simulator and an AWGN source to the UE antenna connector as shown infigure A.10.
- 2) Set up a call according to the Generic call setup procedure.
- 3) RF parameters are set up according to table 7.8.1.3.
- 4) Enter the UE into loopback test mode and start the loopback test.
- 5) SS signals to UE target quality value on DTCH as specified in table 7.8.1.3. SS will vary the physical channel power in downlink according to the TPC commands from UE. Downlink power control mode (DPC_MODE) 0 shall be used. At the same time BLER is measured. This is continued until the target quality value on DTCH is met, within the minimum accuracy requirement.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

7.8.1.4.2 Procedure

1) After the target quality on DTCH is met, BLER is measured. Simultaneously the downlink $-\frac{DPCH _ E_c}{I_{or}}$ power

ratio averaged over one slot is measured. This is repeated until adequate amount of measurements is done toreach the required confidence level.

2) The measured quality on DTCH (BLER) and the measured downlink $\frac{DPCH _ E_c}{I_{or}}$ power ratio values

averaged over one slot are compared to limits in table 7.8.1.2.

7.8.1.5 Test Requirements

The test parameters are specified in table 7.8.1.3.

Table 7.8.1.3: Test parameter for downlink power control, constant BLER target

Parameter	Test 1	Test 2	Unit		
$\frac{\hat{H}_{or}}{I_{oc}}$	9,6	-0,4	dB		
I oc	-60		dBm / 3,84 MHz		
Information Data Rate	12	<u>2,2</u>	kbps		
Target quality on DTCH	0,01		BLER		
Propagation condition	Case 4				
Maximum_DL_Power (note)	7		dB		
Minimum_DL_Power (note)	-18		d₿		
DL Power Control step size, ATPC	4		dB		
Limited Power Increase	"Not used"		-		
NOTE: Power is compared to P-CPICH as specified in [9].					

a) The measured quality on DTCH does not exceed the values in table 7.8.1.4.

b) The downlink $\frac{DPCH _E_c}{I_{or}}$ power ratio values, which are averaged over one slot, shall be below the values in-

table 7.8.1.4 more than 90 % of the time.

Table 7.8.1.4: Requirements in downlink power control, constant BLER target

Parameter	Test 1	Test 2	Unit
$\frac{DPCH _E_c}{I_{or}}$	-15,9	-8,9	d₿
Measured quality on- DTCH	0,01 ± 30 %	0,01 ± 30 %	BLER

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7.8.2 Power control in the downlink, initial convergence

7.8.2.1 Definition and applicability

This requirement verifies that DL power control works properly during the first seconds after DPCH connection is established. The requirements and this test apply to all types of UTRA for the FDD UE.

7.8.2.2 Minimum requirements

For the parameters specified in table 7.8.2.1 the downlink DPCH_Ec/Ior power ratio measured values, which areaveraged over 50 ms, shall be within the range specified in table 7.8.2.2 more than 90 % of the time. T1 equals to 500ms and it starts 10 ms after the DPDCH connection is initiated. T2 equals to 500 ms and it starts when T1 has expired. Power control is ON during the test.

The first 10 ms shall not be used for averaging, i.e. the first sample to be input to the averaging filter is at the beginning of T1. The averaging shall be performed with a sliding rectangular window averaging filter. The window size of the averaging filter is linearly increased from 0 up to 50 ms during the first 50 ms of T1, and then kept equal to 50 ms.

Table 7.8.2.1. Test	parameters for dow	nlink nower contro	Linitial convergence
	parameters for dom		i, initial convergence

Parameter	Test 1	Test 2	Test 3	Test 4	Unit	
Target quality value on- DTCH	0,01	0,01	0,1	0,1	BLER	
Initial DPCH_Ec/lor	-5,9	-25,9	-3	-22,1	dB	
Information Data Rate	12,2	12,2	64	64	kbps	
$\frac{\hat{H}_{or}}{H_{oc}}$		-4				
-I _{oc}		dBm/3,84 MHz				
Propagation condition						
Maximum_DL_Power (note)		d₿				
Minimum_DL_Power (note)		dB				
DL Power Control step size, ATPC		dB				
Limited Power Increase	"Not used"					
NOTE: Power is compared	to P-CPICH a	is specified in [9].			

Table 7.8.2.2: Requirements in downlink power control, initial convergence

Parameter	Test 1 and Test 2	Test 3 and Test 4	Unit
$\frac{DPCH _E_c}{I_{or}}$ -during T1	-18,9 ≤ DPCH_Ec/lor ≤ -11,9	- 15,1 ≤ DPCH_Ec/lor ≤ -8,1	d₿
$\frac{DPCH _ E_c}{I_{or}} - \frac{\text{during T2}}{\text{during T2}}$	-18,9 ≤ DPCH_Ec/lor ≤ -14,9	- - 15,1 ≤ DPCH_Ec/lor ≤ -11,1	d₿

The reference for this requirement is TS 25.101 [1] clause 8.8.2.1.

7.8.2.3 Test purpose

To verify that DL power control works properly during the first seconds after DPCH connection is established.

7.8.2.4 Method of test

7.8.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1) Connect SS, multipath fading simulator and an AWGN source to the UE antenna connector as shown in figure A.10.

7.8.2.4.2 Procedure

1) Set up call using test parameters according to table 7.8.2.1.

- 2) SS signals to UE target quality value on DTCH as specified in table 7.8.2.3. SS will vary the physical channel power in downlink according to the TPC commands from UE. Downlink power control mode (DPC_MODE) 0-shall be used.
- 3) Measure <u>DPCH $_E_c$ </u> power ratio averaged over 50 ms during T1. T1 starts 10 ms after DPDCH connection is I_{er}

initiated and T1 equals to 500 ms. The first 10 ms shall not be used for averaging, i.e. the first sample to be input to the averaging filter is at the beginning of T1. The averaging shall be performed with a sliding rectangularwindow averaging filter. The window size of the averaging filter is linearly increased from 0 up to 50 ms duringthe first 50 ms of T1, and then kept equal to 50ms.

4) Measure <u>DPCH _ E_c</u> power ratio averaged over 50 ms during T2. T2 starts, when T1 has expired and T2 equals I_{or}

to 500 ms.

7.8.2.5 Test Requirements

The test parameters are specified in table 7.8.2.3.

Table 7.8.2.3: Test parameters for downlink power control, initial convergence

Parameter	Test 1	Test 2	Test 3	Test 4	Unit	
Target quality value on	0,01	0,01	0,1	0,1	BLER	
DTCH						
Initial DPCH_Ec/lor	-5,9	-25,9	-3	-22,1	dB	
Information Data Rate	12,2	12,2	64	6 4	kbps	
$\frac{\hat{I}_{or}}{I_{oc}}$		dB				
<u>I_{oc}</u>		dBm/3,84 MHz				
Propagation condition						
Maximum_DL_Power (note)		dB				
Minimum_DL_Power (note)		dB				
DL Power Control step size,	4				dB	
ATPC		ub				
Limited Power Increase						
NOTE: Power is compared to P-CPICH as specified in [9].						

a) The downlink <u>DPCH $_E_c$ </u> power ratio values shall be within the range specified in table 7.8.2.4 during T1 more I_{or}

than 90 % of the time.

b) The downlink <u>DPCH _ E_c </u> power ratio values shall be within the range specified in table 7.8.2.4 during T2 more I_{or}

than 90 % of the time.

Table 7.8.2.4: Requirements in downlink power control, initial convergence

Parameter	Test 1 and Test 2	Test 3 and Test 4	Unit
$\frac{DPCH _ E_c}{I_{or}} \frac{\text{during T1}}{I_{or}}$	- 18,8 ≤ DPCH_Ec/lor ≤ -11,8	- 15,0 ≤ DPCH_Ec/lor ≤ -8,0	d₿
$\frac{DPCH _E_c}{I_{or}} \frac{\text{during T2}}{I_{or}}$	- 18,8 ≤ DPCH_Ec/lor ≤ -14,8	- - 15,0 ≤ DPCH_Ec/lor ≤ -11,0	dB

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7.8.3 Power control in the downlink, wind up effects

7.8.3.1 Definition and applicability

This requirement verifies that, after the downlink maximum power is limited in the UTRAN and it has been released again, the downlink power control in the UE does not have a wind up effect, i.e. the required DL power has increased during time period the DL power was limited. The requirements and this test apply to all types of UTRA for the FDD-UE.

7.8.3.2 Minimum requirements

This test is run in three stages where stage 1 is for convergence of the power control loop, in stage two the maximum downlink power for the dedicated channel is limited not to be higher than the parameter specified in table 7.8.3.1. All parameters used in the three stages are specified in table 7.8.3.1. The downlink $DPCH _ E_c$ power ratio measured values,

 I_{or} which are averaged over one slot, during stage 3 shall be lower than the value specified in table 7.8.3.2 more than 90 % of the time. Power control of the UE is ON during the test.

Table 7.8.3.1: Test parameter for downlink power control, wind-up effects

Parameter		Test 1	Unit	
	Stage 1	-Stage 2	Stage 3	
Time in each stage	>15	5	0,5	S
$\frac{\hat{H}_{or}}{H_{oc}}$		5	dB	
-I _{oc}		-60	dBm/3,84 MHz	
Information Data Rate		12,2	kbps	
Quality target on DTCH		0,01		BLER
Propagation condition		Case 4		
Maximum_DL_Power (note)	7	-6,2	7	d₿
Minimum_DL_Power (note)		-18		dB
DL Power Control step size, ATPC	4			dB
Limited Power Increase		"Not used"	-	
NOTE: Power is compared to	P-CPICH a	is specified i	n [9].	

VOTE: Power is compared to P-OPIOH as specified in [9].

Table 7.8.3.2: Requirements in downlink power control, wind-up effects

Parameter	Test 1, stage 3	Unit
$DPCH _E_c$	-13,3	dB
I _{or}		

The reference for this requirement is TS 25.101 [1] clause 8.8.3.1.

7.8.3.3 Test purpose

To verify that the UE downlink power control does not require too high downlink power during a period after the downlink power is limited by the UTRAN.

7.8.3.4 Method of test

7.8.3.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect SS, multipath fading simulator and an AWGN source to the UE antenna connector as shown infigure A.10.
- 2) Set up a call according to the Generic call setup procedure.
- 3) Enter the UE into loopback test mode and start the loopback test.
- 4) RF parameters are set up according to table 7.8.3.3. Stage 1 is used for the power control to converge and during Stage 2 the maximum downlink power is limited by UTRAN.
- 5) SS signals to UE target quality value on DTCH as specified in table 7.8.3.1. SS will vary the physical channel power in downlink according to the TPC commands from UE. Downlink power control mode (DPC_MODE) 0-shall be used.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

7.8.3.4.2 Procedure

1) Measure <u>DPCH</u> <u>E</u> power ratio during stage 3 according to table 7.8.3.3. I_{e}

7.8.3.5 Test Requirements

The test parameters are specified in table 7.8.3.3.

Table 7.8.3.3: Test parameter for downlink power control, wind-up effects

Parameter		Test 1		Unit			
	Stage 1	-Stage 2	Stage 3				
Time in each stage	>15	5	0,5	9			
$\frac{\hat{I}_{or}}{I_{oc}}$		5,6		dB			
-I _{oc}		-60		dBm/3,84 MHz			
Information Data Rate		12,2		kbps			
Quality target on DTCH		0,01		BLER			
Propagation condition		Case 4					
Maximum_DL_Power (note)	7	-6,2	7	dB			
Minimum_DL_Power (note)		-18		dB			
DL Power Control step size, A _{TPC}	4			d₽			
Limited Power Increase		"Not used"	-				
NOTE: Power is compared to P-CPICH as specified in [9].							

The downlink <u>DPCH</u> $_E_c$ power ratio values, which are averaged over one slot, shall be lower than the level specified in I_{or}

table 7.8.3.4 during stage 3 more than 90 % of the time.-

Table 7.8.3.4: Requirements in downlink power control, wind-up effects

Parameter	Test 1, stage 3	Unit
$DPCH _E_c$	-13,2	dB
I _{or}		

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7.9 Downlink compressed mode

Downlink compressed mode is used to create gaps in the downlink transmission, to allow the UE to makemeasurements on other frequencies.

7.9.1 Single link performance

7.9.1.1 Definition and applicability

The receiver single link performance of the Dedicated Traffic Channel (DCH) in compressed mode is determined by the Block Error Ratio (BLER) and transmitted DPCH_Ec/Ior power ratio in the downlink.

The compressed mode parameters are given in clause C.5. Tests 1 and 2 are using Set 1 compressed mode patternparameters from table C.5.1 in clause C.5 while tests 3 and 4 are using Set 2 compressed mode patterns from the sametable.

The requirements and this test apply to all types of UTRA for the FDD UE.

7.9.1.2 Minimum requirements

For the parameters specified in table 7.9.1 the downlink $-\frac{DPCH _ E_c}{I_{or}}$ power ratio measured values, which are

averaged over one slot, shall be below the specified value in table 7.9.2 more than 90% of the time. The measured quality on DTCH shall be as required in table 7.9.2.

Downlink power control is ON during the test. Uplink TPC commands shall be error free.

Table 7.9.1: Test parameter for downlink compressed mode

Parameter	Test 1	Test 2	Test 3	Test 4	Unit
Delta SIR1	θ	3	0	3	d₿
Delta SIR after1	θ	3	0	3	dB
Delta SIR2	θ	θ	θ	θ	dB
Delta SIR after2	θ	θ	θ	θ	dB
$\frac{\hat{I}_{or}}{I_{oc}}$		ŧ)		dB
-I _{oc}		dBm / 3,84 MHz			
Information Data Rate		kbps			
Propagation condition					
Target quality value on DTCH		BLER			
Maximum DL Power (note)		dB			
Minimum DL Power (note)		d₿			
DL Power Control step size,	4				dB
ATPC	+				uD
Limited Power Increase	"Not used"				-
NOTE: Power is compared to P-CPICH as specified in [9].					

Table 7.9.2: Requirements in downlink compressed mode

Parameter	Test 1	Test 2	Test 3	Test 4	Unit	
$\underline{DPCH _E_c}$	-14,6	No- requirements		No- requirements	d₿	
Measured quality of compressed and recovery	No- requirements	< 0,001	No- requirements	< 0,001	BLER	
frames		BLER				
Measured quality on DTCH		0,01 ± 30 %				

The reference for this requirement is TS 25.101 [1] clause 8.9.1.1.

7.9.1.3 Test purpose

The purpose of this test is to verify the reception of DPCH in a UE while downlink is in a compressed mode. The UE needs to preserve the BLER using sufficient low DL power. It is also verified that UE applies the Delta SIR values, which are signaled from network, in its outer loop power control algorithm.

7.9.1.4 Method of test

7.9.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect SS, multipath fading simulator and an AWGN source to the UE antenna connector as shown infigure A.10.
- 2) Set up a call according to the Generic call setup procedure.
- 3) RF parameters are set up according to table 7.9.1.
- 4) Set compressed mode parameters according to table C.5.1. Tests 1 and 2 are using Set 1 compressed mode pattern parameters and while tests 3 and 4 are using Set 2 compressed mode pattern parameters.
- 5) Enter the UE into loopback test mode and start the loopback test.
- 6) SS signals to UE target quality value on DTCH as specified in table 7.9.1. Uplink TPC commands shall be error free. SS will vary the physical channel power in downlink according to the TPC commands from UE. SS response time for UE TPC commands shall be one slot. At the same time BLER is measured. This is continued until the target quality value on DTCH is met, within the minimum accuracy requirement.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

7.9.1.4.2 Procedure

1) Test 1: Measure quality on DTCH and \underline{DPCH}_{-E_c} power ratio values averaged over one slot. I_{cr}

2) Test 2: Measure quality on DTCH and quality of compressed and recovery frames.

3) Test 3: Measure quality on DTCH and <u>DPCH $_E_c$ power ratio values averaged over one slot.</u> I_{or}

4) Test 4: Measure quality on DTCH and quality of compressed and recovery frames.

7.9.1.5 Test requirements

The test parameters are specified in table 7.9.3.

Parameter	Test 1	Test 2	Test 3	Test 4	Unit	
Delta SIR1	θ	3	θ	3	dB	
Delta SIR after1	θ	3	θ	3	dB	
Delta SIR2	θ	θ	θ	θ	dB	
Delta SIR after2	θ	θ	θ	θ	dB	
\hat{H}_{or}/H_{oc}		9	,6		dB	
-I _{oc}		dBm / 3,84 MHz				
Information Data Rate		kbps				
Propagation condition						
Target quality value on DTCH		BLER				
Maximum DL Power (note)		dB				
Minimum DL Power (note)		dB				
DL Power Control step size,	1				dB	
A _{TPC}		up				
Limited Power Increase	"Not used"				-	
NOTE: Power is compared to	NOTE: Power is compared to P-CPICH as specified in [9].					

Table 7.9.3: Test parameter for downlink compressed mode

a) Test 1: The downlink <u>DPCH - E_c power ratio values averaged over one slot shall be below the values in table</u> I_{or}

7.9.4 more than 90 % of the time. The measured quality on DTCH shall be as required in table 7.9.4.

- b) Test 2: Measured quality on DTCH and measured quality of compressed and recovery frames do not exceed the values in table 7.9.4.
- c) Test3: The downlink <u>DPCH _ E_c power ratio values averaged over one slot shall be below the values in table</u> I_{or}

7.9.2 more than 90 % of the time. The measured quality on DTCH shall be as required in table 7.9.4.

d) Test 4: Measured quality on DTCH and measured quality of compressed and recovery frames do not exceed the values in table 7.9.4.

Table 7.9.4: Requirements in downlink compressed mode

Parameter	Test 1	Test 2	Test 3	Test 4	Unit
$\frac{DPCH _ E_c}{I_{or}}$	-14,5	No- requirements	-15,1	No- requirements	dB
Measured quality of compressed and recovery- frames	No- requirements	< 0,001	No- requirements	< 0,001	BLER
Measured quality on DTCH		BLER			

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7.10 Blind transport format detection

7.10.1 Definition and applicability

Performance of Blind transport format detection is determined by the Block Error Ratio (BLER) values and by the measured average transmitted DPCH_Ec/Ior value.

7.10.2 Minimum requirements

For the parameters specified in table 7.10.1 the average downlink \underline{DPCH}_{e_c} power ratio shall be below the specified I_{or} value for the BLER and FDR shown in table 7.10.2.

Table 7.10.1: Test parameters for Blind transport format detection

Parameter	Test 1	Test 2	Test 3	Test 4	Test 5	Test 6	Unit
$\frac{\hat{I}_{or}}{I_{oc}}$	-1			-3			dB
-I _{oc} -		-60					dBm / 3.84 MHz
Information Data Rate	12,2	7,95	1,95 -	12,2	7,95	1,95	kbps
	(rate 1)	(rate 2)	(rate 3)	(rate 1)	(rate 2)	(rate 3)	
propagation condition	static multi-path fading case 3				-		
TECI		off					-

Table 7.10.2: The Requirements for DCH reception in Blind transport format detection

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER	FDR		
4	- 17,7dB	10⁻²	40-4		
2	-17,8dB	10⁻²	10⁻⁴		
3		10⁻²	10⁻⁴		
4	-13,0dB	40 ⁻²	10⁻⁴		
5	-13,2dB	10⁻²	10⁻⁴		
6	-13,8dB	10⁻²	10⁻⁴		
NOTE: The value of DPCH_Ec/lor, loc, and lor/loc are defined in case of DPCH is transmitted.					

NOTE: In the test, 9 deferent Transport Format Combinations (table 7.10.3) are sent during the call set upprocedure, so that UE has to detect correct transport format in this 9 candidates.

Table.7.10.3: Transport format combinations informed during the call set up procedure in the test

	4	2	3	4	5	6	7	8	9
DTCH	12,2 k	10,2 k	7,95 k	7,4 k	6,7 k	5,9 k	5,15 k	4 ,75 k	1,95 k
DCCH					2,4 k				

7.10.3 Test purpose

To verify the ability of the blind transport format detection to receive a predefined test signal, representing a staticpropagation channel for the wanted and for the co-channel signals from serving and adjacent cells, with a block errorratio (BLER) and false transport format detection ratio (FDR) not exceeding a specified value.

To verify the ability of the blind transport format detection to receive a predefined test signal, representing a malti-pathpropagation channel for the wanted and for the co-channel signals from serving and adjacent cells, with a block errorratio (BLER) and false transport format detection ratio (FDR) not exceeding a specified value.

7.10.4 Method of test

7.10.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1. Connect the SS and AWGN noise source to the UE antenna connector as shown in figure A.9 in the case fortest 1–3. Connect the SS, multipath fading simulator and an AWGN noise source to the UE antenna connector asshown in figure A.10 in the case of test 4–6.
- 2. Set up a call according to the Generic call setup procedure.
- 3. Set the test parameters for test 1-6 as specified table 7.10.4 and table 7.10.5.
- 4. Enter the UE into loopback test mode and start the loopback test.
- 5. In the case of test 4-6, Setup fading simulator as fading condition case 3 which are described in table D.2.2.1.

7.10.4.2 Procedure

Measure BLER and FDR of DCH.

7.10.5 Test requirements

The test parameters are specified in table 7.10.4.

Table 7.10.4: Test parameters for Blind transport format detection

Parameter	Test 1	Test 2	Test 3	Test 4	Test 5	Test 6	Unit
$\frac{\hat{I}_{or}}{I_{oc}}$		-0,7			-2,4		dB
-I _{oc}	_60			dBm / 3.84 MHz			
Information Data Rate	12,2	7,95	1,95	12,2	7,95	1,95 -	kbps
	(rate 1)	(rate 2)	(rate 3)	(rate 1)	(rate 2)	(rate 3)	
propagation condition	Static		multi-path fading case 3			-	
TECI	off				-		

BLER and FDR shall not exceed the values at the DPCH_Ec/Ior specified in table 7.10.5.

Table 7.10.5: The Requirements for DCH reception in Blind transport format detection

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER	FDR			
4	_17,6dB	10⁻²	10⁻⁴			
2	- 17,7dB	10⁻²	10⁻⁴			
3	- 18,3dB	10⁻²	10⁻⁴			
4	- 12,9dB	10⁻²	10⁻⁴			
5	- 13,1dB	10⁻²	10⁻⁴			
6	- 13,7dB	10⁻²	10⁻⁴			
NOTE: The value of DPCH_Ec/lor, loc, and lor/loc are defined in case of DPCH is transmitted.						

- NOTE: In the test, 9 deferent Transport Format Combinations (table 7.10.3) are sent during the call set upprocedure, so that UE has to detect correct transport format in this 9 candidates.
- NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8 Requirements for support of RRM
8.1 General
8.2 Idle Mode Tasks
8.2.1 Cell Selection
Void.
8.2.2 Cell Re-Selection
8.2.2.1 Scenario 1: Single carrier case
8.2.2.1.1 Definition and applicability
The cell re selection delay is defined as the time from a change of cell levels to the moment when this change makes the UE camp on a new cell, and starts to send preambles on the PRACH for the RRC CONNECTION REQUEST message to perform a Location Updating procedure (MM) or Routing Area Updating procedure (GMM) on the new cell.
The requirements and this test apply to the FDD UE.
8.2.2.1.2 Minimum requirement
The cell re selection delay shall be less than 8 s with a DRX cycle length of 1.28 s.
The rate of correct cell reselections observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.
NOTE: The cell re-selection delay can be expressed as: T _{evaluateFDD} + T _{SI} , where:
TevaluateFDDSee table 4.1 in TS 25.133 [2] clause 4.2.2.TSIMaximum repetition period of relevant system info blocks that needs to be received by the UE to camp on a cell. 1280 ms is assumed in this test case.
This gives a total of 7.68 s, allow 8s in the test case.
The normative reference for this requirement is TS 25.133 [2] clauses 4.2.2.2 and A.4.2.1.
8.2.2.1.3 Test purpose
To verify that the UE meets the minimum requirement.
8.2.2.1.4 Method of test
8.2.2.1.4.1 Initial conditions
Test environment: normal; see clauses G.2.1 and G.2.2.
Frequencies to be tested: mid range; see clause G.2.4.

This scenario implies the presence of 1 carrier and 6 cells as given in tables 8.2.2.1.1 and 8.2.2.1.2. The UE is requested to monitor neighbouring cells on 1 carrier. The maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell shall be 1 280 ms. Cell 1 and cell 2 shall belong to different Location Areas.

Table 8.2.2.1.1: Scenario 1: General test parameters for Cell Re-selection single carrier multi-cell case

	Parameter	Unit	Value	Comment
Initial-	Active cell-		Cell2	
condition	Neighbour cells		Cell1, Cell3, Cell4, Cell5, Cell6-	
Final- condition	Active cell-		Cell1	
TYPE 1	NFORMATION BLOCK- non GSM-MAP NAS system- n	-	00 80(H) → Coll 1 00 81(H) → Coll 2	This identity should be set as different- value from the neigbour cell so that a Location Updating procedure(MM) or a Routing Area Updating- procedure(GMM) is performed when- UE selects more suitable cell in idle- state.
- Persisten	e rvice Class (ASC#0) a ce value	-	- 4	Selected so that no additional delay is caused by the random access- procedure. The value shall be used for all cells in the test.
HCS DRX cycle	length	S	1,28	Not used The value shall be used for all cells in the test.
T1		S	15	T1 need to be defined so that cell re- selection reaction time is taken into- account.
T2		S	15	T2 need to be defined so that cell re- selection reaction time is taken into- account.

Table 8 2 2 1 2. Scenario	Test parameters for Cell re-selection single carrier mul-	ti call initial conditions
	rest parameters for ben re selection single carrier mar	

Parameter	Unit	C	ell 1	Ce	 2	Ce	3 3	Cel	⊢4	Ce	ll 5	Ce	sll 6	
		T 4	T2	T 4	T2	T 4	T2	T 4	T2	T 4	T2	T 4	T2	
UTRA RF Channel- Number		Channel 1		Channe	Channel 1		Channel 1		Channel 1		Channel 1		Channel 1	
CPICH_Ec/lor	dB	-10-		-10 -		-10-		-10 -	10 -10			-10-		
PCCPCH_Ec/lor	dB	-12		-12		-12-		-12		-12		-12		
SCH_Ec/lor	dB	-12		-12		-12		-12		-12		-12		
PICH_Ec/lor	dB	-15 -		-15 -		-15 -		-15 -		-15 -		-15 -		
OCNS_Ec/lor	dB	-0,94	1	-0,941		-0,94 1	F	-0,941		-0,941	-	-0,941	F	
$\frac{\hat{I}_{or}}{I_{oc}}$	dB	7,3	10,27	10,27	7,3	0,27		0,27		0,27		0,27		
-I _{oc}	dBm / 3,84 MHz	-70												
CPICH_Ec/lo	dB	-16 -	-13-	-13-	-16 -	-23-		-23-		-23		-23		
Propagation- Condition-							AW	GN-						
Cell_selection_and_ reselection_quality_ measure		CPIC	H-E _e ∕N₀	CPICH	-E₀/N₀	CPICH E ₀/N₀		CPICH	<mark>€₀∕N</mark> ₀	CPICH	ᡰ .Ε₀∕Ν₀	CPICI	╡ €₀∕№₀	
Qqualmin	dB	-	20	-4	<u>20</u>	-	20	-2)	-	20	-	20	
Qrxlevmin	dBm		115	-1	15	-1	15	-11	5	-4	15	-4	15	
UE_TXPWR_MAX_ RACH	dB	:	21	2	<u>!1</u>	-	<u>21</u>	21	ŀ	2	<u>21</u>	2	<u>21</u>	
Qoffset2 _{s, n}	d₿	C1, C1, C1,	C2: 0 C3: 0 C4: 0 C5: 0 C6: 0	C2, (C2, (C2, (C1:0 C3:0 C4:0 C5:0 C6:0	C3, C3, C3,	C1: 0 C2: 0 C4: 0 C5: 0 C6: 0	C4, C C4, C C4, C C4, C C4, C C4, C	2: 0 3: 0 5: 0	C5, C5, C5,	C1: 0 C2: 0 C3: 0 C4: 0 C6: 0	C6, C6, C6,	C1: 0 C2: 0 C3: 0 C4: 0 C5: 0	
Qhyst2	dB	. ,	0010		0 <u>000</u>		0	θ			0 0		<u>θ</u>	
Treselection	\$		<u>ө</u>		<u>0</u>		<u>θ</u>	0 Q			<u>0</u>		<u>φ</u>	
Sintrasearch	dB	not	sent		sent		sent	not s	ent		sent		sent	

8.2.2.1.4.2 Procedure

- 1) The SS activates cell 1 6 with T1 defined parameters in table 8.2.2.1.2 and monitors cell 1 and 2 for random access requests from the UE.
- 2) The UE is switched on.
- 3) The SS and the UE shall perform a first registration procedure on cell2.
- 4) 15 s after step3 has completed, the parameters are changed to that as described for T2 in table 8.2.2.1.2.
- 5) The SS waits for random access requests from the UE. If the UE responds on cell 1 within 8 s from the beginning of time period T2 then the number of successful tests is increased by one. The SS and the UE shall perform a Location Updating procedure (MM) or a Routing Area Updating procedure (GMM) on cell1.
- 6) After 15 s from the beginning of time period T2, the parameters are changed to that as described for T1 in table 8.2.2.1.2.
- 7) The SS waits for random access requests from the UE. If the UE responds on cell 2 within 8 s from the beginning of time period T1 then the number of successful tests is increased by one. The SS and the UE shall perform a Location Updating procedure(MM) or a Routing Area Updating procedure (GMM) on cell2.
- 8) After 15 s from the beginning of time period T1, the parameters are changed to that as described for T2.

9) Repeat step 5) to 8) [TBD] times.

NOTE: The time required for receiving all the relevant system information data according to the receptionprocedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRANcell. Since the maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell is 1280ms and the maximum RRC procedure delay for reception system information block is 100ms, 1380 ms is assumed in this test case. Therefore this gives a total of 7.78s.(Minimum requirement + 100ms), allow 8s in the test case.

8.2.2.1.5 Test requirements

For the test to pass, the total number of successful attempts shall be more than 90% with a confidence level of [FFS]%-of the cases.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.2.2.2 Scenario 2: Multi carrier case

8.2.2.2.1 Definition and applicability

The cell re-selection delay is defined as the time from a change of cell levels to the moment when this change makes the UE camp on a new cell, and starts to send preambles on the PRACH for the RRC CONNECTION REQUEST message to perform a Location Updating procedure(MM) or Routing Area Updating procedure (GMM) on the new cell.

The requirements and this test apply to the FDD UE.

8.2.2.2.2 Minimum requirement

The cell re selection delay shall be less than 8 s with a DRX cycle length of 1.28 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

NOTE: The cell re selection delay can be expressed as: $T_{evaluateFDD} + T_{SI}$, where:

Error! No text of specified style in document.

112

∓_{evaluateFDD} ∓_{SI} See table 4.1 in TS 25.133 [2] clause 4.2.2. Maximum repetition period of relevant system info blocks that needs to be received by the UE to camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

The normative reference for this requirement is TS 25.133 [2] clauses 4.2.2.3 and A.4.2.2.

8.2.2.2.3 Test purpose

To verify that the UE meets the minimum requirement.

8.2.2.2.4 Method of test

8.2.2.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

This scenario implies the presence of 2 carriers and 6 cells as given in tables 8.2.2.2.1 and 8.2.2.2.2. The UE is requested to monitor neighbouring cells on 2 carriers. The maximum repetition period of the relevant system infoblocks that needs to be received by the UE to camp on a cell shall be 1 280 ms. Cell 1 and cell 2 shall belong todifferent Location Areas.

Table 8.2.2.2.1: Scenario 2: General test parameters for Cell Re-selection in multi carrier case

4	Parameter	Unit	Value	Comment
Initial-	Active cell		Cell2	
condition	Neighbour cells		Cell1, Cell3,Cell4,	
			Cell5, Cell6	
Final	Active cell		Cell1	
condition				
SYSTEM IN	VFORMATION		00 80(H) → Cell 1	This identity should be set as different value from
BLOCK TY	PE 1	-	00-81(H) → Cell 2	the neigbour cell so that a Location Updating-
- CN comm	- CN common GSM-MAP NAS-			procedure (MM) or a Routing Area Updating
system information				procedure (GMM) is performed when UE selects
-				more suitable cell in idle state.
Access Ser	rvice Class (ASC#0)		-	Selected so that no additional delay is caused by
- Persisten	ce value	-	4	the random access procedure. The value shall be
				used for all cells in the test.
HCS				Not used
DRX cycle	length	Ş	1,28	The value shall be used for all cells in the test.
	T 4	S	30	T1 need to be defined so that cell re-selection
				reaction time is taken into account.
T2		S	15	T2 need to be defined so that cell re-selection
				reaction time is taken into account.

Parameter	Unit	Cell 1		Cel	Cell 2		Cell 3		Cell 4		I-5	Cell 6	
		T 4	T2	T 4	T2	T 4	T2	T 4	T2	T 4	T2	T 4	T2
UTRA RF Channel- Number		Chan	Channel 1 Channel 2		Channel 1 Channel 1		Channel 2		Channel 2				
CPICH_Ec/lor	d₿	T	0	-1	0-	-1	0 -		40-	-1	0 -	-10-	
PCCPCH_Ec/lor	dB	4	2	-1	2	-1	2		12	-1	2	-	12
SCH_Ec/lor	d₿	T	2	4	2	-1	2	_	12	-1	2	_	12
PICH_Ec/lor	d₿	Т	5	4	5 -	4	5 -	_	15	-1	5 -		15 -
OCNS_Ec/lor	d₿	-0.9)41	-0.9	41	-0.9	41	-0.	.941	-0.9	41	-0.	941
$\frac{\hat{I}_{or}}{I_{oc}}$	dB	-3.4	2.2	2.2	-3. 4	-7.4	-4.8	-7.4	-4.8	-4.8 -	-7.4	-4.8	-7.4
-I _{oc}	dBm / 3.84 MHz												
CPICH_Ec/lo	dB	-16 -	-13 -	-13 -	-16 -	- 20 - 20		-20		4	20		
Propagation- Condition-							AW	'GN					
Cell_selection_and_ reselection_quality_ measure		CPICH	⊢ <mark>E</mark> ∉∕N₀	CPICH	<mark>-E₀∕N</mark> ₀	CPICH	<mark>-E</mark> ∉∕ N ₀	CPICH E g/N ₀		CPICH	-E₀∕N₀	CPICH	∔E ₀∕N
Qqualmin	d₿	-2	θ	-2	0	-2	0	-20		-20 -20		4	20
Qrxlevmin	dBm	-1	15	-11	5	-11	5	-1	-115 -		5	-1	15
UE_TXPWR_MAX_ RACH	d₿	2	1	<u>2</u> -	1	<u>2</u> -	ŀ	2	<u>21</u>	24	ŀ	2	<u>1</u>
		C1, C	2: 0	C2, C	:1:0	C3, C	1:0	C4,	C1: 0	C5, C	:1:0	C6, 	C1: 0
		C1, C		C2, C		C3, C	2: 0		C2: 0	C5, C	2: 0		C2: 0
Qoffset2_{s, n}	dB	C1, C		C2, C		C3, C			C3: 0	C5, C			C3: 0
		C1, C		C2, C		C3, C			C5: 0	C5, C			C4: 0
Qhyst2	dB	C1, (C2, C Đ		C3, C 0			C6: 0 0	C5, C 0			C5: 0 D
Treselection	\$ \$, c		Ф		9			0	ф Ф			р р
Sintrasearch	dB	note		not s		not e			sent	not s			sent
Sintersearch	dB	note		note		note			sent	not e			sent

Table 8.2.2.2.2: Scenario 2: Test parameters for Cell re-selection multi carrier multi cell, initial conditions

8.2.2.2.4.2 Procedures

- 1) The SS activates cell 1 6 with T1 defined parameters in table 8.2.2.2.3 and monitors cell 1 and 2 for random access requests from the UE.
- 2) The UE is switched on.
- 3) The SS and the UE shall perform a first location registration procedure on cell2.
- 4) 30 s after step3 has completed, the parameters are changed to that as described for T2 in table 8.2.2.2.3.
- 5) The SS waits for random access request from the UE. If the UE responds on cell 1 within 8 s from the beginning of time period T2 then the number of successful tests is increased by one. The SS and the UE shall perform a Location Updating procedure (MM) or a Routing Area Updating procedure (GMM) on cell1.
- 6) After another 15 s from the beginning of time period T2, the parameters are changed to that as described for T1in table 8.2.2.2.3.
- 7) The SS waits for random access requests from the UE. If the UE responds on cell 2 within 8 s from the beginning of time period T1 then the number of successful tests is increased by one. The SS and the UE shall perform a Location Updating procedure (MM) or a Routing Area Updating procedure (GMM) on cell2.
- 8) After 15 s from the beginning of time period T1, the parameters are changed as described for T2.
- 9) Repeat step 5) to 8) [TBD] times.
- NOTE 1: T1 is initially 30 s to allow enough time for the UE to search for cells as it has no prior knowledge of these.
- NOTE 2: The time required for receiving all the relevant system information data according to the receptionprocedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell. Since the maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell is 1280ms and the maximum RRC procedure delay for reception system information block is 100ms, 1380 ms is assumed in this test case. Therefore this gives a total of 7.78s.(Minimum requirement + 100ms), allow 8s in the test case.

8.2.2.2.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

Parameter	Unit	Ce	#1		 2	Ce	 3	Ce	H-4	Ce	 5	Ce	 6
		T 4	T2	T 4	T2	#	T2	T 4	T2	T 4	T2	T 4	T2
UTRA RF Channel		Char	nel 1	Char	nel 2	Char	nol 1	Channel 1		Channel 2		Channel 2	
Number				•		Unar		Chan		Unar		Unar	
CPICH_Ec/lor	dB	-9.9	-9.7	-9.7	-9.9).9 -		.9 -	-9.9		-9.9	
POCPCH_Ec/lor	dB		12		12	<u> </u>	12-		2		12		12-
SCH_Ec/lor	dB	-11.9	-11.7	-11.7	-11.9		1.9		1.9 -		1.9		1.9
PICH_Ec/lor	dB		15		15-		15		15-		15-		15-
OCNS_Ec/lor	dB	-0.95 4	-0.982	-0.982	-0.95 4	-0. (954	-0. {)5 4	-0.(954	-0. (954
$\frac{\hat{H}_{or}}{H_{oc}}$	d₿	-3.5	2.8	2.8	-3.5	-9.5 -	-7.7	-9.5 -	-7.7	-7.7 -	-9.5	- 7 -7	-7.7
-I _{oc}	dBm / 3.84 MHz						74	Ð					
CPICH_Ec/lo	dB	-15.6	-12	-12	-15.6	-21.6	-22.7	-21.6	-22.7	-22.7	-21.6	-22.7	-21.6
Propagation Condition							AW	' GN					
Cell_selection_and_ reselection_quality_ measure		CPICH	IE₀/N ₀	CPICH	IE₀/Ν ₀	CPIC +	ΓΕ₀/Ν ₀	CPICH E _e /N ₀		CPICH	IE ₀∕N₀	CPIC +	IE₀/N ₀
Qqualmin	dB	-2	20	-2	20	4	<u>20</u>	-2	<u>0</u>	-20		-2	20
Qrklevmin	dBm	-1	15	-1	15	-1	15	-1	15	-1	15	-1	15
UE_TXPWR_MAX_ RACH	d₿	2	:1	2	:1	2	1	2	1	2	:1	2	:1
Qoffset2 _{s, n}	d₿	C1, (C1, (C2: 0 C3: 0 C4: 0	C2, C1: 0 C2, C3: 0 C2, C4: 0		C3, C1: 0 C3, C2: 0 C3, C4: 0		C4, (C4, (C4, (52: 0 53: 0	C5, C1: 0 C5, C2: 0 C5, C3: 0		C6, C1: 0 C6, C2: 0 C6, C3: 0	
		C1, (25: 0 26: 0	C2, (C2, C5: 0 C3, C5: 0 C2, C6: 0 C3, C6: 0		26: 0			C6: 0		C5: 0	
Qhyst2	dB		•)	(-)		-		•
Treselection	S		•)		•	(θ			•
Sintrasearch	dB		not sent		sent		sent	not sent			sent		sent
Sintersearch	dB	not	sent	not	sent	not	sent	not	sent	not	sent	not	sent

Table 8.2.2.3: Scenario 2: Test parameters for Cell re-selection multi carrier multi cell, test requirements

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.2.3 UTRAN to GSM Cell Re-Selection

8.2.3.1 Scenario 1: Both UTRA and GSM level changed

8.2.3.1.1 Definition and applicability

The cell re selection delay is defined as the time from a change of cell levels to the moment when this change makes the UE camp on a new cell and starts to send the RR Channel Request message for location update to the new cell.

The requirements and this test apply to the combined FDD and GSM UE.

8.2.3.1.2 Minimum requirement

The cell re selection delay shall be less than $26 \text{ s} + T_{BCCH}$, where TBCCH is the maximum time allowed to read BCCH data from GSM cell TS 05.08 [20].

The rate of correct cell reselections observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

NOTE: The cell re-selection delay can be expressed as: $4 \times T_{\text{measureGSM}} + T_{\text{BCCH}}$, where:

TmeasureGSMSee table 4.1 in TS 25.133 [2] clause 4.2.2.

TBCCHMaximum time allowed to read BCCH data from GSM cell TS 05.08 [20].According to [20], the maximum time allowed to read the BCCH data, when being-
synchronized to a BCCH carrier, is 1.9 s.

This gives a total of 25.6 s + T_{BCCH} , allow 26 s + T_{BCCH} in the test case.

The normative reference for this requirement is TS 25.133 [2] clauses 4.2.2 and A.4.3.1.

8.2.3.1.3 Test purpose

To verify that the UE meets the minimum requirement.

8.2.3.1.4 Method of test

8.2.3.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

This scenario implies the presence of 1 UTRAN serving cell, and 1 GSM cell to be re-selected. The UE is requested to monitor neighbouring cells on 1 UMTS carrier and 12 GSM cells. Cell 1 and cell 2 shall belong to different Location-Areas.

Table 8.2.3.1.1: Scenario 1: General test parameters for UTRAN to GSM Cell Re-selection

Pa	arameter	Unit	Value	Comment
Initial	Active cell		Cell1	
condition	Neighbour cell		Cell2	
Final-	Active cell		Cell2	
condition				
HCS				Not used
DRX cycle	length	\$	1.28	
T 4		\$	4 5	
12		S	35	

Table 8.2.3.1.2: Scenario 1: Cell re-selection UTRAN to GSM cell case (cell 1), initial conditions

Parameter	Unit	Cell 1 (L	JTRA)
		T 4	T2
UTRA RF Channel Number		Channel 1	
CPICH_Ec/lor	d₿	-10 -	
PCCPCH_Ec/lor	d₿	-12	
SCH_Ec/lor	dB	-12	
PICH_Ec/lor	dB	-15 -	
OCNS_Ec/lor	d₿	-0.9 41	
$\frac{\hat{I}_{or}}{I_{oc}}$	d₿	θ	-5
I _{oc}	d Bm/3.84- MHz	-70	
CPICH_Ec/lo	d₿	-13 -	
CPICH_RSCP	dBm	- -80	-85
Propagation Condition		-AWGN-	
Cell_selection_and_ reselection_quality_measure		CPICH E	<mark>↓</mark> ⊕
Qqualmin	dB	-20	
Qrxlevmin	dBm	-115	
UE_TXPWR_MAX_RACH	dBm	21	
Qoffset1_{s, n}	dB	C1, C2: 0	
Qhyst1	dB	θ	
Treselection	9	θ	
Ssearch _{RAT}	dB	not sent	

Table 8.2.3.1.3: Scenario 1: Cell re-selection UTRAN to GSM cell case (cell 2), initial conditions

Parameter	Unit	Cell 2 (GSM)			
rarameter	Unit	T 4	12		
Absolute RF Channel- Number		ARFCN [·]	1		
RXLEV	dBm	-90	-75		
RXLEV_ACCESS_MIN	dBm	-1()4		
MS_TXPWR_MAX_CCH	dBm	3	3		

8.2.3.1.4.2 Procedure

1) The SS activates cell 1 and 2 with T1 defined parameters in tables 8.2.3.1.4 and 8.2.3.1.5 and monitors cell 1 and 2 for random access requests from the UE.

2) The UE is switched on.

3) The SS waits for random access requests from the UE on cell 1.

- 4) After 45 s, the parameters are changed as described for T2 in tables 8.2.3.1.4 and 8.2.3.1.5.
- 5) The SS waits for random access requests from the UE. If the UE responds on cell 2 within 28 s then the number of successful tests is increased by one.

6) After 35 s, the parameters are changed as described for T1 in tables 8.2.3.1.4 and 8.2.3.1.5.

- 7) The SS waits for random access requests from the UE on cell 1.
- 8) Repeat step 4) to 7) [TBD] times.

8.2.3.1.5 Test requirements

Table 8.2.3.1.4: Scenario 1: Cell re-selection UTRAN to GSM cell case (cell 1), test requirements

Parameter	Unit	Cell 1	(UTRA)	
		T1	T2	
UTRA RF Channel Number		Channel	1	
CPICH_Ec/lor	d₿	-9.9	-10.1	
PCCPCH_Ec/lor	d₿	-12-		
SCH_Ec/lor	d₿	-12-		
PICH_Ec/lor	d₿	-15-		
OCNS_Ec/lor	d₿	-0.953	-0,928	
$\frac{\hat{I}_{or}}{I_{oc}}$	d₿	0.3	-5.3	
<u> <i>I_{oc}</i> -(Note 1)</u>	dBm/3.84- MHz	-70		
CPICH_Ec/lo (Note 2)	d₿	<u>-12.8</u>	-16.5	
CPICH_RSCP (Note2)	dBm	-79.6	-85.4	
Propagation Condition		-AWGN-		
Cell_selection_and_ reselection_quality_measure		CPICH E	c∕ N ₀	
Qqualmin	d₽	-20		
Qrxlevmin	dBm	-115		
UE_TXPWR_MAX_RACH	dBm	21		
Qoffset1 _{s, n}	d₿	C1, C2: 0		
Qhyst1	d₿	θ		
Treselection	8	θ		
Ssearch _{RAT}	d₿	not sent		

Table 8.2.3.1.5: Scenario 1: Cell re-selection UTRAN to GSM cell case (cell 2), test requirements

			Cell 2	(GSM)]
	Parameter	Unit	T1	12	1
	Absolute RF Channel Number		ARFCN -	F	
	RXLEV (Note 1)	dBm	-90	-75	
	RXLEV_ACCESS_MIN MS_TXPWR_MAX_CCH	dBm dBm	-1(•
	MS_TXPWR_MAX_CCH	dBm	3	ð	
	he the ratio (Ioc/Rxlev) _{test requirement} - the the ratio (Ioc/Rxlev) _{test requirement} - <u>Ec/Io and CPICH_RSCP levels ha</u> s. They are not settable parameters	= (Ioc/Rxlev)_{mir} we been calcula	iimum requireme	_{nt} 0.3 dB	
[FFS]%.	e total number of successful tests st				
for this	test is non zero. The Test Toleranc Minimum Requirement has been r	e for this test is	defined in (clause F.2	and the explanation of
8.2.3.2 Sce	enario 2: Only UTRA level	changed			
8.2.3.2.1	Definition and applicability				
	elay is defined as the time from a c Il and starts to send the RR Channe				
The requirements and	this test apply to the combined FD	D and GSM UE			
<u>8.2.3.2.2</u> ►	Ainimum requirement				
The cell re selection d data from GSM cell T	elay shall be less than 7.7 s + T_{BCC} S 05.08 [20].	H, where TBCC	H is the ma	ximum tii	me allowed to read BCCH-
The rate of correct cel [FFS]%.	l reselections observed during repe	ated tests shall I	oe at least 9	0% with 	a confidence level of
NOTE: The cell re where:	selection delay can be expressed as	s: Max (3* T_{meas}	_{ureFDD} , T _{meas}	_{sureGSM} +DI	XX cycle length) + T_{BCCH},
$\mathbf{T}_{ ext{measureFDD}}$	See table 4.1 in TS 25.133 [2] cl	ause 4.2.2.			
$\mathbf{T}_{ ext{measureGSM}}$	See table 4.1 in TS 25.133 [2] cl				
DRX cycle length	1.28s see Table A.4.7.A in TS 25.13	33 [2] clause A.4.	<u>3.2.</u>		
Т_{вссн}	Maximum time allowed to read According to [20], the maximun synchronized to a BCCH carrier	i time allowed t			
This gives a total of 7.	68 s + T_{BCCH}, allow 7.7 s + T_{BCCH} i	in the test case.			
The normative referen	ce for this requirement is TS 25.13	3 [2] clauses 4.2	2.2 and A.4	.3.2.	

8.2.3.2.3 Test purpose

To verify that the UE meets the minimum requirement.

8.2.3.2.4 Method of test

8.2.3.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

This scenario implies the presence of 1 UTRAN serving cell, and 1 GSM cell to be re-selected. The UE is requested to monitor neighbouring cells on 1 UMTS carrier and 12 GSM cells. Cell 1 and cell 2 shall belong to different Location-Areas.

Table 8.2.3.2.1: Scenario 2: General test parameters for UTRAN to GSM Cell Re-selection

Parameter		Unit	Value	Comment
Initial-	Active cell		Cell1	
condition	Neighbour cell		Cell2	
Final- condition	Active cell		Cell2	
HCS				Not used
DRX cycle	length	S	1.28	
T1		\$	4 5	
T2		S	12	

Table 8.2.3.2.2: Scenario 2: Cell re-selection UTRAN to GSM cell case (cell 1), initial conditions

Parameter	Unit	Cell 1 ((UTRA)	
		T 4	T2	
UTRA RF Channel Number		Channel 1	-	
CPICH_Ec/lor	d₿	-10		
PCCPCH_Ec/lor	d₿	-12		
SCH_Ec/lor	d₿	-12		
PICH_Ec/lor	d₿	-15 -		
OCNS_Ec/lor	d₿	-0.941		
$\frac{\hat{I}_{or}}{I_{oc}}$	d₿	20	\$	
-I _{oc}	dBm/3.84- MHz	-81		
CPICH_Ec/lo	dB	-10.0	19.5	
CPICH_RSCP	dBm	-70	-100	
Propagation Condition		-AWGN-		
Cell_selection_and_ reselection_quality_measure		CPICH E	<mark>∕N</mark> ⊕	
Qqualmin	dB	-20		
Qrxlevmin	dBm	-115		
UE_TXPWR_MAX_RACH	dBm	21		
Qoffset1 _{s, n}	d₿	C1, C2: 0		
Qhyst1	dB	θ		
Treselection	\$	θ		
Ssearch _{RAT}	d₿	not sent		

Table 8.2.3.2.3: Scenario 2: Cell re-selection UTRAN to GSM cell case (cell 2), initial conditions

Parameter	Unit	Cell 2	(GSM)
		T1	T2
Absolute RF Channel Number		ARFCN 1	
RXLEV	dBm	-80	-80
RXLEV_ACCESS_MIN	dBm	-104	
MS_TXPWR_MAX_CCH	dBm	33	

8.2.3.2.4.2 Procedure

1) The SS activates cell 1 and 2 with T1 defined parameters in tables 8.2.3.2.4 and 8.2.3.2.5 and monitors cell 1 and 2 for random access requests from the UE.

2) The UE is switched on.

3) The SS waits for random access requests from the UE on cell 1.

4) After 45 s, the parameters are changed as described for T2 in tables 8.2.3.2.4 and 8.2.3.2.5.

5) The SS waits for random access requests from the UE. If the UE responds on cell 2 within 9.7 s then the number of successful tests is increased by one.

6) After 12 s, the parameters are changed as described for T1 in tables 8.2.3.2.4 and 8.2.3.2.5.

7) The SS waits for random access requests from the UE on cell 1.

8) Repeat step 4) to 7) [TBD] times.

8.2.3.2.5 Test requirements

Table 8.2.3.2.4: Scenario 2: Cell re-selection UTRAN to GSM cell case (cell 1), test requirements

Parameter	Unit	Cell 1	(UTRA)
		T1	T2
UTRA RF Channel Number		Channel '	4
CPICH_Ec/lor	d₽	-9.9	-10.1
PCCPCH_Ec/lor	d₽	-12-	
SCH_Ec/lor	d₽	-12	
PICH_Ec/lor	d₽	-15 -	
OCNS_Ec/lor	d₽	-0.953	-0.941
$\frac{\hat{I}_{or}}{I_{oc}}$	d₿	20.3	-9.3
I oc (Note1)	dBm/3.84- MHz	-81	
CPICH_Ec/lo (Note2)	d₿	-9.9	-19.9
CPICH_RSCP (Note2)	dBm	-70.6	-100.4
Propagation Condition		-AWGN-	
Cell_selection_and_ reselection_quality_measure		CPICH E	/N ₀
Qqualmin	dB	-20	
Qrxlevmin	dBm	-115	
UE_TXPWR_MAX_RACH	dBm	21	
Qoffset1 _{s, n}	dB	C1, C2: 0	
Qhyst1	d₽	θ	
Treselection	8	θ	
Ssearch _{RAT}	d₿	not sent	

Table 8.2.3.2.5: Scenario 2: Cell re-selection UTRAN to GSM cell case (cell 2), test requirements

Parameter	Unit	Cell 2	(GSM)
		T1	T2
Absolute RF Channel Number		ARFCN 1	-
RXLEV (Note1)	dBm	-80	-80
RXLEV_ACCESS_MIN	dBm	-104	
MS TXPWR MAX CCH	dBm	33	

NOTE 1: For T1 the the ratio (Ioc/Rxlev)_{test requirement} = (Ioc/Rxlev)_{minimum requirement} + 0.3 dB

For T2 the the ratio (Ioc/Rxlev)_{test requirement} = (Ioc/Rxlev)_{minimum requirement} - 0.3 dB

NOTE 2: CPICH_Ec/Io and CPICH_RSCP levels have been calculated from other parameters for informationpurposes. They are not settable parameters themselves.

For the test to pass, the total number of successful tests shall be at least 90% of the cases with a confidence level of [FFS]%.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.2.4 FDD/TDD Cell Re-selection

8.2.4.1 Definition and applicability

The cell re selection delay is defined as the time from the cell quality levels change to the moment when this changemakes the UE reselect a better ranked cell, and starts to send the RRC CONNECTION REQUEST message to performa Location Registration on the new cell.

This test is for the case where the UE camps on an FDD cell and reselects to a TDD cell.

The requirements and this test apply to UEs supporting both FDD and TDD.

8.2.4.2 Minimum requirement

The cell re selection delay shall be less than 8 s with a DRX cycle length of 1,28 s. This shall be verified in more than [FFS]% of the cases with a confidence level of [FFS]%.

The normative reference for this requirement is TS 25.133 [2] clauses 4.2.2.4 and A.4.4.

8.2.4.3 Test purpose

To verify that the UE meets the minimum requirement for the case where the UE camps on an FDD cell and reselects to a TDD cell.

8.2.4.4 Method of test

8.2.4.4.1 Initial conditions

This scenario implies the presence of UTRA FDD and 1 UTRA TDD cell as given in tables 8.2.4.1, 8.2.4.2 and 8.2.4.3. The maximum repetition period of the relevant system information blocks that need to be received by the UE to camp on a cell shall be 1280 ms.

Cell 1 and cell 2 shall belong to different Location Areas.

Table 8.2.4.1: General test parameters for FDD/TDD Cell Re-selection

	Parameter		Value	Comment
Initial	Active cell-		Cell1	FDD cell
condition	Neighbour cells		Cell2	TDD cell
Final- condition	Active cell		Cell2	TDD cell
UE_T	XPWR_MAX_RACH	dBm	21	The value shall be used for all cells in the test.
	Service Class (ASC#0) Persistence value		4	Selected so that no additional delay is- caused by the random access- procedure. The value shall be used for- all cells in the test.
	HCS			Not used
	DRX cycle length	S	1.28	The value shall be used for all cells in the test.
	T1	S	15	
	T2	\$	15	

Table 8.2.4.2: Cell 1 specific test parameters for FDD/TDD Cell Re-selection

Parameter	Unit	Ce	 1
		T 4	T2
UTRA RF Channel Number		Char	nel 1
CPICH_Ec/lor	d₿	<u> </u>	Ю
P-CCPCH_Ec/lor	d₿	<u></u>	12
SCH_Ec/lor	d₿	<u> </u>	1 2
PICH_Ec/lor	dB		15
OCNS_Ec/lor	dB	-0.	941
\hat{I}_{or}/I_{oc}	dB	9	3
- H _{oc}	dBm / 3.84 MHz	4	τ ο
CPICH_RSCP	dBm	-71	-77
Propagation Condition		AW	' GN
Cell_selection_and_reselection_quality_mea		CPICH	<u>_Ec/No</u>
sure			
Qrxlevmin	dBm	-1	15
Qoffset1 _{s,n}	dB		÷
Qhyst1	d₿		Ð
Treselection	S		Ð
Sintrasearch	d₿	not	sent
Sintersearch	d₿	not	sent

Table 8.2.4.3: Cell 2 specific test parameters for FDD/TDD Cell Re-selection

Parameter	Unit	Cell 2				
DL timeslot number		0			8	
		1 4	T2	1 4	T2	
UTRA RF Channel Number			Cha	nnel 2		
P-CCPCH_Ec/lor	dB	T	3	n .	a.	
PICH_Ec/lor	d₿	n.	a.	•	3	
SCH_Ec/lor	dB		-	.9		
SCH_t _{offset}	dB		4	ю		
OCNS_Ec/lor	dB		-3	.12		
$\frac{\hat{I}_{or}}{I_{oc}}$	dB	-4	2	-4	2	
P-CCPCH RSCP	dBm	-77	-71	n.a.	n.a.	
- I oc	dBm/ 3,8 4 MHz		2	70		
Propagation Condition			A٨	/GN		
Qrxlevmin	dBm		-1	-03		
Qoffset2 _{s,n}	d₿			θ		
Qhyst2	dB	θ				
Treselection	\$	θ				
Sintrasearch	dB	not sent				
Sintersearch	dB	not sent				
Note that the transmit energy p duration when the SCH is prese			I is averag	ed over the	256 chip	

8.2.4.4.2 Procedures

- a) The SS activates cell 1 and cell 2 with T1 defined parameters and monitors them for random access requests from the UE.
- b) The UE is switched on.
- c) The SS waits for random access requests from the UE.
- d) After 15 s, the parameters are changed as described for T2.
- e) The SS waits for random access request from the UE.
- f) After another 15 s, the parameters are changed as described for T1.
- g) The SS waits for random access requests from the UE.
- h) Repeat step d) to g) [TBD] times.

8.2.4.5 Test requirements

1) In step c), after the UE has responded on cell 1, it shall not respond on any other cell (cell selection).

2) In step e), the UE shall respond on cell 2 within 8 s in more than [FFS]% of the cases.

3) In step g), the UE shall respond on cell 1.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.3 UTRAN Connected Mode Mobility

8.3.1 FDD/FDD Soft Handover

8.3.1.1 Definition and applicability

The active set update delay of the UE is defined as the time from the end of the last TTI containing an RRC message implying soft handover to the switch off of the old downlink DPCH.

The requirements and this test apply to the FDD UE.

8.3.1.2 Minimum requirement

The active set update delay shall be less than 60 ms in CELL_DCH state. The rate of correct soft handovers observedduring repeated tests shall be at least 90% with a confidence level of [FFS]%.

The active set update delay is defined as the time from when the UE has received the ACTIVE SET UPDATE messagefrom UTRAN, or at the time stated through the activation time when to perform the active set update, to the time whenthe UE successfully uses the set of radio links stated in that message for power control.

The active set update delay is depending on the number of known cells referred to in the ACTIVE SET UPDATE message. A cell is known if either or both of the following conditions are true:

- the UE has had radio links connected to the cell in the previous (old) active set.
- the cell has been measured by the UE during the last 5 seconds and the SFN of the cell has been decoded by the UE.

And the phase reference is the primary CPICH.

The active set update delay shall be less than 50+10*KC+100*OC ms, where

The normative reference for this requirement is TS 25.133 [2] clauses 5.1.2 and A.5.1.1.

8.3.1.3 Test purpose

To verify that the UE meets the minimum requirement.

8.3.1.4 Method of test

8.3.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in table 8.3.1.1.1 and 8.3.1.1.2 below. In the measurement control information it is indicated to the UE that event triggered reporting with Event 1A shall be used, and that CPICH Ec/Io and SFN CFN observed time difference shall be reported together with Event 1A. The test consists of five successive time periods, with a time duration of T1, T2, T3, T4 and T5 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

UTRAN shall send an Active Set Update command with activation time "now", adding cell 2 to the active set. The Active Set Update message shall be sent to the UE so that the whole message is available at the UE at the beginning of T4. The RRC procedure delay is defined in TS 25.133 [2].

Par	ameter	Unit	Value	Comment
DCH parameters			DL and UL Reference Measurement Channel 12.2- kbps	As specified in clause C.3.1 and C.2.1
Power Contro	əl		On	
Target quality	y value on-	BLER	0.01	
Initial-	Active cell		Cell 1	
conditions	Neighbouring cell		Cell 2	
Final- condition	Active cell		Cell 2	
Reporting rar	nge	d₿	3	Applicable for event 1A and 1B
Hysteresis		dB	θ	
₩			4	Applicable for event 1A and 1B
Reporting de threshold	activation-		θ	Applicable for event 1A
Time to Trigg	jer	ms	θ	
Filter coeffici	ent		θ	
T1		8	5	
T2		\$	3	
T3		S	0.5	
14		ms	60	This is the requirement on active set- update delay, see clause 5.1.2.2, where KC=1 and OC=0.
T5		\$	2	

Table 8.3.1.1.1: General test parameters for Soft handover

Table 8.3.1.1.2: Cell specific test parameters for Soft handover

Parameter	Unit	t Cell 1					Cell 2					
		Ŧ 4	T2	13	T 4	T5	1 4	T2	T3	T 4	Ŧ5	
CPICH_Ec/lor	dB			-10					-10			
PCCPCH_Ec/lor	dB			-12					-12			
SCH_Ec/lor	dB			-12					-12			
PICH_Ec/lor	d₿			-15					-15			
DPCH_Ec/lor	d₿	Note1	Note1	Not	ie1	N/A	N/A	N/A	Note3	Note1		
ocns		Note2	Note2	Not	te2	-0.941	-0.9 41	-0.941	Note2	Note2		
$\frac{\hat{H}_{or}}{H_{oc}}$	dB	θ	0 <u>2.91</u> <u>2.91</u> <u>2.91</u>			2.91	-Inf	2.91	2.91	2. (94	
I _{oc}	dBm/ 3.84- MHz		-70									
CPICH_Ec/lo	d₿	-13	-14	-1 4		-14	-Inf	-1 4	-14	-4	4	
Propagation Condition		AWGN										

Note 1: The DPCH level is controlled by the power control loop

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to lor

Note 3: The DPCH level is controlled by the power control loop. The initial power shall be set equal to the DPCH_Ec/lor of Cell 1 at the end of T2.

8.3.1.4.2 Procedure

1) The RF parameters are set up according to T1.

- 2) The UE is switched on.
- 3) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.4 without Compressed mode parameters.
- [Editor's note: subclause 7.3.4 in TS 34.108 (Message sequence chart for Handover Test procedure) is not yetspecified]

- 4) SS shall transmit a MEASUREMENT CONTROL message.
- 5) 5 seconds after step4 has completed, the SS shall switch the power settings from T1 to T2.
- 6) UE shall transmit a MEASUREMENT REPORT message triggered by event 1A containing the CFN SFN observed time difference between cell 1 and cell 2.
- 7) At the beginning of T3 the downlink DPCH of cell 2 shall be activated.
- 8) SS shall send an ACTIVE SET UPDATE message with activation time "now ", adding cell 2 to the active set. The ACTIVE SET UPDATE message shall be sent to the UE so that the whole message is available at the UE at the beginning of T4.
- 9) At the beginning of T5 the DPCH from cell 1 shall be switched off.
- 10) The UE downlink BLER shall be measured during time period T5. If the UE downlink BLER does not exceed the downlink BLER target, i.e. 1%, during time period T5 then the number of successful tests is increased by one.
- 11)5 seconds after step10 has completed, the UE is switched off. Any timing information of cell 2 is deleted in the UE.

12)Repeat step 1 11[TBD] times

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message (step 4):

Information Element/Group name	Value/Remark
Message Type (10.2.17)	
UE information elements	
RRC transaction identifier	θ
-Integrity check info	Not Present
Measurement Information elements	
Measurement Identity	4
Measurement Command (10.3.7.46)	Modify
Measurement Reporting Mode (10.3.7.49)	
-Measurement Report Transfer Mode	AM RLC
-Periodical Reporting / Event Trigger Reporting Mode	Event trigger
-Additional measurements list (10.3.7.1)	Not Present
-CHOICE Measurement type	Intra-frequency measurement
-Intra-frequency measurement (10.3.7.36)	initia nequency measurement
-Intra-frequency measurement objects list (10.3.7.33)	Not Present
-Intra-frequency measurement quantity (10.3.7.38)	
	0
	FDD
Measurement quantity	CPICH_Ec/N0
-Intra-frequency reporting quantity (10.3.7.41)	
-Reporting quantities for active set cells (10.3.7.5)	
	No report
-Cell synchronisation information reporting indicator	TRUE (Note 1)
Cell Identity reporting indicator	TRUE
	FDD
	TRUE
	TRUE
	TRUE
-Reporting quantities for monitored set cells (10.3.7.5)	
	No report
	No report
-Cell synchronisation information reporting indicator	TRUE (Note 1)
	TRUE
	FDD
	TRUE
	TRUE
-Pathloss reporting indicator	TRUE
-Reporting quantities for detected set cells (10.3.7.5)	Not Present
-Reporting cell status (10.3.7.61)	Not Present
Measurement validity (10.3.7.51)	Not Present
-CHOICE report criteria	Intra-frequency measurement reporting
	criteria
-Intra-frequency measurement reporting criteria (10.3.7.39)	
-Parameters required for each event	2
-Intra-frequency event identity	Event 1A
	Active set cells and monitored set cells
	3 dB
-Cells forbidden to affect Reporting Range	Not Present
—- - ₩	1.0
	0 dB
	Not Present
	θ
-Replacement activation threshold	Not Present
	0 ms
-Amount of reporting	Infinity
-Reporting interval	0 ms (Note 2)
-Reporting cell status	Not Present
-Intra-frequency event identity	Event 1B
Triggoring condition 1	Active set cells and monitored set cells
	3 dB
-Cells forbidden to affect Reporting Range	Not Present
_	1.0
	0 dB
	Not Present
	Not Present
 Reporting deactivation threshold 	
—-Reporting deactivation threshold —-Replacement activation threshold	Not Present

Information Element/Group name	Value/Remark
	Not Present
	Not Present
Reporting cell status	Not Present
Physical channel information elements	
-DPCH compressed mode status info (10.3.6.34)	Not Present
Note 1: The SFN-CFN observed time difference is calculated	from the OFF and Tm parameters contained
in the IE "Cell synchronisation information ", TS 25.33	1, clause 10.3.7.6. According to TS 25.331,
8.6.7.7, this IE is included in MEASUREMENT REPO	
reporting indicator" in IE "Cell reporting quantities" TS	25.331, clause 10.3.7.5 is set to TRUE in
MEASUREMENT CONTROL.	
Note 2: Reporting interval = 0 ms means no periodical reportir	ng

ACTIVE SET UPDATE message (step 8):

Information Element/Group name	Type and reference	Value/Remark
Message Type	Message Type	
UE information elements		
RRC transaction identifier	RRC transaction identifier	θ
	10.3.3.36	
Integrity check info	Integrity check info 10.3.3.16	Not Present
Integrity protection mode info	Integrity protection mode info-	Not Present
	10.3.3.19	
Ciphering mode info	Ciphering mode info 10.3.3.5	Not Present
Activation time	Activation time 10.3.3.1	"now".
New U-RNTI	U-RNTI 10.3.3.47	Not Present
CN information elements		
CN Information info	CN Information info 10.3.1.3	Not Present
Phy CH information elements		
Uplink radio resources		
Maximum allowed UL TX power	Maximum allowed UL TX	33 dBm
	power 10.3.6.39	
Downlink radio resources		
Radio link addition information		Radio link addition information
		required for each RL to add
Radio link addition information	Radio link addition information	
	10.3.6.68	
Radio link removal information		Radio link removal information
		required for each RL to remove
Radio link removal information	Radio link removal information	Not Present
	10.3.6.69	
TX Diversity Mode	TX Diversity Mode 10.3.6.86	None
SSDT information	SSDT information 10.3.6.77	Not Present

Radio link addition information

Information Element/Group name	Need	Multi	Type and reference	Value/Remark
Primary CPICH info	₩₽		Primary CPICH info 10.3.6.60	Same as defined in cell2
Downlink DPCH info for each RL	MP		Downlink- DPCH info- for each RL- 10.3.6.21	See below
TFCI combining indicator	₩₽		TFCI- combining- indicator- 10.3.6.81	FALSE
SCCPCH Information for FACH	OP		SCCPCH- Information- for FACH 10.3.6.70	Not Present

Downlink DPCH info for each RL

Information Element/Group name	Type and reference	Value/Remark
CHOICE mode		
>FDD		
>>Primary CPICH usage for channel estimation	Primary CPICH usage for channel estimation	Primary CPICH may be used
	10.3.6.62	
>>DPCH frame offset	Integer(038144 by step of	This should be refriected by the
	256)	IE" Cell synchronisation
		information" in received
		MEASUREMENT REPORT
		message
>Secondary CPICH info	Secondary CPICH info	Not Present
	10.3.6.73	
>>DL channelisation code		
>>>Secondary scrambling code	Secondary scrambling	Not Present
	code 10.3.6.74	
>>Spreading factor	Integer(4, 8, 16, 32, 64, 128, 256, 512)	128
>>>Code number	Integer(0Spreading factor	0
	<u></u>	
Scrambling code change	Enumerated (code change, no code change)	No code change
>>TPC combination index	TPC combination index	0
	10.3.6.85	
>>SSDT Cell Identity	SSDT Cell Identity	Not Present
	10.3.6.76	
>>Closed loop timing adjustment mode	Integer(1, 2)	Not Present

NOTE 1: These IEs are present when the UE needs to listen to system information on FACH in CELL_DCH state.

8.3.1.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.3.2 FDD/FDD Hard Handover

8.3.2.1 FDD/FDD Hard Handover to intra-frequency cell

8.3.2.1.1 Definition and applicability

The hard handover delay of the UE is defined as the time from the end of the last TTI containing an RRC message implying hard handover to the transmission of the new uplink DPCCH.

The requirements and this test apply to the FDD UE.

8.3.2.1.2 Minimum requirement

The interruption time shall be less than 110 ms in CELL_DCH state in the single carrier case. The rate of correct handovers observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

The hard handover delay D_{handover} equals the RRC procedure delay defined in TS 25.331 clause 13.5.2 plus the interruption time stated in TS 25.133 clause 5.2.2.2 as follows:

The interruption time, i.e. the time between the last TTI containing a transport block on the old DPDCH and the time the UE starts transmission of the new uplink DPCCH, is depending on whether the target cell is known for the UE or not.

If intra frequency hard handover is commanded or inter frequency hard handover is commanded when the UE does notneed compressed mode to perform inter-frequency measurements, the interruption time shall be less than T_{interrupt1}

 $T_{interrupt1=}T_{IU}+40+20*KC+150*OC+10*F_{max}-ms$

where

 T_{IU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be up to oneframe (10 ms).

 F_{max} denotes the maximum number of radio frames within the transmission time intervals of all transport channels that are multiplexed into the same CCTrCH.

Note: The figure 40 ms is the time required for measuring the downlink DPCCH channel as stated in TS 25.214clause 4.3.1.2.

In the interruption requirement T_{interrupt1} a cell is known if either or both of the following conditions are true:

the UE has had radio links connected to the cell in the previous (old) active set

the cell has been measured by the UE during the last 5 seconds and the SFN of the cell has been decoded by the UE.

The normative reference for this requirement is TS 25.133 [2] clauses 5.2.2 and A.5.2.1.

8.3.2.1.3 Test purpose

To verify that the UE meets the minimum requirement.

8.3.2.1.4 Method of test

8.3.2.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in table 8.3.2.1.1 and 8.3.2.1.2 below. In the measurement control information it isindicated to the UE that event triggered reporting with Event 1A and 1B shall be used, and that CPICH Ec/Io and SFN-CFN observed timed difference shall be reported together with Event 1A. The test consists of three successive timeperiods, with a time duration of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have anytiming information of cell 2.

UTRAN shall send a PHYSICAL CHANNEL RECONFIGURATION with activation time "now" with one active cell, cell 2. The Physical Channel reconfiguration message shall be sent to the UE so that the whole message is available at the UE the RRC procedure delay prior to the beginning of T3. The RRC procedure delay is defined in TS 25.331 [8].

N312 shall have the smallest possible value i.e. only one insync is required.

Parameter Unit		Value	Comment	
DCH parameters		DL and UL Reference	As specified in clause C.3.1 and C.2.1	
	•		Measurement Channel 12.2 kbps	
Power Contro	əl		On	
Target qualit<u></u> DTCH	y value on	BLER	0.01	
Initial	Active cell		Cell 1	
conditions	Neighbourin g cell		Cell 2	
Final- condition	Active cell		Cell 2	
Reporting rar	nge	dB	3	Applicable for event 1A and 1B
Hysteresis		d₿	θ	
₩			4	Applicable for event 1A and 1B
Reporting deactivation- threshold		θ	Applicable for event 1A	
Time to Trigger ms		θ		
Filter coefficient		θ		
T 4 s		5		
T2		S	5	
13		\$	5	

Table 8.3.2.1.1: General test parameters for Handover to intra-frequency cell

Table 8.3.2.1.2: Cell specific test parameters for Handover to intra-frequency cell

Parameter	Unit	Cell 1			Cell 2			
		T1	T2	T3	T1 -	T2	T3	
CPICH_Ec/lor	dB		-10			-10	•	
PCCPCH_Ec/lor	dB		-12			-12		
SCH_Ec/lor	dB		-12			-12		
PICH_Ec/lor	dB		-15			-15		
DPCH_Ec/lor	dB	Note1	Note1	Note3	N/A	N/A	Note1	
OCNS		Note2	Note2	Note2	-0.941	-0.941	Note2	
$\frac{\hat{I}_{or}}{I_{oc}}$	dB	0 6.97			-Infinity	inity 5.97		
I _{oc}	dBm/				70			
- <i>oc</i>	3.84							
	MHz							
CPICH_Ec/lo	dB		-13		-Infinity	-1	4	
Propagation				Aγ	VGN			
Condition-								
Note 1: The DP(CH level is	controlled by th	e power contro	Hoop-				
					al power from th	e cell to be equ	l al to l_{or.}	
Note 3: The DP(CH may no	t be power con	trolled by the po	wer control loo	p.			

8.3.2.1.4.2 Procedure

1) The RF parameters are set up according to T1.

2) The UE is switched on.

3) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.4.

[Editor's note: subclause 7.3.4 in TS 34.108 (Message sequence chart for Handover Test procedure) is not yet specified]

4) SS shall transmit a MEASUREMENT CONTROL message.

5) 5 seconds after step4 has completed, the SS shall switch the power settings from T1 to T2

6) UE shall transmit a MEASUREMENT REPORT message triggered by event 1A

- 7) SS shall transmit a PHYSICAL CHANNEL RECONFIGURATION message with activation time set to "now". SS shall transmit the whole message such that it will be available at the UE no later than a period equals to the RRC procedure delay (= 80 ms) prior to the beginning of T3.
- 8) After 5 seconds from the beginning of time period T2, the SS shall switch the power settings from T2 to T3
- 9) UE shall transmit a PHYSICAL CHANNEL RECONFIGURATION COMPLETE message on the UL DCCH of cell 2. If the UE transmits the UL DPCCH to cell 2 less than 110 ms from the beginning of time period T3 then the number of successful tests is increased by one.
- 10) After 5 seconds from the beginning of time period T3, the UE is switched off. Any timing information of cell 2is deleted in the UE.
- 11)Repeat step 1 10 [TBD] times

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message (step 4):

Information Element/Group name	Value/Remark
Message Type (10.2.17)	
UE information elements	
RC transaction identifier	θ Net Descent
Integrity check info	Not Present
Measurement Information elements	
Measurement Identity	4
-Measurement Command (10.3.7.46)	Modify
-Measurement Reporting Mode (10.3.7.49)	
-Measurement Report Transfer Mode	AM RLC
-Periodical Reporting / Event Trigger Reporting Mode	Event trigger
-Additional measurements list (10.3.7.1)	Not Present
-CHOICE Measurement type	Intra-frequency measurement
-Intra-frequency measurement (10.3.7.36)	
-Intra-frequency measurement objects list (10.3.7.33)	Not Present
Intra-frequency measurement quantity (10.3.7.38)	
Filter coefficient (10.3.7.9)	0
Measurement quantity	CPICH_Ec/N0
-Intra-frequency reporting quantity (10.3.7.41)	
-Reporting quantities for active set cells (10.3.7.5)	
	No report
	TRUE (Note 1)
	TRUE
	FDD
	TRUE
	TRUE
Pathloss reporting indicator	TRUE
Reporting quantities for monitored set cells (10.3.7.5)	
	No report
Cell synchronisation information reporting indicator	TRUE (Note 1)
	TRUE
	FDD
	TRUE
	TRUE
	TRUE
	Not Present
Reporting cell status (10.3.7.61)	Not Present
	Not Present
	Intra-frequency measurement reporting
lates for every second se	criteria
Intra-frequency measurement reporting criteria (10.3.7.39)	
-Parameters required for each event	2
-Intra-frequency event identity	Event 1A
-Triggering condition 2	Active set cells and monitored set cells
	3 dB
	Not Present
W	1.0
— -Hysteresis	0 dB
	Not Present
	θ
	Not Present
Time to trigger	0 ms
	Infinity
	0 ms (Note 2)
	Not Present
	Event 1B
-Triggering condition 1	Active set cells and monitored set cells
	3 dB
	Not Present
 Reporting Range Constant Cells forbidden to affect Reporting Range 	Not Present
 -Reporting Range Constant -Cells forbidden to affect Reporting Range -W 	1.0
 -Reporting Range Constant -Cells forbidden to affect Reporting Range -W Wsteresis 	1.0 0 dB
 -Reporting Range Constant -Cells forbidden to affect Reporting Range -W -Hysteresis -Threshold used frequency 	1.0 0 dB Not Present
 Reporting Range Constant Cells forbidden to affect Reporting Range W Hysteresis 	1.0 0 dB

Information Element/Group name	Value/Remark					
	Not Present					
	Not Present					
	Not Present					
Physical channel information elements						
-DPCH compressed mode status info (10.3.6.34)	Not Present					
Note 1: The SFN-CFN observed time difference is calculated	from the OFF and Tm parameters contained					
in the IE "Cell synchronisation information ", TS 25.331, clause 10.3.7.6. According to TS 25.331,						
8.6.7.7, this IE is included in MEASUREMENT REPORT if IE "Cell synchronisation information-						
reporting indicator" in IE "Cell reporting quantities" TS 25.331, clause 10.3.7.5 is set to TRUE in-						
MEASUREMENT CONTROL.						
Note 2: Reporting interval = 0 ms means no periodical reportir	ng					

PHYSICAL CHANNEL RECONFIGURATION message (step 7):

Information Element	Value/Remark
Message Type	
UE Information Elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
-Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	"now"
-New U-RNTI	Not Present
-New C-RNTI	Not Present
-RRC State Indicator	CELL_DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	
-CN Information info	Not Present
UTRAN mobility information elements	
-URA identity	Not Present
RB information elements	
-Downlink counter synchronisation info	Not Present
PhyCH information elements	
-Frequency info (10.3.6.36)	
CHOICE mode	FDD
UARFCN-uplink(Nu)	Same uplink UARFCN as used for cell 2
	Same downlink UARFCN as used for cell :
Uplink radio resources	
-Maximum allowed UL TX power	33 dBm
-CHOICE channel requirement	Uplink DPCH info
Uplink DPCH info (10.3.6.88)	
Uplink DPCH power control info (10.3.6.91)	
CHOICE mode	FDD
	-6dB
PC Preamble	1 frame
	7 frames
Power Control Algorithm	Algorithm1
	1dB
	EDD
Scrambling code rumber	0 (0 to 16777215)
	Not Present(1)
	64
	Not Present(0)
Puncturing Limit	TBD
Downlink radio resources	555
-CHOICE mode	FDD
Downlink PDSCH information	Not Present
-Downlink information common for all radio links (10.3.6.24)	
Downlink DPCH info common for all RL (10.3.6.18)	
	Initialise
CFN-targetSFN frame offset	Not Present
Downlink DPCH power control information (10.3.6.23)	
	0 (single)
	FDD
Power offset P _{Pilot-DPDCH}	TBD
	Not Present
	128
	Fixed
	TRUE
	128
Number of bits for Pilot bits(SF=128,256)	8
	EDD
	Not Present
TX Diversity mode (10.3.6.86)	None Not Dragger
SSDT information (10.3.6.77)	Not Present
Default DPCH Offset Value (10.3.6.16)	θ
	0 1

Information Element	Value/Remark
	FDD
Primary CPICH info (10.3.6.60)	
Primary scrambling code	350
PDSCH with SHO DCH info (10.3.6.47)	Not Present
PDSCH code mapping (10.3.6.43)	Not Present
Downlink DPCH info for each RL (10.3.6.21)	
	FDD
Primary CPICH usage for channel estimation	Primary CPICH may be used
	0 chips
	Not Present
	4
Spreading factor	128
Code number	θ
	No change
	θ
	Not Present
	Not Present
SCCPCH information for FACH (10.3.6.70)	Not Present

MEASUREMENT REPORT message for Inter frequency test cases

This message is common for all inter frequency test cases in clause 8.7 and is described in Annex I.

8.3.2.1.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

Note: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.3.2.2 FDD/FDD Hard Handover to inter-frequency cell

8.3.2.2.1 Definition and applicability

The hard handover delay is defined as the time from the end of the last TTI containing an RRC message implying hardhandover to the transmission of the new uplink DPCCH.

The requirements and this test apply to the FDD UE.

8.3.2.2.2 Minimum requirement

The interruption time shall be less than 140 ms in CELL_DCH state in the dual carrier case. The rate of correcthandovers observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

The hard handover delay D_{handover} equals the RRC procedure delay defined in TS 25.331 clause 13.5.2 plus the interruption time stated in TS 25.133 clause 5.2.2.2 as follows:

If inter frequency hard handover is commanded and the UE needs compressed mode to perform inter frequencymeasurements, the interruption time shall be less than T_{interrupt2}

 $T_{interrupt2} = T_{IU} + 40 + 50 * KC + 150 * OC + 10 * F_{max} ms$

In the interruption requirement Tinterrupt2 a cell is known if:

The phase reference is the primary CPICH.

The normative reference for this requirement is TS 25.133 [2] clauses 5.2.2 and A.5.2.2.

8.3.2.2.3 Test purpose

To verify that the UE meets the minimum requirement.

8.3.2.2.4 Method of test

8.3.2.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in table 8.3.2.2.1 and 8.3.2.2.2 below. The test consists of three successive time periods, with a time duration of T1, T2 and T3 respectively. In the measurement control information it is indicated to the UE that event triggered reporting with Event 2C shall be used. The CPICH Ec/I0 of the best cell on the unused frequency shall be reported together with Event 2C reporting. At the start of time duration T1, the UE may not have any timing information of cell 2.

UTRAN shall send a PHYSICAL CHANNEL RECONFIGURATION with activation time "now" with one active cell, cell 2. The Physical Channel reconfiguration message shall be sent to the UE so that the whole message is available at the UE the RRC procedure delay prior to the beginning of T3. The RRC procedure delay is defined in TS 25.331 [8].

N312 shall have the smallest possible value i.e. only one insync is required.

Table 8.3.2.2.1: General test parameters for Handover to inter-frequency cell

Para	Parameter L		Value Value	Comment
DCH param	eters		DL and UL Reference- Measurement Channel 12.2- kbps	As specified in clause C.3.1 and C.2.1
Power Cont	rol		On	
Target quali	ty value on-	BLER	0.01	
Compressed	d mode		A.22 set 1	As specified in TS 34.121 clause C.5.
Initial	Active cell		Cell 1	
conditions	Neighbour- cell		Cell 2	
Final conditions	Active cell		Cell 2	
Threshold n frequency	on used	d₿	-18	Absolute Ec/I0 threshold for event 2C
Reporting ra	ange	dB	4	Applicable for event 1A
Hysteresis	0	dB	θ	
Ŵ			4	Applicable for event 1A
W-non-used	frequency		4	Applicable for event 2C
Reporting deactivation- threshold			0	Applicable for event 1A
Time to Trigger ms		ms	θ	
Filter coeffic			θ	
T1		\$	5	
T2		\$	10	
T3		S	5	

Table 8.3.2.2.2: Cell Specific parameters for Handover to inter-frequency cell

Parameter	Unit	Cell 1			Cell 2			
		T1	T2	T3	T1 -	T2	T3	
UTRA RF Channel			Channel 1			Channel 2		
Number								
CPICH_Ec/lor	dB		-10			-10		
PCCPCH_Ec/lor	dB		-12			-12		
SCH_Ec/lor	dB		-12			-12		
PICH_Ec/lor	dB		-15			-15		
DPCH_Ec/lor	dB	Note1	Note1	Note3	N/A	N/A	Note1	
OCNS		Note2	Note2	Note2	-0.941	-0.941	Note2	
$\frac{\hat{H}_{or}}{H_{oc}}$	d₿		θ		-Infinity	-1.8	-1.8	
<u> </u>	dBm/				70		•	
TOC	3.84							
	MHz							
CPICH_Ec/lo	d₿		-13		-Infinity	-4	4	
Propagation				AV	/GN			
Condition-								
Note 1: The DPC	H level is	controlled by th	ne power contro	Hoop-				
Note 2: The powe	er of the C	CNS channel t	hat is added sh	all make the tot	al power from th	ne cell to be equ	i al to l_{or.}	
Note 3: The DPC	H may no	t be power con	trolled by the po	wer control loo	p.			

8.3.2.2.4.2 Procedure

- 1) The RF parameters are set up according to T1.
- 2) The UE is switched on.
- 3) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.4 with Compressed mode parameters as in Table 8.3.2.2.1.
- 4) SS shall transmit a MEASUREMENT CONTROL messages.
- 5) 5 seconds after step4 has completed, the SS shall switch the power settings from T1 to T2
- 6) UE shall transmit a MEASUREMENT REPORT message triggered by event 2C
- 7) SS shall transmit a PHYSICAL CHANNEL RECONFIGURATION message with activation time "now". SS shall transmit the whole message such that will be is available at the UE no later than a period equals to the RRC procedure delay (= 80 ms) prior to the beginning of T3.

8) After 10 seconds from the beginning of time period T2, the SS shall switch the power settings from T2 to T3

- 9) UE shall transmit a PHYSICAL CHANNEL RECONFIGURATION COMPLETE message on the UL DCCH of cell 2. If the UE transmits the UL DPCCH to cell 2 less than 140 ms from the beginning of time period T3 then the number of successful tests is increased by one.
- 10) After 5 seconds from the beginning of time period T3, the UE is switched off. Any timing information of cell 2is deleted in the UE.
- 11)Repeat step 1 10 [TBD] times

Specific Message Contents

All messages indicated belowabove shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message, event 2C (step 4):

Information Element/Group name	Value/Remark
Message Type (10.2.17)	
UE information elements	
RRC transaction identifier	0
-Integrity check info	Not Present
Measurement Information elements	
Measurement Identity	2
Measurement Command (10.3.7.46)	Setup
Measurement Reporting Mode (10.3.7.49)	
-Measurement Report Transfer Mode	AM RLC
-Periodical Reporting / Event Trigger Reporting Mode	Event trigger
Additional measurements list (10.3.7.1)	Not Present
CHOICE Measurement type	Inter-frequency measurement
-Inter-frequency measurement (10.3.7.16)	
-Inter-frequency measurement objects list (10.3.7.13)	
- CHOICE Inter-frequency cell removal	Not Present
- New Inter frequency cells	Not Present
- Inter frequency cell id	Δ.
	₩
— Frequency info — - CHOICE modo	EDD
	FDD
	Not Present
- UARFCN downlink(Nd)	Same frequency as "Channel2" in Table-
	<u>8.3.2.2.2</u>
Cell info	
- Cell individual offset	Not Present
 Reference time difference to cell 	Not Present
- Read SFN indicator	TRUE
- CHOICE mode	FDD
- Primary CPICH info	
- Primary scrambling code	Set to Primary scrambling code of Cell2
- Primary CPICH Tx Power	Set to Primary CPICH Tx Power of Cell2
	described in Table 8.3.2.2.2
Ty Diversity Indicator	FALSE
	Set to Cell Selection and Re-selection inf
- Cell Selection and Re-selection into	
	of Cell2
Cell for measurement	Not Present
-Inter-frequency measurement quantity (10.3.7.18)	
	Inter-frequency reporting criteria
-Inter-frequency reporting criteria	
-Filter coefficient	θ
	FDD
	CPICH Ec/N0
-Inter-frequency reporting quantity (10.3.7.21)	
	FALSE
-Frequency quality estimate	FALSE
-Non frequency related cell reporting quantities (10.3.7.5)	TALOL
SEN-SEN observed time difference reporting indicator	Type 1
	Type 1 TRUE
Cell Identity reporting indicator	TRUE
	FDD
	TRUE
	TRUE
-Pathloss reporting indicator	TRUE
-Reporting cell status (10.3.7.61)	
	Report cells within monitored set on non-
•	used frequency
-Maximum number of reported cells per reported non-used	4
frequency	
-Measurement validity (10.3.7.51)	Not Present
Inter-frequency set update (10.3.7.22)	Not Present
	Inter-frequency measurement reporting
	criteria
-Inter-frequency measurement reporting criteria (10.3.7.19)	
-Parameters required for each event	1
Inter-frequency event identity (10.3.7.14)	Event 2C
-Threshold used frequency	Not Present

Information Element/Group name	Value/Remark
	Not Present
	0 dB
Time to trigger	0 ms
	Report cells within monitored set on non-
	used frequency
	4
frequency	
Parameters required for each non-used frequency	4
	-18 dB
	4
Physical channel information elements	
-DPCH compressed mode status info (10.3.6.34)	Not Present

PHYSICAL CHANNEL RECONFIGURATION message (step 7):

Information Element	Value/Remark
Message Type	
UE Information Elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
-Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	"now"
-New U-RNTI	Not Present
-New C-RNTI	Not Present
-RRC State Indicator	CELL_DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	
-CN Information info	Not Present
UTRAN mobility information elements	
-URA identity	Not Present
RB information elements	
-Downlink counter synchronisation info	Not Present
RB with PDCP information list	Not Present
>>RB with PDCP information	Not Present
PhyCH information elements	
-Frequency info (10.3.6.36)	
CHOICE mode	FDD
UARFCN uplink(Nu)	Same uplink UARFCN as used for cell 2
	Same downlink UARFCN as used for cell
Uplink radio resources	
-Maximum allowed UL TX power	33 dBm
-CHOICE channel requirement	Uplink DPCH info
Uplink DPCH info (10.3.6.88)	
	FDD
	-6dB
	1 frame
	7 frames
	Algorithm1
	• • • • • • • • • • • • • • • • • • •
	FDD
Scrambling code type	Long
Scrambling code number	0 (0 to 16777215)
Number of DPDCH	Not Present(1)
	64
	TRUE
Number of FBI bit	Not Present(0)
Puncturing Limit	TBD
Downlink radio resources	
-CHOICE mode	FDD
Downlink PDSCH information	Not Present
-Downlink information common for all radio links (10.3.6.24)	
Downlink DPCH info common for all RL (10.3.6.18)	
Timing indicator	Initialise
CFN-targetSFN frame offset	Not Present
Downlink DPCH power control information (10.3.6.23)	
	0 (single)
	FDD
-Power offset P _{Pilot DPDCH}	TBD
	Not Present
	128
	Fixed
FIXED OF FIEXIDIE POSITION TFCI existence	TRUE
	128
	8
CHOICE mode	FDD
DPCH compressed mode info (10.3.6.33)	
- Transmission gap pattern sequence	4
- TGPSI	4
- TGPS Status Flag	deactivate

Information Element	Value/Remark
- TGCFN	Not Present
- Transmission gap pattern sequence configuration	Not Present
parameters	
-TX Diversity mode (10.3.6.86)	None
SSDT information (10.3.6.77)	Not Present
-Default DPCH Offset Value (10.3.6.16)	θ
-Downlink information per radio link list	4
-Downlink information for each radio link (10.3.6.27)	
	FDD
Primary CPICH info (10.3.6.60)	
Primary scrambling code	350
PDSCH with SHO DCH info (10.3.6.47)	Not Present
PDSCH code mapping (10.3.6.43)	Not Present
Downlink DPCH info for each RL (10.3.6.21)	
	FDD
Primary CPICH usage for channel estimation	Primary CPICH may be used
	0 chips
	Not Present
	4
	128
	θ
	No change
	θ
	Not Present
	Not Present
SCCPCH information for FACH (10.3.6.70)	Not Present

MEASUREMENT REPORT message for Inter frequency test cases

This message is common for all inter frequency test cases in clause 8.7 and is described in Annex I.

8.3.2.2.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

Note: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.3.3 FDD/TDD Handover

8.3.3.1 Definition and applicability

The hard handover delay is defined as the time from the end of the last TTI containing an RRC message implying hardhandover to the transmission of the new uplink DPCH.

The requirements and this test apply to the combined FDD and TDD UE.

8.3.3.2 Minimum requirement

The hard handover delay shall be less than 70 ms in CELL_DCH state in the dual carrier case. The rate of correct handovers observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

The hard handover delay D_{handover} equals the RRC procedure delay defined in TS 25.331 clause 13.5.2 plus the interruption time stated in TS 25.133 clause 5.3.2.2 as follows:

If FDD/TDD handover is commanded, the interruption time shall be less than,

-T_{interrupt}=T_{offset}+T_{UL}+30*F_{SFN}+20*KC+180*UC ms

where,

∓ _{offset}	Equal to 10 ms, the frame timing uncertainty between the old cell and the target cell and the target cell and the time that can elapse until the appearance of a Beacon channel
Ŧ _{UL}	Equal to 10 ms, the time that can elapse until the appearance of the UL timeslot in the- target cell
F SEN	Equal to 1 if SFN decoding is required and equal to 0 otherwise
KC	Equal to 1 if a known target cell is indicated in the RRC message implying FDD/TDD- handover and equal to 0 otherwise
UC	Equal to 1 if an unknown target cell is indicated in the RRC message implying FDD/TDD- handover and equal to 0 otherwise

An inter frequency TDD target cell shall be considered known by the UE, if the target cell has been measured by the UE during the last 5 seconds.

The phase reference is the primary CPICH.

The normative reference for this requirement is TS 25.133 [2] clauses 5.3.2 and A.5.3.2.

8.3.3.3 Test purpose

To verify that the UE meets the minimum requirement.

8.3.3.4 Method of test

8.3.3.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in Table 8.3.2.2.1 and 8.3.2.2.2 below. The test consists of three successive time periods, with a time duration of T1, T2 and T3 respectively. In the measurement control information it is indicated to the UE that event triggered reporting with Event 2C shall be used. The Primary CCPCH RSCP of the best cell on the unused-frequency shall be reported together with Event 2C reporting. At the start of time duration T1, the UE may not have any timing information of cell 2.

UTRAN shall send a PHYSICAL CHANNEL RECONFIGURATION with activation time "now" with one active cell, cell 2. The Physical Channel reconfiguration message shall be sent to the UE so that the whole message is available at the UE the RRC procedure delay prior to the beginning of T3. The RRC procedure delay is defined in TS 25.133 [2].

The UL DPCH in cell 2 shall be transmitted in timeslot 10.

Para	meter	Unit	Value Value	Comment	
DCH par	rameters		DL Reference Measurement	As specified in TS 34.121 clause C.3.1	
			Channel 12.2 kbps	and in TS 34.122 clause C.2.2	
Power	Control		- On		
Target quality value on-		BLER	0.01		
	CH				
Comprese	sed mode		A.22 set 3	As specified in TS 34.121 clause C.5	
Initial-	Active cell		Cell 1	FDD cell	
conditions	Neighbour- cell		Cell 2	TDD cell	
Final Active cell			Cell 2	TDD cell	
0		d₿	θ	Cell individual offset. This value shall be used for all cells in the test.	
Hyste	eresis	dB	θ	Hysteresis parameter for event 2C	
Time to	- Trigger	ms	θ		
Threshold non-used- frequency		dBm	-75	Applicable for Event 2C	
Filter co	efficient		θ		
Monitored cell list size			6 FDD neighbours on Channel 1 6 TDD neighbours on Channel 2		
∓ sı		S	1.28	The value shall be used for all cells in the test	
Ŧ	4	S	5		
Ŧ	2	S	15		
13		S	5		

Table 8.3.3.1: General test parameters for Handover to TDD cell

Table 8.3.3.2: Cell Specific parameters for Handover to TDD cell (cell 1)

Parameter	Unit	Cell 1				
		T1, T2	T3			
UTRA RF Channel		Channel 1				
Number		Channel 1				
CPICH_Ec/lor	dB	-10				
P-CCPCH_Ec/lor	dB	-12				
SCH_Ec/lor	dB	-12				
PICH_Ec/lor	dB	-15				
DPCH_Ec/lor	dB	Note 1	n.a.			
OCNS_Ec/lor	d₿	Note 2				
$\frac{\hat{H}_{or}}{I_{oc}}$	dB	θ				
I _{oc}	-70					
CPICH_Ec/lo	CPICH_Ec/lo dB -13					
Propagation Condition	Propagation Condition AWGN					
Note 1: The DPCH level	Note 1: The DPCH level is controlled by the power control loop					
Note 2 : The power of the OCNS channel that is added shall make the total						
power from the cell to be equal to I _{er}						

Table 8.3.3.3: Cell Specific parameters for Handover to TDD cell (cell 2)

Parameter	Unit	Cell 2								
DL timeslot number		0		2		8				
		T 4	T2	13	T1	T2	13	1 1	T2	13
UTRA RF Channel						Chan	nol 0			
Number						Chan	Hel Z			
P-CCPCH_Ec/lor	dB		-3			n.a.			n.a.	
PICH_Ec/lor	dB		n.a.			n.a.		-3		
SCH_Ec/lor	dB	-9		n.a.		-9				
SCH_t _{offset}	dB	5		n.a.		5				
DPCH_Ec/lor	dB		n.a.		n.a. Note 1		n.a.			
OCNS_Ec/lor	d₿		-3.12		()	Note 2		-3.12	
$\frac{\hat{H}_{or}}{I_{oc}}$	dB	-Inf 6		-Inf		6	-Inf	ŧ	}	
P-CCPCH RSCP	dBm	-Inf	-4	7		n.a.			n.a.	
	dBm/	n/								
-I _{oc}	3,84	-70								
MHz										
Propagation Condition		AWGN								
Note 1: The DPCH level is controlled by the power control loop										

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to lor.

Note that the transmit energy per PN chip for the SCH is averaged over the 256 chip duration when the SCH is present in the time slot.

8.3.3.4.2 Procedure

1) The RF parameters are set up according to T1.

2) The UE is switched on.

- 3) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.4 with Compressed mode parameters as in Table 8.3.2.2.1.
- 4) SS shall transmit a MEASUREMENT CONTROL message.
- 5) After 5 seconds, the SS shall switch the power settings from T1 to T2.
- 6) UE shall transmit a MEASUREMENT REPORT message triggered by event 2C.
- 7) SS shall transmit a PHYSICAL CHANNEL RECONFIGURATION message with activation time "now".

- 8) After 10 seconds, the SS shall switch the power settings from T2 to T3.
- 9) UE shall transmit a PHYSICAL CHANNEL RECONFIGURATION COMPLETE message on the UL DCCH of cell 2. If the UE transmits the UL DPCCH to cell 2 less than 70 ms from the beginning of time period T3 then the number of successful tests is increased by one.

10) After 5 seconds, the UE is switched off. Any timing information of cell 2 is deleted in the UE.

11)Repeat step 1 10 [TBD] times

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message, event 2C (step 4):

Information Element/Group name	Value/Remark
Message Type (10.2.17)	
UE information elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	4
-Measurement Command (10.3.7.46)	Modify
-Measurement Reporting Mode (10.3.7.49)	Woolly
-Measurement Report Transfer Mode	AM RLC
-Periodical Reporting / Event Trigger Reporting Mode	Event trigger
-Additional measurements list (10.3.7.1)	Not Present
-CHOICE Measurement type	
	Inter-frequency measurement
Inter-frequency measurement (10.3.7.16)	
Inter-frequency measurement objects list (10.3.7.13)	Not Present
Inter-frequency measurement quantity (10.3.7.18)	
	Inter-frequency reporting criteria
Inter-frequency reporting criteria	
Filter coefficient	θ
	TDD
	Primary CCPCH RSCP
-Inter-frequency reporting quantity (10.3.7.21)	
	FALSE
	FALSE
Frequency quality estimate	FALSE
	Type 1
 Cell synchronisation information reporting indicator 	TRUE
	TRUE
	TDD
	TRUE
Proposed TGSN reporting required	FALSE
Primary CCPCH RSCP reporting indicator	TRUE
Pathloss reporting indicator	TRUE
Reporting coll status (10.3.7.61)	INCE
	Report cells within monitored set on non-
	used frequency
Maximum number of reported cells per reported non-used	4
frequency	
Measurement validity (10.3.7.51)	Not Present
Inter-frequency set update (10.3.7.22)	Not Present
	Inter-frequency measurement reporting
	criteria
Inter-frequency measurement reporting criteria (10.3.7.19)	
Parameters required for each event	4
	Event 2C
-Threshold used frequency	Not Present
	Not Present
— -W used nequency — -Hysteresis	0 dB
— - Time to trigger	
	0 ms
	Report cells within monitored set on non-
	used frequency
	4
frequency	
Parameters required for each non-used frequency	4
	-80 dBm
	4
Physical channel information elements	· · · · · · · · · · · · · · · · · · ·
-DPCH compressed mode status info (10.3.6.34)	Not Present
A REAL TO THE REPORT OF THE REAL PROPERTY AND AND AND AND A REAL PROPERTY AND A	

PHYSICAL CHANNEL RECONFIGURATION message (step 7):

Information Element	Value/Remark		
Message Type UE Information Elements			
-RRC transaction identifier	θ		
Integrity check info	Not Present		
Integrity protection mode info	Not Present		
-Ciphering mode info	Not Present		
Activation time	"now"		
New U-RNTI	Not Present		
New C-RNTI	Not Present		
RRC State Indicator	CELL_DCH		
-UTRAN DRX cycle length coefficient	Not Present		
CN Information Elements			
-CN Information info	Not Present		
UTRAN mobility information elements			
-URA identity	Not Present		
RB information elements			
Downlink counter synchronisation info	Not Present		
-RB with PDCP information list	Not Present		
RB with PDCP information	Not Present		
PhyCH information elements			
Frequency info (10.3.6.36)			
-CHOICE mode	TDD		
-UARFCN (Nt)	Same UARFCN as used for cell 2		
Uplink radio resources			
Maximum allowed UL TX power	33 dBm		
-CHOICE channel requirement	Uplink DPCH info		
-Uplink DPCH info (10.3.6.88)			
-Uplink DPCH power control info (10.3.6.91)			
	3.84 Mcps TDD		
	Not Present		
	Individually signalled		
	3.84 Mcps TDD		
-Indivdual Timeslot interference info	4		
-Individual timeslot interference (10.3.6.38)			
-Timeslot Number (10.3.6.84)			
	3.84 Mcps TDD		
	10		
- UL Timeslot Interference	-90 dBm		
	TDD		
	Disabled		
	4		
	-TBD-dB		
Time Info (10.3.6.83)			
	"now"		
	Infinite		
Common timeslot info	Not Present		
	Ealso		
	i dibu		
	2.94 Mone		
	3.84 Mcps		
	10		
-TFCI existence	True		
	3.84 Mcps		
	Type 1		
	Default		
-Midamble configuration burst type 1 and 3	16		
	Not present		
	3.84 Mcps		
-First timeslot code list	4		
	8/1-		

Information Element	Value/Remark
Downlink radio resources	
-CHOICE mode	TDD
-Downlink information common for all radio links (10.3.6.24)	
-Downlink DPCH info common for all RL (10.3.6.18)	
Timing indicator	Initialise
CFN-targetSFN frame offset	Not Present
Downlink DPCH power control information (10.3.6.23)	
	TDD
TPC Step size	1 dB
	TDD
-CHOICE mode	TDD
-CHOICE TOD option	3.84 Mcps
	None
-Default DPCH Offset Value (10.3.6.16)	0
-Downlink information per radio link list	4
-Downlink information for each radio link (10.3.6.27)	
CHOICE mode	TDD
-Primary CCPCH info (10.3.6.57)	
	TDD
	3.84 Mcps
- CHOICE sync case	Case 2
- Timeslot	θ
	20
	False
-Downlink DPCH info for each RL (10.3.6.21)	
	TDD
	4
-TECS ID	Not Present
	"now"
	Infinite
	Not Present
- First individual timeslet info (10.3.6.37)	
- Timeslot Number (10.3.6.84)	0.04 Мала
	3.84 Mcps
- Timeslot number	2
- TFCI existence	True
- Midamble shift and burst type (10.3.6.41)	
	3.81 Mcps
	Type 1
- Midamble Allocation Mode	Default
 Midamble configuration burst type 1 and 3 	16
	Not present
	3.84 Mcps
 First timeslot channelisation codes (10.3.6.17) 	
- CHOICE codes representation	Consecutive codes
- First channelisation code	16/1
	16/2
	No more timeslots
- SCCPCH information for FACH (10.3.6.70)	Not Present

MEASUREMENT REPORT message for Inter frequency test cases

This message is common for all inter frequency test cases in clause 8.7 and is described in Annex I.

8.3.3.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

Note: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.3.4 Inter-system Handover from UTRAN FDD to GSM

8.3.4.1 Definition and applicability

The UTRAN to GSM cell handover delay is defined as the time from the end of the last TTI containing an RRCmessage implying hard handover to the transmission on the channel of the new RAT.

The requirements and this test apply to the combined FDD and GSM UE.

8.3.4.2 Minimum requirement

The hard handover delay shall be less than 40 ms. The rate of correct handovers observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

The hard handover delay as listed in table 8.3.4.1 equals the RRC procedure delay plus the interruption time listed in table 8.3.4.2. The UE shall process the RRC procedures for the RRC HANDOVER FROM UTRAN COMMAND-within 50 ms.

Table 8.3.4.1: FDD/GSM handover - handover delay

UE synchronisation status	handover delay [ms]
The UE has synchronised to the GSM cell before the	90
HANDOVER FROM UTRAN COMMAND is received	
The UE has not synchronised to the GSM cell before	190
the HANDOVER FROM UTRAN COMMAND is received	

Table 8.3.4.2: FDD/GSM handover - interruption time

Synchronisation status	Interruption time [ms]
The UE has synchronised to the GSM cell before the	40
HANDOVER FROM UTRAN COMMAND is received	
The UE has not synchronised to the GSM cell before	140
the HANDOVER FROM UTRAN COMMAND is received	

The normative reference for this requirement is TS 25.133 [2] clauses 5.4.2 and A.5.4.

8.3.4.3 Test purpose

To verify that the UE meets the minimum requirement.

8.3.4.4 Method of test

8.3.4.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

[Editor's Note: Annex G.2 must be specified also for GSM; for instance as a reference to TS 51.010 1 clause A1.2]

The test parameters are given in table 8.3.4.3, 8.3.4.4 and 8.3.4.5 below. In the measurement control information it is indicated to the UE that event triggered reporting with Event 3C shall be used.. The test consists of three successive-time periods, with a time duration of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

UTRAN shall send a HANDOVER FROM UTRAN COMMAND in advance to T3 with activation time "now". In GSM Handover command contained in that message, IE starting time shall not be included. The RRC HANDOVER-FROM UTRAN COMMAND message shall be sent to the UE so that the whole message is available at the UE the RRC procedure delay prior to the beginning of T3. The RRC procedure delay is defined in TS 25.331 [8]. The requirements are also applicable for a UE not requiring compressed mode, in which case no compressed mode pattern should be sent for the parameters specifed in table 8.3.4.3.

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement Channel 12.2 kbps	As specified in TS 34.121 clause C.3.1
Power Control		On	
Target quality value on DTCH	BLER	0.01	
Compressed mode- patterns			Only applicable for UE requiring- compressed mode patterns
- GSM carrier RSSI- measurement		DL Compressed mode reference- pattern 2 in Set 2-	As specified in TS 34.121 [1] clause C.5, table C.5.2
- GSM Initial BSIC- identification		Pattern 2-	As specified in clause TS 25.133 [2] 8.1.2.5.2.1 table 8.7.
- GSM BSIC re- confirmation		Pattern 2	As specified in clause TS 25.133 [2] 8.1.2.5.2.2 table 8.8.
Active cell		Cell 1	
Inter-RAT measurement- quantity		GSM Carrier RSSI	
BSIC verification required		Required	
Threshold other system	dBm	-80	Absolute GSM carrier RSSI threshold- for event 3B and 3C.
Hysteresis	dB	θ	
Time to Trigger	ms	θ	
Filter coefficient		θ	
Monitored cell list- size		24 FDD neighbours on Channel 1 6 GSM neighbours including ARFCN 1	Measurement control information is- sent before the compressed mode- patterns starts.
N Identify abort		66	Taken from TS 25.133 [2] 8.1.2.5.2.1 table 8.7.
T Reconfirm abort		5.5	Taken from TS 25.133 [2] 8.1.2.5.2.2- table 8.8.
1 4	\$	20	
T2	\$	5	
13	8	5	

Table 8.3.4.3: General test parameters for Correct reporting of GSM neighbours in AWGN
Table 6.3.4.3. General lest parameters for correct reporting of Gaw neighbours in Awow
propagation condition

Table 8.3.4.4: Cell Specific Parameters for Handover UTRAN to GSM cell case (cell 1)

Parameter	Unit	Cell 1 (UTRA)					
		T1, T2, T3					
CPICH_Ec/lor	d₿	-10 -					
PCCPCH_Ec/lor	d₿	-12					
SCH_Ec/lor	d₿	-12 -					
PICH_Ec/lor	d₿	-15 -					
DCH_Ec/lor	d₿	Note 1					
OCNS_Ec/lor	d₿	Note 2					
$\frac{\hat{H}_{or}}{I_{oc}}$	d₿	θ					
H _{oc} dBm/3. 84 MHz -70							
CPICH_Ec/lo	d₿	-13					
Propagation Condition							
Note 1: The DPCH level is controlled by the power control loop- Note 2 : The power of the OCNS channel that is added shall make-							
the total power from the cell to be equal to I _{er.}							

Table 8.3.4.5: Cell Specific Parameters for Handover UTRAN to GSM cell case (cell 2)

Paramotor	Unit	Cell 2 (GSM)		
Farameter	5	1 4	T2, T3	
Absolute RF Channel Number		AR	FCN-1	
RXLEV	dBm	-85	-75	

8.3.4.4.2 Procedure

1) The RF parameters for cell 1 are set up according to T1.

- 2) The UE is switched on
- 3) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.4
- 4) The RF parameters for cell 2 are set up according to T1 and the SS configures a traffic channel
- 5) SS shall transmit a MEASUREMENT CONTROL message to cell 1
- 6) After 20 seconds, the SS shall switch the power settings from T1 to T2
- 7) UE shall transmit a MEASUREMENT REPORT message triggered by event 2C
- 8) SS shall transmit a HANDOVER FROM UTRAN COMMAND message with activation time "now" and indicating the traffic channel of the target GSM cell to the UE through DCCH of the serving UTRAN cell.
- 9) After 5 seconds, the SS shall switch the power settings from T2 to T3
- 10) UE shall transmit a burst on the traffic channel of cell 2 implying that it has switched to the GSM cell. The UE sends a HANDOVER ACCESS message. If the UE transmits access bursts on the new DCCH of the target cell-less than 40 ms from the beginning of time period T3, then the number of successful tests is increased by one.
- [Editor's note: TS 34.108, 7.3.4 shall specify the messages HANDOVER ACCESS, PHYSICAL INFORMATION, SABM, UA and HANDOVER COMPLETE]

11) After 5 seconds, the UE is switched off. Any timing information of cell 2 is deleted in the UE.

12)Repeat step 1 11 [TBD] times

Specific Message Contents

All messages indicated belowabove shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message (step 5):

Information Element/Group name	Value/Remark
Message Type (10.2.17)	
UE information elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	4
-Measurement Command (10.3.7.46)	Modify
-Measurement Reporting Mode (10.3.7.49)	
Measurement Report Transfer Mode	AM RLC
-Periodical Reporting / Event Trigger Reporting Mode	Event trigger
-Additional measurements list (10.3.7.1)	Not Present
-CHOICE Measurement type	Inter-RAT measurement
Inter-RAT measurement (10.3.7.27)	
Inter-RAT measurement objects list (10.3.7.23)	Not Present
Inter-RAT measurement quantity (10.3.7.29)	
Measurement quantity for UTRAN quality estimate-	
(10.3.7.38)	
Filter coefficient	θ
	FDD
Measurement quantity	CPICH Ec/N0
	GSM
Measurement quantity	GSM Carrier RSSI
Filter coefficient	θ
BSIC verification required	Required
Inter-RAT reporting quantity (10.3.7.32)	Not Present
Reporting cell status (10.3.7.61)	
	Report cells within active set or within
	virtual active set or of the other RAT
Maximum number of reported cells	2
CHOICE report criteria	Inter-RAT measurement reporting criteria
Inter-RAT measurement reporting criteria (10.3.7.30)	
 Parameters required for each event 	4
Inter-RAT event identity (10.3.7.24)	Event 3C
	Not Present
— - ₩	Not Present
	-80 dBm
Hysteresis	0 dB
	0 ms
Reporting cell status (10.3.7.61)	
—-CHOICE reported cell	Report cells within active set or within virtual active set or of the other RAT
	2
Physical channel information elements	
-DPCH compressed mode status info (10.3.6.34)	Not Present

HANDOVER FROM UTRAN COMMAND message (step 8):

Information Element	Value/remark
Message Type	
UE information elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
-Activation time	"now"
RB information elements	
-RAB information list	1
RAB Info	Not present
Other information elements	
-CHOICE System type	GSM
Frequency Band	GSM/DCS 1800 Band
GSM message	
Single GSM message	(TBD)
GSM message List	GSM HANDOVER COMMAND formatted
.	as BIT STRING(1512). The contents of
	the HANDOVER COMMAND see next-
	table.

HANDOVER COMMAND

Same as the HANDOVER COMMAND for M = 2 in clause 26.6.5.1 of TS 51.010, except that the CHANNEL-MODE IE is included with value = speech full rate or half rate version 3

MEASUREMENT REPORT message for Inter-RAT test cases

This message is common for all inter RAT frequency test cases in clause 8.7 and is described in Annex I.

8.3.4.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

Note: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied forthis test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.3.5 Cell Re-selection in CELL_FACH

8.3.5.1 One frequency present in neighbour list

8.3.5.1.1 Definition and applicability

The cell re selection delay is defined as the time between the occurrence of an event which will trigger Cell Reselection process and the moment in time when the UE starts sending the the preambles on the PRACH for sending RRC CELL UPDATE message to the UTRAN.

The requirements and this test apply to the FDD-UE.

8.3.5.1.2 Minimum requirements

The cell re selection delay shall be less than 1.6 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

If a cell has been detectable at least $T_{identify,intra}$, the cell reselection delay in CELL_FACH state to a cell in the same-frequency shall be less than

 $----T_{\text{reselection, intra}} = T_{\text{Measurement}_\text{Period Intra}} + T_{\text{IU}} + 20 + T_{\text{SI}} + T_{\text{RA}} - \text{ms}$

where

 $T_{Measurement_Period Intra} = 200 ms.$

- T_{IU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be up to one frame (10 ms).

T_{SI} = The time required for receiving all the relevant system information data according to the receptionprocedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell. 1280 ms is assumed in this test case.

 T_{RA} = The additional delay caused by the random access procedure. T_{RA} is a delay is caused by the physicalrandom access procedure described in TS 25.214 clause 6.1. A persistence value is assumed to be 1 in this testcase and therefore T_{RA} in this test case is 40 ms.

These requirements assume radio conditions to be sufficient, so reading of system information can be done without errors.

The normative reference for this requirement is TS 25.133 [2] clauses 5.5.2.1.1 and A.5.5.1.

8.3.5.1.3 Test purpose

The purpose of this test is to verify the requirement for the cell re selection delay in CELL_FACH state in the singlecarrier case

8.3.5.1.4 Method of test

8.3.5.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in table 8.3.5.1.1 to 8.3.5.1.4. The UE is requested to monitor neighbouring cells on 1carrier. The maximum repetition period of the relevant system info blocks that needs to be received by the UE to campon a cell shall be 1280 ms.

Table 8.3.5.1.1: General test parameters for Cell Re-selection in CELL_FACH, one freq. in neighbourlist

Parameter		Unit	Value	Comment
Initial	Active cell		Cell2	
condition	Neighbour cells		Cell1, Cell3,Cell4, Cell5, Cell6-	
Final- condition	Active cell-		Cell1	
Access Service Class (ASC#0) - Persistence value		-	- 4	Selected so that no additional delay is caused by the random access
				procedure. The value shall be used for all cells in the test.
HCS				Not used
11		S	15	
T2		S	15	

The transport and physical parameters of the S-CCPCH carrying the FACH are defined in table 8.3.5.1.2 and table 8.3.5.1.3.

Table 8.3.5.1.2: Physical channel parameters for S-CCPCH, one freq. in neighbour list

Parameter	Unit	Level
Channel bit rate	kbps	60
Channel symbol rate	ksps	30
Slot Format #I	-	4
TECI	-	OFF
Power offsets of TFCI and Pilot	dB	θ
fields relative to data field		

Table 8.3.5.1.3: Transport channel parameters for S-CCPCH, one freq. in neighbour list

Parameter	FACH
Transport Channel Number	1
Transport Block Size	240
Transport Block Set Size	240
Transmission Time Interval	10 ms
Type of Error Protection	Convolution Coding
Coding Rate	1/2
Rate Matching attribute	256
Size of CRC	16
Position of TrCH in radio frame	Fixed

Table 8.3.5.1.4: Cell specific initial conditions for Cell Re-selection in CELL_FACH, one freq. in neighbour list

Paramete	vr Unit	Ce	 1	Cell 2		Cel	Cell 3		Cell 4		Cell 5		Cell 6								
		T 4	T2	T1	T2	T 4	T2	T 4	T2	T 4	T2	T1	T2								
UTRA RF Cha Number	nnel-	Char	nnel 1	Chan	Channel 1		nel 1	Char	Channel 1		Channel 1		Channel 1								
CPICH_Ec/lor	dB	_	10-	-1	0	-1	0		10-	_	-10		10-								
PCCPCH_Ec/I	or dB	_	12	-1	2	-1	2		12		-12-	-12									
SCH_Ec/lor	dB	_	12	-1	2	-1	2		12		-12-	-12 -									
PICH_Ec/lor	dB	_	15-	-1		-1	5		15-	_	45-		15-								
S-CCPCH_Ec/	lor dB	-	1 2	-1	2	-4	2	-1	2	-	12	-4	2								
OCNS_Ec/lor	dB	-4.:	295	-1.2	95	-1.2	95	-1.:	<u>295</u>	-4.	.295	-1.2	<u>295</u>								
$\frac{\hat{I}_{or}}{I_{oc}}$	d₿	7.3	10.27	10.27	7.3 -	0.2	27	0. :	27	θ	.27	0. :	27								
<u>I_{oc}</u>	dBm/3.84 MHz						-7	0													
CPICH_Ec/lo	d₿	-16	-13	-13	-16	2	3		<u>23</u>		-23		<u>23</u>								
Propagation							- .	CN													
Condition							7.00														
Cell_selection_					CPI	сн					CP	CH-									
reselection_qu	ality_	CPIC	ᡰ .Ε _e /Ν₀	CPICH	-E _e ∕N _θ	E./		CPICH E _c /N ₀		CPIC	H-E₀∕N₀	E,	-								
measure						Ŭ Ŭ															
Qqualmin	dB		20	-2	-	-20			-20		20	-2	-								
Qrxlevmin	dBm	-1	15	-1-	15	-1-	15	-115		-115		-1	15								
UE_TXPWR_ MAX_RACH	dBm	2	<u>2</u> 4	2	1	2	21 21		21		2	4									
		C1,-	C2: 0	C2, C) 1: 0	C3, C)1:0	C4, (C1: 0	C5,	C1: 0	C6, (C1: 0								
			C3: 0	C2, C	3: 0		C3, C2: 0 C4, C2: 0				C2: 0	C6, (
Qoffset 2 _{s, n}	dB				C1, C4: 0							C3, C4: 0				C4, C3: 0		C5, C3: 0		C6, C3: 0	
			C1, C5: 0					C3, C5: 0 C4, C5: 0			C5, C4: 0		C6, C4: 0								
		C1, 	C6: 0	C2, C6: 0		C3, C)6: 0	C4, (C4, C6: 0		C6: 0	C6, (C5: 0								
Qhyst	dB	4	θ	e		e		(•		θ	(•								
Treselection	S	4	θ	θ		e		()		θ	(•								
Sintrasearch	dB	not	sent	not sent		not e	sent	not	sent	not	sent	not	sent								
IE "FACH																					
Measurement-		not	sent	not sent		not e	sent	not	sent	not	sent	not	sent								
occasion info"																					

8.3.5.1.4.2	Procedure
1) The S	S activates cell 1 6 with RF parameters set up according to T1 in table 8.3.5.1.4.
2) The U	I E is switched on.
TS 3 4	RC connection is set up according to the signalling sequence in the generic set up procedure specified in . .108 [3] subclause 7.3.3 to place the UE in the CELL_FACH state on Cell 2 and the SS waits for this- ss to complete.
	15 seconds from completion of step3 or the beginning of T1, the parameters are changed to those defined? in table 8.3.5.1.4.
then t	UE responds on Cell 1 with a PRACH (CELL UPDATE message cause "cell reselection") within 1.7 s, he success is recorded, the SS shall transmit a CELL UPDATE CONFIRM message and then the procedure s to step 7.
SS sh switel	the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The all then wait for a total of 15 s from the beginning of T2 and if no response is received, the UE shall be need off and the procedure returns to step 1. Otherwise the SS shall transmit a CELL UPDATE CONFIRMing and then the procedure continues with step 7.
7) After 8.3.5.	total of 15 s from the beginning of T2, the parameters are changed to those defined for T1 in table- 1.4.
	UE responds on Cell 2 with a PRACH (CELL UPDATE message cause "cell reselection") within 1.7 s, success is recorded and the procedure moves to step 10.
SS sh switcl	the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The all then wait for a total of 15 s from the beginning of T1 and if no response is received the UE shall be red off and the procedure returns to step 1. Otherwise the SS shall transmit a CELL UPDATE CONFIRM- red and then the procedure continues with step 10.
10)Steps	4 to 10 are repeated until a total of [TBD] successes and failures have been recorded.
NOTE:	The time required for receiving all the relevant system information data according to the reception- procedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN- cell. Since the maximum repetition period of the relevant system info blocks that needs to be received by- the UE to camp on a cell is 1280ms and the maximum RRC procedure delay for reception system information block is 100ms, 1380 ms is assumed in this test case. Therefore the cell re selection delay- shall be less than 1.7 s.(Minimum requirement + 100ms).
8.3.5.1.5	Test requirements
For the test to of the cases.	pass, the total number of successful attempts shall be more than 90% with a confidence level of [FFS]%-
Note:	If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.
8.3.5.2	Two frequencies present in the neighbour list

8.3.5.2.1 Definition and applicability

The cell re selection delay is defined as the time between the occurrence of an event which will trigger Cell Reselectionprocess and the moment in time when the UE starts sending the the preambles on the PRACH for sending RRC CELL-UPDATE message to the UTRAN.

The requirements and this test apply to the FDD UE.

8.3.5.2.2 Minimum requirements

The cell re selection delay shall be less than 1.9 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

If a cell has been detectable at least $T_{identify,inter}$, the cell reselection delay in CELL_FACH state to a FDD cell on a different frequency shall be less than

 $T_{\text{reselection, inter}} = T_{\text{Measurement inter}} + T_{\text{IU}} + 20 + T_{\text{SI}} + T_{\text{RA}} \text{ ms}$

where

- T_{fU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{fU} can be up to one frame (10 ms).
- T_{SI} = The time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell. 1280 ms is assumed in this test case.
- T_{RA} = The additional delay caused by the random access procedure. T_{RA} is a delay is caused by the physical random access procedure described in TS 25.214 clause 6.1. A persistence value is assumed to be 1 in this test case and therefore T_{RA} in this test case is 40 ms.

These requirements assume radio conditions to be sufficient, so that reading of system information can be done without errors.

The normative reference for this requirement is TS 25.133 [2] clauses 5.5.2.1.2 and A.5.5.2.

8.3.5.2.3 Test purpose

The purpose of this test is to verify the requirement for the cell re selection delay in CELL_FACH state in the singlecarrier case

8.3.5.2.4 Method of test

8.3.5.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in table 8.3.5.2.1 to 8.3.5.2.4. The UE is requested to monitor neighbouring cells on 2carriers. The maximum repetition period of the relevant system info blocks that needs to be received by the UE to campon a cell shall be 1280 ms

Table 8.3.5.2.1: General test parameters for Cell Re-selection in CELL_FACH, two freqs. in neighbour list

Parameter		Unit	Value	Comment
Initial	Active cell		Cell2	
condition	Neighbour cells		Cell1, Cell3,Cell4, Cell5,	
			Cell6	
Final	Active cell		Cell1	
condition				
Access Se	rvice Class (ASC#0)		-	Selected so that no additional delay is
- Persister	nce value	-	4	caused by the random access
				procedure. The value shall be used for
				all cells in the test.
HCS				Not used
1 4		s	15	
T2		8	15	

The transport and physical parameters of the S-CCPCH carrying the FACH are defined in table 8.3.5.2.2 and table 8.3.5.2.3.

Table 8.3.5.2.2: Physical channel parameters for S-CCPCH, two freqs. in neighbour list

Parameter	Unit	Level
Channel bit rate	kbps	60
Channel symbol rate	ksps	30
Slot Format #I	-	4
TFCI	-	OFF
Power offsets of TFCI and Pilot	dB	θ
fields relative to data field		

Table 8.3.5.2.3: Transport channel parameters for S-CCPCH, two freqs. in neighbour list

Parameter	FACH
Transport Channel Number	4
Transport Block Size	240
Transport Block Set Size	240
Transmission Time Interval	10 ms
Type of Error Protection	Convolution Coding
Coding Rate	1/2
Rate Matching attribute	256
Size of CRC	16
Position of TrCH in radio frame	Fixed

Parameter	Unit	Cell 1		Cell 2		Cell 3		Cell 4		Cell 5		Cell 6		
		T 4	T2	T 4	T2	T 4	T2	T 4	T2	T 4	T2	T 4 T 2		
UTRA RF Channel- Number		Chan	nel 1	Chan	nel 2	Chan	Channel 1		Channel 1		Channel 2		Channel 2	
CPICH_Ec/lor	d₿	-10-		-10		-10-	-10		-10 -			-10		
PCCPCH_Ec/lor	dB	-12-		-12-		-12-		-12-		-12		-12-		
SCH_Ec/lor	d₿	-12		-12		-12		-12		-12		-12		
PICH_Ec/lor	d₿	-15		-15-		-15 -		-15		-15		-15		
S-CCPCH_Ec/lor	d₿	-12		-12		-12		-12		-12		-12		
OCNS_Ec/lor	d₿	-1.29	5	-1.29	5	-1.295		-1.295		-1.295		-1.29	5	
\hat{I}_{or}/I_{oc}	d₿	-1.8	<u>2.2</u>	2.2	-1.8	-6.8 -	-4.8	-6.8 -	-4.8	-4.8 -	-6.8	-4.8	-6.8	
I _{oc}	dBm/3.8 4-MHz	-70 -												
CPICH_Ec/lo	d₿	-15	-13 -	-13 -	-15		<u>20</u>	1	20	-	20	-	-20	
Propagation Condition		AWG	N											
Cell_selection_ and_reselection_ quality_measure		CPIC E∉∕N₀		CPIC E₀/N₀		CPICI E∉∕N₀	ŧ	CPICH E _e /N ₉		CPICH E _e /N ₉		CPICH E ₀ /N ₀		
Qqualmin	dB	-20		-20		-20		-20		-20		-20		
Orxlevmin	dBm	-115		-115		-115		- <u>115</u>		-115		-115		
UE_TXPWR_ MAX_RACH	dBm	21		21		21		21		21		21		
 Qoffset2 _{s-n}	d₽	C1, C C1, C	1, C2: 0 C2, C1: 0 1, C3: 0 C2, C3: 0 1, C4: 0 C2, C4: 0 1, C5: 0 C2, C5: 0 1, C6: 0 C2, C6: 0		C3, C1: 0 C4, C1: 0 C3, C2: 0 C4, C2: 0 C3, C4: 0 C4, C3: 0 C3, C5: 0 C4, C5: 0 C3, C6: 0 C4, C6: 0		C5, C1: 0 C5, C2: 0 C5, C3: 0 C5, C4: 0 C5, C6: 0		C6, C1: 0 C6, C2: 0 C6, C3: 0 C6, C4: 0 C6, C5: 0					
Qhyst2	dB	θ		θ		θ		θ		θ		θ		
Treselection	S	θ		θ		θ	θθ			θ		θ		
Sintrasearch	d₿	not se	ent	not se	ent	not se	not sent		not sent		not sent		not sent	
Sintersearch	d₿	not se	ent	not se	ent	not se	nt	not sent		not sent		not sent		
IE "FACH Measurement- eccasion info"		sent		sent		sent	sent		sent		Sent		sent	
FACH- Measurement- occasion cycle- length coefficient		3		3		3	3		3		3		3	
Inter-frequency FDD-measurement- indicator		TRUE	•	TRUE		TRUE	TRUE		TRUE		TRUE		TRUE	
Inter-frequency TDD measurement- indicator		FALS	E	FALS	Æ	FALS	FALSE		FALSE		FALSE		FALSE	

Table 8.3.5.2.4: Cell specific initial conditions for Cell re-selection in CELL_FACH state, two freqs. in neighbour list

8.3.5.2.4.2 Procedure

1) The RF parameters for cell 1 are set up according to T1 in table 8.3.5.2.5.

2) The UE is switched on.

- 3) An RRC connection is set up according to the signalling sequence in the generic set up procedure specified in TS 34.108 [3] subclause 7.3.3 to place the UE in the CELL_FACH state on Cell 2 and the SS waits for thisprocess to complete.
- 4) After 15 seconds from completion of step3 or the beginning of T1, the parameters are changed to those defined for T2 in table 8.3.5.2.5.

Error! No text of specified style in document.	161	Error! No text of specified style in document.
		E message cause "cell reselection") within 2.0 s, PDATE CONFIRM message and then the procedure
SS shall then wait for a total of 15 s from	the beginning of T2 step 1. Otherwise th	vithin the allowed time, a failure is recorded. The and if no response is received, the UE shall be- be SS shall transmit a CELL UPDATE CONFIRM-
7) After total of 15 s from the beginning of 8.3.5.2.5.	T2, the parameters a	re changed to those defined for T1 in table-
8) If the UE responds on Cell 2 with a PRA then a success is recorded and the proceed		E message cause "cell reselection") within 2.0 s,-).
SS shall then wait for a total of 15 s from	n the beginning of T1 () step 1. Otherwise th	vithin the allowed time, a failure is recorded. The and if no response is received the UE shall be- te SS shall transmit a CELL UPDATE CONFIRM-
10)Steps 4 to 10 are repeated until a total of	[TBD] successes and	1 failures have been recorded.
procedure and the RRC procedure cell. Since the maximum repetition the UE to camp on a cell is 1280r	e delay of system info on period of the releva ns and the maximum of ms is assumed in thi	information data according to the reception ormation blocks defined in 25.331 for a UTRAN- ant system info blocks that needs to be received by RRC procedure delay for reception system- is test case. Therefore the cell re selection delay- as).
8.3.5.2.5 Test requirements		
For the test to pass, the total number of succession of the cases.	`ul attempts shall be r	nore than 90% with a confidence level of [FFS]%-
Table 8.3.5.2.5: Cell specific test require	ments for Cell re- neighbour list	selection in CELL_FACH state, two freqs. in

_	-													
	Parameter	Unit	Ce	#1	Ce	<u> 2</u>	Cell 3		Cell 4		Cell 5		Cell 6	
			T 4	T2	T1	T2	T1	T2	T 4	T2	T1	T2	T1	T2

UTRA RE Channel	1	1		1		1		1		l		I	
Number		Chann	iel 1	Chann	el 2	Chann	el 1	Chan	nel 1	Chan	n el 2	Chann	el 2
CPICH Ec/lor	dB	-9.9	-9.7	-9.7	-9.9	-9.9		-9.9		-9.9		-9.9	
PCCPCH_Ec/lor	dB	-12		-12			-12			-12		-12	
SCH Ec/lor	dB	-11.9	-11.7	-11.7				- <u>-12</u> - <u>-11.9</u>	_	-11.9	<u> </u>	-11.9	
PICH Ec/lor	dB	-15-		-15-		-15-		-15-		-15-		-15-	
S-CCPCH Ec/lor	dB	-12		-12		-12		-12		-12		-12	
OCNS Ec/lor	dB	1.282	1.309	-1.309	1.282	-1.295		-1.29	•	-1.29	5	-1.295	
$\frac{1}{I_{or}/I_{oc}}$	d₿	-2.1	2.9	2.9	-2.1	-9.4	-7	-9.4	-7	-7-	-9.4	-7	-9.4
-Loc	dBm/3.8 4-MHz	-70 -											
CPICH_Ec/lo	dB	-14.7	-12.1	-12.1	-14.7	-22-	-22.2	-22-	-22.2	-22.2	-22	-22.2	-22
Propagation- Condition-		AWG	1										
Cell_selection_ and_reselection_ quality_measure		CPICH	ͰΕ₀/Ν ₀	CPIC +	I-E₀/N₀	CPIC	ΓΕ_σ/Ν ₀	CPICI	∣ .Ε₀∕Ν₀	CPICI	H-E _c ∕N₀	CPICH	ΓΕ₀/Ν ₀
Qqualmin	dB	-20		-20		-20		-20		-20		-20	
Qrxlevmin	dBm	-115		-115		-115		-115		-115		-115	
UE_TXPWR_ MAX_RACH	dBm	21		21		21		21		21		21	
Qoffset2_{s, n}	d₽	C1, C2 C1, C2 C1, C4 C1, C4 C1, C4	3: 0 1: 0 5: 0	C2, C1 C2, C3 C2, C4 C2, C4 C2, C4	3: 0 1: 0 5: 0	C3, C1 C3, C2 C3, C4 C3, C5 C3, C5	<u>2: 0</u> 1: 0 5: 0	C4, C C4, C C4, C C4, C C4, C	2: 0 3: 0 5: 0	C5, C C5, C C5, C C5, C C5, C	2: 0 3: 0 4: 0	C6, C C6, C C6, C C6, C	<u>2: 0</u> 3: 0 1: 0
Qhyst2	dB	θ., οι		θ.		θ		θ., σ	0.0	θ.	0.0	θ	
Treselection	5	0		θ		θ		0		0		0	
Sintrasearch	dB	not se	nt	not ser	nt	not ser	nt	not se	nt	not se	ent	not se	nt
Sintersearch	dB	not se		not ser		not ser		not se		not se		not se	
IE "FACH- Measurement- eccasion info"		sent		sent		sent		sent		Sent		sent	
FACH Measurement eccasion cycle- length coefficient		3		3 3		3		3		3			
Inter-frequency- FDD-measurement- indicator		TRUE		TRUE		TRUE		TRUE	<u>.</u>	TRUE		TRUE	
Inter-frequency- TDD measurement- indicator		FALSE	•	FALSE		FALSE	1	FALS	E	FALS	E	FALSE	

Note: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.3.5.3 Cell Reselection to GSM

Void.

8.3.6 Cell Re-selection in CELL_PCH

8.3.6.1 One frequency present in the neighbour list

8.3.6.1.1 Definition and applicability

The cell re selection delay is defined as the time from a change of cell levels to the moment when this change makes the UE camp on a new cell, and starts to send preambles on the PRACH for the CELL UPDATE message with cause value-"cell reselection" in the new cell.

The requirements and this test apply to the FDD UE.

8.3.6.1.2 Minimum requirements

The cell re selection delay shall be less than 8 s with a DRX cycle length of 1.28 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

NOTE: The cell re-selection delay can be expressed as: $T_{evaluateFDD} + T_{SF}$, where:

∓_{evaluateFDD}	See table 4.1 in TS 25.133 [2] clause 4.2.2.
∓ _{si}	Maximum repetition period of relevant system info blocks that needs to be received-
	by the UE to camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

The normative reference for this requirement is TS 25.133 [2] clauses 5.6.2 and A.5.6.1.

8.3.6.1.3 Test purpose

To verify that the UE meets the minimum requirements and is capable of camping on to a new cell, within the required time, when the preferred cell conditions change.

8.3.6.1.4 Method of test

8.3.6.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

This scenario implies the presence of 1 carrier and 6 cells as given in tables 8.3.6.1.1 and 8.3.6.1.2. The UE is requested to monitor neighbouring cells on 1 carrier. The maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell shall be 1280 ms.

Table 8.3.6.1.1: General test parameters for Cell Re-selection in CELL_PCH, one freq. in neighbour-list

	Parameter	Unit	Value	Comment
initial-	Active cell		Cell2	
condition	Neighbour cells		Cell1, Cell3,Cell4,	
			Cell5, Cell6	
final-	Active cell		Cell1	
condition				
Access Se	rvice Class (ASC#0)		-	Selected so that no additional delay is caused by the
- Persisten	i ce value	-	4	random access procedure. The value shall be used for
				all cells in the test.
HCS				Not used
DRX cycle	length	\$	1.28	The value shall be used for all cells in the test.
T1		\$	15	T1 need to be defined so that cell re-selection reaction-
				time is taken into account.
T2		\$	15	T2 need to be defined so that cell re-selection reaction-
				time is taken into account.

Deremeter	Unit	Ce	 1	Ce	12	Cel	13	Ce	II 4	C	əll 5	Ce	 6	
Parameter	Unit	T1	T2	T 4	T2	T 1	T2	T 4	T2	T 1	T2	T1	T2	
UTRA RF Channel Number		Channe	el 1	Channe	Channel 1		Channel 1		el 1	Channel 1		Channel 1		
CPICH_Ec/lor	d₿	-10-		-10 -1(-10-		-10 -		-10-		-10-		
PCCPCH_Ec/lor	d₿	-12		-12-		-12-		-12-		-12-		-12-		
SCH_Ec/lor	d₿	-12		-12		-12		-12		-12		-12		
PICH_Ec/lor	d₿	-15-		-15-		-15-		-15-		-15-		-15		
OCNS_Ec/lor	d₿	-0.9 41		-0.941		-0.9 41		-0.9 41		-0.941	-	-0.941	F	
$\frac{\hat{I}_{or}}{I_{oc}}$	dB	7.3	10.27	10.27	7.3	0.27		0.27		0.27		0.27		
-I _{dc}	dBm/- 3.84MHz	-70												
CPICH_Ec/lo	d₿	-16-	13-	-13-	-16-	-23		-23		23		-23		
Propagation Condition							-AW	GN-						
Cell_selection_and_ reselection_quality_ measure		CPICH	–E _c ∕N₀	CPICH	-E _e ∕N₀	CPICH- E _e /N ₀		CPICH	I-E₀∕N₀	CPIC	∔ .≣₀∕Ν₀	CPICI E∉∕N₀	4	
Qualmin	dB	-	20	-2	<u>0</u>	-2	0	-4	20	-	20	-2	<u>20</u>	
Qrxlevmin	dBm	-1	15	-1:	15	-1-	15	-115		-115		-115		
UE_TXPWR_ MAX_RACH	dBm	2	<u>2</u> 1	2	1	2	1	24		24		2	1	
Qoffsot2 _{s, n}	d₿	C1, C1, C1,	C2: 0 C3: 0 C4: 0 C5: 0 C6: 0	C2, C1: 0 C2, C3: 0 C2, C4: 0 C2, C5: 0 C2, C5: 0 C2, C6: 0		C3, C1: 0 C3, C2: 0 C3, C4: 0 C3, C5: 0 C3, C6: 0		C4, (C4, (C4, (C4, C1: 0 C4, C2: 0 C4, C3: 0 C4, C5: 0 C4, C5: 0 C4, C6: 0		C1: 0 C2: 0 C3: 0 C4: 0 C6: 0	C6, (C6, (C6, (C3: 0	
Qhyst2	dB		0	Ę		Ģ	L .		θ		θ)	
Treselection	S		0	e)	e	•	0		0		θ		
Sintrasearch	dB	not	sent	note	sent	not e	sent	not	not sent		not sent		not sent	

Table 8.3.6.1.2: Cell specific test parameters for Cell re-selection in CELL_PCH state, one freq. inneighbour list

8.3.6.1.4.2 Procedure

- 1) The SS activates cell 1 6 with T1 defined parameters in table 8.3.6.1.2 and monitors cell 1 and 2 for random access requests from the UE.
- 2) The UE is switched on.
- 3) An RRC connection is set up according to the generic set up procedure specified in TS 34.108 [3] subclause 7.3.3 to place the UE in the CELL_PCH state on Cell 2 and then the SS waits for this process to complete.
- 4) After 15 s from the completion of step 3 or the beginning of T1, the parameters are changed to those defined for T2 in table 8.3.6.1.2.
- 5) If the UE responds on Cell 1 with a PRACH (CELL UPDATE message cause "cell reselection") within 8s, then a success is recorded, the SS shall transmit a CELL UPDATE CONFIRM message and then the procedure moves to step 7.
- 6) Since the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The SS shall then wait for a total of 15s from the beginning of T2 and if no response is received, the UE shall be switched off and the procedure returns to step 1. Otherwise the SS shall transmit a CELL UPDATE CONFIRM-message and then the procedure continues with step 7.
- 7) After a total of 15 s from the beginning of T2, the parameters are changed to those defined for T1 in table 8.3.6.1.2.
- 8) If the UE responds on Cell 2 with a PRACH (CELL UPDATE message cause "cell reselection") within 8s, then a success is recorded and the procedure moves to step 10.
- 9) Since the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The SS shall then wait for a total of 15s from the beginning of T1 and if no response is received the UE shall be-

switched off and the procedure returns to step 1. Otherwise the SS shall transmit a CELL UPDATE CONFIRMmessage and then the procedure continues with step 10.

10)Steps 4 to 10 are repeated until a total of [50] successes and failures have been recorded.

NOTE: The time required for receiving all the relevant system information data according to the receptionprocedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRANcell. Since the maximum repetition period of the relevant system info blocks that needs to be received bythe UE to camp on a cell is 1280ms and the maximum RRC procedure delay for reception systeminformation block is 100ms, 1380 ms is assumed in this test case. Therefore this gives a total of 7.78s-(Minimum requirement + 100ms), allow 8s in the test case.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

RADIO BEARER SETUP (Step 3)

Information Element	Value/remark
RRC-State Indicator	CELL PCH
UTRAN DRX cycle length coefficient	7
Downlink information for each radio link	
- Primary CPICH info	
- Primary scrambling code	100

8.3.6.1.5 Test requirements

For the test to pass, the total number of successful attempts shall be more than 90% with a confidence level of [FFS]%-of the cases.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.3.6.2 Two frequencies present in the neighbour list

8.3.6.2.1 Definition and applicability

The cell re selection delay is defined as the time from a change of cell levels to the moment when this change makes the UE camp on a new cell, and starts to send preambles on the PRACH for the CELL UPDATE message with cause value-"cell reselection" in the new cell.

The requirements and this test apply to the FDD UE.

8.3.6.2.2 Minimum requirement

The cell re selection delay shall be less than 8 s with a DRX cycle length of 1.28 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

NOTE: The cell re selection delay can be expressed as: T_{evaluateFDD} + T_{SI}, where:

∓_{evaluateFDD}	See table 4.1 in TS 25.133 [2] clause 4.2.2.
T si	Maximum repetition period of relevant system info blocks that needs to be received by
	the UE to camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

The normative reference for this requirement is TS 25.133 [2] clauses 5.6.2 and A.5.6.2.

8.3.6.2.3 Test purpose

To verify that the UE meets the minimum requirement and is capable of camping on to a new cell, within the requiredtime, when the preferred cell conditions change.

8.3.6.2.4 Method of test

8.3.6.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

This scenario implies the presence of 2 carriers and 6 cells as given in tables 8.3.6.2.1 and 8.3.6.2.2. The UE isrequested to monitor neighbouring cells on 2 carriers. The maximum repetition period of the relevant system infoblocks that needs to be received by the UE to camp on a cell shall be 1 280 ms.

Table 8.3.6.2.1: General test parameters for Cell Re-selection in CELL_PCH, two freqs. in neighbourlist

	Parameter	Unit	Value	Comment
initial-	Active cell		Cell2	
condition	Neighbour cells		Cell1, Cell3,Cell4, Cell5, Cell6-	
final- condition	Active cell		Cell1	
Access Se - Persisten	rvice Class (ASC#0) ice value	-	- 4	Selected so that no additional delay is- caused by the random access-
				procedure. The value shall be used for all cells in the test.
HCS				Not used
DRX cycle	length	S	1.28	The value shall be used for all cells in the test.
T 4		S	15	T1 need to be defined so that cell re- selection reaction time is taken into- account.
T2		9	15	T2 need to be defined so that cell re- selection reaction time is taken into-
				account.

Parameter	Unit	Ce	#1	Ç) 2	Cel	13	Ce	 4	Cel	15	Cell 6	
		T1	T2	T1	T2	T 1	T2	T1	T2	T 1	T2	T 4	T2
UTRA RF Channel Number		Chan	nel 1	Chan	nel 2	Chann	el 1	Chanr	nel 1	Channe	1-2	Chan	nel 2
CPICH_Ec/lor	dB	-10-		-10		<u>-10</u>		-10-		-10-		-10-	
PCCPCH_Ec/lor	dB	-12-		-12		-12-		-12		-12		-12	
SCH_Ec/lor	dB	-12		-12		<u>-12</u>		-12		<u>-12</u>		-12	
PICH_Ec/lor	dB	-15-		-15				-15		-15		-15	
OCNS_Ec/lor	d₿	-0.9 4	ŀ	-0.9 4	1			-0.941		-0.941		-0.941	
\hat{I}_{or}/I_{oc}	dB	-3. 4	<u>2.2</u>	2.2	-3. 4			-7.4	-4.8	-4.8 -	-7.4	-4.8	-7. 4
H _{oc}	dBm/3.8 4 -MHz	-70 -			•								
CPICH_Ec/lo	d₿	-16	13-	-13	-16 -	_20 _		-20		<u></u>		- -20	
Propagation-								WGN					
Condition-							*						
Cell_selection_		CPIC	_	CPIC	н	CPICH	L						
and_reselection_								CPICI	ᡰ ᠊ <mark>ᡖ/N</mark> ₀	CPICH E ₀ /N ₀		CPICH E	
quality_measure		•••											
Qqualmin	dB		<u>20</u>		20	-2	-		<u>20</u>	-2	-	-20	
Qrxlevmin	dBm	-1	15	-4	1 5	-1-	H 5	-1	15	-11	5	-115	
UE_TXPWR_ MAX_RACH	dBm	2	4	-	<u>21</u>	2	4	21		2 '	1	ź	<u>2</u> 4
		C1, (C2: 0	C2,	C1: 0	C3, C)1:0	C 4,	C1: 0	C5, C	:1:0	C6,	C1: 0
		C1, (C3: 0	C2,	C3: 0	C3, C	2: 0	C4,	C2: 0	C5, C	2: 0	C6,	C2: 0
Qoffset2 _{s.n}	dB	C1, (C4: 0	C2,	C4: 0	C3, C	;4: 0	C4,	C3: 0	C5, C	3: 0	C6,	C3: 0
		C1, (C5: 0	C2,	C5: 0	C3, C	5: 0	C4,	C5: 0	C5, C	:4: 0	C6,	C4: 0
		C1, (26: 0	C2,	C6: 0	C3, C	6: 0	C4,	C6: 0	C5, C	6: 0	C6,	C5: 0
Qhyst2	d₿	4)		θ	Ç			0	Ð			0
Treselection	S	()		θ	e			θ	θ		θ	
Sintrasearch	d₿	not	sent	not	sent	not e	sent	not	not sent		ent	not sent	
Sintersearch	dB	not	sent	not	sent	not e	ent	not	sent	not e	ent	not	sent

Table 8.3.6.2.2: Cell specific test parameters for Cell re-selection in CELL_PCH state, two freqs. in neighbour list

8.3.6.2.4.2 Procedure

1) The SS activates cell 1-6 with T1 defined parameters in table 8.3.6.2.3 and monitors cell 1 and 2 for random access requests from the UE.

2) The UE is switched on.

- 3) A RRC connection is set up according the generic set up procedure specified in TS 34.108 [3] subclause 7.3.3 toplace the UE in CELL_PCH state on cell 2. The SS waits for this process to complete.
- 4) After 15 s from the completion of step 3 or the beginning of T1, the parameters are changed to those defined for T2.
- 5) If the UE responds on Cell 1 with a PRACH (CELL UPDATE message cause "cell reselection") within 8s, then a success is recorded, the SS shall transmit a CELL UPDATE CONFIRM message and then the procedure-moves to step 7.
- 6) Since the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The SS shall then wait for a total of 15s from the beginning of T2 and if no response is received the UE shall be switched off and the procedure returns to step 1. Otherwise the SS shall transmit a CELL UPDATE CONFIRMmessage and then the procedure continues with step 7.
- 7) After a total of 15 s from the beginning of T2, the parameters are changed to those defined for T1.
- 8) If the UE responds on Cell 2 with a PRACH (CELL UPDATE message cause "cell reselection") within 8s, then a success is recorded and the procedure moves to step 10.
- 9) Since the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The SS shall then wait for a total of 15s from the beginning of T1 and if no response is received the UE shall be

switched off and the procedure returns to step 1. Otherwise the SS shall transmit a CELL UPDATE CONFIRMmessage and then the procedure continues with step 10.

10)Steps 4 to 10 are repeated until a total of [50] successes and failures have been recorded.

NOTE: The time required for receiving all the relevant system information data according to the receptionprocedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell. Since the maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell is 1280ms and the maximum RRC procedure delay for reception system information block is 100ms, 1380 ms is assumed in this test case. Therefore this gives a total of 7.78s(Minimum requirement + 100ms), allow 8s in the test case.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

RADIO BEARER SETUP (Step 3)

Information Element	Value/remark
RRC State Indicator	CELL PCH
UTRAN DRX cycle length coefficient	7
Downlink information for each radio link	
- Primary CPICH info	
- Primary scrambling code	100

8.3.6.2.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

Parameter	Unit	Ce	#1-1	Ce	 2	Ce	13	Ce	 4	Cel	1-5	Ce	ll 6
		T 4	T2	T 4	T2	T 4	T2	T 4	T2	T 4	T2	T 4	T2
UTRA RF Channel- Number		Char	nel 1	Char	nel 2	Channel 1		Channel 1		Chan	nel 2	Char	nel 2
CPICH Ec/lor	dB	-9.9	-9.7	<u>-9.7</u>	-9.9	9	.9	-9.9		_ _9	.9		9.9
PCCPCH Ec/lor	dB		12		12		2	-12-		-12-		-12-	
SCH_Ec/lor	dB	-11.9	-11.7	-11.7	11.9	-1:	1.9	-1	1.9	-11	.9		1.9
PICH_Ec/lor	dB		15		15		5		15 -	1	5		15-
OCNS_Ec/lor	dB	-0.95 4	-0.982	-0.982	-0.95 4	-0.)5 4	-0.	954	-0.9	54	-0.(954
\hat{H}_{or}/H_{oc}	dB	-3.5	<u>2.8</u>	<u>2.8</u>	-3.5	-9.5	-7.7	-9.5	-7.7	-7.7	-9.5	-7.7	-9.5
-I _{oc}	dBm / 3.84 MHz							70-					
CPICH_Ec/lo	d₿	-15.6	-12	-12	-15.6	-21.6	-22.7	-21.6	-22.7	-22.7	-21.6	-22.7	-21.6
Propagation							۸۱۸	'GN					
Condition							~~~						
Cell_selection_and_													
reselection_quality_		CPICH	IE _¢ ∕Ν₀	CPIC	LE ₀∕N₀	CPIC⊢	⊢ <mark>E_¢∕N</mark> ₀	CPICH E _c /N ₀		CPICH E ₀ /N		CPIC+	IE ₀∕N₀
measure													
Qqualmin	dB		<u>20</u>		<u>20</u>	-2	-		<u>20</u>	-2	-	-20	
Qrklevmin	dBm	-1	15	-1	15	-1:	15	-1	15	-11	Ь	-1	15
UE_TXPWR_MAX_ RACH	dB	2	<u>1</u>	2	4	2	4	2	14	2 '	1	2	<u>1</u>
		C1, (C2: 0	C2, I	C1: 0	C3, () 1: 0	C4, I	C1: 0	C5, C	;1:0	C6, (C1: 0
		C1, (C3: 0	C2, (C3: 0	C3, (2: 0	C4, (C2: 0	C5, C	2: 0	C6, (C2: 0
Qoffset2 _{s, n}	dB		C4: 0	· · · · · · · · · · · · · · · · · · ·	C4: 0	C3, (C3: 0	C5, C			C3: 0
		- /	C5: 0	- /	C5: 0	C3, (C5: 0	C5, C			C4: 0
		C1, (C6: 0	C2, (C6: 0	C3, (26: 0	C4, I	C6: 0	C5, C	;6: 0	C6, (C5: 0
Qhyst2	dB		Ð)	()	θ			0
Treselection	S		9		•	e		θ		θ		θ	
Sintrasearch	dB	not	sent		sent	not (sent	not sent		not sent		not sent	
Sintersearch	dB	not-	sent	not	sent	not (sent	not	sent	not e	sent	not-	sent

Table 8.3.6.2.3: Test parameters for Cell re-selection in CELL_PCH state, multi carrier multi cell, twofreqs. in neighbour list

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.3.7 Cell Re-selection in URA_PCH

8.3.7.1 One frequency present in the neighbour list

8.3.7.1.1 Definition and applicability

The cell re selection delay is defined as the time from a change of cell levels to the moment when this change makes the UE camp on a new cell, and starts to send preambles on the PRACH for the URA UPDATE message with cause value-"URA reselection" in the new cell.

The requirements and this test apply to the FDD UE.

8.3.7.1.2 Minimum requirement

The cell re selection delay shall be less than 8 s with a DRX cycle length of 1.28 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

NOTE: The cell re selection delay can be expressed as: $T_{evaluateFDD} + T_{SI}$, where:

Error! No text of specified style in document.

170

∓_{evaluateFDD} ∓_{SI} See table 4.1 in TS 25.133 [2] clause 4.2.2. Maximum repetition period of relevant system info blocks that needs to be receivedby the UE to camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

The normative reference for this requirement is TS 25.133 [2] clauses 5.7.2 and A.5.7.1.

8.3.7.1.3 Test purpose

To verify that the UE meets the minimum requirement and is capable of camping on to a new cell, within the requiredtime, when the preferred cell conditions change.

8.3.7.1.4 Method of test

8.3.7.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

This scenario implies the presence of 1 carrier and 6 cells as given in tables 8.3.7.1.1 and 8.3.7.1.2. The UE is requested to monitor neighbouring cells on 1 carrier. The maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell shall be 1 280 ms. In System Information Block Type 2 cell1 and cell 2 URA identity is set to a different value.

Table 8.3.7.1.1: General test parameters for Cell Re-selection in URA_PCH, one freq. in neighbour list

	Parameter	Unit	Value	Comment
Initial	Active cell		Cell2	
condition	Neighbour cells		Cell1, Cell3,Cell4, Cell5,	
			Cell6-	
Final-	Active cell		Cell1	
condition				
SYSTEM I	NFORMATION BLOCK		0000 0000 0000 0001(B)	
TYPE 2		-	(Cell 1)	
- URA ider	ntity list		0000 0000 0000 0002(B)	
- URA ider	ntity		(Cell 2)	
Access Se	rvice Class (ASC#0)		-	Selected so that no additional delay is
- Persisten	ice value	-	4	caused by the random access
				procedure. The value shall be used for
				all cells in the test.
HCS				Not used
DRX cycle	length	S	1,28	The value shall be used for all cells in
	-			the test.
T 1		\$	15	T1 need to be defined so that cell re-
				selection reaction time is taken into-
				account.
T2		S	15	T2 need to be defined so that cell re-
				selection reaction time is taken into-
				account.

Parameter	Unit	Cell 1		Cell 2		C	ell 3	Ce	4	Ce) 5	Ce	II 6
	-	T1	T2	T 4	T2	T1	T2	T 4	T2	T 4	T2	T1	T2
UTRA RF Channel- Number		Channel 1		Channel 1		Channel 1		Channel 1		Channel 1		Channel 1	
CPICH_Ec/lor	dB	-10-		-10 -		-10-			-10-	-10 -		-10 -	
PCCPCH_Ec/lor	dB	-12-		-12 -	-12-		-12			-12-		-12-	
SCH_Ec/lor	dB	-12		-12		-12		-12		-12		-12	
PICH_Ec/lor	dB	-15-		-15		-15		-15 -		-15 -		-15 -	
OCNS_Ec/lor	dB	-0,9 4	1	-0,941		-0,94	4	-0,941		-0,941	-	-0,9 41	
$\frac{\hat{I}_{or}}{I_{oc}}$	d₿	7,3 -	10,27	10,27	7,3 -	0,27		0,27		0,27		0,27	
I _{oc}	dBm / 3,84 MHz	-70											
CPICH_Ec/lo	d₿	-16 -	-13	-13-	-16 -	-23 -		-23-		-23		-23	
Propagation Condition		AWGN											
Cell_selection_and_ reselection_quality_ measure		CPIC	CPICH E,/No CPICH E,/No		CPIC			-E _¢ ∕N₀	CPICH E / N ₀		CPICH	<mark>⊦e₀∕N</mark> ₀	
Qqualmin	d₿	-	20	4	<u>20</u>	-20 -20		-20		-2	<u>20</u>		
Qrxlevmin	dBm		115	-1	15	- 115 - 115		15	-4	15	-1	15	
UE_TXPWR_MAX_ RACH	dB	:	21 21		21	21		<u>21</u>		21		2	<u>:</u> 1
Qoffset2 _{s, n}	dB	61, 61, 61,	C2: 0 C3: 0 C4: 0 C5: 0 C6: 0	C2, C1: 0 C2, C3: 0 C2, C4: 0 C2, C5: 0 C2, C6: 0		C3, C3, C3,	C1: 0 C2: 0 C4: 0 C5: 0 C6: 0	C4, C C4, C C4, C	C4, C1: 0 C4, C2: 0 C4, C3: 0 C4, C5: 0 C4, C6: 0		C5, C1: 0 C5, C2: 0 C5, C3: 0 C5, C4: 0 C5, C6: 0		C1:0 C2:0 C3:0 C4:0 C5:0
Qh <mark>yst2</mark>	d₿		0	-	0		θ	Ð	1	1	0	(•
Treselection	S	1	θ		0	1	θ	e	•	θ		(Ð
Sintrasearch	dB	not	t sent	not	sent	no	t sent	not e	ent	not	sent	not	sent

Table 8.3.7.1.2: Cell specific test parameters for Cell re-selection in URA_PCH state, one freq. in neighbour list

8.3.7.1.4.2 Procedure

- 1) The SS activates cell 1 6 with T1 defined parameters in table 8.3.7.1.2 and monitors cell 1 and 2 for random access requests from the UE.
- 2) The UE is switched on.
- 3) An RRC connection is set up according to the generic set up procedure specified in TS 34.108 [3] subclause 7.3.3 to place the UE in the URA_PCH state on Cell 2 and then the SS waits for this process to complete.
- 4) After 15 s from the completion of step 3 or the beginning of T1, the parameters are changed to those defined for T2 in table 8.3.7.1.2.
- 5) If the UE responds on Cell 1 with a PRACH (URA UPDATE message cause "URA reselection") within 8s, then a success is recorded, the SS shall transmit a URA UPDATE CONFIRM message and then the procedure moves to step 7.
- 6) Since the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The SS shall then wait for a total of 15s from the beginning of T2 and if no response is received, the UE shall be switched off and the procedure returns to step 1. Otherwise the SS shall transmit a URA UPDATE CONFIRM-message and then the procedure continues with step 7.
- 7) After a total of another 15 s from the beginning of T2, the parameters are changed to those defined for T1 in table 8.3.7.1.2.
- 8) If the UE responds on Cell 2 with a PRACH (URA UPDATE message cause "URA reselection") within 8s, then a success is recorded and the procedure moves to step 10.
- 9) Since the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The SS shall then wait for a total of 15s from the beginning of T1 and if no response is received the UE shall be-

switched off and the procedure returns to step 1. Otherwise the SS shall transmit a URA UPDATE CONFIRMmessage and then the procedure continues with step 10.

10)Steps 4 to 10 are repeated until a total of [TBD] successes and failures have been recorded.

NOTE: The time required for receiving all the relevant system information data according to the receptionprocedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell. Since the maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell is 1280ms and the maximum RRC procedure delay for reception system information block is 100ms, 1380 ms is assumed in this test case. Therefore this gives a total of 7.78s(Minimum requirement + 100ms), allow 8s in the test case.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

RADIO BEARER SETUP (Step 3)

Information Element	Value/remark
RRC-State Indicator	URA PCH
UTRAN DRX cycle length coefficient	7
Downlink information for each radio link	
- Primary CPICH info	
- Primary scrambling code	100

8.3.7.1.5 Test requirements

For the test to pass, the total number of successful attempts shall be more than 90% with a confidence level of [FFS]%-of the cases.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.3.7.2 Two frequencies present in the neighbour list

8.3.7.2.1 Definition and applicability

The cell re selection delay is defined as the time from a change of cell levels to the moment when this change makes the UE camp on a new cell, and starts to send preambles on the PRACH for the URA UPDATE message with cause value-"URA reselection" in the new cell.

The requirements and this test apply to the FDD UE.

8.3.7.2.2 Minimum requirement

The cell re selection delay shall be less than 8 s with a DRX cycle length of 1.28 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

NOTE: The cell re selection delay can be expressed as: T_{evaluateFDD} + T_{SI}, where:

∓_{evaluateFDD}	See table 4.1 in TS 25.133 [2] clause 4.2.2.
T si	Maximum repetition period of relevant system info blocks that needs to be received by-
	the UE to camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

The normative reference for this requirement is TS 25.133 [2] clauses 5.7.2 and A.5.7.2.

8.3.7.2.3 Test purpose

To verify that the UE meets the minimum requirement and is capable of camping on to a new cell, within the requiredtime, when the preferred cell conditions change.

8.3.7.2.4 Method of test

8.3.7.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

This scenario implies the presence of 2 carriers and 6 cells as given in tables 8.3.7.2.1 and 8.3.7.2.2. The UE is requested to monitor neighbouring cells on 2 carriers. The maximum repetition period of the relevant system infoblocks that needs to be received by the UE to camp on a cell shall be 1 280 ms. In System Information Block Type 2 in cell 1 and cell 2 URA identity is set to different value.

Table 8.3.7.2.1: General test parameters for Cell Re-selection in URA_PCH, two freqs. in neighbourlist

Parameter		Unit	Value	Comment
Initial-	Active cell		Cell2	
condition	Neighbour cells		Cell1, Cell3,Cell4, Cell5, Cell6-	
Initial- condition	Active cell Cell2		Cell1	
SYSTEM I BLOCK TY - URA ider - URA ider	ntity list	-	0000 0000 0000 0001(B) (Cell 1) 0000 0000 0000 0002(B) (Cell 2)	
Access Se - Persister	ervi ce Class (ASC#0) a ce value	-	4	Selected so that no additional delay is- caused by the random access- procedure. The value shall be used for- all cells in the test.
HCS DRX cycle	length	S	1,28	Not used The value shall be used for all cells in-
		8	45	the test. T1 need to be defined so that cell re- selection reaction time is taken into- account.
	12	÷	15	T2 need to be defined so that cell re- selection reaction time is taken into- account.

Parameter	Unit	Cell 1		Cell 2		Cell 3		Cell 4		Cell 5		Cell 6		
		T 4	T2	T 4	T2	T 1	T2	T 4	T2	T 4	T2	T 4	T2	
UT <mark>RA RF Channel-</mark> Number		Chan	Channel 1 Channel 2		Channel 1		Channel 1		Channel 2		Channel 2			
CPICH_Ec/lor	dB	-1	0	-10-		-10-		_	-10-	-10-		-10-		
POCPCH_Ec/lor	dB	-1	2	-1	2	Ţ	2	_	-12-	-1	2	-12		
SCH_Ec/lor	dB	-1	2	-1	2	-4	2	_	42	-1	2	_	12	
PICH_Ec/lor	dB	-1	5-	-1	5-	4	5	_	-15-	-1	5-	_	15	
OCNS_Ec/lor	d₿	-0.8	41	-0.9	41	-0. 8	141	-0	.9 41	-0.9	41	-0.9 41		
\hat{H}_{or}/H_{oc}	dB	-3. 4	2.2	<u>2.2</u>	-3. 4	-7.4	-4.8	-7.4	-4.8	-4.8 -	-7.4	-4.8	-7.4	
I _{oc}	dBm / 3.84 MHz							70 -						
CPICH_Ec/lo	dB	-16 -	-13 -	-13 -	-16	-2	θ-	-20		-20		-20		
Propagation							۵۱۸	GN						
Condition														
Cell_selection_and_														
reselection_quality_		CPICH	-E _¢ ∕N₀	CPICH	-E₀/N₀	CPIC⊢	E _c /N ₀	CPICH E _c /N ₀		CPICH E ₀ /N ₀		CPICH	∔E _¢ ∕₽	
measure														
Qqualmin	dB	-2	-	-20	-	-2	-	-20		-20		-20		
Qrxlevmin	dBm	-11	-5	-11	5	-1:	15	-115		-115		-115		
UE <mark>_TXPWR_MAX_</mark> RACH	dB	2 '	1	2 4	F	2	1	21		21		2	<u>2</u> 1	
		C1, C	2: 0	C2, C	:1:0	C3, (C 4,	C1: 0	C5, C		C6, 	C1: 0	
		C1, C	3: 0	C2, C	3: 0	C3, (2: 0	C4,	C2: 0	C5, C	2: 0	C6,	C2: 0	
Qoffset2 _{s, n}	dB	C1, C	:4: 0	C2, C	4: 0	C3, (C3, C4: 0		C4, C3: 0		3: 0	C6,	C3: 0	
		C1, C	5: 0	C2, C		C3, () 5: 0	C4,	C5: 0	C5, C	4: 0	C6,	C4: 0	
		C1, C	;6: 0	C2, C	:6: 0	C3, ()6: 0	C4,	C6: 0	C5, C	6: 0	C6,	C5: 0	
Qhyst2	dB	Ð		θ		Ę		θ		θ			0	
Treselection	S	θ		θ		θ		θ		θ		θ		
Sintrasearch	dB	not e	ent	not s	ent	not (not sent		not sent		not sent		not sent	
Sintersearch	dB	not e	ent	not s	not sent		not sent		not sent		not sent		not sent	

Table 8.3.7.2.2: Cell specific test parameters for Cell Re-selection in URA_PCH state, two freqs. in neighbour list

8.3.7.2.4.2 Procedures

1) The SS activates cell 1-6 with T1 defined parameters in table 8.3.7.2.3 and monitors cell 1 and 2 for random access requests from the UE.

2) The UE is switched on.

- 3) An RRC connection is set up according the generic set up procedure specified in TS 34.108 [3] subclause 7.3.3 to place the UE in URA_PCH state on cell 2. The SS waits for this process to complete.
- 4) After 15 s from the completion of step 3 or the beginning of T1, the parameters are changed to those defined for T2 in table 8.3.7.2.3.
- 5) If the UE responds on Cell 1 with a PRACH (URA UPDATE message cause "URA reselection") within 8s, then a success is recorded, the SS shall transmit a URA UPDATE CONFIRM message and then the procedure moves-to step 7.
- 6) Since the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The SS shall then wait for a total of 15s from the beginning of T2 and if no response is received the UE shall be switched off and the procedure returns to step 1. Otherwise the SS shall transmit a URA UPDATE CONFIRM message and then the procedure continues with step 7.
- 7) After a total of 15 s from the beginning of T2, the parameters are changed to those defined for T1 in table 8.3.7.2.3.
- 8) If the UE responds on Cell 2 with a PRACH (URA UPDATE message cause "URA reselection") within 8s, then a success is recorded and the procedure moves to step 10.

9) Since the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The SS shall then wait for a total of 15s from the beginning of T1 and if no response is received the UE shall be switched off and the procedure returns to step 1. Otherwise the SS shall transmit a URA UPDATE CONFIRM-message and then the procedure continues with step 10.

10)Steps 4 to 10 are repeated until a total of [TBD] successes and failures have been recorded.

NOTE: The time required for receiving all the relevant system information data according to the receptionprocedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRANcell. Since the maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell is 1280ms and the maximum RRC procedure delay for reception system information block is 100ms, 1380 ms is assumed in this test case. Therefore this gives a total of 7.78s(Minimum requirement + 100ms), alow 8s in the test case.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

RADIO BEARER SETUP (Step 3)

Information Element	Value/remark
RRC State Indicator	URA PCH
UTRAN DRX cycle length coefficient	7
Downlink information for each radio link	
- Primary CPICH info	
- Primary scrambling code	100

8.3.7.2.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

Parameter	Unit	Ce	#1	Ce	 2	Ce	 3	Ce	II-4	Cell 5		Ce	 6
		T 4	T2	T 4	T2	T 4	T2	T 4	T2	T 4	T2	T 4	T2
UTRA RF Channel Number		Channel 1 Channel 2		Channel 1 Channel 1		Channel 2		Channel 2					
CPICH_Ec/lor	d₿	-9.9	-9.7	-9.7	-9.9	{).9		9.9	-9,9		<u>-9.9</u>	
PCCPCH_Ec/lor	d₿		12		12		12		12	-12 -		-12-	
SCH_Ec/lor	dB	-11.9	-11.7	-11.7	-11.9	-1	1.9	-1	1.9 -	-1	1.9	-11.9	
PICH_Ec/lor	d₿		15		15		15-		15-		15-	-15	
OCNS_Ec/lor	d₽	-0.95 4	-0.982	-0.982	-0.95 4	-0.	954	-0.(954	-0.954		-0.95 4	
\hat{I}_{or}/I_{oc}	d₽	-3.5	2.8	2.8	-3.5	-9.5	-7.7	-9.5 -	-7.7	-7.7-	-9.5	-7.7	-9.5
I _{oc}	dBm / 3.84 MHz		70										
CPICH_Ec/lo	dB	-15.6	-12	-12	-15.6	-21.6	-22.7	-21.6	-22.7	-22.7	-21.6	-22.7	-21.6
Propagation- Condition-							AW	' GN					
Cell_selection_and_ reselection_quality_ mdasure		CPICH	CHE/N ₀ CPICHE/N ₀		CPICH E₀/N₀		CPICH E _e /N ₉		CPICH E _c /N ₀		CPICH E √N₀		
Qqualmin	d₿	-2	<u>20</u>	-4	20	-20		-20		-20		-20	
Qrklevmin	dBm	-1	15	-1	15	- 115 - 115		15	-115		-115		
UE_TXPWR_MAX_ RACH	d₿	2	1	2	<u>!</u> 1	21 21		21		21			
Qoffset2 _{s, n}	d₽	C1, (C1, (C1, (, C2: 0 C2, C1: , C3: 0 C2, C3: , C4: 0 C2, C4: , C5: 0 C2, C5: , C6: 0 C2, C6:		C3: 0 C4: 0 C5: 0	C3, C1: 0 C3, C2: 0 C3, C4: 0 C3, C5: 0 C3, C6: 0		C4, C1: 0 C4, C2: 0 C4, C3: 0 C4, C5: 0 C4, C5: 0		C5, C1: 0 C5, C2: 0 C5, C3: 0 C5, C4: 0 C5, C6: 0		C6, C1: 0 C6, C2: 0 C6, C3: 0 C6, C4: 0 C6, C5: 0	
Qhyst2	d₿		•		D)))	θ	
Treselection	\$	(•	())	Ð		9		<u></u>	
Sintrasearch	d₿	not	sent	not	sent	not	sent	not sent		not sent		not sent	
Sintersearch	d₿	not	sent	not	sent	not	sent	not	not sent		sent	not sent	

Table 8.3.7.2.3: Test parameters for Cell re-selection in URA_PCH state, multi carrier multi cell, twofreqs. in neighbour list

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.4 RRC Connection Control

8.4.1 RRC Re-establishment delay

8.4.1.1 Test 1

8.4.1.1.1 Definition and applicability

The UE Re establishment delay requirement (T_{UE RE ESTABLISH REQ}) is defined as the time between the moment when radio link failure is considered by the UE, to when the UE starts to send preambles on the PRACH.

T_{UE-RE-ESTABLISH-REQ} is depending on whether the target cell is known by the UE or not. A cell is known if either or both of the following conditions are true:

- the UE has had radio links connected to the cell in the previous (old) active set.

- the cell has been measured by the UE during the last 5 seconds.

The phase reference is the primary CPICH.

The requirements of this test apply to the FDD UE.

8.4.1.1.2 Minimum requirement
The Re establishment delay T _{RE-ESTABLISH} to a known cell shall be less than 1.9 s.
The rate of correct RRC re-establishments observed during repeated tests shall be at least 90%.
NOTE: The Re establishment delay in this case can be expressed as-
T _{RE-ESTABLISH} = T _{RRC-RE-ESTABLISH} + T _{UE-RE-ESTABLISH-REQ-KNOWN} -
where
$T_{RRC-RE-ESTABLISH} = -160ms + (N_{313} - 1)*10ms + T_{313}$
$T_{UE-RE-ESTABLISH_REQ-KNOWN} = 50ms + T_{search} + T_{SI} + T_{RA}$
N ₃₁₃ =20
$T_{313} = 0.05$
$T_{search} = 100ms$
T_{RA} = The additional delay caused by the random access procedure. 40 ms is assumed in this test case.
T _{SI}
This gives a total of 1820ms, allow 1.9s in the test case.
8.4.1.1.3 Test purpose
To verify that the UE meets the minimum requirement.
8.4.1.1.4 Method of test
8.4.1.1.4.1 Initial conditions
Test environment: normal; see clauses G.2.1 and G.2.2.
Frequencies to be tested: mid range; see clause G.2.4.
The test parameters are given in table 8.4.1.1 and table 8.4.1.2 below. The maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell shall be 1280 ms. And DRX cycle length shall

system info blocks that needs to be received by the UE to camp on a cell shall be 1280 ms. And DRX cycle length shall be 1280ms. In the measurement control information it is indicated to the UE that periodic reporting shall be used. The test consist of 2 successive time periods, with a time duration of T1 and T2 respectively. At the start of time period T2, the dedicated channel is removed.

Table 8.4.1.1 General test parameters for RRC re-establishment delay, Test 1

Parameter	Unit	Value	Comment
DCH Parameters		DL and UL Reference	As specified in clause C.3.1 and C.2.1
		measurement channel	
		12.2 kbps	
Power Control		On	
Active cell, Initial		Cell 1	
condition-			
Active cell, Final		Cell 2	
condition			
N313		20	
N315		4	
T313	Seconds	θ	
Monitored cell list size		24	Monitored set shall only include intra frequency
			neighbours.
Cell 2			Included in the monitored set
Reporting frequency	Seconds	4	
1 4	S	10	
T2	S	6	

Table 8.4.1.2 Cell specific parameters for RRC re-establishment delay test, Test 1

Parameter	Unit	Ce	 1	Cel	 2	
		1 4	T2	T1	T2	
Cell Frequency	ChNr	2	1	4		
CPICH_Ec/lor	dB	-4	Ю	-10		
PCCPCH_Ec/lor	dB	-4	12	-12		
SCH_Ec/lor	dB	4	12	-12		
PICH_Ec/lor	dB	-15		-15		
DCH_Ec/lor	dB	-17	-Infinity	Not applicable		
OCNS_Ec/lor	dB	-1.049	-0.941	-0.941		
$\frac{\hat{I}_{or}}{I_{oc}}$	d₿	2,39	-Infinity 4,39			
-I _{oc} -	dBm/ 3.84 MHz		-7	-70		
CPICH_Ec/lo	dB	- 15 - Infinity - 13			3	
Propagation Condition		AWGN				

8.4.1.1.4.2 Procedure

- 1) The RF parameters are set up according to T1.
- 2) The UE is switched on.
- 3) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.4 without Compressed mode parameters.
- [Editor's note: subclause 7.3.4 in TS 34.108 (Message sequence chart for Handover Test procedure) is not yet specified.
- 4) The SS waits for random access requests from the UE on cell 2.
- 5) 10 s after step3 has completed, the parameters are changed to that as described for T2.
- 6) If the UE responds on cell 2 within 2.0 s from the beginning of time period T2 with a CELL_UPDATE command then the number of successful tests is increased by one.
- 7) SS shall transmit a RRC CONNECTION RELEASE message to make the UE transit to idle mode.
- 8) After 6 seconds from the beginning of time period T2, the RF parameters are set up according to T1.
- 9) The SS shall wait for 30s to make the UE complete cell reselection to cell1.
- 10)Repeat step 3 9 [TBD] times.

NOTE: The time required for receiving all the relevant system information data according to the receptionprocedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRANcell. Since the maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell is 1280ms and the maximum RRC procedure delay for reception system information block is 100ms, 1380 ms is assumed in this test case. Therefore this gives a total of 1920ms(Minimum requirement + 100ms), allow 2s in the test case.

8.4.1.1.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

Note:If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied
for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of
how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.4.1.2 Test 2

8.4.1.2.1 Definition and applicability

The UE Re establishment delay requirement (T_{UE E ESTABLISH REQ}) is defined as the time between the moment when radio link failure is considered by the UE, to when the UE starts to send preambles on the PRACH.

 $T_{\text{UE RE ESTABLISH REQ}}$ is depending on whether the target cell is known by the UE or not. A cell is known if either or both of the following conditions are true:

- the UE has had radio links connected to the cell in the previous (old) active set.

- the cell has been measured by the UE during the last 5 seconds.

The phase reference is the primary CPICH.

The requirements of this test apply to the FDD UE.

8.4.1.2.2 Minimum requirement

The rate of correct RRC re-establishments observed during repeated tests shall be at least 90%.

NOTE: The Re establishment delay in this case can be expressed as-

 $-T_{\text{RE-ESTABLISH}} = T_{\text{RRC-RE-ESTABLISH}} + T_{\text{UE-RE-ESTABLISH-REQ-UNKNOWN}}$

where

 $T_{RRC-RE-ESTABLISH} = -160ms + (N_{313}-1)*10ms + T_{313}$

 $T_{UE-RE-ESTABLISH-REQ-UNKNOWN} = 50 ms + T_{search} * NF + T_{SI} + T_{RA},$

 $N_{313} = 20$

 $T_{313} = 0s$

T_{search}= 800ms

NF is the number of different frequencies in the monitored set. 3 frequencies are assumed in this testcase.

 T_{RA} = The additional delay caused by the random access procedure. 40 ms is assumed in this test case.

 T_{st}
 is the time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in 25.331-for a UTRAN cell (ms).1280 ms is assumed in this test case.

This gives a total of 4120ms, allow 4.2s in the test case.

8.4.1.2.3 Test purpose

To verify that the UE meets the minimum requirement.

8.4.1.2.4 Method of test

8.4.1.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in table 8.4.1.3 and table 8.4.1.4 below. The maximum repetition period of the relevantsystem info blocks that needs to be received by the UE to camp on a cell shall be 1280 ms. And DRX cycle length shallbe 1280ms. In the measurement control information it is indicated to the UE that periodic reporting shall be used. The test consists of 2 successive time periods, with a time duration of T1 and T2 respectively. At the start of time period T2, the dedicated channel is removed.

Table 8.4.1.3 General test parameters for RRC re-establishment delay, Test 2

Parameter	Unit	Value	Comment
DCH Parameters		DL and UL Reference	As specified in clause C.3.1 and C.2.1
		measurement channel 12.2	
		kbps	
Power Control		On	
Active cell, initial condition		Cell 1	
Active cell, final condition		Cell 2	
N313		20	
N315		4	
T313	Seconds	θ	
Monitored cell list size		24	Monitored set shall include 2 additional
			frequencies.
Cell 2			Cell 2 is not included in the monitored set.
			Cell 2 is located on one of the 2 additional
			frequencies of the monitored set.
Reporting frequency	Seconds	4	
1 4	S	10	
T2	S	6	

Table 8.4.1.4 Cell specific parameters for RRC re-establishment delay test, Test 2

Parameter	Unit	Cell 1		Ce	 2
		T1	T2	T 4	T2
Cell Frequency	ChNr		4	2	2
CPICH_Ec/lor	dB	-	10	-10	
PCCPCH_Ec/lor	dB	-	12	-12	
SCH_Ec/lor	dB	-	12	-4	2
PICH_Ec/lor	d₿	-	15	-1	-5
DCH_Ec/lor	dB	-17	-Infinity	Not ap	olicable
OCNS_Ec/lor	d₿	-1.049	-0.941	-0.(
$\frac{\hat{I}_{or}}{I_{oc}}$	dB	-3,35	-Infinity	-Infinity	0,02
-I _{oc} -	dBm/ 3.84 MHz			-70	
CPICH_Ec/lo	dB	-15	-Infinity	-Infinity	-13
Propagation Condition			A	VGN	

8.4.1.2.4.2 Procedure

1) The RF parameters are set up according to T1.

2) The UE is switched on.

3) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.4 without Compressed mode parameters.

[Editor's note: subclause 7.3.4 in TS 34.108 (Message sequence chart for Handover Test procedure) is not yet specified]

4) The SS waits for random access requests from the UE on cell 2.

- 5) 10 s after step3 has completed, the parameters are changed to that as described for T2.
- 6) If the UE responds on cell 2 within 4.3 s from the beginning of time period T2 with a CELL_UPDATE command then the number of successful tests is increased by one.

7) SS shall transmit a RRC CONNECTION RELEASE message to make the UE transit to idle mode.

- 8) After 6 seconds the RF parameters are set up according to T1.
- 9) The SS shall wait for 30s to make the UE complete cell reselection to cell1.

10)Repeat step 3 9 [TBD] times

NOTE: The time required for receiving all the relevant system information data according to the receptionprocedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRANcell. Since the maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell is 1280ms and the maximum RRC procedure delay for reception systeminformation block is 100ms, 1380 ms is assumed in this test case. Therefore this gives a total of-4220ms(Minimum requirement + 100ms), allow 4.3s in the test case.

8.4.1.2.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

Note: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.4.2 Random Access

8.4.2.1 Correct behaviour when receiving an ACK

8.4.2.1.1 Definition and applicability

The random access procedure is used when establishing the layer 1 communication between the UE and UTRAN. The random access shall provide a fast access but without disturbing ongoing connections. The random access is specified in clause 6 of TS 25.214 [5] and the control of the RACH transmission is specified in clause 11.2 of TS 25.321. A random access transmit sequence is described in clause 6.7.2 of TS 25.303.

8.4.2.1.2 Minimum Requirements

The UE shall have capability to calculate initial power according to the open loop algorithm and apply this power levelat the first preamble and increase the power on additional preambles. The absolute power applied to the first preambleshall have an accuracy as specified in table 6.3 of TS 25.101 [1]. The relative power applied to additional preamblesshall have an accuracy as specified in clause 6.5.2.1 of 25.101 [1].

The absolute power applied to the first preamble shall be 30 dBm with an accuracy as specified in clause 6.4.1.1 of TS 25.101 [1]. The accuracy is \pm 9dB in the case of normal condition or \pm 12dB in the case of extreme condition.

There are two relative powers, one is the power difference for preamble ramping and another is the power differencebetween last preamble part and message part. From the test parameter in the table 8.4.2.1.2, the test requirement of the power difference for all preamble ramping is 3dB (Power offset P0). The accuracy is ± 2 dB as specified in clause6.5.2.1 of 25.101 [1]. The test requirement of the power difference between 10th preamble PRACH and message part is [3 dB] (note). The accuracy is $[\pm 2 \text{ dB}]$ as specified in clause 6.5.2.1 of 25.101 [1].

NOTE: In order to calculate the power difference between 10th preamble PRACH and message part by using Power offset P p-m in the table 8.4.2.1.2, the gain factors of PRACH message part are needed. The gain factor β_e is set to 15. The [temporary] gain factor β_e is set to [15].

The UE shall stop transmitting preambles upon a ACK on the AICH has been received and then transmit a message. The UE shall transmit 10 preambles and 1 message.

The normative reference for this requirements is TS 25.133 [2] clauses 6.3.2 and A.6.2.2.1.

8.4.2.1.3 Test purpose

The purpose of this test is to verify that the behaviour of the random access procedure is according to the requirements and that the PRACH power settings are within specified limits.

8.4.2.1.4 Method of test

8.4.2.1.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.1 in the case of the PRACH powermeasurement. And in the case of the function test of the random access procedure, connect the SS to the UEantenna connector as shown in figure A.8. A spectrum analyzer is set to 0 span mode.
- 2) A call is set up according to the Generic call setup procedure. The test parameters are set up according to table 8.4.2.1.1, table 8.4.2.1.2 and table 8.4.2.1.3. The PRACH procedure within the call setup is used for the test. It is necessary that an ACK on the AICH shall be transmitted after 10 preambles have been received by the SS

See TS 34.108 [3] for details regarding generic call setup procedure.

Parameter	Unit	Cell 1
UTRA RF Channel Number		Channel 1
CPICH_Ec/lor	dB	-10
PCCPCH_Ec/lor	dB	-12
SCH_Ec/lor	dB	-12
Number of other transmitted	_	φ
Acquisition Indicators	-	•
AICH_Ec/lor	dB	-10
PICH_Ec/lor	d₿	-15
OCNS_Ec/lor when an AI is not	dB	-0,941
transmitted	æ	-0,841
OCNS_Ec/lor when an AI is	dB	-1.516
transmitted	чв	-1,010
$\frac{\hat{I}_{or}}{I_{oc}}$	d₿	θ
-I _{oc}	dBm/3.	-70-
	84 MHz	
CPICH_Ec/lo	dB	-13
Propagation Condition		AWGN-

Table 8.4.2.1.1: RF Parameters for Random Access test

The test parameters "System Information Block (SIB) type 5 (ASC #0)" defined in clause 6.1 of TS 34.108 [3], shall beused in all random access tests (see note). Crucial parameters for the test requirements are repeated in tables 8.4.2.1.2and A.8.4.3.1.3 and these overrule the parameters defined in SIB type 5. NOTE: A parameter of AC to ASC mapping(AC0 9) in SIB5 of clause 6.1 of TS 34.108 [3] shall be set to 0 in the case of all random access tests. The EFACC of Type A, which is specified in clause 8.3.2.15 of TS 34.108 [3], shall be selected.

Parameter	Unit	Value
Access Service Class		-
(ASC#0)		
	01	4
- Persistence value		
Maximum number of preamble		2
ramping cycles (M_{max}).		
Maximum number of		12
preambles in one preamble		
ramping cycle		
(Preamble Retrans Max)		
The backoff time T_{B01}	ms	N/A
-N _{B01min=} N _{B01max}	#TTI	10
Power step when no	d₿	3
acquisition indicator is		
received		
(Power offset P 0)		
Power offset between the last	d₿	θ
transmitted preamble and the		
control part of the message		
(Power offset P p-m)		
Maximum allowed UL TX	dBm	θ
power		

Table 8.4.2.1.2: UE parameters for Random Access test

Table 8.4.2.1.3: SS parameters for Random Access test

Parameter	Unit	Value
Primary CPICH DL TX power	dBm	- 8
UL interference	dBm	-92
SIR in open loop power	d₿	-10
control (Constant value)		
AICH Power Offset	dB	θ

8.4.2.1.4.2 Procedure

- 1) Set the TX output level of the SS to obtain \hat{I}_{or} at the UE antenna connector. \hat{I}_{or} shall be according to table 8.4.2.1.1.
- 2)Measure the first PRACH preamble output power, the each power difference for preamble ramping and the power difference between 10th preamble PRACH and message part of the UE according to annex B.
- 3) Measure the number of the preamble part and the message part by using a spectrum analyzer.

8.4.2.1.5 Test requirements

The absolute power and the relative power shall meet the requirements in the minimum requirements in clause 8.4.2.1.2. The accuracy of the first preamble as specified in clause 6.4.1.1 of TS 25.101 [1] shall not be verified in this test. It is verified under the section 5.4.1, Open loop power control.

The UE shall stop transmitting preambles upon a ACK on the AICH has been received and then transmit a message. The UE shall transmit 10 preambles and 1 message.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.4.2.2 Correct behaviour when receiving an NACK

8.4.2.2.1 Definition and applicability

The random access procedure is used when establishing the layer 1 communication between the UE and UTRAN. The random access shall provide a fast access but without disturbing ongoing connections. The random access is specified in clause 6 of TS 25.214 and the control of the RACH transmission is specified in clause 11.2 of TS 25.321. A random access transmit sequence is described in clause 6.7.2 of TS 25.303.

8.4.2.2.2 Minimum Requirements

The UE shall stop transmitting preambles upon a NACK on the AICH has been received and then repeat the ramping-procedure when the back off timer T_{B01} expires.

The UE shall transmit 10 preambles in the first ramping cycle and no transmission shall be done by the UE within 100 ms after the NACK has been transmitted by the SS. Then the UE shall start the second preamble ramping cycle.

The normative reference for this requirements is TS 25.133 [2] clauses 6.3.2 and A.6.2.2.2.

8.4.2.2.3 Test purpose

The purpose of this test is to verify that the behaviour of the random access procedure is according to the requirements.

8.4.2.2.4 Method of test

8.4.2.2.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1) Connect the SS to the UE antenna connector as shown in figure A.8. A spectrum analyzer is set to 0 span mode.

2)A call is set up according to the Generic call setup procedure. The test parameters are set up according to table 8.4.2.1.1, table 8.4.2.1.2 and table 8.4.2.1.3. The PRACH procedure within the call setup is used for the test. It is necessary that an NACK on the AICH shall be transmitted after 10 preambles have been received by the SS.

See TS 34.108 [3] for details regarding generic call setup procedure.

8.4.2.2.4.2 Procedure

1)Set the TX output level of the SS to obtain \hat{I}_{or} at the UE antenna connector. \hat{I}_{or} shall be according to table 8.4.2.1.1.

2)Measure the number of the preamble part and the time delay between 10th preamble in the first ramping cycle and first preamble in the second ramping cycle by using a spectrum analyzer.

8.4.2.2.5 Test requirements

The UE shall stop transmitting preambles upon a NACK on the AICH has been received and then repeat the ramping-procedure when the back off timer T_{B01} expires.

The UE shall transmit 10 preambles in the first ramping cycle and no transmission shall be done by the UE within 100 ms after the NACK has been transmitted by the SS. Then the UE shall start the second preamble ramping cycle.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.4.2.3 Correct behaviour at Time-out

8.4.2.3.1 Definition and applicability

The random access procedure is used when establishing the layer 1 communication between the UE and UTRAN. The random access shall provide a fast access but without disturbing ongoing connections. The random access is specified in clause 6 of TS 25.214 and the control of the RACH transmission is specified in clause 11.2 of TS 25.321. A random access transmit sequence is described in clause 6.7.2 of TS 25.303.

8.4.2.3.2 Minimum Requirements

The UE shall stop transmit preambles when reaching the maximum number of preambles allowed in a cycle. The UE shall then repeat the ramping procedure until the maximum number of preamble ramping cycles are reached. No-ACK/NACK shall be sent by SS during this test.

The UE shall transmit 2 preambles cycles, consisting of 12 preambles in each preamble cycle.

The normative reference for this requirements is TS 25.133 [2] clauses 6.3.2 and A.6.2.2.3.

8.4.2.3.3 Test purpose

The purpose of this test is to verify that the behaviour of the random access procedure is according to the requirements.

8.4.2.3.4 Method of test

8.4.2.3.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1)Connect the SS to the UE antenna connector as shown in figure A.8. A spectrum analyzer is set to 0 span mode.

2)A call is set up according to the Generic call setup procedure. The test parameters are set up according to table 8.4.2.1.1, table 8.4.2.1.3 and table 8.4.2.1.4. The PRACH procedure within the call setup is used for the test. It is necessary that SS shall transmit no AICH.

See TS 34.108 [3] for details regarding generic call setup procedure.

Parameter	Unit	Value
Access Service Class		-
(ASC#0)		
-	01	4
- Persistence value		
Maximum number of preamble		2
ramping cycles (M_{max}).		
Maximum number of		12
preambles in one preamble		
ramping cycle		
(Preamble Retrans Max)		
The backoff time T _{B01}	ms	N/A
-N _{B01min=} N _{B01max}	#TTI	10
Power step when no	d₿	3
acquisition indicator is		
received		
(Power offset P0)	15	
Power offset between the last	d₿	θ
transmitted preamble and the		
control part of the message		
(Power offset P p-m)	10	
Maximum allowed UL TX	dBm	21
power		

Table 8.4.2.1.4: UE parameters for correct behaviour at Time-out test

8.4.2.3.4.2 Procedure

1)Set the TX output level of the SS to obtain \hat{I}_{or} at the UE antenna connector. \hat{I}_{or} shall be according to table 8.4.2.1.1.

2)Measure the number of the preamble part by using a spectrum analyzer.

8.4.2.3.5 Test requirements

The UE shall stop transmit preambles when reaching the maximum number of preambles allowed in a cycle. The UE shall then repeat the ramping procedure until the maximum number of preamble ramping cycles are reached. No-ACK/NACK shall be sent by SS during this test.

The UE shall transmit 2 preambles cycles, consisting of 12 preambles in each preamble cycle.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.4.2.4 Correct behaviour when reaching maximum transmit power

8.4.2.4.1 Definition and applicability

The random access procedure is used when establishing the layer 1 communication between the UE and UTRAN. The random access shall provide a fast access but without disturbing ongoing connections. The random access is specified in clause 6 of TS 25.214 and the control of the RACH transmission is specified in clause 11.2 of TS 25.321. A random access transmit sequence is described in clause 6.7.2 of TS 25.303.

8.4.2.4.2 Minimum Requirements

The UE shall not exceed the maximum allowed UL TX power configured by the SS. No ACK/NACK shall be sent by SS during this test.

The absolute power of any preambles belonging to the first or second preamble cycle shall not exceed 0 dBm with more than specified in section 6.5 of TS 25.133.

The normative reference for this requirements is TS 25.133 [2] clauses 6.3.2 and A.6.2.2.4.

8.4.2.4.3 Test purpose

The purpose of this test is to verify that the PRACH power settings are within specified limits.

8.4.2.4.4 Method of test

8.4.2.4.4.1 Initial condition

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1) Connect the SS to the UE antenna connector as shown in figure A.1.

2) A call is set up according to the Generic call setup procedure. The test parameters are set up according to table 8.4.2.1.1, table 8.4.2.1.2 and table 8.4.2.1.3. The PRACH procedure within the call setup is used for the test. It is necessary that SS shall transmit no AICH.

See TS 34.108 [3] for details regarding generic call setup procedure.

8.4.2.4.4.2 Procedure

1) Set the TX output level of the SS to obtain \hat{I}_{or} at the UE antenna connector. \hat{I}_{or} shall be according to table 8.4.2.1.1.

2) Measure the all PRACH preamble output power of the UE according to annex B.

8.4.2.4.5 Test requirements

The UE shall not exceed the maximum allowed UL TX power configured by the SS. No ACK/NACK shall be sent by SS during this test.

The absolute power of any preambles belonging to the first or second preamble cycle shall not exceed 0 dBm with more than the tolerance specified in section 6.5 of TS 25.133.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.4.3 Transport format combination selection in UE

8.4.3.1 Interactive or Background, PS, UL: 64 kbps

8.4.3.1.1 Definition and applicability

When the UE estimates that a certain TFC would require more power than the maximum transmit power, it shall limit the usage of transport format combinations for the assigned transport format set, according to the functionality specified in section 11.4 in TS25.321 [13]. This in order to make it possible for the network operator to maximise the coverage. Transport format combination selection is described in section 11.4 of TS 25.321 [13].

8.4.3.1.2 Minimum requirements

The UE shall continuously evaluate based on the *Elimination, Recovery* and *Blocking* criteria defined below, how TFCs on an uplink DPDCH can be used for the purpose of TFC selection. The evaluation shall be performed for every TFCin the TFCS using the estimated UE transmit power of a given TFC. The UE transmit power estimation for a given TFC shall be made using the UE transmitted power measured over the measurement period, defined in 9.1.6.1 of TS 25.133-[2] as one slot, and the gain factors of the corresponding TFC.

The UE shall consider the *Elimination* criterion for a given TFC to be detected if the estimated UE transmit powerneeded for this TFC is greater than the Maximum UE transmitter power for at least X out of the last Y successivemeasurement periods immediately preceding evaluation. The MAC in the UE shall consider that the TFC is in Excess-Power state for the purpose of TFC selection.

MAC in the UE shall indicate the available bit rate for each logical channel to upper layers within T_{notify} from the moment the *Elimination* criterion was detected.

The UE shall consider the *Recovery* criterion for a given TFC to be detected if the estimated UE transmit power needed for this TFC has not been greater than the Maximum UE transmitter power for the last Z successive measurement periods immediately preceding evaluation. The MAC in the UE shall consider that the TFC is in Supported state for the purpose of TFC selection.

MAC in the UE shall indicate the available bitrate for each logical channel to upper layers within T_{notify} from the moment the *Recovery* criterion was detected.

The evaluation of the *Elimination* criterion and the *Recovery* criterion shall be performed at least once per radio frame.

The definitions of the parameters X,Y and Z which shall be used when evaluating the *Elimination* and the *Recovery* eriteria when no compressed mode patterns are activated are given in Table 8.4.3.1.1.

Table 8.4.3.1.1: X, Y, Z parameters for TFC selection

×	¥	Z
15	30	30

The UE shall consider the *Blocking* criterion for a given TFC to be fulfilled at the latest at the start of the longest uplink-TTI after the moment at which the TFC will have been in Excess Power state for a duration of:

 $-(T_{notify} + T_{modify} + T_{L1 proc})$

where:

-T_{notify} equals 15 ms

- T_{adapt max} equals MAX(T_{adapt 1}, T_{adapt 2}, ..., T_{adapt N})

- N equals the number of logical channels that need to change rate

— T_{adapt_n} equals the time it takes for higher layers to provide data to MAC in a new supported bitrate, for logical channel n. Table 8.4.3.1.2 defines T_{adapt} times for different services. For services where no codec is used T_{adapt} shall be considered to be equal to 0 ms.

Table 8.4.3.1.2: Tadapt

Service	T _{adapt} [ms]
UMTS AMR	40
UMTS AMR2	60

- T_{TTI} equals the longest uplink TTI of the selected TFC (ms).

The Maximum UE transmitter power is defined as follows

— Maximum UE transmitter power = MIN(Maximum allowed UL TX Power, UE maximum transmit power)

where

- Maximum allowed UL TX Power is set by SS and defined in TS 25.331 [8], and

— UE maximum transmit power is defined by the UE power class, and specified in TS 25.101 [1].

The normative reference for these requirements is TS 25.133 [2] clauses 6.4.2 and A.6.4.1.

8.4.3.1.3 Test purpose

The purpose is to verify the UE blocks (stops using) a currently used TFC when the UE output power is not sufficient to support that TFC. The test will verify the general requirement on TFC selection in section 8.4.3.1.2 for a RAB intended for packet data services, i.e. Interactive or Background, PS, UL: 64kbps as defined in TS 34.108 [3].

8.4.3.1.4 Method of test

8.4.3.1.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in Table 8.4.3.1.3, 8.4.3.1.4 and Table 8.4.3.1.5 below. The test consists of 2 successive time periods, with a time duration of T1 and T2 respectively.

Details on the UL reference RAB in table 8.4.3.1.3 and 8.4.3.1.4 can be found in TS 34.108 [3] section "Interactive or background / UL:64 DL: 64 kbps / PS RAB + UL:3.4 DL:3.4 kbps SRBs for DCCH".

Table 8.4.3.1.3: UL reference RAB, Interactive or Background

	TFI	64 kbps RAB (20ms TTI)	DCCH 3.4kbps (40ms TTI)
TES	TF0, bits	0x336	0x148
	TF1, bits	1x336	1x148
	TF2, bits	2x336	N/A
	TF3, bits	3x336	N/A
	TF4, bits	4x336	N/A

Table 8.4.3.1.4: UL TFCI

TECI	(64 kbps RAB, DCCH)
UL_TFC0	(TF0, TF0)
UL_TFC1	(TF0, TF1)
UL_TFC2	(TF1, TF0)
UL_TFC3	(TF1, TF1)
UL_TFC4	(TF2, TF0)
UL_TFC5	(TF2, TF1)
UL_TFC6	(TF3, TF0)
UL_TFC7	(TF3, TF1)
UL_TFC8	(TF4, TF0)
UL_TFC9	(TE1, TE1)

Table 8.4.3.1.5: General test parameters

Parameter	Unit	Value	Comment
TFCS size		10	
TECS		UL_TFC0, UL_TFC1, UL_TFC2,	
		UL_TFC3, UL_TFC4, UL_TFC5,	
		UL_TFC6, UL_TFC7, UL_TFC8,	
		UL_TFC9	
Power Control		On	
Active cell		Cell 1	
Maximum allowed UL TX	dBm	21	
power			
T 4	S	30	
T2	S	10	
Propagation condition		AWGN	

The radio conditions in the test shall be sufficient, so that decoding of the TPC commands can be made without errors.

The amount of available user data shall be sufficient to allow uplink transmission at the highest bit rate (UL_TFC8 or UL_TFC9) during the entire test and it shall be ensured that the UE is using UL_TFC8 or UL_TFC9 at the end of T1.

8.4.3.1.4.2 Procedure

- 1) The UE is switched on.
- 2) The SS shall signal to the UE the allowed TFCS according to table 8.4.3.1.5.
- 3) For T1=30 secs the SS shall command the UE output power to be between 14 and 15 dB below the UE Maximum allowed UL Tx power (table 8.4.3.1.5).
- 4) The SS shall start sending continuously TPC_emd=1 to the UE for T2=10 sees (see NOTE).
- 5) The time from the beginning of T2 until the UE blocks (stops using) UL_TFC8 and UL_TFC9 shall be measured by the SS. The UE shall stop using UL_TFC8 and UL_TFC9 within 140 ms from beginning of time period T2.
- 6) Repeat steps 3 5 [50] times.
- NOTE: This will emulate that UL_TFC8 to UL_TFC9 can not be supported because the UE reaches the maximum UL Tx power and still SS is sending power up commands.

8.4.3.1.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

Note: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.5 Timing and Signalling Characteristics

8.5.1 UE Transmit Timing

8.5.1.1 Definition and applicability

The UE transmit timing is defined as the timing of the uplink DPCCH/DPDCH frame relative to the first detected path-(in time) of the corresponding downlink DPCCH/DPDCH frame from the reference cell. The reference point is the antenna connector of the UE.

The requirements and this test apply to all types of UTRA of the FDD UE.

8.5.1.2 Minimum requirements

The UE transmission timing error shall be less than or equal to ± 1.5 chips. The reference point for the UE initialtransmit timing control requirement shall be the time when the first detected path (in time) of the correspondingdownlink DPCCH/DPDCH frame is received from the reference cell plus T₀ chips. T₀ is defined in TS25.211 [19].

When the UE is not in soft handover, the reference cell shall be the one the UE has in the active set. The cell, which is selected as a reference cell, shall remain as a reference cell even if other cells are added to the active set. In case that the reference cell is removed from the active set the UE shall start adjusting its transmit timing no later than the time when the whole active set update message is available at the UE taking the RRC procedure delay into account.

The UE shall be capable of changing the transmission timing according the received downlink DPCCH/DPDCH frame. The maximum amount of the timing change in one adjustment shall be 1/4 chip.

The minimum adjustment rate shall be 233ns per second. The maximum adjustment rate shall be $\frac{14}{10}$ chip per 200 ms. Inparticular, within any given 800*d ms period, the UE transmit timing shall not change in excess of $\pm d$ chip from the timing at the beginning of this 800*d ms period, where $0 \le d \le 1/4$.

The normative reference for this requirement is TS 25.133 [2] clause 7.1.2.

8.5.1.3 Test purpose

The purpose of this test is to verify that the UE initial transmit timing accuracy, maximum amount of timing change in one adjustment, minimum and maximum adjustment rate are within the limits specified in 8.5.1.2.

8.5.1.4 Method of test

8.5.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

For this test, two cells on the same frequency are used.

- 1) Connect the test system to the UE antenna connector as shown in figure A.1.
- 2) A call is set up with Cell 1 according to the Generic call setup procedure. The test parameters are set up according to table 8.5.1.1.

Table 8.5.1.1: Test parameters for UE Transmit Timing requirements

Parameter	Unit	Level
DPCH_Ec/ lor, Cell 1 and Cell 2	dB	-17
CPICH_Ec/ lor, Cell 1 and Cell 2	d₽	-10
PCCPH_Ec/ lor, Cell 1 and Cell 2	dB	-12
SCH_Ec/ lor, Cell 1 and Cell 2	dB	-12
PICH_Ec/ lor, Cell 1 and Cell 2	dB	-15
OCNS_Ec/ lor, Cell 1 and Cell 2	dB	-1.05
Î _{or,} Cell 1	dBm/3.84 MHz	-96
Î _{er,} -Cell-2	dBm/3.84 MHz	-99
Information data rate	kbps	12.2
Relative delay of path received from cell	μs	+/-2
2 with respect to cell 1		
Propagation condition	4	WGN

8.5.1.4.2 Procedure

- a) After a connection is set up with cell 1, the test system shall verify that the UE transmit timing offset is within T_0 ± 1.5 chips with respect to the first detected path (in time) of the downlink DPCCH/DPDCH of cell 1.
- b) Test system introduces cell 2 into the test system at delay +2 μ s from cell 1.
- c) Test system verifies that cell 2 is added to the active set.
- d) Test system shall verify that the UE transmit timing offset is still within $T_0 \pm 1.5$ chips with respect to the firstdetected path (in time) of the downlink DPCCH/DPDCH of cell 1.
- e) Test system switches Tx timing of cell 2 to a delay of 2 µs with respect to cell 1.
- f) Test system verifies cell 2 remains in the active set.
- g) Test system shall verify that the UE transmit timing offset is still within $T_0 \pm 1.5$ chips with respect to the firstdetected path (in time) of the downlink DPCCH/DPDCH of cell 1.
- h) Test system stops sending cell 1 signals.

i) Void

- j) Test system verifies that UE transmit timing adjustment starts no later than the time when the whole active setupdate message is available at the UE taking the RRC procedure delay into account. The adjustment step sizeand the adjustment rate shall be according to the requirements in clause 8.5.1.2 until the UE transmit timingoffset is within $T_0 \pm 1.5$ chips with respect to the first detected path (in time) of the downlink DPCCH/DPDCHof cell 2.
- k) Test system shall verify that the UE transmit timing offset stays within $T_0 \pm 1.5$ chips with respect to the firstdetected path (in time) of the downlink DPCCH/DPDCH of cell 2.
- 1) Test system starts sending cell 1 signal again with its original timing.
- m) Test system verifies that cell 1 is added to the active set.
- n) Test system verifies that the UE transmit timing is still within $T_0 \pm 1.5$ chips with respect to the first detected path (in time) of the downlink DPCCH/DPDCH of cell 2.
- o) Test system stops sending cell 2 signals.
- p) Void.
- q) Test system verifies that UE transmit timing adjustment starts no later than the time when the whole active setupdate message is available at the UE taking the RRC procedure delay into account. The adjustment step sizeand the adjustment rate shall be according to the requirements in clause 8.5.1.2 until the UE transmit timingoffset is within $T_0 \pm 1.5$ chips with respect to the first detected path (in time) of the downlink DPCCH/DPDCHof cell 1.
- r) Test system shall verify that the UE transmit timing offset stays within $T_0 \pm 1.5$ chips with respect to the first detected path (in time) of the downlink DPCCH/DPDCH of cell 1.

8.5.1.5 Test requirements

- 1) In step a), d) and g), UE transmit timing offset shall be within $T_0 \pm 1.5$ chips with respect to the first detected path (in time) of the downlink DPCCH/DPDCH of cell 1.
- 2) In step j), the adjustment step size and the adjustment rate shall meet the requirements specified in 8.5.1.2 until the UE transmit timing offset is within $T_0 \pm 1.5$ chips with respect to the first detected path (in time) of the downlink DPCCH/DPDCH of cell 2.
- 3) In step k) and n), UE transmit timing offset shall be within $T_0 \pm 1.5$ chips with respect to the first detected path (in time) of the downlink DPCCH/DPDCH of cell 2.
- 4) In step q), the adjustment step size and the adjustment rate shall meet the requirements specified in 8.5.1.2 until the UE transmit timing offset is within $T_0 \pm 1.5$ chips with respect to the first detected path (in time) of the downlink DPCCH/DPDCH of cell 1.
- 5) In step r), UE transmit timing offset shall be within $T_0 \pm 1.5$ chips with respect to the first detected path (in time) of the downlink DPCCH/DPDCH of cell 1.
- NOTE 1: The above Test Requirement differs from the Test Requirement of TS 25.133 [2] clause A7.1.2, from which the requirements for the test system are subtracted to give the above Test Requirement.
- NOTE 2: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.6 UE Measurements Procedures

8.6.1 FDD intra frequency measurements

8.6.1.1 Event triggered reporting in AWGN propagation conditions

8.6.1.1.1 Definition and applicability

In the event triggered reporting period the measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay-excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay-uncertainty is twice the TTI of the uplink DCCH.

The requirements and this test apply to the FDD UE.

8.6.1.1.2 Minimum requirements

The UE shall be able to identify and decode the SFN of a new detectable cell belonging to the monitored set within-

$$----T_{\text{identify intra}} = Max \left\{ 800, T_{\text{basic identify FDD, intra}} - \frac{T_{\text{Measurement Period, Intra}}}{T_{\text{Intra}}} \right\} ms$$

A cell shall be considered detectable when CPICH Ec/Io \geq -20 dB, SCH_Ec/Io \geq -20 dB for at least one channel tap and SCH_Ec/Ior is equally divided between primary synchronisation code and secondary synchronisation code. When L3-filtering is used an additional delay can be expected.

In the CELL_DCH state the measurement period for intra frequency measurements is 200 ms. When no transmission gap pattern sequence is activated, the UE shall be capable of performing CPICH measurements for 8 identified intrafrequency cells of the monitored set and/or the active set, and the UE physical layer shall be capable of reportingmeasurements to higher layers with the measurement period of 200 ms. When one or more transmission gap pattern sequences are activated, the UE shall be capable of performing CPICH measurements for at least Y_{measurement intra-}cells , where Y_{measurement intra} is defined in the following equation. The measurement accuracy for all measured cells shall be asspecified in the sub clause 9.1.1 and 9.1.2 of TS 25.133 [2]. If the UE has identified more than Y_{measurement intra-}cells, the UE shall perform measurements of all identified cells but the reporting rate of CPICH measurements of cells from UE physical layer to higher layers may be decreased.

$$-Y_{\text{measurement intra}} = Floor \begin{cases} X_{\text{basic measurement FDD}} & T_{\text{Intra}} \\ T_{\text{Measurement Period, Intra}} \end{cases}$$

where

-X_{basic measurement FDD} = 8 (cells)

T_{Measurement Period Intra} = 200 ms. The measurement period for Intra frequency CPICH measurements.

 T_{Intra}: This is the minimum time that is available for intra frequency measurements, during the measurement period with an arbitrarily chosen timing.

 $-T_{\text{basic_identify_FDD, intra}} = 800 \text{ ms.}$ This is the time period used in the intra frequency equation where the maximumallowed time for the UE to identify a new FDD cell is defined.

The event triggered measurement reporting delay, on cells belonging to monitored set, measured without L3 filtering, shall be less than the above defined T identify intra defined above.

If a cell, belonging to monitored set, which the UE has identified and measured at least once over the measurementperiod, becomes undetectable for a period < 5 seconds and then the cell becomes detectable again and triggers an event, the measurement reporting delay shall be less than $T_{Measurement - Period - Intra}$ ms provided the timing to that cell has notchanged more than +/ 32 chips, the UE CPICH measurement capabilities defined above are valid and L3 filtering hasnot been used. When L3 filtering is used an additional delay can be expected.

If a cell belonging to monitored set has been detectable at least for the time period $T_{identify_intra}$ and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than $T_{Measurement_Period Intra}$ when the L3-filter has not been used and the UE CPICH measurement capabilities defined above are valid.

The normative reference for these requirements is TS 25.133 [2] clauses 8.1.2.2 and A.8.1.1.

8.6.1.1.3 Test purpose

To verify that the UE meets the minimum requirements.

8.6.1.1.4 Method of test

8.6.1.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in table 8.6.1.1.1 and 8.6.1.1.2 below. In the measurement control information it isindicated to the UE that event triggered reporting with Event 1A and 1B shall be used. The test consists of threesuccessive time periods, with a time duration of T1, T2 and T3 respectively. During time duration T1, the UE shall nothave any timing information of cell 2.

Table 8.6.1.1.1: General test parameters for Event triggered reporting in AWGN propagation conditions

Parameter	Unit	Value Value	Comment
DCH parameters		DL and UL Reference	As specified in C.3.1 and C.2.1
-		Measurement Channel 12.2 kbps	
Power Control		On	
Active cell		Cell 1	
Reporting range	dB	3	Applicable for event 1A and 1B
Hysteresis	dB	0	
₩.		4	Applicable for event 1A and 1B
Reporting deactivation		θ	Applicable for event 1A
threshold			
Time to Trigger	ms	θ	
Filter coefficient		θ	
Monitored cell list size		24	
T1	S	5	
T2	\$	5	
T3	S	5	

conditions										
Parameter	Unit		Cell 1			Cell 2				
		T 4 T 2 T 3		T3	T 4	T3				
CPICH_Ec/lor	dB		-10			-10				
PCCPCH_Ec/lor	dB		-12		-12					
SCH_Ec/lor	dB		-12		-12					
PICH_Ec/lor	dB		-15		-15					
DPCH_Ec/lor	dB		-17		N/A					
OCNS			-1.049		-0.941					
$\frac{\hat{H}_{or}}{H_{oc}}$	d₿	θ	6.97	θ	-Infinity	5.97	-Infinity			
<u> </u>	dBm/3.84- MHz	-70								
CPICH_Ec/lo	dB	-13	-13	-13	-Infinity	-14	-Infinity			
Propagation Condition		AWGN								

Table 8.6.1.1.2: Cell specific test parameters for Event triggered reporting in AWGN propagation conditions

8.6.1.1.4.2 Procedure

- 1. The RF parameters are set up according to T1.
- 2. The UE is switched on.
- 3. A call is set up according to the test procedure specified in TS 34.108 [3] sub clause 7.3.2.3.
- 4. SS shall transmit a MEASUREMENT CONTROL message.
- 5. After 5 seconds from the beginning of T1, the SS shall switch the power settings from T1 to T2.
- 6. UE shall transmit a MEASUREMENT REPORT message triggered by event 1A. The measurement reporting delay from the beginning of T2 shall be less than 880 ms. If the UE fails to report the event within the required delay, then a failure is recorded. If the reporting delay for this event is within the required limit, the number of succesfull tests is increased by one.
- 7. After 5 seconds from the beginning of T2, the SS shall switch the power settings from T2 to T3.
- 8. UE shall transmit a MEASUREMENT REPORT message triggered by event 1B. The measurement reporting delay from the beginning of T3 shall be less than 280 ms. If the reporting delay for this event is within the required limit, the number of succesfull tests is increased by one.
- 9. After 5 seconds from the beginning of T3, the UE is switched off. Any timing information of cell 2 is deleted in the UE.
- 10. Repeat steps 1-9 [50] times.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message:

Information Element/Group name	Value/Remark
Message Type (10.2.17)	
UE information elements	
RRC transaction identifier	θ
-Integrity check info	Not Present
Measurement Information elements	
Measurement Identity	4
Measurement Command (10.3.7.46)	Modify
Measurement Reporting Mode (10.3.7.49)	AM RLC
-Measurement Report Transfer Mode -Periodical Reporting / Event Trigger Reporting Mode	· · · · · · · · · · · · · · · · · · ·
-Fenducal Reporting / Event Inggel Reporting Mode -Additional measurements list (10.3.7.1)	Event trigger Not Present
-CHOICE Measurement type	Intra-frequency measurement
-Intra-frequency measurement (10.3.7.36)	
-Intra-frequency measurement objects list (10.3.7.33)	Not Present
-Intra-frequency measurement quantity (10.3.7.38)	
-Filter coefficient (10.3.7.9)	θ
	FDD
-Measurement quantity	CPICH_Ec/N0
-Intra-frequency reporting quantity (10.3.7.41)	
-Reporting quantities for active set cells (10.3.7.5)	
-SFN-SFN observed time difference reporting indicator	No report
-Cell synchronisation information reporting indicator	TRUE (Note 1)
Cell Identity reporting indicator	TRUE
	FDD
	TRUE
	TRUE
-Pathloss reporting indicator	TRUE
-Reporting quantities for monitored set cells (10.3.7.5)	
-SFN-SFN observed time difference reporting indicator	No report
-Cell synchronisation information reporting indicator	TRUE (Note 1)
	TRUE
	FDD
	TRUE
	TRUE
-Pathloss reporting indicator	TRUE
-Reporting quantities for detected set cells (10.3.7.5)	Not Present
-Reporting cell status (10.3.7.61)	Not Present
Measurement validity (10.3.7.51)	Not Present
	Intra-frequency measurement reporting-
late frequency measurement reporting exiteria (40.2.7.20)	criteria
Intra-frequency measurement reporting criteria (10.3.7.39)	
-Parameters required for each event	Event 1A
Intra-frequency event identity	Event TA Monitored set cells
 Triggering condition 2 Reporting Range Constant 	Monitorea set cells 3 dB
	o up Not Present
	FDD
	1.0
Hysteresis	0 dB
-Threshold used frequency	Not Present
	θ
-Replacement activation threshold	Not Present
-Time to trigger	0 ms
	Not present
-Reporting interval	0 ms (Note 2)
-Reporting cell status	Not Present
-Intra-frequency event identity	Event 1B
-Triggering condition 1	Active set cells and monitored set cells
-Reporting Range Constant	3 dB
	Not Present
	FDD
- ₩	1.0
	0 dB

Information Element/Group name	Value/Remark
	Not Present
 Reporting deactivation threshold 	Not Present
Replacement activation threshold	Not Present
Time to trigger	0 ms
	Not Present
Reporting interval	0 ms (note 2)
	Not Present
Physical channel information elements	
-DPCH compressed mode status info (10.3.6.34)	Not Present
Note 1: The SFN-CFN observed time difference is calculated i	
in the IE "Cell synchronisation information ", TS 25.33	
8.6.7.7, this IE is included in MEASUREMENT REPORT	
reporting indicator" in IE "Cell reporting quantities" TS	25.331, clause 10.3.7.5 is set to TRUE in
MEASUREMENT CONTROL.	
Note 2: Reporting interval = 0 ms means no periodical reportir	ng

MEASUREMENT REPORT message for Intra frequency test cases

This message is common for all intra frequency test cases is described in Annex I.

8.6.1.1.5 Test requirements

For the test to pass, the total number of successful tests shall be at least 90%, with a confidence level of [FFS]% of the cases. The number of successful tests shall be on an event level, i.e. the SS shall check how many events are reported successfully out of the total number of events checked.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.6.1.2 Event triggered reporting of multiple neighbours in AWGN propagation condition

8.6.1.2.1 Definition and applicability

In the event triggered reporting period the measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay-excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay-uncertainty is twice the TTI of the uplink DCCH.

The requirements and this test apply to the FDD UE.

8.6.1.2.2 Minimum requirements

The requirements are the same as in sub clause 8.6.1.1.2.

The normative reference for these requirements is TS 25.133 [2] clauses 8.1.2.2 and A.8.1.2.

8.6.1.2.3 Test purpose

To verify that the UE meets the minimum requirements.

8.6.1.2.4 Method of test

8.6.1.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The initial test parameters are given in table 8.6.1.2.1.

Table 8.6.1.2.1: Cel	able 8.6.1.2.1: Cell specific initial test parameters for Event triggered reporting of multiple neighbours in AWGN propagation conditions										
Parameter	Unit	Cell 1	Cell 2	Cell3							
		TO	TO	TO							
CPICH_Ec/lor	d₿	-10	-10	-10							
PCCPCH_Ec/lor	dB	-12	-12	-12							
SCH_Ec/lor	d₿	-12	-12								
PICH_Ec/lor	dB	-15	-15	-15							
DPCH_Ec/lor	d₿	-17	N/A	N/A							
OCNS_Ec/lor	dB	-1.049	-0.941	-0.941							
$\frac{\hat{H}_{or}}{I_{oc}}$	d₿	θ	-Inf	-Inf							
H _{oc}	dBm/ 3.84 MHz		-85								
CPICH_Ec/lo	d₿	-13	-Inf	-Inf							
Propagation Condition			AWGN								

The test parameters are given in table 8.6.1.2.2 and 8.6.1.2.3. In the measurement control information it is indicated to the UE that event triggered reporting with Event 1A, 1C and 1B shall be used and the periodical reporting of the events is not applied. The test consists of four successive time periods, with a time duration of T1, T2, T3 and T4 respectively. In the initial condition before the time T1 only Cell1 is active.

Table 8.6.1.2.2: General test parameters for Event triggered reporting of multiple neighbours in AWGN propagation conditions

Parameter	Unit	Value	Comment
DCH parameters		DL and UL Reference Measurement Channel 12.2 kbps	As specified in C.3.1 and C.2.1
Power Control		- On	
Active cell		Cell 1	
Reporting range	dB	3	Applicable for event 1A and 1B
Hysteresis	dB	θ	
₩		4	Applicable for event 1A and 1B
Replacement- activation threshold		θ	Applicable for event 1C
Reporting- deactivation- threshold		0	Applicable for event 1A
Time to Trigger	ms	θ	
Filter coefficient		θ	
Monitored cell list- size		32	
1 4	S	10	
T2	S	10	
13	S	5	
T 4	S	10	

Parameter	Unit		Ce	#1			Cell 2			Cell3			
		T1	T2	T3	T 4	T 4	T2	T3	T4	T 4	T2	T3	T 4
CPICH_Ec/lor	d₿	-10				-10			-10				
PCCPCH_Ec/ lor	dB	-12			-12			-12					
SCH_Ec/lor	dB	-12				-1	2		-12				
PICH_Ec/lor	d₿	-15				-15			-15				
DPCH_Ec/lor	d₿	-17			N/A			N/A					
OCNS_Ec/lor	d₿		-1.(349			-0.941			-0.941			
$\frac{\hat{I}_{or}}{I_{oc}}$	d₿	6.97	6.93	5.97	6.12	-Inf	9.43	6.97	7.62	5.97	6.93	-Inf	5.62
-I _{oc}	- 3.84 85 MHz												
CPICH_Ec/lo	d₿	-13	-16	-14	-15.5	-Inf	-13.5	-13	-14	-14	-16	-Inf	-16
Propagation Condition			AWGN										

Table 8.6.1.2.3: Cell specific test parameters for Event triggered reporting of multiple neighbours in AWGN propagation condition

8.6.1.2.4.2 Procedure

- 1) The RF parameters are set up according to T0.
- 2) The UE is switched on.
- 3) A call is set up according to the test procedure specified in TS 34.108 [3] sub clause 7.3.2.3.
- 4) SS shall transmit a MEASUREMENT CONTROL message.
- 5) 5 seconds after step4 has completed, the SS shall switch the power settings for T0 to T1.
- 6) UE shall transmit a MEASUREMENT REPORT message for Cell 3 triggered by event 1A. The measurementreporting delay from the beginning of T1 shall be less than 880 ms. If the UE fails to report the event within the required delay, then a failure is recorded. If the reporting delay for this event is within the required limit, the number of succesfull tests is increased by one.
- 7) UE may transmit a MEASUREMENT REPORT message for Cell 3 triggered by event 1C. In case it doesn't this shall not be considered as a failure.
- 8) After 10 seconds from the beginning of T1, the SS shall switch the power settings from T1 to T2.
- 9) UE shall transmit a MEASUREMENT REPORT message for Cell 2 triggered by event 1C. The measurementreporting delay from the beginning of T2 shall be less than 880 ms. If the UE fails to report the event within the required delay, then a failure is recorded. If the reporting delay for this event is within the required limit, the number of succesfull tests is increased by one.
- 10) UE shall transmit a MEASUREMENT REPORT message for Cell 2 triggered by event 1A. The measurement reporting delay from the beginning of T2 shall be less than 880 ms. If the UE fails to report the event within the required delay, then a failure is recorded. If the reporting delay for this event is within the required limit, the number of succesfull tests is increased by one.
- 11) UE may transmit a MEASUREMENT REPORT message for Cell 3 triggered by event 1C. In case it doesn't this shall not be considered as a failure.
- 12) After 10 seconds from the beginning of T2, the SS shall switch the power settings from T2 to T3.
- 13)UE shall transmit a MEASUREMENT REPORT message for Cell 3 triggered by event 1B. The measurementreporting delay from the beginning of T3 shall be less than 280 ms. If the UE fails to report the event within the required delay, then a failure is recorded. If the reporting delay for this event is within the required limit, the number of succesfull tests is increased by one.
- 14) UE may transmit a MEASUREMENT REPORT message for Cell 2 triggered by event 1C. In case it doesn't this shall not be considered as a failure.

15) After 5 seconds from the beginning of T3, the SS shall switch the power settings from T3 to T4.

- 16)UE shall transmit a MEASUREMENT REPORT message for Cell 3 triggered by event 1A. The measurement reporting delay from the beginning of T4 shall be less than 280 ms. If the reporting delay for this event is within the required limit, the number of successful tests is increased by one.
- 17)UE may transmit a MEASUREMENT REPORT message for Cell 2 triggered by event 1C. In case it doesn't this shall not be considered as a failure.
- 18) UE may transmit a MEASUREMENT REPORT message for Cell 3 triggered by event 1C. In case it doesn't this shall not be considered as a failure.
- 19)After 10 seconds from the beginning of T4, the UE is switched off.
- 20)Repeat steps 1 19 [50] times.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message:

Information Element/Group name Aessage Type (10.2.17)	Value/Remark
Hessage Type (10.2.17) JE information elements	
-RRC transaction identifier	0 Not Present
-Integrity check info Measurement Information elements	Not Present
-Measurement Identity	4
-Measurement Command (10.3.7.46)	Modify
-Measurement Reporting Mode (10.3.7.49)	
Measurement Report Transfer Mode	AM RLC
Periodical Reporting / Event Trigger Reporting Mode	Event trigger
-Additional measurements list (10.3.7.1)	Not Present
-CHOICE Measurement type	Intra-frequency measurement
Intra-frequency measurement (10.3.7.36)	
Intra-frequency measurement objects list (10.3.7.33)	Not Present
Intra-frequency measurement quantity (10.3.7.38)	
Filter coefficient (10.3.7.9)	0
	FDD
Measurement quantity	CPICH_Ec/N0
Intra-frequency reporting quantity (10.3.7.41)	
Reporting quantities for active set cells (10.3.7.5)	
	No report
Cell synchronisation information reporting indicator	TRUE (Note 1)
 Cell Identity reporting indicator 	TRUE
	FDD
	TRUE
	TRUE
Pathloss reporting indicator	TRUE
Reporting quantities for monitored set cells (10.3.7.5)	
	No report
Cell synchronisation information reporting indicator	TRUE (Note 1)
	TRUE
	FDD
	TRUE
	TRUE
	TRUE
Reporting quantities for detected set cells (10.3.7.5)	Not Present
Reporting cell status (10.3.7.61)	Not Present
Measurement validity (10.3.7.51)	Not Present
	Intra-frequency measurement reporting
	criteria
Intra-frequency measurement reporting criteria (10.3.7.39)	
	3
	Event 1A
Triggering condition 2	Monitored set cells
	Monitorea set cells 3 dB
 —-Reporting Range Constant —-Cells forbidden to affect Reporting Range 	Not Present
— -Cells fordidden to anect Reporting Range — -W	
	1 .0
	0 dB
	Not Present
	θ Nat Descent
	Not Present
	0 ms
	Not Present
	0 ms (Note 2)
	Not Present
-Intra-frequency event identity	Event 1B
	Active set cells and monitored set cells
	3 dB
	Not Present
_ - ₩	1.0
	0 dB
-Threshold used frequency	Not Present
	Not Present
	Not Present
	Not Present

Information Element/Group name	Value/Remark
	Not Present
	0 ms (Note 2)
	Not Present
Intra-frequency event identity	Event 1C
	Active set cells and monitored set cells
	Not present
	Not Present
	Not present
Hysteresis	0 dB
	Not Present
	Not present
	θ
	0 ms
Amount of reporting	Not Present
	0 ms (Note 2)
	Not Present
Physical channel information elements	
-DPCH compressed mode status info (10.3.6.34)	Not Present
NOTE 1: The SFN-CFN observed time difference is calcu	ulated from the OFF and Tm parameters contained- 25.331, clause 10.3.7.6. According to TS 25.331,
ASUREMENT REPORT message for Intra frequency	test cases
	and a final in America T
	escribed in Annex I.
6.1.2.5 Test requirements	escribed in Annex I.
	e at least 90%, with a confidence level of [FFS]% of th
6.1.2.5 Test requirements or the test to pass, the total number of successful tests shall be ses. The number of succesfull tests shall be on an event level ccessfully out of the total number of events checked. NOTE: If the above Test Requirement differs from the N	e at least 90%, with a confidence level of [FFS]% of th l, i.e. the SS shall check how many events are reported Ainimum Requirement then the Test Tolerance applied his test is defined in clause F.2 and the explanation of
6.1.2.5 Test requirements or the test to pass, the total number of successful tests shall be ses. The number of successfull tests shall be on an event level ccessfully out of the total number of events checked. NOTE: If the above Test Requirement differs from the A for this test is non-zero. The Test Tolerance for t how the Minimum Requirement has been relaxed	e at least 90%, with a confidence level of [FFS]% of th l, i.e. the SS shall check how many events are reported Ainimum Requirement then the Test Tolerance applied his test is defined in clause F.2 and the explanation of

8.6.1.3.1 Definition and applicability

In the event triggered reporting period the measurement reporting delay is defined as the time between any event thatwill trigger a measurement report until the UE starts to transmit over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delayexcludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH . The delay uncertainty is twice the TTI of the uplink DCCH.

The requirements and this test apply to the FDD UE.

8.6.1.3.2 Minimum requirements

The requirements are the same as in sub clause 8.6.1.1.2.

The normative reference for these requirements is TS 25.133 [2] clauses 8.1.2.2 and A.8.1.3.

8.6.1.3.3 Test purpose

To verify that the UE meets the minimum requirements.

8.6.1.3.4 Method of test

8.6.1.3.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in table 8.6.1.3.1 and 8.6.1.3.2. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 1A and 1B shall be used and the periodical reporting of the events is not applied. The test consists of four successive time periods, with a time duration of T1, T2, T3 and T4 respectively. In the initial condition before the time T1 only Cell1 is active.

Table 8.6.1.3.1: General test parameters for Event triggered reporting of two detectable neighbours in AWGN propagation condition

Parameter	Unit	Value	Comment				
DCH parameters		DL and UL Reference	As specified in C.3.1 and C.2.1				
		Measurement Channel 12.2					
		kbps					
Power Control		On					
Active cell		Cell 1					
Reporting range	dB	3	Applicable for event 1A and 1B				
Hysteresis	dB	θ					
₩.		4	Applicable for event 1A and 1B				
Reporting deactivation-		θ	Applicable for event 1A				
threshold							
Time to Trigger	ms	θ					
Filter coefficient		θ					
Monitored cell list size		32					
T1	5	10					
T2	5	10					
13	8	10					
T 4	9	10					

Table 8.6.1.3.2: Cell specific test parameters for Event triggered reporting of two detectable neighbours in AWGN propagation condition

Parameter	Unit		Ce	#1-1			Ce	 2			Ce	ll3	
		T 4	T2	T3	T4	T1	T2	T3	T4	T 4	T2	T3	T4
CPICH_Ec/lor	d₿	-10				-10			-10				
PCCPCH_Ec/ lor	d₿	-12			-12				-12				
SCH_Ec/lor	d₿	-12			-12				-12				
PICH_Ec/lor	d₿	-15				4	15		-15				
DPCH_Ec/lor	d₿	-17			N/A			N/A					
OCNS_Ec/lor	d₿		-1.	049		-0.941				-0.9 41			
$\frac{\hat{H}_{or}}{I_{oc}}$	d₿	14.5 5	28.5 1	14.4 5	28.5 1	-Inf	27.5 1	13.9 5	21.5 1	8.05	21.5 1	13.9 5	27.5 1
I_{oc}	dBm/ 3.84- MHz					-85							
CPICH_Ec/lo	d₿	-11 -13 -14.5 -13			-Inf -14.0 -15 -20				-17.5	-20	-15	-14	
Propagation Condition			AWGN										

8.6.1.3.4.2 Procedure

1) The RF parameters are set up according to T1.

2) The UE is switched on.

3) A call is set up according to the test procedure specified in TS 34.108 [3] sub clause 7.3.2.3.

- 4) SS shall transmit a MEASUREMENT CONTROL message.
- 5) After 10 seconds from the beginning T1, the SS shall switch the power settings from T1 to T2.
- 6) UE shall transmit a MEASUREMENT REPORT message for Cell 2 triggered by event 1A. The measurement reporting delay from the beginning of T2 shall be less than 880 ms. If the UE fails to report the event within the required delay, then a failure is recorded. If the reporting delay for this event is within the required limit, the number of succesfull tests is increased by one.
- 7) After 10 seconds from the beginning T2, the SS shall switch the power settings from T2 to T3.
- 8) UE shall transmit a MEASUREMENT REPORT message for Cell 3 triggered by event 1A. The measurement reporting delay from the beginning of T3 shall be less than 280 ms. If the UE fails to report the event within the required delay, then a failure is recorded. If the reporting delay for this event is within the required limit, the number of succesfull tests is increased by one.
- 9) After 10 seconds from the beginning T3, the SS shall switch the power settings from T3 to T4.
- 10) UE shall transmit a MEASUREMENT REPORT message for Cell 2 triggered by event 1B. The measurement reporting delay from the beginning of T4 shall be less than 280 ms. If the reporting delay for this event is within the required limit, the number of succesfull tests is increased by one.
- 11) After 10 seconds, the UE is switched off.
- 12)Repeat steps 1 11 [50] times.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message:

Information Element/Group name Message Type (10.2.17)	Value/Remark
Wessage Type (10.2.17) UE information elements	
-RRC transaction identifier	θ
-Rec transaction denuner -Integrity check info	Vot Present
Measurement Information elements	
	1
-Measurement Identity	4 Modify
-Measurement Command (10.3.7.46)	Modify
-Measurement Reporting Mode (10.3.7.49) Measurement Report Transfer Mode	AM RLC
	Event trigger
Periodical Reporting / Event Trigger Reporting Mode	Not Present
-Additional measurements list (10.3.7.1) -CHOICE Measurement type	
	Intra-frequency measurement
-Intra-frequency measurement (10.3.7.36)	Net Dresent
Intra-frequency measurement objects list (10.3.7.33)	Not Present
Intra-frequency measurement quantity (10.3.7.38)	
Filter coefficient (10.3.7.9)	0
	CPICH_Ec/N0
-Intra-frequency reporting quantity (10.3.7.41)	
-Reporting quantities for active set cells (10.3.7.5)	
	No report
Cell synchronisation information reporting indicator	TRUE (Note 1)
 Cell Identity reporting indicator 	TRUE
	FDD
	TRUE
 CPICH RSCP reporting indicator 	TRUE
Pathloss reporting indicator	TRUE
-Reporting quantities for monitored set cells (10.3.7.5)	
	No report
Cell synchronisation information reporting indicator	TRUE (Note 1)
	TRUE
	FDD
	TRUE
	TRUE
	TRUE
	Not Present
Reporting cell status (10.3.7.61)	Not Present
Measurement validity (10.3.7.51)	Not Present
	Intra-frequency measurement reporting-
	criteria
Intra-frequency measurement reporting criteria (10.3.7.39)	unterna
 Parameters required for each event 	2
	Event 1A
-Intra-frequency event identity	
	Monitored set cells
	3 dB
	Not Present
	FDD
— - ₩	1.0
	0 dB
-Threshold used frequency	Not Present
Reporting deactivation threshold	θ
-Replacement activation threshold	Not Present
-Time to trigger	0 ms
	Not present
	0 ms (Note 2)
	Not Present
-Intra-frequency event identity	Event 1B
-Triggering condition 1	Active set cells and monitored set cells
	3 dB
Cells forbidden to affect Reporting Range	Not Present
	FDD
—— -Primary CPICH info (10.3.6.60) —— -W	10
-107	1.0
¥	0 dB

Information Element/Group name	Value/Remark				
	Not Present				
Reporting deactivation threshold	Not Present				
Replacement activation threshold	Not Present				
	0 ms				
	Not Present				
Reporting interval	0 ms (Note 2)				
	Not Present				
Physical channel information elements					
-DPCH compressed mode status info (10.3.6.34) Not Present					
NOTE 1: The SFN-CFN observed time difference is calculated from the OFF and Tm parameters contained					
in the IE "Cell synchronisation information ", TS 25.331, clause 10.3.7.6. According to TS 25.331,					
8.6.7.7, this IE is included in MEASUREMENT REPORT if IE "Cell synchronisation information					
reporting indicator" in IE "Cell reporting quantities" TS 25.331, clause 10.3.7.5 is set to TRUE in					
MEASUREMENT CONTROL.					
NOTE 2: Reporting interval = 0 ms means no periodical reporting.					

MEASUREMENT REPORT message for Intra frequency test cases

This message is common for all intra frequency test cases is described in Annex I.

8.6.1.3.5 Test requirements

For the test to pass, the total number of successful tests shall be at least 90%, with a confidence level of [FFS]% of the cases. The number of successful tests shall be on an event level, i.e. the SS shall check how many events are reported successfully out of the total number of events checked.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.6.1.4 Correct reporting of neighbours in fading propagation condition

8.6.1.4.1 Definition and applicability

In the event triggered reporting period the measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay-excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay-uncertainty is twice the TTI of the uplink DCCH.

The requirements and this test apply to the FDD UE.

8.6.1.4.2 Minimum requirements

The requirements are the same as in sub clause 8.6.1.1.2.

The normative reference for these requirements is TS 25.133 [2] clauses 8.1.2.2 and A.8.1.4.

8.6.1.4.3 Test purpose

To verify that the UE meets the minimum requirements and also verify that the UE performs sufficient layer 1 filtering of the measurements. The test is performed in fading propagation conditions.

8.6.1.4.4 Method of test

8.6.1.4.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in table 8.6.1.4.1 and 8.6.1.4.2. In the measurement control information it is indicated to the UE that event triggered reporting with Event 1A and Event 1B shall be used. The test consists of two successive time periods, each with time duration of T1 and T2 respectively.

The TTI of the uplink DCCH shall be 20ms.

Table 8.6.1.4.1: General test parameters for correct reporting of neighbours in fading propagation condition

Parameter	Unit	Value	Comment
DCH parameters		DL and UL Reference Measurement Channel 12.2 kbps	As specified in C.3.1 and C.2.1
Power Control		On	
Active cell		Cell 1	
Reporting range	dB	θ	Applicable for event 1A and 1B
Hysteresis	dB	θ	
Ŵ		4	Applicable for event 1A and 1B
Reporting deactivation- threshold		θ	Applicable for event 1A
Time to Trigger	ms	120	
Filter coefficient		0	
Monitored cell list size		24	Signalled before time T1.
T 4	\$	200	
T2	8	201	

Table 8.6.1.4.2: Cell specific test parameters for correct reporting of neighbours in fadingpropagation condition

Parameter	Unit	Cell 1		Ge	 2
		T1	T2	T1	T2
CPICH_Ec/lor	d₿	-10		-10	
PCCPCH_Ec/lor	d₿	-12		-12	
SCH_Ec/lor	d₿	-12		-12	
PICH_Ec/lor	d₿	-15		-15	
DPCH_Ec/lor	d₿	-17		N/A	
OCNS		-1.049		-0.941	
$\frac{\hat{I}_{or}}{I_{oc}}$	d₿	7.29	3.29	3.29	7.29
-I _{oc}	dBm/3.84- MHz	-70			
CPICH_Ec/lo	d₿	-12	-16	-16	-12
Propagation- Condition-	Case 5 as specified in table D.2.2.1				

8.6.1.4.4.2 Procedure

- 1) The RF parameters are set up according to T1.
- 2) The UE is switched on.
- 3) A call is set up in AWGN conditions, according to the test procedure specified in TS 34.108 [3] sub clause-7.3.2.3.
- 4) SS shall transmit a MEASUREMENT CONTROL message.
- 5) 5 seconds after step4 has completed, the fading simulator is switched on, configured with the settings described in the tables above at the beginning of T1.
- 6) UE shall start transmitting MEASUREMENT REPORT messages triggered by event 1A.
- 7) SS shall count the reports. The number of received event 1A reports shall be less than 60. If the SS fails to receive less than 60 event 1A reports, then then a failure is recorded. If the SS receives number of event 1A reports within the required limit, the number of succesfull tests is increased by one.

8) After 200 seconds from the beginning of T1, the SS shall switch the power settings from T1 to T2.

9) UE shall start transmitting MEASUREMENT REPORT messages triggered by event 1B.

10)During the first 1s of time period T2 no event reports shall be counted.

11)After the first 1s SS shall start counting the reports. The number of received event 1B reports shall be less than 60. If the SS receives number of event 1B reports within the required limit, the number of successfull tests is increased by one.

12) After 201 seconds from the beginning of T2, the UE is switched off.

13)Repeat steps 1 12 [50] times.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message:

Information Element/Group name Message Type (10.2.17)	Value/Remark
Wessage Type (10.2.17) UE information elements	
-RRC transaction identifier	θ
-Rec transaction identifier -Integrity check info	Not Present
Heasurement Information elements	
	1
-Measurement Identity	4 Modify
-Measurement Command (10.3.7.46)	Modify
-Measurement Reporting Mode (10.3.7.49)	AM RI C
Measurement Report Transfer Mode	Event trigger
Periodical Reporting / Event Trigger Reporting Mode	
-Additional measurements list (10.3.7.1) -CHOICE Measurement type	Not Present
	Intra-frequency measurement
-Intra-frequency measurement (10.3.7.36)	Net Dresent
-Intra-frequency measurement objects list (10.3.7.33)	Not Present
-Intra-frequency measurement quantity (10.3.7.38)	
Filter coefficient (10.3.7.9)	0
	CPICH_Ec/N0
-Intra-frequency reporting quantity (10.3.7.41)	
-Reporting quantities for active set cells (10.3.7.5)	
	No report
	TRUE (Note 1)
	TRUE
	FDD
-CPICH Ec/N0 reporting indicator	TRUE
 CPICH RSCP reporting indicator 	TRUE
-Pathloss reporting indicator	TRUE
-Reporting quantities for monitored set cells (10.3.7.5)	
	No report
Cell synchronisation information reporting indicator	TRUE (Note 1)
	TRUE
	FDD
	TRUE
	TRUE
	TRUE
	Not Present
Reporting cell status (10.3.7.61)	Not Present
Measurement validity (10.3.7.51)	Not Present
	Intra-frequency measurement reporting-
	criteria
Intra-frequency measurement reporting criteria (10.3.7.39)	unterna
	2
Parameters required for each event	∠ Event 1A
	Active set cells and monitored set cells
	0 dB
	Not Present
	FDD
— -₩	1.0
	0 dB
-Threshold used frequency	Not Present
Reporting deactivation threshold	θ
-Replacement activation threshold	Not Present
-Time to trigger	120 ms
	Not present
-Reporting interval	0 ms (Note 2)
	Not Present
-Intra-frequency event identity	Event 1B
-Triggering condition 1	Active set cells and monitored set cells
	0-dB
	Not Present
	FDD
Primary CPICH info (10.3.6.60)	1.0
- ₩	1.0 0 dB

Information Element/Group name	Value/Remark				
	Not Present				
	Not Present				
Replacement activation threshold	Not Present				
Time to trigger	120 ms				
	Not Present				
Reporting interval	0 ms (Note 2)				
	Not Present				
Physical channel information elements					
-DPCH compressed mode status info (10.3.6.34) Not Present					
Note 1: The SFN-CFN observed time difference is calculated from the OFF and Tm parameters contained					
in the IE "Cell synchronisation information ", TS 25.331, clause 10.3.7.6. According to TS 25.331,					
8.6.7.7, this IE is included in MEASUREMENT REPORT if IE "Cell synchronisation information					
reporting indicator" in IE "Cell reporting quantities" TS 25.331, clause 10.3.7.5 is set to TRUE in					
MEASUREMENT CONTROL.					
Note 2: Reporting interval = 0 ms means no periodical reporting					

MEASUREMENT REPORT message for Intra frequency test cases

This message is common for all intra frequency test cases is described in Annex I.

8.6.1.4.5 Test requirements

For the test to pass, the total number of successful tests shall be at least 90%, with a confidence level of [FFS]% of the cases. The number of successful tests shall be on an event level, i.e. the SS shall check every time first if the number of the event 1A events is within the required limit, and then, check if the number of the event 1B events is within the required limit.

8.6.2 FDD inter frequency measurements

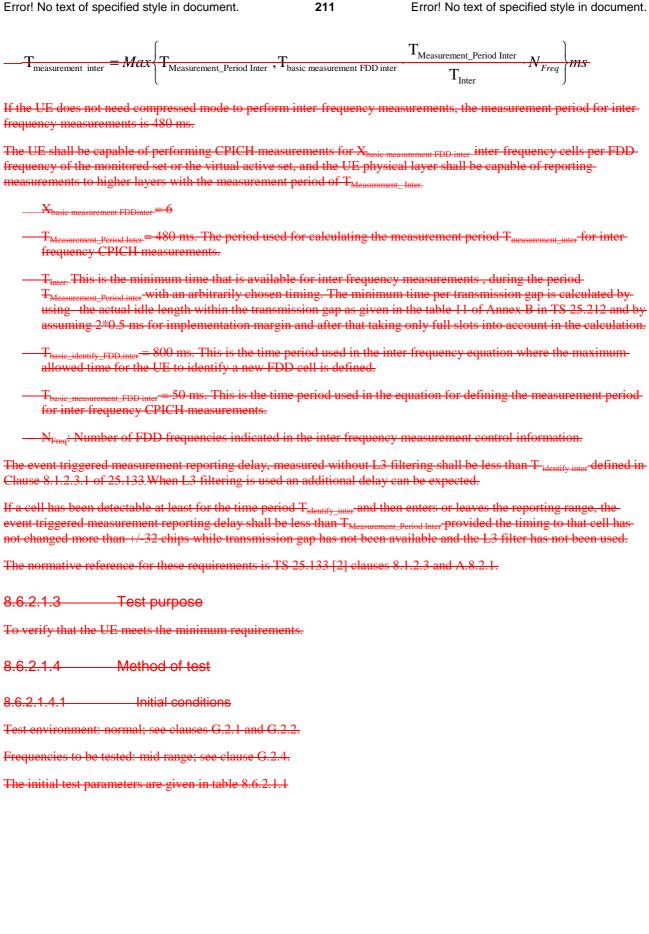
8.6.2.1 Correct reporting of neighbours in AWGN propagation condition

8.6.2.1.1 Definition and applicability

In the event triggered reporting period the measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit the measurement report over the Uu interface. This-requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This-measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH.

The requirements and this test apply to the FDD UE.

8.6.2.1.2 Minimum requirements


The UE shall be able to identify a new detectable cell belonging to the monitored set within-

$$---T_{\text{identify inter}} = Max \left\{ 5000, T_{\text{basic identify FDD, inter}} + \frac{T_{\text{Measurement Period, Inter}}}{T_{\text{Inter}}} + N_{Freq} \right\} ms$$

A cell shall be considered detectable when CPICH Ec/Io ≥ 20 dB, SCH_Ec/Io ≥ -17 dB for at least one channel tap and SCH_Ec/Ior is equally divided between primary synchronisation code and secondary synchronisation code. When L3-filtering is used an additional delay can be expected.

When transmission gaps are scheduled for FDD inter frequency measurements the UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in sub-clause 9.1.1 and 9.1.2 of 25.133 with measurement period given by

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

Parameter	Unit	Cell 1	Cell 2	Cell3
		T0	TO	10
CPICH_Ec/lor	dB	-10	-10	-10
PCCPCH_Ec/lor	dB	-12	-12	-12
SCH_Ec/lor	dB	-12	-12	-12
PICH_Ec/lor	dB	-15	-15	-15
DPCH_Ec/lor	dB	-17	N/A	N/A
OCNS_Ec/lor	dB	-1.049	-0.941	-0.941
$\frac{\hat{I}_{or}}{I_{oc}}$	dB	θ	-Inf	-Inf
-I _{oc}	d Bm/3 .84 MHz	-70		
CPICH_Ec/lo	dB	-13	-Inf	-Inf
Propagation Condition			AWGN	

Table 8.6.2.1.1: Cell specific initial test parameters for Correct reporting of neighbours in AWGN propagation condition

The test consists of two successive time periods, with a time duration T1 and T2. The test parameters are given in tables 8.6.2.1.2 and 8.6.2.1.3 below. In the measurement control information it is indicated to the UE that event triggered reporting with Event 1A and 2C shall be used. The CPICH Ec/IO of the best cell on the unused frequency shall be reported together with Event 2C reporting.

Table 8.6.2.1.2: General test parameters for Correct reporting of neighbours in AWGN propagation condition

Parameter	Unit	Value	Comment
DCH parameters		DL and UL Reference Measurement- Channel 12.2 kbps	As specified in C.3.1 and C.2.1
Power Control		- On	
Compressed mode		C.5.2 set 1	As specified in C.5.
Active cell		Cell 1	
Threshold non used	dB	-18	Absolute Ec/I0 threshold for event 2C
frequency			
Reporting range	dB	4	Applicable for event 1A
Hysteresis	dB	θ	
₩		4	Applicable for event 1A
W non-used frequency		4	Applicable for event 2C
Reporting deactivation- threshold		θ	Applicable for event 1A
Time to Trigger	ms	θ	
Filter coefficient		θ	
Monitored cell list size		24 on channel 1 16 on channel 2	Measurement control information is- sent before the compressed mode- pattern starts.
T 4	8	10	
T2	8	5	

Parameter	Unit	Cell 1		Cell 2		Cell 3		
		T1	T2	T1	T2	T1	T2	
UTRA RF Channel- Number		Chai	nnel 1	Char	nel 1	Cha	innel 2	
CPICH_Ec/lor	dB	-10		-10		-10		
PCCPCH_Ec/lor	dB	-12		-12	-12		-12	
SCH_Ec/lor	dB	-12		-12		-12		
PICH_Ec/lor	dB	-15		-15		-15		
DPCH_Ec/lor	dB	-17		N/A		N/A		
OCNS		-1.0490.94		-0.941		-0.941		
$\frac{\hat{H}_{or}}{H_{oc}}$	dB	θ	4.39	-Infinity	2.39	-1.8	-1.8	
-I _{oc}	dBm/3.84 MHz	-70				-70	·	
CPICH_Ec/lo	dB	-13	-13	-Infinity	-15	-14	-14	
Propagation- Condition-	AWGN							

Table 8.6.2.1.3: Cell Specific parameters for Correct reporting of neighbours in AWGN propagation-
condition

8.6.2.1.4.2 Procedure

- 1) The RF parameters are set up according to T0.
- 2) The UE is switched on.
- 3) A call is set up according to the test procedure specified in TS 34.108 [3] sub clause 7.3.2.3.
- 4) SS shall transmit a MEASUREMENT CONTROL message (inter frequency).
- 5) SS shall transmit a MEASUREMENT CONTROL message (intra frequency).
- 6) SS shall transmit PHYSICAL CHANNEL RECONFIGURATION message.
- 7) UE shall transmit PHYSICAL CHANNEL RECONFIGURATION COMPLETE message.
- 8) 5 seconds after step7 has completed, the SS shall switch the power settings from T0 to T1.
- 9) UE shall transmit a MEASUREMENT REPORT message (inter frequency) triggered by event 2C. The measurement reporting delay from the beginning of T1 shall be less than 9.08 seconds. If the UE fails to report the event within the required delay, then a failure is recorded. If the reporting delay for this event is within the required limit, the number of succesfull tests is increased by one.

10) After 10 seconds from the beginning of T1, the SS shall switch the power settings from T1 to T2.

11)UE shall transmit a MEASUREMENT REPORT message (intra frequency) triggered by event 1A. The measurement reporting delay from the beginning of T2 shall be less than 1036.2 ms. If the reporting delay for-this event is within the required limit, the number of succesfull tests is increased by one.

12) After 5 seconds from the beginning of T2, the UE is switched off.

13)Repeat steps 1 12 [50] times.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

PHYSICAL CHANNEL RECONFIGURATION message for Inter frequency measurement:

Information Element	Value/Remark
Message Type	
UE Information Elements	
-RRC transaction identifier	θ.
-Integrity check info	Not Present
-Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	Not Present
	Not Present
New C-RNTI	
	Not Present
-RRC State Indicator	CELL_DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	
-CN Information info	Not Present
UTRAN mobility information elements	
-URA identity	Not Present
RB information elements	
-Downlink counter synchronisation info	Not Present
PhyCH information elements	
-Frequency info	Not Present
Uplink radio resources	
-Maximum allowed UL TX power	Not Present
Downlink radio resources	
-CHOICE mode	FDD
-Downlink PDSCH information	Not Present
-Downlink FDSCH Information	NULFICSCIII
	Net Deserve
-Downlink DPCH info common for all RL	Not Present
-CHOICE mode	FDD
DPCH compressed mode info	
-Transmission gap pattern sequence	
	4
	Activate
	(Current CFN + (256 - TTI/10msec))mod 25
 Transmission gap pattern sequence 	
configuration parameters	
	FDD measurement
	Not present
	4
TGL1	7
	Not Present
	0
	3
-TGPL2	Not Present
	Mode 0
	Mode 0
	UL and DL
	SF/2
	SF/2
	B
	3.0
	3.0
	Not Present
	Not Present
	Not Present
	Not Present Not Present
	Not Present
-N Identify abort -T Reconfirm abort -TX Diversity Mode -SDT information	Not Present- Not Present-
	Not Present- Not Present- Not Present-
	Not Present- Not Present- Not Present-
	Not Present Not Present Not Present Not Present
	Not Present- Not Present- Not Present-
	Not Present Not Present Not Present Not Present

PDSCH code mapping	Not Present
Downlink DPCH info for each RL	
	FDD
Primary CPICH usage for channel estimation	Primary CPICH may be used
	Set to value Default DPCH Offset Value (as
	currently stored in SS) mod 38400
Secondary CPICH info	Not Present
Secondary scrambling code	Not Present
	128
Code number	θ
	No code change
	θ
	Not Present
Closed loop timing adjustment mode	Not Present
SCCPCH Information for FACH	Not Present

MEASUREMENT CONTROL message (inter frequency):

Information Element/Group name	Value/Remark
Message Type (10.2.17) UE information elements	
-RRC transaction identifier	Α
-RRC transaction dentiner	Not Present
Measurement Information elements	
-Measurement Identity	2
-Measurement Command (10.3.7.46)	∠ Setup
-Measurement Command (10.3.7.49) -Measurement Reporting Mode (10.3.7.49)	Setup
-Measurement Report Transfer Mode	AM RLC
	Event trigger
-Additional measurements list (10.3.7.1)	Not Present
-CHOICE Measurement type	Inter-frequency measurement
Inter-frequency measurement (10.3.7.16)	inter-inequency measurement
Inter-frequency measurement (10.3.7.10) Inter-frequency measurement objects list (10.3.7.13)	
	Not Present
Inter frequency cell id	Α
Frequency info	➡
	FDD
	Not Present
	Same frequency as "Channel2" in Table-
	8.6.2.1.3
	0.0.2.1.0
	Not Present
	Not Present
	TRUE
	EDD
- Primary scrambling code	Set to Primary scrambling code of Cell3
	Set to Primary CPICH Tx Power of Cell3
	described in Table 8.6.2.1.3
	FALSE
	Set to Cell Selection and Re-selection inf
	of Cell3
Cell for measurement	Not Present
Inter-frequency measurement quantity (10.3.7.18)	Not Present
Intra-frequency reporting criteria	
Intra-frequency measurement quantity (10.3.7.38)	
Filter coefficient (10.3.7.9)	θ
	EDD
	CPICH_Ec/N0
Inter-frequency reporting criteria	
	θ
	EDD
	CPICH_Ec/NO
Inter-frequency reporting quantity (10.3.7.21)	
	FALSE
-Frequency quality estimate	FALSE
-Non frequency related cell reporting quantities (10.3.7.5)	
	No report
-Cell synchronisation information reporting indicator	TRUE (Note 1)
-Cell Identity reporting indicator	TRUE
	FDD
	TRUE
-CPICH RSCP reporting indicator	TRUE
Pathloss reporting indicator	TRUE
Reporting cell status (10.3.7.61)	Not Present
-Measurement validity (10.3.7.51)	Not Present
	Inter-frequency measurement reporting
	criteria
Inter-frequency measurement reporting criteria (10.3.7.19)	
	4
	Event 2C
	Not present

Information Element/Group name	Value/Remark			
	0 dB			
	0 ms			
	Report all active set cells + cells within			
	monitored set on used frequency			
	3			
Parameters required for each non-used frequency				
	-18 dB			
	4			
Physical channel information elements				
-DPCH compressed mode status info (10.3.6.34)	Not Present			
NOTE 1: The SFN-CFN observed time difference is calculated	from the OFF and Tm parameters contained			
in the IE "Cell synchronisation information ", TS 25.331, clause 10.3.7.6. According to TS 25.331,				
8.6.7.7, this IE is included in MEASUREMENT REPORT if IE "Cell synchronisation information				
reporting indicator" in IE "Cell reporting quantities" TS 25.331, clause 10.3.7.5 is set to TRUE in- MEASUREMENT CONTROL.				

MEASUREMENT CONTROL message (intra frequency):

Information Element/Group name	Value/Remark
Message Type (10.2.17) UE information elements	
UE Information elements - RRC transaction identifier	θ
-Integrity check info	U Not Present
Heasurement Information elements	
-Measurement Identity	4
-Measurement Command (10.3.7.46)	+ Modify
-Measurement Reporting Mode (10.3.7.49)	wouny
-Measurement Report Transfer Mode	AM RLC
-Periodical Reporting / Event Trigger Reporting Mode	Event trigger
-Additional measurements list (10.3.7.1)	Not Present
-CHOICE Measurement type	Intra-frequency measurement
-Intra-frequency measurement (10.3.7.36)	milla nequency measurement
-Intra-frequency measurement objects list (10.3.7.33)	Not Present
-Intra-frequency measurement quantity (10.3.7.38)	
-Filter coefficient (10.3.7.9)	θ
	FDD
-Measurement quantity	CPICH_Ec/N0
-Intra-frequency reporting quantity (10.3.7.41)	
-Reporting quantities for active set cells (10.3.7.5)	
-SFN-SFN observed time difference reporting indicator	No report
-Cell synchronisation information reporting indicator	TRUE (Note 1)
-Cell Identity reporting indicator	TRUE
	FDD
-CPICH Ec/N0 reporting indicator	TRUE
	TRUE
-Pathloss reporting indicator	TRUE
-Reporting quantities for monitored set cells (10.3.7.5)	
-SFN-SFN observed time difference reporting indicator	No report
Cell synchronisation information reporting indicator	TRUE (Note 1)
	TRUE
	FDD
-CPICH Ec/N0 reporting indicator	TRUE
	TRUE
Pathloss reporting indicator	TRUE
-Reporting quantities for detected set cells (10.3.7.5)	Not Present
-Reporting cell status (10.3.7.61)	Not Present
Measurement validity (10.3.7.51)	Not Present
CHOICE report criteria	Intra-frequency measurement reporting
	criteria
-Intra-frequency measurement reporting criteria (10.3.7.39)	
Parameters required for each event	4
-Intra-frequency event identity	Event 1A
-Triggering condition 2	Monitored set cells
	4 dB
-Cells forbidden to affect Reporting Range	Not Present
	FDD
-Primary CPICH info (10.3.6.60)	
_ _₩	1.0
Hysteresis	0 dB
	Not Present
 Reporting deactivation threshold 	θ
-Replacement activation threshold	Not Present
	0 ms
	Not Present
-Reporting interval	0 ms (Note 2)
-Reporting cell status	Not Present
Physical channel information elements	
-DPCH compressed mode status info (10.3.6.34)	Not Present
Note 1: The SFN-CFN observed time difference is calculated	
in the IE "Cell synchronisation information ", TS 25.33	31, clause 10.3.7.6. According to TS 25.331
in the IE "Cell synchronisation information ", TS 25.33 8.6.7.7, this IE is included in MEASUREMENT REPC	ORT if IE "Cell synchronisation information
in the IE "Cell synchronisation information ", TS 25.33	ORT if IE "Cell synchronisation information

MEASUREMENT REPORT message for Inter frequency test cases

MEASUREMENT REPORT message for Intra frequency test cases

These messages are common for all inter and intra frequency test cases and are described in Annex I.

8.6.2.1.5 Test requirements

For the test to pass, the total number of successful tests shall be at least 90%, with a confidence level of [FFS]% of the cases. The number of successful tests shall be on an event level, i.e. the SS shall check how many events are reported successfully out of the total number of events checked.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.6.3 TDD measurements

8.6.3.1 Correct reporting of TDD neighbours in AWGN propagation condition

8.6.3.1.1 Definition and applicability

In the event triggered reporting period the measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH.

The requirements and this test apply to the combined FDD and TDD UE.

8.6.3.1.2 Minimum requirement

When transmission gaps are scheduled for inter frequency TDD measurements, the UE shall be able to identify a new detectable inter frequency TDD cell belonging to the monitored set within

$$---T_{\text{identify TDD inter}} = Max \left\{ 5000, N_{\text{basic identify TDD inter}} + \frac{T_{\text{Measurement Period TDD inter}}}{N_{\text{TDD inter}}} + \frac{N_{Freq}}{N_{Freq}} \right\}$$

If the UE does not need compressed mode to perform inter frequency TDD measurements, the UE shall be able toidentify a new detectable inter frequency TDD cell belonging to the monitored set within 5000 ms.

An inter-frequency TDD cell shall be considered detectable when P CCPCH Ec/Io \geq 8 dB and SCH_Ec/Io \geq 13 dB. When L3 filtering is used an additional delay can be expected.

When transmission gaps are scheduled for inter frequency TDD measurements the UE physical layer shall be capable of reporting measurements to higher layers with a measurement period as given by

$$T_{\text{measurement TDD inter}} = Max \left\{ T_{\text{Measurement Period TDD inter}}, N_{\text{basic measurement TDD inter}}, \frac{T_{\text{Measurement Period TDD inter}}}{N_{\text{TDD inter}}}, \frac{N_{\text{Freq}}}{N_{\text{Freq}}} \right\} ms$$

If the UE does not need compressed mode to perform inter frequency TDD measurements, the measurement period forinter frequency TDD measurements shall be 480 ms.

The UE shall be capable of performing P CCPCH RSCP measurements for $X_{\text{basic measurement TDD inter}}$ inter frequency TDD cells per TDD frequency of the monitored set and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of $T_{\text{measurement TDD inter}}$.

where

 $-X_{\text{basic measurement TDD inter}} = 6$ (cells)

- T_{Measurement_Period TDD inter} = 480 ms. The time period used for calculating the measurement period T_{measurement_TDD inter}for inter frequency P CCPCH RSCP measurements.
- N_{TDD^{-inter.} This is the smallest resulting integer number of transmission gap patterns in a transmission gap patternsequence assigned to UE by UTRAN for inter frequency TDD measurements during the time period-T_{Measurement_Period TDD inter} with an arbitrarily chosen timing.}
- N_{basie_identify_TDD inter} =80. This is the number of transmission gap patterns in a transmission gap pattern sequence for inter-frequency TDD measurements during the time period used in the inter frequency TDD equation where the maximum allowed time for the UE to identify a new inter frequency TDD cell is defined.
- N_{basic_measurement_TDD inter} = 5. This is the number of transmission gap patterns in a transmission gap pattern sequence for inter frequency TDD measurements during the time period T_{Measurement_Period TDD inter} with an arbitrarily chosen timing that is used in the inter frequency TDD equation for defining where the measurementperiod for inter frequency P CCPCH RSCP measurements is defined.
- N_{free}: This is the number of TDD frequencies indicated in the inter frequency measurement control information.

The normative reference for this requirement is TS 25.133 [2] clauses 8.1.2.4 and A.8.3.1

8.6.3.1.3 Test purpose

To verify that the UE meets the minimum requirement.

8.6.3.1.4 Method of test

8.6.3.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in Table 8.6.3.1.1, 8.6.3.1.2 and 8.6.3.1.3. The test consists of 2 successive time periods, with a time duration T1 and T2. Two cells shall be present in the test, cell 1 being the UTRA FDD serving cell and cell-2 being a UTRA TDD neighbour cell on the unused frequency. All cells shall be synchronised, i.e. share the sameframe and timeslot timing.

In the measurement control information it is indicated to the UE that event triggered reporting with Event 2C shall beused. P CCPCH RSCP of the best cell on the unused frequency shall be reported together with Event 2C reporting. The Measurement control message shall be sent to the UE such that the delay between the end of the last received TTIcontaining the message and the beginning of T1 is at least equal to the RRC procedure delay as defined in [9].

The TTI of the uplink DCCH shall be 20 ms.

Parameter Unit		Unit	Value	Comment	
DCH pa i	rameters		DL Reference Measurement- Channel 12.2 kbps	As specified in TS 34.121 Annex C	
Power	Control		On		
	lity value on- CH	BLER	0.01		
Compres	sed mode		A.22 set 3	As specified in TS 34.121 Annex C	
Initial	Active cell		Cell 1	FDD cell	
conditions	Neighbour- cell		Cell 2	TDD cell	
Final- condition	Active cell		Cell 1	FDD cell	
(Ç	d₿	θ	Cell individual offset. This value shall be used for all cells in the test.	
Hyste	eresis	dB	θ	Hysteresis parameter for event 2C	
Time to	- Trigger	ms	θ		
		dBm	-71	Applicable for Event 2C	
Filter coefficient			θ		
Monitored cell list size			6 FDD neighbours on Channel 1 6 TDD neighbours on Channel 2		
Ŧ	4	Ş	45		
I	2	- S	10		

Table 8.6.3.1.1: General test parameters for Correct reporting of TDD inter-frequency neighbours in AWGN propagation condition

Table 8.6.3.1.2: Cell 1 specific parameters for Correct reporting of TDD inter-frequency neighbours in AWGN propagation condition

Parameter	Unit	Cell 1			
		T1, T2			
UTRA RF Channel		Channel 1			
Number		Unani i i			
CPICH_Ec/lor	₿	-10			
P-CCPCH_Ec/lor	₿	-12			
SCH_Ec/lor	d₿	-12			
PICH_Ec/lor	₿	-15			
DPCH_Ec/lor	dB	Note 1			
OCNS_Ec/lor	₿	Note 2			
$\frac{\hat{I}_{or}}{I_{oc}}$	d₿	θ			
-70					
CPICH_Ec/lo	CPICH_Ec/lo dB -13				
Propagation Condition AWGN					
Note 1: The DPCH level is controlled by the power control loop					
Note 2 : The power of the OCNS channel that is added shall make the total					
power from th	power from the cell to be equal to l_{er}.				

Table 8.6.3.1.3: Cell 2 specific parameters for Correct reporting of TDD inter-frequency neighbours in AWGN propagation condition

Parameter	Unit	Cell 2			
DL timeslot number		0 8			B
		T1	12	T1	T2
UTRA RF Channel- Number		Channel 2			
P-CCPCH_Ec/lor	dB		3	n.	a.
PICH_Ec/lor	d₿	n.a3			
SCH_Ec/lor	d₿	-9			
SCH_t _{offset}	dB	10			
OCNS_Ec/lor	dB	<u>-3.12</u>			
P-CCPCH RSCP	dBm	-75 -67 n.a. n.a.			
$\frac{\hat{H}_{or}}{H_{oc}}$	d₿	-2	¢	-2	6
I_{oc}	dBm/3,84- MHz	-70			
Propagation Condition		AWGN			
Note that the transmit er	Note that the transmit energy per PN chip for the SCH is averaged over the 256				
chip duration when the S	CH is present	in the time	slot.		

8.6.3.1.4.2 Procedure

1) The RF parameters are set up according to T1.

- 2) The UE is switched on.
- 3) A call is set up according to the generic set up procedure specified in TS 34.108 [3] subclause 7.3.2.3.
- 4) SS shall transmit a MEASUREMENT CONTROL message.
- 5) SS shall transmit a PHYSICAL CHANNEL RECONFIGURATION message.
- 6) UE shall transmit a PHYSICAL CHANNEL RECONFIGURATION COMPLETE message
- 7) After 10 seconds from the beginning of T1, the SS shall switch the power settings from T1 to T2.
- 8) UE shall transmit a MEASUREMENT REPORT message triggered by event 2c for cell 2. The measurement reporting delay from the beginning of T2 shall be less than 9.2 s. If the UE fails to report the event within the required delay, then a failure is recorded. If the reporting delay for this event is within the required limit, the number of succesfull tests is increased by one.
- 9) After 10 seconds from the beginning of T3, the UE is switched off. Any timing information of cell 2 is deleted in the UE.

10)Repeat steps 1 9 [TBD] times.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message (step 4):

Information Element/Group name	Value/Remark		
Message Type (10.2.17) HE information elements			
CE Information clements RRC transaction identifier			
-Integrity check info	0 Not Present		
-Integrity check into Measurement Information elements			
	4		
Measurement Identity	4		
-Measurement Command (10.3.7.46)	Modify		
-Measurement Reporting Mode (10.3.7.49) -Measurement Report Transfer Mode	AM RLC		
-Neasurement Report mansier wode -Periodical Reporting / Event Trigger Reporting Mode	Event trigger		
-Fendulcal Reporting / Event Inggel Reporting Wode -Additional measurements list (10.3.7.1)	Not Present		
-CHOICE Measurement type	Inter-frequency measurement		
-choice measurement (10.3.7.16)	inter-inequency measurement		
-Inter-frequency measurement (10.3.7.16) Inter-frequency measurement objects list (10.3.7.13)			
	No inter frequency cells removed		
Inter-frequency cells	1 1		
	+		
— Frequency info (10.3.6.36) — -CHOICE <i>mod</i>e			
	Same frequency as channel 2 in Table		
	Same requency as channel 2 in Table		
	0.0.2.4.1.2		
—-Cell individual offset	Not Present		
	Not Present		
-Read SEN indicator			
	TDD		
	TDD		
	$\frac{1}{2}$		
	Set to cell parameters ID of cell 2		
	FALSE		
	Set to Primary CCPCH Tx power of cell 2		
	as described in Table 8.6.2.4.1.2		
	Not Present		
	Not Present		
-Cell for measurement	Not Present		
-ter frequency measurement quantity (10.3.7.18)			
	Inter-frequency reporting criteria		
	TDD		
-Measurement quantity for frequency quality estimate	Primary CCPCH RSCP		
-Inter-frequency reporting quantity (10.3.7.21)			
-Frequency quality estimate			
Non frequency related cell reporting quantities (10.3.7.5)	Ne report		
	No report		
Cell synchronisation information reporting indicator	FALSE		
Cell identity reporting indicator	FALSE		
	TDD		
-Timeslot ISCP reporting indicator	FALSE		
-Proposed TGSN Reporting required	FALSE		
-Primary CCPCH RSCP reporting indicator	TRUE		
-Pathloss reporting indicator	FALSE		
-Reporting cell status (10.3.7.61)	Not Present		
Measurement validity (10.3.7.51)	Not Present		
CHOICE report criteria	Inter-frequency measurement reporting-		
	criteria		
-Inter-frequency measurement reporting criteria (10.3.7.19)			
-Parameters required for each event	4		
-Intra-frequency event identity	Event 2C		
-Threshold used frequency	Not Present		
	Not Present		
— -w ossu nequency — -Hystoresis — -Time to trigger	0 dB		

Information Element/Group name	Value/Remark
	Report cells within active and/or monitored
	set on used frequency or within virtual
	active and/or monitored set on non-used
	frequency
	3
Parameters required for each non-used frequenc	
	-71
	4
Physical channel information elements	
-DPCH compressed mode status info (10.3.6.34)	Not Present

PHYSICAL CHANNEL RECONFIGURATION message (Step 6)

Information Element	Value/Remark
Message Type	
UE Information Elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
-Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	Not Present
-New U-RNTI	Not Present
-New C-RNTI	Not Present
-RRC State Indicator	CELL_DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	
-CN Information info	Not Present
UTRAN mobility information elements	
-URA identity	Not Present
RB information elements	
-Downlink counter synchronisation info	Not Present
PhyCH information elements	
Product information elements	Not Present
-Frequency into Uplink radio resources	
	Not Propert
-Maximum allowed UL TX power	Not Present
Downlink radio resources	
-CHOICE mode	FDD
-Downlink PDSCH information	Not Present
-Downlink information common for all radio links	
Downlink DPCH info common for all RL	Not Present
CHOICE mode	FDD
DPCH compressed mode info	
Transmission gap pattern sequence	
	4
	Activate
	(Current CFN + (256 – TTI/10msec))mod 250
configuration parameters	
-TGMP	TDD measurement
	Not present
	10
—	10
	Not Present
TGD TGPL1	0 11
	++ Not Present
	Mode 0
<u></u>	
	Mode 0
	UL and DL
	SF/2
	puncturing
	A
	3.0
	3.0
	Not Present
-TX Diversity Mode	Not Present
-SSDT information	Not Present
Default DPCH Offset Value	Not Present
-Downlink information per radio link list	
 Downlink information for each radio link 	
Choice mode	FDD
Choice-mode	FDD
Downlink information for each radio link	FDD 100

PDSCH code mapping	Not Present
Downlink DPCH info for each RL	
	FDD
Primary CPICH usage for channel estimation	Primary CPICH may be used
	Set to value Default DPCH Offset Value (as
	currently stored in SS) mod 38400
	Not Present
Secondary scrambling code	Not Present
	128
Code number	θ
	No code change
	θ
	Not Present
Closed loop timing adjustment mode	Not Present
SCCPCH Information for FACH	Not Present

MEASUREMENT REPORT message (step 8)

Information Element	Value/remark
Message Type (10.2.17)	
Integrity check info	Not Present
Measurement identity	4
Measured Results (10.3.7.44)	
CHOICE Measurement	Inter-frequency Measured results list
Inter-frequency measured results	4
Frequency info	
	TDD
	Same frequency as channel 2
	Not Present
Inter-frequency cell measured results	4
	Not Present
	Not Present
	Not Present
	TDD
	Set to cell parameters ID of Cell 2
	Not Present
	Checked that this IE is present
	Not Present
	Not Present
Measured results on RACH	Not Present
Additional measured results	Not Present
Event results (10.3.7.7)	
-CHOICE event result	Inter-frequency measurement event results
Inter-frequency event identity	20
Inter-frequency cells	4
Frequency Info	
	TDD
	Same frequency as channel 2
	TDD
Primary CCPCH Info	
	TDD
	Not Present
	Set to cell parameters ID of Cell 2
	FALSE

8.6.3.1.5 Test requirements

The UE shall send one Event 2C triggered measurement report for Cell 2 with a measurement reporting delay less than 9.2 s from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

8.6.4 GSM measurements

8.6.4.1 Correct reporting of GSM neighbours in AWGN propagation condition

8.7 Measurements Performance Requirements

Unless explicitly stated:

- Measurement channel is 12.2 kbps as defined in Annex C, sub clause C.3.1. This measurement channel is used both in active cell and cells to be measured.
- Cell 1 is the active cell.
- -Single task reporting.

8.7.1 CPICH RSCP

8.7.1.1 Intra frequency measurements accuracy

8.7.1.1.1 Absolute accuracy requirement

8.7.1.1.1.1 Definition and applicability

The absolute accuracy of CPICH RSCP is defined as the CPICH RSCP measured from one cell compared to the actual CPICH RSCP power from same cell.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.1.1.1.2 Minimum Requirements

The accuracy requirements in table 8.7.1.1.1.1 are valid under the following conditions:

<u>— CPICH_RSCP1|_{dBm} ≥ 114 dBm.</u>

$$-\frac{I_o}{(\hat{I}_{or})} - \frac{CPICH - E_c}{I_{or}} = \frac{20dB}{I_{or}}$$

Table 8.7.1.1.1.1: CPICH_RSCP Intra frequency absolute accuracy

		Accura	acy [dB]	Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]
CPICH RSCP	dBm	±6-	±9	-9470
	dBm	±8-	±11	-7050

The normative reference for this requirement is TS 25.133 [2] clauses 9.1.1.1.1 and A.9.1.1.2.

8.7.1.1.1.3 Test purpose

The purpose of this test is to verify that the CPICH RSCP absolute measurement accuracy is within the specified limitsin clause 8.7.1.1.1.2. This measurement is for handover evaluation, DL open loop power control, UL open loop controland for the calculation of pathloss.

8.7.1.1.1.4 Method of test

8.7.1.1.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

In this case all cells are on the same frequency. CPICH RSCP intra frequency absolute accuracy requirements are tested by using test parameters in table 8.7.1.1.1.2.

Table 8.7.1.1.1.2: CPICH RSCP Intra frequency test parameters

Parameter	Unit	Ter	st 1	Ter	st 2	Ter	Test 3	
Faiameter	Unit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2	
UTRA RF Channel number		Char	Channel 1		Channel 1		Channel 1	
CPICH_Ec/lor	dB	4	θ	-10		-10		
PCCPCH_Ec/lor	dB	-4	2	4	-12		-12	
SCH_Ec/lor	dB	4	2	-12		-12		
PICH_Ec/lor	dB	4	5	-15		-15		
DPCH_Ec/lor	dB	-15	-	-15	-	-15	-	
OCNS_Ec/lor	dB	-1.11	-0.94	-1.11	-0.94	-1.11	-0.94	
loc	dBm/ 3.84 MHz	-75	.54	-59	.98	- 97	.52	
Îor/loc	dB	4	θ	9	θ	θ	-6.53	
CPICH RSCP, Note 1	dBm	-81.5	-85.5	-60.98	-69.88	-107.5	-114.0	
lo, Note 1	dBm/3.84 MHz	-4)9	-50		-9 4		
Propagation condition	-	AWGN		AWGN		AWGN		
NOTE 1: CPICH RSCP and lo	NOTE 1: CPICH RSCP and to levels have been calculated from other parameters for information purposes. They							
are not settable para	are not settable parameters themselves.							

Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for tests 2 and 3 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.

1)A call is set up according to the test procedure specified in TS 34.108 [3] clause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.1.1.1.2.

8.7.1.1.1.4.2 Procedure

- 1) SS shall transmit MEASUREMENT CONTROL message.
- 2) UE shall transmit periodically MEASUREMENT REPORT messages.
- 3) SS shall check CPICH_RSCP value in MEASUREMENT REPORT messages. CPICH RSCP power of Cell 1reported by UE is compared to actual CPICH RSCP power for each MEASUREMENT REPORT message.
- 4) SS shall count number of MEASUREMENT REPORT messages transmitted by UE. After 1000-MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.1.1.1.2 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, step 3) above is repeated. After further 1000 MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.1.1.1.2 for Test 3. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, step 3) above is repeated.
- 5) After further 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit RRC CONNECTION RELEASE message.

6) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of-34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message for Intra frequency measurement (Step 1):

Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	4
-Measurement Command	Modify
-Measurement Reporting Mode	moony
Measurement Report Transfer Mode	Acknowledged mode RLC
- Periodical Reporting / Event Trigger Reporting	Periodical reporting
Mode	i onedical reporting
-Additional measurement list	Not Present
-CHOICE Measurement Type-	Intra-frequency measurement
-Intra-frequency measurement	initia frequency measurement
Intra-frequency measurement objects list	Not Present
Intra-frequency measurement quantity	
	θ
Measurement quantity	CPICH RSCP
-Intra-frequency reporting quantity	
-Reporting quantities for active set cells	
indicator	No report
Cell synchronisation information reporting-	
indicator	TRUE
	TRUE
	FDD
	TRUE
	TRUE
	TRUE
Reporting quantities for monitored set cells	THOE
	No report
indicator	
Cell synchronisation information reporting-	FALSE
indicator	THEOE
Cell Identity reporting indicator	TRUE
	FDD
	TRUE-
	TRUE
Reporting quantities for detected set cells	Not Present
	Report all active set cells + cells within
	monitored set on used frequency
	Virtual/active set cells + 2
Measurement validity	Not Present
	Periodical reporting criteria
	Infinity
	250 ms
Physical channel information elements	
-DPCH compressed mode status info	Not Present
Dr Orr compressed mode status into	

MEASUREMENT REPORT message for Intra frequency test cases

This message is common for all intra frequency test cases in clause 8.7 and is described in Annex I.

8.7.1.1.1.5 Test requirements

The CPICH RSCP measurement accuracy shall meet the requirements in clause 8.7.1.1.1.2.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.7.1.1.2 Relative accuracy requirement

8.7.1.1.2.1 Definition and applicability

The relative accuracy of CPICH RSCP is defined as the CPICH RSCP measured from one cell compared to the CPICH RSCP measured from another cell on the same frequency.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.1.1.2.2 Minimum Requirements

The accuracy requirements in table 8.7.1.1.2.1 are valid under the following conditions:

<u>— CPICH_RSCP1,2|_{dBm} ≥ 114 dBm.</u>

$$- \frac{CPICH _RSCP1}{_{in \, dBm}} - \frac{CPICH _RSCP2}{_{in \, dBm}} \le 20 dB$$

$$\frac{I_o}{(\hat{I}_{or})_{in\ dB}} - \left(\frac{CPICH_E_c}{I_{or}}\right)_{in\ dB} \le 20dB$$

Table 8.7.1.1.2.1: CPICH_RSCP Intra frequency relative accuracy

		Accur	acy [dB]	Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]
CPICH_RSCP	dBm	±3	÷	-9450

The normative reference for this requirement is TS 25.133 [2] clauses 9.1.1.1.2 and A.9.1.1.2.

8.7.1.1.2.3 Test purpose

The purpose of this test is to verify that the CPICH RSCP relative measurement accuracy is within the specified limitsin clause 8.7.1.1.2.2. This measurement is for handover evaluation, DL open loop power control, UL open loop controland for the calculation of pathloss.

8.7.1.1.2.4 Method of test

8.7.1.1.2.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

In this case all cells are on the same frequency. CPICH RSCP intra frequency relative accuracy requirements are testedby using test parameters in table 8.7.1.1.1.2.

1) A call is set up according to the test procedure specified in TS 34.108 [3] clause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.1.1.1.2.

8.7.1.1.2.4.2 Procedure
1) SS shall transmit MEASUREMENT CONTROL message.
2) UE shall transmit periodically MEASUREMENT REPORT messages.
3) SS shall check CPICH_RSCP value of Cell 1 and Cell 2 in MEASUREMENT REPORT messages. CPICH RSCP power value measured from Cell 1 is compared to CPICH RSCP power value measured from Cell 2 for each MEASUREMENT REPORT message.
4) The result of step 3) is compared to actual power level difference of CPICH RSCP of Cell 1 and Cell 2.
5) SS shall count number of MEASUREMENT REPORT messages transmitted by UE. After 1000- MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to- table 8.7.1.1.1.2 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, steps 3) and 4) above are repeated. After further 1000 MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.1.1.1.2 for Test 3. While RF- parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, steps 3) and 4)- above are repeated.
6) After further 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit- RRC CONNECTION RELEASE message.
7) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.
Specific Message Contents
All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:
MEASUREMENT CONTROL message for Intra frequency measurement in clause 8.7.1.1.1.4.2 is used.
MEASUREMENT REPORT message for Intra frequency test cases
This message is common for all intra frequency test cases in clause 8.7 and is described in Annex I.
8.7.1.1.2.5 Test requirements
The CPICH RSCP measurement accuracy shall meet the requirements in clause 8.7.1.1.2.2.
NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.
8.7.1.2 Inter frequency measurement accuracy
8.7.1.2.1 Relative accuracy requirement
8.7.1.2.1.1 Definition and applicability
The relative accuracy of CPICH RSCP in inter frequency case is defined as the CPICH RSCP measured from one cell- compared to the CPICH RSCP measured from another cell on a different frequency.
The requirements and this test apply to all types of UTRA for the FDD UE.
8.7.1.2.1.2 Minimum Requirements

The accuracy requirements in table 8.7.1.2.1.1 are valid under the following conditions:

$$- \frac{CPICH _RSCP1}{_{in \, dBm}} - \frac{CPICH _RSCP2}{_{in \, dBm}} \le 20 dB.$$

$$\frac{I_o}{(\hat{I}_{or})} = \frac{CPICH E_c}{I_{or}} = \frac{20 dB}{I_{or}}$$

Table 8.7.1.2.1.1: CPICH_RSCP Inter frequency relative accuracy

		Accur	acy [dB]	Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]
CPICH_RSCP	dBm	±6	± 6	-9450

The normative reference for this requirement is TS 25.133 [2] clauses 9.1.1.2.1 and A.9.1.1.2.

8.7.1.2.1.3 Test purpose

The purpose of this test is to verify that the CPICH RSCP relative measurement accuracy is within the specified limits in clause 8.7.1.2.1.2. This measurement is for handover evaluation, DL open loop power control, UL open loop control and for the calculation of pathloss.

8.7.1.2.1.4 Method of test

8.7.1.2.1.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

In this case both cells are on different frequencies and compressed mode is applied. The gap length is 7, detailed definition is in clause C.5, set 1 of table C.5.2 except for TGRRC and TGCFN. TGPRC and TGCFN shall set to-"Infinity" and "(Current CFN + (256 TTI/10msec))mod 256". CPICH RSCP inter frequency relative accuracyrequirements are tested by using test parameters in table 8.7.1.2.1.2.

Table 8.7.1.2.1.2: CPICH RSCP Inter frequency tests parameters

Desemptor	Unit	Tee	st 1	Ter	st 2				
Parameter	Unit	Cell 1	Cell 2	Cell 1	Cell 2				
UTRA RF Channel number		Channel 1	Channel 2	Channel 1	Channel 2				
CPICH_Ec/lor	dB	-4	0	4	Ю				
PCCPCH_Ec/lor	dB	-4	2	4	12				
SCH_Ec/lor	dB	-4	2	-4	12				
PICH_Ec/lor	dB	-4	-5	-4	15				
DPCH_Ec/lor	dB	-15	-	-15	-				
OCNS_Ec/lor	dB	-1.11	-0.94	-1.11	-0.94				
loc	dBm/ 3.84- MHz	-60.00			-94.46				
Î or/loc	dB	9.5 4 9.5 4		θ	-9.5 4				
CPICH RSCP, Note 1	dBm	-60.46	<u>-60.46</u> <u>-60.46</u>		-114.0				
lo, Note 1	dBm/3.84- MHz	-50.00	-50.00	-81.0	-94.0				
Propagation condition	-	AW	GN	AW	' GN				
NOTE 1: CPICH RSCP and Ic	levels have be	en calculated fro	m other parame	eters for information	ition				
purposes. They are not settable parameters themselves.									
	Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters-								
for test 2 shall be set within 5 s	econds so that l	JE does not loos	for test 2 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.						

1) A call is set up according to the test procedure specified in TS 34.108 [3] clause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.1.2.1.2.

8.7.1.2.1.4.2 Procedure

- 1) SS shall transmit PHYSICAL CHANNEL RECONFIGURATION message.
- 2) UE shall transmit PHYSICAL CHANNEL RECONFIGURATION COMPLETE message.
- 3) SS shall transmit MEASUREMENT CONTROL message for intra frequency measurement and transmit-MEASUREMENT CONTROL message for inter frequency measurement.
- 4) UE shall transmit periodically MEASUREMENT REPORT messages.
- 5) SS shall check CPICH_RSCP value of Cell 1 and Cell 2 in MEASUREMENT REPORT messages. CPICH RSCP power value measured from Cell 1 is compared to CPICH RSCP power value measured from Cell 2 foreach MEASUREMENT REPORT message.
- 6) The result of step 5) is compared to actual power level difference of CPICH RSCP of Cell 1 and Cell 2.
- 7) SS shall count number of MEASUREMENT REPORT messages transmitted by UE. After 1000-MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.1.2.1.2 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, steps 5) and 6) above are repeated.
- 8) After further 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit-RRC CONNECTION RELEASE message.
- 9) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

PHYSICAL CHANNEL RECONFIGURATION message for Inter frequency measurement (step 1):

Information Element	Value/Remark
Message Type	
UE Information Elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
-Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	Not Present
-New U-RNTI	Not Present-
-New C-RNTI	Not Present
-RRC State Indicator	CELL_DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	Net Present
-CN Information info UTRAN mobility information elements	Not Present
-URA identity information elements	Not Present
-ORA identity RB information elements	
-Downlink counter synchronisation info	Not Present
PhyCH information elements	
-Frequency info	Not Present
Uplink radio resources	
Maximum allowed UL TX power	Not Present
- CHOICE channel requirement	Not Present
Downlink radio resources	
-CHOICE mode	FDD
-Downlink PDSCH information	Not Present
-Downlink information common for all radio links	
-Downlink DPCH info common for all RL	Not Present
-CHOICE mode	FDD
DPCH compressed mode info	
 Transmission gap pattern sequence 	
	4
	Activate
	(Current CFN + (256 – TTI/10msec))mod 256
configuration parameters	
	FDD measurement
	Infinity
	4
TGL1	7
	Not Present
TGD	θ
	3
	Not Present
	Mode 0
	Mode 0
	UL and DL
-Downlink compressed mode method	SF/2
	SF/2
—-Downlink frame type —-DeltaSIR1	B 3.0
	3.0
	Not Present
-TX Diversity Mode	Not Present
	Not Present
-Default DPCH Offset Value	Not Present
-Downlink information per radio link list	
Downlink information for each radio link	
	FDD
Primary CPICH info	

PDSCH with SHO-DCH Info	Not Present
PDSCH code mapping	Not Present
Downlink DPCH info for each RL	
	FDD
Primary CPICH usage for channel estimation	Primary CPICH may be used
DPCH frame offset	Set to value Default DPCH Offset Value (as
	currently stored in SS) mod 38400
	Not Present
	Not Present
	128
	θ
	No code change
	θ
	Not Present
Closed loop timing adjustment mode	Not Present
SCCPCH Information for FACH	Not Present

First MEASUREMENT CONTROL message for Intra frequency measurement (Step 3):

Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	φ
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	1
-Measurement Command	Modify
-Measurement Reporting Mode	incomy
- Measurement Report Transfer Mode	Acknowledged mode RLC
- Periodical Reporting / Event Trigger Reporting	Periodical reporting
Mode	· · · · · · · · · · · · · · · · · · ·
-Additional measurement list	Not Present
-CHOICE Measurement Type	Intra-frequency measurement
-Intra-frequency measurement	
Intra-frequency measurement objects list	
Intra-frequency cell info list	Not Present
Intra-frequency measurement quantity	
Filter coefficient	θ
	FDD
Measurement quantity	CPICH RSCP
Intra-frequency reporting quantity	
Reporting quantities for active set cells	
indicator	No report
Cell synchronisation information reporting-	
indicator	TRUE
	TRUE
	FDD
	TRUE
	TRUE
Pathloss reporting indicator	TRUE
Reporting quantities for monitored set cells	
SFN-SFN observed time difference reporting	No report
indicator	
	FALSE
indicator	
Cell Identity reporting indicator	TRUE
	FDD
	TRUE-
	TRUE
Pathloss reporting indicator	TRUE
 Reporting quantities for detected set cells 	Not Present
Reporting cell status	
CHOICE reported cell	Report all active set cells + cells within
	monitored set on used frequency
Maximum number of reported cells	Virtual/active set cells + 2
Measurement validity	Not Present
CHOICE report criteria	Periodical reporting criteria
Amount of reporting	Infinity
Reporting interval	250 ms
Physical channel information elements	
-DPCH compressed mode status info	Not Present

Second MEASUREMENT CONTROL message for Inter frequency measurement (step 3):-

Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	φ
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	2
-Measurement Command	E Setup
-Measurement Reporting Mode	octup
	Asknowledged mede DLC
- Measurement Report Transfer Mode	Acknowledged mode RLC
Periodical Reporting / Event Trigger Reporting	Periodical reporting
Mode	
-Additional measurement list	Not Present
-CHOICE Measurement Type	Inter-frequency measurement
-Inter-frequency measurement object list	
	Not Present
New inter-frequency cells	Cell 2 information is included
Cell for measurement	Not Present
Inter-frequency measurement quantity-	
	Inter-frequency reporting criteria
Filter coefficient	0
	EDD
-Measurement quantity for frequency quality	CPICH RSCP
estimate	
Inter-frequency reporting quantity-	
	TRUE
	TRUE
Frequency quality estimate	TRUE
Non frequency related cell reporting quantities	N a man ant
	No report
indicator	
Cell synchronisation information reporting-	TRUE-
indicator	
 Cell Identity reporting indicator 	TRUE
	FDD
	TRUE-
	TRUE-
Pathloss reporting indicator	TRUE
Reporting cell status	
	Report all active set cells + cells within
	monitored set on used frequency
	$\frac{Virtual/active set cells + 2}{Virtual/active set cells + 2}$
Measurement validity	Not Present
Inter-frequency set update	Not Present
	Periodical reporting criteria
Amount of reporting	Infinity
Reporting interval	500 ms
Physical channel information elements	
-DPCH compressed mode status info	Not Present

MEASUREMENT REPORT message for Inter frequency test cases

This message is common for all inter frequency test cases in clause 8.7 and is described in Annex I.

8.7.1.2.1.5 Test requirements

The CPICH RSCP measurement accuracy shall meet the requirements in clause 8.7.1.2.1.2.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.7.2 CPICH Ec/lo

8.7.2.1 Intra frequency measurements accuracy

8.7.2.1.1 Absolute accuracy requirement

8.7.2.1.1.1 Definition and applicability

The absolute accuracy of CPICH Ec/Io is defined as the CPICH Ec/Io measured from one cell compared to the actual CPICH_Ec/Io power ratio from same cell.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.2.1.1.2 Minimum Requirements

The accuracy requirements in table 8.7.2.1.1.1 are valid under the following conditions:

<u>— CPICH_RSCP1|_{dBm} ≥ 114 dBm.</u>

$$\frac{I_o}{(\hat{I}_{or})} = \frac{CPICH E_c}{I_{or}} \le 20 dB.$$

Table 8.7.2.1.1.1: CPICH_Ec/lo Intra frequency absolute accuracy, minimum requirements

		Accuracy [dB]		Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]
CPICH_Ec/lo	d₿	$\begin{array}{l} \pm 1,5 \text{ for -14} \leq \text{CPICH Ec/lo} \\ \pm 2 \text{ for -16} \leq \text{CPICH Ec/lo} < -14 \\ \pm 3 \text{ for -20} \leq \text{CPICH Ec/lo} < -16 \end{array}$	±₽	-9450

The normative reference for this requirement is TS 25.133 [2] clause 9.1.2.1.1.

8.7.2.1.1.3 Test purpose

The purpose of this test is to verify that the CPICH Ec/Io absolute measurement accuracy is within the specified limits in clause 8.7.2.1.1.2. This measurement is for Cell selection/re selection and for handover evaluation.

8.7.2.1.1.4 Method of test

8.7.2.1.1.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

In this case all cells are on the same frequency. CPICH Ec/Io intra frequency absolute accuracy requirements are testedby using the test parameters in table 8.7.2.1.1.2.

Parameter	Unit	Tee	st 1	Ter	st 2	Tee	Test 3	
Farameter	Viiit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2	
UTRA RF Channel number		Char	inel 1	Channel 1		Channel 1		
CPICH_Ec/lor	dB	4	θ	-10		-10		
PCCPCH_Ec/lor	dB	-4	2	-12		-12		
SCH_Ec/lor	dB	4	2	-12		-12		
PICH_Ec/lor	dB	-15		-15		-15		
DPCH_Ec/lor	dB	-15	-	-15	-	-6	-	
OCNS_Ec/lor	dB	-1.11	-0.94	-1.11	-0.94	.2.56	-0.94	
loc	dBm/ 3.84 MHz	-56.98		-89	.07	-9 4	.98 .	
Îor/loc	dB	3.0	3.0	-2.9	-2.9	-9.0	-9.0	
CPICH Ec/lo, Note 1	dBm	-14.0	-14.0	-16.0	-16.0	-20.0	-20.0	
lo, Note 1	dBm/3.84 MHz	-50		-86		-94		
Propagation condition	-	AWGN		AWGN			GN	
NOTE 1: CPICH Ec/lo and lo levels have been calculated from other parameters for information purposes. They								

are not settable parameters themselves.

Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for tests 2 and 3 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.

1)A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.2.1.1.2.

8.7.2.1.1.4.2 Procedure

1) SS shall transmit MEASUREMENT CONTROL message.

- 2) UE shall transmit periodically MEASUREMENT REPORT messages.
- 3) SS shall check CPICH_Ec/No value in MEASUREMENT REPORT messages. According to table 8.7.2.1.1.3the SS calculates CPICH_Ec/Io power ratio of Cell 1, which is compared to the actual CPICH Ec/Io power ratiofrom the same cell for each MEASUREMENT REPORT message.
- 4) SS shall count number of MEASUREMENT REPORT messages transmitted by UE. After 1000-MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according totable 8.7.2.1.1.2 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, step 3) above is repeated. After further 1000 MEASUREMENT REPORT messages have beenreceived from UE, the RF parameters are set up according to table 8.7.2.1.1.2 for Test 3. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, step 3) above is repeated.
- 5) After further 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit RRC CONNECTION RELEASE message.

6) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.

Reported value	Measured quantity value	Unit
CPICH_Ec/No_00	CPICH Ec/lo < -24	dB
CPICH_Ec/No_01	-24 ≤ CPICH Ec/lo < -23.5	dB
CPICH_Ec/No_02	-23.5 ≤ CPICH Ec/lo < -23	dB
		
CPICH_Ec/No_47	-1 <u> </u>	dB
CPICH_Ec/No_48	-0.5 ≤ CPICH Ec/lo < 0	dB
CPICH_Ec/No_49	0 ≤ CPICH Ec/lo	d₿

Table 8.7.2.1.1.3: CPICH Ec/lo measurement report mapping

Specific Message Contents

All messages indicated above shall use the same content as described in default message content in clause 9 of 34.108-[3], with the following exceptions:

MEASUREMENT CONTROL message for Intra frequency measurement (Step 1):

Message Type UE information elements -RRC transaction identifier -Integrity check info	
-RRC transaction identifier -Integrity check info	
-RRC transaction identifier -Integrity check info	
-Integrity check info	0
	Not Present
Measurement Information elements	
-Measurement Identity	4
-Measurement Command	Modify
-Measurement Reporting Mode	Acknowledged mode RLC
Measurement Report Transfer Mode	Periodical reporting
- Periodical Reporting / Event Trigger Reporting	
Mode	Not Present
-Additional measurement list	Intra-frequency measurement
-CHOICE Measurement Type	initia nequency measurement
-Intra-frequency measurement	
Intra-frequency measurement objects list	Not Present
Intra-frequency measurement quantity	
Filter coefficient	θ
	FDD
-Measurement quantity	CPICH RSCP
Intra-frequency reporting quantity	
-Reporting quantities for active set cells	
indicator	No report
indicator	TRUE
	TRUE
	FDD
	TRUE
	TRUE
-Pathloss reporting indicator	TRUE
Reporting quantities for monitored set cells	
	No report
indicator	
Cell synchronisation information reporting-	FALSE
indicator	
Cell Identity reporting indicator	FALSE
	FDD
	FALSE
	FALSE
-Pathloss reporting indicator	FALSE
Reporting quantities for detected set cells	Not Present
-Reporting cell status	
	Report all active set cells + cells within
	monitored set on used frequency
	Virtual/active set cells + 2
Measurement validity	Not Present
	Periodical reporting criteria
-Amount of reporting	Infinity
Reporting interval	250 ms
Physical channel information elements	
-DPCH compressed mode status info	Not Present

MEASUREMENT REPORT message for Intra frequency test cases

This message is common for all intra frequency test cases in clause 8.7 and is described in Annex I.

8.7.2.1.1.5 Test requirements

The CPICH Ec/Io measurement accuracy shall meet the requirements in clause 8.7.2.1.1.2. The effect of assumed thermal noise and noise generated in the receiver (99 dBm) shall be added into the required accuracy defined in subclause 8.7.2.1.1.2 as shown in table 8.7.2.1.1.4.

		Accuracy [dB]		Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]
	dD	-2.71.5 for -14 ≤ CPICH Ec/lo -3.22 for -16 ≤ CPICH Ec/lo < -14 -4.23 for -20 ≤ CPICH Ec/lo < -16	-4.23	-9487
CPICH_Ec/lo	dB	$\frac{\pm 1.5 \text{ for -14} \leq \text{CPICH Ec/lo}}{\pm 2 \text{ for -16} \leq \text{CPICH Ec/lo} < -14}$ $\frac{\pm 3 \text{ for -20} \leq \text{CPICH Ec/lo} < -16}{\pm 3 \text{ for -20} \leq \text{CPICH Ec/lo} < -16}$	±3	-8750

Table 8.7.2.1.1.4: CPICH_Ec/lo Intra frequency absolute accuracy, test requirements

The normative reference for this requirement is TS 25.133 [2] clause A.9.1.2.2.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.7.2.1.2 Relative accuracy requirement

8.7.2.1.2.1 Definition and applicability

The relative accuracy of CPICH Ec/Io is defined as the CPICH Ec/Io measured from one cell compared to the CPICH Ec/Io measured from another cell on the same frequency.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.2.1.2.2 Minimum Requirements

The accuracy requirements in table 8.7.2.1.2.1 are valid under the following conditions:

<u>— CPICH_RSCP1,2|_{dBm} ≥ 114 dBm.</u>

$$- \frac{CPICH _RSCP1}{_{in \, dBm}} - \frac{CPICH _RSCP2}{_{in \, dBm}} \le 20 dB.$$

$$\frac{I_o}{(\hat{I}_{or})} - \frac{CPICH - E_c}{I_{or}} = \frac{20 dB}{I_{or}}$$

Table 8.7.2.1.2.1: CPICH_Ec/lo Intra frequency relative accuracy

		Accuracy [dB	Conditions	
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]
	dB	±1,5 for -14 ≤ CPICH Ec/lo		-9450
CPICH_Ec/lo		<u>±2 for -16 ≤ CPICH Ec/lo < -14</u>	±3	
		±3 for -20 ≤ CPICH Ec/lo < -16		

The normative reference for this requirement is TS 25.133 [2] clauses 9.1.2.1.2 and A.9.1.2.2.

8.7.2.1.2.3 Test purpose

The purpose of this test is to verify that the CPICH Ec/Io relative measurement accuracy is within the specified limits in clause 8.7.2.1.2.2. This measurement is for Cell selection/re selection and for handover evaluation.

8.7.2.1.2.4 Method of test

8.7.2.1.2.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

In this case all cells are in the same frequency. CPICH Ec/Io intra frequency relative accuracy requirements are testedby using test parameters in table 8.7.2.1.1.2.

1) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.2.3. The RF parametersfor Test 1 are set up according to table 8.7.2.1.1.2.

8.7.2.1.2.4.2 Procedure

- 1) SS shall transmit MEASUREMENT CONTROL message.
- 2) UE shall transmit periodically MEASUREMENT REPORT messages.
- 3) SS shall check CPICH_Ec/No value of Cell 1 and Cell 2 in MEASUREMENT REPORT messages. According to table 8.7.2.1.1.3 the SS calculates CPICH_Ec/Io power ratio of Cell 1 and Cell 2. CPICH_Ec/Io power ratio value measured from Cell 1 is compared to CPICH_Ec/Io power ratio value measured from Cell 2 for each-MEASUREMENT REPORT message.
- 4) The result of step 3) is compared to actual power level difference of CPICH_Ec/Io of Cell 1 and Cell 2.
- 5) SS shall count number of MEASUREMENT REPORT messages transmitted by UE. After 1000-MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.2.1.1.2 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, steps 3) and 4) above are repeated. After further 1000 MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.2.1.1.2 for Test 3. While RFparameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait foradditional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, steps 3) and 4)above are repeated.
- 6) After further 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit RRC CONNECTION RELEASE message.
- 7) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message for Intra frequency measurement in clause 8.7.2.1.1.4.2 is used.

MEASUREMENT REPORT message for Intra frequency test cases

This message is common for all intra frequency test cases in clause 8.7 and is described in Annex I.

8.7.2.1.2.5 Test requirements

The CPICH Ec/Io measurement accuracy shall meet the requirements in clause 8.7.2.1.2.2.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.7.2.2 Inter frequency measurement accuracy

8.7.2.2.1 Void

8.7.2.2.2 Relative accuracy requirement

8.7.2.2.2.1 Definition and applicability

The relative accuracy of CPICH Ec/Io in the inter frequency case is defined as the CPICH Ec/Io measured from one cell compared to the CPICH Ec/Io measured from another cell on a different frequency.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.2.2.2.2 Minimum Requirements

The accuracy requirements in table 8.7.2.2.2.1 are valid under the following conditions:

<u>— CPICH_RSCP1,2|_{dBm} ≥ 114 dBm.</u>

$$- \frac{CPICH _RSCP1}_{in \, dBm} - CPICH _RSCP2|_{in \, dBm} \le 20 dB.$$

$$\frac{I_o}{(\hat{I}_{or})} = \frac{(CPICH _ E_c)}{I_{or}} \le 20 dB.$$

Table 8.7.2.2.2.1: CPICH_Ec/lo Inter frequency relative accuracy, minimum requirements

		Accuracy [dB	Conditions	
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]
	dB	<u>±1.5 for -14 ≤ CPICH Ec/lo</u>		-9450
CPICH_Ec/lo		<u>±2 for -16 ≤ CPICH Ec/lo < -14</u>	±3	
		±3 for -20 ≤ CPICH Ec/lo < -16		

The normative reference for this requirement is TS 25.133 [2] clauses 9.1.2.2.2 and A.9.1.2.2.

8.7.2.2.2.3 Test purpose

The purpose of this test is to verify that the CPICH Ec/Io relative measurement accuracy is within the specified limits in clause 8.7.2.2.2.2. This measurement is for Cell selection/re selection and for handover evaluation.

8.7.2.2.2.4 Method of test

8.7.2.2.2.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

In this case both cells are in different frequency and compressed mode is applied. The gap length is 7, detailed definition is in clause C.5, set 1 of table C.5.2 except for TGRRC and TGCFN. TGPRC and TGCFN shall set to "Infinity" and "(Current CFN + (256 - TTI/10msec))mod 256". CPICH Ec/Io inter frequency relative accuracy-requirements are tested by using test parameters in table 8.7.2.2.2.

Parameter	Unit	Tee	st 1	Test 2		Test 3		
Farameter	Unit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2	
UTRA RF Channel		Channel 1	Channel 2	Channel 1	Channel 2	Channel 1	Channel 2	
number	-10							
CPICH_Ec/lor	dB		Ю		Ю		Ю	
PCCPCH_Ec/lor	d₿	-4	1 2	-4	1 2	-4	1 2	
SCH_Ec/lor	dB	-4	2	-4	2	-4	2	
PICH_Ec/lor	d₿	-4	15	4	15	-4	15	
DPCH_Ec/lor	d₿	-15	-	-6	-	-6	-	
OCNS_Ec/lor	d₿	-1.11	-0.94	-2.56	-0.94	-2.56	-0.94	
loc	dBm/ 3.84- MHz	-52.22	-52.22	-87.27	-87.27	-94.46	-94.46	
Îor/loc	d₿	-1.75	-1.75	-4.7	-4.7	-9.54	-9.54	
CPICH Ec/lo, Note 1	dBm	-14.0	-14.0	-16.0	-16.0	-20.0	-20.0	
lo, Note 1	dBm/3.84- MHz	-50	-50	-86	-86	-9 4	-9 4	
Propagation condition	-	AW	' GN	AW	' GN	AW	' GN	
NOTE 1: CPICH Ec/lo	and lo levels I	have been ca	Iculated from	other parame	eters for infor	mation purpo	ses. They	
are not settat	are not settable parameters themselves.							
Tests shall be done seq	uentially. Test	1 shall be do	ne first. After	test 1 has be	en executed	test paramet	ers for tests	
2 and 3 shall be set with								

Table 8.7.2.2.2.2: CPICH Ec/lo Inter frequency tests parameters

1) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.2.2.2.2.

8.7.2.2.2.4.2 Procedure

- 1) SS shall transmit PHYSICAL CHANNEL RECONFIGURATION message.
- 2) UE shall transmit PHYSICAL CHANNEL RECONFIGURATION COMPLETE message.
- 3) SS shall transmit a MEASUREMENT CONTROL message for intra frequency measurement and transmitanother MEASUREMENT CONTROL message for inter frequency measurement.
- 4) UE shall transmit periodically MEASUREMENT REPORT messages.
- 5) SS shall check CPICH_Ec/No value of Cell 1 and Cell 2 in MEASUREMENT REPORT messages. According to table 8.7.2.1.1.3 the SS calculates CPICH_Ec/Io power ratio of Cell 1 and Cell 2. CPICH_Ec/Io power ratio measured from Cell 1 is compared to CPICH_Ec/Io power value measured from Cell 2 for each MEASUREMENT REPORT message.

6) The result of step 5) is compared to actual power level difference of CPICH_Ec/Io of Cell 1 and Cell 2.

- 7) SS shall count number of MEASUREMENT REPORT messages transmitted by UE. After 1000-MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.2.2.2.2 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from-UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, steps 5) and 6) above are repeated. After further 1000 MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.2.2.2.2 for Test 3. While RFparameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait foradditional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, steps 5) and 6)above are repeated.
- 8) After 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit RRC-CONNECTION RELEASE message.
- 9) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.

Specific Message Contents

All messages indicated above shall use the same content as described in default message content in clause 9 of 34.108-[3], with the following exceptions:

PHYSICAL CHANNEL RECONFIGURATION message for Inter frequency measurement (step 1):

Information Element	Value/Remark
Message Type	
UE Information Elements	
-RRC transaction identifier	φ
-Integrity check info	Not Present
-Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	Not Present
-New U-RNTI	Not Present
-New C-RNTI	Not Present
-RRC State Indicator	CELL DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	
-CN Information info	Not Present
UTRAN mobility information elements	
-URA identity	Not Present
RB information elements	
-Downlink counter synchronisation info	Not Present
PhyCH information elements	
-Frequency info	Not Present
Uplink radio resources	
-Maximum allowed UL TX power	Not Present
- CHOICE channel requirement	Not Present
Downlink radio resources	
-CHOICE mode	FDD
-Downlink PDSCH information	Not Present
-Downlink information common for all radio links	
-Downlink DPCH info common for all RL	Not Present
-CHOICE mode	FDD
DPCH compressed mode info	
Transmission gap pattern sequence	
	4
	Activate
	(Current CFN + (256 - TTI/10msec))mod 25
configuration parameters	
	EDD measurement
-TGPRC	Infinity
	4
	Z Z
	Not Present
	θ
	3
	Not Present
	Mode 0
	Mode 0
	UL and DL
-Downlink compressed mode method	SE/2
-Uplink compressed mode method	<u>SF/2</u>
	B
-DeltaSIR1	3.0
	3.0
-DeltaSIR2	Not Present
	Not Present
	Not Present
-T Reconfirm abort	Not Present
TX Diversity Mode	Not Present
	Not Present
-Default DPCH Offset Value	Not Present
-Devalue DFCH Chiset value -Downlink information per radio link list	
-Downlink information for each radio link	
	FDD

PDSCH with SHO DCH Info	Not Present
PDSCH code mapping	Not Present
Downlink DPCH info for each RL	
CHOICE mode	FDD
	Primary CPICH may be used
	Set to value Default DPCH Offset Value (as-
	currently stored in SS) mod 38400
Secondary CPICH info	Not Present
	Not Present
	128
	θ
	No code change
	0
	Not Present
Closed loop timing adjustment mode	Not Present
SCCPCH Information for FACH	Not Present

First MEASUREMENT CONTROL message for Intra frequency measurement (Step 3):

Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	4
-Measurement Command	Modify
-Measurement Reporting Mode	incary
- Measurement Report Transfer Mode	Acknowledged mode RLC
- Periodical Reporting / Event Trigger Reporting	Periodical reporting
Mode	i choaloar operang
-Additional measurement list	Not Present
-CHOICE Measurement Type	Intra-frequency measurement
Intra-frequency measurement	initia nequency measurement
Intra-frequency measurement objects list	
Intra-frequency cell info list	Not Present
Intra-frequency measurement quantity	
	θ.
	CPICH RSCP
Intra-frequency reporting quantity	
indicator	No report
 Cell synchronisation information reporting- indicator 	TRUE
	TRUE
—-Cell Identity reporting indicator —-CHOICE-mode	FDD
	TRUE
	TRUE
	TRUE
Reporting quantities for monitored set cells	No. non-out
	No report
indicator	541.05
	FALSE
indicator	
Cell Identity reporting indicator	TRUE
	FDD
 	TRUE-
 CPICH RSCP reporting indicator 	TRUE
	TRUE
Reporting quantities for detected set cells	Not Present
Reporting cell status	
	Report all active set cells + cells within
	monitored set on used frequency
 Maximum number of reported cells 	Virtual/active set cells + 2
Measurement validity	Not Present
	Periodical reporting criteria
Amount of reporting	Infinity
Reporting interval	250 ms
Physical channel information elements	
-DPCH compressed mode status info	Not Present

Information Element Value/Remark ssage Type Me **UE** information elements -RRC transaction identifier Not Present -Integrity check info **Measurement Information elements** -Measurement Identity -Measurement Command Setup -Measurement Reporting Mode - Measurement Report Transfer Mode Acknowledged mode RLC - Periodical Reporting / Event Trigger Reporting Periodical reporting Mode -Additional measurement list Not Present -CHOICE Measurement Type Inter-frequency measurement --Inter-frequency measurement --Inter-frequency cell info list Not Present Cell 2 information is included -New inter-frequency cells --Cell for measurement Not Present --Inter-frequency measurement quantity--CHOICE reporting criteria Inter-frequency reporting criteria -Filter coefficient Δ -CHOICE mode FDD -Measurement quantity for frequency quality-**CPICH RSCP** estimate --Inter-frequency reporting quantity--UTRA Carrier RSSI TRUE -Frequency quality estimate TRUE -Non frequency related cell reporting quantities -SFN-SFN observed time difference reporting-No report indicator -Cell synchronisation information reporting-TRUEindicator -Cell Identity reporting indicator TRUE--CHOICE mode FDD -CPICH Ec/N0 reporting indicator TRUE -CPICH RSCP reporting indicator TRUE TRUE --Pathloss reporting indicator -Reporting cell status -CHOICE reported cell Report all active set cells + cells withinmonitored set on used frequency --Maximum number of reported cells Virtual/active set cells + 2 --Measurement validity Not Present --Inter-frequency set update Not Present --CHOICE report criteria Periodical reporting criteria -Amount of reporting Infinity 500 ms -Reporting interval Physical channel information elements -DPCH compressed mode status info Not Present

Second MEASUREMENT CONTROL message for Inter frequency measurement (step 3):

MEASUREMENT REPORT message for Intra frequency test cases

This message is common for all inter frequency test cases in clause 8.7 and is described in Annex I.

8.7.2.2.5 Test requirements

The CPICH Ec/Io measurement accuracy shall meet the requirements in clause 8.7.2.2.2.2. The effect of assumed thermal noise and noise generated in the receiver (99 dBm) shall be added into the required accuracy defined in clause 8.7.2.2.2.2 as shown in table 8.7.2.2.2.3.

		Accuracy [dB]	Conditions	
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]
		-2.71.5 for -14 ≤ CPICH Ec/lo -3.22 for -16 ≤ CPICH Ec/lo < -14 -4.23 for -20 ≤ CPICH Ec/lo < -16	-4.23	-9487
CPICH_Ec/lo	dB	$\frac{\pm 1.5 \text{ for -14} \leq \text{CPICH Ec/lo}}{\pm 2 \text{ for -16} \leq \text{CPICH Ec/lo} < -14}$ $\frac{\pm 3 \text{ for -20} \leq \text{CPICH Ec/lo} < -16}{\pm 3 \text{ for -20} \leq \text{CPICH Ec/lo} < -16}$	±3	-8750

Table 8.7.2.2.2.3: CPICH_Ec/lo Inter frequency relative accuracy, test requirements

The normative reference for this requirement is TS 25.133 [2] clause A.9.1.2.2.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.7.3 UTRA Carrier RSSI

NOTE: This measurement is for Inter frequency handover evaluation.

8.7.3.1 Absolute measurement accuracy requirement

8.7.3.1.1 Definition and applicability

The absolute accuracy of UTRA Carrier RSSI is defined as the UTRA Carrier RSSI measured from one frequencycompared to the actual UTRA Carrier RSSI power of that same frequency.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.3.1.2 Minimum Requirements

Table 8.7.3.1.1: UTRA Carrier RSSI Inter frequency absolute accuracy

		Accur	a cy [dB]	Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]
LITRA Carrier RSSI	dBm	±4	±7	-9470
UTRA Gamer Rooi	dBm	±6 -	± 9	-7050

The normative reference for this requirement is TS 25.133 [2] clause 9.1.3.1.

8.7.3.1.3 Test purpose

The purpose of this test is to verify that the UTRA Carrier RSSI measurement is within the specified limits. This measurement is for inter-frequency handover evaluation.

8.7.3.1.4 Method of test

8.7.3.1.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

In this case both cells are on different frequencies and compressed mode is applied. The gap length is 7, detailed definition is in clause C.5, Set 1 of table C.5.2 except for TGRRC and TGCFN. TGPRC and TGCFN shall set to "Infinity" and "(Current CFN + (256 TTI/10msec))mod 256". UTRA Carrier RSSI absolute accuracy requirements are tested by using test parameters in table 8.7.3.1.2.

Deremeter	Unit	Te	st 1	Te	st 2	Te	st 3
Parameter	Unit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2
UTRA RF Channel- number		Channel 1	Channel 2	Channel 1	Channel 2	Channel 1	Channel 2
CPICH_Ec/lor	dB	-4	Ю	-4	10	-4	Ю
PCCPCH_Ec/lor	dB		12	-4	12	-4	2
SCH_Ec/lor	dB	-	12	4	12	-	2
PICH_Ec/lor	d₽	-	15	-	15	-	 5
DPCH_Ec/lor	dB	-15	_	-6	-	-6	-
OCNS_Ec/lor	d₿	-1.11	-0.94	-2.56	-0.94	-2.56	-0.94
łoc	dBm/ 3.84- MHz	-52.22	-52.22	-70.27	-70.27	-94.46	-94.46
Îor/loc	d₿	-1.75	-1.75	-4.7	-4.7	-9.5 4	-9.5 4
CPICH Ec/lo, Note 1	dBm	-14.0	-14.0	-16.0	-16.0	-20.0	-20.0
lo, Note 1	dBm/3.84 - MHz	-50	-50	-69	-69	-9 4	-9 4
Propagation condition	-	AW	'GN	AW	(GN	AW	'GN
NOTE 1: CPICH Ec/lo	and lo levels I	have been ca	Iculated from	other parame	eters for infor	mation purpo	ses. They
are not settal	ole parameters	s themselves.					
Tests shall be done seq	uentially. Test	1 shall be do	one first. After	test 1 has be	en executed	test paramet	ers for tests
2 and 3 shall be set with	hin 5 seconds (so that UE do	es not loose	the Cell 2 in I	between the t	ests.	

Table 8.7.3.1.2: UTRA Carrier RSSI Inter frequency test parameters

1) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.3.1.2.

8.7.3.1.4.2 Procedure

- 1) SS shall transmit PHYSICAL CHANNEL RECONFIGURATION message.
- 2) UE shall transmit PHYSICAL CHANNEL RECONFIGURATION COMPLETE message.
- 3) SS shall transmit MEASUREMENT CONTROL message.
- 4) UE shall transmit periodically MEASUREMENT REPORT messages.
- 5) SS shall check UTRA carrier RSSI value of Channel 2 in MEASUREMENT REPORT messages. UTRA carrier RSSI power of Channel 2 reported by UE is compared to actual UTRA Carrier RSSI value of Channel 2 for each MEASUREMENT REPORT message.
- 6) SS shall count number of MEASUREMENT REPORT messages transmitted by UE. After 1000-MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according totable 8.7.3.1.2 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from-UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during thisperiod. Then, step 5) above is repeated. After further 1000 MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.3.1.2 for Test 3. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and
 - ignore the MEASUREMENT REPORT messages during this period. Then, step 5) above is repeated.
- 7) After further 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit RRC CONNECTION RELEASE message.
- 8) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.

Specific Message Contents

All messages indicated above shall use the same content as described in default message content in clause 9 of 34.108-[3], with the following exceptions:

PHYSICAL CHANNEL RECONFIGURATION message for Inter frequency measurement (step 1):

Information Element	Value/Remark
Message Type	
UE Information Elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
-Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	Not Present
-New U-RNTI	Not Present
-New C-RNTI	Not Present
-RRC State Indicator	CELL DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	
-CN Information info	Not Present
UTRAN mobility information elements	
-URA identity	Not Present
RB information elements	
-Downlink counter synchronisation info	Not Present
PhyCH information elements	
-Frequency info	Not Present
Uplink radio resources	
- Maximum allowed UL TX power	Not Present
- CHOICE channel requirement	Not Present
Downlink radio resources	
-CHOICE mode	FDD
-Downlink PDSCH information	Not Present
-Downlink information common for all radio links	
Downlink DPCH info common for all RL	Not Present
CHOICE mode	FDD
DPCH compressed mode info	
 Transmission gap pattern sequence 	
	4
	Activate
	(Current CFN + (256 - TTI/10msec))mod 250
configuration parameters	
	FDD measurement
	Infinity
	4
TGL1	7
	Not Present
TGD	θ
	3
	Not Present
	Mode 0
ITP	Mode 0
	UL and DL
-Downlink compressed mode method	SF/2
	SF/2
	₽
	3.0
	3.0
	Not Present
Default DPCH Offset Value	Not Present
-Downlink information per radio link list	
Descentials information for a star in the P. P. J.	
Downlink information for each radio link	500
Downlink information for each radio link Choice mode Primary CPICH info	FDD

PDSCH with SHO-DCH Info	Not Present
PDSCH code mapping	Not Present
Downlink DPCH info for each RL	
CHOICE mode	FDD
	Primary CPICH may be used
	Set to value Default DPCH Offset Value (as
	currently stored in SS) mod 38400
Secondary CPICH info	Not Present
	Not Present
	128
	θ
	No code change
	θ
	Not Present
Closed loop timing adjustment mode	Not Present
SCCPCH Information for FACH	Not Present

MEASUREMENT CONTROL message for Inter frequency measurement (step 3):

Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	2
-Measurement Command	Setup
-Measurement Reporting Mode	•
- Measurement Report Transfer Mode	Acknowledged mode RLC
- Periodical Reporting / Event Trigger Reporting	Periodical reporting
Mode	
-Additional measurement list	Not Present
-CHOICE Measurement Type	Inter-frequency measurement
Inter-frequency measurement	
Inter-frequency cell info list	
	Not Present
New inter-frequency cells	Cell 2 information is included.
Cell for measurement	Not Present
Inter-frequency measurement quantity-	
	Inter-frequency reporting criteria
Filter coefficient	
	FDD
	CPICH RSCP
estimate	
Inter-frequency reporting quantity-	
	TRUE
Frequency quality estimate	TRUE
Non frequency related cell reporting quantities	
	Type 1
indicator	1900
Cell synchronisation information reporting	TRUE
indicator	
Cell Identity reporting indicator	TRUE
	FDD
	TRUE
	TRUE
-Pathloss reporting indicator	TRUE
Reporting cell status	
	Report all active set cells + cells within
	monitored set on used frequency
	$\frac{1}{1}$
	Not Present
Inter-frequency set update	Not Present
	Periodical reporting criteria
Amount of reporting	Infinity
	500 ms
Physical channel information elements	
-DPCH compressed mode status info	Not Present
-มา อาา อยากุทยอออน กายนฮ อเสเนอ เกเบ	

MEASUREMENT REPORT message for Inter frequency test cases

This message is common for all inter frequency test cases in clause 8.7 and is described in Annex I.

8.7.3.1.5 Test requirements

The UTRA Carrier RSSI absolute measurement accuracy shall meet the requirements in clause 8.7.3.1.2. The effect of assumed thermal noise and noise generated in the receiver (99 dBm) shall be added into the required accuracy defined in subclause 8.7.3.1.2 as shown in table 8.7.3.1.3.

		Accur	a cy [dB]	Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]
	dBm	-45.2	-78.2	-9487
UTRA Carrier RSSI	dBm	±4	<u>±7</u>	-8770
Γ	dBm	<u>±6</u>	± 9	-7050
now the whinna	m Kequitem	ent has been relaxed by th	e Test Tolerance is given	und the explanati in clause F.4.
	-	ent has been relaxed by th ent accuracy requir		
3.2 Relative n	-	ent accuracy requir		

8.7.3.2.2 Minimum Requirements

The accuracy requirements in table 8.7.3.2.1 are valid under the following condition:

Table 8.7.3.2.1: UTRA Carrier RSSI Inter frequency relative accuracy

		Accura	Conditions	
Parameter	Unit	Normal condition Extreme condition		lo [dBm/3.84 MHz]
UTRA Carrier RSSI	dBm	±7	±-11	-9450

The normative reference for this requirement is TS 25.133 [2] clause 9.1.3.2.

8.7.3.2.3 Test purpose

The purpose of this test is to verify that the UTRA Carrier RSSI measurement is within the specified limits. This measurement is for inter-frequency handover evaluation.

8.7.3.2.4 Method of test

8.7.3.2.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

In this case both cells are on different frequencies and compressed mode is applied. The gap length is 7, detailed definition is in clause C.5, Set 1 of table C.5.2 except for TGRRC and TGCFN. TGPRC and TGCFN shall set to-"Infinity" and "(Current CFN + (256 – TTI/10msec))mod 256". UTRA Carrier RSSI relative accuracy requirements are tested by using test parameters in table 8.7.3.1.2.

1) A call is set up according to the test procedure specified in TS 34.108 [3] clause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.3.1.2.

8.7.3.2	2.4.2 Pro	cedure				
1)	SS shall transmit PHY	SICAL CHAN	INEL RECONFIGURAT	' ION message.		
2)	UE shall transmit PH	YSICAL CHAN	NNEL RECONFIGURA	FION COMPLETE messag	30.	
3)	SS shall transmit ME/	ASUREMENT	CONTROL message.			
4)	UE shall transmit peri	odically MEAS	SUREMENT REPORT n	lessages.		
	UTRA carrier RSSI p	ower value mea		nannel 2 in MEASUREME compared to UTRA carrie RT message.		0
	The result of step 5) is Channel 2.	s compared to a	etual power level differe	nce of UTRA Carrier RSS	Hof Channel 1 and	
	MEASUREMENT RI table 8.7.3.1.2 for Tes UE are ignored. SS sh period. Then, steps 5) been received from U parameters are being s	EPORT messag t 2. While RF f all wait for add and 6) above a E, the RF parar set up, MEASU	tes have been received fro barameters are being set a litional 1s and ignore the re repeated. After further neters are set up accordir REMENT REPORT met	ges transmitted by UE. Aft om UE, the RF parameters up, MEASUREMENT REF MEASUREMENT REPO 1000 MEASUREMENT I ug to table 8.7.3.1.2 for Tes ssages from UE are ignored ssages during this period. T	are set up accordin PORT messages fro RT messages durin REPORT messages at 3. While RF d. SS shall wait for	om- ng this- s have- r-
	RRC CONNECTION	RELEASE me	ssage.	e been received from UE,	the SS shall transr	nit-
9)	UE shall transmit RR(CONNECTI	ON RELEASE COMPLE	TE message.		
Specif	ic Message Content	S -				
	ssages indicated above h the following excep		ame content as described	in default message conten	t in clause 9 of 34.	.108-
	CAL CHANNEL RE			SUREMENT CONTROL	message for Inter-	
MEAS	UREMENT REPOR	T message fo	r inter – frequency test	cases		
This m	essage is common for	all inter freque	ncy test cases in clause 8	.7 and is described in Anne	ex I.	
8.7.3.	2.5 Test re	equirements				
assume		oise generated i	in the receiver (99 dBm	he requirements in clause &) shall be added into the re		
		Table 8.7.3.2	.2: UTRA Carrier RSS	il relative accuracy		
			Accur	acy [dB]	Conditions	
	Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84	

The normative reference for this requirement is TS 25.133 [2] clause A.9.1.3.2.

dBm

dBm

dBm

UTRA Carrier RSSI

4 52

<u>±-4</u>

<u>±6</u>

-7...8.2

±7

<u>± 9</u>

<u>0</u>/

-87

-70.

70

-50

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.7.3A GSM Carrier RSSI

Void.

8.7.3B Transport channel BLER

Void.

8.7.3C UE transmitted power

8.7.3C.1 Definition and applicability

The UE transmitted power absolute accuracy is defined as difference between the UE reported value and the UE transmitted power measured by test system. The reference point for the UE transmitted power shall be the antennaconnector of the UE.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.3C.2 Minimum requirements

The measurement period in CELL_DCH state is 1 slot.

Table 8.7.3C.2.1 UE transmitted power absolute accuracy

Baramatar	L lucit	Accuracy [dB]	
Parameter	Unit	PUEMAX 24dBm	PUEMAX 21dBm
UE transmitted power=PUEMAX	dBm	+1/-3	±2
UE transmitted power=PUEMAX-1	dBm	+1.5/-3.5	±2.5
UE transmitted power=PUEMAX-2	dBm	+2/-4	±3
UE transmitted power=PUEMAX-3	dBm	+2.5/-4.5	±3.5
PUEMAX-10 SUE transmitted power <puemax-3< td=""><td>dBm</td><td>+3/-5</td><td>±4</td></puemax-3<>	dBm	+3/-5	±4

NOTE 1: User equipment maximum output power, PUEMAX, is the maximum output power level without tolerance defined for the power class of the UE in TS 25.101 [1] section 6.2.1.

NOTE 2: UE transmitted power is the reported value.

For each empty slot created by compressed mode, no value shall be reported by the UE L1 for those slots.

The normative reference for this requirement is TS 25.133 [2] clause 9.1.6.

8.7.3C.3 Test purpose

The purpose of this test is to verify that for any reported value of UE Transmitted Power in the range PUEMAX to-PUEMAX 10 that the actual UE mean power lies within the range specified in clause 8.7.3C.2.

8.7.3C.4 Method of test

8.7.3C.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1) Connect SS to the UE antenna connector as shown in figure A.1.

The test parameters are given in Table 8.7.3C.4.1 and 8.7.3C.4.2 below. In the measurement control information it shall be indicated to the UE that periodic reporting of the UE transmitted power measurement shall be used.

Table 8.7.3C.4.1: General test parameters for UE transmitted power

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement	As specified in clause C.3.1
		Channel 12.2 kbps	
Power Control		On	
Target quality value on	BLER	0.01	
DTCH			

Table 8.7.3C.4.2: Cell Specific parameters for UE transmitted power

Parameter	Unit	Cell 1			
CPICH_Ec/lor	dB	-10			
PCCPCH_Ec/lor	dB	-12			
SCH_Ec/lor	dB	-12			
PICH_Ec/lor	dB	-15			
DPCH_Ec/lor	dB	Note1			
OCNS		Note 2			
$\frac{\hat{I}_{or}}{I_{oc}}$	dB	Φ			
-I _{oc}	dBm/3.84 MHz	-70			
CPICH_Ec/lo	dB	-13			
Propagation Condition					
Note 1: The DPCH level is controlled by the power control loop-					
Note 2: The power of the OCNS channel that is added shall make the total					
power from the cell to be equal to I _{or.}					

8.7.3C.4.2 Procedure

1) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.2.3. The RF parameters are set up according to table 8.7.3C.4.1 and 8.7.3C.4.2. Set the UE power and Maximum allowed UL TX power to the maximum power for the UE power class.

2) SS shall send continuously during the entire test Up power control commands to the UE.

3) SS shall transmit the MEASUREMENT CONTROL message as defined in the specific message contents below.

4) Decode the UE Transmitted power reported by the UE in the next available MEASUREMENT REPORTmessage.

5) Measure the mean power of the UE over a period of one timeslot.

- 6) Steps 4 and 5 shall be repeated [100] times.
- 7) Decrease the Maximum allowed UL TX power by 1 dB. The SS shall transmit the PHYSICAL CHANNEL RECONFIGURATION message, as defined in the specific message contents below.

8) SS shall wait for the PHYSICAL CHANNEL RECONFIGURATION COMPLETE message from the UE.

9) Repeat from step 4) until the Maximum allowed UL TX Power reaches PUEMAX 11.

Specific Message Contents

All messages indicated above shall use the same content as described in default message content in clause 9 of 34.108-[3], with the following exceptions:

MEASUREMENT CONTROL message:

Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	4
-Measurement Command	Modify
-CHOICE Measurement type	UE Internal measurement
UE Internal measurement quantity-	-
	FDD
Measurement quantity	UE Transmitted power
Filter coefficient	θ
UE Internal reporting quantity-	
UE Transmitted power	TRUE
	FDD
	FALSE
CHOICE report criteria-	Periodical reporting criteria
Amount of reporting	Infinity
Reporting interval	250
-Measurement Reporting Mode	
Measurement Report Transfer Mode	AM-RLC
-Periodical Reporting / Event Trigger Reporting Mode	Periodical reporting
Physical channel information elements	
-DPCH compressed mode status info	Not Present

MEASUREMENT REPORT message:

Information Element	Value/remark
Message Type	
Integrity check info	The presence of this IE is dependent on IXIT statements in TS 34.123-2. If integrity protection is indicated to be- active, this IE shall be present with the values of the sub- IEs as stated below. Else, this IE and the sub-IEs shall be absent.
	This IE is checked to see if it is present. The value is compared against the XMAC-I value computed by SS.
	This IE is checked to see if it is present. The value is used by SS to compute the XMAC-I value.
Measurement identity	4
Measured Results	
	Not present
	Checked that this IE is absent
	Checked that this IE is absent
- Primary scrambling code	150
	Checked that this IE is absent
	Checked that this IE is present
- Pathloss	Checked that this IE is absent
Measured results on RACH	Checked that this IE is absent
Additional measured results	
- UE internal measured results	
	FDD
	Checked that this IE is present
- UE Rx-Tx report entries	Checked that this IE is absent
Event results	Checked that this IE is absent

PHYSICAL CHANNEL RECONFIGURATION message:

Information Element	Value/Remark
Message Type	
UE Information Elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
-Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	Not Present
-New U-RNTI	Not Present-
-New C-RNTI	Not Present
-RRC-State Indicator	CELL DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	
-CN Information info	Not Present
UTRAN mobility information elements	
-URA identity	Not Present
RB information elements	
-Downlink counter synchronisation info	Not Present
PhyCH information elements	
-Frequency info	Not Present
Uplink radio resources	
-Maximum allowed UL TX power	At the first time this value is set to PUEMAX-1.
	After the second time this value is decreased
	with 1 dB from previous value.
Downlink radio resources	
-CHOICE mode	FDD
Downlink PDSCH information	Not Present
-Downlink information common for all radio links	Not Present
-Downlink information per radio link list	Not Present

8.7.3C.5 Test requirements

Compare each of the UE transmitted power reports against the following mean power measurement. At least 90% of the mean power measurements for any one value of reported UE transmitted power shall be within the range specified in-table 8.7.3C.5.

NOTE It is not expected or required that the distribution of UE transmitted power reports is even for the 11possible reported values.

Parameter Uni		Mean Power range [dB]		
	Unit	PUEMAX 24dBm	PUEMAX 21dBm	
UE transmitted power=PUEMAX	dBm	+1.7/-3.7	±2.7	
UE transmitted power=PUEMAX-1	dBm	+2.2/-4.2	±3.2	
UE transmitted power=PUEMAX-2	dBm	+2.7/-4.7	±3.7	
UE transmitted power=PUEMAX-3	dBm	+3.2/-5.2	±4.2	
UE transmitted power=PUEMAX-4	dBm	+3.7/-5.7	±4.7	
UE transmitted power=PUEMAX-5	dBm	+3.7/-5.7	±4.7	
UE transmitted power=PUEMAX-6	dBm	+3.7/-5.7	±4.7	
UE transmitted power=PUEMAX-7	dBm	+3.7/-5.7	±4.7	
UE transmitted power=PUEMAX-8	dBm	+3.7/-5.7	±4.7	
UE transmitted power=PUEMAX-9	dBm	+3.7/-5.7	±4.7	
UE transmitted power=PUEMAX-10	dBm	+3.7/-5.7	±4.7	

Table 8.7.3C.5 UE transmitted power test requirements

8.7.4 SFN-CFN observed time difference

8.7.4.1 Intra frequency measurement requirement

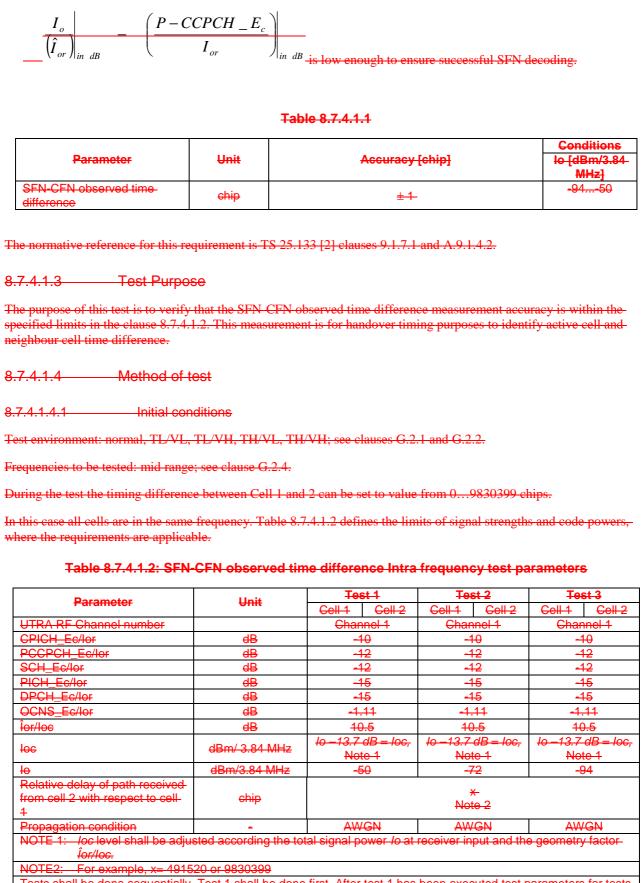
8.7.4.1.1 Definition and applicability

The intra frequency SFN CFN observed time difference is defined as the SFN CFN observed time difference from the active cell to a neighbour cell that is in the same frequency. This measurement is specified in clause 5.1.8 of TS 25.215-[22].

The reference point for the SFN CFN observed time difference shall be the antenna connector of the UE.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.4.1.2 Minimum requirements


The accuracy requirement in table 8.7.4.1.1 is valid under the following conditions:

<u>— CPICH_RSCP1,2|_{dBm} ≥ 114 dBm.</u>

$$- \left| \frac{CPICH _RSCP1}{_{in \, dBm}} - \frac{CPICH _RSCP2}{_{in \, dBm}} \right| \le 20 dB$$

$$\frac{I_o}{(\hat{I}_{or})} = \frac{CPICH_E_c}{I_{or}} \le 20dB$$

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for tests 2 and 3 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.

1)A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.4.1.2.

8.7.4.1.4.2 Procedure

1) SS shall transmit MEASUREMENT CONTROL message.

- 2) UE shall transmit periodically MEASUREMENT REPORT message.
- 3) SS shall check "OFF" and "Tm" values in MEASUREMENT REPORT message and calculate SFN CFNobserved time difference value according to the definition in clause 5.1.8 of TS 25.215 [22]. This value shall be compared to the actual SFN CFN observed time difference value for each MEASUREMENT REPORTmessage.
- 4) SS shall count the number of MEASUREMENT REPORT messages transmitted by UE. After 1000-MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according totable 8.7.4.1.2 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from-UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during thisperiod. Then, step 3) above is repeated. After further 1000 MEASUREMENT REPORT messages have beenreceived from UE, the RF parameters are set up according to table 8.7.4.1.2 for Test 3. While RF parameters arebeing set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, step 3) above is repeated.
- 5) After further 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit RRC CONNECTION RELEASE message.
- 6) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message for intra frequency measurement

Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	θ.
-Integrity check info	Not Present
Measurement Information elements	Not i resent
-Measurement Identity	4
-Measurement Command	
-Measurement Reporting Mode	Wodry
- Measurement Report Transfer Mode	Acknowledged mode RLC
- Periodical Reporting / Event Trigger Reporting	Periodical reporting
Mode	i onedical reporting
-Additional measurement list	Not Present
-CHOICE Measurement Type	Intra-frequency measurement
-Intra-frequency measurement	
Intra-frequency measurement objects list	Not Present
	Not i resent
Intra-frequency measurement quantity	
Filter coefficient	θ
	FDD
Measurement quantity	CPICH RSCP
Intra-frequency reporting quantity	
Reporting quantities for active set cells	
indicator	No report
Cell synchronisation information reporting-	
indicator	TRUE
	TRUE
	FDD
	TRUE
	TRUE
Pathloss reporting indicator	TRUE
Reporting quantities for monitored set cells	
SFN-SFN observed time difference reporting-	No report
indicator	
	TRUE
indicator	
	TRUE
	FDD
	TRUE
	TRUE
	TRUE
 Reporting quantities for detected set cells 	Not Present
Reporting cell status	
	Report all active set cells + cells within
•	monitored set on used frequency
Maximum number of reported cells	Virtual/active set cells + 2
Measurement validity	Not Present
CHOICE report criteria	Periodical reporting criteria
Amount of reporting	Infinity
Reporting interval	250 ms
Physical channel information elements	
-DPCH compressed mode status info	Not Present

MEASUREMENT REPORT message for Intra frequency test cases

This message is common for all intra frequency test cases in clause 8.7 and is described in Annex I.

8.7.4.1.5 Test requirements

The SFN CFN observed time difference measurement accuracy shall meet the requirements in clause 8.7.4.1.2.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum-Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.7.4.2 Inter frequency measurement requirement

8.7.4.2.1 Definition and applicability

The inter frequency SFN CFN observed time difference is defined as the SFN CFN time difference from the active cell to a neighbour cell that is in a different frequency. This measurement is specified in clause 5.1.8 of TS 25.215 [22].

The reference point for the SFN CFN observed time difference shall be the antenna connector of the UE.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.4.2.2 Minimum requirements

The accuracy requirement in table 8.7.4.2.1 is valid under the following conditions:

-<u>CPICH_RSCP1,2</u>|_{dBm} ≥ 114 dBm.

$$- \frac{CPICH _RSCP1}{in \, dBm} - \frac{CPICH _RSCP2}{in \, dBm} \le 20 dB$$

$$\frac{I_o}{\left(\hat{I}_{or}\right)_{in\ dB}} - \left(\frac{CPICH_E_c}{I_{or}}\right)_{in\ dB} \le 20dB$$

Table 8.7.4.2.1

			Conditions
Parameter	Unit	Accuracy [chip]	lo [dBm/3.84 MHz]
SFN-CFN observed time difference	chip	±1	- 9450

The normative reference for this requirement is TS 25.133 [2] clauses 9.1.7.2 and A.9.1.4.2.

8.7.4.2.3 Test purpose

The purpose of this test is to verify that the SFN CFN observed time difference measurement accuracy is within the specified limits in the clause 8.7.4.2.2. This measurement is for handover timing purposes to identify active cell and neighbour cell time difference.

8.7.4.2.4 Method of test

8.7.4.2.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

During the test the timing difference between Cell 1 and 2 can be set to value from 0...9830399 chips.

In this test case both cells are in different frequency and compressed mode is applied. The gap length is 7, detailed definition is in clause C.5, set 1 of table C.5.2 except for TGRRC and TGCFN. TGPRC and TGCFN shall set to-"Infinity" and "(Current CFN + (256 – TTI/10msee))mod 256". Table 8.7.4.2.2 defines the limits of signal strengths and code powers, where the requirement is applicable.

Table 8.7.4.2.2: SFN-CFN observed time difference Inter frequency tests parameters

Parameter	Unit	Tee	st 1	Tee	st 2	Tee	st 3
Parameter	Unit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2
UTRA RF Channel number		Channel	Channel	Channel	Channel	Channel	Channel
		1	2	1	2	1	2
CPICH_Ec/lor	dB	-4	θ	-4	θ	-4	θ
PCCPCH_Ec/lor	d₿	-4	2	-4	2	-1	2
SCH_Ec/lor	dB	۲ ۲	2	-4	2	-1	2
PICH_Ec/lor	d₿	-4	5	-4	5	-4	5
DPCH_Ec/lor	d₽	-4	5	-15		-15	
OCNS_Ec/lor	dB	-1.	11	-1.11		-1.11	
Îor/loc	d₽	40).1	40).1	40).1
		lo -10.6	dB = loc,	lo -10.6	dB = loc,	lo -10.6	dB = loc,
loc	dBm/ 3.84 MHz	Not	ie 1	No	te 1	Not	e 1
lo	dBm/3.84 MHz	-4	;0	-72		-94	
Relative delay of path received							
from cell 2 with respect to cell	h respect to cell chip						
4				-NO	t e 2		
Propagation condition	_	AWGN		AWGN		AW	GN
NOTE 1: loc level shall be adjust	sted in each carrier fr	equency a	ccording th	e total sig	hal power	lo at receiv	er input
and the geometry fact			Ŭ	Ŭ	•		
NOTE2: For example, x= 4915							
Tests shall be done sequentially		first After	test 1 has	heen ever	suted test r	arameters	for tests

Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for tests 2 and 3 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.

1) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.4.2.2.

8.7.4.2.4.2 Procedure

- 1) SS shall transmit PHYSICAL CHANNEL RECONFIGURATION message.
- 2) UE shall transmit PHYSICAL CHANNEL RECONFIGURATION COMPLETE message.
- 3) SS shall transmit MEASUREMENT CONTROL message.
- 4) UE shall transmit periodically MEASUREMENT REPORT messages.
- 5) SS shall check "OFF" and "Tm" values in MEASUREMENT REPORT message and calculate SFN CFN observed time difference value according to the definition in clause 5.1.8 of TS 25.215 [22]. This value shall be compared to the actual SFN CFN observed time difference value for each MEASUREMENT REPORT message.
- 6) SS shall count number of MEASUREMENT REPORT messages transmitted by UE. After 1000-MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.4.2.2 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from-UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, steps 3) and 4) above are repeated. After further 1000 MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.4.2.2 for Test 3. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait foradditional 1s and ignore the MEASUREMENT REPORT messages from UE are ignored. SS shall wait foradditional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, steps 4) and 5)above are repeated.
- 7) After further 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit RRC CONNECTION RELEASE message.
- 8) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

PHYSICAL CHANNEL RECONFIGURATION message for inter frequency measurement

Information Element	Value/Remark		
Message Type			
UE Information Elements			
-RRC transaction identifier	θ		
-Integrity check info	Not Present		
-Integrity protection mode info	Not Present		
-Ciphering mode info	Not Present		
-Activation time	Not Present		
-New U-RNTI	Not Present		
New C-RNTI	Not Present		
-RRC State Indicator			
	CELL_DCH		
-UTRAN DRX cycle length coefficient	Not Present		
CN Information Elements			
-CN Information info	Not Present		
UTRAN mobility information elements			
-URA identity	Not Present		
RB information elements			
-Downlink counter synchronisation info	Not Present		
PhyCH information elements			
-Frequency info	Not Present		
Uplink radio resources			
-Maximum allowed UL TX power	Not Present		
- CHOICE channel requirement	Not Present		
Downlink radio resources			
-CHOICE mode	FDD		
-Downlink PDSCH information	Not Present		
-Downlink information common for all radio links			
-Downlink Information common for all RL	Not Present		
-CHOICE mode	FDD		
DPCH compressed mode info			
-Transmission gap pattern sequence			
	4		
	Activate		
	(Current CFN + (256 – TTI/10msec))mod 250		
Transmission gap pattern sequence-			
configuration parameters			
	FDD measurement		
-TGPRC	Infinity		
	4		
	7		
	Not Present		
	0		
	3		
	Not Present		
	Mode 0		
	Mode 0		
	UL and DL		
	SF/2		
	SF/2		
	B		
	3.0		
	3.0		
-DeltaSIR2	Not Present		
	Not Present		
TX Diversity Mode			
	Not Present		
-Default DPCH Offset Value	Not Present		
-Downlink information per radio link list			
-Downlink information for each radio link			
Choice mode	FDD		
Primary CPICH info Primary scrambling code			

PDSCH with SHO DCH Info	Not Present
PDSCH code mapping	Not Present
Downlink DPCH info for each RL	
	FDD
Primary CPICH usage for channel estimation	Primary CPICH may be used
	Set to value Default DPCH Offset Value (as
	currently stored in SS) mod 38400
Secondary CPICH info	Not Present
	Not Present
	128
	θ
	No code change
	θ
	Not Present
Closed loop timing adjustment mode	Not Present
SCCPCH Information for FACH	Not Present

MEASUREMENT CONTROL message for Inter frequency measurement

Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	2
-Measurement Command	
-Measurement Reporting Mode	
- Measurement Report Transfer Mode	Acknowledged mode RLC
- Periodical Reporting / Event Trigger Reporting-	Periodical reporting
Mode	
-Additional measurement list	Not Present
-CHOICE Measurement Type	Inter-frequency measurement
-Inter-frequency measurement	
Inter-frequency cell info list	
	Not Present
New inter-frequency cells-	Cell 2 information is included
Cell for measurement	
Inter-frequency measurement quantity-	Inter-frequency reporting criteria
CHOICE reporting criteria	
Filter coefficient	θ
	FDD
	CPICH RSCP
estimate	
Inter-frequency reporting quantity-	
	TRUE
Frequency quality estimate	TRUE
Non frequency related cell reporting quantities	
	No report
indicator	
	TRUE-
indicator	
	TRUE-
	FDD
	TRUE
	TRUE-
Pathloss reporting indicator	TRUE
Reporting cell status	
	Report all active set cells + cells within
	monitored set on used frequency
Maximum number of reported cells	Virtual/active set cells + 2
Measurement validity	Not Present
Inter-frequency set update	Not Present
CHOICE report criteria	Periodical reporting criteria
Amount of reporting	Infinity
Reporting interval	500 ms
Physical channel information elements	Net Descent
-DPCH compressed mode status info-	Not Present

MEASUREMENT REPORT message for Inter frequency test cases

This message is common for all inter frequency test cases in clause 8.7 and is described in Annex I.

8.7.4.2.5 Test requirements

The SFN CFN observed time difference measurement accuracy shall meet the requirements in clause 8.7.4.2.2.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.7.5 SFN-SFN observed time difference

8.7.5.1 SFN-SFN observed time difference type 1

8.7.5.1.1 Definition and applicability

This measurement is specified in clause 5.1.9 of TS 25.215 [22]. The reference point for the SFN SFN observed timedifference type 1 shall be the antenna connector of the UE.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.5.1.2 Minimum requirements

The accuracy requirement in table 8.7.5.1.1 is valid under the following conditions:

<u>— CPICH_RSCP1,2 $|_{dBm}$ ≥ 114 dBm.</u>

$$-\frac{|CPICH_RSCP1|_{in dBm} - CPICH_RSCP2|_{in dBm}| \le 20dB}{\left(\hat{I}_{or}\right)_{in dB}} - \frac{(CPICH_E_c)_{in dB}}{(I_{or})_{in dB}} \le 20dB}{\left(\frac{I_o}{(\hat{I}_{or})_{in dB}} - \frac{(P - CCPCH_E_c)_{in dB}}{(I_{or})_{in dB}}\right)_{in dB}}_{is low enough to ensure successful SFN decoding.}$$

Table 8.7.5.1.1

Parameter	Unit	Accuracy [chip]	Conditions lo [dBm/3.84 MHz]
SFN-SFN observed time- difference type1	chip	±1	-9450

The normative reference for this requirement is TS 25.133 [2] clause 9.1.8.1.1 and A.9.1.5.1.2.

8.7.5.1.3 Test purpose

The purpose of this test is to verify that the measurement accuracy of SFN SFN observed time difference type 1 is within the limit specified in clause 8.7.5.1.2. This measurement is for identifying time difference between two cells.

8.7.5.1.4 Method of test

8.7.5.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

During the test the timing difference between Cell 1 and 2 can be set to value from 0...9830399 chips.

1) Connect SS to the UE antenna connector as shown in figure A.1

2) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.5.1.2.

In this case all cells are in the same frequency. Table 8.7.5.1.2 defines the limits of signal strengths and code powers, where the requirements are applicable.

Table 8.7.5.1.2: SFN-SFN observed time difference type 1 Intra frequency test parameters

Deremeter	Lin it	Ter	Test 1		Test 2		Test 3	
Parameter	Unit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2	
UTRA RF Channel number		Char	nel 1	Channel 1		Channel 1		
CPICH_Ec/lor	dB	-4	Ю	-10		-10		
PCCPCH_Ec/lor	dB	-4	2	-12		-12		
SCH_Ec/lor	d₿	-4	2	-4	2	-12		
PICH_Ec/lor	dB	-4	15	-4	15	-4	1 5	
DPCH_Ec/lor	d₿	-4	5	-15		-15		
OCNS_Ec/lor	d₿	-1.	.11	-1.11		-1.11		
Îor/loc	dB	40) .5	10.5		10.5		
		lo =13.7 dB = loc,		lo –13.7 dB = loc,		lo =13.7 dB = loc,		
loc	dBm/ 3.84 MHz	Note 1		Note 1		Note 1		
lo	dBm/3.84 MHz	-{	-50 - 72		-9 4			
Relative delay of path received								
from cell 2 with respect to cell	chip	×- Note 2						
4				- NO	10 Z			
Propagation condition	-	AWGN		AWGN AWGN		AW	'GN	
NOTE 1: loc level shall be adjust	sted according the to	tal signal p	ower <i>lo</i> at	receiver in	put and the	e geometry	/ factor	
, Îor/loc.	Ŭ	5 1				с ,		
NOTE2: For example, x= 4915	20 or 9830399							

Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for tests 2 and 3 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.

8.7.5.1.4.2 Procedure

1) SS shall transmit MEASUREMENT CONTROL message.

2) UE shall transmit periodically MEASUREMENT REPORT message.

- 3) SS shall check "SFN SFN observed time difference type 1" value in MEASUREMENT REPORT message. The reported value shall be compared to actual SFN SFN observed time difference type 1 value for each-MEASUREMENT REPORT message.
- 4) SS shall count the number of MEASUREMENT REPORT messages transmitted by UE. After 1000-MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according totable 8.7.5.1.2 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from-UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, step 3) above is repeated. After further 1000 MEASUREMENT REPORT messages have beenreceived from UE, the RF parameters are set up according to table 8.7.5.1.2 for Test 3. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, step 3) above is repeated.
- 5) After further 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit RRC CONNECTION RELEASE message.

6) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message for Intra frequency measurement (Step 1):

Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	4
-Measurement Command	Modify
-Measurement Reporting Mode	
- Measurement Report Transfer Mode	Acknowledged mode RLC
- Periodical Reporting / Event Trigger Reporting	Periodical reporting
Mode	
-Additional measurement list-CHOICE-	Not Present
Measurement Type	Intra-frequency measurement
Intra-frequency measurement	
- Intra-frequency measurement objects list	Not Present
Intra-frequency measurement quantity	
Filter coefficient	θ
	FDD
Measurement quantity	CPICH RSCP
Intra-frequency reporting quantity	
Reporting quantities for active set cells	
indicator	Type 1
Cell synchronisation information reporting	21.1
indicator	TRUE
Cell Identity reporting indicator	TRUE
	FDD
	TRUE
	TRUE
Pathloss reporting indicator	TRUE
Reporting quantities for monitored set cells	
SFN-SFN observed time difference reporting	Type 1
indicator	
Cell synchronisation information reporting-	TRUE
indicator	
	TRUE
	FDD
	TRUE
	TRUE
Pathloss reporting indicator	TRUE
Reporting quantities for detected set cells	Not Present
Reporting cell status	
	Report all active set cells + cells within
	monitored set on used frequency
Maximum number of reported cells	Virtual/active set cells + 2
Measurement validity	Not Present
	Periodical reporting criteria
Amount of reporting	Infinity
Reporting interval	250 ms
Physical channel information elements	
-DPCH compressed mode status info	Not Present

MEASUREMENT REPORT message for Intra frequency test cases

This message is common for all intra frequency test cases in clause 8.7 and is described in Annex I.

8.7.5.1.5 Test requirements

The SFN SFN observed time difference type 1 accuracy shall meet the requirements in clause 8.7.5.1.2.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.7.5.2 SFN-SFN observed time difference type 2

Void.

8.7.6 UE Rx-Tx time difference

8.7.6.1 UE Rx-Tx time difference type 1

8.7.6.1.1 Definition and applicability

The UE Rx Tx time difference is defined as the time difference between the UE uplink DPCCH/DPDCH frametransmission and the first detected path (in time) of the downlink DPCH frame from the measured radio link. The reference point of the UE Rx Tx time difference shall be the antenna connector of the UE. This measurement is specified in clause 5.1.10 of TS 25.215.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.6.1.2 Minimum requirements

Table 8.7.6.1.1

Barameter	Unit		Conditions
Farameter	0	Accuracy [cmp]	lo [dBm/3.84Mz]
UE RX-TX time difference	chip	± 1.5_	-9450

The normative reference for this requirement is TS 25.133 [2] clause 9.1.9.1.1 and A.9.1.6.1.2.

8.7.6.1.3 Test purpose

The purpose of this test is to verify that the measurement accuracy of Rx Tx time difference is within the limit specified in clause 8.7.6.1.2. This measurement is used for call setup purposes to compensate propagation delay of DL and UL.

8.7.6.1.4 Method of test

8.7.6.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1) Connect SS to the UE antenna connector as shown in figure A.1

Table 8.7.6.1.2: UE Rx-Tx time difference type 1 intra frequency test parameters

Deremeter	Unit	Test 1	Test 2	Test 3
Parameter-	Unit	Cell 1	Cell 1	Cell 1
UTRA RF Channel number		Channel 1	Channel 1	Channel 1
CPICH_Ec/lor	dB	-10	-10	-10
PCCPCH_Ec/lor	dB	-12	-12	-12
SCH_Ec/lor	dB	-12	-12	-12
PICH_Ec/lor	dB	-15	-15	-15
DPCH_Ec/lor	dB	-15	-15	-15
OCNS	dB	-1.11	-1.11	-1.11
Îor/loc	dB	10.5	10.5	10.5
	dBm/ 3.84 MHz	lo =10.9 dB = loc,	lo =10.9 dB = loc,	lo =10.9 dB = loc,
loc		Note 1	Note 1	Note 1
lo	dBm/3.84 MHz	-94 -	-72	-50
Propagation condition	-	AWGN	AWGN	AWGN
NOTE 1: /oc level shall be a	djusted according th	ne total signal power s	pectral density <i>lo</i> at re	ceiver input and the
geometry factor Îor/loc.				

8.7.6.1.4.2 Procedure

- 1)A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.2.3. The RF parametersare set up according to table 8.7.6.1.4 for Test 1.
- 2) SS shall transmit MEASUREMENT CONTROL message.
- 3) UE shall transmit periodically MEASUREMENT REPORT message.
- 4) SS shall check "UE Rx Tx time difference type 1" value in MEASUREMENT REPORT message. The reportedvalue shall be compared to actual UE Rx Tx time difference value for each MEASUREMENT REPORTmessage. The comparison should be repeated 1000 times.
- 5) The RF parameters are set up according table 8.7.6.1.4 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period.
- 6) Step 3) above shall be repeated.
- 7) The RF parameters are set up according table 8.7.6.1.4 for Test 3. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period.
- 8) Step 3) above shall be repeated.
- 9) SS shall transmit RRC CONNECTION RELEASE message.

Specific Message Contents

All messages indicated above shall use the same content as described in default message content in clause 9 of 34.108-[3], with the following exceptions:

MEASUREMENT CONTROL message for Intra frequency measurement (Step 1):

Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	Ð
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	4
-Measurement Command	Modify
- Additional measurements list	Not Present
-Measurement Reporting Mode	AM RLC
-Measurement Report Transfer Mode	Periodical reporting
-Periodical Reporting / Event Trigger Reporting Mode	UE Internal measurement
-CHOICE Measurement type	-
-UE Internal measurement quantity	FDD
	UE Rx-Tx time difference
Measurement quantity	0 —
Filter coefficient	
UE Internal reporting quantity-	
UE Transmitted power	FALSE
	FDD
	TRUE
-CHOICE report criteria	Periodical reporting criteria
Amount of reporting	Infinity
Reporting interval	250
-Measurement Reporting Mode	
-Measurement Report Transfer Mode	AM RLC
-Periodical Reporting / Event Trigger Reporting Mode	Periodical reporting
Physical channel information elements	
-DPCH compressed mode status info	Not Present

MEASUREMENT REPORT message

Information Element	Value/remark			
Message Type				
Integrity check info	The presence of this IE is dependent on IXIT statements in TS 34.123-2. If integrity protection is indicated to be- active, this IE shall be present with the values of the sub- IEs as stated below. Else, this IE and the sub-IEs shall be absent.			
- Message authentication code	This IE is checked to see if it is present. The value is compared against the XMAC-I value computed by SS.			
	This IE is checked to see if it is present. The value is used by SS to compute the XMAC-I value.			
Measurement identity	4			
Measured Results				
	UE Internal measured results			
	FDD			
- UE Transmitted power	Checked that this IE is absent			
- Primary CPICH info	Checked that this IE is present			
- UE Rx-Tx time difference type 1	Checked that this IE is present			
Intra-frequency measured results Cell measured results	·			
	Not present			
- SFN-SFN observed time difference	Checked that this IE is absent			
- Cell synchronisation information	Checked that this IE is absent			
- Primary scrambling code	100			
	Checked that this IE is absent			
	Checked that this IE is present			
	Checked that this IE is absent			
Measured results on RACH	Checked that this IE is absent			
Additional measured results	Checked that this IE is absent			
Event results	Checked that this IE is absent			

8.7.6.1.5 Test requirements

Table 8.7.6.1.3

Paramotor	Unit		Conditions
Farameter	onit	Accuracy [chilp]	lo [dBm]
UE RX-TX time difference	chip	[<u>± 2.0]</u>	-9450

Table 8.7.6.1.4: UE Rx-Tx time difference type 1 intra frequency test parameters

Parameter	l lasit	Test 1	Test 2	Test 3	
	Unit	Cell 1	Cell 1	Cell 1	
UTRA RF Channel number		Channel 1	Channel 1	Channel 1	
CPICH_Ec/lor	dB	-10	-10	-10	
PCCPCH_Ec/lor	d₿	-12	-12	-12	
SCH_Ec/lor	dB	-12	-12	-12	
PICH_Ec/lor	dB	-15	-15	-15	
DPCH_Ec/lor	dB	-15	-15	-15	
OCNS	d₿	-1.11	-1.11	-1.11	
Îor/loc	dB	10.5	10.5	10.5	
loc	dBm/ 3.84 MHz	-103.6	-82.9	-62.2	
lo	dBm/3.84 MHz	-92.7	-72	-51.3	
Propagation condition	-	AWGN	AWGN	AWGN	
NOTE 1: loc level shall be a	djusted according th	ne total signal power s	pectral density <i>lo</i> at re	ceiver input and the	
geometry factor Îor/loc.	_				

The UE Rx Tx time difference accuracy shall meet the requirements in table 8.7.6.1.3.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.7.6.2 UE Rx-Tx time difference type 2

Void

8.7.7 Observed time difference to GSM cell

Void

8.7.8 P-CCPCH RSCP

8.7.8.1 Absolute measurement accuracy

8.7.8.1.1 Definition and applicability

The absolute accuracy of P CCPCH RSCP is defined as the P CCPCH RSCP measured in an UTRA TDD cell on onefrequency compared to the actual P CCPCH RSCP power of that cell on the same frequency.

The requirements and this test apply only to UE supporting both UTRA FDD and UTRA TDD.

8.7.8.1.2 Minimum Requirements

The accuracy requirement in table 8.7.8.1.1 is valid under the following conditions:

P-CCPCH_RSCP ≥ -102 dBm,

$$\frac{I_o}{\left(\hat{I}_{or}\right)_{in\ dB}} - \left(\frac{P - CCPCH - E_c}{I_{or}}\right)_{in\ dB} \le 8dB$$

Table 8.7.8.1.1: P-CCPCH RSCP inter frequency absolute accuracy

		Accuracy [dB]		Conditions
Parameter	Unit	Normal conditions	Extreme conditions	lo [dBm/3.84 MHz]
P-CCPCH RSCP	dBm	±6 -	± 9	-9470
	dBm	±8 -	± 11	-7050

The normative reference for this requirement is TS 25.133 [2] clauses 9.1.11.1 and A.9.1.8.

8.7.8.1.3 Test purpose

The purpose of this test is to verify that the P-CCPCH RSCP absolute measurement accuracy is within the specifiedlimits.

8.7.8.1.4 Method of test

8.7.8.1.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

In this case both cells are on different frequencies. Cell 1 is a UTRA FDD cell and cell 2 is a UTRA TDD cell. The second Beacon timeslot shall be provided for cell 2 in timeslot 8. Compressed mode as specified in TS 25.101 [1] section A.5, set 3 of table A.22, is applied. TGPRC and TGCFN shall be set to "Infinity" and "(Current CFN + (256 - 100)).

TTI/10msec)) mod 256". P CCPCH RSCP inter frequency absolute accuracy requirements are tested by using testparameters in Table 8.7.8.1.2.

Parameter	Unit	Te	st 1	Ŧe	Test 2		
Farameter	Unit	Cell 1 Cell 2		Cell 1	Cell 2		
DL timeslot number		n.a.	0 8	n.a.	0	8	
UTRA RF Channel number		Channel 2	Channel '	1 Channel 2	Channel 1		
CPICH_Ec/lor	d₿	-10	n.a.	-10	n.a.		
P-CCPCH_Ec/lor	d₿	-12	- 3 n.:	3. - 12	न्	n.a	
SCH_Ec/lor	d₿	-12	-9	-12	-9		
SCH_t _{offset}		n.a.	5	n.a.	5		
PICH_Ec/lor	d₿	-15	n.a 🤆	≩ <mark>-15</mark>	n.a.	-3	
DPCH_Ec/lor	d₿	-15	n.a.	-15	n.a	n.a.	
OCNS_Ec/lor	d₿	-1.11	-3.12	-1.11	-3.1	2	
loc	dBm/ 3.84 MHz	-60	-57.7	-84	-8 4	.7	
Îor/loc	dB	9.54	7	Ð	θ 3		
P-CCPCH RSCP, Note 1	dBm	n.a.	-53.7 n.:	a. n.a.	<u>-84.7</u>	n.a.	
CPICH RSCP, Note 1	dBm	-60.46	n.a.	-94	n.a	l.	
lo, Note 1	dBm/3.84 MHz	-50	-50	-81	-8(¢	
Propagation condition	-	ΑV	/GN	A	AWGN		

Table 8.7.8.1.2: P-CCPCH RSCP inter frequency tests parameters

Note 1: P-CCPCH RSCP, CPICH RSCP and to levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

Note that the transmit energy per PN chip for the SCH is averaged over the 256 chip duration when the SCH is present in the time slot.

Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed, test parameters for test 2 shall be set within 5 seconds so that the UE does not lose the Cell 2 in between the test.

2)A call is set up according to the test procedure specified in TS 34.108 [3] clause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.8.1.2.

8.7.8.1.4.2 Procedure

1) SS shall transmit the PHYSICAL CHANNEL RECONFIGURATION message.

2) UE shall transmit the PHYSICAL CHANNEL RECONFIGURATION COMPLETE message.

3) SS shall transmit the MEASUREMENT CONTROL message.

4) UE shall transmit periodically MEASUREMENT REPORT messages.

- 5) SS shall check P CCPCH RSCP values of Cell 2 in the MEASUREMENT REPORT messages. P CCPCH RSCP power level of Cell 2 reported by the UE shall be compared to the actually set P CCPCH RSCP value of Cell 2 for each MEASUREMENT REPORT message.
- 6) SS shall count number of MEASUREMENT REPORT messages transmitted by UE. After 1000-MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according totable 8.7.8.1.2 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from-UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during thisperiod. Then, steps 4) and 5) above are repeated.
- 7) After further 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit RRC CONNECTION RELEASE message.

8) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3] and in Annex I, with the following exceptions:

PHYSICAL CHANNEL RECONFIGURATION message for inter frequency measurement (Step 1):

Information Element	Value/Remark
Message Type	
UE Information Elements	
-RRC transaction identifier	Α
-ntegrity check info	↔ Not Present
-Integrity protection mode info	Not Present
-ciphering mode info	Not Present
-Cipiteting mode into	Not Present
-Activation time	Not Present
-New C-RNTI	Not Present
-Rec State Indicator	CELL DCH
-CC-State Indicator -UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	
-CN Information Elements	Not Propert
UTRAN mobility information elements	Not Present
	Not Descent
-URA identity	Not Present
RB information elements	
-Downlink counter synchronisation info	Not Present
PhyCH information elements	
-Frequency info	Not Present
Uplink radio resources	
-Maximum allowed UL TX power	Not Present
- CHOICE channel requirement	Not Present
Downlink radio resources	
-CHOICE mode	FDD
Downlink PDSCH information	Not Present
-Downlink information common for all radio links	
-Downlink DPCH info common for all RL	Not Present
CHOICE mode	FDD
DPCH compressed mode info	
Transmission gap pattern sequence	
	4
	Activate
	(Current CFN + (256 – TTI/10msec))mod 25
Transmission con actions converse	
Transmission gap pattern sequence-	
configuration parameters	TDD measurement
	Infinity
	10
TGL1	10
	Not Present
TGD	θ
	44
	Not Present
	Mode 0
_ITP	Mode 0
	UL and DL
	Puncturing
	1 uncluring
	SF/2
	U
Downlink compressed mode method Uplink compressed mode method	SF/2
 Downlink compressed mode method Uplink compressed mode method Downlink frame type 	SF/2 A
 Downlink compressed mode method Uplink compressed mode method Downlink frame type DoltaSIR1 	SF/2 A 3.0
Downlink compressed mode method Uplink compressed mode method Downlink frame type DeltaSIR1 DeltaSIR2	SF/2 A 3.0 3.0
Downlink compressed mode method Uplink compressed mode method Downlink frame type DeltaSIR1 DeltaSIRafter1 DeltaSIR2 DeltaSIR2	SF/2 A 3.0 3.0 Not Present- Not Present-
Downlink compressed mode method Uplink compressed mode method Downlink frame type DeltaSIR1 DeltaSIRafter1 DeltaSIR2 DeltaSIRafter2 N Identify abort	SF/2 A 3.0 3.0 Not Present Not Present Not Present
Downlink compressed mode method Uplink compressed mode method Downlink frame type DeltaSIR1 DeltaSIRafter1 DeltaSIR2 DeltaSIRafter2 N Identify abort T Reconfirm abort	SF/2 A 3.0 Not Present Not Present Not Present Not Present
Ownlink compressed mode method Uplink compressed mode method Ownlink frame type OeltaSIR1 OeltaSIRafter1 OeltaSIR2 OeltaSIRafter2 N Identify abort T Reconfirm abort TX Diversity Mode	SF/2 A 3.0 3.0 Not Present Not Present Not Present Not Present Not Present
 Downlink compressed mode method Uplink compressed mode method Downlink frame type DeltaSIR1 DeltaSIR4fter1 DeltaSIR2 DeltaSIR4fter2 N Identify abort T Reconfirm abort TX Diversity Mode SSDT information 	SF/2 A 3.0 3.0 Not Present Not Present Not Present Not Present Not Present Not Present Not Present
 Downlink compressed mode method Uplink compressed mode method Downlink frame type DeltaSIR1 DeltaSIR2 DeltaSIR2 DeltaSIRafter2 N Identify abort T Reconfirm abort TX Diversity Mode SSDT information Default DPCH Offset Value 	SF/2 A 3.0 3.0 Not Present Not Present Not Present Not Present Not Present
Downlink compressed mode method Uplink compressed mode method Downlink frame type DeltaSIR1 DeltaSIR4 DeltaSIR2 DeltaSIRafter2 N Identify abort TX Diversity Mode SSDT information Default DPCH Offset Value Downlink information per radio link list	SF/2 A 3.0 3.0 Not Present Not Present Not Present Not Present Not Present Not Present Not Present
Downlink compressed mode method Uplink compressed mode method Downlink frame type DoltaSIR1 DoltaSIR1 DoltaSIR2 DoltaSIR2 DoltaSIRafter2 N Identify abort T Reconfirm abort TX Diversity Mode SSDT information Default DPCH Offset Value Downlink information per radio link list -Downlink information for each radio link	SF/2 A 3.0 Not Present Not Present Not Present Not Present Not Present Not Present Not Present Not Present Not Present
Ownlink compressed mode method Uplink compressed mode method Ownlink frame type OeltaSIR1 OeltaSIR4 OeltaSIR2 OeltaSIR4 Oel	SF/2 A 3.0 3.0 Not Present Not Present Not Present Not Present Not Present Not Present Not Present

PDSCH with SHO DCH Info	Not Present
PDSCH code mapping	Not Present
Downlink DPCH info for each RL	
	FDD
	Primary CPICH may be used
DPCH frame offset	Set to value Default DPCH Offset Value (as
	currently stored in SS) mod 38400
Secondary CPICH info	Not Present
	Not Present
	128
Code number	θ
	No code change
	0
	Not Present
Closed loop timing adjustment mode	Not Present
SCCPCH Information for FACH	Not Present

MEASUREMENT CONTROL message for inter frequency measurement (Step 3):

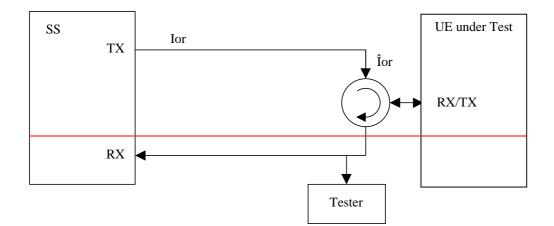
Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	2
-Measurement Command	Setup
-Measurement Reporting Mode	Comp
- Measurement Report Transfer Mode	Acknowledged mode RLC
- Periodical Reporting / Event Trigger Reporting	Periodical reporting
Mode	
-Additional measurement list	Not Present
-CHOICE Measurement Type	Inter-frequency measurement
-Inter-frequency measurement	inter nequency medearement
Inter-frequency cell info list	
	Not Present
New inter-frequency cells-	Cell 2 information is included.
Cell for measurement	Not Present
Inter-frequency measurement quantity	
	Inter-frequency reporting criteria
	Primary CCPCH RSCP
estimate	
-Inter-frequency reporting quantity	
	FALSE
Frequency quality estimate	TRUE
	No report
indicator	
Cell synchronisation information reporting-	FALSE
indicator	- ALSE
Cell Identity reporting indicator	FALSE
	TDD
	FALSE
	FALSE
—-Proposed TGSN Reporting required —Primary CCPCH RSCP reporting indicator	TRUE
	FALSE
—-Pathloss reporting indicator —-Reporting cell status	Report all active set cells + cells within-
	monitored set on used frequency
	Virtual/active set cells + 2
	Not Present
	Not Present
Measurement validity	
Inter-frequency set update	Periodical reporting criteria
	Infinity
Amount of reporting	500 ms
Reporting interval	
Physical channel information elements	
-DPCH compressed mode status info	Not Present

8.7.8.1.5 Test requirements

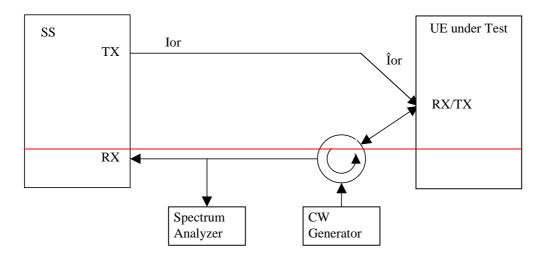
The PCCPCH RSCP measurement accuracy shall meet the requirements in clause 8.7.8.1.2.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

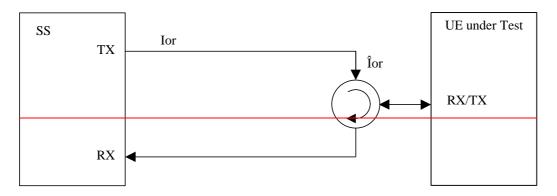
Annex A (informative): Connection Diagrams


Definition of Terms

System Simulator or SS A device or system, that is capable of generating simulated Node B signalling and analysing UE signalling responses on one or more RF channels, in order to create the required test environment for the UE under test. It will also include the following capabilities:


- 1. Measurement and control of the UE Tx output power through TPC commands
- 2. Measurement of Rx BLER and BER
- 3. Measurement of signalling timing and delays
- 4. Ability to simulate UTRAN and/or GERAN signalling

Test System A combination of devices brought together into a system for the purpose of making one or moremeasurements on a UE in accordance with the test case requirements. A test system may include one or more System-Simulators if additional signalling is required for the test case. The following diagrams are all examples of Test-Systems.


Note: The above terms are logical definitions to be used to describe the test methods used in this document (TS34.121), in practice, real devices called 'System Simulators' may also include additional measurement-capabilities or may only support those features required for the test cases they are designed to perform.

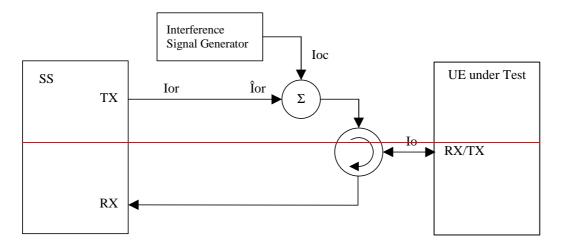

Figure A.1: Connection for Basic TX Test

Figure A.2: Connection for TX Intermodulation Test

Figure A.3: Connection for Basic RX Test

Figure A.4: Connection for RX Test with Interference

Error! No text of specified style in document.

283

Figure A.5: Connection for RX Test with Interference or additional CW

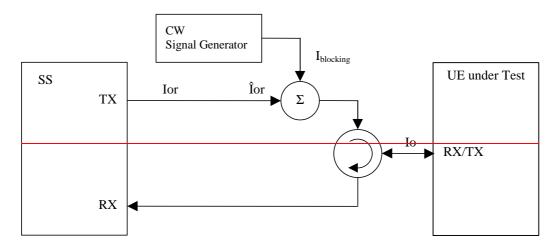
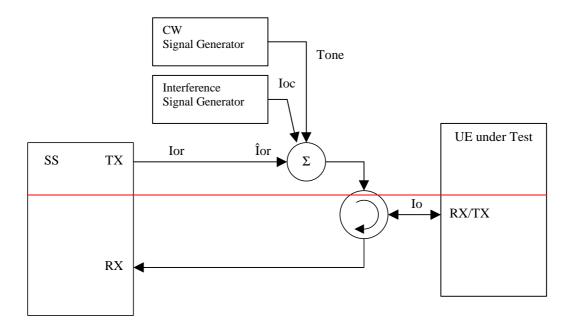
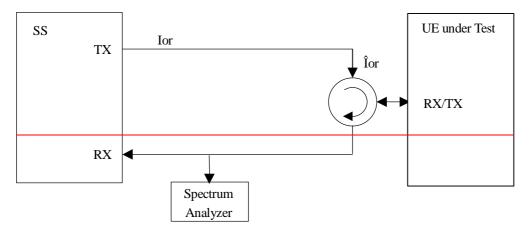




Figure A.6: Connection for RX Test with additional CW

Figure A.7: Connection for RX Test with both Interference and additional CW

Figure A.8: Connection for Spurious Emission Test

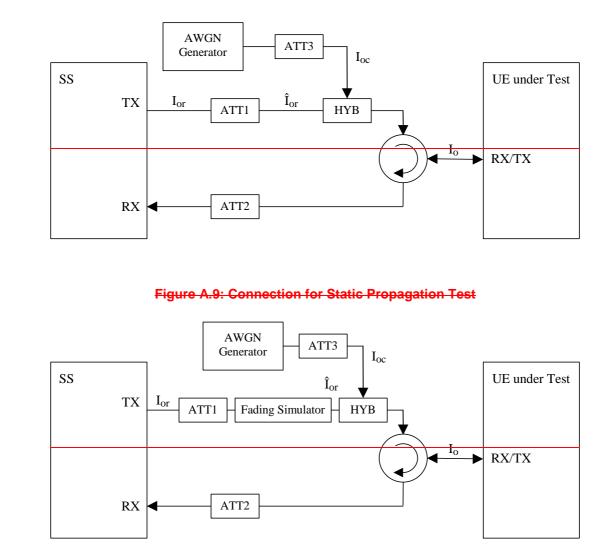
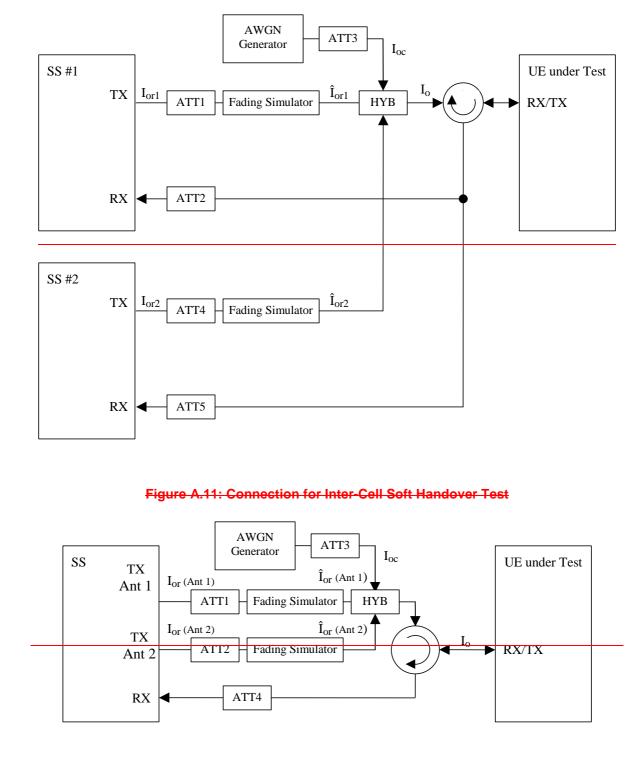



Figure A.10: Connection for Multi-path Fading Propagation Test

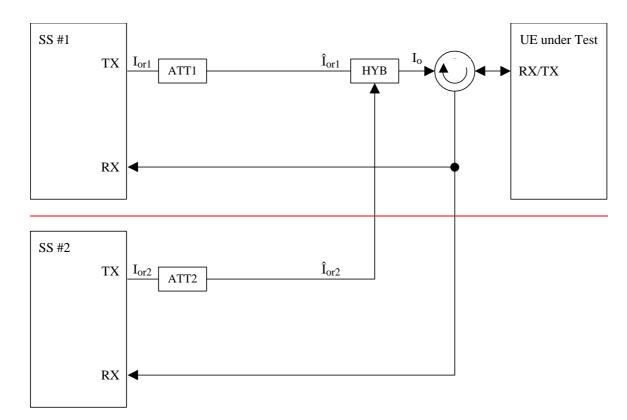
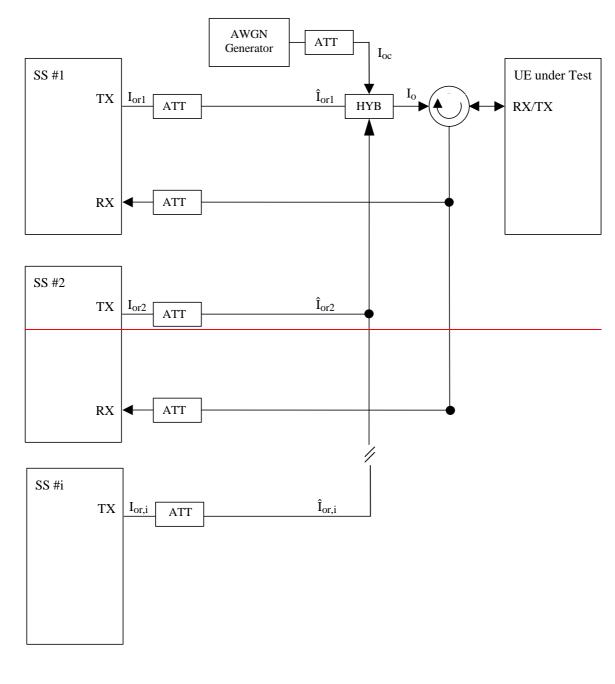
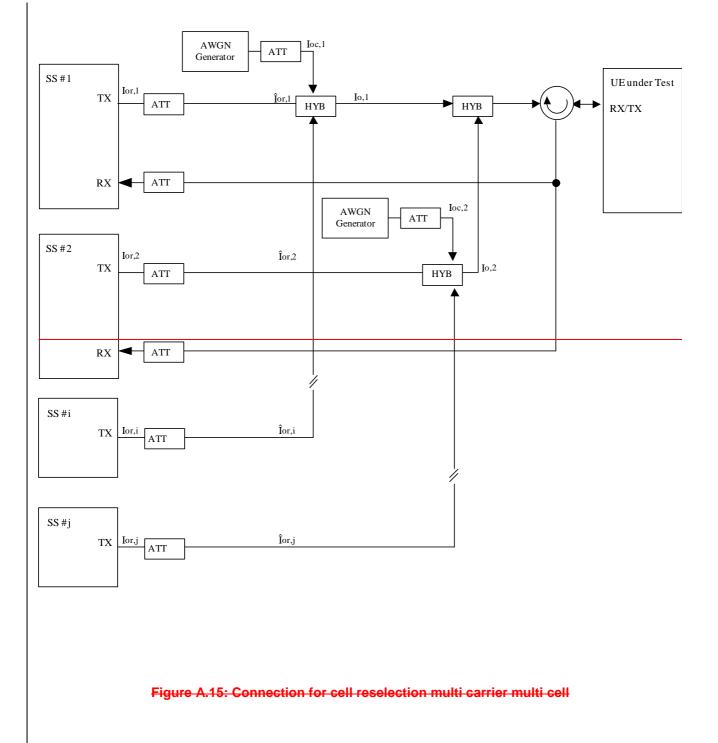




Figure A.13: Connection for Combining of TPC commands in Soft Handover Test 1

Figure A.14: Connection for cell reselection single carrier multi cell

Annex B (normative): Global In-Channel TX-Test

B.1 General

The global in channel Tx test enables the measurement of all relevant parameters that describe the in channel quality of the output signal of the Tx under test in a single measurement process.

The parameters describing the in channel quality of a transmitter, however, are not necessarily independent. The algorithm chosen for description inside this annex places particular emphasis on the exclusion of all interdependencies among the parameters. Any other algorithm (e.g. having better computational efficiency) may be applied, as long as the results are the same within the acceptable uncertainty of the test system as defined in annex F.

All notes referred in the various clauses of B.2 are put together in B.3.

B.2 Definition of the process

B.2.1 Basic principle

The process is based on the comparison of the actual **output signal of the TX under test**, received by an ideal receiver, with a **reference signal**, that is generated by the measuring equipment and represents an ideal error free received signal. The reference signal shall be composed of the same number of codes at the correct spreading factors as contained in the test signal. Note, for simplification, the notation below assumes only codes of one spreading factor although the algorithm is valid for signals containing multiple spreading factors. All signals are represented as equivalent (generally complex) baseband signals.

B.2.2 Output signal of the TX under test

The output signal of the TX under test is acquired by the measuring equipment, filtered by a matched filter (RRC 0.22, correct in shape and in position on the frequency axis) and stored for further processing.

The following form represents the physical signal in the entire measurement interval:

one vector **Z**, containing N = ns x sf complex samples;

with

ns: number of symbols in the measurement interval;

sf: number of chips per symbol. (sf: spreading factor) (see Note: Symbol length)

B.2.3 Reference signal

The reference signal is constructed by the measuring equipment according to the relevant TX specifications.

It is filtered by the same matched filter, mentioned in clause B.2.2., and stored at the Inter Symbol Interference freeinstants. The following form represents the reference signal in the entire measurement interval:

- ns, sf: see clause B.2.2.

B.2.4 void

B.2.5 Classification of measurement results

The measurement results achieved by the global in channel TX test can be classified into two types:

- Results of type "deviation", where the error free parameter has a non-zero magnitude. (These are the parametersthat quantify the integral physical characteristic of the signal). These parameters are:
 - RF Frequency;

 - Code Domain Power (in case of multi code);
 - Timing
- Results of type "residual", where the error-free parameter has value zero. (These are the parameters that quantify the error values of the measured signal, whose ideal magnitude is zero). These parameters are:

 - Peak Code Domain Error (PCDE).
 - (Additional parameters: see Note Residual)

B.2.6 Process definition to achieve results of type "deviation"

The reference signal (**R**; see clause B.2.3) and the signal under Test (Z; see subclause B.2.2) are varied with respect to the parameters mentioned in clause B.2.5 under "results of type deviation" in order to achieve best fit. Best fit is achieved when the RMS difference value between the varied signal under test and the varied reference signal is an absolute minimum.

Overview:

 $-FCT \left[Z(\tilde{f}, \tilde{t}, \tilde{\varphi}, g_1, g_2, ..., g_{synch}) - R(f, t, \varphi, \tilde{g}_1, \tilde{g}_2, ..., \tilde{g}_{synch}) \right] = Minimum !$

Z: Signal under test.

R: Reference signal,

with frequency f, the timing t, the phase φ , gain of code1 (g₁), gain of code2 (g₂) etc, and the gain of the synch channelg_{synch}. See Note: Power Step.

The parameters marked with a tilde in Z and R are varied in order to achieve a best fit.

Detailed formula: see Note: Formula for the minimum process.

The varied reference signal, after the best fit process, will be called R'.

The varied signal under test, after the best fit process, will be called Z'.

The varying parameters, leading to **R' and Z'** represent directly the wanted results of type "deviation". Thesemeasurement parameters are expressed as deviation from the reference value with units same as the reference value.

In case of multi code, the type "deviation" parameters (frequency, timing and (RF phase)) are varied commonly for allcodes such that the process returns one frequency deviation, one timing deviation, (one RF phase deviation).

(These parameters are <u>not</u> varied on the individual codes signals such that the process would return kr frequencyerrors.... (kr: number of codes in the reference signal)). The only type "deviation" parameters varied individually are the code domain gain factors (g1, g2, ...).

B.2.6.1 Decision Point Power

The mean square value of the signal under test, sampled at the best estimate of the of Intersymbol Interference freepoints using the process defined in subclause 2.5, is referred to the *Decision Point Power* (DPP):

 $-DPP = mean(|Z|^2)$

B.2.6.2 Code-Domain Power

The samples, Z', are separated into symbol intervals to create ns time sequential vectors **z** with sf complex samples comprising one symbol interval. The *Code Domain Power* is calculated according to the following steps:

1) Take the vectors z defined above.

- 2) To achieve meaningful results it is necessary to descramble z, leading to z' (see Note1: Scrambling code)
- 3) Take the orthogonal vectors of the channelization code set € (all codes belonging to one spreading factor) as defined in TS 25.213 and TS 25.223 (range +1, -1), and normalize by the norm of the vectors to produce Cnorm=C/sqrt(sf). (see Note: Symbol length)
- 4) Calculate the inner product of z' with Cnorm.. Do this for all symbols of the measurement interval and for all codes in the code space.

This gives an array of format k x ns, each value representing a specific symbol and a specific code, which can be exploited in a variety of ways.

- k: total number of codes in the code space-

- 5) Calculate k mean square values, each mean square value unifying ns symbols within one code. (These values can be called "*Absolute CodeDomainPower* (CDP)" [Volt²].) The sum of the k values of CDP is equal to DPP.
- 6) Normalize by the decision point power to obtain

Relative CodeDomain Power = <u>Absolute CodeDomainPower</u> DecisionPointPower

B.2.7 Process definition to achieve results of type "residual"

The difference between the varied reference signal (**R**'; see clause B.2.6.) and the varied TX signal under test (**Z**'; see clause B.2.6) is the error vector **E** versus time:

 $-\mathbf{E} = \mathbf{Z} - \mathbf{R'}.$

Depending on the parameter to be evaluated, it is appropriate to represent E in one of the following two different forms:

Form EVM (representing the physical error signal in the entire measurement interval)

One vector **E**, containing N = ns x sf complex samples;

ns, sf: see B.2.2

Form PCDE (derived from Form EVM by separating the samples into symbol intervals)

ns time sequential vectors e with sf complex samples comprising one symbol interval.

E gives results of type "residual" applying the two algorithms defined in clauses B 2.7.1 and B 2.7.2.

B.2.7.1 Error Vector Magnitude (EVM)

The Error Vector Magnitude EVM is calculated according to the following steps:

- 1) Take the error vector **E** defined in clause B.2.7 (Form EVM) and calculate the RMS value of **E**; the result will be called RMS(**E**).
- 2) Take the varied reference vector **R'** defined in clause B.2.6 and calculate the RMS value of **R'**; the result will be called RMS(**R'**).
- 3) Calculate EVM according to:

 $\frac{\text{EVM} = \frac{\text{RMS}(\text{E})}{\text{RMS}(\text{R}')} \times 100\%$ (here, EVM is relative and expressed in %)

(see Note: Formula for EVM)

B.2.7.2 Peak Code Domain Error (PCDE)

The Peak Code Domain Error is calculated according to the following steps:

- 1) Take the error vectors e defined in clause B.2.7 (Form PCDE)-
- 2) To achieve meaningful results it is necessary to descramble e, leading to e' (see Note1: Scrambling code)
- 3) Take the orthogonal vectors of the channelisation code set C (all codes belonging to one spreading factor) as defined in TS 25.213 and TS 25.223 (range +1, 1). (see Note: Symbol length) and normalize by the norm of the vectors to produce Cnorm=C/sqrt(sf). (see Note: Symbol length)
- 4) Calculate the inner product of **e'** with **Cnorm**. Do this for all symbols of the measurement interval and for allcodes in the code space.

This gives an array of format k x ns, each value representing an error vector representing a specific symbol and a specific code, which can be exploited in a variety of ways.

k: total number of codes in the code space

ns: number of symbols in the measurement interval

- 5) Calculate k RMS values, each RMS value unifying ns symbols within one code. (These values can be called "*Absolute CodeEVMs*" [Volt].)
- 6) Find the peak value among the k "*Absolute CodeEVMs*". (This value can be called "*Absolute PeakCodeEVM*" [Volt].)
- 7) Calculate PCDE according to:

<u>-10*lg</u> -dB-- (a relative value in dB).

 $(\text{RMS}(\mathbf{R'}))^2$

(see Note2: Scrambling code)

(see Note IQ)

B.3 Notes

Note: Symbol length)-

A general code multiplexed signal is multicode and multirate. In order to avoid unnecessary complexity, the measurement applications use a unique symbol length, corresponding to a spreading factor, regardless of the really intended spreading factor. Nevertheless the complexity with a multicode / multirate signal can be mastered by introducing appropriate definitions.

Note: Deviation)

- It is conceivable to regard more parameters as type "deviation" e.g. Chip frequency and RF phase.
- As chip frequency and RF frequency are linked together by a statement in the core specifications [1] it is sufficient to process RF frequency only.
- A parameter RF-phase must be varied within the best fit process (B 2.6.). Although necessary, this parametervariation doesn't describe any error, as the modulation schemes used in the system don't depend on an absolute RF phase.

Note: Residual)

It is conceivable to regard more parameters as type ,,residual" e.g. IQ origin offset. As it is not the intention of the test to separate for different error sources, but to quantify the quality of the signal, all such parameters are not extracted by the best fit process, instead remain part of EVM and PCDE.

Note 1: Scrambling Code)

In general a TX signal under test can use more than one scrambling code. Note that PCDE is processed regarding the unused channelisation – codes as well. In order to know which scrambling code shall be applied on unused channelisation – codes, it is necessary to restrict the test conditions: TX signal under test shall use exactly one scrambling code.

Note 2: Scrambling Code)

To interpret the measurement results in practice it should be kept in mind that erroneous code power on unused codes is generally de scrambled differently under test conditions and under real life conditions, whereas erroneous code power on used codes is generally de scrambled equally under test conditions and under real life conditions and under real life conditions. It might be indicated if a used or unused code hits PCDE.

Note IQ)

— As in FDD/uplink each code can be used twice, on the I and on the Q channel, the measurement result may indicate separate values of CDP or PCDE for I and Q on which channel (I or Q) they occur.

Note: Fomula for the minimum process

$$-L\left(\Delta \tilde{f},\Delta \tilde{t},\Delta \tilde{\varphi},\Delta \tilde{g}_{c},\ldots\right) = \sum_{\nu=0}^{N-1} \left|Z\left(\nu\right) - R\left(\nu\right)\right|^{2}$$

Legend:

L: the function to be minimised

The parameters to be varied in order to minimize are:

 Δf : the RF frequency offset

 $\Delta \tilde{t}$: the timing offset

 $\Delta \widetilde{\varphi}$: the phase offset

 $\Delta \widetilde{g}_{c}$...code power offsets (one offset for each code)

Z(v): Samples of the signal under Test

R(v): Samples of the reference signal

 $\sum_{\nu = 0}^{N - 1}$

---: counting index ν starting at the beginning of the measurement interval and ending at its end.

N = No of chips during the measurement interval.

Z(v): Samples of the signal under Test. It is modelled as a sequence of complex baseband samples $Z(\gamma)$ with a time shift Δt , a frequency offset Δf , a phase offset $\Delta \phi$, the latter three with respect to the reference signal.

$$Z(v) = Z(v - \Delta \tilde{t}) * e^{-j2\pi\Delta \tilde{f}v} * e^{-j\Delta \tilde{\varphi}}$$

R(v): Samples of the reference signal:

$$R(\nu) = \sum_{c=1}^{No.of} (g_c + \Delta \tilde{g}_c) * Chip_c(\nu)$$

g : nominal gain of the code channel

 $\Delta \tilde{g}$: The gain offset to be varied in the minimum process

Chip(v) is the chipsequence of the code channel

Indices at g, Δg and Chip:

The index indicates the code channel: c = 1,2,... No of code channels

Range for Chip_e: +1, 1

Note: Formula for EVM

Error! No text of specified style in document.

$$EVM = \sqrt{\frac{\sum_{\nu=0}^{N-1} |Z'(\gamma) - R'(\gamma)|^2}{\sum_{\nu=0}^{N-1} |R'(\gamma)|^2} * 100\%}$$

 $Z'(\gamma)$, $R'(\gamma)$ are the varied measured and reference signals.

Annex C (normative): Measurement channels

C.1 General

The measurement channels in this annex are defined to derive the requirements in clauses 5, 6 and 7. The measurement channels represent example configuration of radio access bearers for different data rates.

The measurement channel for 12,2 kbps shall be supported by any UE both in up- and downlink. Support for other measurement channels is depending on the UE Radio Access capabilities.

C.2 UL reference measurement channel

C.2.1 UL reference measurement channel (12,2 kbps)

The parameters for the 12,2 kbps UL reference measurement channel are specified in table C.2.1.1, table C 2.1.2, table C 2.1.3 and table C.2.1.4. The channel coding for information is shown in figure C.2.1. When the UE test loop function is needed, the UE test loop mode 2 shall be used.

Table C.2.1.1: UL reference measurement channel physical parameters (12,2 kbps)

Parameter	Level	Unit
Information bit rate	12,2	kbps
DPDCH	60	kbps
DPCCH	15	kbps
DPCCH Slot Format #i	θ	-
DPCCH/DPDCH power ratio	-5,46	dB
TECI	On	-
Repetition	23	%
NOTE: Slot Format #2 is used for closed loop tests in clause 7.6.2. Slot Format #2 and		
#5 are used for site selection diversity transmission tests in subclause 7.6.3.		

Higher Layer	RAB/S	ignalling RB	RAB	SRB
RLC	Logical channel type		DTCH	DCCH
	RLC mode		TM	UM/AM
	Payload sizes, bit		244	88/80
	Max data rate, bps		12200	2200/2000
	PDU header, bit		N/A	8/16
	TrD PDU header, bit		θ	N/A
MAC	MAC header, bit		θ	4
	MAC multiplexing		N/A	Yes
Layer 1	TrCH type		DCH	DCH
	Transport Channel Id	entity	4	5
	TB sizes, bit		244	100
	TFS TF0, bits		0*244	0*100
	TF1, bits		<u>1*244</u>	1*100
	TTI, ms		20	40
	Coding type		Convolution Coding	Convolution Coding
	Coding Rate		1/3	1/3
	CRC, bit		16	12
	Max number of bits/T	TI after channel coding	804	360
	Uplink: Max number (rate matching	of bits/radio frame before-	4 02	90
	RM attribute		256	256

Table C.2.1.2: UL reference measurement channel using RLC-TM for DTCH, transport channel parameters (12.2 kbps)

Table C.2.1.3: UL reference measurement channel using RLC-AM for DTCH, transport channel parameters (12.2 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	AM	UM/AM
	Payload sizes, bit	228	88/80
	Max data rate, bps	11400	2200/2000
	PDU header, bit	16	8/16
	TrD PDU header, bit	N/A	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	4	5
	TB sizes, bit	2 44	100
	TFS TF0, bits	0*244	0*100
	TF1, bits	1*244	1*100
	TTI, ms	20	40
	Coding type	Convolution Coding	Convolution Coding
	Coding Rate	1/3	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	804	360
	Uplink: Max number of bits/radio frame before	402	90
	rate matching		
	RM attribute	256	256

Table C.2.1.4: UL reference measurement channel, TFCS (12.2 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

NOTE: The TFCs except for (TF1, TF1) are belonging to minimum set of TFCs.

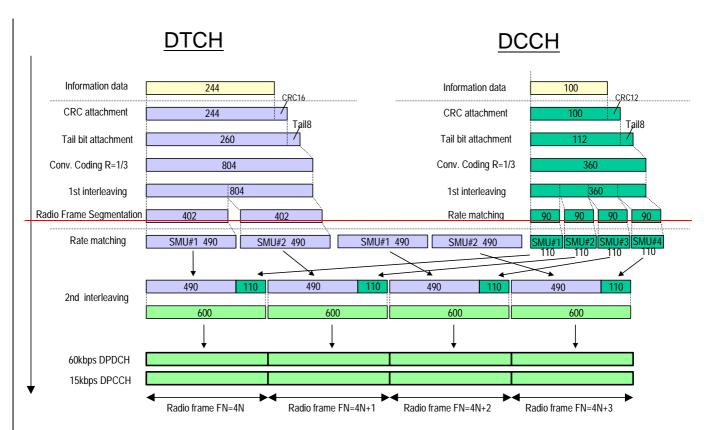


Figure C.2.1 (Informative): Channel coding of UL reference measurement channel (12,2 kbps)

C.2.2 UL reference measurement channel (64 kbps)

The parameters for the 64 kbps UL reference measurement channel are specified in table C.2.2.1, table C.2.2.2, table C.2.2.3 and table C.2.2.4. The channel coding for information is shown in figure C.2.2. When the UE test loop functionis needed, the UE test loop mode 2 shall be used. This measurement channel is not currently used in the presentdocument but can be used for future requirements.

Parameter	Level	Unit
Information bit rate	64	kbps
DPDCH	240	kbps
DPCCH	15	kbps
DPCCH Slot Format #i	θ	_
DPCCH/DPDCH	- 9,54	d₽
TFCI	On	-
Repetition	18	%

Table C.2.2.1: UL reference measurement channel (64 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	TM	UM/AM
	Payload sizes, bit	1280	88/80
	Max data rate, bps	64000	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	θ	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	1	5
	TB sizes, bit	1280	100
	TFS TF0, bits	0*1280	0*100
	TF1, bits	1*1280	1*100
	TTI, ms	20	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	3900	360
	Uplink: Max number of bits/radio frame before- rate matching	1950	90
	RM attribute	256	256

Table C.2.2.2: UL reference measurement channel using RLC-TM for DTCH, transport channel parameters (64 kbps)

Table C.2.2.3: UL reference measurement channel using RLC-AM for DTCH, transport channel parameters (64 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	AM	UM/AM
	Payload sizes, bit	1264	88/80
	Max data rate, bps	63200	2200/2000
	PDU header, bit	16	8/16
	TrD PDU header, bit	N/A	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	4	5
	TB sizes, bit	1280	100
	TES TEO, bits	0*1280	0*100
	TF1, bits	1*1280	1*100
	TTI, ms	20	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	3900	360
	Uplink: Max number of bits/radio frame before-	1950	90
	rate matching		
	RM attribute	256	256

Table C.2.2.4: UL reference measurement channel, TFCS (64 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

NOTE: The TFCs except for (TF1, TF1) are belonging to minimum set of TFCs.

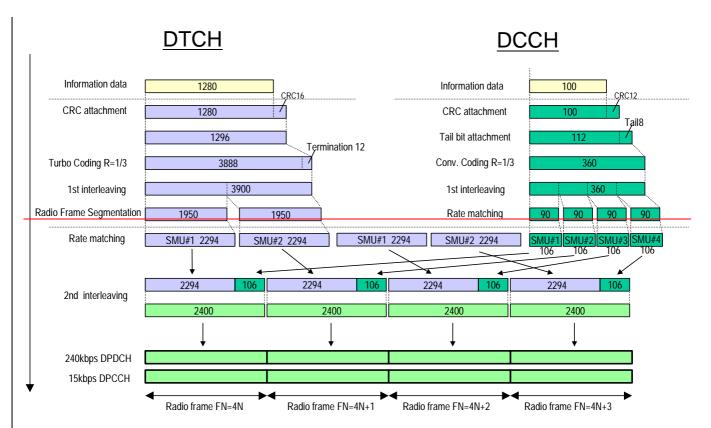


Figure C.2.2 (Informative): Channel coding of UL reference measurement channel (64 kbps)

C.2.3 UL reference measurement channel (144 kbps)

The parameters for the 144 kbps UL reference measurement channel are specified in table C.2.3.1, table C.2.3.2, table C.2.3.3 and table C.2.3.4. The channel coding for information is shown in figure C.2.3. When the UE test loop functionis needed, the UE test loop mode 2 shall be used. This measurement channel is not currently used in the presentdocument but can be used for future requirements.

Parameter	Level	Unit
Information bit rate	144	kbps
DPDCH	480	kbps
DPCCH	15	kbps
DPCCH Slot Format #i	θ	-
DPCCH/DPDCH power ratio	-11,48	dB
TFCI	On	-
Repetition	8	%

Table C.2.3.1: UL reference measurement channel (144 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC-mode	TM	UM/AM
	Payload sizes, bit	2880	88/80
	Max data rate, bps	144000	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	θ	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	1	5
	TB sizes, bit	2880	100
	TFS TF0, bits	0*2880	0*100
	TF1, bits	<u>1*2880</u>	1*100
	TTI, ms	20	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	8700	360
	Uplink: Max number of bits/radio frame before	4350	90
	rate matching		
1	RM attribute	256	256

Table C.2.3.2: UL reference measurement channel using RLC-TM for DTCH, transport channel parameters (144 kbps)

Table C.2.3.3: UL reference measurement channel using RLC-AM for DTCH, transport channel parameters (144 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	AM	UM/AM
	Payload sizes, bit	2864	88/80
	Max data rate, bps	143200	2200/2000
	PDU header, bit	16	8/16
	TrD PDU header, bit	N/A	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	4	5
	TB sizes, bit	2880	100
	TFS TF0, bits	0*2880	0*100
	TF1, bits	<u>1*2880</u>	1*100
	TTI, ms	20	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	8700	360
	Uplink: Max number of bits/radio frame before	4350	90
	rate matching		
	RM attribute	256	256

Table C.2.3.4: UL reference measurement channel, TFCS (144 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

NOTE: The TFCs except for (TF1, TF1) are belonging to minimum set of TFCs.

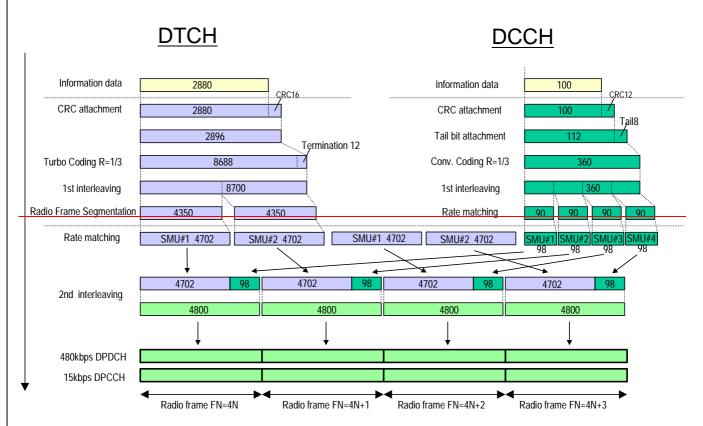


Figure C.2.3 (Informative): Channel coding of UL reference measurement channel (144 kbps)

C.2.4 UL reference measurement channel (384 kbps)

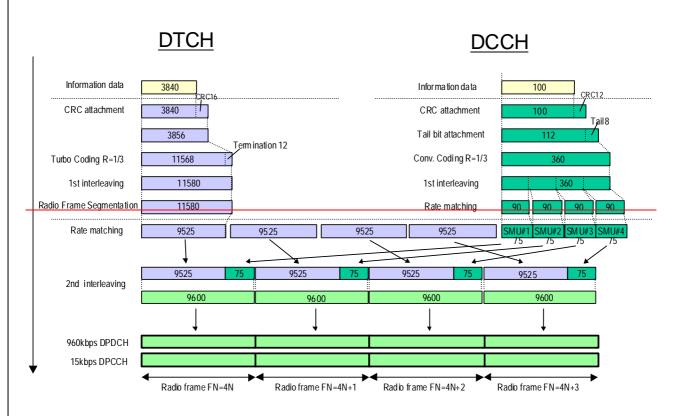
The parameters for the 384 kbps UL reference measurement channel are specified in table C.2.4.1, table C.2.4.2, table C.2.4.3 and table C.2.4.4. The channel coding for information is shown in figure C.2.4. When the UE test loop function is needed, the UE test loop mode 2 shall be used. This measurement channel is not currently used in the present document but can be used for future requirements.

Parameter	Level	Unit
Information bit rate	384	kbps
DPDCH	960	kbps
DPCCH	15	kbps
DPCCH Slot Format #i	θ	-
DPCCH/DPDCH power ratio	-11,48	d₿
TECI	On	-
Puncturing	18	%

Table C.2.4.1: UL reference measurement channel (384 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	TM	UM/AM
	Payload sizes, bit	3840	88/80
	Max data rate, bps	384000	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	θ	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	4	5
	TB sizes, bit	3840	100
	TFS TF0, bits	0*3840	0*100
	TF1, bits	1*3840	1*100
	TTI, ms	10	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	11580	360
	Uplink: Max number of bits/radio frame before- rate matching	11580	90
	RM attribute	256	256

Table C.2.4.2: UL reference measurement channel using RLC-TM for DTCH, transport channelparameters (384 kbps)


Table C.2.4.3: UL reference measurement channel using RLC-AM for DTCH, transport channelparameters (384 kbps)

Higher	RAB/Signalling RB	RAB	SRB
Layer RLC	Logical channel type	DTCH	DCCH
	RLC mode	AM	UM/AM
	Payload sizes, bit	3824	88/80
	Max data rate, bps	382400	2200/2000
	PDU header, bit	16	8/16
	TrD PDU header, bit	N/A	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	4	5
	TB sizes, bit	3840	100
	TFS TF0, bits	0*3840	0*100
	TF1, bits	1*3840	1*100
	TTI, ms	10	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	11580	360
	Uplink: Max number of bits/radio frame before-	11580	90
	rate matching		
	RM attribute	256	256

Table C.2.4.4: UL reference measurement channel, TFCS (384 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

NOTE: The TFCs except for (TF1, TF1) are belonging to minimum set of TFCs.

Figure C.2.4 (informative): Channel coding of UL reference measurement channel (384 kbps)

C.2.5 UL reference measurement channel (768 kbps)

The parameters for the UL measurement channel for 768 kbps are specified in table C.2.5.1, table C.2.5.2, table C.2.5.3and table C.2.5.4. When the UE test loop function is needed, the UE test loop mode 2 shall be used.

Table C.2.5.1: UL reference measurement channel, physical parameters (7	6 <mark>8 kbps)</mark>
---	------------------------

Parameter	Level	Unit
Information bit rate	2*384	kbps
DPDCH ₁	960	kbps
DPDCH ₂	960	kbps
DPCCH	15	kbps
DPCCH Slot Format #i	θ	-
DPCCH/DPDCH power ratio	-11.48	dB
TECI	On	-
Puncturing	18	%

3GPP

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	TM	UM/AM
	Payload sizes, bit	7680	88/80
	Max data rate, bps	768000	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	θ	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	4	5
	TB sizes, bit	3840	100
	TFS TF0, bits	0*3840	0*100
	TF1, bits	2*3840	1*100
	TTI, ms	10	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	23160	360
	Uplink: Max number of bits/radio frame before- rate matching	23160	90
	RM attribute	256	256

Table C.2.5.2: UL reference measurement channel using RLC-TM for DTCH, transport channelparameters (768 kbps)

Table C.2.5.3: UL reference measurement channel using RLC-AM for DTCH, transport channelparameters (768 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	ŦM	UM/AM
	Payload sizes, bit	7664	88/80
	Max data rate, bps	766400	2200/2000
	PDU header, bit	16	8/16
	TrD PDU header, bit	N/A	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
-	Transport Channel Identity	4	5
	TB sizes, bit	3840	100
	TFS TF0, bits	0*3840	0*100
	TF1, bits	2*3840	1*100
	TTI, ms	10	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	23160	360
	Uplink: Max number of bits/radio frame before-	23160	90
	rate matching		
	RM attribute	256	256

Table C.2.5.4: UL reference measurement channel, TFCS (768 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

NOTE: The TFCs except for (TF1, TF1) are belonging to minimum set of TFCs.

C.3 DL reference measurement channel

C.3.1 DL reference measurement channel (12.2 kbps)

The parameters for the 12,2 kbps DL reference measurement channel are specified in table C.3.1.1, table C.3.1.2, table C.3.1.3 and table C.3.1.4. The channel coding is detailed in figure C.3.1. For the RLC configuration of AM DCCHs-Timer_STATUS_Periodic shall not be set in RRC CONNECTION SETUP message used in test procedure for RF testas defined in TS34.108 clause 7.3. This is to prevent unexpected DCHs from being transmitted through such RLCentities when the timer has expired in order to sure that the required TFC from the minimum set of TFCs cancontinuously convey a DCH for DTCH during the test.

Table C.3.1.1: DL reference measurement channel (12.2 kbps)

Parameter	Level	Unit
Information bit rate	12.2	kbps
DPCH	30	ksps
Slot Format #I	44	-
TECI	On	
Power offsets PO1, PO2 and PO3	θ	dB
DTX position	Fixed	-

Table C.3.1.2: DL reference measurement channel using RLC-TM for DTCH, transport channel parameters (12.2 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	TM	UM/AM
	Payload sizes, bit	244	88/80
	Max data rate, bps	12200	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	θ	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	6	10
	TB sizes, bit	2 44	100
	TFS TF0, bits	0*244	0*100
	TF1, bits	1*244	1*100
	TTI, ms	20	40
	Coding type	Convolution Coding	Convolution Coding
	Coding Rate	1/3	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	804	360
	RM attribute	256	256

Table C.3.1.3: DL reference measurement channel using RLC-AM for DTCH, transport channel parameters (12.2 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	AM	UM/AM
	Payload sizes, bit	228	88/80
	Max data rate, bps	11400	2200/2000
	PDU header, bit	16	8/16
	TrD PDU header, bit	N/A	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	6	10
	TB sizes, bit	2 44	100
	TFS TF0, bits	0*244	0*100
	TF1, bits	1*244	1*100
	TTI, ms	20	40
	Coding type	Convolution Coding	Convolution Coding
	Coding Rate	1/3	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	804	360
	RM attribute	256	256

Table C.3.1.4: DL reference measurement channel, TFCS (12.2 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

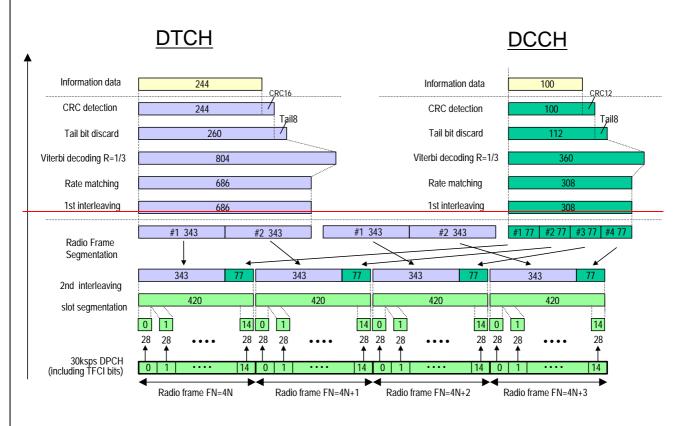


Figure C.3.1 (informative): Channel coding of DL reference measurement channel (12,2 kbps)

C.3.2 DL reference measurement channel (64 kbps)

The parameters for the DL reference measurement channel for 64 kbps are specified in table C.3.2.1, table C.3.2.2, table C.3.2.3 and table C.3.2.4. The channel coding is detailed in figure C.3.2. For the RLC configuration of AM DCCHs-Timer_STATUS_Periodic shall not be set in RRC CONNECTION SETUP message used in test procedure for RF testas defined in TS34.108 clause 7.3. This is to prevent unexpected DCHs from being transmitted through such RLCentities when the timer has expired in order to sure that the required TFC from the minimum set of TFCs cancontinuously convey a DCH for DTCH during the test.

Table C.3.2.1: DL reference measurement channel (64 kbps)

Parameter	Level	Unit
Information bit rate	64	kbps
DPCH	120	ksps
Slot Format #i	13	-
TECI	On	-
Power offsets PO1, PO2 and PO3	θ	dB
DTX position	Fixed	-

Table C.3.2.2: DL reference measurement channel using RLC-TM for DTCH, transport channel parameters (64 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	TM	UM/AM
	Payload sizes, bit	1280	88/80
	Max data rate, bps	64000	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	θ	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	6	10
	TB sizes, bit	1280	100
	TFS TF0, bits	0*1280	0*100
	TF1, bits	1*1280	1*100
	TTI, ms	20	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	3900	360
	RM attribute	256	256

Table C.3.2.3: DL reference measurement channel using RLC-AM for DTCH, transport channelparameters (64 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC-mode	AM	UM/AM
	Payload sizes, bit	1264	88/80
	Max data rate, bps	63200	2200/2000
	PDU header, bit	16	8/16
	TrD PDU header, bit	N/A	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	¢	10
	TB sizes, bit	1280	100
	TFS TF0, bits	0*1280	0*100
	TF1, bits	1*1280	1*100
	TTI, ms	20	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
1	Max number of bits/TTI after channel coding	3900	360
	RM attribute	256	256

Table C.3.2.4: DL reference measurement channel, TFCS (64 kbps)

TFCS size	4
TECS	(DTCH, DCCH)= (TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

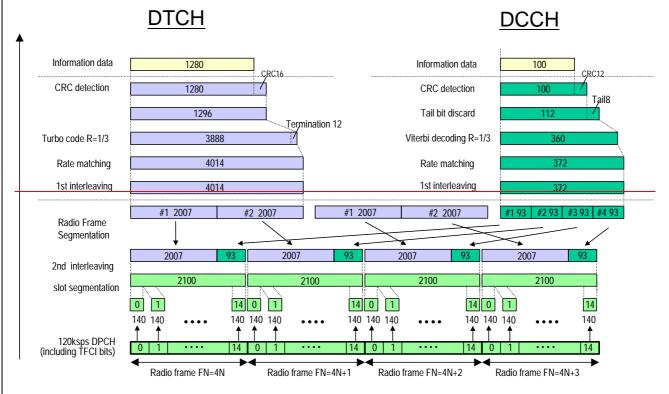


Figure C.3.2 (informative): Channel coding of DL reference measurement channel (64 kbps)

C.3.3 DL reference measurement channel (144 kbps)

The parameters for the DL reference measurement channel for 144 kbps are specified in table C.3.3.1, table C.3.3.2, table C.3.3.3 and table C.3.3.4. The channel coding is detailed in figure C.3.3. For the RLC configuration of AM DCCHs Timer_STATUS_Periodic shall not be set in RRC CONNECTION SETUP message used in test procedure for RF test as defined in TS34.108 clause 7.3. This is to prevent unexpected DCHs from being transmitted through such RLC entities when the timer has expired in order to sure that the required TFC from the minimum set of TFCs can continuously convey a DCH for DTCH during the test.

Table C.3.3.1: DL reference measurement channel (144kbps)

Parameter	Level	Unit
Information bit rate	144	kbps
DPCH	240	ksps
Slot Format #i	14	-
TECI	On	
Power offsets PO1, PO2 and PO3	θ	dB
DTX position	Fixed	_

Table C.3.3.2: DL reference measurement channel using RLC-TM for DTCH, transport channel parameters (144 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	TM	UM/AM
	Payload sizes, bit	2880	88/80
	Max data rate, bps	144000	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	θ	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	6	10
	TB sizes, bit	2880	100
	TFS TF0, bits	0*2880	0*100
	TF1, bits	1*2880	1*100
	TTI, ms	20	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	8700	360
	RM attribute	256	256

Table C.3.3.3: DL reference measurement channel using RLC-AM for DTCH, transport channel parameters (144 kbps)

Higher Layer		RAB/Signalling RB	RAB	SRB
RLC	Logical ch	hannel type	DTCH	DCCH
	RLC mod	0	AM	UM/AM
	Payload s	iizes, bit	2864	88/80
	Max data	rate, bps	143200	2200/2000
	PDU head	der, bit	16	8/16
	TrD PDU	header, bit	N/A	N/A
MAC	MAC hea	der, bit	θ	4
	MAC mult	liplexing	N/A	Yes
Layer 1	TrCH type)	DCH	DCH
		Channel Identity	6	10
	TB sizes,		2880	100
	TFS	TF0, bits	0*2880	0*100
		TF1, bits	1*2880	1*100
	TTI, ms		20	40
	Coding ty	po	Turbo Coding	Convolution Coding
	Coding Rate		N/A	1/3
	CRC, bit		16	12
	Max num	per of bits/TTI after channel coding	8700	360
	RM attribu	ute	256	256

Table C.3.3.4: DL reference measurement channel, TFCS (144 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)= (TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

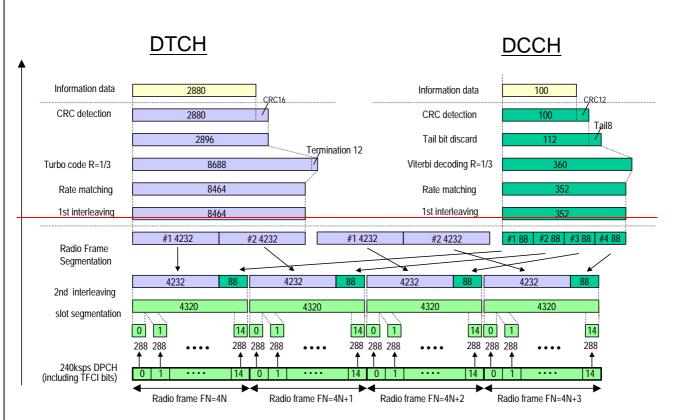


Figure C.3.3 (informative): Channel coding of DL reference measurement channel (144 kbps)

C.3.4 DL reference measurement channel (384 kbps)

The parameters for the DL reference measurement channel for 384 kbps are specified in table C.3.4.1, table C.3.4.2, table C.3.4.3 and table C.3.4.4. The channel coding is shown for information in figure C3.4. For the RLC configuration of AM DCCHs Timer_STATUS_Periodic shall not be set in RRC CONNECTION SETUP message used in test-procedure for RF test as defined in TS34.108 clause 7.3. This is to prevent unexpected DCHs from being transmitted through such RLC entities when the timer has expired in order to sure that the required TFC from the minimum set of TFCs can continuously convey a DCH for DTCH during the test.

Table C.3.4.1: DL reference measurement channel, physical parameters (384 kbps)

Parameter	Level	Unit
Information bit rate	384	kbps
DPCH-	4 80	ksps
Slot Format #i	15	-
TECI	On	-
Power offsets PO1, PO2 and PO3	θ	dB
DTX position	Fixed	-

Table C.3.4.2: DL reference measurement channel using RLC-TM for DTCH, transport channel parameters (384 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	TM	UM/AM
	Payload sizes, bit	3840	88/80
	Max data rate, bps	384000	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	θ	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	6	10
	TB sizes, bit	3840	100
	TFS TF0, bits	0*3840	0*100
	TF1, bits	1*3840	1*100
	TTI, ms	10	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	11580	360
	RM attribute	256	256

Table C.3.4.3: DL reference measurement channel using RLC-AM for DTCH, transport channel parameters (384 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	AM	UM/AM
	Payload sizes, bit	3824	88/80
	Max data rate, bps	382400	2200/2000
	PDU header, bit	16	8/16
	TrD PDU header, bit	N/A	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	6	10
	TB sizes, bit	3840	100
	TFS TF0, bits	0*3840	0*100
	TF1, bits	1*3840	1*100
	TTI, ms	10	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	11580	360
	RM attribute	256	256

Table C.3.4.4: DL reference measurement channel, TFCS (384 kbps)

TFCS size	4
TECS	(DTCH, DCCH)= (TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

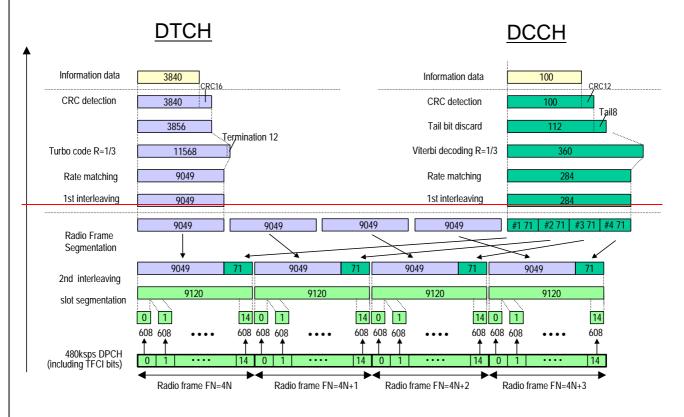


Figure C.3.4 (informative): Channel coding of DL reference measurement channel (384 kbps)

C.4 Reference measurement channel for BTFD performance requirements

C.4.1 UL reference measurement channel for BTFD performance requirements

The parameters for UL reference measurement channel for BTFD are specified in table C.4.1.1, table C.4.1.2, table C.4.1.3 and table C.4.1.4.

Table C.4.1.1: UL reference measurement channel physical parameters for BTFD

Parameter	Level	Unit
Information bit rate	12.8k, 10.8k, 8.55k, 8.0k,	kbps
	7.3k, 6.5k, 5.75k, 5.35k,	
	2.55k	
DPCCH-	15	kbps
DPCCH Slot Format #i	θ	-
DPCCH/DPDCH power ratio	-5.46 (12.8k - 7.3k)	d₿
	-2.69 (6.5k – 2.55k)	
TFCI	On	-
Puncturing Limit	100	%

Table C.4.1.2: UL reference measurement channel, transport channel parameters for SRB

Higher Layer	RAB/Signalling RB		SRB			
RLC	Logical channel type		DCCH			
	RLC mod		UM/AM			
	Payload s	izes, bit	88/80			
	Max data	rate, bps	2200/2000			
	PDU head	ler, bit	8/16			
	TrD PDU	header, bit	N/A			
MAC	MAC hear	der, bit	4			
	MAC mult	iplexing	Yes			
Layer 1	TrCH type		DCH			
	Transport	Channel Identity	10			
	TB sizes,	bit	100			
	TFS TF0, bits		0*100			
	TF1, bits		<u>1*100</u>			
	TTI, ms		40			
	Coding ty		Convolution Coding			
	Coding R	ate	1/3			
	CRC, bit Max number of bits/TTI after- channel coding		12			
			360			
		ax number of bits/radio-	90			
		ore rate matching				
	RM attribu	.te	256			

Higher	RAB/Signalling	- 12.8k /10.8k/8.55k/8.0k/7.3k/6.5k/5.75k/5.35k/2.55k
Layer	RB	
RLC	Logical channel	DTCH
	type	
	RLC mode	TM
	Payload sizes, bit	
	Max data rate, bp	
	PDU header, bit	N/A
	TrD PDU header,	- θ
	bit	
MAC	MAC header, bit	θ
	MAC multiplexing	
Layer 1	TrCH type	DCH
	Transport Channe	}
	Identity	
	TB sizes, bit	256, 216, 171, 160, 146, 130, 115, 107, 51,12
	TFS TFO bi	
	TF1 bi	· · · · · · · · · · · · · · · · · · ·
	TF2 b i	
	TF3 bi	
	TF4 b i	
	TF5 b i	
	TF6 b i	
	TF7 b i	
	TF8 b i	
	TF9 bi	1x51
	TF10-	1x12
	bit	
	TTI, ms	20
	Coding type	00
	Coding Rate	1/3
	CRC, bit	θ
	RM attribute	256

Table C.4.1.3: UL reference measurement channel using RLC-TM for DTCH, transport channelparameters

Table C.4.1.4: UL reference measurement channel, TFCS

TFCS size	22
TECS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF2, TF0), (TF3, TF0), (TF4, TF0), (TF5, TF0), (TF6, TF0), (TF7, TF0),
	(TF8, TF0), (TF9, TF0), (TF10, TF0), (TF0, TF1), (TF1, TF1), (TF2, TF1), (TF3, TF1), (TF4,
	TF1), (TF5, TF1), (TF6, TF1), (TF7, TF1), (TF8, TF1), (TF9, TF1), (TF10, TF1)

NOTE: The TFCs except for (TF1, TF1), (TF2, TF1), (TF3, TF1), (TF4, TF1), (TF5, TF1), (TF6, TF1), (TF7, TF1), (TF8, TF1), (TF9, TF1) and (TF10, TF1) are belonging to minimum set of TFCs.

C.4.2 DL reference measurement channel for BTFD performance requirements

The parameters for DL reference measurement channel for BTFD are specified in table C.4.2.1, table C.4.2.2, table C.4.2.3 and table C.4.2.4. The channel coding for information is shown in figures C.4.1, C.4.2, and C.4.3. For the RLC configuration of AM DCCHs Timer_STATUS_Periodic shall not be set in RRC CONNECTION SETUP message used in test procedure for RF test as defined in TS34.108 clause 7.3. This is to prevent unexpected DCHs from being-transmitted through such RLC entities when the timer has expired in order to sure that the required TFC from theminimum set of TFCs can continuously convey a DCH for DTCH during the test.

Table C.4.2.1: DL reference measurement channel physical parameters for BTFD

Parameter	Rate 1	Rate 2	Rate 3	Unit
Information bit rate	12,2	7,95	1,95	kbps
DPCH		30		ksps
Slot Format #i	8			-
TECI	Off			-
Power offsets PO1, PO2 and PO3		dB		
DTX position	Fixed			-

Table C.4.2.2: DL reference measurement channel, transport channel parameters for SRB

Higher Layer	RAB/Signalling RB		SRB		
RLC	Logical cl	hannel type	DCCH		
	RLC mod	le	UM/AM		
	Payload e	sizes, bit	88/80		
	Max data	rate, bps	2200/2000		
	PDU hea	der, bit	8/16		
	TrD PDU	header, bit	N/A		
MAC	MAC hea	der, bit	4		
	MAC mul	tiplexing	Yes		
Layer 1	TrCH type		DCH		
		t Channel Identity	20		
	TB sizes,		100		
	TFS	TF0, bits	0*100		
		TF1, bits	1*100		
	TTI, ms	·	40		
	Coding ty	'pe	Convolution Coding		
	Coding R	ate	1/3		
	CRC, bit		12		
	Max number of bits/TTI after		360		
	channel c	xoding			
	Uplink: M	ax number of bits/radio-	90		
	frame bef	fore rate matching			
	RM attrib	ute	256		

			parametero		
Higher Layer	RAB/Signalling RB		1 2.2k/10.2k/7.95k/7.4k/6.7k/5.9k/5.15k/4.75k/1.95k		
RLC	Logical channel type		DTCH		
			TM		
	Payload	Payload sizes, bit 244, 204, 159, 148, 134, 118, 103, 95, 39			
		a rate, bps	12200		
	PDU hea		N/A		
	TrD PDU bit	Header,	θ		
MAC	MAC hea	ader, bit	θ		
	MAC mu		N/A		
Layer 1	TrCH typ	0	DCH		
	Transport Channel Identity		4		
	TB sizes	, bit	244, 204, 159, 148, 134, 118, 103, 95, 39,0		
	TES	TF0 bit	1x0		
		TF1 bit	1x2 44		
		TF2 bit	1x204		
		TF3 bit	1x159		
		TF4 bit	1x148		
		TF5 bit	1 x134		
		TF6 bit	1x118		
		TF7 bit	1x103		
		TF8 bit	1x95		
		TF9 bit	1x39		
	TTI, ms		20		
	Coding ty				
	Coding F		1/3		
	CRC, bit		θ		
	RM attrib	oute	256		

Table C.4.2.3: DL reference measurement channel using RLC-TM for DTCH, transport channelparameters

Table C.4.2.4: DL reference measurement channel, TFCS

TFCS size	20
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF2, TF0), (TF3, TF0), (TF4, TF0), (TF5, TF0), (TF6, TF0), (TF7, TF0),
	(TF8, TF0), (TF9, TF0), (TF0, TF1), (TF1, TF1), (TF2, TF1), (TF3, TF1), (TF4, TF1), (TF5, TF1),
	(TF6, TF1), (TF7, TF1), (TF8, TF1), (TF9, TF1),

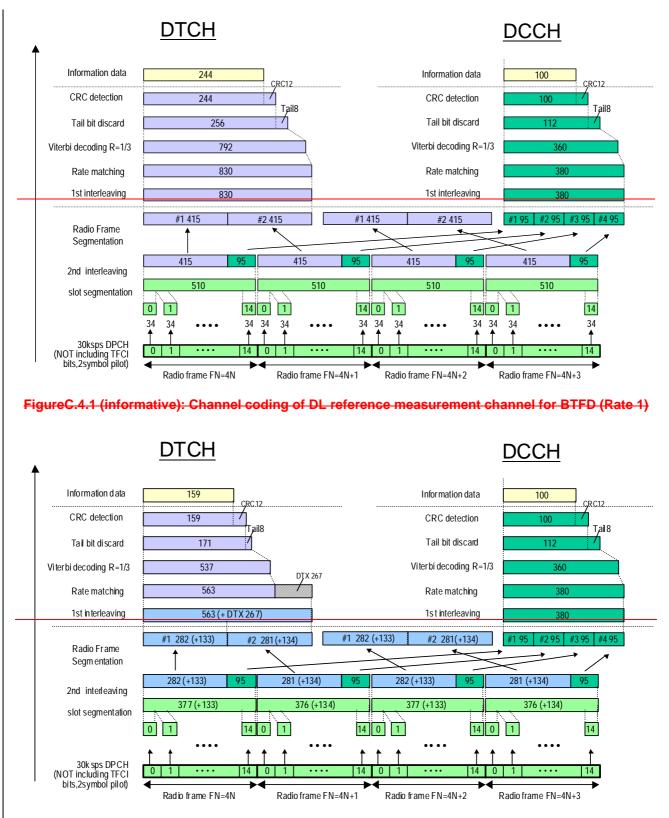


Figure C.4.2 (informative): Channel coding of DL reference measurement channel for BTFD (Rate 2)

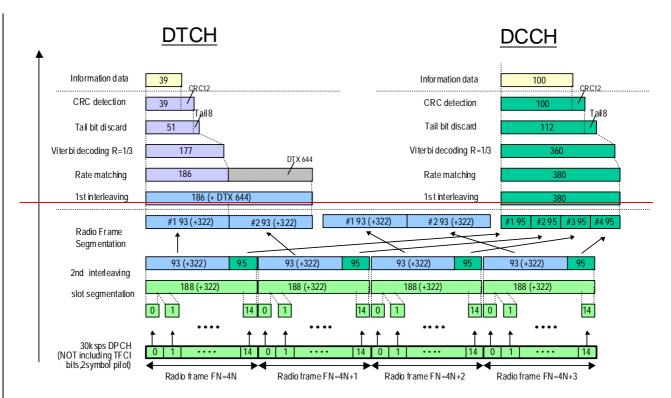


Figure C.4.3 (informative): Channel coding of DL reference measurement channel for BTFD (Rate 3)

C.5 DL reference compressed mode parameters

Parameters described in table C.5.1 are used in some test specified in TS 25.101 while parameters described in table C.5.2 are used in some tests specified in TS 25.133.

Set 1 parameters in table C.5.1 are applicable when compressed mode by spreading factor reduction is used in downlink. Set 2 parameters in table C.5.1 are applicable when compressed mode by puncturing is used in downlink.

Parameter	Set 1	Set 2	Note
TGSN (Transmission Gap Starting Slot Number)	11	11	
TGL1 (Transmission Gap Length 1)	7	7	
TGL2 (Transmission Gap Length 2)	-	-	Only one gap in use.
TGD (Transmission Gap Distance)	θ	θ	Only one gap in use.
TGPL1 (Transmission Gap Pattern Length)	4	4	
TGPL2 (Transmission Gap Pattern Length)	-	-	Only one pattern in use.
TGPRC (Transmission Gap Pattern Repetition	NA	NA	Defined by higher layers
Count)			
TGCFN (Transmission Gap Connection Frame	NA	NA	Defined by higher layers
Number):			
UL/DL compressed mode selection	DL & UL	DL & UL	2 configurations possible
			DL &UL / DL
UL compressed mode method	SF/2	SF/2	
DL compressed mode method	SF/2	Puncturing	
Downlink frame type and Slot format	11B	11A	
Scrambling code change	No	No	
RPP (Recovery period power control mode)	θ	θ	
ITP (Initial transmission power control mode)	Ð	θ	

Table C.5.1: Compressed mode reference pattern 1 parameters

Parameter	Set 1	Set 2	Set 3	Note
TGSN (Transmission Gap Starting Slot Number)	4	4	10	
TGL1 (Transmission Gap Length 1)	7	7	10	
TGL2 (Transmission Gap Length 2)	-	-	-	Only one gap in use.
TGD (Transmission Gap Distance)	θ	θ	θ	
TGPL1 (Transmission Gap Pattern Length)	3	12	11	
TGPL2 (Transmission Gap Pattern Length)	-	-	-	Only one pattern in use.
TGPRC (Transmission Gap Pattern Repetition Count)	NA	NA	NA	Defined by higher layers
TGCFN (Transmission Gap Connection Frame- Number):	NA	NA	NA	Defined by higher layers
UL/DL compressed mode selection	DL & UL	DL & UL	DL & UL	2 configurations possible. DL & UL / DL
UL compressed mode method	SF/2	SF/2	SF/2	
DL compressed mode method	SF/2	SF/2	Puncturing	
Downlink frame type and Slot format	11B	11B	11A	
Scrambling code change	No	No	No	
RPP (Recovery period power control mode)	θ	θ	θ	
ITP (Initial transmission power control mode)	θ	θ	θ	

Table C.5.2: Compressed mode reference pattern 2 parameters

Annex D (normative): Propagation Conditions

D.1 General

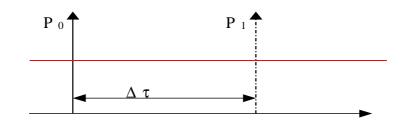
D.2 Propagation Conditions

D.2.1 Static propagation condition

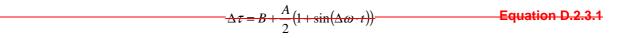
The propagation for the static performance measurement is an Additive White Gaussian Noise (AWGN) environment. No fading and multi paths exist for this propagation model.

D.2.2 Multi-path fading propagation conditions

Table D.2.2.1 shows propagation conditions that are used for the performance measurements in multi-path fadingenvironment. All taps have classical Doppler spectrum.


Table D.2.2.1: Propagation conditions for multi-path fading environments

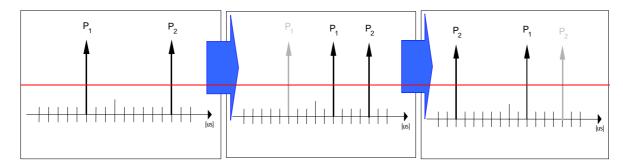
Case 1, speed 3km/h			æ 2, 3 km/h	Cas speed 12	ie 3, 0 km/h		se 4, 3 km/h		ise 5, 50 km/h		ie 6, 50 km/h
Relative	Average	Relative	Average	Relative	Average	Relative	Average	Relative	Average	Relative	Average
Delay	Power	Delay	Power	Delay	Power	Delay	Power	Delay	Power	Delay	Power
[ns]	[dB]	[ns]	[dB]	[ns]	[dB]	[ns]	[dB]	[ns]	[dB]	[ns]	[dB]
θ	θ	θ	θ	θ	θ	θ	θ	θ	θ	θ	θ
976	-10	976	0	260	-3	976	θ	976	-10	260	-3
		20000	0	521	-6					521	-6
				781	-9					781	-9


NOTE: Case 5 is only used in Requirements for support of RRM.

D.2.3 Moving propagation conditions

The dynamic propagation conditions for the test of the baseband performance are non fading channel models with twotaps. The moving propagation condition has two taps, one static, Path0, and one moving, Path1. The time difference between the two paths is according Equation D.2.3.1. The taps have equal strengths and equal phases.

Figure D.2.3.1: The moving propagation conditions



The parameters in the equation are shown in.

A	5 μs
B	1 μs
Δω	$40 - 10^{=3} - s^{=1}$

D.2.4 Birth-Death propagation conditions

The dynamic propagation conditions for the test of the baseband performance is a non fading propagation channel with two taps. The moving propagation condition has two taps, Path1 and Path2 while alternate between 'birth' and 'death'. The positions the paths appear are randomly selected with an equal probability rate and are shown in figure D.2.4.1.

Figure D.2.4.1: Birth death propagation sequence

- NOTE1: Two paths, Path1 and Path2 are randomly selected from the group [5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5] μs. The paths have equal strengths and equal phases.
- NOTE 2: After 191 ms, Path1 vanishes and reappears immediately at a new location randomly selected from the group [5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5] µs but excludes the point Path2.
- NOTE 3: After additional 191 ms, Path2 vanishes and reappears immediately at a new location randomly selected from the group [5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5] µs but excludes the point Path1.

NOTE 4: The sequence in 2) and 3) is repeated.

Annex E (normative): Downlink Physical Channels

E.1 General

This normative annex specifies the downlink physical channels that are needed for setting a connection and channels that are needed during a connection.

E.2 Connection Set-up

Table E.2.1 describes the downlink Physical Channels that are required for connection set up.

Table E.2.1: Downlink Physical Channels required for connection set-up

Physical Channel
CPICH
P-CCPCH
SCH
S-CCPCH
PICH
AICH
DPCH

E.2.1 Measurement without dedicated connection

Table E.2.2 describes the downlink Physical Channels that are required for measurement before connection. This is applicable for the clauses 5.4.1 and 5.5.2.

Table E.2.2: Downlink Physical Channels transmitted without dedicated connection

Physical Channel	Power
Îor	Test dependent power
CPICH	CPICH_Ec / lor = 3,3 dB
P-CCPCH	P-CCPCH_Ec / lor = 5,3 dB
SCH	SCH_Ec / lor = -5,3 dB
PICH	PICH_Ec / lor = 8,3 dB
S-CCPCH	S-CCPCH_Ec / lor = -10,3 dB

E.3 During connection

The following clauses describe the downlink Physical Channels that are transmitted during a connection i.e., when measurements are done. For these measurements the offset between DPCH and SCH shall be zero chips at base station-meaning that SCH is overlapping with the first symbols in DPCH in the beginning of DPCH slot structure.

E.3.1 Measurement of Tx Characteristics

Table E.3.1 is applicable for measurements on the Transmitter Characteristics (clause 5) with the exception of clauses 5.3, 5.4.1, 5.4.4 and 5.5.2.

NOTE: Applicability to clause 5.7 (Power setting in uplink compressed mode) is FFS.

Physical Channel	Power
Îor	–93 dBm / 3,84MHz
CPICH	CPICH_Ec / DPCH_Ec = 7 dB
P-CCPCH	P-CCPCH_Ec / DPCH_Ec = 5 dB
SCH	SCH_Ec / DPCH_Ec = 5 dB
PICH	PICH_Ec / DPCH_Ec = 2 dB
DPCH	–103,3 dBm / 3,84MHz

Table E.3.1: Downlink Physical Channels transmitted during a connection

E.3.2 Measurement of Rx Characteristics

Table E.3.2.1 is applicable for measurements on the Receiver Characteristics (clause 6) with the exception of clauses 6.3 and 6.8.

Table E.3.2.1: Downlink Physical Channels transmitted during a connection

Physical Channel	Power	
CPICH	CPICH_Ec / DPCH_Ec	- 7 dB
P-CCPCH	P-CCPCH_Ec/ DPCH_Ec	= 5 dB
SCH	SCH_Ec / DPCH_Ec	= 5 dB
PICH	PICH_Ec / DPCH_Ec	= 2 dB
DPCH	Test dependent power	

Table E.3.2.2 describes the downlink Physical Channels that are required for the test of Spurious Emissions (clause 6.8). The UE is in the CELL_FACH state during the measurement.

Table E.3.2.2: Downlink Physical Channels transmitted during the measurement for Rx Spurious Emissions

Physical Channel	Power
CPICH	-96 dBm / 3,84MHz
P-CCPCH	P-CCPCH_Ec/ CPICH_Ec = -2 dB
SCH	SCH_Ec / CPICH_Ec = -2 dB
PICH	PICH_Ec / CPICH_Ec = -5 dB

E.3.3 Measurement of Performance requirements

Table E.3.3 is applicable for measurements on the Performance requirements (clause 7), including clauses 6.3 and 5.4.4, excluding clauses 7.6.1 and 7.6.2.

Physical Channel	Power	Note
P-CPICH	P-CPICH_Ec/lor = -10 dB	Use of P-CPICH or S-CPICH as-
		phase reference is specified for
		each requirement and is also set by
		higher layer signalling.
S-CPICH	S-CPICH_Ec/lor = 10 dB	When S-CPICH is the phase
		reference in a test condition, the
		phase of S-CPICH shall be
		180 degrees offset from the phase
		of P-CPICH. When S-CPICH is not
		the phase reference, it is not
		transmitted.
P-CCPCH	P-CCPCH_Ec/lor = 12 dB	
SCH	SCH_Ec/lor = -12 dB	This power shall be divided equally
		between Primary and Secondary
		Synchronous channels
PICH	PICH_Ec/lor = -15 dB	
DPCH	Test dependent power	When S-CPICH is the phase
		reference in a test condition, the
		phase of DPCH shall be
		180 degrees offset from the phase
		of _
		P-CPICH.
OCNS	Necessary power so that total	OCNS interference consists of 16-
	transmit power spectral density	dedicated data channels as
	of Node B (lor) adds to one	specified in table E.3.6.
	power correction required to compen	
channels, e.g	. control channels, a subset of the D	PCH channels may be used.

Table E.3.3: Downlink Physical Channels transmitted during a connection⁴

Power levels are based on the assumption that multipath propagation conditions and noise source representing interference from other cells loc are turned on after the call set-up phase.

E.3.4 Connection with open-loop transmit diversity mode

Table E.3.4 is applicable for measurements for clause 7.6.1.

P-CPICH (antenna 1)		
	P-CPICH_E _{c1} /I _{or} = 13 dB	 Total P-CPICH_E_C/I_{or} = 10 dB
P-CPICH (antenna 2)	P-CPICH_E _{c2} /I _{or} = -13 dB	
P-CPICH (antenna 1)	P-CPICH_E _{c1} /I _{or} = 13 dB	1. Total P-CPICH_E _c /I _{or} = 10 dB
P-CPICH (antenna 2)	P-CPICH_E _{c2} /I _{or} = 13 dB	
P-CCPCH (antenna 1)	P-CCPCH_Ec1/Hor_ = -15 dB	1. STTD applied
P-CCPCH (antenna 2)	P-CCPCH_Ec ₂ /I _{or} = 15 dB	2. Total P-CCPCH_Ec/I_{OF} = 12 dB
SCH (antenna 1 / 2)	SCH_E _C /I _{OF} = 12 dB	 TSTD applied. This power shall be divided- equally between Primary and- Secondary Synchronous channels
PICH (antenna 1)	PICH_E _{c1} /I _{or} = -18 dB	1. STTD applied
PICH (antenna 2)	PICH_E _{c2} /I _{or} = 18 dB	2. Total PICH_E _€ /I _{OF} = 15 dB
DPCH	Test dependent power	 STTD applied Total power from both antennas
ocns	Necessary power so that total transmit power spectral density of Node B (I _{or}) adds to one	This power shall be divided equally between antennas OCNS interference consists of 16 dedicated data channels as specified in Table E.3.6.

Table E.3.4: Downlink Physical Channels transmitted during a connection²

E.3.5 Connection with closed loop transmit diversity mode

table E.3.5 is applicable for measurements for clause 7.6.2.

Table E 2 5, Downlink Dh	veical Channels transmitted during a connection ³
	YSIGAI GHAIIHEIS HAHSIIIHEU UUHHU A GOHHEGHOH

Physical Channel	Power	Note		
P-CPICH (antenna 1)	P-CPICH_Ec1/lor = 13 dB	1. Total P-CPICH_Ec/lor = 10 dB		
P-CPICH (antenna 2)	P-CPICH_Ec2/lor = -13 dB			
P-CCPCH (antenna 1)	P-CCPCH_Ec1/lor = 15 dB	1. STTD applied		
P-CCPCH (antenna 2)	P-CCPCH_Ec2/lor = -15 dB	1. STTD applied, total		
		P-CCPCH_Ec/lor = 12 dB		
SCH (antenna 1 / 2)	SCH_Ec/lor = -12 dB	1. TSTD applied		
PICH (antenna 1)	PICH_Ec1/lor = -18 dB	1. STTD applied		
PICH (antenna 2)	PICH_Ec2/lor = 18 dB	2. STTD applied, total		
		PICH_Ec/lor = 15 dB		
DPCH	Test dependent power	1. Total power from both antennas		
OCNS	Necessary power so that total	1. This power shall be divided		
	transmit power spectral density	equally between antennas		
	of Node B (lor) adds to one	2. OCNS interference consists of		
		16 dedicated data channels as		
		specified in Table E.3.6.		
NOTE: For dynamic power correction required to compensate for the presence of transient				
channels, e.g. control channels, a subset of the DPCH channels may be used.				

² Power levels are based on the assumption that multipath propagation conditions and noise source representing interference from other cells loc are turned on after the call set-up phase.

³ Power levels are based on the assumption that multipath propagation conditions and noise source representing interference from other cells loc are turned on after the call set-up phase.

Channelization Code at SF=128	Relative Level setting (dB)	DPCH Data
2	-1	The DPCH data
11	-3	for each
17	-3	channelization
23	-5	code shall be
31	-2	uncorrelated
38	-4	with each other
47	- 8 -7	and with any
55	-7	wanted signal
62	-4	over the period
69	-6	of any
78	-5	measurement.
85	-9	
94	-10	
125	-8	
113	-6]
119	θ	

Table E.3.6: DPCH Channelization Code and relative level settings for OCNS signal.

NOTE: The DPCH Channelization Codes and relative level settings are chosen to simulate a signal with realistic-Peak to Average Ratio.

E.4 W-CDMA Modulated Interferer

Table E.4.1 describes the downlink Physical Control Channels that are transmitted as part of the W-CDMA modulated interferer.

Table E.4.1: Spreading Code, Timing offsets and relative level settings for W-CDMA Modulated Interferer signal control channels.

Channel Type	Spreading Factor	Channelization Code	Timing offset (x256T _{chip})	Relative level setting (dB)	NOTE
P-CCPCH	256	4	θ	4	
SCH-	256	-	θ	4	The SCH power- shall be divided- equally between- Primary and- Secondary- Synchronous- channels
P-CPICH	256	θ	θ	-1	
PICH	256	16	16	-6	

See table E.3.6 for the definition of the 16 DPCH portion of the W-CDMA modulated interferer.

Annex F (normative): General test conditions and declarations

The requirements of this clause apply to all applicable tests in the present document.

Many of the tests in the present document measure a parameter relative to a value that is not fully specified in the UE specifications. For these tests, the Minimum Requirement is determined relative to a nominal value specified by the manufacturer.

When specified in a test, the manufacturer shall declare the nominal value of a parameter, or whether an option issupported.

In all the relevant clauses in this clause all Bit Error Ratio (BER), Block Error Ratio (BLER), False transmit format Detection Ratio (FDR) measurements shall be carried out according to the general rules for statistical testing inclause F.6.

F.1 Acceptable uncertainty of Test System

The maximum acceptable uncertainty of the Test System is specified below for each test, where appropriate. The Test System shall enable the stimulus signals in the test case to be adjusted to within the specified range, and the equipmentunder test to be measured with an uncertainty not exceeding the specified values. All ranges and uncertainties are absolute values, and are valid for a confidence level of 95 %, unless otherwise stated.

A confidence level of 95 % is the measurement uncertainty tolerance interval for a specific measurement that contains-95 % of the performance of a population of test equipment.

For RF tests it should be noted that the uncertainties in clause F.1 apply to the Test System operating into a nominal 50ohm load and do not include system effects due to mismatch between the DUT and the Test System.

F.1.1 Measurement of test environments

The measurement accuracy of the UE test environments defined in annex G, Test environments shall be.

- Pressure ±5 kPa.
- Temperature ±2 degrees.
- Relative Humidity ±5 %.
- $\frac{\text{DC Voltage}}{\pm 1,0\%}.$
- AC Voltage ±1,5 %.
- Vibration 10 %.

The above values shall apply unless the test environment is otherwise controlled and the specification for the control of the test environment specifies the uncertainty for the parameter.

F.1.2 Measurement of transmitter

Table F 1 2. Maximum	Test Custon		· for the south the state
Table L.L.E. Maximum	1001010101	OTOCILOTI	

Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
5.2 Maximum Output Power	<u>±0,7 dB</u>	
5.3 Frequency Error	±10 Hz	
5.4.1 Open loop power control in uplink	±1,0 dB	The uncertainty of this test is a combination of the downlink- level setting error and the uplink power measurement- that are uncorrelated.
		Formula = SQRT(source_level_error ² + power_meas_error ² }
5.4.2 Inner loop power control in the uplink - One step	±0,1 dB relative over a 1,5 dB range (1 dB and 0 dB step) ±0,15 dB relative over a 3,0 dB range (2 dB step) ±0,2 dB relative over a 4.5 dB range (3 dB- step)	This accuracy is based on the linearity of the absolute power- measurement of the test equipment.
5.4.2 Inner loop power control in the uplink – seven and ten steps	±0,3 dB relative over a 26 dB range	
5.4.3 Minimum Output Power	±1,0 dB	Measured on a static signal
5.4.4 Out-of-synchronisation handling of output power: <u>DPCCH_E</u>	±0,4 dB	0.1 dB uncertainty in DPCCH ratio
1 or		0.3 dB uncertainty in \hat{I}_{or}/I_{oc} - based on power meter- measurement after the- combiner
		Overall error is the sum of the \hat{f}_{or}/f_{oc} ratio error and the DPCCH_Ec/lor ratio. The absolute error of the AWGN-loc is not important but is specified as 1.0 dB
5.5.1 Transmit OFF Power: (static case)	±1,0 dB	Measured on a static signal
5.5.2 Transmit ON/OFF time mask (dynamic case)	On power +0,7 dB – 1,0 dB Off power (dynamic case) TBD	Assume asymmetric meas- error -1.0 dB / 0.7 dB- comprising RSS of: -0.7 dB- downlink error plus -0.7 dB- meas error, and +0.7 dB for- upper limit (assume UE won't- go above 24 nominal) For the off power, the- accuracy of a two-pass- measurement needs to be- analysed.
5.6 Change of TFC: power control step size (7 dB step)	±0,3 dB relative over a 9 dB range	
5.7 Power setting in uplink compressed- mode:-UE output power	Will be a subset of 5.4.2.	
5.8 Occupied Bandwidth 5.9 Spectrum emission mask-	± 100 kHz ± 1,5 dB	Accuracy = ±3*RBW. Assume 30 kHz bandwidth.
5.10 ACLR	5 MHz offset: ±0,8 dB	
	10 MHz offset: ± 0,8 dB	

Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
5.11 Spurious emissions	± 2,0 dB for UE and coexistence bands for	
	results > -60 dBm	
	\pm 3,0 dB for results < -60 dBm	
	Outside above:	
	f <u>≤2.2GHz; ± 1.5 dB</u>	
	<u>2.2 GHz < f ≤ 4 GHz;</u>	
	± 2.0 dB	
	f > 4 GHz: ±4.0 dB	
5.12 Transmit Intermodulation	- <u>± 2.2 dB</u>	CW Interferer error is 0.7 dB
		for the UE power RSS with 0.7
		dB for CW setting = 1.0 dB
		Measurement error of
		intermod product is 0.7 dB for-
		UE power RSS with 0.7 dB for
		relative = 1.0 dB
		Interferer has an effect of 2
		times on the intermod product
		so overall test uncertainty is
		2*1.0 RSS with $1.0 = 2.2$ dB.
		Apply half any excess test
		system uncertainty to increase
		the interferer level
5.13.1 Transmit modulation: EVM	±2,5 %	
	(for single code)	
5.13.2 Transmit modulation: peak code	±1.0dB	
domain error		

F.1.3 Measurement of receiver

Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
6.2 Reference sensitivity level	± 0.7 dB	
6.3 maximum input level:	± 0.7 dB	The critical parameter is the overall signal level and not the -19 dB DPCH_Ec/lor ratio.
		0.7 dB absolute error due to signal measurement.
		DPCH_Ec/lor ratio error is <0.1 dB but is not important so is ignored
6.4 Adjacent channel selectivity	± 1.1 dB	Overall system uncertainty comprises three quantities:
		1. Wanted signal level error
		2. Interferer signal level error
		3. Additional impact of interferer ACLR
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared to provide the ratio error of the two signals. Assume for simplicity this ratio error is linearly added to the- interferer ACLR.
		Test System uncertainty =- SQRT (wanted_level_error ² + interferer_level_error ²) + ACLR effect.
		The ACLR offect is calculated by:(Formula to follow)
		(E.g. ACLR at 5 MHz of 51 dB- gives additional error of .0765- dB. ACLR of 48 gives error of- -0.15 dB.)
6.5 Blocking characteristics	System error with f <15 MHz offset: ± 1.4 dB-	Using ± 0.7 dB for signal and interferer as currently defined and 68 dB ACLR @ 10 MHz.
	f >= 15 MHz offset and f _b ≤ 2.2 GHz: ± [1.0] dB- 2.2 GHz < f ≤ 4 GHz: ±[1.7] dB f > 4 GHz: ±[3.1] dB	
6.6 Spurious Response	$\frac{1 > 4 \text{ GHz: } \pm 10 \text{ dB}}{f \le 2.2 \text{ GHz: } \pm 1.0 \text{ dB}}$ $\frac{2.2 \text{ GHz} < f \le 4 \text{ GHz: } \pm 1.7 \text{ dB}}{f > 4 \text{ GHz: } \pm 3.1 \text{ dB}}$	

Table F.1.3: Maximum Test System Uncertainty for receiver tests

Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
6.7 Intermodulation Characteristics	±1.3 dB	Similar issues to 7.4 ACS test.
		ETR028 says impact f the
		closer signal is twice that of
		the far signal. If both signals-
		drop 1 dB, intermod product
		drops 2 dB.
		Formula =
		$\sqrt{(2 \cdot CW_ievei_error)^2 + (mod_ievei_error)^2}$
		(Using CW interferer ±0.5 dB,
		modulated interferer ±0.5 dB,
		wanted signal ±0.7 dB)
		1.3 dB!
		Broadband noise/ACLR not
		considered but may have
		impact.
6.8 Spurious emissions	± 3.0 dB for UE receive band (-78 dBm)	
	Outside above:	
	f <u>≤2.2GHz: ± 2.0 dB (-57 dBm)</u>	
	$2.2 \text{ GHz} < f \le 4 \text{ GHz}$	
	± 2.0 dB (-47 dBm)	
	f > 4 GHz: ±4.0 dB (-47 dBm)	

F.1.4 Performance requirement

Table F.1.4: Maximum Test System Uncertainty for Performance Requirements

Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
7.2 Demodulation in Static Propagation Condition	$\frac{\hat{H}_{or}/H_{oc}}{H_{oc}} = \frac{\pm 0.3 \text{ dB}}{\pm 1.0 \text{ dB}}$	0.1 dB uncertainty in DPCH_Ec ratio
	$\frac{DPCH_E_c}{I_{or}} = \pm 0.1 \text{ dB}$	0.3 dB uncertainty in \hat{I}_{or}/I_{oc} - based on power meter measurement after the combiner
		Overall error is the sum of the \hat{I}_{or}/I_{oc} ratio error and the DPCH_Ec/lor ratio but is not RSS for simplicity. The absolute error of the AWGN-loc is not important for any tests in clause 7 but is specified as 1.0 dB.
7.3 Demodulation of DCH in multipath Fading Propagation conditions	$\frac{\hat{I}_{or}/I_{oc}}{I_{oc}} = \pm 0.56 \text{ dB}$ $\frac{I_{oc}}{I_{oc}} = \pm 1.0 \text{ dB}$ $\frac{DPCH _ E_c}{I_{or}} = \pm 0.1 \text{ dB}$	Worst case gain uncertainty- due to the fader from the- calibrated static profile is ±0.5- dB
	1 _{or}	In addition the same $\pm 0.3 \text{ dB}$ \hat{I}_{or}/I_{oc} ratio error as 7.2. These are uncorrelated so can be RSS.
		Overall error in \hat{I}_{or}/I_{oc} is (0.5 ² . + 0.3 ²) ^{-0.5} = 0.6 dB Same as 7.3
7.4 Demodulation of DCH in Moving- Propagation conditions	$\frac{\hat{I}_{or}/I_{oc}}{I_{oc}} = \pm 0.6 \text{ dB}$ $\frac{I_{oc}}{I_{oc}} = \pm 1.0 \text{ dB}$ $\frac{DPCH_{-}E_{c}}{I_{or}} = \pm 0.1 \text{ dB}$	Same as 7.3
7.5 Demodulation of DCH in Birth-Death Propagation conditions	$\frac{\hat{H}_{or}/H_{oc}}{H_{oc}} = \frac{\pm 0.6 \text{ dB}}{\pm 1.0 \text{ dB}}$ $\frac{DPCH_{-}E_{c}}{I_{or}} = \pm 0.1 \text{ dB}$	Same as 7.3
7.6.1 Demodulation of DCH in open loop Transmit diversity mode	$\frac{\hat{f}_{or}/f_{oc}}{F_{oc}} = \frac{\pm 0.8 \text{ dB}}{\pm 1.0 \text{ dB}}$ $\frac{DPCH_{E_{c}}}{E_{c}} = \pm 0.1 \text{ dB}$	Worst case gain uncertainty- due to the fader from the- calibrated static profile is ±0.5- dB per output
	I _{or}	In addition the same ± 0.3 dB- \hat{I}_{or}/I_{oc} -ratio error as 7.2. These are uncorrelated so can
		be RSS.
		Overall error in \hat{I}_{or}/I_{oc} is $(0.5^2 \cdot + 0.5^2 + 0.3^2)^{0.5} = 0.768 \text{ dB.}$ Round up to 0.8 dB

Clause	Maximum Test System Uncertainty	Derivation of Test System- Uncertainty
7.6.2 Demodulation of DCH in closed- loop Transmit diversity mode	$\frac{\hat{H}_{or}}{H_{oc}} - \frac{\pm 0.8 \text{ dB}}{\pm 1.0 \text{ dB}}$	Same as 7.6.1
	$\frac{DPCH_E_c}{I_{or}} = \pm 0.1 \text{dB}$	
7.6.3, Demodulation of DCH in site- selection diversity Transmission power- control mode	$\frac{\hat{I}_{or}/I_{oc}}{I_{oc}} = \frac{\pm 0.8 \text{ dB}}{\pm 1.0 \text{ dB}}$	Same as 7.6.1
	$\frac{DPCH_E_c}{I_{or}} = \pm 0.1 \text{ dB}$	
7.7.1 Demodulation in inter-cell soft- Handover-	$\frac{\hat{I}_{or}}{I_{oc}} - \frac{\pm 0.8 \text{ dB}}{\pm 1.0 \text{ dB}}$	Same as 7.6.1
	$\frac{DPCH_E_c}{I_{or}} = \pm 0.1 \text{ dB}$	
7.7.2 Combining of TPC commands Test 4	$\frac{\frac{\text{lor1,lor2}}{\text{DPCH}_{-}E_{c}}}{I_{or}} = \pm 0.1 \text{ dB}$	Test is looking for changes in power – need to allow for relaxation in criteria for power
7.7.2 Combining of TPC commands Test-	\hat{I}_{or}/I_{oc} = ±0.8 dB	step of probably 0.1 dB to 0.4 dB Same as 7.6.1
2	$\frac{I_{oc}}{DPCH} = E_c \qquad \text{ if } A \neq B$	
7.8.1 Power control in downlink constant BLER target	$\frac{I_{or}}{\hat{I}_{or}/I_{oc}} \xrightarrow{\pm 0.6 \text{ dB}}$	Same as 7.3
	$\frac{I_{oc} \pm 1.0 \text{ dB}}{DPCH _ E_c} \pm 0.1 \text{ dB}$	
7.8.2, Power control in downlink initial- convergence	$\frac{\hat{I}_{or}/I_{oc}}{I_{oc}} = \frac{\pm 0.6 \text{ dB}}{\pm 1.0 \text{ dB}}$	Same as 7.3
	$\frac{DPCH_E_c}{I_{or}} = \pm 0.1 \text{ dB}$	
7.8.3, Power control in downlink: wind up effects	$\frac{\hat{I}_{or}}{I_{oc}} - \frac{\pm 0.6 \text{ dB}}{\pm 1.0 \text{ dB}}$	Same as 7.3
	$\frac{DPCH_E_c}{I_{or}} = \pm 0.1 \text{ dB}$	
7.9 Downlink compressed mode	$\frac{\hat{I}_{or}/I_{oc}}{I_{oc}} = \frac{\pm 0.6 \text{ dB}}{\pm 1.0 \text{ dB}}$	Same as 7.3
	$\frac{DPCH_E_c}{I_{or}} = \pm 0.1 \text{ dB}$	
7.10 Blind transport format detection- Tests 1, 2, 3	$\frac{\hat{H}_{or}}{H_{oc}} \xrightarrow{\pm 0.3 \text{ dB}} \frac{1}{1000} \xrightarrow{\pm 1.0 \text{ dB}}$	Same as 7.2
	$\frac{DPCH_E_c}{I_{or}} = \pm 0.1 \text{ dB}$	

Clause	Maximum Test System Uncertainty	Derivation of Test System- Uncertainty
7.10 Blind transport format detection Tests 4, 5, 6	$\frac{\hat{H}_{or}/I_{oc}}{I_{oc}} = \frac{\pm 0.6 \text{ dB}}{\pm 1.0 \text{ dB}}$ $\frac{DPCH_{E_c}}{I_{or}} = \pm 0.1 \text{ dB}$	Same as 7.3

F.1.5 Requirements for support of RRM

Table F.1.5: Maximum Test System Uncertainty for Radio Resource Management Tests

Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
8.2 Idle Mode Tasks		
8.2.2 Cell Re-Selection		
8.2.2.1 Scenario 1: Single carrier case	$\frac{\hat{I}_{or}/I_{oc}}{I_{oc}} = \pm 0.3 \text{ dB}$ $\frac{I_{oc}}{I_{oc}} = \pm 1.0 \text{ dB}$ $CPICH = E$	0.1 dB uncertainty in CPICH_Ec ratio
	$\frac{CPICH _E_c}{I_{or}} = \frac{\pm 0.1 \text{ dB}}{\pm 0.1 \text{ dB}}$	$\frac{0.3 \text{ dB uncertainty in } \hat{H}_{ar}}{I_{ar}}$
		based on power meter- measurement after the combiner
		The absolute error of the AWGN is specified as 1.0 dB.
8.2.2.2 Scenario 2: Multi carrier case	$\frac{\hat{I}_{or}}{I_{oc}} \xrightarrow{\pm 0.3 \text{ dB}}$	0.1 dB uncertainty in CPICH_Ec ratio
	I_{oc1}/I_{oc2} =0.3 dB	0.3 dB uncertainty in \hat{H}_{or}/H_{oc}
	$\frac{CPICH _E_c}{I_{or}} = \frac{\pm 0.1 \text{ dB}}{\pm 0.1 \text{ dB}}$	based on power meter- measurement after the- combiner
		0.3 dB uncertainty in loc1/loc2 based on power meter measurement after the combiner
		Overall error for the CPICH_Ec/lo is the sum of the \hat{T}_{or}/I_{oc} -ratio error and the CPICH_Ec/lor ratio.
		The absolute error of the AWGN is specified as 1.0 dB.
8.2.3 UTRAN to GSM Cell Re-Selection		

Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
8.2.3.1 Scenario 1: Both UTRA and GSM-	$\frac{\hat{I}_{ar}}{I_{ac}}$ = ±0.3 dB	0.1 dB uncertainty in
level changed	011 00	CPICH Ec ratio
Ŭ	$\frac{I_{oc}}{RXLEV}$ = ±0.3 dB	
	<u>-I_{oc}±1.0 dB</u>	
	RXLEV ±1.0 dB	
	TI.U UD	0.3 dB uncertainty in \hat{I}_{or}/I_{oc} –
	$\underline{CPICH _E_{c}}_{\pm 0.1 \text{ dB}}$	based on power meter
		measurement after the
	1 or	combiner
		0.3 dB uncertainty in
		loc/RXLEV based on power-
		meter measurement after the
		combiner
		The absolute error of the
		AWGN is specified as 1.0 dB.
		The absolute error of the
		RXLEV is specified as 1.0 dB.
8.2.3.2 Scenario 2: Only UTRA level	$\frac{\hat{I}_{or}}{I_{oc}}$ = <u>±0.3 dB</u>	Same as 8.2.3.1
changed	$\frac{1}{H_{oc}}$ /RXLEV <u>±0.3 dB</u>	
	001	
	<u>-I_{oc} ±1.0 dB</u>	
	RXLEV ±1.0 dB	
	<u>CPICH</u> $_E_c$ <u>±0.1 dB</u>	
	$\frac{\text{erren}_L_c}{\pm 0.1 \text{ dB}}$	
	I _{or}	
8.2.4 FDD/TDD cell re-selection	$\frac{\hat{I}_{or}}{I_{oc}}$ = ±0.3 dB	Same as 8.2.2.2
	<i>H_{oc}</i> <u>±1.0 dB</u>	
	$\frac{I_{ocl}}{I_{oc2}}$ = ±0.3 dB	
	$\frac{CPICH _ E_c}{L} = \frac{\pm 0.1 \text{ dB}}{L}$	
	<u></u>	
	I _{or}	
8.3 UTRAN Connected Mode Mobility		
8.3.1 FDD/FDD Soft Handover	700	No test case
8.3.2 FDD/FDD Hard Handover	TBD	
8.3.3 FDD/TDD Handover	TBD	
8.3.4 Inter-system Handover form	TBD	
UTRAN FDD to GSM		
8.3.5 Cell Re-selection in CELL_FACH		
8.3.5.1 One frequency present in the	Same as 8.2.2.1	Same as 8.2.2.1
neighbour list		
8.3.5.2 Two frequencies present in the	Same as 8.2.2.2	Same as 8.2.2.2
neighbour list 8.3.6 Cell Re-selection in CELL_PCH		
	Same as 8.2.2.4	Somo oo 8 0 0 1
8.3.6.1 One frequency present in the neighbour list	Same as 8.2.2.1	Same as 8.2.2.1
8.3.6.2 Two frequencies present in the	Same as 8.2.2.2	Same as 8.2.2.2
a.a.o.z - two trequencies present in the neighbour list	Janio do 0.2.2.2	Jaine as 0.2.2
8.3.7 Cell Re-selection in URA_PCH		
8.3.7.1 One frequency present in the	Same as 8.2.2.1	Same as 8.2.2.1
neighbour list	Dame do 0.2.2.1	Jame as 0.2.2.1
8.3.7.2 Two frequencies present in the	Same as 8.2.2.2	Same as 8.2.2.2
neighbour list		Game de 0.2.2.2
8.4 RRC Connection Control	TBD	
8.4.1 RRC Re-establishment delay		
O.T.T TITO TO COLONISHINGHL UCIDY		

Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
8.4.2 Random Access	$\frac{\hat{I}_{or}}{I_{oc}}$ = ±0.3 dB	0.1 dB uncertainty in AICH_Ec-
	$\frac{I_{or}}{I_{oc}} = \pm 1.0 \text{ dB}$	ratio
		^ /
	$AICH _E_c$	0.3 dB uncertainty in \hat{I}_{or}/I_{oc} -
	$\frac{AICH_E_c}{I_{or}} = \pm 0.1 \text{ dB}$	based on power meter
	* or	measurement after the
		combiner
		Overall error is the sum of the
		$\frac{\hat{H}_{or}}{H_{oc}}$ ratio error and the
		AICH_Ec/lor ratio.
		The she shall be supported to be
		The absolute error of the AWGN is specified as 1.0 dB
8.5 Timing and Signalling Characteristics		
8.5.1 UE Transmit Timing	<u> </u>	0.1 dB uncertainty in
		DPCH_Ec ratio
	I_{or1}/I_{or2} ±0.3 dB	
	$\underline{DPCH}_{E_{c}}$	
	$\frac{121011 - 12_c}{\pm 0.1 \text{ dB}}$	0.3 dB uncertainty in lor1/lor2-
	I _{or}	based on power meter
		measurement after the
		combiner
		The absolute error of the lor is-
		specified as 1.0 dB.
8.6 UE Measurements Procedures		
8.6.1 FDD intra frequency measurements		
8.6.1.1 Event triggered reporting in-	TBD	
AWGN propagation conditions		
8.6.1.2 Event triggered reporting of	TBD	
multiple neighbours in AWGN		
propagation condition 8.6.1.3 Event triggered reporting of two-	TBD	
detectable neighbours in AWGN		
propagation condition		
8.6.1.4 Correct reporting of neighbours in	TBD	
fading propagation condition		
8.6.2 FDD inter frequency measurements		
8.6.2.1 Correct reporting of neighbours in AWGN propagation condition	TBD	
8.6.2.2 Correct reporting of neighbours in	TBD	
Fading propagation condition		
8.6.3 TDD measurements	TBD	
8.6.3.1Correct reporting of TDD	TBD	
neighbours in AWGN propagation- condition		
8.7 Measurements Performance		
Requirements		
8.7.1 CPICH RSCP		
8.7.1.1 Intra frequency measurements	$\frac{\hat{I}_{or}}{I_{oc}}$ = <u>±0.3 dB</u>	Same as 8.2.2.1
accuracy	<u><i>H</i></u> <u><i>H</i>_{oc} <u></u>±1.0 dB</u>	
	$\underline{CPICH}_{E_{c}}$ = +0.1 dB	
	$\frac{CPICH _E_c}{I_{or}} = \frac{\pm 0.1 \text{ dB}}{\pm 0.1 \text{ dB}}$	

Clause	Maximum Test System Uncertainty	Derivation of Test System
8.7.1.2 Inter frequency measurement		Uncertainty Same as 8.2.2.2
accuracy	\hat{I}_{or}/I_{oc} = ±0.3 dB	
	<u>-<i>I</i>_{oc} <u>+1.0 dB</u></u>	
	I_{oc1}/I_{oc2} = ±0.3 dB	
	$\underline{CPICH}_{E_c} = \underline{\pm 0.1 \text{ dB}}$	
	I_{or}	
	l or	
8.7.2 CPICH Ec/lo 8.7.1.1 Intra frequency measurements		Same as 8.2.2.1
accuracy	\hat{I}_{or}/I_{oc} = ±0.3 dB	Jame as 0.2.2.1
	<u>-I_{oc} ±1.0 dB</u>	
	<u>CPICH E_c</u> <u>±0.1 dB</u>	
	$\frac{\text{critch} \underline{L_c}}{\pm 0.1 \text{ dB}}$	
	I _{or}	
8.7.1.2 Inter frequency measurement	$\frac{I_{or}}{\hat{I}_{or}/I_{oc}} = \pm 0.3 \text{ dB}$	Same as 8.2.2.2
accuracy	$\frac{I_{or}I_{oc}}{I_{oc}} = \pm 1.0 \text{ dB}$	
	$\frac{I_{oc1}}{I_{oc2}}$ = ±0.3 dB	
	CPICH F	
	<u>CPICH</u> $_E_c$ <u>±0.1 dB</u>	
	I _{or}	
8.7.3A UTRA Carrier RSSI	$\frac{I_{or}}{\hat{I}_{or}/I_{oc}} = \pm 0.3 \text{ dB}$	\hat{I}
	$\frac{I_{or}}{I_{oc}} = \frac{100 \text{ dB}}{\pm 1.0 \text{ dB}}$	$\frac{0.3 \text{ dB-uncertainty in } \hat{I}_{or} / I_{oc}}{0.3 \text{ dB-uncertainty in } \hat{I}_{or}}$
		based on power meter-
	$\frac{I_{oc1}}{I_{oc2}}$ $\pm 0.3 \text{ dB}$	measurement after the combiner
	0017 002	Compiner
		0.3 dB uncertainty in loc1/loc2
		based on power meter
		measurement after the
		combiner
		The absolute error of the
		AWGN is specified as 1.0 dB
8.7.3B Transport channel BLER	TBD	
		Develiele e se se te
8.7.3C UE Transmitted power	Mean power measurement ±0,7 dB	Downlink parameters are
		unimportant.
8.7.4 SFN-CFN observed time difference	TBD	1
8.7.5 SFN-SFN observed time difference	TBD	
8.7.6 UE Rx-Tx time difference	$\frac{\hat{I}_{or}}{I_{oc}}$ = ±0.3 dB	0.3 dB uncertainty in \hat{I}_{or}/I_{oc} -
	$\frac{1}{100}$ $\pm 1.0 \text{ dB}$	
	1 OC	based on power meter- measurement after the-
	Rx-Tx Timing Accuracy [±0.5 chip]	combiner
		The absolute error of the
		AWGN is specified as 1.0 dB.
8.7.7 Observed time difference to GSM	TBD	
cell 8.7.8 P-CCPCH RSCP	TBD	

F.2 Test Tolerances (This clause is informative)

The Test Tolerances defined in this clause have been used to relax the Minimum Requirements in the present document to derive the Test Requirements.

The Test Tolerances are derived from Test System uncertainties, regulatory requirements and criticality to systemperformance. As a result, the Test Tolerances may sometimes be set to zero.

The test tolerances should not be modified for any reason e.g. to take account of commonly known test system errors (such as mismatch, cable loss, etc.).

F.2.1 Transmitter

	The A Table and a
Clause	Test Tolerance
5.2 Maximum Output Power	0.7 dB-
5.3 Frequency error	10 Hz -
5.4.1 Open loop power control in uplink	1.0 dB
5.4.2 Inner loop power control in the	0.1 dB (1 dB and 0 dB step)
uplink - One step	0.15 dB (2 dB step)
	0.2 dB (3 dB step)
5.4.2 Inner loop power control in the	0.3 dB
uplink - seven and ten steps	
5.4.3 Minimum Output Power	1.0 dB-
5.4.4 Out-of-synchronisation handling of	0.4 dB
output power:DPCCH_E_	
I _{or}	
5.4.4 Out-of-synchronisation handling of	0 ms-
output power: transmit ON/OFF time	
5.5.1 Transmit OFF power	1.0 dB-
5.5.2 Transmit ON/OFF time mask	On power +0.7 dB / -1.0 dB
(dynamic case)	
	Off power TT [] dB
5.6 Change of TFC: power control step	0.3 dB
size	
5.7 Power setting in uplink compressed	See subset of 5.4.2
mode:-UE output power	
5.8 Occupied Bandwidth	0 kHz
5.9 Spectrum emission mask	1.5 dB (0 dB for additional requirements for Band II)
5.10 ACLR	0.8 dB for ratio
	0.0 dB for absolute power
5.11 Spurious emissions	0 dB
5.12 Transmit Intermodulation	0 dB
5.13.1 Transmit modulation: EVM	0%
5.13.2 Transmit modulation: peak code	1.0 dB-
domain error	

Table F.2.1: Test Tolerances for transmitter tests.

F.2.2 Receiver

Table F.2.2: Test Tolerances for receiver tests.

Clause	Test Tolerance
6.2 Reference sensitivity level	0.7 dB
6.3 Maximum input level:	0.7 dB
6.4 Adjacent channel selectivity	0 dB -
6.5 Blocking characteristics	0 dB -
6.6 Spurious Response	0 dB -
6.7 Intermodulation Characteristics	0 dB-
6.8 Spurious emissions	0 dB-

F.2.3 Performance requirements

Clause	Test Tolerance
7.2 Demodulation in Static Propagation	$\frac{0.3 \text{ dB for}}{1 \text{ for}} + \frac{1}{1 \text{ or}} + \frac{1}{1 \text{ or}}$
Condition	0.1 dB for DPCH_Ec/lor
7.3 Demodulation of DCH in multipath	$\frac{0.6 \text{ dB for}}{\hat{H}_{or}} + \frac{\hat{H}_{or}}{\hat{H}_{or}}$
Fading Propagation conditions	0.1 dB for DPCH_Ec/lor
7.4 Demodulation of DCH in Moving-	$\frac{0.6 \text{ dB for } \hat{I}_{ac}}{I_{ac}}$
Propagation conditions	0.1 dB for DPCH_Ec/lor
7.5 Demodulation of DCH in Birth-Death	$\frac{0.6 \text{ dB for } \hat{I}_{ac}}{I_{ac}}$
Propagation conditions	0.1 dB for DPCH_Ec/lor
7.6.1 Demodulation of DCH in open loop	$\frac{0.8 \text{ dB for}}{\hat{I}_{or}} / I_{oc}$
Transmit diversity mode	0.1 dB for DPCH_Ec/lor
7.6.2 Demodulation of DCH in closed	$\frac{0.8 \text{ dB for}}{\hat{H}_{or}} + \frac{\hat{H}_{oc}}{\hat{H}_{oc}}$
loop Transmit diversity mode	0.1 dB for DPCH_Ec/lor
7.6.3, Demodulation of DCH in site	$\frac{0.8 \text{ dB for}}{\hat{I}_{oc}} / I_{oc}$
selection diversity Transmission power- control mode	0.1 dB for DPCH_Ec/lor
7.7.1 Demodulation in inter-cell soft	$\frac{0.8 \text{ dB for } \hat{I}_{ac}}{I_{ac}}$
Handover conditions	0.1 dB for DPCH_Ec/lor
7.7.2 Combining of TPC commands Test	0 dB for lor1, lor2
1	0.1 dB for DPCH_Ec/lor
7.7.2 Combining of TPC commands Test	$\frac{0.8 \text{ dB for}}{\hat{I}_{or}} / I_{oc}$
	0.1 dB for DPCH_Ec/lor
7.8.1 Power control in downlink constant- BLER target	$\frac{0.6 \text{ dB for } \hat{I}_{or}}{I_{oc}}$
	0.1 dB for DPCH_Ec/lor
7.8.2, Power control in downlink initial	$\frac{0.6 \text{ dB for}}{\hat{I}_{or}}/I_{oc}}{1}$
convergence	0.1 dB for DPCH_Ec/lor
7.8.3, Power control in downlink: wind up	$\frac{0.6 \text{ dB for} \cdot \hat{I}_{or}}{I_{oc}}$
effects	0.1 dB for DPCH_Ec/lor
7.9 Downlink compressed mode	$\frac{0.6 \text{ dB for}}{\hat{I}_{or}} / I_{oc}$
	0.1 dB for DPCH_Ec/lor
7.10 Blind transport format detection	$\frac{0.3 \text{ dB for } \hat{I}_{or}}{I_{oc}}$
Tests 1, 2, 3	0.1 dB for DPCH_Ec/lor
7.10 Blind transport format detection	$\frac{0.6 \text{ dB for}}{\hat{I}_{or}/I_{oc}}$
Tests 4, 5, 6	0.1 dB for DPCH_Ec/lor

Table F.2.3: Test Tolerances for Performance Requirements.

F.2.4 Requirements for support of RRM

Table F.2.4: Test Tolerances for Radio Resource Management Tests

	
Clause	Test Tolerance
8.2 Idle Mode Tasks	
8.2.2 Cell Re-Selection	
8.2.2.1 Scenario 1: Single carrier case	0.3 dB for \hat{I}_{or}/I_{oc}
	0.1 dB for CPICH_Ec/lor
8.2.2.2 Scenario 2: Multi carrier case	0.3 dB for \hat{I}_{or}/I_{oc}
8.2.3 UTRAN to GSM Cell Re-Selection	0.1 dB for CPICH_Ec/lor
8.2.3.1 Scenario 1: Both UTRA and GSM	<u> </u>
level changed	$\frac{0.3 \text{ dB for } \hat{I}_{or} / I_{oc}}{2}$
	0.1 dB for CPICH_Ec/lor 0.3 dB for loc/RXLEV
8.2.3.2 Scenario 2: Only UTRA level	$\frac{0.3 \text{ dB for } \hat{I}_{ar} / I_{ac}}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$
changed	0.1 dB for CPICH_Ec/lor
8.2.4 FDD/TDD cell re-selection	$\frac{0.3 \text{ dB for loc/RXLEV}}{0.3 \text{ dB for } \hat{I}_{or}/I_{oc}}$
	$\frac{0.5 \text{ up for } I_{or} / I_{oc}}{0.1 \text{ dB for CPICH Ec/lor}}$
	0.3 dB for loc1/loc2
8.3 UTRAN Connected Mode Mobility	
8.3.1 FDD/FDD Soft Handover	
8.3.2 FDD/FDD Hard Handover-	TBD
8.3.3 FDD/TDD Handover	TBD
8.3.4 Inter-system Handover form- UTRAN FDD to GSM	TBD
8.3.5 Cell Re-selection in CELL_FACH	
8.3.5.1 One frequency present in the	÷ /.
neighbour list	$\frac{0.3 \text{ dB for}}{0.1 \text{ dB for}} \hat{I}_{or} / I_{oc}$
8.3.5.2 Two frequencies present in the	
neighbour list	$\frac{0.3 \text{ dB for } \hat{I}_{or} / I_{oc}}{0.4 \text{ dB for } \Omega OL} = 5 \text{ der}$
8.3.6 Cell Re-selection in CELL_PCH	0.1 dB for CPICH_Ec/lor
8.3.6.1 One frequency present in the	<u>^ /-</u>
neighbour list	$\frac{0.3 \text{ dB for } \hat{I}_{or} / I_{oc}}{0.4 \text{ dB for } \Omega C - \Gamma C }$
8.3.6.2 Two frequencies present in the	0.1 dB for CPICH_Ec/lor
neighbour list	$\frac{0.3 \text{ dB for} \cdot \hat{I}_{or} / I_{oc}}{1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -$
8.3.7 Cell Re-selection in URA_PCH	0.1 dB for CPICH_Ec/lor
8.3.7.1 One frequency present in the	\hat{L}
neighbour list	$\frac{0.3 \text{ dB for} \hat{I}_{or} / I_{oc}}{0.1 \text{ dB for CPICH_Ec/lor}}$
8.3.7.2 Two frequencies present in the	
neighbour list	$\frac{0.3 \text{ dB for}}{0.1 \text{ dB for}} \frac{\hat{I}_{or}}{I_{oc}} = \frac{1}{10000000000000000000000000000000000$
8.4 RRC Connection Control	
8.4.1 RRC Re-establishment delay	TBD
8.4.2 Random Access	
	$\frac{0.3 \text{ dB for } \hat{I}_{or}}{0.1 \text{ dB for AlCH Ec/lor}}$
8.5 Timing and Signalling Characteristics	
8.5.1 UE Transmit Timing	TBD
8.6 UE Measurements Procedures	
8.6.1 FDD intra frequency measurements	
8.6.1.1 Event triggered reporting in	TBD
AWGN propagation conditions	
8.6.1.2 Event triggered reporting of	TBD
	TBD

Clause	Test Tolerance
8.6.1.3 Event triggered reporting of two-	TBD
detectable neighbours in AWGN-	
propagation condition	
8.6.1.4 Correct reporting of neighbours in	TBD
fading propagation condition	
8.6.2 FDD inter frequency measurements	
8.6.2.1 Correct reporting of neighbours in	TBD
AWGN propagation condition	
8.6.2.2 Correct reporting of neighbours in	TBD
Fading propagation condition	
8.6.3 TDD measurements	
8.6.3.1Correct reporting of TDD	TBD
neighbours in AWGN propagation	
condition 8.7 Measurements Performance	TBD
Requirements 8.7.1 CPICH RSCP	
	^ /
8.7.1.1 Intra frequency measurements	$\frac{0.3 \text{ dB for } \hat{I}_{or}}{I_{oc}}$
accuracy	0.1 dB for CPICH_Ec/lor
	1.0 dB for loc
8.7.1.2 Inter frequency measurement	∧ /
	$\frac{0.3 \text{ dB for } I_{or}}{I_{oc}}$
accuracy	0.1 dB for CPICH_Ec/lor
	0.3 dB for loc1/loc2
	1.0 dB for loc
8.7.2 CPICH Ec/lo	
8.7.1.1 Intra frequency measurements	
accuracy	$\frac{0.3 \text{ dB for } \hat{I}_{or}}{I_{oc}}$
	0.1 dB for CPICH_Ec/lor
8.7.1.2 Inter frequency measurement	
accuracy	$\frac{0.3 \text{ dB for } \hat{H}_{or}}{I_{oc}}$
	0.1 dB for CPICH_Ec/lor
8.7.3A UTRA Carrier RSSI	
	$\frac{0.3 \text{ dB for } \hat{I}_{or}}{I_{oc}}$
	1.0 dB for loc
8.7.3B Transport channel BLER	TBD
8.7.3C UE Transmitted power	0.7 dB for mean power measurement by
	test system
8.7.4 SFN-CFN observed time difference	
8.7.5 SFN-SFN observed time difference	
8.7.6 UE Rx-Tx time difference	0.3 dB for \hat{I}_{or}/I_{oc}
	1.0 dB for loc
	[0.5 chip] for Rx-Tx Timing Accuracy
8.7.7 Observed time difference to GSM	
8.7.8 P-CCPCH RSCP	TBD
	שטו

F.3 Interpretation of measurement results

The measurement results returned by the Test System are compared without any modification against the Test Requirements as defined by the shared risk principle.

The Shared Risk principle is defined in ETR 273 1 2 clause 6.5.

The actual measurement uncertainty of the Test System for the measurement of each parameter shall be included in the test report.

The recorded value for the Test System uncertainty shall be, for each measurement, equal to or lower than the appropriate figure in clause F.1 of the present document.

If the Test System for a test is known to have a measurement uncertainty greater than that specified in clause F.1, it is still permitted to use this apparatus provided that an adjustment is made value as follows.

Any additional uncertainty in the Test System over and above that specified in clause F.1 shall be used to tighten the Test Requirement — making the test harder to pass. (For some tests e.g. receiver tests, this may require modification of stimulus signals). This procedure will ensure that a Test System not compliant with clause F.1 does not increase the chance of passing a device under test where that device would otherwise have failed the test if a Test System compliant with clause F.1 had been used.

F.4 Derivation of Test Requirements (This clause is informative)

The Test Requirements in the present document have been calculated by relaxing the Minimum Requirements of the core specification using the Test Tolerances defined in clause F.2. When the Test Tolerance is zero, the Test Requirement will be the same as the Minimum Requirement. When the Test Tolerance is non zero, the Test Requirements will differ from the Minimum Requirements, and the formula used for this relaxation is given in table F.4.

Test-	Minimum Requirement in TS 25.101	Test Tolerance (TT)	Test Requirement in TS 34.121
5.2 Maximum Output Power	Power class 1 (33 dBm) Tolerance = +1/-3 dB Power class 2 (27 dBm) Tolerance = +1/-3 dB Power class 3 (24 dBm) Tolerance = +1/-3 dB Power class 4 (21 dBm) Tolerance = ±2 dB	0.7 dB	Formula: Upper Tolerance limit + TT Lower Tolerance limit - TT For power classes 1-3: Upper Tolerance limit = +1.7 dB Lower Tolerance limit = -3.7 dB For power class 4: Upper Tolerance limit = +2.7 dB Lower Tolerance limit = -2.7 dB
5.3 Frequency Error	The UE modulated carrier- frequency shall be accurate to- within ±0.1 ppm compared to the carrier frequency received from- the Node B.	10 Hz	Formula: modulated carrier frequency- error + TT modulated carrier frequency error = $\pm (0.1 \text{ ppm} + 10 \text{ Hz})$.
5.4.1 Open loop power- control in the uplink	Open loop power control- tolerance ±9 dB (Normal) Open loop power control- tolerance ±12 dB (Normal)	1.0 dB	Formula: Upper Tolerance limit + TT Lower Tolerance limit – TT For Normal conditions: Upper Tolerance limit = +10 dB Lower Tolerance limit = -10 dB For Extreme conditions: Upper Tolerance limit = +13 dB Lower Tolerance limit = -13 dB
5.4.2 Inner loop power- control in uplink	See table 5.4.2.1 and 5,4,2,2	0.25dB 0.15 dB 0.2 dB 0.3 dB	Formula: Upper Tolerance limit + TT Lower Tolerance limit – TT
5.4.3 Minimum Output Power	UE minimum transmit power- shall be less than -50 dBm	1.0 dB	Formula:- UE minimum transmit power + TT UE minimum transmit power = -49 dBm-

Table F.4.1: Derivation of Test Requirements (Transmitter tests)

Test-	Minimum Requirement in TS- 25.101	Test Telerance	Test Requirement in TS 34.121
5.4.4 Out-of- synchronisation- handling of output- powor:-	$\frac{DPCCH _ E_c}{I_{or}}$ AB: -22 dB BD: -28 dB DE: -24 dB EF: -18 dB transmit ON/OFF time 200ms $\frac{DPDCH _ E_c}{I_{or}} = -16.6 dB$ $\frac{1}{I_{or}} = -1 dB$	(TT) 0.4 dB for- 	Formulas: Ratio between A and B + TT Ratio between B and D TT Ratio between D and E TT Ratio between E and F + TT ransmit ON/OFF time + TT timing $\frac{DPDCH _ E_c}{I_{or}} = -16.6 \text{ dB}$ $\frac{I_{or}}{I_{oc}} = -1 \text{ dB}$ $\frac{DPCCH _ E_c}{I_{or}} = -1 \text{ dB}$ $DPCCH$
5.5.1 Transmit OFF power (static case)	Transmit OFF power shall be loss than -56 dBm	1.0 dB	Formula: Transmit OFF power + TT Transmit OFF power = -55dBm.
5.5.2 Transmit ON/OFF time mask (dynamic- case)	Transmit ON power shall be the target value as defined in clause 5.5.2.2 Transmit OFF power shall be- less than -56 dBm	On power- upper TT = 0.7 dB On power- lower TT = 1.0 dB- Off power- TT [] dB	Formula for transmit ON power: Transmit ON power target upper limit + On power upper TT Transmit ON power target lower limit - On power lower TT To calculate Transmit ON power target value range take the nominal TX power- range from Table 5.5.2.3 then apply table 5.4.1.1 open limits then apply table 5.7.1 (only if there has been a transmission- gap) then cap the upper value using- table 5.2.1. Formula for transmit OFF power:- Transmit OFF power + Off power TT Transmit OFF power = []dBm
5.6 Change of TFC:- power control step size	TFC step size = +5 to +9 dB	0.3 dB	Formula: Upper Tolerance limit + TT Lower Tolerance limit – TT Upper limit = -4.7 dB
5.7 Power setting in uplink compressed- mode	Various	TBD- (Subset of- 5.4.2)	Lower limit = -9.3 dB TBD

Test-	Minimum Require 25.101		Test Tolerance (TT)	Test Requirement in	
5.8 Occupied Bandwidth	The occupied channel- bandwidth shall be less than 5- MHz based on a chip rate of- 3.84-Mcps.		0 kHz	Formula: occupied channel bandwidth	
5.9 Spectrum emission- mask			1.5 dB	Formula: Minimum require Lower limit + TT Add 1.5 to Minimum requir in TS25.101 Table 6.10. Zero test tolerance is appli Additional requirements for to FCC regulatory requirem The lower limit shall be -48 MHz or which ever is higher	ment + TT ement entries ed for- Band II due- tents- 3.5 dBm / 3.84
5.10 Adjacent Channel- Leakage Power Ratio- (ACLR)	If the adjacent chan greater than -50 dB ACLR shall be highe values specified bel	m then the er than the	0.0 dB	Formula: Absolute power t	
5.11 Spurious	Power Classes 3 an UE channel +5 MHz ACLR limit: 33 dB UE channel +10 MH MHz, ACLR limit: 43	: or -5 MHz, Iz or -10 -	0.8 dB	Formula: ACLR limit - TT Power Classes 3 and 4: UE channel +5 MHz or -5 I limit: 32.2 dB UE channel +10 MHz or -1 limit: 42.2 dB- Formula: Minimum Require	0 MHz, ACLR
Emissions				Add zero to all the values of Requirements in table 5.11 5.11.1b.	of Minimum .1a and
	Frequency Band	Minimum- Requireme nt		Frequency Band	Minimum- Requiremen
	9 kHz ≤ f < 150 kHz	− 36dBm ∕ 1kHz	0 dB	9kHz ≤ f < 1GHz	- 36dBm /1kHz
	150 kHz ≤ f < 30 MHz	–36dBm /10kHz	-0 dB	150 kHz ≤ f < 30 MHz	–36dBm / 10kHz
	30 MHz ≤ f < 1000 MHz	- 36dBm /100kHz	-0 dB	30 MHz ≤ f < 1000 MHz	- 36dBm /100kHz
	1 GHz ≤ f < 12.75 GHz	- 30dBm /1MHz	0 dB	1 GHz ≤ f < 2.2 GHz	− 30dBm ∕ 1MHz
			-0 dB	2.2 GHz ≤ f < 4 GHz	_30dBm / 1MHz
			- 0 dB	4 GHz ≤ f < 12.75 GHz	- 30dBm /1MHz
	1893.5 MHz < f < 1919.6 MHz	-41dBm /300kHz	-0 dB	1893.5 MHz < f < 1919.6 MHz	-41dBm / 300kHz
	$\frac{925 \text{ MHz} \le f \le 935}{\text{MHz}}$	-67dBm / 100kHz	-0 dB -0 dB	925 MHz ≤ f ≤ 935 MHz	<u>-67dBm</u> /100kHz
	935 MHz < f ≤ 960 MHz	79dBm / 100kHz		935 MHz < f ≤ 960 MHz	79dBm / 100kHz
	1805 MHz ≤ f ≤ 1880 MHz	-71dBm /100kHz	0 dB	1805 MHz ≤ f ≤ 1880 MHz	71dBm /100kHz
5.12 Transmit Intermodulation	Intermodulation Pro 5MHz		0.dB	Formula: CW interferer lev Intermod Products limits re unchanged.	main-
5.13.1 Transmit- modulation: EVM	The measured EVM exceed 17.5%.	shall not	0%	CW interferer level = -40 d Formula: EVM limit + TT EVM limit = 17.5 %	
5.13.2 Transmit- modulation: peak code- domain error	The measured Peak code- domain error shall not exceed- -15 dB-		1.0 dB	Formula: Peak code domain error + TT Peak code domain error = -14 dB	

Test-	Minimum Requi 25.10		Test- Tolerance (TT)	Test Requirement in	TS 34.121
6.2 Reference- sensitivity level	Î or = -106.7 dBm / 3.84 MHz DPCH_Ec = -117 dBm / 3.84- MHz BER limit = 0.001		0.7 dB	Formula: Îor+TT DPCH_Ec+TT BER limit unchanged Îor =106 dBm/X DPCH_Ec =116.3 dBm	3.84 MHz
6.3 Maximum input- level	-25 dBm lor -19 dBc DPCH_E	c/lor	0.7 dB	Formula: lor-TT	
6.4 Adjacent Channel- Selectivity	$\hat{I}_{OT} = -92.7 \text{ dBm} / 3.84 \text{ MHz}$ $DPCH_Ec = -103 \text{ dBm} / 3.84 \text{ MHz}$ MHz $I_{Oac} (modulated) = -52 \text{ dBm} / 3.84 \text{ MHz}$ BER limit = 0.001		0.dB	lor = -25.7 dBm Formula: Îor unchanged DPCH_Ec unchanged DPCH_Ec unchanged loac = TT BER limit unchanged loac = 52 dBm/3.84 MHz	
6.5 Blocking- Characteristics	See Table 6.5.3 and 6.5.4. in TS34.121 BER limit = 0.001		0 dB	Formula:- I- _{blocking} (modulated) - TT (c I- _{blocking} (CW) - TT (dBm) BER limit unchanged	IBm/3.84MHz;
6.6 Spurious Response	Iblocking(CW) –44 dBm Fuw: Spurious response frequencies BER limit = 0.001		0 dB	Formula: I _{blocking} (CW) - T Fuw unchanged BER limit unchanged I _{blocking} (CW) = -44 dBm	⁻ (dBm)
6.7 Intermodulation Characteristics	Iouw1 (CW) -46 dBm Iouw2 (modulated) -46 dBm / 3.84 MHz Fuw1 (offset) 10 MHz Fuw2 (offset) 20 MHz Ior = -103.7 dBm/3.84 MHz DPCH_Ec = -114 dBm/3.84		0.dB	Formula: lor + TT DPCH_Ec + TT louw1 level unchanged louw2 level unchanged BER limit unchanged.	
	BER limit = 0.001			lor = -114 dBm BER limit. = 0.001	
6.8 Spurious Emissions				Formula: Maximum level + Add zero to all the values of Level in table 6.8.1.	
	Frequency Band	Maximum- level		Frequency Band	Maximum- level
	9kHz ≤ f < 1GHz	-57dBm / 100kHz	0 dB	9kHz ≤ f < 1GHz	-57dBm / 100kHz
	1GHz ≤ f ≤- 12.75GHz	-47dBm -/1MHz	0 dB	1 GHz ≤ f ≤ 2.2GHz	-47dBm -/1MHz
			0 dB	2.2GHz < f ≤ 4GHz	-47dBm -/1MHz
	<u>1920MHz ≤ f ≤</u>	-60dBm	0 dB	$4GHz < f \le 12.75GHz$ $1920MHz < f < 1980MHz$	-47dBm -/1MHz -60dBm
	$\frac{1920MHZ \le 1 \le}{1980MHZ}$ $\frac{2110MHZ \le 1 \le}{2110MHZ \le 1 \le}$	-60dBm	0 dB	$\frac{1920MHZ \le 1 \le 1900MHZ}{2110MHZ \le f \le 2170MHZ}$	-60dBm
	2170MHz	/ 3.84MHz			/ 3.84MHz

Table F.4.2: Derivation of Test Requirements (Receiver tests)

Test	Minimum Requirement in TS	Test	Test Requirement in TS 34.121
	25.101	Tolerance (TT)	-
7.2 Demodulation of	<u>DPCH_E_c -5.5 to -16.6 dB</u>	0.1 dB	Formulas:
DPCH in static	$\frac{1}{I_{m}} = \frac{1}{c} = \frac{1}{2} = $	for-	$DPCH_E_c$ = ratio + TT
conditions	OF	\underline{DPCH}_{E_c}	I _{or}
	-I_{oc} = -60 dBm	I _{or}	$\frac{DPCH_E_c}{I_{or}} = ratio + TT$ $\hat{I}_{or}/I_{oc} = ratio + TT$
	$\hat{T}_{or}/T_{oc} = -1 \mathrm{dB}$	$\frac{0.3 \text{ dB for}}{\hat{I}_{or}/I_{oc}}$	-Ioc-unchanged
			$\frac{\hat{I}_{or}/I_{oc}}{\rm = -0.7 \ dB}$
			<u>DPCH_E_c</u> -5.4 to -16.5 dB: I_{or}
7.3 Demodulation of	<u>DPCH_E_c</u> -2.2 to -15.0	0.1 dB	Formulas:
DPCH in multi-path	I_{or}	for-	$\frac{Formulas:}{DPCH_E_c} = ratio + TT$ $\frac{1}{I_{or}} + ratio + TT$
fading propagation- conditions Tests 1-4		$\underline{DPCH}\underline{E_c}$	I _{or}
	-<i>I</i>_{oc} = -60 dBm		or / oc
	$\hat{I}_{or}/I_{oc} = 9 \text{ dB to } -3 \text{ dB}$	$\frac{0.6 \text{ dB for}}{\hat{I}_{or}/I_{oc}}$	-I _{oc} -unchanged
			$\frac{\hat{H}_{or}}{I_{oc}} = 9.6 \text{ to } -2.4 \text{ dB}$
			<u>DPCH_E_c -2.1 to -14.9 dB:</u>
			I _{or}
7.3 Demodulation of	<u>_DPCH_E_c3.2 to -7.7 dB</u>	0.1 dB	Formulas:
DPCH in multi-path fading propagation	$\frac{I_{or}}{I_{or}}$	for- DPCH E	$\frac{DPCH_E_c}{I_{cr}} = ratio + TT$
conditions Tests 5-8	I_{oc} = - 60 dBm	I_{or}	$\frac{I_{or}}{\hat{I}_{or}/I_{oc}} = \text{ratio} + TT$
		0.6 dB for	07 0
	$\hat{I}_{or}/I_{oc} = 6 \text{ dB to -3 dB}$	$\frac{1}{\hat{I}_{or}/I_{oc}}$	-I _{oc} -unchanged
			$\hat{H}_{or}/I_{oc} = 6.6$ to -2.4 dB
			<u>DPCH_E_c -3.1 to -7.6 dB:</u>
			1 or
7.3 Demodulation of	<u>DPCH_E_c -4.4 to -11.8 dB</u>	0.1 dB	Formulas:
DPCH in multi-path		for DRCH E	<u>DPCH_E_c = ratio + TT</u>
fading propagation conditions Tests 9-12		$\frac{DPCH_E_c}{I}$	$\frac{DPCH_E_c}{I_{or}} = \frac{\text{ratio} + TT}{I_{or}}$ $\frac{\hat{I}_{or}/I_{oc}}{I_{oc}} = \frac{\text{ratio} + TT}{I_{oc}}$
	$I_{oc} = -60 \text{ dBm}$		$\frac{T_{or}}{T_{oc}} = \frac{ratio + 1}{ratio}$
	$\hat{H}_{or}/I_{oc} = 6 \text{ dB to -3 dB}$	$\frac{0.6 \text{ dB for}}{\hat{I}_{or}/I_{oc}}$	-I _{oc} -unchanged
			$\hat{H}_{or}/I_{oc} = 6.6 \text{ to } -2.4 \text{ dB}$
			<u>DPCH_E_c</u> -4.3 to -11.7 dB: I_{cr}

Table F.4.3: Derivation of Test Requirements (Performance tests)

Test	Minimum Requirement in TS- 25.101	Test Telerance	Test Requirement in TS 34.121
7.3 Demodulation of DPCH in multi-path fading propagation conditions Tests 13-16	$\frac{DPCH_E_c}{I_{or}} = 2.2 \text{ to } -15.0 \text{ dB}$ $\frac{I_{oc}}{I_{oc}} = -60 \text{ dBm}$ $\frac{1}{I_{oc}} = -9 \text{ dB}$	0.6 dB for	Formulas: $\frac{DPCH_E_{c}}{I_{or}} = \text{ratio} + \text{TT}$ $\hat{I}_{or}/I_{oc} = \text{ratio} + \text{TT}$ $I_{oc} \text{-unchanged}$ $\hat{I}_{or}/I_{oc} = 9.6$ $\frac{DPCH_E_{c}}{I_{or}} = -2.1 \text{ to } -14.9 \text{ dB};$
7.3 Demodulation of DPCH in multi-path- fading propagation- conditions Tests 17-20	$\frac{DPCH_E_c}{I_{or}} = -1.4 \text{ to } -8.8 \text{ dB}$ $\frac{I_{oc}}{I_{oc}} = -60 \text{ dBm}$ $\hat{I}_{or}/I_{oc} = -6 \text{ to } -3 \text{ dB}$		$\frac{Formulas:}{DPCH_E_c} = ratio + TT$ $\frac{\hat{I}_{or}}{\hat{I}_{oc}} = ratio + TT$
7.4 Demodulation of DPCH in moving- propagation conditions	$\frac{DPCH_E_{c}}{I_{or}} = -60 \text{ dBm}$ $\hat{I}_{or}/I_{oc} = -1 \text{ dB}$	$\frac{0.1 \text{ dB}}{\text{for}}$ $\frac{DPCH_E_c}{I_{or}}$ $\frac{0.6 \text{ dB for}}{\hat{f}_{or}/I_{oc}}$	Formulas: $\frac{DPCH_E_{c}}{I_{or}} = \text{ratio} + \text{TT}$ $\hat{I}_{or}/I_{oc} = \text{ratio} + \text{TT}$ $I_{oc} - \text{unchanged}$ $\hat{I}_{or}/I_{oc} = -0.4 \text{ dB}$ $\frac{DPCH_E_{c}}{I_{or}} = -10.8 \text{ to} - 14.4 \text{ dB}$
7.5 Demodulation of DPCH birth-death- propagation conditions	$\frac{DPCH_E_{c}}{I_{or}} = -8.7 \text{ to } -12.6 \text{ dB}$ $\frac{1}{O_{oc}} = -60 \text{ dBm}$ $\frac{1}{I_{or}}/I_{oc} = -1 \text{ dB}$		Formulas: $\frac{DPCH_E_{c}}{I_{or}} = \text{ratio} + \text{TT}$ $\hat{I}_{or}/I_{oc} = \text{ratio} + \text{TT}$ $I_{oc} - \text{unchanged}$ $\hat{I}_{or}/I_{oc} = -0.4 \text{ dB}$ $\frac{DPCH_E_{c}}{I_{or}} = -18.6 \text{ to} - 12.5 \text{ dB}$

Error! No text of specified style in document.

356

Test-	Minimum Requirement in TS- 25.101	Test Telerance (TT)	Test Requirement in TS 34.121
7.6.1 Demodulation of DPCH in transmit- diversity propagation- conditions	$\frac{DPCH_E_c}{I_{or}} = -16.8 \text{ dB}$ $\frac{1}{Oc} = -60 \text{ dBm}$	0.1 dB	Formulas:
	$\hat{H}_{or}/H_{oc} = 9 \text{ dB}$	0.8 dB for	-I oc - unchanged
			$\hat{I}_{or}/I_{oc} = 9.8 \text{dB}$
			$\frac{DPCH_E_c}{I_{or}} - 16.7 \text{ dB};$
7.6.2 Demodulation of DCH in closed loop Transmit diversity mode	<u>DPCH_E_c</u> -18 to -18.3 dB I_{or}	$\frac{0.1 \text{ dB}}{\text{for}}$ $\underline{DPCH} \underline{E_c}$	$\frac{Pormulas:}{DPCH_E_c} = ratio + TT$
	$\frac{I_{oc}}{I_{oc}} = -60 \text{ dBm}$ $\frac{\hat{I}_{oc}}{I_{oc}} = 9 \text{ dB}$		\hat{H}_{or}/H_{oc} = ratio + TT H_{oc} - unchanged
	for f foc	$\frac{I_{or}}{I_{oc}}$	$\hat{I}_{or}/I_{oc} = 9.8 \text{ dB}$
			<u>DPCH_E_c</u> -17.9 to -18.2 dB: I_{or}
7.6.3, Demodulation of DCH in site selection- diversity Transmission- power control mode	$\frac{DPCH_{E_c}}{I_{or}} = 7.5 \text{ to } -9.2 \text{ dB}$	0.1 dB for DPCH_E _c	$\frac{Formulas:}{DPCH_E_c} = ratio + TT$ I_{or}
power control mode	$I_{oc} = -60 \text{ dBm}$	I _{or}	$\hat{I}_{or}/I_{oc} = \text{ratio} + \text{TT}$
	$\hat{I}_{or}/I_{oc} = 0 \text{ to } -3 \text{ dB}$	$\frac{\hat{H}_{or}}{H_{oc}}$	$\frac{I_{oc}}{\hat{I}_{oc}} = 0.8 \text{ to } -2.2 \text{ dB}$
			$\frac{DPCH_E_c}{I_{or}} = -7.4 \text{ to } -9.1 \text{ dB};$
7.7.1 Demodulation in inter-cell soft Handover	$\frac{DPCH_E_c}{I_{or}}$	$\frac{0.1 \text{ dB}}{\text{for}}$ \underline{DPCH}_E_c	
	<i>I_{oc}</i> = - 60 dBm	I _{or}	$\hat{H}_{or}/I_{oc} = \text{ratio} + TT$
	$\hat{I}_{or}/I_{oc} = \text{lor}2/\text{loc} = 6 \text{ to } 0 \text{ dB}$	$\frac{0.8 \text{ dB for}}{\hat{I}_{or}/I_{oc}}$	- I oc - unchanged
			$\hat{I}_{or}/I_{oc} = 6.8 \text{ to } 0.8 \text{ dB}$
			$\frac{DPCH_E_c}{I_{or}} = -5.4 \text{ to} -15.4 \text{ dB};$

Test	Minimum Requirement in TS	Test	Test Requirement in TS 34.121
	25.101	Tolerance (TT)	
7.7.2 Combining of TPC commands Test 1	$\frac{DPCH_E_{c}\12 \text{ dB}}{I_{or}}$	$\begin{array}{c} \begin{array}{c} 0.1 \text{ dB} \\ \hline \text{for} \\ DPCH_E_c \end{array}$	$\frac{POrmulas:}{DPCH_E_c} = ratio + TT$
	lor1 and lor2 -60dBm	I _{or}	- or
		0dB for lor1 and lor2	$\frac{DPCH_E_c}{I_{or}} = -11.9 \text{ dB:}$ $\frac{10r1 = 60dBm}{10r2 = 60dBm}$
			The absolute levels of lor1 and lor2 are not important to this test.
7.7.2 Combining of TPC commands Tost 2	$\frac{DPCH_E_c\12 \text{ dB}}{I_{or}}$	$\frac{0.1 \text{ dB}}{\text{for}}$ \underline{DPCH}_E_c	Formulas: $\frac{DPCH_E_c}{I_{or}} = ratio + TT$ $\hat{I}_{or} = ratio + TT$
	$I_{oc} = -60 \text{ dBm}$	I _{or}	$\frac{\hat{I}_{or}}{I_{oc}} = \text{ratio} + \text{TT}$
	$\hat{I}_{or}/I_{oc} = 0 \text{ dB}$	$\frac{0.8 \text{ dB for}}{\hat{I}_{or}/I_{oc}}$	-I _{oc} -unchanged
			$\hat{I}_{or}/I_{oc} = 0.8 \text{ dB}$
			$\frac{DPCH_E_c}{I_{or}} \rightarrow 11,9 \text{ dB:}$ Formulas:
7.8.1 Power control in downlink constant BLER target	$\frac{DPCH_E_c}{I_{or}} \xrightarrow{-9 \text{ to -16 dB}}$	$\begin{array}{c} 0.1 \text{ dB} \\ \hline \text{for} \\ DPCH_E_c \end{array}$	Formulas:
	- <i>I_{oc}</i> - = - 60 dBm	I _{or}	$\hat{H}_{or}/I_{oc} = \text{ratio} + \top \top$
	$\hat{H}_{or}/H_{oc} = 9 \text{ to -1 dB}$	$\frac{0.6 \text{ dB for}}{\hat{I}_{or}/I_{oc}}$	-I _{oc} -unchanged
			$\frac{\hat{H}_{or}}{I_{oc}} = 9.6 \text{ to } -0.4 \text{ dB}$
			<u>DPCH_E_c</u> -8.9 to -15.9 dB: I_{or}
7.8.2, Power control in- downlink initial convergence	$\frac{DPCH_E_c}{I_{or}} = \frac{-8.1 \text{ to} - 18.9 \text{ dB}}{1}$	$\begin{array}{c} \begin{array}{c} 0.1 \text{ dB} \\ \hline \text{for} \\ DPCH_E_c \end{array}$	$\frac{Formulas:}{DPCH_E_c} = ratio + TT$ $\frac{\hat{I}_{or}}{\hat{I}_{or}} = ratio + TT$
	<u>−<i>I</i>_{oc} − − 60 dBm</u>	I _{or}	$\hat{H}_{or}/I_{oc} = \text{ratio} + TT$
	$\frac{I_{oc}}{I_{or}/I_{oc}} = -1 \text{ dB}$	$\frac{0.6 \text{ dB for}}{\hat{I}_{or}/I_{oc}}$	Hoc - unchanged
			$\hat{I}_{or}/I_{oc} = -0.4 \text{ dB}$
			<u>DPCH_E_c</u> -8.0 to -18.8 dB: I_{or}

Test-	Minimum Requirement in TS- 25.101	Test Telerance (TT)	Test Requirement in TS 34.121
7.8.3, Power control in downlink: wind up offects	$\frac{DPCH_E_{c}_13.3 \text{ dB}}{I_{or}}$ $\frac{I_{oc}=-60 \text{ dBm}}{\hat{I}_{or}/I_{oc}=-5 \text{ dB}}$	$\frac{0.1 \text{ dB}}{\text{for}}$ $\frac{DPCH_E_c}{I_{or}}$	$\frac{Formulas:}{DPCH_E_c} = ratio + TT$ $\frac{\hat{I}_{or}}{\hat{I}_{or} - ratio} + TT$
	$\hat{I}_{or}/I_{oc} = 5 \text{ dB}$	$\frac{\hat{f}_{or}}{\hat{f}_{oc}}$	$\frac{I_{oc} \text{-unchanged}}{\hat{I}_{or}/I_{oc}} = 5.6 \text{ dB}$ $\frac{DPCH_E_c}{I_{or}} = 13.2 \text{ dB};$ Formulas:
7.9 Downlink- compressed mode	$\frac{DPCH_E_c}{I_{or}}$ $\frac{1}{1} + 14.6 \text{ dB}$	$\frac{0.1 \text{ dB}}{\text{for}}$ $\frac{DPCH_E_c}{I_{or}}$ $\frac{0.6 \text{ dB for}}{\hat{f}_{or}/I_{oc}}$	$ \frac{I_{or}}{I_{or}} = ratio + TT $ $ \frac{I_{or}}{I_{or}} = ratio + TT $ $ \frac{I_{or}}{I_{oc}} = ratio + TT $ $ \frac{I_{oc}}{I_{oc}} = ratio + TT $ $ \frac{I_{oc}}{I_{oc}} = 9.6 \text{ dB} $
7.10 Blind transport format detection Tests-	<u></u>	0.1 dB for-	<u>DPCH_E</u> I _{or} Test 1 -14.5 dB Test 3 -15.1 dB : Formulas:
1, 2, 3	I_{or} $I_{oc} = -60 \text{ dBm}$ $\hat{I}_{or}/I_{oc} = -1 \text{ dB}$	0.2 dD for	$\frac{DPCH_E_{c}}{I_{or}} = ratio + TT$ $\frac{\hat{I}_{or}/I_{oc}}{\hat{I}_{oc}} = ratio + TT$ $\frac{I_{oc}}{I_{oc}} = ratio + TT$ $\frac{I_{oc}}{I_{oc}} = -0.7 \text{ dB}$
7.10 Blind transport		0.1 dB	$\underline{DPCH_E_c}_{or} = 17.6 \text{ to} = 18.3 \text{ dB};$
format detection Tests- 4, 5, 6	$\frac{I_{or}}{I_{or}} = -\frac{60 \text{ dBm}}{3 \text{ dB}}$	$\frac{for}{DPCH_E_c}$	$\frac{DPCH_E_c}{I_{or}} = \text{ratio} + \text{TT}$ $\hat{I}_{or}/I_{oc} = \text{ratio} + \text{TT}$ $\frac{1}{I_{or}} = \text{ratio} + \text{TT}$
		- H _{or} /H _{oc}	$\frac{I_{oc} \text{-unchanged}}{\hat{I}_{or}/I_{oc}} = -2.4 \text{ dB}$ $\underline{DPCH}_E_c}_{-12.9 \text{ to}} -13.7 \text{ dB}:$ I_{or}

Test-	Test Parameters in TS 25.133	Test Tolerance (TT)	Test Requirement in TS 34.121
8.2 Idle Mode Tasks		(11)	
8.2.2 Cell Re-Selection			
8.2.2.1 Scenario 1: Single carrier case	$\frac{CPICH_E_c}{I_{or}} = 10 \text{ dB}$	$\frac{\frac{0.1 \text{ dB for}}{CPICH_E_c}}{I_{or}}$	Formulas: <u>CPICH_E_c = ratio - TT</u>
	$I_{oc} = -70 \text{ dBm}$	0.3 dB for lor/loc	$\frac{I_{or}}{\text{lor/loc} = \text{ratio} - \text{TT}}$
	lor/loc = 7.3 dB Note: Parameters are valid-		- I _{oc} -unchanged
	for cell 1 at time T1 and cell 2 at time T2		lor/loc = 7 dB
			$\frac{CPICH_E_c}{I_{or}} \xrightarrow{-10.1 \text{ dB}}$
	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$	$\frac{\frac{0.1 \text{ dB for}}{CPICH_E_c}}{I_{or}}$	Formulas: $CPICH _ E_c = ratio + TT$
	$I_{oc} = -70 \text{ dBm}$	0.3 dB for lor/loc	$\frac{I_{or}}{\text{lor/loc} = \text{ratio} + \text{TT}}$
	lor/loc = 10.27 dB Note: Parameters are valid-		loc unchanged
	for cell 1 at time T2 and cell 2 at time T1		lor/loc = 10.57 dB
			$\frac{CPICH_E_c}{I_{or}} \xrightarrow{-9.9 \text{ dB}}$
8.2.2.2 Scenario 2: Multi carrier case	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$	0.1 dB for CPICH_E _c	Formulas:
	I_{oc} = - 70 dBm	I _{or} 0.3 dB for lor/loc	$\frac{CPICH _E_c}{I_{or}} = \frac{Fatio _TT}{I_{or}}$
	lor/loc = -3.4 dB		loc unchanged
	Note: Parameters are valid for cell 1 at time T1 and cell		loc ratio unchanged
	2 at time T2		lor/loc = -3.7 dB
			$\frac{CPICH_E_c}{I_{or}}$

Table F.4.4: Derivation of Test Requirements (RRM tests)

Test-	Test Parameters in TS 25.133	Test Tolerance (TT)	Test Requirement in TS 34.121
	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$ $\frac{I_{oc} = -70 \text{ dBm}}{I_{oc}}$ $\frac{I_{oc} = -70 \text{ dBm}}{I_{oc} = 2.2 \text{ dB}}$ Note: Parameters are valid- for cell 1 at time T2 and cell 2 at time T1	$\frac{0.1 \text{ dB for}}{CPICH_E_c}$ $\frac{I_{or}}{I_{or}}$ 0.3 dB for lor/loc	Formulas: $\frac{CPICH_E_c}{I_{or}} = ratio + TT$ $lor/loc = ratio + TT$ $loc unchanged$ $loc ratio unchanged$ $lor/loc = 2.5 dB$ $\underline{CPICH_E_c}_9.9 dB:$ I_{or}
8.2.3 UTRAN to GSM- Cell-Re-Selection 8.2.3.1 Scenario 1:- Both UTRA and GSM- level changed	TBD $\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$ $1000000000000000000000000000000000000$	0.1 dB for <u>CPICH_E</u> I _{or} 0.3 dB for lor/loc 0.3 dB for loc/RXLEV	Formulas: $\frac{CPICH _ E_c}{I_{or}} = ratio + TT$ $\frac{Ior/Ioc = ratio + TT}{(Ioc/RxIov)_{test requirement} = (Ioc/RxIov)_{minimum requirement} + TT}$ $\frac{Ior/Ioc = 0.3 dB}{I_{or}}$ $\frac{CPICH _ E_c}{I_{or}} = -9.9 dB$
	$\frac{CPICH _ E_c}{I_{or}} = 10 \text{ dB}$	0.1 dB for <u>CPICH_E</u> I _{or} 0.3 dB for lor/loc 0.3 dB for loc/RXLEV	Formulas: $\frac{CPICH - E_c}{I_{or}} = ratio - TT$ $\frac{Ior/Ioc = ratio - TT}{(Ioc/RxIev)_{test requirement}} = \frac{(Ioc/RxIev)_{minimum requirement} - TT}{Ior/Ioc = -5.3 dB}$ $\frac{CPICH - E_c}{I_{or}} = 10.1 dB$
8.2.3.2 Scenario 2: Only UTRA level- changed	$\frac{CPICH - E_c}{I_{or}} = -10 \text{ dB}$	0.1 dB for <u>CPICH _ E</u> I _{or} 0.3 dB for lor/loc 0.3 dB for loc/RXLEV	Formulas: $\frac{CPICH _ E_c}{I_{or}} = ratio + TT$ $\frac{Ior/Ioc = ratio + TT}{(Ioc/RxIov)_{test requirement}} = \frac{(Ioc/RxIov)_{minimum requirement} + TT}{Ior/Ioc = 20.3 dB}$ $\frac{CPICH _ E_c}{I_{or}} = -9.9 dB$

Test-	Test Parameters in TS 25.133	Test Tolerance (TT)	Test Requirement in TS 34.121
	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$	0.1 dB for <u>CPICH_E</u> I _{or} 0.3 dB for lor/loc 0.3 dB for loc/RXLEV	Formulas: $\frac{CPICH _ E_c}{I_{or}} = ratio + TT$ $lor/loc = ratio + TT$ $\frac{(loc/Rxlev)_{test requirement} = -}{(loc/Rxlev)_{minimum requirement} + TT}$ $lor/loc = 20.3 dB$ $\frac{CPICH _ E_c}{I_{or}} = -9.9 dB$
8.2.4 FDD/TDD cell re- selection	TBD		
8.3 UTRAN Connected Mode Mobility	TBD		
8.3.1 FDD/FDD Soft Handover	TBD		
8.3.2 FDD/FDD Hard- Handover	TBD		
8.3.3 FDD/TDD- Handover	TBD		
8.3.4 Inter-system- Handover form UTRAN FDD to GSM	TBD		
8.3.5 Cell Re-selection in CELL_FACH			
8.3.5.1 One frequency- present in the- neighbour list	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$ $\frac{I_{oc} = -70 \text{ dBm}}{I_{oc} = -70 \text{ dBm}}$ $\frac{I_{oc} = -70 \text{ dBm}}{I_{oc} = -7.3 \text{ dB}}$ Note: Parameters are valid- for cell 1 at time T1 and cell- 2 at time T2	0.1 dB for <u>CPICH_E</u> I _{or} 0.3 dB for lor/loc	Formulas: $\frac{CPICH - E_{c}}{I_{or}} = ratio - TT$ $Ior/loc = ratio - TT$ $\frac{I_{oc} - unchanged}{Ior/loc = 7 dB}$ $\frac{CPICH - E_{c}}{I_{or}} = 10.1 dB$
	$\frac{CPICH _ E_c}{I_{or}} = -10 \text{ dB}$ $\frac{I_{or}}{I_{or}} = -70 \text{ dBm}$ $\frac{1}{1000} = 10.27 \text{ dB}$ Note: Parameters are valid- for cell 1 at time T2 and cell- 2 at time T1	0.1 dB for <u>CPICH _E</u> I _{or} 0.3 dB for lor/loc	Formulas: $\frac{CPICH _ E_c}{I_{or}} = ratio + TT$ $lor/loc = ratio + TT$ $loc unchanged$ $lor/loc = 10.57 dB$ $\underline{CPICH _ E_c}_{or} = 9.9 dB$

Test-	Test Parameters in TS 25.133	Test Tolerance (TT)	Test Requirement in TS 34.121
8.3.5.2 Two- frequencies present in- the neighbour list	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$ $\frac{I_{oc}}{I_{oc}} = -70 \text{ dBm}$ $\frac{1}{1000} = -3.4 \text{ dB}$ Note: Parameters are valid- for cell 1 at time T1 and cell 2 at time T2	0.1 dB for <u>CPICH_E</u> I _{or} 0.3 dB for lor/loc	Formulas: $\frac{CPICH _ E_c}{I_{or}} = ratio - TT$ Ior/loc = ratio - TT Ioc unchanged Ioc ratio unchanged Ioc ratio unchanged Ior/loc = -3.7 dB $\frac{CPICH _ E_c}{I_{or}} = 10.1 \text{ dB}:$
	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$ $\frac{I_{oc} = -70 \text{ dBm}}{I_{oc} = 2.2 \text{ dB}}$ Note: Parameters are valid- for cell 1 at time T2 and cell- 2 at time T1	0.1 dB for <u>CPICH _ E_c</u> I _{or} 0.3 dB for lor/loc	Formulas: $\frac{CPICH - E_c}{I_{or}} = ratio + TT$ Ior/loc = ratio + TT Ioc unchanged Ioc ratio unchanged Ior/loc = 2.5 dB $\frac{CPICH - E_c}{I_{or}} = 9.9 \text{ dB}$
8.3.6 Cell Re-selection in CELL_PCH			
8.3.6.1 One frequency- present in the- neighbour list	$\frac{CPICH _ E_c}{I_{or}} = -10 \text{ dB}$ $\frac{I_{oc}}{I_{oc}} = -70 \text{ dBm}$ $\frac{Ior/Ioc = 7.3 \text{ dB}}{I_{oc}}$ Note: Parameters are valid- for cell 1 at time T1 and cell- 2 at time T2	0.1 dB for <u>CPICH_E_c</u> I _{or} 0.3 dB for lor/loc	Formulas: $\frac{CPICH _ E_c}{I_{or}} = ratio - TT$ $Ior/loc = ratio - TT$ $\frac{I_{oc} - unchanged}{Ior/loc = 7 dB}$ $\frac{CPICH _ E_c}{I_{or}} = 10.1 dB$

Test-	Test Parameters in TS 25.133	Test Tolerance (TT)	Test Requirement in TS 34.121
	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$ $\frac{1}{I_{or}} = -70 \text{ dBm}$ $\frac{1}{I_{oc}} = -70 \text{ dBm}$ $\frac{1}{I_$	0.1 dB for <u>CPICH_E</u> I _{or} 0.3 dB for lot/loc	Formulas: $\frac{CPICH _ E_c}{I_{or}} = ratio + TT$ $lor/loc = ratio + TT$ $loc unchanged$ $lor/loc = 10.57 dB$ $\frac{CPICH _ E_c}{I_{or}} = 0.9 dB;$
8.3.6.2 Two- frequencies present in- the neighbour list	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$ $\frac{I_{oc} = -70 \text{ dBm}}{I_{oc} = -3.4 \text{ dB}}$ Note: Parameters are valid- for cell 1 at time T1 and cell 2 at time T2	$\frac{\frac{0.1 \text{ dB for}}{CPICH_E_c}}{I_{or}}$	Formulas: $\frac{CPICH _ E_c}{I_{or}} = ratio - TT$ Ior/Ioc = ratio - TT Ioc unchanged Ioc ratio unchanged Ior/Ioc = -3.7 dB $\frac{CPICH _ E_c}{I_{or}} = -10.1 \text{ dB};$
	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$ $\frac{I_{oc} = -70 \text{ dBm}}{I_{oc} = -2.2 \text{ dB}}$ Note: Parameters are valid- for cell 1 at time T2 and cell 2 at time T1	0.1 dB for <u>CPICH_E_c</u> I _{or} 0.3 dB for lor/loc	Formulas: $\frac{CPICH _ E_c}{I_{or}} = ratio + TT$ $lor/loc = ratio + TT$ $loc unchanged$ $loc ratio unchanged$ $lor/loc = 2.5 dB$ $\frac{CPICH _ E_c}{I_{or}} = 9.9 dB$

Test	Test Parameters in TS 25.133	Test Tolerance (TT)	Test Requirement in TS 34.121
8.3.7.1 One frequency present in the neighbour list	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$ $\frac{I_{oc}}{I_{oc}} = -70 \text{ dBm}$ $\frac{I_{oc}}{I_{oc}} = -7.3 \text{ dB}$	$\frac{0.1 \text{ dB for}}{CPICH _E_c}$ $\frac{I_{or}}{I_{or}}$ 0.3 dB for lor/loc	Formulas:
	Note: Parameters are valid- for cell 1 at time T1 and cell 2 at time T2		$\frac{I_{oc} \text{-unchanged}}{\text{lor/loc} = 7 \text{ dB}}$ $\frac{\underline{CPICH}_{E_c}}{I_{or}} = 10.1 \text{ dB};$
	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$ $\frac{I_{oc} = -70 \text{ dBm}}{I_{oc} = -70 \text{ dBm}}$ $1000000000000000000000000000000000000$	$\frac{0.1 \text{ dB for}}{CPICH _E_c}$ $\overline{I_{or}}$ 0.3 dB for lor/loc	Formulas: $\frac{CPICH _ E_c}{I_{or}} = ratio + TT$ $lor/loc = ratio + TT$ $loc unchanged$ $lor/loc = 10.57 dB$ $\frac{CPICH _ E_c}{I_{or}} = 0.9 dB$
8.3.7.2 Two- frequencies present in- the neighbour list	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$ $\frac{I_{oc} = -70 \text{ dBm}}{I_{oc} = -3.4 \text{ dB}}$ Note: Parameters are valid- for cell 1 at time T1 and cell 2 at time T2	0.1 dB for <u>CPICH_E_c</u> I _{or} 0.3 dB for lor/loc	Formulas: $\frac{CPICH _ E_c}{I_{or}} = ratio _ TT$ Ior/loc = ratio _ TT Ioc_unchanged Ioc_ratio_unchanged Ior/loc = -3.7 dB $\frac{CPICH _ E_c}{I_{or}} = 10.1 \text{ dB};$

Test	Test Parameters in TS 25.133	Test Tolerance (TT)	Test Requirement in TS 34.121
	$\underline{CPICH}_{E_c} = -10 \text{ dB}$	0.1 dB for	Formulas:
		$\frac{CPICH_E_c}{I_{or}}$	<u>CPICH_E_c</u> = ratio + TT
	<u>−I_{oc} = - 70 dBm</u>	0.3 dB for lor/loc	$\frac{I_{or}}{\text{lor/loc} = \text{ratio} + TT}$
	$\frac{10}{10} = 2.2 \text{ dB}$		loc unchanged
	Note: Parameters are valid for cell 1 at time T2 and cell 2 at time T1		loc ratio unchanged
			lor/loc = 2.5 dB
			$\frac{CPICH_E_c\9.9 \text{ dB}}{I_{or}}$
8.4 RRC Connection	TBD		
Control			
8.4.1 RRC Re- establishment delay	TBD		
8.4.2 Random Access	TBD		
8.5 Timing and Signalling	TBD		
Characteristics			
8.5.1 UE Transmit Timing	TBD		
8.6 UE Measurements Procedures	TBD		
8.6.1 FDD intra frequency	TBD		
measurements 8.6.1.1 Event triggered reporting in AWGN	TBD		
propagation conditions 8.6.1.2 Event triggered reporting of multiple- neighbours in AWGN- propagation condition	TBD		
8.6.1.3 Event triggered reporting of two- detectable neighbours- in AWGN propagation-	TBD		
condition 8.6.1.4 Corroct reporting of neighbours- in fading propagation-	TBD		
condition 8.6.2 FDD inter- frequency- measurements	TBD		
8.6.2.1 Correct reporting of neighbours- in AWGN propagation- condition	TBD		
8.6.2.2 Correct reporting of neighbours- in Fading propagation- condition	TBD		
8.6.3 TDD- measurements	TBD		
8.6.3.1Correct- reporting of TDD- neighbours in AWGN- propagation condition	TBD		

8.7.4 DECLARSCE TBD 8.7.1 CPICLARSCE TBD 8.7.2 CPICLARSCE TBD 8.7.3 CPICLARSCE TBD 8.7.4 CPICLARSCE TBD <	Test-	Test Parameters in TS 25.133	Test Tolerance (TT)	Test Requirement in TS 34.121
8.7.1.1-Initia frequency- measurements. accuracy TBD 8.7.2.2-Linter-frequency- measurements. accuracy TBD 8.7.3.1-Initia frequency- measurements. accuracy TBD 8.7.3.2-Life frequency- measurements. accuracy initial + TD Initial Depends on PUEMAX see- table 8.7.3C-2.1 8.7.3.2-Life frequency- difference TBD 8.7.4-SFN-CFN difference TBD 8.7.4-UERX Initial 8.7.2-2.1 8.7.4-UERX TBD 8.7.4-UERX TBD 8.7.4-UERX TBD 8.7.4-UERX Initial 8.7.2-2.1 8.7.4-UERX TBD 10.1-10.0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	Performance-			
Statuments Image: Status Image: Status Image: Status Image: Status Status Image: Status Image: Status Image: Status Image: Status Status Image: Status Image: Status Image: Status Image: Status Status Image: Status Image: Status Image: Status Image: Status Status Image: Status Image: Status Image: Status Image: Status Status Image: Status Image: Status Image: Status Image: Status Status Image: Status Image: Status Image: Status Image: Status Status Image: Status Image: Status Image: Status Image: Status Status Image: Status Image: Status Image: Status Image: Status Status Image: Status Image: Status Image: Status Image: Status Status Image: Status Image: Status Image: Status Image: Status Status Image: Status Image: Status Image: Status Image: Status Status Image: Status Image: Status Image: Status Image: Status Status Image: Status Image: Status Image: Status Image: Status Status Ima		TBD		
measurement-accuracy B-7.2-CPICH-Ec/0 TBD Image: Comparison of the comparison of	measurements	TBD		
8.7.1.1 Intra frequency measurements. decorracy neasurements. decorracy 8.7.1.2 Inter frequency 8.7.4 LTRA Carrier RSSI 8.7.32 UE Transport. channel BLER TBD 8.7.32 UE Transport. channel BLER TBD 8.7.32 UE Transport. channel BLER 0.7.4B 8.7.32 UE Transmitted decorracy innit Depende on PUEMAX see- table 8.7.32.2.1 0.7.4B 8.7.4 SEN CFN observed time- difference TBD 8.7.4 SEN CFN observed time- difference 1-00.700 fB + /oe: Test 1: lo = -02.7 dBm, Test 2: lo = -200 dBm 7.7.6 UE Rw.Tx time- difference 1-00.700 fB + /oe: Test 1: lo = -02.7 dBm, Test 2: lo = -200 dBm Timing Accuracy ± 1.5 chip 1-08 for loc 0.3 dB for loc/loc Test 3: lo = -600 dBm Test 2: lo = -300 dBm Test 2: unchanged (no critical RF- parameters) Test 2: unchanged (no critical RF- parameters) Test 3: lo = -61.3 dBm, loc = - 62.2 dBm Test 3: lo = -60.3 dBm, loc = - 62.2 dBm Test 2: unchanged (no critical RF- parameters) Test 3: lo = -61.3 dBm, loc = - 62.2 dBm 50 Timing accuracy [±2.0] chip Timing accuracy [±2.0] chip Formula: loc'(1 TTrue+(lor/loc+TTrue)) - 50		TBD		
Image: contranspondent in the second seco	8.7.2 CPICH Ec/lo	TBD		
measurement-accuracy RSSI TBD 8-7.36 UTRA-Carrier RSSI TBD 8-7.36 UTRA-Carrier RSSI TBD 8-7.36 UTRA-Carrier RSSI Accuracy-upper limit Depends on PUEMAX.see- table 8-7.3C.2.1 0.7.dB 8-7.4 SEN-CFN observed time- difference Accuracy-upper limit Depends on PUEMAX.see- table 8-7.3C.2.1 0.7.dB 8-7.4 SEN-CFN observed time- difference IBD IED 8-7.6 UE RX-TX-time- difference In -10-0.4B = -100; Tool 1-10 = -04.4Bm Test3-1-0 = -50.4Bm Test3-1-0 = -50.4Bm Test3-1-0 = -50.4Bm Timing Accuracy ± 1.5-ohip Timing Accuracy ± 1.5-ohip Timing Accuracy ± 1.5-ohip Timing Accuracy ± 1.5-ohip Tost 2: unchanged (no critical RF- parameters) 7-622-2Bm Tost 2: unchanged (no critical RF- parameters) 7-632-2-4Bm, Tost 2: unchanged (no critical RF- parameters) 7-632-2-4Bm, Tost 2: unchanged (no critical RF- parameters) 7-652-2-4Bm 8-7.5 Observed time- difference 8-7.6 Observed time- difference 8-7.6 Observed time- difference <t< td=""><td>measurements</td><td>TBD</td><td></td><td></td></t<>	measurements	TBD		
8.7.3A UTRA Carrier. TBD TBD PSSI BF.3B Transport channel BLER TBD Formula: Upper accuracy limit + TT begends on PUEMAX see- table 8.7.3C-UT ransmitted 8.7.4 SFN CFN- ebberved lime- difference Accuracy upper limit Accuracy level limit difference 0.7.4B Formula: Upper accuracy limit + TT Add and subtract TT to all the values- in table 8.7.3C-2.1 8.7.4 SFN CFN- ebberved lime- difference TBD 0.7.4B Formula: Upper accuracy limit + TT Add and subtract TT to all the values- in table 8.7.3C-2.1 8.7.4 SFN CFN- ebberved lime- difference TBD 0.3.4B for locit Test 1: lo = -92.7.4Bm, loc = -103.6.4Bm 8.7.6 UE PAXTX time- difference to -10.9.4B = /ee, Test 1: lo = -50dBm 1.4B for locit Test 1: lo = -92.7.4Bm, loc = -103.6.4Bm Test 2: lo = -50dBm Test 2: lo = -51.3.6Bm Test 2: lo = -51.3.6Bm, loc = '1.10 = -61.3.6Bm, loc = -62.2.4Bm Formula: loc *(1+TT _{loc} + (lor/loc + TT _{lor/loc})) ≤ -94 Test 3: lo = -51.3.6Bm, loc = -62.2.4Bm Test 3: lo = -51.3.6Bm, loc = -62.2.4Bm Test 3: lo = -51.3.6Bm, loc = -62.2.4Bm Test 3: lo = -51.3.6Bm, loc = -62.2.4Bm Test 3: lo = -51.3.6Bm, loc = -62.2.4Bm Test 3: lo = -51.3.6Bm, loc = -62.2.4Bm Timing accuracy [12.0] chip Timing accuracy [12.0] chip Timing accuracy [12.0] chip Formula: loc/fultettriate to 2.5M cell TBD		TBD		
channel BLER	8.7.3A UTRA Carrier RSSI	TBD		
power Accuracy lower limit Depende on PUEMAX see- table 8.7.3 C.2.4	channel BLER			
8.7.4 SEN-CEN- observed time- difference TBD 8.7.5 SEN-SEN- observed time- difference TBD 8.7.6 UE Rx-Tx time- difference !a = 10.9 dB = !ac; Test 1: lo = -92.0 dBm Test 2: lo = -72dBm Test 2: lo = -50dBm Timing Accuracy ± 1.5 chip 1 dB for loc 0.3 dB for lor/loc [0.5 chip for timing- accuracy] Test 1: lo = -92.7 dBm, loc = -103.6 dBm 7 or the set 1: lo = -72dBm Test 2: lo = -50dBm 1 dB for loc 0.3 dB for lor/loc [0.5 chip for timing- accuracy] Test 2: lo = -103.6 dBm 7 or the set 1: lo = -72dBm Test 2: lo = -51.3 dBm, loc = -62.2 dBm Test 2: unchanged (no oritical RF- parametere) 7 or the set 2: lo = -51.3 dBm, loc = -62.2 dBm Test 2: lo = -51.3 dBm, loc = -62.2 dBm 8.7.7 Observed time- difference to GSM cell TBD		Accuracy lower limit Depends on PUEMAX see-	0.7 dB	Lower accuracy limit – TT Add and subtract TT to all the values
8.7.5 SFN-SFN- ebserved time- difference TBD 8.7.6 UE Rx-Tx time- difference to -10.0 dB = loc; Test 1: lo = -92.4 dBm; Test2 : lo = -72dBm; Test2 : lo = -72dBm; Test3 : lo = -50dBm 1 dB for loc Test 1: lo = -92.7 dBm; loc = -103.6 dBm 7.6 Schip for timing; accuracy] 1 dB for loc Test 1: lo = -92.7 dBm; loc = -103.6 dBm 7.6 Schip for timing; accuracy] 1 dB for loc Formula: loc*(1 + TT loc+ (lor/loc + TT lor/loc)) ≥ -94 7 Test 2: unchanged (no critical RF- parameters) Tost 2: lo = -51.3 dBm, loc = -62.2 dBm Formula: loc*(1+TT loc+ (lor/loc+TT lor/loc)) ≤ -50 Timing accuracy [±2.0] chip Formula: loc*(1+TT loc+ (lor/loc+TT lor/loc)) ≤ -50 Timing accuracy [±2.0] chip Formula: loc*(1+TT loc+ (lor/loc+TT lor/loc)) ≤ -50 Timing accuracy [±2.0] chip Formula: loc*(1+TT loc + (lor/loc+TT lor/loc)) ≤ -50 Timing accuracy [±2.0] chip Formula: loc*(1+TT loc + (lor/loc+TT lor/loc)) ≤ -50 Timing accuracy [±2.0] chip Formula: loc*(1+TT loc + GSM cell TBD TBD	observed time-	TBD		
difference Test 1: lo = -94 dBm Test 2: lo = -72dBm Test 3: lo = -50dBm Ioc = -103.6 dBm Timing Accuracy ± 1.5 chip Ioc = -103.6 dBm Formula: Ioc*(1 TT _{loc} + (lor/loc TT _{lor/loc})) ≥ -94 Test 2: unchanged (no critical RF- parameters) Test 2: unchanged (no critical RF- parameters) Test 3: lo = -51.3 dBm, loc = -62.2 dBm Formula: Ioc*(1+TT _{loc} + (lor/loc+TT _{lor/loc})) ≤ -50 Timing accuracy [±2.0] chip Formula: Ioc*(1+TT _{loc} + (lor/loc+TT _{lor/loc})) ≤ -50 Timing accuracy [±2.0] chip Formula: Ioc*(1+TT _{loc} + (lor/loc+TT _{lor/loc})) ≤ -50 8.7.7 Observed time difference to GSM cell TBD	8.7.5 SFN-SFN- observed time-	TBD		
difference to GSM cell		Tost 1: lo = -94 dBm Tost2 : lo = -72dBm Tost3 : lo = -50dBm	0.3 dB for lor/loc	$\frac{\text{loc} = -103.6 \text{ dBm}}{\text{Formula:}}$ $\frac{\text{Formula:}}{\text{loc}^{*}(1-TT_{\text{loc}} + (\text{lor/loc}-TT_{\text{lor/loc}})) \ge} -94$ $\frac{\text{Test 2: unchanged (no critical RF-parameters)}}{\text{Test 3: lo} = -51.3 \text{ dBm, loc} = -62.2 \text{ dBm}}$ $\frac{\text{Formula:}}{\text{Formula:}} + (\text{lor/loc} + TT_{\text{lor/loc}})) \le -50$ $\frac{\text{Timing accuracy [\pm 2.0] chip}}{\text{Formulas:}}$ $\frac{\text{Upper limit} + TT}{\text{lop}} = -51.3 \text{ dBm}$
	0.7.7.0	TRD		-
		100		

F.5 Acceptable uncertainty of Test Equipment (This clause is informative)

This informative clause specifies the critical parameters of the components of an overall Test System (e.g. Signal generators, Signal Analysers etc.) which are necessary when assembling a Test System that complies with clause F.1-Acceptable Uncertainty of Test System. These Test Equipment parameters are fundamental to the accuracy of the overall Test System and are unlikely to be improved upon through System Calibration.

F.5.1 Transmitter measurements

Table F 5 1: Equipment accuracy	v for transmitter measurements
Table Figure Lyuphient accuracy	y for transmitter measurements

Test	Equipment accuracy	Test conditions	
5.2 Maximum Output Power	Not critical	19 to 25 dBm	
5.3 Frequency error	± 10 Hz	0 to 500 Hz.	
5.4.1 Open loop power control in uplink	Not critical	-43.7 dBm to 25 dBm	
5.4.2 Inner loop power control in the uplink – single step	±0.1 dB relative over a 1.5 dB range ±0.15 dB relative over a 3.0 range	+ 25 dBm to - 50 dBm	
	±0.2 dB relative over a 4.5 dB range		
5.4.2 Inner loop power control in the uplink – seven and ten steps	±0.3 dB relative over a 26 dB range	+25 dBm to -50 dBm	
5.4.3 Minimum Output Power	Not critical		
$\frac{5.4.4 \text{ Out-of-synchronisation handling-of-}}{output power: _ \frac{DPCCH_E_c}{I_{or}}}$	±0.1 dB uncertainty in DPCCH_Ec/lor ratio	Ratio from 16.6 dB to 28 dB	
5.5.1 Transmit ON/OFF Power: UE- transmit OFF power	Not critical	-56 dBm (static power)	
5.5.2 Transmit ON/OFF Power: transmit ON/OFF time mask	TBD	-56 dBm (dynamic power over approx. 70 dB range)	
5.6 Change of TFC: power control step- size	±0.3 dB relative over a 9 dB range	+25 dBm to -50 dBm	
5.7 Power setting in uplink compressed mode:-UE output power	Subset of 5.4.2	+25 dBm to -50 dBm	
5.8 Occupied Bandwidth	±100 kHz	For results between 4 and 6- MHz?	
5.9 Spectrum emission mask-	Not critical	P_Max Accuracy applies ± 5 dB either side of UE requirements	
5.10 ACLR	5 MHz offset ± 0.8 dB 10 MHz offset ± 0.8 dB	19 to 25 dBm at 5 MHz offset for- results between 40 dB and 50- dB.25 dBm at 10 MHz offset for- results between 45 dB and 55- dB.	
5.11 Spurious emissions	Not critical	19 to 25 dBm	
5.12 Transmit Intermodulation	Not critical	19 to 25 dBm	
5.13.1 Transmit modulation: EVM	+2.5 %- (for single code)	25 dBm to -21 dBm	
5.13.2 Transmit modulation: peak code domain error	±1.0dB	For readings between -10 dB to- -20 dB.	

F.5.2 Receiver measurements

Table F.5.2: Equipment accuracy for receiver measurements

Clause	Equipment accuracy	Test conditions
6.2 Reference sensitivity level	Not critical	
6.3 Maximum input level:	Not critical	
6.4 Adjacent channel selectivity	Not critical	
6.5 Blocking characteristics	Not critical	
6.6 Spurious Response	Not critical	
6.7 Intermod Characteristics	Not critical	
6.8 Spurious emissions	Not critical	

F.5.3 Performance measurements

Table G.3: Equipment accuracy for performance measurements

Clause	Equipment accuracy	Test conditions
7.2 to 7.10	$\frac{DPCH_{-}E_{c}}{I_{or}} = \pm 0.1 \text{ dB}$	-2.2 to18.9 dB

F.6 General rules for statistical testing

F.6.1 Statistical testing of receiver BER/BLER performance

F.6.1.1 Error Definition

1) Bit Error Ratio (BER)

- The Bit Error Ratio is defined as the ratio of the bits wrongly received to all data bits sent. The bits are the information bits above the convolutional/turbo decoder

2) Block Error Ratio (BLER)

A Block Error Ratio is defined as the ratio of the number of erroneous blocks received to the total number of blocks sent. An erroneous block is defined as a Transport Block, the cyclic redundancy check (CRC) of which is wrong.

F.6.1.2 Test Method

Each test is performed in the following manner:

- a) Setup the required test conditions.
- b) Record the number of samples tested and the number of occurred events (bit error or block error)
- e) Stop the test at a stop criterion which is minimum test time or an early pass or an early fail event.
- d) Once the test is stopped decide according to the pass fail decision rules (subclause F.6.1.7)

F.6.1.3 Test Criteria

The test shall fulfil the following requirements:

a) good pass fail decision

1) to keep reasonably low the probability (risk) of passing a bad unit for each individual test;

2) to have high probability of passing a good unit for each individual test;

b) good balance between testtime and statistical significance

3) to perform measurements with a high degree of statistical significance;

4) to keep the test time as low as possible.

F.6.1.4 Calculation assumptions

F.6.1.4.1 Statistical independence

- (a) It is assumed, that error events are rare (lim BER BLER → 0) independent statistical events. However the memory of the convolutional /turbo coder is terminated after one TTI. Samples and errors are summed up every TTI. So the assumption of independent error events is justified.
- (b) In the BLER test with fading there is the memory of the multipath fading channel which interferes the statisticalindependence. A minimum test time is introduced to average fluctuations of the multipath fading channel. So the assumption of independent error events is justified approximately.

F.6.1.4.2 Applied formulas

The formulas, applied to describe the BER BLER test, are based on the following experiments:

(1) After having observed a certain number of errors (**ne**) the number of samples are counted to calculate BER BLER. Provisions are made (note 1) such that the complementary experiment is valid as well:

(2) After a certain number of samples (ns) the number of errors, occurred, are counted to calculate BER BLER.

Experiment (1) stipulates to use the following Chi Square Distribution with degree of freedom ne: 2*dchisq(2*NE,2*ne).

Experiment (2) stipulates to use the Poisson Distribution: dpois(ne,NE)

(NE: mean of the distribution)

To determine the early stop conditions, the following inverse cumulative operation is applied:

0.5 * qchisq(D,2*ne). This is applicable for experiment (1) and (2).

D: wrong decision risk per test step

Note: other inverse cumulative operations are available, however only this is suited for experiment (1) and (2).

F.6.1.4.3 Approximation of the distribution

The test procedure is as follows:

During a running measurement for a UE ns (number of samples) and ne (number of errors) are accumulated and from this the preliminary BER BLER is calculated. Then new samples up to the next error are taken. The entire past and the new samples are basis for the next preliminary BER BLER. Depending on the result at every step, the UE can pass, can fail or must continue the test.

As early pass and early fail UEs leave the statistical totality under consideration, the experimental conditions are changed every step resulting in a distribution that is truncated more and more towards the end of the entire test. Such a distribution can not any more be handled analytically. The unchanged distribution is used as an approximation to calculate the early fail and early pass bounds.

F.6.1.5 Definition of good pass fail decision.

This is defined by the probability of wrong decision F at the end of the test. The probability of a correct decision is 1 F.

The probability (risk) to fail a good DUT shall be \leq F according to the following definition: A DUT is failed, accepting a probability of \leq F that the DUT is still better than the specified error ratio (Test requirement).

The probability to pass a bad DUT shall be \leq F according to the following definition: A DUT is passed, accepting a probability of \leq F that the DUT is still worse than M times the specified error ratio. (M>1 is the bad DUT factor).

This definitions lead to an early pass and an early fail limit:

Early fail: ber≥ berlim_{fail}

$$ber \lim_{fail} (D, ne) = \frac{2 * ne}{qchisq(D, 2 * ne)}$$
(1)

For $ne \geq [7]$

Early pass: ber ≤berlimbad_{pass}

$$ber \operatorname{lim} bad_{pass}(D, ne) = \frac{2 * ne * M}{qchisq(1 - D, 2 * ne)}$$
(2)

For ne ≥ 1

With-

ber (normalized BER, BLER): BER, BLER according to F.6.1.1 divided by Test requirement

D: wrong decision probability for a test step . This is a numerically evaluated fraction of F, the wrong decision probability at the end of the test. See table F.6.1.6.1.

ne: Number of error events

M: bad DUT factor see table F.6.1.6.1.

qchisq: inverse cumulative chi squared distribution

F.6.1.6 Good balance between testtime and statistical significance

Three independent test parameters are introduced into the test and shown in Table F.6.1.6.1. These are the obviousbasis of test time and statistical significance. From the first two of them four dependent test parameters are derived. The third independent test parameter is justified separately.

Independe	ent test para	ameters	Đe	pendent test paran	neters
Test Parameter	Value	Reference	Test parameter	Value	Reference
Bad DUT factor M	[1.5]	Table F.6.1.8	Early pass/fail- condition	Curves	Subclause F.6.1.5 Figure 6.1.9
Final probability of wrong pass/fail decision F	[0.2%] [0.02%, note 2]	Subclause F.6.1.5	Target number of error events	[345]	Table 6.1.8
			Probability of- wrong pass/fail- decision per test- step D	[0.0085%] [0.0008% and 0.008%, note 2]	
			Test limit factor TL	[1.234]	Table 6.1.8
Minimum test time		Table F.6.1.6.2			

Table F.6.1.6.1 independent and dependent test parameters

The minimum test time is derived from the following justification:

1) For no propagation conditions and static propagation condition

No early fail calculated from fractional number of errors <1 (see note 1)

2) For multipath fading condition

No stop of the test until 990 wavelengths are crossed with the speed given in the fading profile.

3) For birth death propagation conditions

No stop of the test until 200 birth death transitions occur

4) For moving propagation conditions: 628 sec

This is necessary in order to pass all potential critical points in the moving propagation profile 4 times:

Maximum rake window

Maximum adjustment speed

Intersection of moving taps

Table F.6.1.6.2 : minimum Test time

Fading profile	Minimum test- time
Multipath propagation 3 km/h	164 sec
Multipath propagation 50 km/h	9.8 sec
Multipath propagation 120 km/h	4.1 sec
Multipath propagation 250 km/h	2 sec
Birth Death propagation	38.2 sec
Moving propagation	628 sec

In table F.6.1.8the minimum test time is converted in minimum number of samples.

F.6.1.7 Pass fail decision rules

No decision is allowed before the minimum test time is elapsed.

- 1) If minimum Test time < time for target number of error events then the following applies: The requiredconfidence level 1 F (= correct decision probability) shall be achieved. This is fulfilled at an early pass or earlyfail event.
- -For BER:
- For every TTI (Transmit Time Interval) sum up the number of bits (ns) and the number if errors (ne) from the beginning of the test and calculate

BER₊ (including the artificial error at the beginning of the test (Note 1))and

BER₀ (excluding the artificial error at the beginning of the test (Note 1)).

If BER_0 is above the early fail limit, fail the DUT.

If BER₁ is below the early pass limit, pass the DUT.

Otherwise continue the test

For BLER:

For every block sum up the number of blocks (ns) and the number of erroneous blocks (ne) from the beginning of the test and calculate

BLER₁ (including the artificial error at the beginning of the test (Note 1))and

BLER₀ (excluding the artificial error at the beginning of the test (Note 1)).

If BLER₁ is below the early pass limit, pass the DUT.

If BLER₀ is above the early fail limit, fail the DUT.

Otherwise continue the test

- 2) If the minimum test time \geq time for target error events, then the test runs for the minimum test time and the decision is done by comparing the result with the test limit.
- -For BER:
- For every TTI (Transmit Time Interval) sum up the number of bits (ns) and the number if errors (ne) from the beginning of the test and calculate BER₀

-For BLER:

- For every block sum up the number of blocks (ns) and the number of erroneous blocks (ne) from the beginning of the test and calculate BLER₀

If $BER_0/BLER_0$ is above the test limit, fail the DUT.

If BER₀/BLER₀ is on or below the test limit, pass the DUT.

F.6.1.8 Test conditions for BER, BLER tests

Type of test (BER)	Test requirement (BER/BLER)	Test limit (BER/BLER) = Test requirement (BER/BLER) x TL TL-	Target number of error- events (time)	Minimum- number of samples-	Prob that good unit will fail = Prob that bad unit will pass -[%]	Bad unit BER/BLE R factor M
Reference- Sensitivity Level	0.001	[1.234]	[345] (22.9s)	Note 1	[0.2]	[1.5]
Maximum Input- Level	0.001	[1.234]	[345] (22.9s)	Note 1	[0.2]	[1.5]
Adjacent- Channel- Selectivity	0.001	[1.234]	[<u>345]</u> (22.9s)	Note 1	[0.2]	[1.5]
Blocking Characteristics Pass condition Note 2	0.001	[1.251]	[403] (26.4s)	Note 1	[0.2]	[1.5]
Blocking Characteristics Fail condition Note 2	0.001	[1.251]	[403] (26.4s)	Note 1	[0.02]	[1.5]
Spurious- Response	0.001	[1.234]	[345] (22.9s)	Note 1	[0.2]	[1.5]
Intermodulation Characteristics	0.001	[1.234]	[345] (22.9s)	Note 1	[0.2]	[1.5]

Table F.6.1.8: Test conditions for a single BER/BLER tests

	Hapie		st conaiti				
Type of test (BLER)	Information Bit-rate-	T est requirement (BER/BLER)	Test limit (BER/B LER)= Test require ment- (BER/B LER)x TL	Target number of error events (time)	Minimum- number of samples	Prob that bad unit will pass = Prob that good unit will fail [%]	Bad unit BER/BL ER factor M
			ŦĿ				
Demodulation in Static Propagation- conditions	12.2 64 144 38 4	0.01 0.1 0.01 0.1 0.1 0.01 0.1	[1.234]	[<u>345]</u> (559.165) (55.928) (559.166) (55.928) (55.928) (559.166) (27.966)	Note1	[0.2]	[1.5]
		0.01		(279.58s)			
Demodulation of DCH in Multi-path Fading- Propagation- conditions							
3km/h (Case 1, Case 2,	<u>12.2</u>	0.01	[1.234]	[345] (559.16s)	[8200]	[0.2]	[1.5]
Case 4)	64	0.1		(55.92s)	[8200]		
		0.01		(559.16s)	[8200]		
	144	0.1 0.01		(55.92s) (559.16s)	[8200]		
	384	0.01 0.1		(27.96s)	[8200] [16400]		
		0.01		(279.58s)	[16400]		
120 km/h	10.0	0.04	[1.234]	[345]	10051	[0.2]	[1.5]
(Case3)	12.2 64	0.01 0.1		(559.16s) (55.92s)	[205] [205]		
	04	0.01 0.01		(559.16s)	[205] [205]		
	144	0.1		(55.92s)	[205]		
	384	0.01 0.1		(559.16s) (27.06a)	[205] [410]		
		0.01		(27.96s) (279.58s)	[410]		
250 km/h			[1.234]	[345]		[0.2]	[1.5]
(Case 6)	12.2	0.01		(559.16s) (55.02a)	[100]		
	64	0.1 0.01		(55.92s) (559.16s)	[100] [100]		
	144	0.1		(55.92s)	[100] [100]		
		0.01		(559.16s)	[100]		
	384	0.1 0.01		(27.96s) (279.58s)	[200] [200]		
Demodulation of DCH		0.01	[<u>1.234]</u>	[<u>345]</u>	[200]	[0.2]	[1.5]
in Moving-	12.2	0.01		(559.16)	[31400]		
Propagation- conditions	64	0.01			[31400]		
Demodulation of DCH			[<u>1.234]</u>	[<u>345]</u>		[0.2]	[1.5]
in Birth-Death-	12.2	0.01		(559.16s)	[1910]		
Propagation- conditions	64	0.01		(559.16s)	[1910]		
Demodulation of DCH in Base Station Transmit diversity modes (3 km/h, case1)	12.2	0.01	[1.234]	[345] (559.16s)	[8200]	[0.2]	[1.5]

Table F.6.1.8-2: Test conditions for BLER tests

Demodulation of DCH in closed loop- transmit diversity			[1.234]	[345]		[0.2]	[1.5]
mode (3 km/h, case1) Mode 1	12.2	0.01		(559.16s)	[8200]		
Mode 2	12.2	0.01		(559.16s)	[8200]		
Demodulation of DCH in Site Selection- Diversity- Transmission Power-	12.2	0.01	[1.234]	[345] (559.16)	[8200]	[0.2]	[1.5]
Control mode							
Demodulation of DCH			[1.234]	[345]		[0.2]	[1.5]
in Inter-Cell Soft Handover	12.2 64	0.01 0.1	1	(559.16s) (55.92s)	[205] [205]	[]	[]
(120 km/h, case3)		0.01		(559.16s)	[205]		
	144	0.1		(55.92s)	[205]		
	004	0.01		(559.16s)	[205]		
	38 4	0.1 0.01		(27.96s) (279.58s)	[410] [410]		
Combining of TPC		0.01		Not applicable			
commands from radio							
links of different radio							
link sets							
Power control in the				Not applicable			
downlink, constant							
BLER target							
Power control in the				Not applicable			
downlink, initial							
convergence Power control in the				Not applicable			
downlink, wind up							
effects							
Downlink compressed mode				Not applicable			
Blind transport format							
detection	Static 1 <u>2.2</u> 7.95 1.95	$\begin{array}{c} \text{BLER} \text{FDR} \\ 10^{-2} - 10^{-4} \\ 10^{-2} - 10^{-4} \\ 10^{-2} - 10^{-4} \end{array}$	[1.234]	[345] BLER FDR 559.16s 932min 559.16s 932min 559.16s 932min	Note 1- Note 1- Note 1 -	[0.2]	[1.5]
	Multipath <u>12.2</u> 7.95 1.98	$\begin{array}{c} 10^{-2} - 10^{-4} \\ 10^{-2} - 10^{-4} \\ 10^{-2} - 10^{-4} \end{array}$		559.16s 932min 559.16s 932min 559.16s 932min	[205] -[205] -[205]		

F.6.1.9 Practical Use (informative)

See figure F.6.1.9:

The early fail limit represents formula (1) in F.6.1.5. The range of validity is $[ne \ge 7, \ge 8 \text{ in case of blocking test}]$ to [ne = 345]

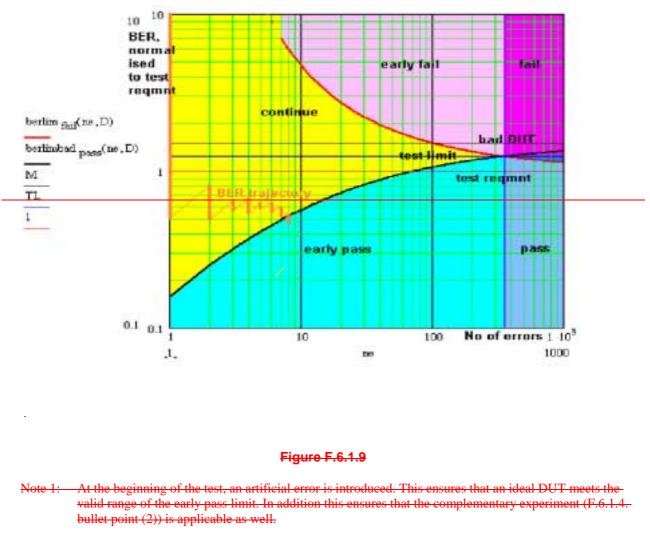
The early pass limit represents the formula (2) in F.6.1.5. The range of validity is ne=1 to [ne =345]. See note 1

The intersection co-ordinates of both curves are : number of errors ne = [345] and test limit TL = [1.234].

The range of validity for TL is ne>345.

A typical BER BLER test, calculated form the number of samples and errors (F.6.1.2.(b)) using experimental method (1) or (2) (see F.6.1.4. calculation assumptions) runs along the yellow trajectory. With an errorless sample the trajectory goes down vertically. With an erroneous sample it jumps up right. The tester checks if the BER BLER test intersects the early fail or early pass limits. The real time processing can be reduced by the following actions:

- BLER₀ (excluding the artificial error at the beginning of the test (Note 1)). is calculated only in case of an errorevent.
- BER₀ (excluding the artificial error at the beginning of the test (Note 1)). is calculated only in case of an errorevent within a TTL.


So the early fail limit cannot be missed by errorless samples.

The check against the early pass limit may be done by transforming formula (2) in F.6.1.5 such that the tester checksagainst a Limit Number of samples (NL(ne)) depending on the current number of errors (including the artificial errorat the beginning of the test (Note 1)).

Early pass if

 $\frac{NL(ne) \ge \frac{qchisq(1-D,2*ne)}{2*TR*M}}$

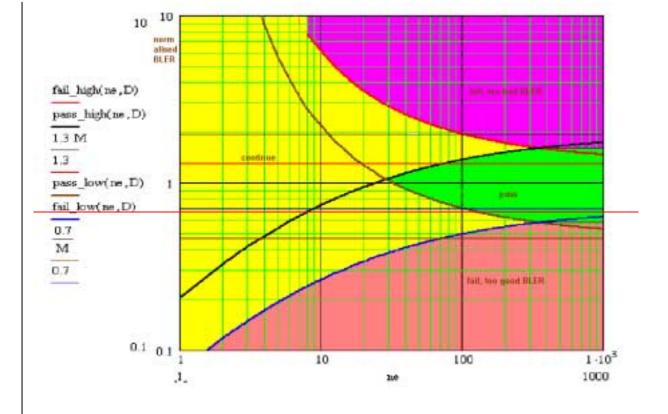
TR: test requirement (0.001)

For the check against the early fail limit the artificial erroneous sample, introduced at the beginning of the test, is disregarded.

Due to the nature of the test, namely discrete error events, the early fail condition shall not be valid, when fractional errors <1 are used to calculate the early fail limit: Any early fail decision is postponed until number of errors ne \geq [7]. In the blocking test any early fail decision is postponed until number of errors ne \geq [8].

- Note2: F=[0.2%] is intended to be used for a test containing a few BER/BLER tests (e.g. receiver sensitivity is repeated 12 times). For a test containing many BER/BLER tests (e.g. blocking test) this value is not appropriate for a single BER/BLER test.
 - The blocking test contains approx. 12750 single BER tests. A DUT on the limit will fail approx. 25 to 26times due to statistical reasons (wrong decision probability at the end of the test F=[0.2]%). 24 fails are allowed in the blocking test-but they are reserved for spurious responses. This shall be solved by the following rule:

All passes (based on F=[0.2]%) are accepted, including the wrong decisions due to statistical reasons.


- An early fail limit based on F=[0.02%] instead of [0.2%] is established, that ensures that wrong decisions due to statistical reasons are reduced to 2 to 3.
 - These asymmetric test conditions ensure that a DUT on the test limit consumes hardly more test time for a blocking test than in the symmetric case and on the other hand discriminates sufficiently betweenstatistical fails and spurious response cases.

F.6.1.10 Dual limit BLER tests

This annex is applicable for subclause 7.8.1 Power control in the downlink constant BLER target and subclause 7.9-Downlink compressed mode. In this tests the BLER shall stay between two limits.

Table F.6.1.10. Parameters for single and dual limit BLER

Fied BLER * 1.3 (upper test requirement) Fied BLER * 0.7 (lower test requirement) PUT BLER *1.3
ied BLER * 0.7 (lower test requirement) UT BLER *1.3
UT BLER *1.3
UT BLER *1.3
UT BLER *0.7
PUT BLER *0.7
OT BEEK O.P
- Test limit
: Test limit
igh
high
low
ow
_ <u>_</u>

Figure F.6.1.10: Dual limit BLER

F.6.1.10.1 Description of the parameters for dual limit BLER tests

(refer figure F.6.1.10)

The origin

1 (black horizontal line in the centre): this is the normalised origin BLER-

The assymptotes

1.3 (red horizontal line): this is the specified upper limit of the range (BLER +30%) (upper test requirement)

0.7(blue horizontal line): this is the specified lower limit of the range (BLER 30%)(lower test requirement)

1.3*M (black horizontal line): this is M times the specified upper limit of the range (Bad DUT BLER)

0.7/M (brown horizontal line): this is 1/M times the specified lower limit. (Bad DUT BLER)

The pass/fail limits

Fail_high (bold red curve):

Definition: A momentary BLER value above this curve is with high probability above the specified upper limit: BLER + 30%.

Verdict: Above: Fail due to bad BLER

Below: continue

It approaches towards 1.3(red).

Validity range 7< errors <345.

Formula:

$$\frac{\text{fail_high(nc,D)} := 2}{\text{qchisq}(D,2 \cdot nc)}$$

Fail_low (bold blue curve):

Definition: A momentary BLER value below this curve is with high probability below the specified lower limit: BLER 30%).

Verdict: Above: continue

Below: Fail due to too good BLER

It approaches towards 0.7(blue).

Validity range 1≤ errors <343.

Formula:

$$\frac{\text{fail}_\text{low}(\text{ne}, \text{D}) := 2 - \frac{\text{ne} \cdot 0.7}{\text{qchisq}(1 - \text{D}, 2 \cdot \text{ne})}$$

Pass_high (bold black curve):-

Definition: a momentary BLER value on and below this curve is with high probability below M times the specified upper limit.

Verdict: Above: continue

Below: pass for $ne \ge 29$

continue for ne < 29

It approaches 1.3*M(black).

Validity range 1≤ errors <345.

Formula:

Pass_low (bold brown curve):

Definition: a momentary BLER value on and above this curve is with high probability above 1/M times the specified lower limit of the range.

Verdict: Above: pass for $ne \ge 29$,

continue for ne < 29

Below: continue

It approaches 0.7/M(brown).

Validity range 7< errors <343.

$$\frac{\text{ne} \cdot \frac{0.7}{M}}{\text{pass_low} (\text{ne}, \text{D}) \coloneqq 2 \cdot \frac{M}{\text{qchisq} (\text{D}, 2 \cdot \text{ne})}}$$

Legende formulas:

D: wrong decision risk per test step: 0.000085

M: bad DUT factor: 1.5

ne: number of errors

qchisq: inverse cumulative chi square function

Upper test limit (boarder between pink and green)1.3*1.234 = 1.6

Validity range: $345 \leq \text{errors.}$

Verdict: Above: fail due to bad BLER

Below: pass

Lower test limit (boarder between green and orange) 0.7/1.234 = 0.567

Validity range: $343 \leq \text{errors}$

Verdict: Above: pass-

Below: fail due to too good BLER

The intersection co-ordinates:

Fail_high (bold red curve) and Pass_high (bold black curve):-

Upper target number of errors (345) and upper test limit: 1.3* 1.234

Fail_low (bold blue curve) and Pass_high (bold black curve):-

Lower target number of errors (343) and lower test limit: 0.7 / 1.234

Pass_high (bold black curve) and Pass_low (bold brown curve)

Minimum number of errors (29) and optimum normalised BLER (1.049)

The ranges:

Range(pink): in this range the measurement can be stopped and the DUT is failed due to too high BLER.
Range (orange): in this range the measurement can be stopped and the DUT is failed due to too low BLER.
Range (yellow): in this range the measurement is undecided and must be continued.
Range (green): in this range the measurement can be stopped and the DUT is passed. No final BLER result is achieved.

F.6.1.10.2 F	Pass fail decision rules
No decision is allowed	before the minimum test time (Table F.6.1.6.2) has elapsed
	st time < time for target number of error events then the following applies: The required el 1 F (= correct decision probability, Table F.6.1.6.2) shall be achieved. This is fulfilled at
fail_high	
pass_high	
pass_low	
fail_low	
For every block	c sum up the number of blocks (ns) and the number of erroneous blocks (ne) from the beginning- calculate
-BLER ₊ (includ	ing the artificial error at the beginning of the test (Note 1, F.6.1.9))and
-BLER ₀ (exclud	ing the artificial error at the beginning of the test (Note 1, F.6.1.9)).
<u> </u>	ove <i>fail_high</i> , fail the test due to too bad_BLER
	ow <i>fail_low</i> , fail the test due to too good BLER
	or below <i>fail_high</i> and if BLER ₊ is above <i>pass_high</i> , continue the test
— If BLER ₀ is be	low <i>pass_low</i> and if BLER ₊ is above or on <i>fail low</i> , continue the test
— If BLER ₁ is be	low or on <i>pass_high</i> and if BLER ₆ is on or above <i>pass_high</i> , pass the test
2) If the minimum decision is don	test time \geq time for target error events, then the test runs for the minimum test time and the e by comparing the result with the upper and lower test limit.
	ove the upper test limit, fail the DUT due to too bad BLER
	ow the lower test limit, fail the DUT due to too good BLER
	or below the upper test limit and if $BLER_1$ is on or above the lower test limit, pass the DUT

F.6.1.10.3 Test conditions for dual limit BLER tests

Table F.6.1.10.3 Test conditions for dual limit BLER tests

Type of test (BLER)	Data rate, Propagation condition	Test requirement (BLER)	Test limit = Test requirement * TL TL	Target number of error events- (time)	Minimum- number of samples	Prob that a good unit will fail = prob that a bad unit will pass: F[%]	Bad unit factor M
Power control in the downlink, constant- BLER targot	12.2 kbit/s, 3km/h- (case4)	0.01±30%	Upper TL: 1.3*1.234 Lower TL- 0.7/1.23 4	Upper: 345 (431.25s) Lower 343 (1191s)	8200	0.2	Upper:- 1 .5 Lower- 1/1.5
Downlink compressed mode	12.2kbit/s, 3km/h (case 2)	0.01±30%	Upper TL: 1.3*1.234 Lower TL- 0.7/1.234	Upper: 345 (431.25s) Lower 343 (1191s)	8200	0.2	Upper: 1 .5 Lower- 1/1.5

F.6.2 Statistical testing of RRM delay performance

F.6.2.1 Test Method

Each test is performed in the following manner:

a) Setup the required test conditions.

b) Measure the delay repeated times. Start each repetition after sufficient time, such that each delay test is independent from the previous one. The delay times, measured, are simplified to:

a good delay, if the measured delay is \leq limit.

a bad delay, if the measured delay is > limit

c) Record the number of delays (ns), tested, and the number of bad delays (ne)

d) Stop the test at an early pass or an early fail event.

e) Once the test is stopped, decide according to the pass fail decision rules (subclause F.6.2.7)

F.6.2.2 Bad Delay Ratio (ER)

The Bad Delay Ratio (ER) is defined as the ratio of bad delays (ne) to all delays (ns). (1 ER is the success ratio)

F.6.2.3 Test Criteria

The test shall fulfil the following requirements:

a) good pass fail decision

1) to keep reasonably low the probability (risk) of passing a bad unit for each individual test;

2) to have high probability of passing a good unit for each individual test;

b) good balance between test time and statistical significance

3) to perform measurements with a high degree of statistical significance;

4) to keep the test time as low as possible.

F.6.2.4 Calculation assumptions

F.6.2.4.1 Statistical independence

It is arranged by test conditions, that bad delays are independent statistical events.

F.6.2.4.2 Applied formulas

The specified ER is 10% in most of the cases. This stipulates to use the binomial distribution to describe the RRM delay statistics. With the binomial distribution optimal results can be achieved. However the inverse cumulative operation forthe binomial distribution is not supported by standard mathematical tools. The use of the Poisson or Chi Square-Distribution requires ER->0. Using one of this distributions instead of the binomial distribution gives sub-optimalresults in the conservative sense: a pass fail decision is done later than optimal and with a lower wrong decision riskthan predefined.

The formulas, applied to describe the RRM delay statistics test, are based on the following experiment:

(1) After having observed a certain number of bad delays (**ne**) the number of all delays (**ns**) are counted to calculate-ER. Provisions are made (note 1) such that the complementary experiment is valid as well:

(2) After a certain number of delays (ns) the number of bad delays (ne), occurred, are counted to calculate ER.

Experiment (1) stipulates to use the Chi Square Distribution with degree of freedom ne: 2*dchisq(2*NE,2*ne).

Experiment (2) stipulates to use the Poisson Distribution: dpois(ne,NE)

(NE: mean value of the distribution)

To determine the early stop conditions, the following inverse cumulative operation is applied:

0.5 * qchisq(D,2*ne) for experiment (1) and (2)

D: wrong decision risk per test step

Note: Other inverse cumulative operations are available, however only this is suited for experiment (1) and (2).

F.6.2.4.3 Approximation of the distribution

The test procedure is as follows:

During a running measurement for a UE ns (Number of Delays) and ne (Number of bad delays) are accumulated andfrom this the preliminary ER is calculated. Then new samples up to the next bad delay are taken. The entire past and the new samples are basis for the next preliminary ER. Depending on the result at every step, the UE can pass, can failor must continue the test.

As early pass- and early fail-UEs leave the statistical totality under consideration, the experimental conditions are changed every step resulting in a distribution that is truncated more and more towards the end of the entire test. Such a distribution can not any more be handled analytically. The unchanged distribution is used as an approximation to-calculate the early fail and early pass bounds.

F.6.2.5 Definition of good pass fail decision.

This is defined by the probability of wrong decision F at the end of the test. The probability of a correct decision is 1 - F.

The probability (risk) to fail a good DUT shall be \leq F according to the following definition: A DUT is failed, accepting a probability of \leq F that the DUT is still better than the specified bad delay ratio (Test requirement).

The probability (risk) to pass a bad DUT shall be \leq F according to the following definition: A DUT is passed, accepting a probability of \leq F that the DUT is still worse than M times the specified bad delay ratio. (M>=1 is the bad DUT factor).

This definitions lead to an early pass and an early fail limit:

Early fail: er≥ erlim_{fail}

Error! No text of specified style in document.

384

(2)

$$er \lim_{fail} (D, ne) = \frac{2 * ne}{qchisq(D, 2 * ne)}$$
(1)

For $ne \ge [5]$

Early pass: $er \leq erlimbad_{pass}$

$$er \operatorname{lim} bad_{pass}(D, ne) = \frac{2 * ne * M}{qchisq(1 - D, 2 * ne)}$$

For ne ≥ 1

With-

er (normalized ER): ER according to F.6.2.2 divided by specified ER

D: wrong decision probability for a test step . This is a numerically evaluated fraction of F, the wrong decision probability at the end of the test. see table F.6.2.6.1

ne: Number of bad delays

M: bad DUT factor see table F.6.2.6.1

qchisq: inverse cumulative chi squared distribution

F.6.2.6 Good balance between test-time and statistical significance

Two independent test parameters are introduced into the test and shown in Table F.6.2.6.1. These are the obvious basis of test time and statistical significance. From them four dependent test parameters are derived.

Table F.6.2.6 inde	hendent and	dependent tes	t naramotors
Tuble Field	senaent una	ucpendent teo	parameters

Independe	ent test para	ameters	Dependent test parameters		
Test Parameter	Value	Reference	Test parameter	Value	Reference
Bad DUT factor M	[1.5]	Table F.6.1.8	Early pass/fail- condition	Curves	Subclause F.6.2.5 Figure 6.2.9
Final probability of wrong pass/fail	[5%]	Table F.6.2.8	Target number of bad delays	[154]	Table 6.2.8
decision F			Probability of wrong pass/fail decision per test-	[0.6 %]	
			step D Test limit factor TL	[1.236]	Table 6.2.8

F.6.2.7 Pass fail decision rules

The required confidence level 1 F (= correct decision probability) shall be achieved. This is fulfilled at an early pass or early fail event. Sum up the number of all delays (ns) and the number of bad delays from the beginning of the test and calculate:

-ER₊ (including the artificial error at the beginning of the test (Note 1))and

 $-ER_0$ (excluding the artificial error at the beginning of the test (Note 1)).

If ER_0 is on or above the early fail limit, fail the DUT.

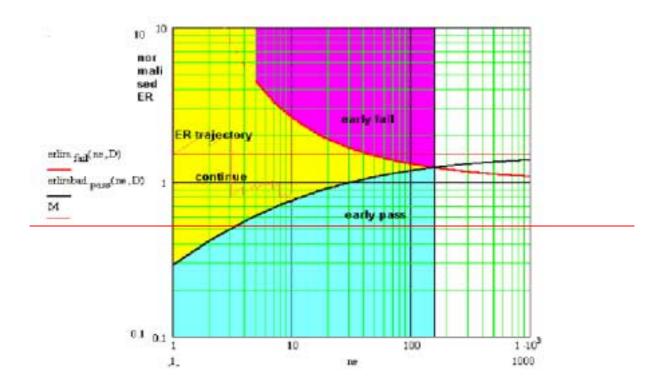
If ER₊ is on or below the early pass limit, pass the DUT.

Otherwise continue the test

F.6.2.8 Test conditions for RRM delay tests and Combining of TPC commands test 1

Table F.6.2.8: Test conditions for a single RRM delay tests and Combining of TPC commands test 1

Type of test	Test requirement Delay (s)	Test requirement (ER= 1- success- ratio)	Testlimit(ER) = Test requirement (ER)x-TL TL	Target number of bad delays	Prob that good unit will fail Prob that bad unit will pass [%]	Bad unit factor M
8.2.2 Cell recelection	8	0.1	[1.236]	[154]	[5]	[1.5]
8.2.3.1 UTRAN- to GSM cell- reselection, scenario 1	27.9	0.1	[1.236]	[154]	[5]	[1.5]
8.2.3.2 UTRAN to GSM cell- reselection, scenario 2	9.6	0.1	[1.236]	[154]	[5]	[1.5]
8.2.4 FDD/TDD- Cell reselection	8	0.1	[1.236]	[154]	[5]	[1.5]
8.3.1 FDD/FDD Soft handover 8.3.2 EDD FDD	50+10*KC +100*OC-ms	0.1	[1.236]	[154]	[5]	[1.5]
Hard Handover 8.3.2.1 Handover to intra frequency cell	70 ms	0.1	[1.236]	[154]	[5]	[1.5]
8.3.2.2 Handover to- interfrequency- cell	100ms	0.1	[1.236]	[154]	[5]	[1.5]
7.7.2 Combining of TPC commands Test 1 Note: The theory of statistical testing of RRM delay performance in clause F.6.2 is applied for test case 7.7.2 Combining of TPC commands Test 1. The success ratio for delay is- replaced by the success ratio for power control sequence.	Not- applicable	0.01	[1.236]	[154]	[5]	[1.5]


F.6.2.9 Practical Use (informative)

See figure F.6.2.9:

The early fail limit represents formula (1) in F.6.2.5. The range of validity is $[ne \ge 5]$ to [ne = 154]

The early pass limit represents the formula (2) in F.6.2.5. The range of validity is ne=1 to [ne=154]. See note 1. The intersection co-ordinates of both curves are: target number of bad delays ne = [154] and test limit TL = [1.236].

A typical delay test, calculated form the number of samples and errors (F.6.2.2) using experimental method (1) or (2) (see F.6.2.4.2. calculation assumptions) runs along the yellow trajectory. With an good delay the trajectory goes down-vertically. With a bad delay it jumps up right. The tester checks if the ER test intersects the early fail or early pass-limits.

Figure F.6.2.9

Note 1: At the beginning of the test, an artificial bad delay is introduced. This ensures that an ideal DUT meetsthe valid range of the early pass limit. In addition this ensures that the complementary experiment (F.6.2.4.2. bullet point (2)) is applicable as well. For the check against the early fail limit the artificial baddelay sample, introduced at the beginning of the test, is disregarded.

Due to the nature of the test, namely discrete bad delay events, the early fail condition shall not be valid, when fractional bad delays <1 are used to calculate the early fail limit: Any early fail decision is postponed until number of errors ne \geq [5].

Annex G (normative): Environmental conditions

G.1 General

This normative annex specifies the environmental requirements of the UE. Within these limits the requirements of the present documents shall be fulfilled.

G.2 Environmental requirements

The requirements in this clause apply to all types of UE(s)

G.2.1 Temperature

The UE shall fulfil all the requirements in the full temperature range of:-

Table G.2.1.1

+15°C to + 35°C	for normal conditions (with relative humidity of 25 % to 75 %)
- 10°C to + 55°C	for extreme conditions (see IEC publications 68-2-1 and 68-2-2)

Outside this temperature range the UE, if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in TS 25.101 [1] for extreme operation.

Some tests in the present document are performed also in extreme temperature conditions. These test conditions are denoted as TL (temperature low, -10*C) and TH (temperature high, +55*C).

G.2.2 Voltage

The UE shall fulfil all the requirements in the full voltage range, i.e. the voltage range between the extreme voltages.

The manufacturer shall declare the lower and higher extreme voltages and the approximate shutdown voltage. For the equipment that can be operated from one or more of the power sources listed below, the lower extreme voltage shall not be higher, and the higher extreme voltage shall not be lower than that specified below.

Table G.2.2.1

Power source	Lower extreme voltage	Higher extreme voltage	Normal conditions voltage
AC mains	0.9 * nominal	1.1 * nominal	nominal
Regulated lead acid battery	0.9 * nominal	1.3 * nominal	1.1 * nominal
Non regulated batteries: - Loclanché / lithium - Mercury/nickel & cadmium	0.85 * nominal 0.90 * nominal	Nominal Nominal	Nominal Nominal

Outside this voltage range the UE if powered on, shall not make ineffective use of the radio frequency spectrum. In nocase shall the UE exceed the transmitted levels as defined in TS 25.101 [1] for extreme operation. In particular, the UE shall inhibit all RF transmissions when the power supply voltage is below the manufacturer declared shutdown voltage.

Some tests in the present document are performed also in extreme voltage conditions. These test conditions are denoted as VL (lower extreme voltage) and VH (higher extreme voltage).

G.2.3 Vibration

The UE shall fulfil all the requirements when vibrated at the following frequency/amplitudes:-

Table G.2.3.1

Frequency	ASD (Acceleration Spectral Density) random vibration
5 Hz to 20 Hz	0.96 m²/s³
20 Hz to 500 Hz	0.96 m ² /s ³ at 20 Hz, thereafter 3 dB / Octave

Outside the specified frequency range the UE, if powered on, shall not make ineffective use of the radio frequency-spectrum. In no case shall the UE exceed the transmitted levels as defined in TS 25.101 [1] for extreme operation.

G.2.4 Specified frequency range

The manufacturer shall declare, which of the frequency bands defined in clause 4.2 is supported by the UE.

Some tests in the present document are performed also in low, mid and high range of the operating frequency band of the UE. The UARFCN's to be used for low, mid and high range are defined in TS 34.108 [3] clause 5.1.1.

Annex H (normative): UE Capabilities (FDD)

H.1 Radio Access and RF Baseline Implementation Capabilities:

- NOTE 1: This clause shall be aligned with TR 25.926, UE Radio Access Capabilities regarding FDD RF parameters. These RF UE Radio Access capabilities represent options in the UE, that require signalling to the network.
- NOTE 2: In addition there are options in the UE that do not require any signalling. They are designated as UE baseline capabilities, according to TR 21.904, Terminal Capability Requirements.

NOTE 3: Table H.1 provides the list of UE radio access capability parameters and possible values.

Table H.1: RF UE Radio Access Capabilities

	UE radio access capability parameter	Value range
FDD RF parameters	UE power class	3, 4
	([23] 25.101 clause 6.2.1)	
	Tx/Rx frequency separation for frequency band I	190 MHz,
	([23] 25.101 clause 5.3)	174.8-205.2 MHz,
	Not applicable if UE is not operating in frequency	134.8-245.2 MHz
	band I	

Table H.2 provides the UE baseline implementation capabilities.

Table H.2: UE RF Baseline Implementation Capabilities

UE implementation capability	Value range
Radio frequency bands	I,
([23] 25.101 clause 5.2)	II,
	↓ + 11
	I + III
	 +
	 + +

 The special conformance testing functions and the logical test interface as specified in TS 34.109 [4]. This issueis currently under investigation.

Uplink reference measurement channel 12.2 kbps (FDD), TS 25.101 [1] clause A.2.1

- Downlink reference measurement channel 12.2 kbps (FDD), TS 25.101 [1] clause A.3.1.

H.2 Service Implementation Capabilities:

Uplink reference measurement channel 64 kbps (FDD), TS 25.101 [1] clause A.2.2

- Uplink reference measurement channel 144 kbps (FDD), TS 25.101 [1] clause A.2.3
- Uplink reference measurement channel 384 kbps (FDD), TS 25.101 [1] clause A.2.4
- Downlink reference measurement channel 64 kbps (FDD), TS 25.101 [1] clause A.3.2.
- Downlink reference measurement channel 144 kbps (FDD), TS 25.101 [1] clause A.3.3.

- Down link reference measurement channel 384 kbps (FDD), TS 25.101 [1] clause A.3.4.

Annex I (normative): Default Message Contents

This Annex contains the default values of common messages, other than those described in TS 34.108. The messages are primarily concerning the RRM test cases in clause 8 and unless indicated otherwise in specific test cases, shall be transmitted and checked by the system simulator. The necessary messages are listed in alphabetical order.

In this Annex, decimal values are normally used. However, sometimes, a hexadecimal value, indicated by an "H", or a binary value, indicated by a "B" is used.

Contents of MEASUREMENT REPORT message for Intra frequency test cases

Information Element	Value/remark
Message Type	
Integrity check info	The presence of this IE is dependent on IXIT statements
	in TS 34.123-2. If integrity protection is indicated to be
	active, this IE shall be present with the values of the sub-
	IEs as stated below. Else, this IE and the sub-IEs shall be
	absent.
	This IE is checked to see if it is present. The value is
	compared against the XMAC-I value computed by SS.
	This IE is checked to see if it is present. The value is
	used by SS to compute the XMAC-I value.
Measurement identity	4
Measured Results	
 Intra-frequency measured results list 	
 Cell measured results 	
	Not present
SFN-SFN observed time difference	Checked that this IE is present
 Cell synchronisation information 	
	Checked that this IE is present
	Checked that this IE is present
	FDD
	Checked that this IE is present
	150
	Checked that this IE is present
	Checked that this IE is present
	Checked that this IE is present
Measured results on RACH	Checked that this IE is absent
Additional measured results	Checked that this IE is absent
Event results	Checked that this IE is absent

Contents of MEASUREMENT REPORT message for Inter frequency test cases

Information Element	Value/remark
Message Type	
Integrity check info	The presence of this IE is dependent on IXIT statements-
	in TS 34.123-2. If integrity protection is indicated to be
	active, this IE shall be present with the values of the sub-
	IEs as stated below. Else, this IE and the sub-IEs shall be
	absent.
 Message authentication code 	This IE is checked to see if it is present. The value is
	compared against the XMAC-I value computed by SS.
 – RRC Message sequence number 	This IE is checked to see if it is present. The value is
	used by SS to compute the XMAC-I value.
Measurement identity	4
Measured Results	
————————————————————————————————————	
	Checked that this IE is present
 Inter-frequency cell measurement results 	
 Cell measured results 	
- Cell Identity	Not present
	Checked that this IE is present
 Cell synchronisation information 	
	Checked that this IE is present
	Checked that this IE is present
	FDD
	Checked that this IE is present
 Primary scrambling code 	150
	Checked that this IE is present
	Checked that this IE is present
	Checked that this IE is present
Measured results on RACH	Checked that this IE is absent
Additional measured results	Checked that this IE is absent
Event results	Checked that this IE is absent

Contents of MEASUREMENT REPORT message for inter - RAT test cases

Information Element	Value/remark
Message Type	
Integrity check info	The presence of this IE is dependent on IXIT statements
	in TS 34.123-2. If integrity protection is indicated to be
	active, this IE shall be present with the values of the sub-
	IEs as stated below. Else, this IE and the sub-IEs shall be
	absent.
	This IE is checked to see if it is present. The value is
	compared against the XMAC-I value computed by SS.
	This IE is checked to see if it is present. The value is
	used by SS to compute the XMAC-I value.
Measurement identity	4
Measured Results	
	GSM
- Measured GSM cells	Checked that this IE is present
	Checked that this IE is present
	Checked that this IE is present
	Checked that this IE is present
Measured results on RACH	Checked that this IE is absent
Additional measured results	Checked that this IE is absent
Event results	Checked that this IE is absent

Annex J (informative): Information about special regional application of test cases and requirements

This annex provides information about special regional application of the tests specified in the core part of the presentdocument. The special regional application of certain test cases is typically caused by specific local regulation and legalisation.

J.1 Japan

For regulatory testing in Japan shared risk against core specification value with test tolerance of zero may be applied provisionally, until the time the non zero test tolerances principle used in the present document is reflected in Japanese regulations, The shared risk principle described above will apply to the following requirements:

NOTE: This information should be reviewed on a regular basis to check its applicability, as changes to regulation allowing usage of the non zero test tolerances principle are expected.

Error! No text of specified style in document.

-

3GPP

			(CHANGE	REQ	UE	ST			CR-Form-v7
ж		34.121	CR	295	жrev	-	ж	Current vers	^{ion:} 4.0.(<mark>۶</mark> ж
For <mark>HELP</mark> or	n us	sing this for	m, see	bottom of this	s page or	look	at the	e pop-up text	over the X s	symbols.
Proposed chang	je a	affects: l	JICC a	pps#	ME	Rac	lio A	ccess Networ	k Core	Network
Title:	ж			e technical con es document	tent of 34	.121	Rel 4	and replace	it by a point	er to the
Source:	Ж	T1								
Work item code:	:Ж	TEI4						<i>Date:</i> ೫	11/09/2003	3
Category:		F (con A (con B (add C (fun D (edi	rection) respond lition of ctional torial m planatio	ds to a correctio feature), modification of f odification) ns of the above	n in an ea feature)		lease	2 Ø) R96 R97 R98	Rel-4 the following r (GSM Phase (Release 199 (Release 199 (Release 199 (Release 4) (Release 5) (Release 6)	2) 6) 7) 8)

TS. Consequences if # Useless overhead of maintenance work will have to be performed to provide	Reason for change: ೫	The Release 99, Release 4 and Release 5 versions of this document are very similar and do not justify to maintain three different versions. For this reason, T1#20 decided to cover Releases 99, 4 and 5 by a single version, the version 5, where clear indications are made for text applying to specific release(s). All the other text apllies by default to the three releases.
	Summary of change: ೫	
	Consequences if #	Useless overhead of maintenance work will have to be performed to provide
not approved: three new versions of this TR when one can cover Releases 99, 4 and 5.	not approved:	three new versions of this TR when one can cover Releases 99, 4 and 5.

Clauses affected:	ង All
Other specs affected:	Y N % X Other core specifications % X Test specifications X O&M Specifications
Other comments:	Submitted directly by MCC to TSG T#21 following T1#20 decision.

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.

- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

The present document specifies the measurement procedures for the conformance test of the user equipment (UE) that contain transmitting characteristics, receiving characteristics and performance requirements in FDD mode.

2 References, Definitions and Technical Content

3GPP TS 34.121Version 5 covers all Release 4 aspects.

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- -For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same-Release as the present document.*
- [1] 3GPP TS 25.101 "UE Radio transmission and reception (FDD), Release 99".
- [2] 3GPP TS 25.133 "Requirements for Support of Radio Resource Management (FDD)".
- [3] 3GPP TS 34.108 "Common Test Environments for User Equipment (UE) Conformance Testing".
- [4] 3GPP TS 34.109 "Terminal logical test interface; Special conformance testing functions".
- [5] 3GPP TS 25.214 "Physical layer procedures (FDD)".
- [6] 3GPP TR 21.905 "Vocabulary for 3GPP Specifications".
- [7] 3GPP TR 25.990 "Vocabulary".
- [8] 3GPP TS 25.331: "Radio Resource Control (RRC); Protocol Specification".
- [9] 3GPP TS 25.433 "UTRAN lub Interface NBAP Signalling".
- [10] ITU R Recommendation SM.329: "Spurious emissions".
- [11] 3GPP TS 25.304: "UE Procedures in Idle Mode and Procedures for Cell Reselection in Connected Mode".
- [12] 3GPP TS 25.303: "Interlayer Procedures in Connected Mode".
- [13] 3GPP TS 25.321: "Medium Access Control (MAC) protocol specification".
- [14] 3GPP TS 25.213: "Spreading and modulation (FDD)".
- [15] 3GPP TS 25.223: "Spreading and modulation (TDD)".
- [16] ETSI ETR 273 1 2: "Improvement of radiated methods of measurement (using test sites) and evaluation of the corresponding measurement uncertainties; Part 1: Uncertainties in the measuremement of mobile radio equipment characteristics; Sub-part 2: Examples and annexes".
- [17] 3GPP TR 25.926: "UE Radio Access Capabilities".
- [18] 3GPP TR 21.904: "UE capability requirements".
- [19] 3GPP TS 25.211: "Physical channels and mapping of transport channels onto physical channels (FDD)".

[20]	-3GPP TS 05.08: "Digital cellular telecommunications system (Phase 2+); Radio subsystem link- control".
[21]	- 3GPP TS 34.123 1: "User Equipment (UE) Conformance Specification; Part 1: Protocol Conformance Specification".
[22]	-3GPP TS 25.215: "Physical Layer - Measurements (FDD)".
[23]	- 3GPP TS 25.101 "UE Radio transmission and reception (FDD), Release 5".

3 Definitions, symbols, abbreviations and equations

Definitions, symbols, abbreviations and equations used in the present document are listed in TR 21.905 [5] and TR 25.990 [6].

Terms are listed in alphabetical order in this clause.

3.1 Definitions

For the purpose of the present document, the following additional terms and definitions apply:

Maximum Output Power: This is a measure of the maximum power the UE can transmit (i.e. the actual power as would be measured assuming no measurement error) in a bandwidth of at least $(1 + \alpha)$ times the chip rate of the radio-access mode. The period of measurement shall be at least one timeslot.

Nominal Maximum Output Power: This is the nominal power defined by the UE power class.

Mean power: When applied to a W CDMA modulated signal this is the power (transmitted or received) in a bandwidth of at least $(1 + \alpha)$ times the chip rate of the radio access mode. The period of measurement shall be at least one timeslot-unless otherwise stated.

RRC filtered mean power: The mean power as measured through a root raised cosine filter with roll off factor α and a bandwidth equal to the chip rate of the radio access mode.

NOTE 1: The RRC filtered mean power of a perfectly modulated W CDMA signal is 0.246 dB lower than the mean power of the same signal.

NOTE 2: The roll off factor α is defined in 25.101 clause 6.8.1.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

[...] Values included in square bracket must be considered for further studies, because it means that a decision about that value was not taken

3.3 Abbreviations

For the purpose of the present document, the following additional abbreviations apply:

AFC	Automatic Frequency Control
ASD	Acceleration Spectral Density
ATT	-Attenuator
BER	Bit Error Ratio
BLER	Block Error Ratio
BTFD	Blind Transport Format Detection
EVM	Error Vector Magnitude

FDR	False transmit format Detection Ratio. A false Transport Format detection occurs when the
	receiver detects a different TF to that which was transmitted, and the decoded transport block(s)
	for this incorrect TF passes the CRC check(s).
HYB	- Hybrid
IM	
HTP	Initial Transmission Power control mode
OBW	
OCNS	Orthogonal Channel Noise Simulator, a mechanism used to simulate the users or control signals on
	the other orthogonal channels of a downlink
PAR	Peak to Average Ratio
P CCPCH	Primary Common Control Physical Channel
P CPICH	Primary Common Pilot Channel
PCDE	Peak Code Domain Error
RBW	Resolution Bandwidth
RRC	
S-CCPCH	
S-CPICH	<u>Secondary Common Pilot Channel</u>
SCH	Synchronisation Channel consisting of Primary and Secondary synchronisation channels
SS	System Simulator; see Annex A for description
TGCFN	Transmission Gap Connection Frame Number
TGD	Transmission Gap Distance
TGL	Transmission Gap Length
TGPL	Transmission Gap Pattern Length
TGPRC	Transmission Gap Pattern Repetition Count
TGSN	Transmission Gap Starting Slot Number

3.4 Equations

For the purpose of the present document, the following additional equations apply:

$\frac{CPICH_E_c}{I_{or}}$	The ratio of the received energy per PN chip of the CPICH to the total transmit power spectral-
	density at the Node B (SS) antenna connector.
$\frac{DPCH_E_c}{I_{or}}$	The ratio of the transmit energy per PN chip of the DPCH to the total transmit power spectral-
r or	density at the Node B (SS) antenna connector.
$\frac{DPCCH_E_c}{I_{or}}$	The ratio of the transmit energy per PN chip of the DPCCH to the total transmit power spectral-
1 or	density at the Node B (SS) antenna connector.
\underline{DPDCH}_{E_c}	The ratio of the transmit energy per PN chip of the DPDCH to the total transmit power spectral
I _{or}	density at the Node B (SS) antenna connector.
F _{uw}	Frequency of unwanted signal. This is specified in bracket in terms of an absolute frequency(s) or a frequency offset from the assigned channel frequency.
I _{Node_B}	Interference signal power level at Node B in dBm, which is broadcasted on BCH.
I _{oac}	The power spectral density (integrated in a bandwidth of $(1+\alpha)$ times the chip rate and normalized- to the chip rate) of the adjacent frequency channel as measured at the UE antenna connector.
I _{ee}	The power spectral density (integrated in a noise bandwidth equal to the chip rate and normalized to the chip rate) of a band limited white noise source (simulating interference from cells, which are not defined in a test procedure) as measured at the UE antenna connector.
I _{or}	The total transmit power spectral density (integrated in a bandwidth of $(1+\alpha)$ times the chip rate- and normalized to the chip rate) of the downlink signal at the Node B antenna connector

Î _{of}	The received power spectral density (integrated in a bandwidth of $(1+\alpha)$ times the chip rate and normalized to the chip rate) of the downlink signal as measured at the UE antenna connector.
I _{ouw}	Unwanted signal power level.
P-CCPCH_E _c _	_Average (note) energy per PN chip for P-CCPCH.
$\frac{P-CCPCH}{I_o} \frac{E_c}{I_o}$	The ratio of the received P-CCPCH energy per chip to the total received power spectral density at-
	the UE antenna connector.
$\frac{P - CCPCH _ E_c}{I_{or}}$	The ratio of the average (note) transmit energy per PN chip for the P CCPCH to the total transmit-
or	power spectral density.
P-CPICH_E _c	_Average (note) energy per PN chip for P CPICH.
PICH_E _c	_Average (note) energy per PN chip for PICH.
$\frac{PICH_E_c}{I_{or}}$	The ratio of the received energy per PN chip of the PICH to the total transmit power spectral-
	density at the Node B (SS) antenna connector.
	Reference sensitivity
\leftarrow REF $\tilde{I}_{or} \rightarrow$	Reference $\hat{\mathbf{H}}_{or}$
SCH_E _c	_Average (note) energy per PN chip for SCH.
<u>S-CPICH_E</u> e	Average (note) energy per PN chip for S-CPICH.
NOTE: Aver	aging period for energy/power of discontinuously transmitted channels should be defined.
powe powe t he m P-CP ratio	mits of Power Spectral Density (PSD) are extensively used in this document. PSD is a function of r versus frequency and when integrated across a given bandwidth, the function represents the mean- r in such a bandwidth. When the mean power is normalised to (divided by) the chip rate it represents ean energy per chip. Some signals are directly defined in terms of energy per chip, (DPCH_E _e and ICH_E _e) and others defined in terms of PSD (I _{one} , I _{oe} , and \hat{I}_{or}). There also exist quantities that are a of energy per chip to PSD (DPCH_E _e A _{or} , E _e A _{or} etc.). This is the common practice of relating energy itudes in communication systems.
an en an en	be seen that if both energy magnitudes in the ratio are divided by time, the ratio is converted from- ergy ratio to a power ratio, which is more useful from a measurement point of view. It follows that ergy per chip of X dBm/3.84 MHz can be expressed as a mean power per chip of X dBm. Similarly, nal PSD of Y dBm/3.84 MHz can be expressed as a signal power of Y dBm.
4 Fre	equency bands and channel arrangement
4.1 Ge	neral

The information presented in this clause is based on a chip rate of 3,84 Meps.

NOTE: Other chip rates may be considered in future releases.

4.2 Frequency bands

a) UTRA/FDD is designed to operate in either of the following paired bands:

Operating Band	UL Frequencies UE transmit, Node B receive	DL frequencies UE receive, Node B transmit
+	1920 – 1980 MHz	2110 –2170 MHz
H H	1850 – 1910 MHz	1930 –1990 MHz
#	1710-1785 MHz	1805-1880 MHz

b) Deployment in other frequency bands is not precluded.

4.3 TX-RX frequency separation

a) UTRA/FDD is designed to operate with the following TX RX frequency separation.

Operating Band	TX-RX frequency separation
+	190 MHz
#	80 MHz
##	95 MHz

b) UTRA/FDD can support both fixed and variable transmit to receive frequency separation.

c) The use of other transmit to receive frequency separations in existing or other frequency bands shall not beprecluded.

4.4 Channel arrangement

4.4.1 Channel spacing

The nominal channel spacing is 5 MHz, but this can be adjusted to optimise performance in a particular deploymentscenario.

4.4.2 Channel raster

The channel raster is 200 kHz, which for all bands except Band II means that the centre frequency must be an integer multiple of 200 kHz. In Band II, 12 additional centre frequencies are specified according to the table in 4.1a and the centre frequencies for these channels are shifted 100 kHz relative to the normal raster.

4.4.3 Channel number

The carrier frequency is designated by the UTRA Absolute Radio Frequency Channel Number (UARFCN). The values of the UARFCN are as follows.

Table 4.1: UARFCN definition

Uplink	N _u = <u>5*</u> F _{uplink} -	0,0 MHz ≤ F_{uplink} ≤ 3 276,6 MHz
		where F _{uplink} is the uplink frequency in MHz
Downlink	Nd = 5 * F _{downlink}	0,0 MHz ≤ F_{downlink} ≤ 3 276,6 MHz
		where F _{downlink} is the downlink frequency in MHz

	UARFCN	Carrier frequency [MHz]
Uplink	N _u = <u>5 * (F_{uplink} – 1850.1 MHz)</u>	F _{uplink} = 1852.5, 1857.5, 1862.5, 1867.5,
		1872.5, 1877.5,
		1882.5, 1887.5, 1892.5, 1897.5, 1902.5, 1907.4
Downlink	N _u = <u>5 * (F_{downlink} – 1850.1 MHz)</u>	F _{downlink} = 1932.5, 1937.5, 1942.5, 1947.5,
		1952.5, 1957.5,
		1962.5, 1967.5, 1972.5, 1977.5, 1982.5, 1987.5

Table 4.1a: UARFCN definition (Band II additional channels)

4.4.4 UARFCN

The following UARFCN range shall be be supported for each paired band.

Table 4.2: UTRA Absolute Radio Frequency Channel Number

Operating Band	Uplink- UE transmit, Node B- receive	Downlink UE receive, Node B- transmit
+	9 612 to 9 888	10 562 to 10 838
#	9 262 to 9 538 and 12, 37, 62, 87, 112, 137, 162, 187, 212, 237, 262, 287	8 662 to 9 938 - and 4 12, 437, 462, 487, 512, 537, 562, 587, 612, 637, 662, 687
##	8562 to 8913	9037 to 9388

5 Transmitter Characteristics

5.1 General

Transmitting performance test of the UE is implemented during communicating with the SS via air interface. The procedure is using normal call protocol until the UE is communicating on traffic channel basically. On the traffic channel, the UE provides special function for testing that is called Logical Test Interface and the UE is tested using this function. (Refer to TS 34.109 [4]).

Transmitting or receiving bit/symbol rate for test channel is shown in table 5.1.

Table 5 1	Rit / S	wmbol	rate for	Toet (hannol
		ymbor		10310	Juliu

Type of User- Information	User bit rate	DL DPCH symbol rate	UL DPCH bit rate	Remarks
1 2,2 kbps- reference- measurement- channel	12,2 kbps	30 ksps	60 kbps	Standard Test

Unless detailed the transmitter characteristic are specified at the antenna connector of the UE. For UE with integral antenna only, a reference antenna with a gain of 0 dBi is assumed. Transmitter characteristics for UE(s) with multiple-antennas/antenna connectors are FFS.

The UE antenna performance has a significant impact on system performance, and minimum requirements on the antenna efficiency are therefore intended to be included in future versions of the present document. It is recognised that different requirements and test methods are likely to be required for the different types of UE.

All the parameters in clause 5 are defined using the UL reference measurement channel (12,2 kbps) specified in clause C.2.1 and unless stated otherwise, with the UL power control ON.

The common RF test conditions of Tx Characteristics are defined in clause E.3.1, and each test conditions in this clause (clause 5) should refer clause E.3.1. Individual test conditions are defined in the paragraph of each test.

5.2 Maximum Output Power

5.2.1 Definition and applicability

The nominal maximum output power and its tolerance are defined according to the Power Class of the UE.

The maximum output power is a measure of the maximum power the UE can transmit (i.e. the actual power as would be measured assuming no measurement error) in a bandwidth of at least $(1 + \alpha)$ times the chip rate of the radio accessmode. The period of measurement shall be at least one timeslot.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.2.2 Minimum Requirements

The UE maximum output power shall be within the nominal value and tolerance specified in table 5.2.1 even for the multi-code transmission mode.

Operating	Power (Class 1	Power Class 2		Power (Class 3	Power Class 4	
Band	Power (dBm)	Tol (dB)	Power (dBm)	Tol (dB)	Power (dBm)	Tol (dB)	Power (dBm)	Tol (dB)
Band I	+33	+1/-3	+27	+1/-3	+24	+1/-3	+21	+2/-2
Band II	-	-	-	-	+24	+1/-3	+21	+2/-2
Band III	-	-	-	-	+24	+1/-3	+21	+2/-2

Table 5.2.1: Nominal Maximum Output Power

The normative reference for this requirement is TS 25.101 [23] clause 6.2.1.

5.2.3 Test purpose

To verify that the error of the UE maximum output power does not exceed the range prescribed by the nominalmaximum output power and tolerance in table 5.2.1.

An excess maximum output power has the possibility to interfere to other channels or other systems. A small maximum output power decreases the coverage area.

5.2.4 Method of test

5.2.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

1) Connect the SS to the UE antenna connector as shown in figure A.1.

- 2) A call is set up according to the Generic call setup procedure.
- 3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

5.2.4.2 Procedure

1) Set and send continuously Up power control commands to the UE.

2) Measure the mean power of the UE in a bandwidth of at least $(1 + \alpha)$ times the chip rate of the radio accessmode. The mean power shall be averaged over at least one timeslot.

5.2.5 Test requirements

The maximum output power, derived in step 2), shall not exceed the range prescribed by the nominal maximum outputpower and tolerance in table 5.2.2.

Operating	Power	Class 1	Power Class 2		Power	Class 3	Power Class 4	
Band	Power	Tol	Power	Tol	Power	Tol	Power	Tol
	(dBm)	(dB)	(dBm)	(dB)	(dBm)	(dB)	(dBm)	(dB)
Band I	+33	+1,7/-3,7	+27	+1,7/-3,7	+24	+1,7/-3,7	+21	+2,7/-2,7
Band II	-	-	4	-	+2 4	+1,7/-3,7	+21	+2,7/-2,7
Band III	-	-	-	-	+2 4	+1,7/-3,7	+21	+2,7/-2,7

Table 5.2.2: Nominal Maximum Output Power

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

5.3 Frequency Error

5.3.1 Definition and applicability

The frequency error is the difference between the RF modulated carrier frequency transmitted from the UE and the assigned frequency. The UE transmitter tracks to the RF carrier frequency received from the Node B. These signals will-have an apparent error due to Node B frequency error and Doppler shift. In the later case, signals from the Node B must be averaged over sufficient time that errors due to noise or interference are allowed for within the minimum-requirements specified in 5.3.2.

The UE shall use the same frequency source for both RF frequency generation and the chip clock.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.3.2 Minimum Requirements

The UE modulated carrier frequency shall be accurate to within $\pm 0,1$ ppm observed over a period of one timeslotcompared to the carrier frequency received from the Node B.

The normative reference for this requirement is TS 25.101 [1] clause 6.3.

5.3.3 Test purpose

To verify that the UE carrier frequency error does not exceed ±0,1 ppm.

An excess error of the carrier frequency increases the transmission errors in the up link own channel.

This test verifies the ability of the receiver to derive correct frequency information for the transmitter, when locked to the DL carrier frequency.

5.3.4 Method of test

5.3.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH, vibration; see clauses G.2.1, G.2.2 and G.2.3.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.1.
- 2) A call is set up according to the Generic call setup procedure, and RF parameters (DPCH_Ec and Îor) are set up according to table 5.3. The relative power level of other downlink physical channels to the DPCH_Ec are set up according to clause E.3.1.
- 3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

Table 5.3: Test parameters for Frequency Error

Parameter	Level / Status	Unit
DPCH_Ec	_117	dBm / 3,84 MHz
∔ _{0f}	- 106,7	dBm / 3,84 MHz

5.3.4.2 Procedure

- 1) Set and send continuously Up power control commands to the UE until the UE reaches its maximum outputpower.
- 2) Measure the frequency error delta f, at the UE antenna connector using the Global In Channel Tx test (annex B).

5.3.5 Test Requirements

For all measurements, the frequency error, derived in step 2), shall not exceed $\pm (0,1 \text{ ppm} + 10 \text{ Hz})$.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

5.4 Output Power Dynamics in the Uplink

Power control is used to limit the interference level.

5.4.1 Open Loop Power Control in the Uplink

5.4.1.1 Definition and applicability

Open loop power control in the uplink is the ability of the UE transmitter to set its output power to a specific value. This function is used for PRACH transmission and based on the information from Node B using BCCH and the downlink-received signal power level of the CPICH. The information from Node B includes transmission power of CPICH and uplink interference power level.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.4.1.2 Minimum requirements

The UE open loop power is defined as the mean power in a timeslot or ON power duration, whichever is available.

The UE open loop power control tolerance is given in table 5.4.1.1.

Table 5.4.1.1: Open loop power control tolerance

Normal conditions	±9 dB
Extreme conditions	±12 dB

The reference for this requirement is TS 25.101 [1] clause 6.4.1.

5.4.1.3 Test purpose

The power measured by the UE of the received signal and the signalled BCCH information are used by the UE tocontrol the power of the UE transmitted signal with the target to transmit at the lowest power acceptable for propercommunication.

The test stresses the ability of the receiver to measure the received power correctly over the receiver dynamic range.

The test purpose is to verify that the UE open loop power control tolerance does not exceed the described value shown in table 5.4.1.1.

An excess error of the open loop power control decreases the system capacity.

5.4.1.4 Method of test

5.4.1.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

1) Connect the SS to the UE antenna connector as shown in figure A.1.

2) A call is set up according to the Generic call setup procedure, and Î_{or} is set up according to table 5.4.1.2. The relative power level of downlink physical channels to I_{or} are set up according to clause E.2.1. The RACH procedure within the call setup is used for the test.

See TS 34.108 [3] for details regarding generic call setup procedure.

Table 5.4.1.2: Test parameters for Open Loop Power Control (UE)

Parameter	Level / Status	Unit
Î _{or}	See table 5.4.1.3	dBm / 3,84 MHz

Table 5.4.1.3: Test parameters for Open Loop Power Control (SS)

Parameter	RX Upper dynamic end	RX-middle	RX-Sensitivity level
Î _{or} (note 3)	- 25,0 dBm / 3,84 MHz	- 65,7 dBm / 3,84 MHz	- 106,7 dBm / 3,84 MHz
CPICH_RSCP (notes 3 and 4)	- 28,3 dBm	- 69 dBm	- 110 dBm
Primary CPICH DL TX power	+19 dBm	+28 dBm	+19 dBm
Simulated path loss = Primary	+47,3 dB	+97 dB	+129 dB
CPICH DL TX power -			
CPICH_RSCP			
UL interference	- 75 dBm	- 101 dBm	- 110 dBm
Constant Value	–10 dB	–10 dB	–10 dB
Expected nominal UE TX	-37,7 dBm	-14 dBm	+9 dBm (note 2)
power (note 5)			
NOTE 1: While the SS transmit			
	UL interference, Constant Val		JE TX power, located within
the TX output power of	lynamic range of a class 4 UE	.	
NOTE 2: Nominal TX output po	wer 9 dBm allows to check the	e open loop power algorithm	within the entire tolerance
	}; 9 dBm + 12 dB = 21 dBm = 		
NOTE 3: The power level of S-	CCPCH should be defined bea	cause S-CCPCH is transmitte	d during Preamble RACH
transmission period.	The power level of S-CCPCH is	s temporarily set to 10,3 dB	relative to I _{or} . However, it
is necessary to check	whether the above S-CCPCH	level is enough to establish	a connection with the
reference measureme	ent channels.	-	
NOTE 4: The purpose of this pa	arameter is to calculate the Ex	pected nominal UE TX powe	r.
NOTE 5: The Expected nomina			
Power Control of TS 2			
	174		

5.4.1.4.2 Procedure

- 1) Set the TX output level of the SS to obtain \hat{I}_{or} at the UE antenna connector. \hat{I}_{or} shall be according to table 5.4.1.3-(-25 dBm/3,84 MHz).
- 2) Measure the first RACH preamble mean power of the UE.
- 3) Repeat the above measurement for all SS levels in table 5.4.1.3.

5.4.1.5 Test requirements

The deviation with respect to the Expected nominal UE TX power (table 5.4.1.3), derived in step 2), shall not exceed the prescribed tolerance in table 5.4.1.1.

5.4.2 Inner Loop Power Control in the Uplink

5.4.2.1 Definition and applicability

Inner loop power control in the uplink is the ability of the UE transmitter to adjust its output power in accordance with one or more TPC commands received in the downlink.

The power control step is the change in the UE transmitter output power in response to a single TPC command, TPC_cmd, derived at the UE.

This clause does not cover all the requirements of compressed mode or soft handover.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.4.2.2 Minimum requirements

The UE transmitter shall have the capability of changing the output power with a step size of 1 dB, 2 dB and 3 dBaccording to the value of Δ_{TPC} or Δ_{RP-TPC} , in the slot immediately after the TPC_cmd can be derived.

- a) The transmitter output power step due to inner loop power control shall be within the range shown intable 5.4.2.1.
- b) The transmitter aggregate output power step due to inner loop power control shall be within the range shown in table 5.4.2.2. Here a TPC_cmd group is a set of TPC_cmd values derived from a corresponding sequence of TPC commands of the same duration.

The inner loop power step is defined as the relative power difference between the mean power of the original (reference) timeslot and the mean power of the target timeslot, not including the transient duration. The transient duration is from 25µs before the slot boundary to 25µs after the slot boundary.

TPC_cmd	Transmitter power control range (all units are in dB)						
	1 dB st	ep size	2 dB st	ep size	3 dB st	ep size	
	Lower	Upper	Lower	Upper	Lower	Upper	
+1	+0,5	+1,5	+1	+3	+1,5	+4,5	
θ	-0,5	+0,5	-0,5	+0,5	-0,5	+0,5	
-1	- 0,5	-1,5	-1	_3	-1,5	-4,5	

Table 5.4.2.1: Transmitter power control range

TPC_cmd group	Transmitter power control range after 10 equal TPC_cmd group (all units are in dB)				Transmitter power- control range after 7- equal TPC_cmd- groups (all units are in dB)	
	1 dB step size 2 dB step size			3 dB step size		
	Lower	Upper	Lower	Upper	Lower	Upper
+1	+8	+12	+16	+24	+16	+26
θ	-1	+1	-1	+1	-1	+1
	8	-12	_16	_2 4	16	_26
0,0,0,0,+1	+6	+14	N/A	N/A	N/A	N/A
0,0,0,0,-1	-6	_1 4	N/A	N/A	N/A	N/A

Table 5.4.2.2: Transmitter aggregate power control tolerance

The UE shall meet the above requirements for inner loop power control over the power range bounded by the Minimum output power as defined in clause 5.4.3.2, and the Maximum output power supported by the UE (i.e. the actual power as would be measured assuming no measurement error). This power shall be in the range specified for the power class of the UE in clause 5.2.2.

NOTE: 3 dB inner loop power control steps are only used in compressed mode.

The reference for this requirement is TS 25.101 [1] clause 6.4.2.1.1.

The requirements for the derivation of TPC_cmd are detailed in TS 25.214 [5] clauses 5.1.2.2.2 and 5.1.2.2.3.

5.4.2.3 Test purpose

- To verify that the UE inner loop power control size and response is meet to the described value shown inclause 5.4.2.2.
- To verify that TPC_cmd is correctly derived from received TPC commands.

An excess error of the inner loop power control decreases the system capacity.

The UE shall be tested for the requirements for inner loop power control over the power range bounded by the Minpower threshold for test and the Max power threshold for test.

The Min power threshold for test is defined as the Minimum Output Power Test Requirement (clause 5.4.3.5).

The Max power threshold for test is defined as the Measured Maximum output power of the UE in the relevant Step of the test (using the same method as in clause 5.2.4.2 step 2) minus the Test Tolerance specified for test 5.2 Maximum Output Power in table F.2.1.

For the final power step adjacent to the Min or Max power threshold for test, the lower step size requirement does not apply.

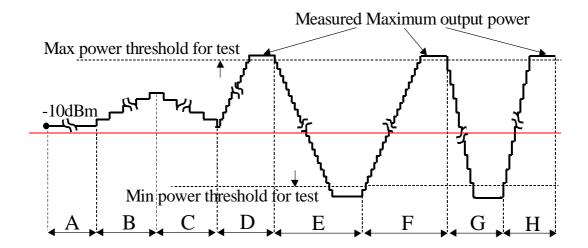
5.4.2.4 Method of test

5.4.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.1.
- 2) A call is set up according to the Generic call setup procedure specified in TS34.108 [3] sub clause 7.3.2, with the following exception for information elements in RADIO BEARER SETUP message. With this exception, the Power Control Algorithm for the Uplink is set to algorithm 2.


Table 5.4.2.4.1: Contents of RADIO BEARER SETUP message: AM or UM

Information Element	Value/Remark
CHOICE channel requirement	Uplink DPCH info
	Algorithm 2

3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

5.4.2.4.2 Procedure

Figure 5.4.2.4 Inner Loop Power Control Test Steps

- 1) Before proceeding with paragraph (2) (Step A) below, set the output power of the UE, measured at the UE antenna connector, to be in the range 10 ± 9 dBm. This may be achieved by setting the downlink signal (Î_{or}) to yield an appropriate open loop output power and/or by generating suitable downlink TPC commands from the SS.
- 2) Step A: Transmit a sequence of at least 30 and no more than 60 TPC commands, which shall commence at a frame boundary and last for a whole number of frames, and which shall contain:

 - at least one set of 5 consecutive "0" commands which does not commence in the 1st, 6th or 11th slots of aframe;
 - at least one set of 5 consecutive "1" commands which does not commence in the 1st, 6th or 11th slots of a frame.

The following is an example of a suitable sequence of TPC commands:

- 3) Step B: Transmit a sequence of 50 TPC commands with the value 1.
- 4) Step C: Transmit a sequence of 50 TPC commands with the value 0.
- 5) Step D: Transmit the PHYSICAL CHANNEL RECONFIGURATION message to reconfigure the uplinkchannel in order to set the Power Control Algorithm to algorithm 1, and the TPC step size to 1 dB. Contents of the message is specified in the table 5.4.2.4.2.A. After the PHYSICAL CHANNEL RECONFIGURATION-COMPLETE message from the UE is received, transmit a sequence of TPC commands with the value 1 until the UE output power is above the maximum power threshold.

6) Step E: Transmit a sequence of 150 (note 1) TPC commands with the value 0.

- 7) Step F: Transmit a sequence of 150 (note 1) TPC commands with the value 1.
- 8) Step G: Transmit the PHYSICAL CHANNEL RECONFIGURATION message to reconfigure the uplinkchannel in order to set the TPC step size to 2 dB (with the Power Control Algorithm remaining as algorithm 1). Contents of the message is specified in the table 5.4.2.4.2.B. After the PHYSICAL CHANNEL RECONFIGURATION COMPLETE message from the UE is received, transmit a sequence of TPC commandswith the value 1 until the UE output power is above the maximum power threshold. Transmit a sequence of 75-(note 1) TPC commands with the value 0.
- 9) Step H: Transmit a sequence of 75 (note 1) TPC commands with the value 1.
- 10) During steps A to H the mean power of every slot shall be measured, with the following exceptions:
 - In steps D and F, measurement of the mean power is not required in slots after the 10th-slot after the meanpower has exceeded the maximum power threshold;
 - In steps E and G, measurement of the mean power is not required in slots after the 10th slot after the meanpower has fallen below the minimum power threshold.
- The transient periods of 25 μs before each slot boundary and 25 μs after each slot boundary shall not be included in the power measurements.
- NOTE 1: These numbers of TPC commands are given as examples. The actual number of TPC commandstransmitted in these steps shall be at least 10 more than the number required to ensure that the UE reachesthe relevant maximum or minimum power threshold in each step, as shown in figure 5.4.2.4.
- NOTE 2: In order to make it more practical to measure the entire power control dynamic range (between min power threshold and max power threshold with suitable margins), it is permissible to segment the power control-sequences into smaller subsequence. For example, Step E can be divided into different stages while still fulfilling the purpose of the test to measure the entire dynamic range.

Table 5.4.2.4.2.A: PHYSICAL CHANNEL RECONFIGURATION message for step D (step 5)

Information Element	Value/Remark
Message Type	
UE Information Elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
-Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	Not Present
-New U-RNTI	Not Present-
-New C-RNTI	Not Present
-RRC State Indicator	CELL_DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	
-CN Information info	Not Present
UTRAN mobility information elements	
-URA identity	Not Present
RB information elements	
-Downlink counter synchronisation info	Not Present
PhyCH information elements	
-Frequency info	Not Present
Uplink radio resources	
-Maximum allowed UL TX power	Not Present
-CHOICE channel requirement	Uplink DPCH info
Uplink DPCH power control info	
CHOICE mode	FDD
	-6dB
PC Preamble	1 frame
	7 frames
Power Control Algorithm	Algorithm 1
	1dB
CHOICE mode	FDD
Scrambling code type	Long
Scrambling code number	θ [~]
Number of DPDCH	4
spreading factor	64
TFCI existence	TRUE
Number of FBI bits	Not Present(0)
Puncturing Limit	4
Downlink radio resources	
-CHOICE mode	FDD
Downlink PDSCH information	Not Present
-Downlink information common for all radio links	Not Present
-Downlink information per radio link list	Not Present

Table 5.4.2.4.2.B: PHYSICAL CHANNEL RECONFIGURATION message for step G (step 8)

Information Element	Value/Remark
Message Type	
UE Information Flowents	
UE Information Elements -RRC transaction identifier	
	θ Ν. Ι. Β. Ι. Ι.
-Integrity check info	Not Present
-Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	Not Present
-New U-RNTI	Not Present
-New C-RNTI	Not Present
-RRC State Indicator	CELL_DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	
-CN Information info	Not Present
UTRAN mobility information elements	
-URA identity	Not Present
RB information elements	
-Downlink counter synchronisation info	Not Present
PhyCH information elements	
-Frequency info	Not Present
Uplink radio resources	
-Maximum allowed UL TX power	Not Present
-CHOICE channel requirement	Uplink DPCH info
Uplink DPCH power control info	
	FDD
	-6dB
PC Preamble	1 frame
	7 frames
Power Control Algorithm	Algorithm 1
	2dB
-CHOICE mode	FDD
Scrambling code type	Long
Scrambling code number	θ
Number of DPDCH	4
spreading factor	64
TFCI existence	TRUE
Number of FBI bits	Not Present(0)
Puncturing Limit	4
Downlink radio resources	
-CHOICE mode	FDD
Downlink PDSCH information	Not Present
-Downlink information common for all radio links	Not Present
-Downlink information per radio link list	Not Present

5.4.2.5 Test requirements

Table 5.4.2.5.1: Transmitter power control range

TPC_cmd	Transmitter power control range (all units are in dB)						
	1 dB st	ep size	2 dB st	ep size	3 dB st	ep size	
	Lower Upper		Lower	Upper	Lower	Upper	
+1	+0,4	+1,6	+0,85	+3,15	+1,3	+4,7	
θ	-0,6	+0,6	-0,6	+0,6	-0,6	+0,6	
-1	-0,4	-1,6	-0,85	-3,15	_1,3	-4,7	

TPC_cmd group	Transmitter power control range after 10 equal TPC_cmd group (all units are in dB)			control rai	-	
	1 dB step size 2 dB step size		3 dB step size			
	Lower	Upper	Lower	Upper	Lower	Upper
+1	+7,7	+12,3	+15,7	+24,3	+15,7	+26,3
θ	-1,1	+1,1	-1,1	+1,1	_1,1	+1,1
	7,7	-12,3	- 15,7	_24,3	- 15,7	-26,3
0,0,0,0,+1	+5,7	+14,3	N/A	N/A	N/A	N/A
0,0,0,0,-1	_5,7	_14,3	N/A	N/A	N/A	N/A

Table 5.4.2.5.2: Transmitter aggregate power control tolerance

- a) During Step A, the difference in mean power between adjacent slots shall be within the prescribed range for a TPC_end of 0, as given in table 5.4.2.5.1.
- b) During Step A, the change in mean power over 10 consecutive slots shall be within the prescribed range for a TPC_cmd group of 0, as given in table 5.4.2.5.2.
- c) During Step B, the difference in mean power between adjacent slots shall be within the prescribed range given in table 5.4.2.5.1, given that every 5th TPC_cmd should have the value +1, with a step size of 1 dB, and all other TPC_cmd should have the value 0.
- d) During Step B, the change in mean power over 50 consecutive slots shall be within the prescribed range for a TPC_cmd group of {0,0,0,0,+1}, as given in table 5.4.2.5.2.
- e) During Step C, the difference in mean power between adjacent slots shall be within the prescribed range given in table 5.4.2.5.1, given that every 5th TPC_cmd should have the value -1, with a step size of 1 dB, and all other TPC_cmd should have the value 0.
- f) During Step C, the change in mean power over 50 consecutive slots shall be within the prescribed range for a TPC_cmd group of {0,0,0,0, 1}, as given in table 5.4.2.5.2.
- g) During Step E, the difference in mean power between adjacent slots shall be within the prescribed range given in table 5.4.2.5.1 for a TPC_cmd of -1 and step size of 1 dB. This applies when the original (reference) timeslot-power and the target timeslot power are between the Min power threshold for test and the Max power threshold-for test derived from the Measured Maximum output power in Step D. For the power step adjacent to the Min or-Max power threshold for test, the lower step size requirement does not apply.
- h) During Step E, the change in mean power over 10 consecutive slots shall be within the prescribed range for a TPC_cmd group of -1, and step size of 1 dB as given in table 5.4.2.5.2. This applies when the original (reference) timeslot power and the target timeslot power are between the Min power threshold for test and the Max power threshold for test derived from the Measured Maximum output power in Step D. The power step adjacent to the Min or Max power threshold for test should not be part of the 10 consecutive slots tested.
- i) During Step F, the difference in mean power between adjacent slots shall be within the prescribed range given in table 5.4.2.5.1 for a TPC_cmd of +1 and step size of 1 dB. This applies when the original (reference) timeslot-power and the target timeslot power are between the Min power threshold for test and the Max power threshold for test derived from the Measured Maximum output power in Step F. For the power step adjacent to the Min or-Max power threshold for test, the lower step size requirement does not apply.
- j) During Step F, the change in mean power over 10 consecutive slots shall be within the prescribed range for a TPC_cmd group of +1, and step size of 1 dB as given in table 5.4.2.5.2. This applies when the original (reference) timeslot power and the target timeslot power are between the Min power threshold for test and the Max power threshold for test derived from the Measured Maximum output power in Step F. The power step-adjacent to the Min or Max power threshold for test should not be part of the 10 consecutive slots tested.

- k) During Step G, the difference in mean power between adjacent slots shall be within the prescribed range given in table 5.4.2.5.1 for a TPC_cmd of -1 and step size of 2 dB. This applies when the original (reference) timeslotpower and the target timeslot power are between the Min power threshold for test and the Max power thresholdfor test derived from the Measured Maximum output power in Step F. For the power step adjacent to the Min or-Max power threshold for test, the lower step size requirement does not apply.
- I) During Step G, the change in mean power over 10 consecutive slots shall be within the prescribed range for a TPC_cmd group of -1, and step size of 2 dB as given in table 5.4.2.5.2. This applies when the original (reference) timeslot power and the target timeslot power are between the Min power threshold for test and the Max power threshold for test derived from the Measured Maximum output power in Step F. The power step-adjacent to the Min or Max power threshold for test should not be part of the 10 consecutive slots.
- m) During Step H, the difference in mean power between adjacent slots shall be within the prescribed range given in table 5.4.2.5.1 for a TPC_emd of +1 and step size of 2 dB. This applies when the original (reference) timeslot-power and the target timeslot power are between the Min power threshold for test and the Max power threshold for test derived from the Measured Maximum output power in Step H. For the power step adjacent to the Min or-Max power threshold for test, the lower step size requirement does not apply.
- n) During Step H, the change in mean power over 10 consecutive slots shall be within the prescribed range for a TPC_cmd group of +1, and step size of 2 dB as given in table 5.4.2.5.2. This applies when the original (reference) timeslot power and the target timeslot power are between the Min power threshold for test and the Max power threshold for test derived from the Measured Maximum output power in Step H. The power step-adjacent to the Min or Max power threshold for test should not be part of the 10 consecutive slots tested.
- NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

5.4.3 Minimum Output Power

5.4.3.1 Definition and applicability

The minimum controlled output power of the UE is when the power control setting is set to a minimum value. This is when both the inner loop and open loop power control indicate a minimum transmit output power is required.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.4.3.2 Minimum Requirements

The minimum output power is defined as the mean power in one timeslot. The minimum transmit power shall be less-than -50 dBm.

The normative reference for this requirement is TS 25.101 [1] clause 6.4.3.1.

5.4.3.3 Test purpose

To verify that the UE minimum transmit power is less than -50 dBm.

An excess minimum output power increases the interference to other channels, and decreases the system capacity.

5.4.3.4 Method of test

5.4.3.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

1) Connect the SS to the UE antenna connector as shown in figure A.1.

2) A call is set up according to the Generic call setup procedure.

3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

5.4.3.4.2 Procedure

1) Set and send continuously Down power control commands to the UE.

2) Measure the mean power of the UE.

5.4.3.5 Test requirements

The measured power, derived in step 2), shall be less than -49 dBm.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

5.4.4 Out-of-synchronisation handling of output power

5.4.4.1 Definition and applicability

The UE shall monitor the DPCCH quality in order to detect a loss of the signal on Layer 1, as specified in-TS 25.214 [5]. The thresholds Q_{out} and Q_{in} specify at what DPCCH quality levels the UE shall shut its power off andwhen it shall turn its power on respectively. The thresholds are not defined explicitly, but are defined by the conditionsunder which the UE shall shut its transmitter off and turn it on, as stated in this clause.

The DPCCH quality shall be monitored in the UE and compared to the thresholds Q_{out} and Q_{in} for the purpose of monitoring synchronization. The threshold Q_{out} should correspond to a level of DPCCH quality where no reliable detection of the TPC commands transmitted on the downlink DPCCH can be made. This can be at a TPC command error ratio level of e.g. 30%. The threshold Q_{in} should correspond to a level of DPCCH quality where detection of the TPC commands transmitted on the downlink DPCCH is significantly more reliable than at Q_{out} . This can be at a TPC command error ratio level of e.g. 20%.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.4.4.2 Minimum Requirements

When the UE estimates the DPCCH quality over the last 160 ms period to be worse than a threshold Q_{out} , the UE shall shut its transmitter off within 40 ms. The UE shall not turn its transmitter on again until the DPCCH quality exceeds an acceptable level Q_{in} . When the UE estimates the DPCCH quality over the last 160 ms period to be better than a threshold Q_{in} , the UE shall again turn its transmitter on within 40 ms.

The UE transmitter shall be considered "off" if the transmitted power is below the level defined in subclause 6.5.1 (Transmit off power). Otherwise the transmitter shall be considered as "on".

The normative reference for this requirement is TS 25.101 [1] clause 6.4.4.1.

The quality levels at the thresholds Q_{out} and Q_{in} correspond to different signal levels depending on the downlinkconditions DCH parameters. For the conditions in table 5.4.4.1, a signal with the quality at the level Q_{out} can begenerated by a DPCCH_Ec/Ior ratio of -25 dB, and a signal with Q_{in} by a DPCCH_Ec/Ior ratio of -21 dB. The DLreference measurement channel (12.2) kbps specified in subclause C.3.1 and with static propagation conditions. The downlink physical channels, other than those specified in table 5.4.4.1, are as specified in table E.3.3 of Annex E.

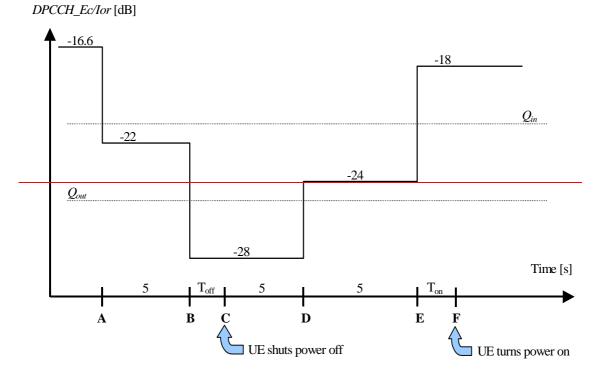

Parameter	Value	Unit
$\frac{\hat{H}_{or}}{I_{oc}}$	-1	dB
-I _{oc}	-60	dBm / 3,84 MHz
$\frac{DPDCH_E_c}{I_{or}}$	See Figure 5.4.4.1: Before point A –16,6 — After point A Not defined See note in clause 5.4.4.3	dB
$\frac{DPCCH_E_c}{I_{or}}$	See table 5.4.4.2	d₽
Information Data Rate	12,2	kbps

Table 5.4.4.1: DCH parameters for test of Out-of-synch handling test case

Table 5.4.4.2: Minimum Requirements for DPCCH_Ec/lor levels

Clause from figure 5.4.4.1	DPCCH_Ec/lor	Unit
Before A	-16,6	d₽
A to B	-22,0	d₿
B to D	-28,0	d₿
D to E	-24,0	d₿
After E	-18,0	d₿

Figure 5.4.4.1 shows an example scenario where the DPCCH_Ec/Ior ratio varies from a level where the DPCH is demodulated under normal conditions, down to a level below Q_{out} where the UE shall shut its power off and then back-up to a level above Q_{in} where the UE shall turn the power back on.

Figure 5.4.4.1: Test case for out-of-synch handling in the UE.

In this test case, the requirements for the UE are that:

1. The UE shall not shut its transmitter off before point B.

2. The UE shall shut its transmitter off before point C, which is Toff = 200 ms after point B.

3. The UE shall not turn its transmitter on between points C and E.

4. The UE shall turn its transmitter on before point F, which is Ton = 200 ms after point E.

The reference for this test case is TS 25.101 [1] clause 6.4.4.2.

5.4.4.3 Test purpose

To verify that the UE monitors the DPCCH quality and turns its transmitter on or off according to DPCCH level diagram specified in figure 5.4.4.1.

NOTE: DPDCH_Ec/I_{or} after point A is not defined in table 5.4.4.1. However it is assumed that DPDCH and DPCCH power level are same on DL 12,2 kbps reference measurement channel for testing. (PO1, PO2, and PO3 are zero.)

5.4.4.4 Method of test

5.4.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.1.
- 2) A call is set up according to the Generic call setup procedure, with the following exception for information elements in System Information Block type 1 specified in TS 34.108 [3] subclause 6.1.0b.

Table 5.4.4.2A: System Information Block type 1 message

Information Element	Value/Remark
UE Timers and constants in connected mode	
- T313	15 seconds
- N313	200

3) DCH parameters are set up according to table 5.4.4.1 with DPCCH_Ec/Ior ratio level at 16,6 dB. The other RF parameters are set up according to clause E.3.3.

4) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

5.4.4.4.2 Procedure

- 1) The SS sends continuously Up power control commands to the UE until the UE transmitter power reachmaximum level.
- 2) The SS controls the DPCCH_Ec/Ior ratio level according to clause 'A to B' as defined in table 5.4.4.3. The SS monitors the UE transmitted power for 5 seconds and verifies that the UE transmitter is not switched off during this time.
- 3) The SS controls the DPCCH_Ec/Ior ratio level according to clause 'B to D' as defined in table 5.4.4.3. The SS waits 200 ms and then verifies that the UE transmitter has been switched off.
- 4) The SS monitors the UE transmitted power for 5 seconds and verifies that the UE transmitter is not switched on during this time.
- 5) The SS controls the DPCCH_Ec/Ior ratio level according to clause 'D to E' as defined in table 5.4.4.3. The SS monitors the UE transmitted power for 5 s and verifies that the UE transmitter is not switched on during this time.
- 6) The SS controls the DPCCH_Ec/Ior ratio level according to clause 'After E' as defined in table 5.4.4.3. The SSwaits 200 ms and then verifies that the UE transmitter has been switched on.

5.4.4.5 Test requirements

Table 5.4.4.3: Test Requirements for DPCCH_Ec/lor levels

Clause from figure 5.4.4.1	DPCCH_Ec/lor-	Unit
Before A	-16,6	dB
A to B	-21,6	dB
B to D	-28,4	dB
D to E	-24,4	d₿
After E	-17,6	dB

To pass the test, steps 1 through 6 of the procedure in clause 5.4.4.4.2 must be fulfilled.

The UE transmitter off criterion and its tolerances is defined in clause 5.5.1 (Transmit off power).

The UE transmitter on criterion and its tolerances is defined in clause 5.4.3 (Minimum Output Power). The UE transmitter is considered to be on if the UE transmitted power is higher than minimum output power.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Test Requirement has been relaxed by the Test Tolerance is given in clause F.4.

5.5 Transmit ON/OFF Power

5.5.1 Transmit OFF Power

5.5.1.1 Definition and applicability

Transmit OFF power is defined as the RRC filtered mean power when the transmitter is off. The transmit OFF powerstate is when the UE does not transmit. During transmission gaps in UL compressed mode, the UE is not considered tobe in the OFF state.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.5.1.2 Minimum Requirements

The requirement for the transmit OFF power shall be less than -56 dBm.

The normative reference for this requirement is TS 25.101 [1] clause 6.5.1.1.

5.5.1.3 Test purpose

To verify that the UE transmit OFF power is less than -56 dBm.

An excess transmit OFF power increases the interference to other channels, and decreases the system capacity.

5.5.1.4 Method of test

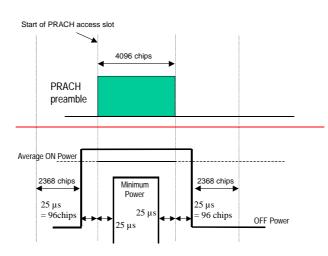
This test is covered by clause 5.5.2 Transmit ON/OFF Time mask.

5.5.1.5 Test requirements

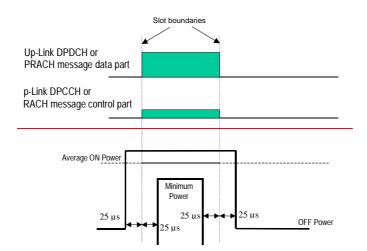
The measured RRC filtered mean power shall be less than -55 dBm.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

5.5.2 Transmit ON/OFF Time mask


5.5.2.1 Definition and applicability

The time mask for transmit ON/OFF defines the ramping time allowed for the UE between transmit OFF power and transmit ON power. Possible ON/OFF scenarios are PRACH, CPCH or uplink compressed mode.


The requirements and this test apply to all types of UTRA for the FDD UE.

5.5.2.2 Minimum requirements

The transmit power levels versus time shall meet the mask specified in figure 5.5.1 for PRACH preambles, and the mask in figure 5.5.2 for all other cases. The off signal is defined as the RRC filtered mean power.

Figure 5.5.1: Transmit ON/OFF template for PRACH preambles

Figure 5.5.2: Transmit ON/OFF template for all other On/Off cases

OFF Power is defined in clause 5.5.1.2.

ON power is defined as the mean power. The specification depends on each possible case.

- -First preamble of PRACH: Open loop accuracy (table 5.4.1.1).
- During preamble ramping of the RACH and between final RACH preamble and RACH message part: Accuracy depending on size of the required power difference (table 5.5.2.1).
- After transmission gaps in compressed mode: Accuracy as in table 5.7.1.

⁻ Power step to Maximum Power: Maximum power accuracy (table 5.2.1).

Table 5.5.2.1: Transmitter power difference tolerance for RACH preamble ramping, and between final RACH preamble and RACH message part

Power difference size <u>∆P [dB]</u>	Transmitter power difference tolerance- [dB]
θ	±1
4	±1
2	±1,5
3	±2
4 <u>≤∆P≤10</u>	±2,5
<u>11 ≤ ∆P ≤ 15</u>	±3,5
16 ≤ ΔΡ ≤ 20	±4,5
<u>21 ≤ ∆P</u>	±6,5

The reference for this requirement is TS 25.101 [1] clause 6.5.2.1.

This is tested using PRACH operation.

5.5.2.3 Test purpose

To verify that the UE transmit ON/OFF power levels versus time meets the described mask shown in figure 5.5.1 and figure 5.5.2.

An excess error of transmit ON/OFF response increases the interference to other channels, or increases transmissionerrors in the up link own channel.

5.5.2.4 Method of test

5.5.2.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.1.
- 2) A call is set up according to the Generic call setup procedure, and \hat{I}_{or} is are set up according to table 5.5.2.2. The relative power level of downlink physical channels to I_{or} are set up according to clause E.2.1.

The RACH procedure within the call setup is used for the test. The number of the available subchannels should belimited to one. This ensures that the preamble sequence is known to the SS. The preamble retransmission shall be atleast 3. The power ramping step size shall be 1 dB. Note that the maximum number of preamble retransmissions islimited to 5 due to the fact that the commanded uplink power exceeds the allowed uplink power of more than 6 dB. The-SS shall not send either an ACK or a NACK.

See TS 34.108 [3] for details regarding generic call setup procedure.

Table 5.5.2.2: Test parameters for Transmit ON/OFF Time mask (UE)

Parameter	Level / Status	Unit
Î _{or}	See table 5.5.2.3	dBm / 3,84 MHz

Parameter	Power Class 1	Power Class 2	Power Class 3	Power Class 4	Unit
Î _{or} (note 1)	- 106,7	- 106,7	- 106,7	- 106,7	dBm / 3,84 MHz
CPICH_RSCP (notes 1 and 2)	-110	-110	-110	-110	dBm
Primary CPICH DL TX power	+19	+19	+19	+19	dBm
Simulated path loss = Primary CPICH DL TX power - CPICH_RSCP	+129	+129	+129	+129	dB
UL interference	- 86	- 92	- 95	- 98	dBm
Constant Value	_10	_10	_10	_10	dB
Expected nominal UE TX- power (note 3)	+33	+27	+2 4	+21	dBm
NOTE 1: The power level of S-CCPCH should be defined because S-CCPCH is transmitted during Preamble RACH					
transmission period. The power level of S-CCPCH is temporarily set to -10,3 dB relative to Ior. However, it is					
necessary to check whether the above S-CCPCH level is enough to establish a connection with the					
reference measurement channels.					
NOTE 2: The purpose of this parameter is to calculate the Expected nominal UE TX power.					
NOTE 3: The Expected nominal UE TX power is calculated by using the equation in the clause 8.5.7 Open Loop-					
Power Control of TS 25.331 [8].					

Table 5.5.2.3: Test parameters for Transmit ON/OFF Time mask (SS)

5.5.2.4.2 Procedure

- 1) Set the TX output level of the SS to obtain \hat{I}_{or} at the UE antenna connector and select the test parameters of table 5.5.2.3 according to the power class. \hat{I}_{or} shall be according to table 5.5.2.3 (-106,7 dBm / 3,84 MHz).
- 2) Measure the mean power (ON power) of the UE on the first RACH preamble or two consecutive RACH preambles. The measurements shall not include the transient periods. From the occurrence of the first RACH preamble the SS shall predict the following RACH preamble timing.
- 3) Measure the RRC filtered mean power (OFF power) in a 2368 chip time interval before a transient period of 25μs (96 chips) prior to a RACH preamble (ON power). Measure the RRC filtered mean power (OFF power) in a 2368 chip time interval after a transient period of 25 μs (96 chips) after a RACH preamble (ON power).

5.5.2.5 Test requirements

The deviation with respect to the Expected nominal UE TX power (table 5.5.2.3), derived in step 2), shall not exceed the prescribed upper tolerance in table 5.2.2 (clause 5.2.5) and lower tolerance in table 5.4.1.1. (clause 5.4.1.2) for the first preamble, or shall meet the tolerance in table 5.5.2.1 for two consecutive preambles.

The measured RRC filtered mean power, derived in step 3), shall be less than 55 dBm. (clause 5.5.1.5).

5.6 Change of TFC

5.6.1 Definition and applicability

A change of TFC (Transport Format Combination) in uplink means that the power in the uplink varies according to the change in data rate. DTX, where the DPCH is turned off, is a special case of variable data, which is used to minimise the interference between UE(s) by reducing the UE transmit power when voice, user or control information is not-present.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.6.2 Minimum requirements

A change of output power is required when the TFC, and thereby the data rate, is changed. The ratio of the amplitudebetween the DPDCH codes and the DPCCH code will vary. The power step due to a change in TFC shall be calculated in the UE so that the power transmitted on the DPCCH shall follow the inner loop power control. The step in totaltransmitted power (DPCCH + DPDCH) shall then be rounded to the closest integer dB value. A power step exactlyhalf way between two integer values shall be rounded to the closest integer of greater magnitude. The accuracy of the power step, given the step size is specified in table 5.6.1. The power change due to a change in TFC is defined as therelative power difference between the mean power of the original (reference) timeslot and the mean power of the targettimeslot, not including the transient duration. The transient duration is from 25 μ s before the slot boundary to 25 μ s after the slot boundary.

Power control step size (Up or down) <u>AP [dB]</u>	Transmitter power step tolerance [dB]
θ	±0,5
4	±0,5
2	±1,0
3	±1,5
4 <u>≤ ∆P ≤ 10</u>	±2,0
11 ≤ ΔΡ ≤ 15	±3,0
16 ≤ ΔΡ ≤ 20	±4,0
<u>21 ≤ ∆P</u>	±6,0

Table 5.6.1: Transmitter power step tolerance

Clause C.2.1 defines the UL reference measurement channels (12,2 kbps) for TX test and the power ratio between DPCCH and DPDCH as -5,46 dB. Therefore, only one power control step size is selected as minimum requirement from table 5.6.1. The accuracy of the power step, given the step size is specified in table 5.6.2.

Table 5.6.2: Transmitter power step tolerance for test

Quantized amplitude ratios	Power control step size (Up or	Transmitter power step-
β _c and β _d	down) ΔΡ [dB]	tolerance [dB]
β₆ = 0,5333, β_d = 1,0	7-	±2

The transmit power levels versus time shall meet the mask specified in figure 5.6.1.

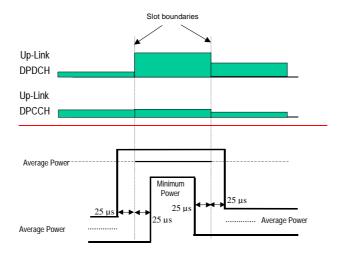
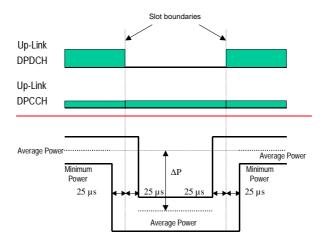



Figure 5.6.1: Transmit template during TFC change

The UL reference measurement channel (12,2 kbps) is a fixed rate channel. Therefore, DTX, where the DPDCH isturned off, is tested, as shown in figure 5.6.2.

Figure 5.6.2: Transmit template during DTX

The reference for this requirement is TS 25.101 [1] clause 6.5.3.1.

5.6.3 Test purpose

To verify that the tolerance of power control step size does not exceed the described value shown in table 5.6.2.

To verify that the DTX ON/OFF power levels versus time meets the described mask shown in figure 5.6.2.

5.6.4 Method of test

5.6.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.1.
- 2) A call is set up according to the Generic call setup procedure. The Uplink DPCH Power Control Info shallspecify the Power Control Algorithm as algorithm 2 for interpreting TPC commands.
- 3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

5.6.4.2 Procedure

- 1) Set the attenuation in the downlink signal (\hat{I}_{or}) to yield an open loop output power, measured at the UE antenna connector, of 0 dBm.
- 2) Send alternating "0" and "1" TPC commands in the downlink so as to satisfy the condition of obtaining TPC_cmd = 0.
- 3) Using the Tester, measure the mean power at the antenna connector of the UE in two cases, both DPDCH and DPCCH are ON and only DPCCH is ON. The measurements shall not include the transient periods.

5.6.5 Test requirements

The difference in mean power between DPDCH ON and OFF, derived in step 3), shall not exceed the prescribed range in table 5.6.2.

5.7 Power setting in uplink compressed mode

5.7.1 Definition and applicability

Compressed mode in uplink means that the power in uplink is changed.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.7.2 Minimum requirements

A change of output power is required during uplink compressed frames since the transmission of data is performed in a shorter interval. The ratio of the amplitude between the DPDCH codes and the DPCCH code will also vary. The power step due to compressed mode shall be calculated in the UE so that the energy transmitted on the pilot bits during each transmitted slot shall follow the inner loop power control.

Thereby, the power during compressed mode, and immediately afterwards, shall be such that the mean power of the DPCCH follows the steps due to inner loop power control combined with additional steps of $10Log_{10}(N_{pilot,prev} \neq N_{pilot,curr})$ dB where $N_{pilot,prev}$ is the number of pilot bits in the previously transmitted slot, and $N_{pilot,curr}$ is the current-number of pilot bits per slot.

The resulting step in total transmitted power (DPCCH +DPDCH) shall then be rounded to the closest integer dB value. A power step exactly half way between two integer values shall be rounded to the closest integer of greatest magnitude. The accuracy of the power step, given the step size, is specified in table 5.6.1 in clause 5.6.2. The power step is defined as the relative power difference between the mean power of the original (reference) timeslot and the mean power of the target timeslot, when neither the original timeslot nor the reference timeslot are in a transmission gap. The transient-duration is not included, and is from 25 µs before the slot boundary to 2 5µs after the slot boundary.

In addition to any power change due to the ratio $N_{pilot.prev} / N_{pilot.curr,}$ the mean power of the DPCCH in the first slot after a compressed mode transmission gap shall differ from the mean power of the DPCCH in the last slot before the transmission gap by an amount Δ_{RESUME} , where Δ_{RESUME} is calculated as described in clause 5.1.2.3 of TS 25.214 [5].

The resulting difference in the total transmitted power (DPCCH + DPDCH) shall then be rounded to the closest integer dB value. A power difference exactly half way between two integer values shall be rounded to the closest integer of greatest magnitude. The accuracy of the resulting difference in the total transmitted power (DPCCH + DPDCH) after a transmission gap of up to 14 slots shall be as specified in table 5.7.1.

Power difference (Up or down) AP [dB]	Transmitter power step- tolerance after a transmission gap [dB]
<u>∆P ≤ 2</u>	+/3
3	+/- 3
$4 \le \Delta P \le 10$	+/- 3.5
11 ≤ ΔΡ ≤ 15	+/- 4
16 ≤ ΔΡ ≤ 20	+/- 4.5
<u>21 ≤ Δ</u> Ρ	+/- 6.5

Table 5.7.1: Transmitter power difference tolerance after a transmission gap of up to 14 slots

The power difference is defined as the difference between the mean power of the original (reference) timeslot before the transmission gap and the mean power of the target timeslot after the transmission gap, not including the transient durations. The transient durations at the start and end of the transmission gaps are each from 25 μ s before the slot boundary to 25 μ s after the slot boundary.

The transmit power levels versus time shall meet the mask specified in figure 5.7.1.

The reference for this requirement is TS 25.101 [1] clause 6.5.4.1.

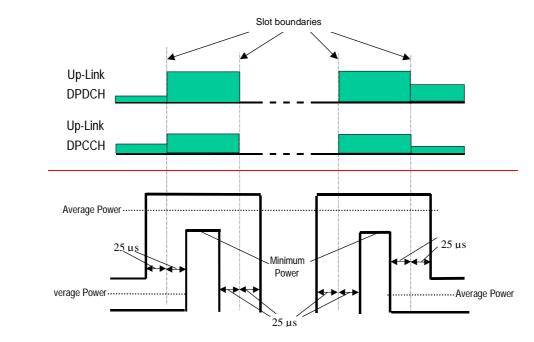


Figure 5.7.1: Transmit template during Compressed mode

For RPL (Recovery Period Length) slots after the transmission gap, where RPL is the minimum out of the transmissiongap length and 7 slots, the UE shall use the power control algorithm and step size specified by the signalled Recovery-Period Power Control Mode (RPP), as detailed in TS 25.214 [5] clause 5.1.2.3.

When nominal 3 dB power control steps are used in the recovery period, the transmitter mean power steps due to innerloop power control shall be within the range shown in table 5.7.2, and the transmitter aggregate mean power step due toinner loop power control shall be within the range shown in table 5.7.3, excluding any other power changes due, forexample, to changes in spreading factor or number of pilot bits.

TPC_cmd	Transmitter power control range for 3dB step	
	Lower	Upper
+1	+1,5 dB	+4,5 dB
θ	- 0,5 dB	+0,5 dB
-1	- 1,5 dB	-4,5 dB

Table 5.7.2: Transmitter power control range for 3dB step size

Table 5.7.3: Transmitter aggregate power control range for 3dB step size

TPC_cmd group	Transmitter power control range after 7 equal TPC_cmd groups	
	Lower	Upper
+1	+16 dB	+26 dB
0	- 1 dB	+1 dB
-1	–16 dB	_26 dB

The reference for this requirement is TS 25.101 [1] clause 6.4.2.1.1.

5.7.3 Test purpose

To verify that the changes in uplink transmit power in compressed mode are within the prescribed tolerances.

Excess error in transmit power setting in compressed mode increases the interference to other channels, or increases transmission errors in the uplink.

5.7.4 Method of test

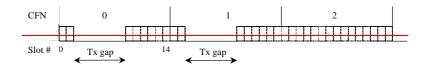
5.7.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.1.
- 2) A call is set up according to the Generic call setup procedure. The 12,2 kbps UL reference measurement channel is used, with gain factors $\beta_e = 0,5333$ and $\beta_d = 1,0$ in non compressed frames. Slot formats 0 and 0B are used on the uplink DPCCH.
- 3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.


5.7.4.2 Procedure

- NOTE: CFNs are given in this procedure for reference as examples only. A fixed offset may be applied to the CFNs.
- Before proceeding with step (3) below, set the output power of the UE, measured at the UE antenna connector, to be in the range 36 ± 9 dBm. This may be achieved by setting the downlink signal (Îor) to yield an appropriate open loop output power and/or by generating suitable downlink TPC commands from the SS.
- 2) Transmit the PHYSICAL CHANNEL RECONFIGURATION message to set the uplink power controlparameters to use Algorithm 1 and a step size of 2 dB,and to set the compressed mode parameters shown in table 5.7.5. The contents of the message are specified in table 5.7.9. This set of compressed mode parameters definesthe compressed mode pattern which is used to test the implementation of:
 - a) in steps (3) and (4), upward 3 dB output power steps and the implementation of a downward power changewhen resuming transmission after a compressed mode gap, and
 - b) in steps (7) and (8), downward 3dB output power steps and the implementation of an upward power changewhen resuming transmission after a compressed mode gap.

Parameter	Meaning	Value
TGPRC	Number of transmission gap patterns within the Transmission-	4
	Gap Pattern Sequence	
TGCFN	Connection Frame Number of the first frame of the first pattern	θ
	within the Transmission Gap Pattern Sequence	
TGSN	Slot number of the first transmission gap slot within the TGCFN	2
TGL1	Length of first transmission gap within the transmission gap pattern	7 slots
TGL2	Length of second transmission gap within the transmission gap- pattern	7 slots
TGD	Duration between the starting slots of two consecutive	15 slots
	transmission gaps within a transmission gap pattern	
TGPL1	Duration of transmission gap pattern 1	3 frames
TGPL2	Duration of transmission gap pattern 2	Omit
RPP	Recovery Period Power Control Mode	Mode 1
HTP	Initial Transmit Power Mode	Mode 1
UL/DL Mode	Defines whether only DL, only UL, or combined UL/DL-	UL/DL
	compressed mode is used	
Downlink Compressed Mode Method	Method for generating downlink compressed mode gap	SF/2
Uplink Compressed Mode Method	Method for generating uplink compressed mode gap	SF/2
Scrambling code change	Indicates whether the alternative scrambling code is used	No code change
Downlink frame type	Downlink compressed frame structure	A
DeltaSIR	Delta in DL SIR target value to be set in the UE during compressed frames	θ
DeltaSIRafter	Delta in DL SIR target value to be set in the UE one frame after the compressed frames	θ

Table 5.7.5: Parameters for pattern A for compressed mode test

The resulting compressed mode pattern is shown in figure 5.7.2.

Figure 5.7.2: Pattern A for compressed mode test

3) After the PHYSICAL CHANNEL RECONFIGURATION COMPLETE message from the UE is received, transmit TPC commands on the downlink as shown in table 5.7.6.

Table 5.7.6: TPC commands transmitted in downlink

CFN	TPC commands in downlink
θ	0111111
4	11101010
2	101010101010101

4) Measure the mean power in the following slots, not including the 25 µs transient periods at the start and end of each slot:

CFN 0: Slots # 9,10,11,12,13,14 CFN 1: Slots # 0,1,9

5) Re start the test. Before proceeding with step (7) below, set the output power of the UE, measured at the UE antenna connector, to be in the range 2 ± 9 dBm. This may be achieved by setting the downlink signal (Îor) to-

yield an appropriate open loop output power and/or by generating suitable downlink TPC commands from the-SS.

6) Repeat step (2) above, with the exception that TGCFN = 3 in table 5.7.5 and table 5.7.9.

7) After the PHYSICAL CHANNEL RECONFIGURATION COMPLETE message from the UE is received, transmit TPC commands on the downlink as shown in table 5.7.7.

Table 5.7.7: TPC commands transmitted in downlink

CFN	TPC commands in downlink
3	0100000
4	00010101
5	010101010101010

8) Measure the mean power in the following slots, not including the 25 μs transient periods at the start and end of each slot:

CFN 3: Slots # 9,10,11,12,13,14 CFN 4: Slots # 0,1,9

- 9) Re start the test. Before proceeding with step (11) below, set the output power of the UE, measured at the UE antenna connector, to be in the range 10 ± 9 dBm. This may be achieved by setting the downlink signal (Îor) to yield an appropriate open loop output power and/or by generating suitable downlink TPC commands from the SS.
- 10) Transmit the PHYSICAL CHANNEL RECONFIGURATION message to set the uplink power controlparameters to use Algorithm 1 and a step size of 1 dB, and to set the compressed mode parameters shown intable 5.7.8. The contents of the message are specified in table 5.7.10. This set of compressed mode parameters defines the compressed mode pattern which is used to test the implementation of power steps at the start and endof compressed frames, and the implementation of a zero power change when resuming transmission after acompressed mode gap.

Parameter	Meaning	Value
TGPRC	Number of transmission gap patterns within the Transmission-	4
	Gap Pattern Sequence	
TGCFN	Connection Frame Number of the first frame of the first pattern-	7
	within the Transmission Gap Pattern Sequence	
TGSN	Slot number of the first transmission gap slot within the TGCFN	8
TGL1	Length of first transmission gap within the transmission gap-	14 slots
TGL2	Length of second transmission gap within the transmission gap- pattern	omit
TGD	Duration between the starting slots of two consecutive	θ
	transmission gaps within a transmission gap pattern	
TGPL1	Duration of transmission gap pattern 1	4 frames
TGPL2	Duration of transmission gap pattern 2	Omit
RPP	Recovery Period Power Control Mode	Mode 0
1TP	Initial Transmit Power Mode	Mode 0
UL/DL Mode	Defines whether only DL, only UL, or combined UL/DL-	UL/DL
	compressed mode is used	
Downlink Compressed Mode Method	Method for generating downlink compressed mode gap	SF/2
Uplink Compressed Mode Method	Method for generating uplink compressed mode gap	SF/2
Scrambling code change	Indicates whether the alternative scrambling code is used	No code change
Downlink frame type	Downlink compressed frame structure	A
DeltaSIR	Delta in DL SIR target value to be set in the UE during compressed frames	θ
DeltaSIRafter	Delta in DL SIR target value to be set in the UE one frame after the compressed frames	θ

Table 5.7.8: Parameters for pattern B for compressed mode test

The resulting compressed mode pattern is shown in figure 5.7.3.

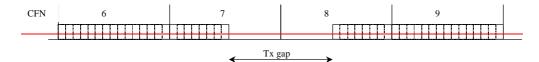


Figure 5.7.3: Pattern B for compressed mode test

11) After the PHYSICAL CHANNEL RECONFIGURATION COMPLETE message from the UE is received, transmit TPC commands on the downlink as shown in table 5.7.8.

Table 5.7.8: TPC commands transmitted in downlink

CFN	TPC commands in downlink
6	0000000000111
7	1111111
8	0000000
9	00011111111111

12)Measure the mean power in the following slots, not including the 25 µs transient periods at the start and end of each slot:

 CFN 6:
 Slot # 14

 CFN 7:
 Slots # 0 and 7

 CFN 8:
 Slots # 7 and 14

 CFN 9:
 Slot # 0

Table 5.7.9: PHYSICAL CHANNEL RECONFIGURATION message (step 2)

Information Element	Value/Remark
Message Type	randon Cinark
UE Information Elements	
-RRC transaction identifier	0 Not Present
-Integrity check info -Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	Not Present
-New U-RNTI	Not Present
-New C-RNTI	Not Present
-RRC State Indicator	CELL_DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	
-CN Information info	Not Present
UTRAN mobility information elements	
-URA identity	Not Present
RB information elements	
-Downlink counter synchronisation info	Not Present
PhyCH information elements	
-Frequency info	Not Present
Uplink radio resources	Not Descent
-Maximum allowed UL TX power	Not Present
-CHOICE channel requirement	Uplink DPCH info
-Uplink DPCH power control info	
	-6dB
	1 frame
	7 frames
Power Control Algorithm	Algorithm 1
	2dB
-CHOICE mode	FDD
Scrambling code type	Long
Scrambling code number	θ
Number of DPDCH	4
spreading factor	64
TFCI existence	TRUE
Number of FBI bits	Not Present(0)
Puncturing Limit	1
Downlink radio resources	555
-CHOICE mode Downlink PDSCH information	FDD Not Decemb
	Not Present
-Downlink information common for all radio links -Downlink DPCH info common for all RL	Not Present
	FDD
	4
	Activate
	θ
Transmission gap pattern sequence-	
configuration parameters	
TGMP	FDD measurement
	4
	2
TGL1	7
	7
	1 5
TGPL1 -TGPL2	-3 Not Present
	Not Present Mode 1
	Mode 1 Mode 1
	UL and DL
	SE/2
	SF/2 SF/2
	A

	0
Donaon tanton i	θ
	Not Present
	Not Present-
	Not Present
	Not Present
TX Diversity Mode	Not Present
	Not Present
Default DPCH Offset Value	Not Present
-Downlink information per radio link list	
- Downlink information for each radio link	
Choice mode	FDD
Primary CPICH info	
Primary scrambling code	100
PDSCH with SHO DCH Info	Not Present
PDSCH code mapping	Not Present
Downlink DPCH info for each RL	
	FDD
Primary CPICH usage for channel estimation	Primary CPICH may be used
	Set to value Default DPCH Offset Value (as
	currently stored in SS) mod 38400
	Not Present
	Not Present
	128
Code number	θ
	No code change
	θ
	Not Present
	Not Present
SCCPCH Information for FACH	Not Present

Table 5.7.10: PHYSICAL CHANNEL RECONFIGURATION message (step 10)

Information Element	Value/Remark
Message Type	
UE Information Elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
-Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	Not Present
-New U-RNTI	Not Present
-New C-RNTI	Not Present
-RRC State Indicator	CELL_DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	Net Decent
-CN Information info	Not Present
UTRAN mobility information elements	Net Dresent
-URA identity RB information elements	Not Present
-Downlink counter synchronisation info	Not Present
PhyCH information elements	
-Frequency info	Not Present
Uplink radio resources	
-Maximum allowed UL TX power	Not Present
-CHOICE channel requirement	Uplink DPCH info
Uplink DPCH power control info	
	EDD
	-6dB
	1 frame
	7 frames
Power Control Algorithm	Algorithm 1
	1dB
CHOICE mode	FDD
Scrambling code type	Long
Scrambling code number	θ
Number of DPDCH	4
spreading factor	64
TFCI existence	TRUE
Number of FBI bits	Not Present(0)
Puncturing Limit	4
Downlink radio resources	
-CHOICE mode	FDD
Downlink PDSCH information	Not Present
-Downlink information common for all radio links	
Downlink DPCH info common for all RL	Not Present
CHOICE mode	FDD
DPCH compressed mode info	
Transmission gap pattern sequence	1
	+ Activate
	Z
	+
configuration parameters	
-TGMP	EDD-measurement
	1
	8
	14
	Not Present
TGD	θ
	4
	Not Present
	Mode 0
	Mode 0
	UL and DL
	SF/2
	SF/2

	θ
	θ
	Not Present
TX Diversity Mode	Not Present
	Not Present
Default DPCH Offset Value	Not Present
-Downlink information per radio link list	
- Downlink information for each radio link	
Choice mode	FDD
Primary CPICH info	
Primary scrambling code	100
PDSCH with SHO DCH Info	Not Present
PDSCH code mapping	Not Present
Downlink DPCH info for each RL	
	FDD
Primary CPICH usage for channel estimation	Primary CPICH may be used
	Set to value Default DPCH Offset Value (as
	currently stored in SS) mod 38400
	Not Present
	Not Present
	128
Code number	θ
	No code change
	θ
	Not Present
Closed loop timing adjustment mode	Not Present
SCCPCH Information for FACH	Not Present

5.7.5 Test requirements

For ease of reference, the following uplink output power measurements are defined in figure 5.7.4. In this figure:

- ----P_e is the RRC filtered mean power in an uplink transmission gap, excluding the 25 μs transient periods.
- $-P_a$ is the mean power in the last slot before a compressed frame (or pair of compressed frames), excluding the 25 µs transient periods.
- -P_b is the mean power in the first slot of a compressed frame, excluding the 25 µs transient periods.
- -P_e is the mean power in the last slot before a transmission gap, excluding the 25 µs transient periods.
- ---P_d is the mean power in the first slot after a transmission gap, excluding the 25 μs transient periods.
- P_e is the mean power in the last slot of a compressed frame, excluding the 25 μs transient periods.
- $-P_{\rm f}$ is the mean power in the first slot after a compressed frame (or pair of compressed frames), excluding the 25 µs transient periods.

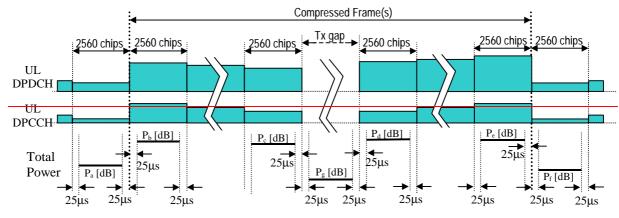


Figure 5.7.4: Uplink transmit power in uplink compressed mode

- 1. At the boundary between CFN 6 and CFN 7, $P_b P_a$ shall be within the range $+4 \pm 2 \text{ dB}$.
- 2. In slot #9 of CFN 1, the power difference $P_d P_e$ from the power in slot #1 of CFN 1 shall be within the range -11 ± 4 dB.
- 3. In slot #9 of CFN 4, the power difference $P_d P_c$ from the power in slot #1 of CFN 4 shall be within the range +11 ± 4 dB.
- 4. In slot #7 of CFN 8, the power difference $P_d P_e$ from the power in slot #7 of CFN 7 shall be within the range $0 \pm 3 \text{ dB}$.

5. (void)

- 6. At the boundary between CFN 8 and CFN 9, $P_{f} P_{e}$ shall be within the range 4 ± 2 dB.
- 7. In the slots between slot #10 of CFN 0 and slot #1 of CFN 1 inclusive, the change in mean power from the previous slot shall be within the range given in table 5.7.2 for TPC_cmd = +1.
- 8. The aggregate change in mean power from slot #9 of CFN 0 to slot #1 of CFN 1 shall be within the range given in table 5.7.3 for TPC_cmd = +1.
- 9. In the slots between slot #10 of CFN 3 and slot #1 of CFN 4 inclusive, the change in mean power from the previous slot shall be within the range given in table 5.7.2 for TPC_emd = 1.
- 10. The aggregate change in mean power from slot #9 of CFN 3 to slot #1 of CFN 4 shall be within the range given in table 5.7.3 for TPC_cmd = 1.

5.8 Occupied Bandwidth (OBW)

5.8.1 Definition and applicability

Occupied bandwidth is a measure of the bandwidth containing 99 % of the total integrated power of the transmittedspectrum, centred on the assigned channel frequency.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.8.2 Minimum Requirements

The occupied channel bandwidth shall be less than 5 MHz based on a chip rate of 3,84 Mcps.

The normative reference for this requirement is TS 25.101 [1] clause 6.6.1.

5.8.3 Test purpose

To verify that the UE occupied channel bandwidth is less than 5 MHz based on a chip rate of 3,84 Mcps.

Excess occupied channel bandwidth increases the interference to other channels or to other systems.

5.8.4 Method of test

5.8.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

1) Connect the SS to the UE antenna connector as shown in figure A.1.

2) A call is set up according to the Generic call setup procedure.

3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

5.8.4.2 Procedure

- 1) Set and send continuously Up power control commands to the UE until the UE output power shall be maximum level.
- 2) Measure the power spectrum distribution within two times or more range over the requirement for Occupied-Bandwidth specification centring on the current carrier frequency with 30 kHz or less RBW. The characteristicof the filter shall be approximately Gaussian (typical spectrum analyzer filter).
- 3) Calculate the total power within the range of all frequencies measured in '2)' and save this value as "Total Power".
- 4) Sum up the power upward from the lower boundary of the measured frequency range in '2)' and seek the limitfrequency point by which this sum becomes 0,5 % of "Total Power" and save this point as "Lower Frequency".
- 5) Sum up the power downward from the upper boundary of the measured frequency range in '2)' and seek the limit frequency point by which this sum becomes 0,5 % of "Total Power" and save this point as "Upper Frequency".
- 6) Calculate the difference ("Upper Frequency" "Lower Frequency" = "Occupied Bandwidth") between two limit frequencies obtained in '4)' and '5)'.

5.8.5 Test Requirements

The measured Occupied Bandwidth, derived in step 6), shall not exceed 5 MHz.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

5.9 Spectrum emission mask

5.9.1 Definition and applicability

The spectrum emission mask of the UE applies to frequencies, which are between 2,5 MHz and 12,5 MHz away from the UE centre carrier frequency. The out of channel emission is specified relative to the RRC filtered mean power of the UE carrier.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.9.2 Minimum Requirements

The power of any UE emission shall not exceed the levels specified in table 5.9.1.

A	in MHz (note 1)	Minimum requirement Band I, II, III	Additional requirements Band II	Measurement- bandwidth
	2,5 to 3.5	$\left\{ \underbrace{-35-15}_{MHz} \underbrace{\Delta f}_{2.5} \right\} dBc$	-15 dBm	30 kHz (note 2)
	3,5 to 7,5	$\left\{\begin{array}{cc} 35 & 1 & \left(\begin{array}{c} \Delta f & \\ MHz & \end{array}\right)\right\} dBc$	-13 dBm	1 MHz (note 3)
	7,5 to 8,5	$\left\{ \underbrace{-39-10}_{MHz} \underbrace{\Delta f}_{7.5} \right\} dBc$	-13 dBm	1 MHz (note 3)
	8,5 to 12,5	-49 dBc	-13 dBm	1 MHz (note 3)
 NOTE 1: △f is the separation between the carrier frequency and the centre of the measuring filter. NOTE 2: The first and last measurement position with a 30 kHz filter is at △f equals to 2,515 MHz and 3,485 MHz. NOTE 3: The first and last measurement position with a 1 MHz filter is at △f equals to 4 MHz and 12 MHz. As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth can be different from the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth. 				

Table 5.9.1: Spectrum Emission Mask Requirement

The normative reference for this requirement is TS 25.101 [23] clause 6.6.2.1.1.

5.9.3 Test purpose

To verify that the power of UE emission does not exceed the prescribed limits shown in table 5.9.1.

Excess emission increases the interference to other channels or to other systems.

5.9.4 Method of test

5.9.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.1.
- 2) A call is set up according to the Generic call setup procedure.
- 3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

5.9.4.2 Procedure

- 1) Set and send continuously Up power control commands to the UE until the UE output power shall be maximum level.
- 2) Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 5.9.2. Measurements with an offset from the carrier centre frequency between 2,515 MHz and 3,485 MHz shall use a

30 kHz measurement filter. Measurements with an offset from the carrier centre frequency between 4 MHz and 12 MHz shall use 1 MHz measurement bandwidth and the result may be calculated by integrating multiple-50 kHz or narrower filter measurements. The characteristic of the filter shall be approximately Gaussian (typicalspectrum analyzer filter). The centre frequency of the filter shall be stepped in contiguous steps according totable 5.9.2. The measured power shall be recorded for each step.

3) Measure the RRC filtered mean power centered on the assigned channel frequency.

4) Calculate the ratio of the power 2) with respect to 3) in dBc.

5.9.5 Test requirements

The result of clause 5.9.4.2 step 4) shall fulfil the requirements of table 5.9.2.

<u>Af in MHz (note 1)</u>	Minimum requirement- Band I, II, III	Additional- requirements Band-II	Measurement bandwidth
2,5 to 3,5	$\left\{-33.5-15\cdot\left(\frac{\Delta f}{MHz}-2.5\right)\right\}dB$	^c - 15 dBm	30 kHz (note 2)
3,5 to 7,5	$\left\{\begin{array}{cc} 33.5 & 1 & \left(\begin{array}{c} \Delta f \\ MHz \end{array}\right) \right\} dB$	² -13 dBm	1 MHz (note 3)
7,5 to 8,5	$\left\{ -37.5 - 10 \cdot \left(\frac{\Delta f}{MHz} - 7.5 \right) \right\} dB$	^с - 13 dВm	1 MHz (note 3)
8,5 to 12,5	- 47,5 dBc	-13 dBm	1 MHz (note 3)
NOTE 1: Af is the separation betwee	en the carrier frequency and the c	entre of the mea	suring filter.
NOTE 2: The first and last measure	ement position with a 30 kHz filter	i s at ∆f equals to	2,515 MHz and
3,485 MHz.			
NOTE 3: The first and last measurement position with a 1 MHz filter is at ∆f equals to 4 MHz and 12-			
MHz. As a general rule, the resolution bandwidth of the measuring equipment should be			
equal to the measurement bandwidth. To improve measurement accuracy, sensitivity and			
efficiency, the resolution bandwidth can be different from the measurement bandwidth. When			
the resolution bandwidth is smaller than the measurement bandwidth, the result should be- integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth-			
of the measurement bandwidth.			
The lower limit shall be -48,5 dBm/3			

Table 5.9.2: Spectrum Emission Mask Requirement

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

5.10 Adjacent Channel Leakage Power Ratio (ACLR)

5.10.1 Definition and applicability

ACLR is the ratio of the RRC filtered mean power centred on the assigned channel frequency to the RRC filtered meanpower centred on an adjacent channel frequency.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.10.2 Minimum Requirements

If the adjacent channel RRC filtered mean power is greater than -50dBm then the ACLR shall be higher than the value-specified in table 5.10.1.

Power Class	UE channel	ACLR limit
3	+5 MHz or -5 MHz	33 dB
3	+10 MHz or -10 MHz	4 3 dB
4	+5 MHz or -5 MHz	33 dB
4	+10 MHz or 10 MHz	4 3 dB

Table 5.10.1: UE ACLR

NOTE 1: The requirement shall still be met in the presence of switching transients.

NOTE 2: The ACLR requirements reflect what can be achieved with present state of the art technology.

NOTE 3: Requirement on the UE shall be reconsidered when the state of the art technology progresses.

The normative reference for this requirement is TS 25.101 [1] clause 6.6.2.2.1.

5.10.3 Test purpose

To verify that the UE ACLR does not exceed prescribed limit shown in table 5.10.1.

Excess ACLR increases the interference to other channels or to other systems.

5.10.4 Method of test

5.10.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

1) Connect the SS to the UE antenna connector as shown in figure A.1.

2) A call is set up according to the Generic call setup procedure.

3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

5.10.4.2 Procedure

- 1) Set and send continuously Up power control commands to the UE until the UE output power shall be maximum level.
- 2) Measure the RRC filtered mean power.
- 3) Measure the RRC filtered mean power of the first adjacent channels and the second adjacent channels.
- 4) Calculate the ratio of the power between the values measured in '2)'and '3)'.

5.10.5 Test requirements

If the measured adjacent channel RRC filtered mean power, derived in step 3), is greater than -50,0 dBm then the measured ACLR, derived in step 4), shall be higher than the limit in table 5.10.2.

Power Class	UE channel	ACLR limit
3	+5 MHz or –5 MHz	32,2 dB
3	+10 MHz or -10 MHz	4 2,2 dB
4	+5 MHz or –5 MHz	32,2 dB
4	+10 MHz or 10 MHz	4 2,2 dB

Table 5.10.2: UE ACLR

NOTE 1: The requirement shall still be met in the presence of switching transients.

NOTE 2: The ACLR requirements reflect what can be achieved with present state of the art technology.

NOTE 3: Requirement on the UE shall be reconsidered when the state of the art technology progresses.

NOTE 4: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

5.11 Spurious Emissions

5.11.1 Definition and applicability

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emission, intermodulation products and frequency conversion products, but exclude out of band emissions.

The frequency boundary and the detailed transitions of the limits between the requirement for out band emissions and spectrum emissions are based on ITU R Recommendations SM.329.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.11.2 Minimum Requirements

These requirements are only applicable for frequencies, which are greater than 12.5 MHz away from the UE centrecarrier frequency.

Table 5.11.1a: General spurious emissions requirements

Frequency Bandwidth	Measurement Bandwidth	Minimum requirement
9 kHz ≤ f < 150 kHz	1 kHz	- 36 dBm
150 kHz ≤ f < 30 MHz	10 kHz	-36 dBm
30 MHz ≤ f < 1 000 MHz	100 kHz	–36 dBm
1 GHz ≤ f < 12,75 GHz	1 MHz	- 30 dBm

Operating Band	Frequency Bandwidth	Measurement Bandwidth	Minimum- requirement
+	925 MHz <u>≤</u> <u>f</u> <u>≤</u> 935 MHz	100 kHz	-67 dBm (see note)
	935 MHz < f ≤ 960 MHz	100 kHz	-79 dBm (see note)
	1805 MHz ≤ f ≤ 1880 MHz	100 kHz	-71 dBm (see note)
	1893.5 MHz <f<1919.6 del="" mhz<=""></f<1919.6>	300 kHz	-41 dBm
H H	-	-	-
#	925 MHz ≤ f ≤935 MHz	100 kHz	-67 dBm (see note)
	935 MHz < f ≤ 960 MHz	100 kHz	-79 dBm (see note)
	2110 MHz ≤ f ≤ 2170 MHz	3.84 MHz	-60 dBm (see note)
NOTE: The measurements are made on frequencies which are integer multiples of 200 kHz. As			
exceptions, up to five measurements with a level up to the applicable requirements			
defined in table 5.11.1a are permitted for each UARFCN used in the measurement			

Table 5.11.1b: Additional spurious emissions requirements

The normative reference for this requirement is TS 25.101 [23] clause 6.6.3.1.

5.11.3 Test purpose

To verify that the UE spurious emissions do not exceed described value shown in table 5.11.1a and table 5.11.1b.

Excess spurious emissions increase the interference to other systems.

5.11.4 Method of test

5.11.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

1) Connect the SS to the UE antenna connector as shown in figure A.8.

2) A call is set up according to the Generic call setup procedure.

3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

5.11.4.2 Procedure

- 1) Set and send continuously Up power control commands to the UE until the UE output power shall be maximum level.
- 2) Sweep the spectrum analyzer (or equivalent equipment) over a frequency range and measure the average powerof spurious emission.

5.11.5 Test requirements

The measured average power of spurious emission, derived in step 2), shall not exceed the described value in tables 5.11.2a and 5.11.2b.

These requirements are only applicable for frequencies, which are greater than 12,5 MHz away from the UE centrecarrier frequency.

Table 5.11.2a: General spurious emissions test requirements

Frequency Bandwidth	Measurement Bandwidth	Minimum requirement
9 kHz ≤ f < 150 kHz	1 kHz	- 36 dBm
150 kHz ≤ f < 30 MHz	10 kHz	–36 dBm
30 MHz ≤ f < 1 000 MHz	100 kHz	–36 dBm
1 GHz ≤ f < 12,75 GHz	1 MHz	- 30 dBm

Table 5.11.2b: Additiona	I spurious emission	s test requirements

Operating Band	Frequency Bandwidth	Measurement- Bandwidth	Minimum- requirement		
ŧ	925 MHz <u>≤</u> f <u></u> 	100 kHz	-67 dBm (see note)		
	935 MHz < f ≤ 960 MHz	100 kHz	-79 dBm (see note)		
	1805 MHz ≤ f ≤ 1880 MHz	100 kHz	-71 dBm (see note)		
	1893.5 MHz <f<1919.6 del="" mhz<=""></f<1919.6>	300 kHz	-41 dBm		
H H	-	-	-		
#	925 MHz ≤ f ≤935 MHz	100 kHz	-67 dBm (see note)		
	935 MHz < f ≤ 960 MHz	100 kHz	-79 dBm (see note)		
	2110 MHz ≤ f ≤ 2170 MHz 3.84 MHz -60 dBm (see note)				
NOTE: The measurements are made on frequencies which are integer multiples of 200 kHz. As					
exceptions, up to five measurements with a level up to the applicable requirements- defined in table 5.11.1a are permitted for each UARFCN used in the measurement					

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

5.12 Transmit Intermodulation

5.12.1 Definition and applicability

The transmit intermodulation performance is a measure of the capability of the transmitter to inhibit the generation of signals in its non linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna.

UE(s) transmitting in close vicinity of each other can produce intermodulation products, which can fall into the UE, or Node B receive band as an unwanted interfering signal. The UE transmit intermodulation attenuation is defined by the ratio of the RRC filtered mean power of the wanted signal to the RRC filtered mean power of the intermodulation product when an interfering CW signal is added at a level below the wanted signal.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.12.2 Minimum Requirements

The UE transmit intermodulation shall not exceed the described value in table 5.12.1.

Table 5.12.1: Transmit Intermodulation

CW Signal Frequency Offset from Transmitting Carrier	5MHz	10MHz
Interference CW Signal Level	-40-	dBc
Intermodulation Product	- 31 dBc	-41 dBc

The normative reference for this requirement is TS 25.101 [1] clause 6.7.1.

5.12.3 Test purpose

To verify that the UE transmit intermodulation does not exceed the described value in table 5.12.1.

An excess transmit intermodulation increases transmission errors in the up link own channel when other transmitterexists nearby.

5.12.4 Method of test

5.12.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1) Connect the SS to the UE antenna connector as shown in figure A.2.

2) A call is set up according to the Generic call setup procedure.

3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

5.12.4.2 Procedure

1) Set and send continuously Up power control commands to the UE until the UE output power shall be maximumlevel.

2) Set the frequency of the CW generator to the offset 1 or offset 2 as shown in table 5.12.2.

3) Measure the RRC filtered mean power of the UE.

4) Search the intermodulation product signal, then measure the RRC filtered mean power of transmitting intermodulation, and calculate the ratio with the power measured in step 3).

5) Repeat the measurement with another tone offset.

5.12.5 Test requirements

The ratio derived in step 4), shall not exceed the described value in table 5.12.2.

Table 5.12.2: Transmit Intermodulation

CW Signal Frequency Offset from Transmitting Carrier	5MHz	10MHz
Interference CW Signal Level	-40	dBc
Intermodulation Product	[_31 + TT] d Bc	[-41 + TT] d Bc

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

5.13 Transmit Modulation

5.13.1 Error Vector Magnitude (EVM)

5.13.1.1 Definition and applicability

The Error Vector Magnitude is a measure of the difference between the reference waveform and the measuredwaveform. This difference is called the error vector. Both waveforms pass through a matched Root Raised Cosine filterwith bandwidth 3,84 MHz and roll-off α =0,22. Both waveforms are then further modified by selecting the frequency, absolute phase, absolute amplitude and chip clock timing so as to minimise the error vector. The EVM result is definedas the square root of the ratio of the mean error vector power to the mean reference power expressed as a %. Themeasurement interval is one timeslot.

The requirements and this test apply to all types of UTRA for the FDD UE.

5.13.1.2 Minimum Requirements

The EVM shall not exceed 17,5 % for the parameters specified in table 5.13.1.

Table 5.13.1: Parameters for EVM

Parameter	Level / Status	Unit
Output power	<u>≥ –20</u>	dBm
Operating conditions	Normal conditions	
Power control step size	4	dB

The normative reference for this requirement is TS 25.101 [1] clause 6.8.2.1.

5.13.1.3 Test purpose

To verify that the EVM does not exceed 17,5 % for the specified parameters in table 5.13.1.

An excess EVM increases transmission errors in the up link own channel.

5.13.1.4 Method of test

5.13.1.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH, vibration; see clauses G.2.1, G.2.2 and G.2.3.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

1) Connect the SS to the UE antenna connector as shown in figure A.1.

2) A call is set up according to the Generic call setup procedure.

3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

5.13.1.4.2 Procedure

- 1) Set and send continuously Up power control commands to the UE until the UE output power shall be maximum level.
- 2) Measure the EVM using Global In Channel Tx Test (annex B).
- 3) Set the power level of UE to 20dBm or send Down power control commands (1dB step size should be used.) to the UE until UE output power shall be 20dBm with ±1dB tolerance.
- 4) Repeat step 2).

5.13.1.5 Test requirements

The measured EVM, derived in step 2) and 4), shall not exceed 17,5 %. for parameters specified in table 5.13.1-Parameters for EVM.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

5.13.2 Peak code domain error

5.13.2.1 Definition and applicability

The Peak Code Domain Error is computed by projecting power of the error vector (as defined in clause 5.13.1.1) onto the code domain at a specific spreading factor. The Code Domain Error for every code in the domain is defined as the ratio of the mean power of the projection onto that code, to the mean power of the composite reference waveform expressed in dB. The Peak Code Domain Error is defined as the maximum value for the Code Domain Error for all codes. The measurement interval is one timeslot.

The requirements and this test apply only to the UE in which the multi code transmission is provided.

5.13.2.2 Minimum Requirements

The peak code domain error shall not exceed 15 dB at spreading factor 4 for the parameters specified in table 5.13.3. The requirements are defined using the UL reference measurement channel (768 kbps) specified in clause C.2.5.

Parameter	Level / Status	Unit
Output power	<u>≥ –20</u>	dBm
Operating conditions	Normal conditions	
Power control step size	4	dB

Table 5.13.3: Parameters for Peak code domain error

The normative reference for this requirement is TS 25.101 [1] clause 6.8.3.1.

5.13.2.3 Test purpose

To verify that the UE peak code domain error does not exceed 15 dB for the specified parameters in table 5.13.3.

An excess peak code domain error increases transmission errors in the up link own channel.

5.13.2.4 Method of test

5.13.2.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

1) Connect the SS to the UE antenna connector as shown in figure A.1.

- 2) A call is set up according to the Generic call setup procedure, and RF parameters are set up according to table 5.13.4.
- 3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

Table 5.13.4: Test parameters for Peak code domain error

Parameter	Level / Status	Unit
Operating conditions	Normal conditions	
Uplink signal	multi-code	
Information bit rate	2*384	kbps
Power control step size	4	dB

5.13.2.4.2 Procedure

- 1) Set and send continuously Up power control commands to the UE until the UE output power shall be maximum level.
- 2) Measure the Peak code Domain error using Global In-Channel Tx-Test (annex B).
- 3) Set the power level of UE to 20dBm or send Down power control commands (1dB step size should be used.) to the UE until UE output power shall be 20dBm with ±1dB tolerance.

4) Repeat step 2).

5.13.2.5 Test requirements

The measured Peak code domain error, derived in step 2) and 4), shall not exceed 14 dB.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4

6 Receiver Characteristics

6.1 General

Receiving performance test of the UE is implemented during communicating with the SS via air interface. The procedure is using normal call protocol until the UE is communicating on traffic channel basically. On the traffic channel, the UE provides special function for testing that is called Logical Test Interface and the UE is tested using this function (Refer to TS 34.109 [4])

Transmitting or receiving bit/symbol rate for test channel is shown in table 6.1.

Table 6.1: Bit / Symbol rate for Test Channel

Type of User- Information	User bit rate	DL DPCH symbol rate	UL DPCH bit rate	Remarks
12,2 kbps- reference- measurement- channel	12,2 kbps	30 ksps	60 kbps	Standard Test

Unless otherwise stated the receiver characteristics are specified at the antenna connector of the UE. For UE(s) with an integral antenna only, a reference antenna with a gain of 0 dBi is assumed. UE with an integral antenna may be taken into account by converting these power levels into field strength requirements, assuming a 0 dBi gain antenna. Receiver characteristics for UE(s) with multiple antennas/antenna connectors are FFS.

The UE antenna performance has a significant impact on system performance, and minimum requirements on the antenna efficiency are therefore intended to be included in future versions of the present document. It is recognised that different requirements and test methods are likely to be required for the different types of UE.

All the parameters in clause 6 are defined using the DL reference measurement channel (12,2 kbps) specified in clause C.3.1 and unless stated otherwise, with DL power control OFF.

The common RF test conditions of Rx Characteristics are defined in clause E.3.2, and each test conditions in this clause (clause 6) should refer clause E.3.2. Individual test conditions are defined in the paragraph of each test.

All Bit Error ratio (BER) measurements in clause 6 shall be performed according to the general rules for statistical testing in Annex F.6

6.2 Reference Sensitivity Level

6.2.1 Definition and applicability

The reference sensitivity level <REFSENS> is the minimum mean power received at the UE antenna port at which the Bit Error Ratio (BER) shall not exceed a specific value

The requirements and this test apply to all types of UTRA for the FDD UE.

6.2.2 Minimum Requirements

The BER shall not exceed 0,001 for the parameters specified in table 6.2.1.

Table 6.2.1: Test parameters for Reference Sensitivity Level

Operating Band	Unit	DPCH_Ec <refsens>-</refsens>	<refî<sub>or></refî<sub>
ŧ	dBm/3.84 MHz	-117	-106.7
#	dBm/3.84 MHz	-115	-104.7
##	dBm/3.84 MHz	-114	-103.7
1.For Power class 3 this shall be at the maximum output power 2.For Power class 4 this shall be at the maximum output power			

The normative reference for this requirement is TS 25.101 [23] clause 7.3.1.

6.2.3 Test purpose

To verify that the UE BER shall not exceed 0,001 for the parameters specified in table 6.2.1.

The lack of the reception sensitivity decreases the coverage area at the far side from Node B.

6.2.4 Method of test

6.2.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.3.
- 2) A call is set up according to the Generic call setup procedure, and RF parameters are set up according to table 6.2.2.
- 3) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

6.2.4.2 Procedure

1) Set and send continuously Up power control commands to the UE until the UE output power shall be maximumlevel.

2) Measure the BER of DCH received from the UE at the SS.

6.2.5 Test requirements

The measured BER, derived in step 2), shall not exceed 0,001.

Operating Band	Unit	DPCH_Ec < REFSENS≻	<refî<sub>er></refî<sub>
4	dBm/3.84 MHz	-116.3	-106
#	dBm/3.84 MHz	-114.3	-10 4
#	dBm/3.84 MHz	-113.3	-103
3.For Power class 3 this shall be at the maximum output power 4.For Power class 4 this shall be at the maximum output power			

Table 6.2.2: Test parameters for Reference Sensitivity Level

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

6.3 Maximum Input Level

6.3.1 Definition and applicability

This is defined as the maximum mean power received at the UE antenna port, which shall not degrade the specified BER performance.

The requirements and this test apply to all types of UTRA for the FDD UE.

6.3.2 Minimum requirements

The BER shall not exceed 0.001 for the parameters specified in table 6.3.

The reference for this requirement is TS 25.101 [1] clause 7.4.1.

NOTE: Since the spreading factor is large (10log(SF)=21dB), the majority of the total input signal consists of the OCNS interference. The structure of OCNS signal is defined in clause E.3.3.

6.3.3 Test purpose

To verify that the UE BER shall not exceed 0,001 for the parameters specified in table 6.3.

The lack of the maximum input level decreases the coverage area at the near side from Node B.

6.3.4 Method of test

6.3.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.3.
- 2) RF parameters are set up according to table 6.3 and table E.3.3.
- 3) A call is set up according to the Generic call setup procedure specified in TS34.108[3] sub clause 7.3.2, with the following exception for information elements in RADIO BEARER SETUP message. With this exception, the Power Control Algorithm for the Uplink is set to algorithm 2.

4) Enter the UE into loopback test mode and start the loopback test.

Table 6.3A Contents of RADIO BEARER SETUP message: AM or UM

Information Element	Value/Remark
CHOICE channel requirement	Uplink DPCH info
	Algorithm2

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

Table 6.3: Test parameters for Maximum Input Level

Parameter	Level / Status	Unit
Î _{Of}	-25	dBm / 3,84MHz
$\frac{DPCH_E_c}{I_{or}}$	-19	d₽
UE transmitted mean power	20 (for Power class 3) 18 (for Power class 4)	dBm

6.3.4.2 Procedure

- Set the power level of UE according to the table 6.3 or send the power control commands (1dB step size should be used.) to the UE until UE output power measured by Test System shall be kept at the specified power level with ±1dB tolerance.
- 2) Measure the BER of DCH received from the UE at the SS.

6.3.5 Test requirements

The measured BER, derived in step 1), shall not exceed 0,001.

6.4 Adjacent Channel Selectivity (ACS)

6.4.1 Definition and applicability

Adjacent Channel Selectivity (ACS) is a measure of a receiver's ability to receive a W-CDMA signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

The requirements and this test apply to all types of UTRA for the FDD UE.

6.4.2 Minimum Requirements

For the UE of power class 3 and 4, the BER shall not exceed 0,001 for the parameters specified in table 6.4.1. This testcondition is equivalent to the ACS value 33 dB.

Parameter	Level / Status	Unit
DPCH_Ec	-103	dBm / 3,84 MHz
Î _{or}	-92,7	dBm / 3,84 MHz
l _{oac} mean power (modulated)	-52	dBm-
F _{uw} (offset)	-5 or +5	MHz
UE transmitted mean power	20 (for Power class 3)	dBm
	18 (for Power class 4)	

Table 6.4.1: Test parameters for Adjacent Channel Selectivity

The normative reference for this requirement is TS 25.101 [1] clause 7.5.1.

NOTE: The I_{oac} (modulated) signal consists of the common channels needed for tests as specified in table E.4.1and 16 dedicated data channels as specified in table E.3.6.

6.4.3 Test purpose

To verify that the UE BER does not exceed 0,001 for the test parameters specified in table 6.4.1.

The lack of the ACS decreases the coverage area when other transmitter exists in the adjacent channel.

6.4.4 Method of test

6.4.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.4.
- 2) RF parameters are set up according to table 6.4.2.
- 3) A call is set up according to the Generic call setup procedure specified in TS34.108[3] sub clause 7.3.2, with the following exception for information elements in RADIO BEARER SETUP message. With this exception, the Power Control Algorithm for the Uplink is set to algorithm 2.
- 4) Enter the UE into loopback test mode and start the loopback test.

Table 6.4.1A Contents of RADIO BEARER SETUP message: AM or UM

Information Element	Value/Remark
CHOICE channel requirement	Uplink DPCH info
	Algorithm2

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

6.4.4.2 Procedure

1) Set the parameters of the interference signal generator as shown in table 6.4.2.

- 2) Set the power level of UE according to the table 6.4.2 or send the power control commands (1dB step size should be used.) to the UE until UE output power measured by Test System shall be kept at the specified power-level with ±1dB tolerance.
- 3) Measure the BER of DCH received from the UE at the SS.

6.4.5 Test requirements

The measured BER, derived in step 1), shall not exceed 0,001.

Table 6.4.2: Test parameters for Adjacent Channel Selectivity

Parameter	Level / Status	Unit
DPCH_Ec	-103	dBm / 3,84 MHz
Î _{OF}	-92,7	dBm / 3,84 MHz
l _{oac} mean power (modulated)	-52	dBm
F _{uw} (offset)	-5 or +5	MHz
UE transmitted mean power	20 (for Power class 3)	dBm
	18 (for Power class 4)	

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

6.5 Blocking Characteristics

6.5.1 Definition and applicability

The blocking characteristic is a measure of the receiver's ability to receive a wanted signal at its assigned channelfrequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or theadjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occur.

The requirements in clause 6.5.2.1 and 6.5.2.2 and this test apply to all types of UTRA for the FDD UE.

The requirements in clause 6.5.2.3 and this test apply to the FDD UE supporting band II or band III.

6.5.2 Minimum Requirements

6.5.2.1 Minimum Requirements (In-band blocking)

The BER shall not exceed 0,001 for the parameters specified in table 6.5.1.

The normative reference for this requirement is TS 25.101 [23] clause 7.6.1.

NOTE: I_{blocking} (modulated) consists of the common channels needed for tests as specified in table E.4.1 and 16 dedicated data channels as specified in table E3.6.

Table 6.5.1: Test parameters for In-band blocking characteristics

Parameter	Unit	Level	
DPCH_Ec	dBm/3.84 MHz	<refsens>+3 dB</refsens>	
Î _{or}	dBm/3.84 MHz	≺REFÎ₀≻ + 3 dB	
l _{blocking} mean power- (modulated)	dBm	- 56 -44 (for F _{uw} offset ±10 MHz) (for F _{uw} offset ±15 MH;	
UE transmitted mean power	dBm	20 (for Power class 3) 18 (for Power class 4)	

6.5.2.2 Minimum requirements (Out of-band blocking)

The BER shall not exceed 0.001 for the parameters specified in table 6.5.2. For table 6.5.2 up to 24 exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a 1 MHz step size.

The normative reference for this requirement is TS 25.101 [23] clause 7.6.2.

Parameter	Unit	Frequency range 1	Frequency range 2	Frequency range 3
DPCH_Ec	dBm/3.84 MHz	<refsens>+3 dB</refsens>	<refsens>+3 dB</refsens>	<refsens>+3 dB</refsens>
Î _{or}	dBm/3.84- MHz	< REFÎ₀₅> + 3 dB	<refî₀⊧> + 3 dB</refî₀⊧>	<refî₀r> + 3 dB</refî₀r>
Holocking (CW)	dBm	-44	-30	-15
F _{uw} (Band I operation)	MHz	2050<f <2095<="" del=""> 2185<f <2230<="" del=""></f></f>	2025 <f <2050<="" del=""> 2230 <f <2255<="" del=""></f></f>	1 < f <2025 2255<f<12750< del=""></f<12750<>
F _{uw} (Band II operation)	MHz	1870<f <1915<="" del=""> 2005<f <2050<="" del=""></f></f>	1845 <f <1870<="" del=""> 2050 <f <2075<="" del=""></f></f>	1 < f <1845 2075<f<12750< del=""></f<12750<>
F _{uw} (Band III- operation)	MHz	1745 <f <1790<="" del=""> 1895<f <1940<="" del=""></f></f>	1720 <f 1745<="" <="" del=""> 1940<f 1965<="" <="" del=""></f></f>	1 < f <1720 1965<f<12750< del=""></f<12750<>
UE transmitted- mean power	dBm	dBm 18 (for Power class 3) 18 (for Power class 4)		
Band I operation	For 2095 <f<2110 2170<f<2185="" 6.4.2="" 6.5.2="" adjacent="" and="" applied.<="" appropriate="" be="" blocking="" channel="" clause="" in="" in-band="" mhz="" mhz,="" or="" selectivity="" shall="" td="" the=""></f<2110>			
Band II operation	For 1915 <f<1930 1990<f<2005="" and="" appropriate="" blocking="" in-band="" mhz="" mhz,="" or<br="" the="">adjacent channel selectivity in clause 6.5.2 and clause 6.4.2 shall be applied</f<1930>			
Band III operation	For 1790 <f<1805 1880<f<1895="" 6.4.2="" 6.5.2="" adjacent="" and="" applied.<="" appropriate="" be="" blocking="" channel="" clause="" in="" in-band="" mhz="" mhz,="" or="" selectivity="" shall="" td="" the=""></f<1805>			

Table 6.5.2: Test parameters for Out of band blocking characteristics

6.5.2.3 Minimum requirements (Narrow band blocking)

The BER shall not exceed 0.001 for the parameters specified in table 6.5.3. This requirement is measure of a receiver's ability to receive a W CDMA signal at its assigned channel frequency in the presence of an unwanted narrow band-interferer at a frequency, which is less than the nominal channel spacing. The requirements and this test apply to UTRA-for the FDD UE supporting band II or band III.

The normative reference for this requirement is TS 25.101 [23] clause 7.6.3

Table 6.5.3: Test parameters for narrow band blocking

Parameter	Unit	Band II	Band III
DPCH_Ec	dBm/3.84 MHz	<refsens> + 10 dB</refsens>	<refsens> + 10 dB</refsens>
Î _{or}	dBm/3.84 MHz	<refî₀r> + 10 dB</refî₀r>	< REFÎ₀r> + 10 dB
I _{blocking} (GMSK)	dBm	-57	-56
F _{uw} (offset)	MHz	2.7	2.8
UE transmitted mean	dBm	20 (for Pow	ər class 3)
power		18 (for Power class 4)	

NOTE: I_{blocking} (GMSK) is an interfering signal as defined in TS 45.004. It is a GMSK modulated carrier following the structure of the GSM signals, but with all modulating bits (including the midamble period) derived directly from a random or pseudo random data stream.

6.5.3 Test purpose

To verify that the UE BER does not exceed 0,001 for the parameters specified in table 6.5.1, table 6.5.2 and table 6.5.3. For table 6.5.2 up to (24) exceptions are allowed for spurious response frequencies in each assigned frequency channelwhen measured using a 1 MHz step size.

The lack of the blocking ability decreases the coverage area when other transmitter exists (except in the adjacent channels and spurious response).

6.5.4 Method of test

6.5.4.1 Initial conditions

For in band case:

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

For out of band case:

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequency to be tested: 1 arbitrary frequency chosen from the low, mid or high range; see clause G.2.4.

For narrow band case:

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.5.
- 2) RF parameters are set up according to table 6.5.4, table 6.5.5 and table 6.5.6.
- 3) A call is set up according to the Generic call setup procedure specified in TS34.108[3] sub clause 7.3.2, with the following exception for information elements in RADIO BEARER SETUP message. With this exception, the Power Control Algorithm for the Uplink is set to algorithm 2.

4) Enter the UE into loopback test mode and start the loopback test.

Table 6.5.3A Contents of RADIO BEARER SETUP message: AM or UM

Information Element	Value/Remark
CHOICE channel requirement	Uplink DPCH info
	Algorithm2

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

6.5.4.2 Procedure

- 1) Set the parameters of the CW generator or the interference signal generator as shown in table 6.5.4, 6.5.5 and table 6.5.6. For table 6.5.5, the frequency step size is 1 MHz.
- 2) Set the power level of UE according to the table 6.5.4, table 6.5.5, and table 6.5.6, or send the power control commands (1dB step size should be used.) to the UE until UE output power measured by Test System shall be kept at the specified power level with ±1dB tolerance.
- 3) Measure the BER of DCH received from the UE at the SS.
- 4) For table 6.5.5, record the frequencies for which BER exceed the test requirements.

6.5.5 Test requirements

For table 6.5.4, the measured BER, derived in step 2), shall not exceed 0.001. For table 6.5.5, the measured BER, derived in step 2) shall not exceed 0,001 except for the spurious response frequencies, recorded in step 3). The number of spurious response frequencies, recorded in step 3) shall not exceed 24. For table 6.5.6, the measured BER, derived in step 2), shall not exceed 0.001.

Parameter	Unit	Level	
DPCH_Ec	dBm/3.84 MHz	<refsens>+3 dB</refsens>	
↓ _{or}	dBm/3.84 MHz	<refî<sub>0≻ + 3 dB</refî<sub>	
l _{blocking-} mean power- (modulated)	dBm	-56 -44 (for F _{uw} offset ±10 MHz) (for F _{uw} offset ±15 MHz)	
UE transmitted mean power	dBm	20 (for Power class 3) 18 (for Power class 4)	

Table 6.5.4: Test parameters for In-band blocking characteristics

Table 6.5.5: Test parameters for Out of band blocking characteristics

Parameter	Unit	Frequency range 1	Frequency range 2	Frequency range 3
DPCH_Ec	dBm/3.84- MHz	<refsens>+3 dB</refsens>	<refsens>+3 dB</refsens>	<refsens>+3 dB</refsens>
↓ _{or}	dBm/3.84- MHz	< REFÎ₀₅> + 3 dB	< REFÎ_{or}> + 3 dB	< REFÎ_{or}> + 3 dB
H _{blocking} (CW)	dBm	-44	-30	-15
F _{uw} (Band I- operation)	MHz	2050<f <2095<="" del=""> 2185<f <2230<="" del=""></f></f>	2025 <f <2050<="" del=""> 2230 <f <2255<="" del=""></f></f>	1< f <2025 2255<f<12750< del=""></f<12750<>
F _{uw} (Band II- operation)	MHz	1870<f <1915<="" del=""> 2005<f <2050<="" del=""></f></f>	1845 <f <1870<="" del=""> 2050 <f <2075<="" del=""></f></f>	1< f <1845 2075<f<12750< del=""></f<12750<>
F _{uw} (Band III- operation)	MHz	1745 <f <1790<="" del=""> 1895<f <1940<="" del=""></f></f>	1720 <f 1745<="" <="" del=""> 1940<f 1965<="" <="" del=""></f></f>	1< f <1720 1965<f<12750< del=""></f<12750<>
UE transmitted mean power	dBm 20 (for Power class 3) 18 (for Power class 4)			
Band I operation	and Loperation For 2095 <f<2110 2170<f<2185="" and="" appropriate="" blocking="" in-band="" mhz="" mhz,="" or<br="" the="">adjacent channel selectivity in clause 6.5.2 and clause 6.4.2 shall be applied.</f<2110>			
Band II operation	For 1915 <f<1930 1990<f<2005="" and="" appropriate="" blocking="" in-band="" mhz="" mhz,="" or<br="" the="">adjacent channel selectivity in clause 6.5.2 and clause 6.4.2 shall be applied</f<1930>			
Band III operation	For 1790 <f<1805 1880<f<1895="" and="" appropriate="" blocking="" in-band="" mhz="" mhz,="" or<br="" the="">adjacent channel selectivity in clause 6.5.2 and clause 6.4.2 shall be applied.</f<1805>			

Table 6.5.6: Test parameters for narrow band blocking

Parameter	Unit	Band II	Band III
DPCH_Ec	dBm/3.84 MHz	REFSENS> + 10 dB	REFSENS> + 10 dB
Î _{of}	dBm/3.84 MHz	<refî₀⊧> + 10 dB</refî₀⊧>	<refî₀r> + 10 dB</refî₀r>
I _{blocking} (GMSK)	dBm	-57	-56
F _{uw} (offset)	MHz	2.7	2.8
UE transmitted mean	dBm	20 (for Pow	ər class 3)
power	UDHI	18 (for Pow	er class 4)

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

6.6 Spurious Response

6.6.1 Definition and applicability

Spurious response is a measure of the receiver's ability to receive a wanted signal on its assigned channel frequencywithout exceeding a given degradation due to the presence of an unwanted CW interfering signal at any other frequencyat which a response is obtained i.e. for which the out of band blocking limit is not met.

The requirements and this test apply to all types of UTRA for the FDD UE.

6.6.2 Minimum Requirements

The BER shall not exceed 0,001 for the parameters specified in table 6.6.1.

The normative reference for this requirement is TS 25.101 [23] clause 7.7.1.

Table 6.6.1: Test parameters for Spurious Response

Parameter	Level	Unit
DPCH_Ec	<refsens> +3 dB</refsens>	dBm / 3,84MHz
Î _{Of}	<refî₀r> +3 dB</refî₀r>	dBm / 3,84MHz
I _{blocking} (CW)	-44	dBm
Fuw	Spurious response frequencies	MHz
UE transmitted mean power-	20 (for Power class 3)	dBm
	18 (for Power class 4)	

6.6.3 Test purpose

To verify that the UE BER does not exceed 0,001 for the parameters specified in table 6.6.1.

The lack of the spurious response ability decreases the coverage area when other unwanted interfering signal exists at any other frequency.

6.6.4 Method of test

6.6.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequency to be tested: the same frequency as chosen in clause 6.5.4.1 for Blocking characteristics out of band case.

- 1) Connect the SS to the UE antenna connector as shown in figure A.6.
- 2) RF parameters are set up according to table 6.6.2.
- 3) A call is set up according to the Generic call setup procedure specified in TS 34.108 [3] sub clause 7.3.2, with the following exception for information elements in RADIO BEARER SETUP message. With this exception, the Power Control Algorithm for the Uplink is set to algorithm 2.
- 4) Enter the UE into loopback test mode and start the loopback test.

Table 6.6.1A Contents of RADIO BEARER SETUP message: AM or UM

Information Element	Value/Remark
CHOICE channel requirement	Uplink DPCH info
	Algorithm2

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

6.6.4.2 Procedure

- 1) Set the parameter of the CW generator as shown in table 6.6.2. The spurious response frequencies are determined in step 3) of clause 6.5.4.2.
- 2) Set the power level of UE according to the table 6.6.2 or send the power control commands (1dB step size should be used.) to the UE until UE output power measured by Test System shall be kept at the specified power-level with ±1dB tolerance.
- 3) Measure the BER of DCH received from the UE at the SS.

6.6.5 Test requirements

The measured BER, derived in step 2), shall not exceed 0,001.

Table 6.6.2: Test parameters for Spurious Response

Parameter	Level	Unit
DPCH_Ec	<refsens> +3 dB</refsens>	dBm / 3,84MHz
Î _{Of}	<refî₀⊧> +3 dB</refî₀⊧>	dBm / 3,84MHz
I _{blocking} (CW)	-44	dBm
Fuw	Spurious response frequencies	MHz
UE transmitted mean power-	20 (for Power class 3)	dBm
	18 (for Power class 4)	

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

6.7 Intermodulation Characteristics

6.7.1 Definition and applicability

Third and higher order mixing of the two interfering RF signals can produce an interfering signal in the band of the desired channel. Intermodulation response rejection is a measure of the capability of the receiver to receive a wanted-signal on its assigned channel frequency in the presence of two or more interfering signals which have a specific-frequency relationship to the wanted signal.

The requirements and this test apply to all types of UTRA for the FDD UE. The test parameters in tables 6.7.2 and 6.7.4 applies to the FDD UE supporting Band II and Band III.

6.7.2 Minimum Requirements

The BER shall not exceed 0,001 for the parameters specified in table 6.7.1 and in table 6.7.2.

The normative reference for this requirement is TS 25.101 [23] clause 7.8.1 and clause 7.8.2.

NOTE: I_{ouw2} (modulated) consists of the common channels needed for tests as specified in table E.4.1 and 16dedicated data channels as specified in table E.3.6.

Parameter	Le	vel	Unit
DPCH_Ec	<refse< td=""><td>IS> +3 dB</td><td>dBm / 3,84 MHz</td></refse<>	IS> +3 dB	dBm / 3,84 MHz
Î _{or}	<refî<sub>0</refî<sub>	,> +3 dB	dBm / 3,84 MHz
I _{ouw1-} (CW)	_	4 6	dBm
l _{ouw2} mean power_ (modulated)	_	4 6	dBm-
F _{uw1} (offset)	10	-10	MHz
F _{uw2} (offset)	20	-20	MHz
UE transmitted mean power	20 (for Pov	ver class 3)	dBm
	18 (for Pov	ver class 4)	

Table 6.7.1: Test parameters for Intermodulation Characteristics

Table 6.7.2: Test parameters for narrow band intermodulation characteristics

Parameter	Unit	Bar	nd II	Ba	nd III	
DPCH_Ec	dBm/3.84 MHz	<refsen< th=""><th colspan="2"><refsens>+ 10 dB</refsens></th><th>IS>+ 10 dB</th></refsen<>	<refsens>+ 10 dB</refsens>		IS>+ 10 dB	
Î _{or}	dBm/3.84 MHz	<refî₀₀> + 10 dB</refî₀₀>		[<refî₀₀> +10 dB</refî₀₀>		
I _{ouw1} (CW)	dBm	-4	-44		-43	
I _{euw2} (GMSK)	dBm	-4	-44		-43	
F _{uw1} (offset)	MHz	3.5	3.5 - 3.5		-3.6	
<mark>F_{uw2} (offset)</mark>	MHz	5.9 - 5.9		6.0	-6.0	
UE transmitted mean	dBm	20 (for Power class 3)				
power	UDIII	18 (for Pov		wer class 4)		

NOTE: I_{ouw2}(GMSK) is an interfering signal as defined in TS 45.004. It is a GMSK modulated carrier followingthe structure of the GSM signals, but with all modulating bits (including the midamble period) deriveddirectly from a random or pseudo random data stream.

6.7.3 Test purpose

To verify that the UE BER does not exceed 0,001 for the parameters specified in table 6.7.1 and in table 6.7.2.

The lack of the intermodulation response rejection ability decreases the coverage area when two or more interfering signals, which have a specific frequency relationship to the wanted signal, exist.

6.7.4 Method of test

6.7.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.7.
- 2) RF parameters are set up according to table 6.7.3 and table 6.7.4.
- 3) A call is set up according to the Generic call setup procedure specified in TS 34.108 [3] sub clause 7.3.2, with the following exception for information elements in RADIO BEARER SETUP message. With this exception, the Power Control Algorithm for the Uplink is set to algorithm 2.
- 4) Enter the UE into loopback test mode and start the loopback test.

Table 6.7.2A Contents of RADIO BEARER SETUP message: AM or UM

Information Element	Value/Remark
CHOICE channel requirement	Uplink DPCH info
	Algorithm2

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

6.7.4.2 Procedure

- 1) Set the parameters of the CW generator and interference signal generator as shown in table 6.7.3 and in table 6.7.4.
- 2) Set the power level of UE according to the tables 6.7.3, and table 6.7.4 or send the power control commands-(1dB step size should be used.) to the UE until UE output power measured by Test System shall be kept at the specified power level with ±1dB tolerance.
- 3) Measure the BER of DCH received from the UE at the SS.

6.7.5 Test requirements

The measured BER, derived in step 1), shall not exceed 0,001.

Table 6.7.3: Test parameters for Intermodulation Characteristics

Parameter	Le	vel	Unit
DPCH_Ec	<refsen< th=""><th>IS> +3 dB</th><th>dBm / 3.84 MHz</th></refsen<>	IS> +3 dB	dBm / 3.84 MHz
Î _{or}	≺REFÎ ₀r	> +3 dB	dBm / 3.84 MHz
↓ _{ouw1} (CW)		16	dBm
l _{ouw2} mean power (modulated)		16	dBm
<mark>F_{uw1} (offset)</mark>	10	-10	MHz
<mark>F_{uw2} (offset)</mark>	20	-20	MHz
UE transmitted mean power	20 (for Pov	ver class 3)	dBm
	18 (for Pov	ver class 4)	

Table 6.7.4: Test parameters for narrow band intermodulation characteristics

Parameter	Unit	Band II		Bar	nd III		
DPCH_Ec	DdBm/3.84 MHz	Bm/3.84 MHz <refsens< td=""><td colspan="2"><refsens>+ 10 dB</refsens></td><td><refsen< td=""><td>IS>+ 10 dB</td></refsen<></td></refsens<>		<refsens>+ 10 dB</refsens>		<refsen< td=""><td>IS>+ 10 dB</td></refsen<>	IS>+ 10 dB
Î _{or}	DdBm/3.84 MHz	AHz < REFÎ_{or}> + 10 dB		[<refî₀₀> +10 dB</refî₀₀>			
I _{ouw1} (CW)	dBm	-44	-44		4 3		
I _{ouw2-} (GMSK)	dBm	-44	-44		-43		
F _{uw1} (offset)	MHz	3.5	-3.5	3.6	-3.6		
F _{uw2} (offset)	MHz	5.9	-5.9	6.0	-6.0		
UE transmitted mean	dBm	20 (for Power class 3)					
power		18 (for Power class 4)					

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

6.8 Spurious Emissions

6.8.1 Definition and applicability

The spurious emissions power is the power of emissions generated or amplified in a receiver that appear at the UE antenna connector.

The requirements and this test apply to all types of UTRA for the FDD UE.

6.8.2 Minimum Requirements

The power of any narrow band CW spurious emission shall not exceed the maximum level specified in table 6.8.1 and table 6.8.2.

Frequency Band	Measurement Bandwidth	Maximum- level	Note
30 MHz ≤ f < 1 GHz	100 kHz	-57 dBm	
<u>1 GHz ≤ f ≤ 12,75 GHz</u>	1 MHz	-47 dBm	

Table 6.8.1: General receiver spurious emission requirements

Table 6.8.2: Additional receiver spurious emission requirements

Operating band	Frequency Band	Measurement Bandwidth	Maximum level	Note
ŧ	1 920 MHz ≤ f ≤ 1 980 MHz	3,84 MHz	-60 dBm	UE transmit band in URA_PCH, Cell_PCH and idle state
	2 110 MHz ≤ f ≤ 2 170 MHz	3,84 MHz	-60 dBm	UE receive band
#	1850 MHz ≤ f ≤ 1910 MHz	3.84 MHz	-60 dBm	UE transmit band in URA_PCH, Cell_PCH and idle state
	1930 MHz ≤ f ≤ 1990 MHz	3.84 MHz	-60 dBm	UE receive band
##	1710 MHz ≤ f ≤ 1785 MHz	3.84 MHz	-60 dBm	UE transmit band in URA_PCH, Cell_PCH and idle state
	1805 MHz ≤ f ≤ 1880 MHz	3.84 MHz	-60 dBm	UE receive band

The reference for this requirement is TS 25.101 [1] clause 7.9.1.

6.8.3 Test purpose

To verify that the UE spurious emission meets the specifications described in clause 6.8.2.

Excess spurious emissions increase the interference to other systems.

6.8.4 Method of test

6.8.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: low range, mid range, high range; see clause G.2.4.

- 1) Connect a spectrum analyzer (or other suitable test equipment) to the UE antenna connector as shown infigure A.8.
- 2) RF parameters are setup according to table E.3.2.2.
- 3) A call is set up according to the setup procedure specified in TS34.108 [3] sub clause 7.3.3, with the following exceptions for information elements in System Information Block type3.

Information Element	Value/Remark
- Cell selection and re-selection info	
CHOICE mode	FDD
Sintrasearch	0 dB
Sintersearch	0 dB
RAT List	This parameter is configurable
	0 dB
Maximum allowed UL TX power	Power level where Pcompensation=0

NOTE: The setup procedure (3) sets the UE into the CELL_FACH state. With this state and the SS level (2) it is ensured that UE continuously monitors the S CCPCH and no cell reselections are performed [see 3GPP-TS 25.304, clauses 5.2.3.and 5.2.6]. No transmission of the UE will interfere the measurement.

6.8.4.2 Procedure

1) Sweep the spectrum analyzer (or equivalent equipment) over a frequency range and measure the average powerof spurious emission.

6.8.5 Test requirements

The all measured spurious emissions, derived in step 1), shall not exceed the maximum level specified in table 6.8.3 and table 6.8.4.

Table 6.8.3: General receiver spurious emission requirements

Frequency Band	Measurement	Maximum	Note
	Bandwidth	level	
30 MHz ≤ f < 1 GHz	100 kHz	-57 dBm	
1 GHz ≤ f ≤ 12,75 GHz	1 MHz	-47 dBm	

Table 6.8.4: Additional receiver spurious emission requirements

Operating Band	Frequency Band	Measurement Bandwidth	Maximum- level	Note
ŧ	1 920 MHz ≤ f ≤ 1 980 MHz	3,84 MHz	-60 dBm	UE transmit band in URA_PCH, Cell_PCH and idle state
	2 110 MHz ≤ f ≤ 2 170 MHz	3,84 MHz	-60 dBm	UE receive band
#	1 850 MHz ≤ f ≤ 1910 MHz	3.84 MHz	-60 dBm	UE transmit band in URA_PCH, Cell_PCH and idle state
	1930 MHz ≤ f ≤ 1990 MHz	3.84 MHz	-60 dBm	UE receive band
#	1 710 MHz ≦ f ≤ 1785 MHz	3.84 MHz	-60 dBm	UE transmit band in URA_PCH, Cell_PCH and idle state
	1 805 MHz ≤ f ≤ 1880 MHz	3.84 MHz	-60 dBm	UE receive band

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7 Performance requirements

7.1 General

The performance requirements for the UE in this clause are specified for the measurement channels specified in annex C and table 7.1.1, the propagation conditions specified in clause 7.1.2 and the Down link Physical channels-specified in annex D. Unless stated otherwise, DL power control is OFF.

The method for Block Error Ratio (BLER) measurement is specified in 3GPP TS 34.109 [4].

Type of User Information	User bit rate	DL DPCH symbol rate	DL DPCH bit rate	TTI (ms)
12,2 kbps- reference- measurement-	12,2 kbps	30 ksps	60 kbps	20
channel 64/144/384 kbps reference measurement channel	64 kbps	120 ksps	240 kbps	20
144kbps- reference- measurement- channel	144 kbps	240 ksps	480 kbps	20
384 kbps- reference- measurement- channel	384 kbps	4 80 ksps	960 kbps	10

Table 7.1.1: Bit / Symbol rate for Test Channel

The common RF test conditions of Performance requirement are defined in clause E.3.3, and each test conditions in this clause (clause 7) should refer clause E.3.3. Individual test conditions are defined in the paragraph of each test.

All Block Error ratio (BLER) measurements in clause 7 shall be performed according to the general rules for statistical testing in Annex F.6

7.1.1 Measurement Configurations

In all measurements UE should transmit with maximum power while receiving signals from Node B. This is guaranteed by the measurement configurations defined in Annex C (i.e. if the DTCH DCH TFS consists of a single transport format, it is not blocked by the UE as stated in 3GPP TS 25.331). Chip Rate is specified to be 3,84 MHz.

It as assumed that fields inside DPCH have the same energy per PN chip. Also, if the power of S CCPCH is notspecified in the test parameter table, it should be set to zero. The power of OCNS should be adjusted that the powerratios ($E_e A_{or}$) of all specified forward channels add up to one.

Measurement configurations for different scenarios are shown in figure A.9, figure A.10 and figure A.11.

7.1.2 Definition of Additive White Gaussian Noise (AWGN) Interferer

The minimum bandwidth of the AWGN interferer shall be 1,5 times chip rate of the radio access mode (e.g. 5,76 MHzfor a chip rate of 3,84 Mcps). The flatness across this minimum bandwidth shall be less than $\pm 0,5$ dB and the peak to average ratio at a probability of 0,001 % shall exceed 10 dB.

7.2 Demodulation in Static Propagation conditions

7.2.1 Demodulation of Dedicated Channel (DCH)

7.2.1.1 Definition and applicability

The receive characteristic of the Dedicated Channel (DCH) in the static environment is determined by the Block Error Ratio (BLER). BLER is specified for each individual data rate of the DCH. DCH is mapped into the Dedicated Physical Channel (DPCH).

The UE shall be tested only according to the data rate, supported. The data rate corresponding requirements shall apply to the UE.

7.2.1.2 Minimum requirements

For the parameters specified in table 7.2.1.1 the average downlink <u>DPCH</u> $_{E_c}$ power ratio shall be below the specified I_{or} value for the BLER shown in table 7.2.1.2. These requirements are applicable for TFCS size 16.

Table 7.2.1.1: DCH parameters in static propagation conditions

Parameter	Test 1	Test 2	Test 3	Test 4	Unit
Phase reference	P-CPICH				
$\frac{\hat{I}_{or}}{I_{oc}}$	-1				dB
-I _{oc}	-60				dBm / 3,84 MHz
Information Data Rate	12,2	64	144	384	kbps

Table 7.2.1.2: DCH requirements in static propagation conditions

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
4	–16,6 dB	40 ⁻²
2	–13,1 dB	10⁻¹
	–12,8 dB	10⁻²
3	- 9,9 dB	10⁻¹
	- 9,8 dB	10⁻²
4	- 5,6 dB	10⁻¹
	- 5,5 dB	10⁻²

The reference for this requirement is TS 25.101 [1] clause 8.2.3.1.

7.2.1.3 Test purpose

To verify the ability of the receiver to receive a predefined test signal, representing a static propagation channel for the wanted and for the co-channel signals from serving and adjacent cells, with a BLER not exceeding a specified value.

7.2.1.4 Method of test

7.2.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1. Connect the SS and an AWGN noise source to the UE antenna connector as shown in figure A.9.

2. Set up a call according to the Generic call setup procedure.

3. Set the test parameters for test 1 4 as specified in table 7.2.1.3.

4. Enter the UE into loopback test mode and start the loopback test.

7.2.1.4.2 Procedures

1. Measure BLER of DCH.

 I_{or}

7.2.1.5 Test requirements

For the parameters specified in table 7.2.1.3 the average downlink <u>DPCH</u> $_{E_c}$ power ratio shall be below the specified I_{or} value for the BLER shown in table 7.2.1.4. These requirements are applicable for TFCS size 16.

Table 7.2.1.3: DCH parameters in static propagation conditions

Parameter	Test 1	Test 2	Test 3	Test 4	Unit
Phase reference		P-C			
$\frac{\hat{I}_{or}}{I_{oc}}$		-(d₽		
-I _{oc}		-	dBm / 3,84 MHz		
Information Data Rate	12,2	64	144	384	kbps

Table 7.2.1.4: DCH requirements in static propagation conditions

Test Number	$DPCH _ E_c$	BLER
	I _{or}	
4	–16,5 dB	10⁻²
2	–13,0 dB	10⁻¹
	–12,7 dB	10⁻²
3	- 9,8 dB	10⁻¹
	- 9,7 dB	10⁻²
4	- 5,5 dB	10⁻¹
	- 5,4 dB	10 ⁻²

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7.3 Demodulation of DCH in Multi-path Fading Propagation conditions

7.3.1 Single Link Performance

7.3.1.1 Definition and applicability

The receive characteristics of the Dedicated Channel (DCH) in different multi-path fading environments are determinedby the Block Error Ratio (BLER) values. BLER is measured for the each of the individual data rate specified for the DPCH. DCH is mapped into in Dedicated Physical Channel (DPCH).

The UE shall be tested only according to the data rate, supported. The data rate corresponding requirements shall apply to the UE.

7.3.1.2 Minimum requirements

For the parameters specified in tables 7.3.1.1, 7.3.1.3, 7.3.1.5, 7.3.1.7 and 7.3.1.9 the average downlink <u>DPCH</u> $_{e}$ -

power ratio shall be below the specified value for the BLER shown in tables 7.3.1.2, 7.3.1.4, 7.3.1.6, 7.3.1.8 and 7.3.1.10. These requirements are applicable for TFCS size 16.

Table 7.3.1.1: DCH parameters in multi-path fading propagation conditions (Case 1)

Parameter	Test 1	Test 2	Test 3	Test 4	Unit
Phase reference		P-C			
$\frac{\hat{I}_{or}}{I_{oc}}$:	dB		
-I _{oc}	_60				dBm / 3,84 MHz
Information Data Rate	12,2	64	144	384	kbps

Table 7.3.1.2: DCH requirements in multi-path fading propagation conditions (Case 1)

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
4	- 15,0 dB	10⁻²
2	- 13,9 dB	10⁻¹
	- 10,0 dB	10⁻²
3	- 10,6 dB	10⁻¹
	-6,8 dB	10⁻²
4	-6,3 dB	10⁻¹
	-2,2 dB	10⁻²

Table 7.3.1.3: DCH parameters in multi-path fading propagation conditions (Case 2)

Parameter	Test 5	Test 6	Test 7	Test 8	Unit
Phase reference		P-CP			
$\frac{\hat{I}_{or}}{I_{oc}}$	-3	-3	З	6	dB
-I _{oc}		-6	dBm / 3,84 MHz		
Information Data Rate	12,2	64	1 44	384	kbps

Table 7.3.1.4: DCH requirements in multi-path fading propagation conditions (Case 2)

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
5	_7,7 dB	40 ⁻²
6	- 6,4 dB	10⁻¹
	-2,7 dB	10⁻²
7	- 8,1 dB	10 ⁻¹ 10 ⁻²
	_5,1 dB	10⁻²
8	-5,5 dB	4
	-3,2 dB	10⁻⁺ 10⁻²

Table 7.3.1.5: DCH parameters in multi-path fading propagation conditions (Case 3)

Parameter	Test 9	Test 10	Test 11	Test 12	Unit
Phase reference		P-CF			
\hat{H}_{or}/H_{oc}	_3	-3	Э Э	6	dB
-I _{oc}	_60			dBm / 3,84 MHz	
Information Data Rate	12,2	64	144	384	kbps

Test Number	$DPCH _E_c$	BLER
	I _{or}	
9	–11,8 dB	10⁻²
10	_8,1 dB	40 ⁻¹
	_7,4 dB	10⁻²
	- 6,8 dB	10⁻³
11	- 9,0 dB	10⁻¹
	- 8,5 dB	10⁻²
	- 8,0 dB	10 ⁻³
12	_5,9 dB	10⁻¹
	_5,1 dB	10⁻²
	_4,4 dB	10⁻³

Table 7.3.1.6: DCH requirements in multi-path fading propagation conditions (Case 3)

Table 7.3.1.7: DCH parameters in multi-path fading propagation conditions (Case 1) with S-CPICH

Parameter	Test 13	Test 14	Test 15	Test 16	Unit
Phase reference	S-CPICH				
$\frac{\hat{I}_{or}}{I_{oc}}$		ť		d₽	
-I _{oc}	-60				dBm / 3,84 MHz
Information Data Rate	12,2	64	144	384	kbps

Table 7.3.1.8: DCH requirements in multi-path fading propagation conditions (Case 1) with S-CPICH

Test Number	$DPCH _ E_c$	BLER
	I _{or}	
13	-15,0 dB	40 ⁻²
14	-13,9 dB	10⁻¹
	-10,0 dB	10⁻²
15	-10,6 dB	10⁻¹
	-6,8 dB	10⁻²
16	-6,3 dB	10⁻¹
	-2,2 dB	40 ⁻²

Table 7.3.1.9: DCH parameters in multi-path fading propagation conditions (Case 6)

Parameter	Test 17	Test 18	Test 19	Test 20	Unit
Phase reference	P-CPICH				
$\frac{\hat{I}_{or}}{I_{oc}}$	ሳ	ሳ	3	6	dB
<u> </u>	-60				dBm / 3,84 MHz
Information Data Rate	12,2	6 4	144	38 4	kbps

Table 7.3.1.10: DCH requirements in multi-path fading propagation conditions (Case 6)

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
17	-8,8 dB	10⁻²
	-5,1 dB	10⁻¹
18	-4,4 dB	10⁻²⁻
	-3,8 dB	10⁻³⁻
	-6,0 dB	10 ⁺⁺
19	-5,5 dB	10⁻²⁻
	-5,0 dB	10⁻³⁻
20	-2,9 dB	10⁻¹⁻
	-2,1 dB	10 ⁻²
	-1,4 dB	10⁻³⁻

The reference for this requirement is TS 25.101 [1] clause 8.3.1.1.

7.3.1.3 Test purpose

To verify the ability of the receiver to receive a predefined test signal, representing a multi-path fading propagationchannel for the wanted and for the co-channel signals from serving and adjacent cells, with a BLER not exceeding a specified value.

7.3.1.4 Method of test

7.3.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1. Connect the SS, multi-path fading simulator and an AWGN noise source to the UE antenna connector as shown in figure A.10.
- 2. Set up a call according to the Generic call setup procedure.
- 3. Set the test parameters for test 1 20 as specified table 7.3.1.11, table 7.3.1.13, table 7.3.1.15, table 7.3.1.17 and table 7.3.1.19.
- 4. Enter the UE into loopback test mode and start the loopback test.
- 5. Setup fading simulators as fading condition case 1, case 2, case 3 and case 6, which are described in table D.2.2.1.

7.3.1.4.2 Procedures

1. Measure BLER of DCH.

7.3.1.5 Test requirements

For the parameters specified in tables 7.3.1.11, 7.3.1.13, 7.3.1.15, 7.3.1.17 and 7.3.1.19 the average downlink $\underline{DPCH _ E_c}_{Power ratio shall be below the specified value for the BLER shown in tables 7.3.1.12, 7.3.1.14, 7.3.1.16, I_{or}$

7.3.1.18 and 7.3.1.20. These requirements are applicable for TFCS size 16.

Table 7.3.1.11: DCH parameters in multi-path fading propagation conditions (Case 1)

Parameter	Test 1	Test 2	Test 3	Test 4	Unit
Phase reference		P-C			
$\frac{\hat{I}_{or}}{I_{oc}}$		Ş	dB		
-I _{oc}	_60				dBm / 3,84 MHz
Information Data Rate	12,2	64	144	384	kbps

Table 7.3.1.12: DCH requirements in multi-path fading propagation conditions (Case 1)

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
4	- 14,9 dB	40 ⁻²
2	- 13,8 dB	10⁻¹
	- 9,9 dB	10⁻²
3	- 10,5 dB	10⁻¹
	-6,7 dB	10⁻²
4	-6,2 dB	10⁻¹
	_2,1 dB	10⁻²

Table 7.3.1.13: DCH parameters in multi-path fading propagation conditions (Case 2)

Parameter	Test 5	Test 6	Test 7	Test 8	Unit
Phase reference		P-CP			
$\frac{\hat{I}_{or}}{I_{oc}}$	-2,4	-2,4	3,6	6,6	dB
-I _{oc}		-6	dBm / 3,84 MHz		
Information Data Rate	12,2	64	144	384	kbps

Table 7.3.1.14: DCH requirements in multi-path fading propagation conditions (Case 2)

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
5	_7,6 dB	10⁻²
6	- 6,3 dB	10⁻¹
	- 2,6 dB	10⁻²
7	- 8,0 dB	10⁻¹
	-5,0 dB	10⁻²
8	_5,4 dB	10⁻¹
	_3,1 dB	10⁻²

Table 7.3.1.15: DCH parameters in multi-path fading propagation conditions (Case 3)

Parameter	Test 9	Test 10	Test 11	Test 12	Unit
Phase reference	P-CPICH				
$\frac{\hat{I}_{or}}{I_{oc}}$	-2,4	-2,4	3,6	6,6	d₿
-I _{oc}	-60				dBm / 3,84 MHz
Information Data Rate	12,2	64	144	384	kbps

Test Number	<u>DPCH $_E_c$</u>	BLER
	I _{or}	
Ð	–11,7 dB	10⁻²
10	-8,0 dB	10⁻¹
	-7,3 dB	10⁻²
	- 6,7 dB	10⁻³
11	- 8,9 dB	10⁻¹
	- 8,4 dB	10⁻²
	- 7,9 dB	10⁻³
12	-5,8 dB	10⁻¹
	_5,0 dB	10⁻² 10⁻³
	-4,3 dB	10 ⁻³

Table 7.3.1.16: DCH requirements in multi-path fading propagation conditions (Case 3)

Table 7.3.1.17: DCH parameters in multi-path fading propagation conditions (Case 1) with S-CPICH

Parameter	Test 13	Test 14	Test 15	Test 16	Unit
Phase reference		S-CI			
$\frac{\hat{I}_{or}}{I_{oc}}$		9		d₽	
-I _{oc}		-€	dBm / 3,84 MHz		
Information Data Rate	12,2	64	144	384	kbps

Table 7.3.1.18: DCH requirements in multi-path fading propagation conditions (Case 1) with S-CPICH

Test Number	$DPCH _ E_c$	BLER
	I _{or}	
13	-14,9 dB	10⁻²
14	-13,8 dB	10⁻¹
	-9,9 dB	10⁻²
15	-10,5 dB	10 ⁻¹
	-6,7 dB	10⁻²
16	-6,2 dB	10⁻¹
	-2,1 dB	40 ⁻²

Table 7.3.1.19: DCH parameters in multi-path fading propagation conditions (Case 6)

Parameter	Test 17	Test 18	Test 19	Test 20	Unit
Phase reference	P-CPICH				
$\frac{\hat{I}_{or}}{I_{oc}}$	-2,4	-2,4	3,6	6,6	dB
-I _{oc}	-60				dBm / 3,84 MHz
Information Data Rate	12,2	6 4	1 44	38 4	kbps

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
17	-8,7 dB	10⁻²
	-5,0 dB	10⁻¹
18	-4,3 dB	10 ⁻²
	-3,7 dB	10 ⁻³
	-5,9 dB	10 ⁻¹
19	-5,4 dB	10⁻-
	-4,9 dB	10 **
	-2,8 dB	10⁻¹⁻
20	-2,0 dB	10 ⁻² 10 ⁻³
	-1,3 dB	10⁻³⁻

Table 7.3.1.20: DCH requirements in multi-path fading propagation conditions (Case 6)

7.4 Demodulation of DCH in Moving Propagation conditions

7.4.1 Single Link Performance

7.4.1.1 Definition and applicability

The receive single link performance of the Dedicated Channel (DCH) in dynamic moving propagation conditions are determined by the Block Error Ratio (BLER) values. BLER is measured for the each of the individual data rate specified for the DPCH. DCH is mapped into Dedicated Physical Channel (DPCH).

The UE shall be tested only according to the data rate, supported. The data rate corresponding requirements shall apply to the UE.

7.4.1.2 Minimum requirements

For the parameters specified in table 7.4.1.1 the average downlink- DPCH _ E_c -power ratio shall be below the specified-

 I_{or}

value for the BLER shown in table 7.4.1.2.

Table 7.4.1.1: DCH parameters in moving propagation conditions

Parameter	Test 1	Test 2	Unit
Phase reference	P-CI	PICH	
$\frac{\hat{I}_{or}}{I_{oc}}$	_	4	dB
-I _{oc}	-4	30	dBm / 3,84 MHz
Information Data Rate	12,2	64	kbps

Table 7.4.1.2: DCH requirements in moving propagation conditions

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
4	–14,5 dB	10⁻²
2	–10,9 dB	10⁻²

The reference for this requirement is TS 25.101 [1] clause 8.4.1.1.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7.4.1.3 Test purpose

To verify the ability of the receiver to receive a predefined test signal, representing a moving propagation channel for the wanted and for the co-channel signals from serving and adjacent cells, with a BLER not exceeding a specified value.

7.4.1.4 Method of test

7.4.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1. Connect the SS and an AWGN noise source to the UE antenna connector as shown in figure A.10.

2. Set up a call according to the Generic call setup procedure.

3. Set the test parameters as specified in table 7.4.1.3.

4. Enter the UE into loopback test mode and start the loopback test.

5. Setup fading simulator as moving propagation condition, which is described in clause D.2.3.

7.4.1.4.2 Procedures

1. Measure BLER of DCH.

7.4.1.5 Test requirements

For the parameters specified in table 7.4.1.3 the average downlink- DPCH _E_c -power ratio shall be below the specified-

 I_{or}

value for the BLER shown in table 7.4.1.4.

Table 7.4.1.3: DCH parameters in moving propagation conditions

Parameter	Test 1	Test 2	Unit
Phase reference	P-CI	PICH	
$\frac{\hat{I}_{or}}{I_{oc}}$	-6),4	dB
-I _{oc}	-4	30	dBm / 3,84 MHz
Information Data Rate	12,2	64	kbps

Table 7.4.1.4: DCH requirements in moving propagation conditions

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
4	- 14,4 dB	10⁻²
2	- 10,8 dB	10⁻²

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7.5 Demodulation of DCH in Birth-Death Propagation conditions

7.5.1 Single Link Performance

7.5.1.1 Definition and applicability

The receive single link performance of the Dedicated Channel (DCH) in dynamic birth death propagation conditions are determined by the Block Error Ratio (BLER) values. BLER is measured for the each of the individual data rate specified for the DPCH. DCH is mapped into Dedicated Physical Channel (DPCH).

The UE shall be tested only according to the data rate, supported. The data rate corresponding requirements shall apply to the UE.

7.5.1.2 Minimum requirements

For the parameters specified in table 7.5.1.1 the average downlink- DPCH _ E_c -power ratio shall be below the specified-

value for the BLER shown in table 7.5.1.2.

Table 7.5.1.1: DCH parameters in birth-death propagation conditions

Parameter	Test 1	Test 2	Unit
Phase reference	P-CF	PICH	
\hat{I}_{or}/I_{oc}		1	dB
-I _{oc}	-€	90	dBm / 3,84 MHz
Information Data Rate	12,2	6 4	kbps

Table 7.5.1.2: DCH requirements in birth-death propagation conditions

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
4	–12,6 dB	10⁻²
2	-8,7 dB	10⁻²

The reference for this requirement is TS 25.101 [1] clause 8.5.1.1.

7.5.1.3 Test purpose

To verify the ability of the receiver to receive a predefined test signal, representing a birth death propagation channelfor the wanted and for the co-channel signals from serving and adjacent cells, with a BLER not exceeding a specifiedvalue.

7.5.1.4 Method of test

7.5.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1. Connect the SS and an AWGN noise source to the UE antenna connector as shown in figure A.10.

2. Set up a call according to the Generic call setup procedure.

3. Set the test parameters as specified in table 7.5.1.3.

4. Enter the UE into loopback test mode and start the loopback test.

5. Setup fading simulator as birth death propagation condition, which is described in clause D.2.4.

7.5.1.4.2 Procedures

1. Measure BLER of DCH.

7.5.1.5 Test requirements

For the parameters specified in table 7.5.1.3 the average downlink- DPCH _ E_c - power ratio shall be below the specified-I

value for the BLER shown in table 7.5.1.4.

Table 7.5.1.3: DCH parameters in birth-death propagation conditions

Parameter	Test 1	Test 2	Unit
Phase reference	P-CF	PICH	
$\frac{\hat{I}_{or}}{I_{oc}}$	ዋ	,4	dB
-I _{oc}	-60		dBm / 3,84 MHz
Information Data Rate	12,2	64	kbps

Table 7.5.1.4: DCH requirements in birth-death propagation conditions

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
4	–12,5 dB	10⁻²
2	-8,6 dB	10⁻²

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7.6 Demodulation of DCH in downlink Transmit diversity modes

7.6.1 Demodulation of DCH in open-loop transmit diversity mode

7.6.1.1 Definition and applicability

The receive characteristic of the Dedicated Channel (DCH) in open loop transmit diversity mode is determined by the Block Error Ratio (BLER). DCH is mapped into in Dedicated Physical Channel (DPCH).

The requirements and this test apply to all types of UTRA for the FDD UE.

7.6.1.2 Minimum requirements

For the parameters specified in table 7.6.1.1 the average downlink	DPCH _ E _c - power ratio shall be below the specified-
	I _{or}

value for the BLER shown in table 7.6.1.2.

Table 7.6.1.1: Test parameters for DCH reception in a open-loop transmit diversity scheme (Propagation condition: Case 1)

Parameter	Test 1	Unit
Phase reference	P-CPICH	
$\frac{\hat{I}_{or}}{I_{oc}}$	9	dB
-I _{oc}	-60	dBm / 3,84 MHz
Information data rate	12,2	kbps

Table 7.6.1.2: Test requirements for DCH reception in open-loop transmit diversity scheme

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
	(antenna 1/2)	
4	–16,8 dB	10⁻²

The reference for this requirement is TS 25.101 [1] clause 8.6.1.1.

7.6.1.3 Test purpose

To verify that UE reliably demodulates the DPCH of the Node B while open loop transmit diversity is enabled during the connection.

7.6.1.4 Method of test

7.6.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect SS, multi-path fading simulators and an AWGN source to the UE antenna connector as shown infigure A.12.
- 2) Set up a call according to the Generic call setup procedure specified in TS 34.108 [3] clause 7.3.2, with the exceptions for information elements listed in table 7.6.1.3. With these exceptions, open loop transmit diversity mode is activated.
- 3) RF parameters are set up according to table 7.6.1.4 and table E 3.4.
- 4) Enter the UE into loopback test mode and start the loopback test.
- 5) Set up fading simulators as fading condition case 1, which is described in table D.2.2.1.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

Table 7.6.1.3: Specific Message Contents for open-loop transmit diversity mode

SYSTEM INFORMATION BLOCK TYPE5

Information Element	Value/remark
PRACH system information list	
- AICH info	
- STTD Indicator	TRUE
Secondary CCPCH system information	
- PICH info	
- STTD Indicator	TRUE
- Secondary CCPCH info	
- STTD Indicator	TRUE
Primary CCPCH info	
- CHOICE mode	FDD
TX Diversity indicator	TRUE

RRC CONNECTION SETUP

Information Element	Value/remark
Downlink information common for all radio links	
CHOICE mode	FDD
- TX Diversity Mode	STTD,
Downlink DPCH info for each RL	
- CHOICE mode	FDD
- Downlink DPCH info for each RL	
 Closed loop timing adjustment mode 	4

RADIO BEARER SETUP

Information Element	Value/remark
Downlink information common for all radio links	
- Choice mode	FDD
- TX Diversity Mode	STTD
Downlink DPCH info for each RL	
- CHOICE mode	FDD
- Downlink DPCH info for each RL	
 Closed loop timing adjustment mode 	4

7.6.1.4.2 Procedure

1) Measure BLER in points specified in table 7.6.1.5.

7.6.1.5 Test Requirements

For the parameters specified in table 7.6.1.4 the average downlink <u>DPCH $_{E_c}$ power ratio shall be below the specified</u> I_{or}

value for the BLER shown in table 7.6.1.5.

Table 7.6.1.4: Test parameters for DCH reception in a open-loop transmit diversity scheme (Propagation condition: Case 1)

Parameter	Test 1	Unit
Phase reference	P-CPICH	
$\frac{\hat{I}_{or}}{I_{oc}}$	9,8	dB
-I _{oc}	-60	dBm / 3,84 MHz
Information data rate	12,2	kbps

Table 7.6.1.5: Test requirements for DCH reception in open-loop transmit diversity scheme

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
	(antenna 1/2)	
4	–16,7 dB	10⁻²

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7.6.2 Demodulation of DCH in closed loop transmit diversity mode

7.6.2.1 Definition and applicability

The receive characteristic of the dedicated channel (DCH) in closed loop transmit diversity mode is determined by the Block Error Ratio (BLER). DCH is mapped into in Dedicated Physical Channel (DPCH).

The requirements and this test apply to all types of UTRA for the FDD UE.

7.6.2.2 Minimum requirements

For the parameters specified in table 7.6.2.1 the average downlink- DPCH _E_ - power ratio shall be below the specified-

Ι

value for the BLER shown in table 7.6.2.2.

Table 7.6.2.1: Test Parameters for DCH Reception in closed loop transmit diversity mode (Propagation condition: Case 1)

Parameter	Test 1 (Mode 1)	Test 2 (Mode 2)	Unit
$\frac{\hat{I}_{or}}{I_{oc}}$	8	9	d₿
-I _{oc}	-60	-60	dBm / 3,84 MHz
Information data rate	12,2	12,2	kbps
Feedback error ratio	4	4	%
Closed loop timing adjustment- mode	4	4	-

Table 7.6.2.2: Test requirements for DCH reception in closed loop transmit diversity mode

Test Number	$\frac{DPCH_E_c}{I_{or}} \left(\frac{\text{see note}}{I_{or}} \right)$	BLER
4	–18,0 dB	10⁻²
2	–18,3 dB	10⁻²
NOTE: This is the total power from both antennas. Power- sharing between antennas are closed loop mode- dependent as specified in TS 25.214 [5].		

The reference for this requirement is TS 25.101 [1] clause 8.6.2.1.

7.6.2.3 Test purpose

To verify that UE reliably demodulates the DPCH of the Node B while closed loop transmit diversity is enabled during the connection.

7.6.2.4 Method of test

7.6.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect SS, multi-path fading simulators and an AWGN source to the UE antenna connector as shown infigure A.12.
- 2) Set up a call according to the Generic call setup procedure specified in TS 34.108 [3] clause 7.3.2, with the exceptions for information elements listed in table 7.6.2.3. With these exceptions, closed loop transmit diversity-mode is activated.
- 3) RF parameters are set up according to table 7.6.2.1 and table E 3.5.
- 4) Enter the UE into loopback test mode and start the loopback test.
- 5) Set up fading simulators as fading condition case 1, which is described in table D.2.2.1.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

Table 7.6.2.3: Specific Message Contents for closed loop transmit diversity mode

SYSTEM INFORMATION BLOCK TYPE5

Information Element	Value/remark
PRACH system information list	
- AICH info	
- STTD Indicator	TRUE
Secondary CCPCH system information	
- PICH info	
- STTD Indicator	TRUE
- Secondary CCPCH info	
- STTD Indicator	TRUE
Primary CCPCH info	
- CHOICE mode	FDD
- TX Diversity indicator	TRUE

RRC CONNECTION SETUP for Closed loop mode1

Information Element	Value/remark
Downlink information common for all radio links	
- CHOICE mode	FDD
- TX Diversity Mode	Closed loop mode1
Downlink DPCH info for each RL	
- CHOICE mode	FDD
- Downlink DPCH info for each RL	
 Closed loop timing adjustment mode 	4

RRC CONNECTION SETUP for Closed loop mode2

Information Element	Value/remark
Downlink information common for all radio links	
- CHOICE mode	FDD
- TX Diversity Mode	Closed loop mode2
Downlink DPCH info for each RL	
- CHOICE mode	FDD
- Downlink DPCH info for each RL	
 Closed loop timing adjustment mode 	4

RADIO BEARER SETUP for Closed loop mode1

Information Element	Value/remark
Downlink information common for all radio links	
- Choice mode	FDD
- TX Diversity Mode	Closed loop mode1
Downlink DPCH info for each RL	
	FDD
- Downlink DPCH info for each RL	
 Closed loop timing adjustment mode 	4

RADIO BEARER SETUP for Closed loop mode2

Information Element	Value/remark
Downlink information common for all radio links	
- Choice mode	FDD
- TX Diversity Mode	Closed loop mode2
Downlink DPCH info for each RL	
- CHOICE mode	FDD
- Downlink DPCH info for each RL	
 Closed loop timing adjustment mode 	4

7.6.2.4.2 Procedure

1) Measure BLER in points specified in table 7.6.2.2.

7.6.2.5 Test Requirements

For the parameters specified in table 7.6.2.4 the average downlink- DPCH _ E_c - power ratio shall be below the specified-

 I_{or}

value for the BLER shown in table 7.6.2.5.

Table 7.6.2.4: Test Parameters for DCH Reception in closed loop transmit diversity mode (Propagation condition: Case 1)

Parameter	Test 1 (Mode 1)	Test 2 (Mode 2)	Unit
$\frac{\hat{H}_{or}}{I_{oc}}$	9,8	9,8	dB
-I _{oc}	-60	-60	dBm / 3,84 MHz
Information data rate	12,2	12,2	kbps
Feedback error ratio	4	4	%
Closed loop timing adjustment	4	4	-
mode			

Table 7.6.2.5: Test requirements for DCH reception in closed loop transmit diversity mode

Test Number	$\frac{DPCH _E_c}{I_{or}} (\text{see note})$	BLER
1	-17,9 dB	10⁻²
2	–18,2 dB	10⁻²
NOTE: This is the total power from both antennas. Power- sharing between antennas are closed loop mode- dependent as specified in TS 25.214 [5].		

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7.6.3 Demodulation of DCH in Site Selection Diversity Transmission Power Control mode

7.6.3.1 Definition and applicability

The bit error characteristics of UE receiver is determined in Site Selection Diversity Transmission Power Control (SSDT) mode. Two Node B emulators are required for this performance test. The delay profiles of signals received from different base stations are assumed to be the same but time shifted by 10 chip periods.

The requirements and this test apply to all types of UTRA for the FDD UE.

7.6.3.2 Minimum requirements

The downlink physical channels and their relative power to Ior are the same as those specified in clause E.3.3irrespective of Node Bs and the test cases. DPCH_Ec/Ior value applies whenever DPDCH in the cell is transmitted. In-Test 1 and Test 3, the received powers at UE from two Node Bs are the same, while 3dB offset is given to one that comes from one of Node Bs for Test 2 and Test 4 as specified in table 7.6.3.1.

For the parameters specified in table 7.6.3.1 the average downlink <u>DPCH</u> $_{E_c}$ power ratio shall be below the specified I_{or}

value for the BLER shown in table 7.6.3.2.

Table 7.6.3.1: DCH parameters in multi-path propagation conditions during SSDT mode (Propagation condition: Case 1)

Parameter	Test 1	Test 2	Test 3	Test 4	Unit
Phase reference		P-CI	PICH	•	
\hat{H}_{or1}/H_{oc}	θ	-3	θ	θ	dB
$\frac{\hat{I}_{or2}}{I_{oc}}$	θ	θ	θ	-3	dB
I _{oc}	-60			dBm / 3,84 MHz	
Information Data Rate	12,2	12,2	12,2	12,2	kbps
Cell ID code word error ratio- in uplink (note)	4	4	4	4	%
Number of FBI bits assigned to "S" Field	4	4	2	2	
Code word Set	Long	Long	Short	Short	
UL DPCCH slot Format	# 2 # 5				

NUTE: The code word errors are introduced independently in both uplink channels.

Table 7.6.3.2: DCH requirements in multi-path propagation conditions during SSDT Mode

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
4	- 7,5 dB	10⁻²
2	6,5 dB	10⁻²
3	–10,5 dB	10⁻²
4	-9,2 dB	40 ⁻²

The reference for this requirement is TS 25.101 [1] clause 8.6.3.1.

7.6.3.3 Test purpose

To verify that UE reliably demodulates the DPCH of the selected Node B while site selection diversity is enabled during soft handover.

7.6.3.4 Method of test

7.6.3.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect two SS's, multi-path fading simulators and an AWGN source to the UE antenna connector as shown infigure A.11.
- 2) Activate one of two cells (Cell 1).
- 3) Set up a call according to the Generic call setup procedure specified in TS 34.108 [3] clause 7.3.2, with the exceptions for information elements listed in table 7.6.3.3A. With these exceptions, necessary information for SSDT mode is sent to the UE.
- 4) Activate the other cell (Cell 2) on the other SS.
- 5) RF parameters are set up according to table 7.6.3.4 and table 7.6.3.5
- 6) After receiving MEASUREMENT REPORT message from the UE, send the ACTIVESET UPDATE message from Cell 1 to the UE in order to activate SSDT mode. Contents of the message is specified in table 7.6.3.3B
- 7) Enter the UE into loopback test mode and start the loopback test.
- 8) Set up fading simulators as fading condition case 1, which is described in table D.2.2.1.

Table 7.6.3.3A: Specific Message Contents for SSDT mode

RRC CONNECTION SETUP for Test 1 and Test 2

Information Element	Value/remark
Downlink information common for all radio links	
- CHOICE mode	FDD
- SSDT information	
- S field	4
- Code Word Set	long
Downlink DPCH info for each RL	
- CHOICE mode	FDD
- Downlink DPCH info for each RL	
- SSDT Cell Identity	a

RRC CONNECTION SETUP for Test 3 and Test 4

Information Element	Value/remark
Downlink information common for all radio links	
- CHOICE mode	FDD
- SSDT information	
- S field	2
- Code Word Set	short
Downlink DPCH info for each RL	
- CHOICE mode	FDD
- Downlink DPCH info for each RL	
- SSDT Cell Identity	a

RADIO BEARER SETUP for Test 1 and Test 2

Information Element	Value/remark
Downlink information common for all radio links	
- CHOICE mode	FDD
- SSDT information	
- S field	4
- Code Word Set	long
Downlink DPCH info for each RL	
- CHOICE mode	FDD
- Downlink DPCH info for each RL	
- SSDT Cell Identity	a

RADIO BEARER SETUP for Test 3 and Test 4

Information Element	Value/remark
Downlink information common for all radio links	
- CHOICE mode	FDD
- SSDT information	
- S field	2
- Code Word Set	short
Downlink DPCH info for each RL	
- CHOICE mode	FDD
- Downlink DPCH info for each RL	
- SSDT Cell Identity	a

Table 7.6.3.3B: Message Contents of ACTIVESET UPDATE message

ACTIVESET UPDATE for Test 1 and Test 2

Information Element/Group name	Value/Remark
Message Type (10.2.17)	
UE information elements	
- RRC transaction identifier	θ
- Integrity check info	Not Present
- Activation time	"now".
- New U-RNTI	Not Present
CN information elements	
- CN Information info	Not Present
Phy CH information elements	
Uplink radio resources	
- Maximum allowed UL TX power	33 dBm
Downlink radio resources	
- Radio link addition information	4
 Radio link addition information 	
- Primary CPICH info	Same as defined in Cell2
 Downlink DPCH info for each RL 	
- CHOICE mode	FDD
 Primary CPICH usage for channel estimation 	Primary CPICH may be used
- DPCH frame offset	This should be refriected by the IE" Cell synchronisation
	information" in received MEASUREMENT REPORT
	message
- Secondary CPICH info	Not Present
- DL channelisation code	
 Secondary scrambling code 	Not Present
 Spreading factor 	128
- Code number	θ
- Scrambling code change	No code change
- TPC combination index	θ
- SSDT Cell Identity	b
- Closed loop timing adjustment mode	Not Present
- TFCI combining indicator	FALSE
- SCCPCH Information for FACH	Not Present
- Radio link removal information	Not Present
- TX Diversity Mode	None
- SSDT information	
- S field	4
- Code Word Set	long

ACTIVESET UPDATE for Test 3 and Test 4

Information Element/Group name	Value/Remark
Message Type (10.2.17)	
UE information elements	
- RRC transaction identifier	θ
- Integrity check info	Not Present
- Activation time	"now".
- New U-RNTI	Not Present
CN information elements	
- CN Information info	Not Present
Phy CH information elements	
Uplink radio resources	
- Maximum allowed UL TX power	33 dBm
Downlink radio resources	
- Radio link addition information	4
 Radio link addition information 	
- Primary CPICH info	Same as defined in Cell2
- Downlink DPCH info for each RL	
- CHOICE mode	FDD
 Primary CPICH usage for channel estimation 	Primary CPICH may be used
- DPCH frame offset	This should be refriected by the IE" Cell synchronisation
	information" in received MEASUREMENT REPORT
	message
- Secondary CPICH info	Not Present
- DL channelisation code	
- Secondary scrambling code	Not Present
- Spreading factor	128
- Code number	θ
- Scrambling code change	No code change
- TPC combination index	θ
- SSDT Cell Identity	b .
- Closed loop timing adjustment mode	Not Present
- TFCI combining indicator	FALSE
- SCCPCH Information for FACH	Not Present
- Radio link removal information	Not Present
- TX Diversity Mode	None
- SSDT information	
- S field	2 short
- Code Word Set	short

7.6.3.4.2 Procedure

Measure BLER in points specified in table 7.6.3.4.

7.6.3.5 Test Requirements

For the parameters specified in table 7.6.3.4 the average downlink <u>DPCH</u> <u>E</u> power ratio shall be below the specified

 I_{or}

value for the BLER shown in table 7.6.3.5.

Table 7.6.3.4: DCH parameters in multi-path propagation conditions during SSDT mode (Propagation condition: Case 1)

Parameter	Test 1	Test 2	Test 3	Test 4	Unit
Phase reference	P-CPICH				
\hat{I}_{or1}/I_{oc}	0,8	-2,2	0,8	0,8	dB
\hat{I}_{or2}/I_{oc}	0,8	0,8	0,8	-2,2	dB
-I _{oc}	-60			dBm / 3,84 MHz	
Information Data Rate	12,2	12,2	12,2	12,2	kbps
Cell ID code word error ratio- in uplink (note)	4	4	4	4	%
Number of FBI bits assigned to "S" Field	1	4	2	2	
Code word Set	Long	Long	Short	Short Short	
UL DPCCH slot Format	#2 #5				
NOTE: The code word errors are introduced independently in both uplink channels.				÷	

Table 7.6.3.5: DCH requirements in multi-path propagation conditions during SSDT mode

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
4	_7,4 dB	10⁻²
2	- 6,4 dB	10⁻²
3	- 10,4 dB	10⁻²
4	- 9,1 dB	40 ⁻²

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7.7 Demodulation in Handover conditions

7.7.1 Demodulation of DCH in Inter-Cell Soft Handover

7.7.1.1 Definition and applicability

The bit error ratio characteristics of UE is determined during an inter cell soft handover. During the soft handover a UE receives signals from different Base Stations. A UE has to be able to demodulate two P CCPCH channels and to combine the energy of DCH channels. Delay profiles of signals received from different Base Stations are assumed to be the same but time shifted by 10 chips.

The receive characteristics of the different channels during inter cell handover are determined by the Block Error Ratio-(BLER) values.

The UE shall be tested only according to the data rate, supported. The data rate corresponding requirements shall apply to the UE.

7.7.1.2 Minimum requirements

For the parameters specified in table 7.7.1.1 the average downlink- DPCH _E_c -power ratio shall be below the specified-

 I_{or}

value for the BLER shown in table 7.7.1.2.

Table 7.7.1.1: DCH parameters in multi-path propagation conditions during Soft Handoff (Case 3)

Parameter	Test 1	Test 2	Test 3	Test 4	Unit
Phase reference	P-CPICH				
\hat{I}_{or1}/I_{oc} and \hat{I}_{or2}/I_{oc}	θ	θ	æ	6	dB
-H _{oc}	-60			dBm / 3,84 MHz	
Information Data Rate	12,2	64	144	384	kbps

Table 7.7.1.2: DCH requirements in multi-path propagation conditions during Soft Handoff (Case 3)

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
4	–15,2 dB	40 ⁻²
2	–11,8 dB	10⁻¹
	–11,3 dB	10⁻²
3	- 9,6 dB	10⁻¹
	- 9,2 dB	10⁻²
4	- 6,0 dB	10⁻¹
	- 5,5 dB	10⁻²

The reference for this requirement is TS 25.101 [1] clause 8.7.1.1.

7.7.1.3 Test purpose

To verify that the BLER does not exceed the value at the DPCH_Ec/Ior specified in table 7.7.1.2.

7.7.1.4 Method of test

7.7.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

[TBD]

7.7.1.4.2 Procedures

- 1) Connect the SS, multi-path fading simulator and an AWGN noise source to the UE antenna connector as shownin figure A.11.
- 2) Set up the call.
- 3) Set the test parameters for test 1 4 as specified in table 7.7.1.3.
- 4) Count, at the SS, the number of information blocks transmitted and the number of correctly received information blocks at the UE.
- 5) Measure BLER of DCH channel.

7.7.1.5 Test requirements

For the parameters specified in table 7.7.1.3 the average downlink- DPCH _E, power ratio shall be below the specified-

I

value for the BLER shown in table 7.7.1.4.

Table 7	.7.1.3: DCH parameters i	in multi-pa	th propaga	ation cond	itions dur	ing Soft Handoff (Case 3)
	Paramotor	Toot 1	Tost 2	Toot 2	Tost 4	Unit	

Parameter	Test 1	Test 2	Test 3	Test 4	Unit Unit
Phase reference	P-CPICH				
\hat{I}_{or1}/I_{oc} and \hat{I}_{or2}/I_{oc}	0,8	0,8	3,8	6,8	dB
-I _{oc}		-€	θ		dBm / 3,84 MHz
Information Data Rate	12,2	64	144	384	kbps

Table 7.7.1.4: DCH requirements in multi-path propagation conditions during Soft Handoff (Case 3)

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
4	–15,1 dB	40 ⁻²
2	–11,7 dB	10⁻¹
	–11,2 dB	10⁻²
3	- 9,5 dB	10⁻¹
	- 9,1 dB	10⁻²
4	- 5,9 dB	10⁻¹
	- 5,4 dB	10⁻²

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7.7.2 Combining of TPC commands from radio links of different radio link sets

7.7.2.1 Definition and applicability

When a UE is in soft handover, multiple TPC commands may be received in each slot from different cells in the activeset. In general, the TPC commands transmitted in the same slot in the different cells may be different and need to be combined to give TPC_cmd as specified in TS 25.214 [5], in order to determine the required uplink power step.

The requirements and this test apply to all types of UTRA for the FDD UE.

7.7.2.2 Minimum requirements

Test parameters are specified in table 7.7.2.1. The delay profiles of the signals received from the different cells are the same but time shifted by 10 chips.

For Test 1, the sequence of uplink power changes between adjacent slots shall be as shown in table 7.7.2.2 over the 4consecutive slots more than 99% of the time. Note that this case is without an additional noise source I_{oc}.

For Test 2, the Cell1 and Cell2 TPC patterns are repeated a number of times. If the transmitted power of a given slot is increased compared to the previous slot, then a variable "Transmitted power UP" is increased by one, otherwise a variable "Transmitted power DOWN" is increased by one. The requirements for "Transmitted power UP" and "Transmitted power DOWN" are shown in table 7.7.2.3.

Parameter	Test 1	Test 1 Test 2	
Phase reference	P-C	-	
DPCH_Ec/lor	-	12	dB
\hat{I}_{or1} and \hat{I}_{or2}	-60		dBm / 3,84 MHz
-I _{oc}	60		dBm / 3,84 MHz
Power-Control-Algorithm	Algo	rithm 1	-
Cell 1 TPC commands- over 4 slots	(0,0,1,1)		-
Cell 2 TPC commands- over 4 slots	{0,1,0,1}		-
Information Data Rate	12,2		Kbps
Propagation condition	Static without AWGN source I_oc	Multi-path- fading case 3	-

Table 7.7.2.1: Parameters for TPC command combining

Table 7.7.2.2: Requirements for Test 1

Test Number	Required power changes over the 4 consecutive slots		
4	Down, Down, Down, Up		

Table 7.7.2.3: Requirements for Test 2

Test Number	Ratio	Ratio-
	(Transmitted power UP) /	(Transmitted power DOWN)
	(Total number of slots)	/ (Total number of slots)
2	≥0,25	≥0,5

The reference for this requirement is TS 25.101 [1] clause 8.7.2.1.

7.7.2.3 Test purpose

To verify that the combining of TPC commands received in soft handover results in TPC_emd being derived so as tomeet the requirements stated in tables 7.7.2.2 and 7.7.2.3.

7.7.2.4 Method of test

7.7.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1) Connect two SS's to the UE antenna connector as shown in figure A.13.

2) Set the test parameters as specified in table 7.7.2.4 for Test 1.

3) Set up a call according to the Generic Call Setup procedure.

4) Signal the uplink DPCH power control parameters to use Algorithm 1 and a step size of 1dB.

5) Enter the UE into loopback test mode and start the loopback test.

See TS 34.108 [3] and TS 34.109 [4] for details regarding the generic call setup procedure and loopback test.

7.7.2.4.2 Procedures

- Before proceeding with paragraph (2), set the output power of the UE, measured at the UE antenna connector, to be in the range -10±9 dBm. This may be achieved by setting the downlink signal (Î_{or}) to yield an appropriate open loop output power and/or by generating suitable downlink TPC commands from the SSs.
- 2) Send the following sequences of TPC commands in the downlink from each SS over a period of 5 timeslots:

	Downlink TPC commands					
	Slot #0 Slot #1 Slot #2 Slot #3 Slot #					
SS1	θ	θ	θ	4	4	
SS2	ф	θ	4	Ф	4	

3) Measure the mean power at the UE antenna connector in timeslots # 0, 1, 2, 3 and 4, not including the 25 µs transient periods at the start and end of each slot.

4) Repeat step 3) according to Annex F.6.2 Table F.6.2.8.

5) End test 1 and disconnect UE.

6) Connect two SS's and an AWGN source to the UE antenna connector as shown in figure A.11.

7) Initialise variables "Transmitted power UP" and "Transmitted power DOWN" to zero.

8) Set the test parameters as specified in table 7.7.2.4 for Test 2.

9) Set up a call according to the Generic Call Setup procedure.

10)Signal the uplink DPCH power control parameters to use Algorithm 1 and a step size of 1 dB.

11)Enter the UE into loopback test mode and start the loopback test.

12)Perform the following steps a) to d) [15] times:

a) Before proceeding with step b), set the output power of the UE, measured at the UE antenna connector, to be in the range 10 ± 9 dBm. This may be achieved by generating suitable downlink TPC commands from the SSs.

b) Send the following sequences of TPC commands in the downlink from each SS over a period of 33 timeslots:

	Downlink TPC commands			
SS1	100110011001100110011001100110011			
SS2	10101010101010101010101010101010101010			

e) Measure the mean power at the UE antenna connector in each timeslot, not including the 25 µs transientperiods at the start and end of each slot.

d) For each timeslot from the 2nd timeslot to the 33rd timeslot inclusive:-

- if the mean power in that timeslot is greater than or equal to the mean power in the previous timeslot plus-0,5 dB, increment "Transmitted power UP" by 1;
- if the mean power in that timeslot is less than or equal to the mean power in the previous timeslot minus 0,5 dB, increment "Transmitted power DOWN" by 1.

7.7.2.5 Test requirements

Test parameters are specified in table 7.7.2.4. The delay profiles of the signals received from the different cells are the same but time shifted by 10 chips.

Parameter	Test 1	Test 2	Unit		
Phase reference	P-CPICH		P-CPICH -		-
DPCH_Ec/lor	-11,9		dB		
\hat{I}_{or1} and \hat{I}_{or2}	-60 -59.2		dBm / 3,84 MHz		
-I _{oc}	60		dBm / 3,84 MHz		
Power-Control-Algorithm	Algor	ithm 1	-		
Cell 1 TPC commands- over 4 slots	(0,0,1,1)		-		
Cell 2 TPC commands- over 4 slots	{0,1,0,1}		-		
Information Data Rate	12,2		Kbps		
Propagation condition	$\frac{\text{Static without}}{\text{AWGN source}}$ $\frac{I_{oc}}{1}$	Multi-path fading case 3	-		

Table 7.7.2.4: Parameters for TPC command combining-

- 1) In Step 3) of clause 7.7.2.4.2, the mean power in slot #1 shall be less than or equal to the mean power in slot #0minus 0,5 dB.
- 2) In Step 3) of clause 7.7.2.4.2, the mean power in slot #2 shall be less than or equal to the mean power in slot #1minus 0,5 dB.
- 3) In Step 3) of clause 7.7.2.4.2, the mean power in slot #3 shall be less than or equal to the mean power in slot #2minus 0,5 dB.
- 4) In Step 3) of clause 7.7.2.4.2, the mean power in slot #4 shall be greater than or equal to the mean power in slot #3 plus 0,5 dB.
- 5) The sequence of test requirements 1 4 shall be fulfilled more than 99% of the time.
- 6) At the end of the test, "Transmitted power UP" shall be greater than or equal to [95] and "Transmitted power DOWN" shall be greater than or equal to [210].
- NOTE 1: The test limits in requirement (6) have been computed to give a confidence level of [99,7] % that a UEwhich follows the core requirements will pass. The number of timeslots has been chosen to get a goodcompromise between the test time and the risk of passing a bad UE.
- NOTE 2: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7.8 Power control in downlink

Power control in the downlink is the ability of the UE receiver to converge to required link quality set by the networkwhile using as low power as possible in downlink. If a BLER target has been assigned to a DCCH (See clause C.3), then it has to be such that outer loop is based on DTCH and not on DCCH.

7.8.1 Power control in the downlink, constant BLER target

7.8.1.1 Definition and applicability

Power control in the downlink is the ability of the UE receiver to converge to required link quality set by the networkwhile using as low power as possible in downlink. If a BLER target has been assigned to a DCCH (See clause C.3), then it has to be such that outer loop is based on DTCH and not on DCCH. The requirements and this test apply to alltypes of UTRA for the FDD UE.

7.8.1.2 Minimum requirements

For the parameters specified in table 7.8.1.1 the downlink <u>DPCH</u> $_{E_c}$ power ratio measured values, which are averaged I_{or}

over one slot, shall be below the specified value in table 7.8.1.2 more than 90% of the time. BLER shall be as shown in table 7.8.1.2. Power control in downlink is ON during the test.

Table 7.8.1.1: Test parameter for downlink power control, constant BLER target

Parameter	Test 1	Test 2	Unit				
$\frac{\hat{H}_{or}}{I_{oc}}$	9 -1		dB				
I _{oc}	-	60	dBm / 3,84 MHz				
Information Data Rate	12	<u>2,2</u>	kbps				
Target quality on DTCH	0,01		BLER				
Propagation condition	Case 4						
Maximum_DL_Power (note)	7		dB				
Minimum_DL_Power (note)	-18		d₿				
DL Power Control step size, A _{TPC}	4		dB				
Limited Power Increase	"Not used"		-				
NOTE: Power is compared to	NOTE: Power is compared to P CPICH as specified in [0]						

Table 7.8.1.2: Requirements in downlink power control, constant BLER target

Parameter	Test 1	Test 2	Unit
$\frac{DPCH _ E_c}{I_{or}}$	-16,0	-9,0	₿
Measured quality on- DTCH	0,01 ± 30 %	0,01 ± 30 %	BLER

The reference for this requirement is TS 25.101 [1] clause 8.8.1.1.

7.8.1.3 Test purpose

To verify that the UE receiver is capable of converging to required link quality set by network while using as low power as possible.

7.8.1.4 Method of test

7.8.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect SS, multipath fading simulator and an AWGN source to the UE antenna connector as shown infigure A.10.
- 2) Set up a call according to the Generic call setup procedure.
- 3) RF parameters are set up according to table 7.8.1.3.
- 4) Enter the UE into loopback test mode and start the loopback test.
- 5) SS signals to UE target quality value on DTCH as specified in table 7.8.1.3. SS will vary the physical channel power in downlink according to the TPC commands from UE. Downlink power control mode (DPC_MODE) 0 shall be used. At the same time BLER is measured. This is continued until the target quality value on DTCH is met, within the minimum accuracy requirement.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

7.8.1.4.2 Procedure

1) After the target quality on DTCH is met, BLER is measured. Simultaneously the downlink $-\frac{DPCH _ E_c}{I_{or}}$ power

ratio averaged over one slot is measured. This is repeated until adequate amount of measurements is done toreach the required confidence level.

2) The measured quality on DTCH (BLER) and the measured downlink $\frac{DPCH _ E_c}{I_{or}}$ power ratio values

averaged over one slot are compared to limits in table 7.8.1.2.

7.8.1.5 Test Requirements

The test parameters are specified in table 7.8.1.3.

Table 7.8.1.3: Test parameter for downlink power control, constant BLER target

Parameter	Test 1	Test 2	Unit		
$\frac{\hat{H}_{or}}{I_{oc}}$	9,6 -0,4		dB		
I oc	-60		dBm / 3,84 MHz		
Information Data Rate	12	<u>2,2</u>	kbps		
Target quality on DTCH	0,01		BLER		
Propagation condition	Case 4				
Maximum_DL_Power (note)	7		dB		
Minimum_DL_Power (note)	-18		d₿		
DL Power Control step size, ATPC	4		dB		
Limited Power Increase	"Not used"		-		
NOTE: Power is compared to P-CPICH as specified in [9].					

a) The measured quality on DTCH does not exceed the values in table 7.8.1.4.

b) The downlink $\frac{DPCH _E_c}{I_{or}}$ power ratio values, which are averaged over one slot, shall be below the values in-

table 7.8.1.4 more than 90 % of the time.

Table 7.8.1.4: Requirements in downlink power control, constant BLER target

Parameter	Test 1	Test 2	Unit
$\frac{DPCH _E_c}{I_{or}}$	-15,9	-8,9	d₿
Measured quality on- DTCH	0,01 ± 30 %	0,01 ± 30 %	BLER

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7.8.2 Power control in the downlink, initial convergence

7.8.2.1 Definition and applicability

This requirement verifies that DL power control works properly during the first seconds after DPCH connection is established. The requirements and this test apply to all types of UTRA for the FDD UE.

7.8.2.2 Minimum requirements

For the parameters specified in table 7.8.2.1 the downlink DPCH_Ec/Ior power ratio measured values, which areaveraged over 50 ms, shall be within the range specified in table 7.8.2.2 more than 90 % of the time. T1 equals to 500ms and it starts 10 ms after the DPDCH connection is initiated. T2 equals to 500 ms and it starts when T1 has expired. Power control is ON during the test.

The first 10 ms shall not be used for averaging, i.e. the first sample to be input to the averaging filter is at the beginning of T1. The averaging shall be performed with a sliding rectangular window averaging filter. The window size of the averaging filter is linearly increased from 0 up to 50 ms during the first 50 ms of T1, and then kept equal to 50 ms.

Table 7.8.2.1. Test	parameters for dow	nlink nower contro	Linitial convergence
	parameters for dom		i, initial convergence

Parameter	Test 1	Test 2	Test 3	Test 4	Unit			
Target quality value on- DTCH	0,01	0,01	0,1	0,1	BLER			
Initial DPCH_Ec/lor	-5,9	-25,9	-3	-22,1	dB			
Information Data Rate	12,2	12,2	64	64	kbps			
$\frac{\hat{H}_{or}}{H_{oc}}$		-1						
-I _{oc}		dBm/3,84 MHz						
Propagation condition		Static						
Maximum_DL_Power (note)		7						
Minimum_DL_Power (note)		-18						
DL Power Control step size, ATPC		dB						
Limited Power Increase								
NOTE: Power is compared	to P-CPICH a	is specified in [9].					

Table 7.8.2.2: Requirements in downlink power control, initial convergence

Parameter	Test 1 and Test 2	Test 3 and Test 4	Unit
$\frac{DPCH _E_c}{I_{or}}$ -during T1	-18,9 ≤ DPCH_Ec/lor ≤ -11,9	- 15,1 ≤ DPCH_Ec/lor ≤ -8,1	d₿
$\frac{DPCH _ E_c}{I_{or}} - \frac{\text{during T2}}{\text{during T2}}$	-18,9 ≤ DPCH_Ec/lor ≤ -14,9	- - 15,1 ≤ DPCH_Ec/lor ≤ -11,1	d₿

The reference for this requirement is TS 25.101 [1] clause 8.8.2.1.

7.8.2.3 Test purpose

To verify that DL power control works properly during the first seconds after DPCH connection is established.

7.8.2.4 Method of test

7.8.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1) Connect SS, multipath fading simulator and an AWGN source to the UE antenna connector as shown in figure A.10.

7.8.2.4.2 Procedure

1) Set up call using test parameters according to table 7.8.2.1.

- 2) SS signals to UE target quality value on DTCH as specified in table 7.8.2.3. SS will vary the physical channel power in downlink according to the TPC commands from UE. Downlink power control mode (DPC_MODE) 0-shall be used.
- 3) Measure <u>DPCH $_E_c$ </u> power ratio averaged over 50 ms during T1. T1 starts 10 ms after DPDCH connection is I_{er}

initiated and T1 equals to 500 ms. The first 10 ms shall not be used for averaging, i.e. the first sample to be input to the averaging filter is at the beginning of T1. The averaging shall be performed with a sliding rectangularwindow averaging filter. The window size of the averaging filter is linearly increased from 0 up to 50 ms duringthe first 50 ms of T1, and then kept equal to 50ms.

4) Measure <u>DPCH _ E_c</u> power ratio averaged over 50 ms during T2. T2 starts, when T1 has expired and T2 equals I_{or}

to 500 ms.

7.8.2.5 Test Requirements

The test parameters are specified in table 7.8.2.3.

Table 7.8.2.3: Test parameters for downlink power control, initial convergence

Parameter	Test 1	Test 2	Test 3	Test 4	Unit			
Target quality value on	0,01	0,01	0,1	0,1	BLER			
DTCH								
Initial DPCH_Ec/lor	-5,9	-25,9	-3	-22,1	dB			
Information Data Rate	12,2	12,2	64	6 4	kbps			
$\frac{\hat{I}_{or}}{I_{oc}}$		-0,4						
<u>I_{oc}</u>		dBm/3,84 MHz						
Propagation condition		Ş	tatic					
Maximum_DL_Power (note)		7						
Minimum_DL_Power (note)		-18						
DL Power Control step size,		dB						
ATPC		ub						
Limited Power Increase								
NOTE: Power is compared	to P-CPICH a	s specified in [9].					

a) The downlink <u>DPCH $_E_c$ </u> power ratio values shall be within the range specified in table 7.8.2.4 during T1 more I_{or}

than 90 % of the time.

b) The downlink <u>DPCH _ E_c </u> power ratio values shall be within the range specified in table 7.8.2.4 during T2 more I_{or}

than 90 % of the time.

Table 7.8.2.4: Requirements in downlink power control, initial convergence

Parameter	Test 1 and Test 2	Test 3 and Test 4	Unit
$\frac{DPCH _ E_c}{I_{or}} \frac{\text{during T1}}{I_{or}}$	- 18,8 ≤ DPCH_Ec/lor ≤ -11,8	- 15,0 ≤ DPCH_Ec/lor ≤ -8,0	d₿
$\frac{DPCH _E_c}{I_{or}} \frac{\text{during T2}}{I_{or}}$	- 18,8 ≤ DPCH_Ec/lor ≤ -14,8	- - 15,0 ≤ DPCH_Ec/lor ≤ -11,0	dB

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7.8.3 Power control in the downlink, wind up effects

7.8.3.1 Definition and applicability

This requirement verifies that, after the downlink maximum power is limited in the UTRAN and it has been released again, the downlink power control in the UE does not have a wind up effect, i.e. the required DL power has increased during time period the DL power was limited. The requirements and this test apply to all types of UTRA for the FDD-UE.

7.8.3.2 Minimum requirements

This test is run in three stages where stage 1 is for convergence of the power control loop, in stage two the maximum downlink power for the dedicated channel is limited not to be higher than the parameter specified in table 7.8.3.1. All parameters used in the three stages are specified in table 7.8.3.1. The downlink $DPCH _ E_c$ power ratio measured values,

 I_{or} which are averaged over one slot, during stage 3 shall be lower than the value specified in table 7.8.3.2 more than 90 % of the time. Power control of the UE is ON during the test.

Table 7.8.3.1: Test parameter for downlink power control, wind-up effects

Parameter		Test 1	Unit	
	Stage 1	-Stage 2	Stage 3	
Time in each stage	>15	5	0,5	S
$\frac{\hat{H}_{or}}{H_{oc}}$		5		dB
-I _{oc}		-60	dBm/3,84 MHz	
Information Data Rate		12,2	kbps	
Quality target on DTCH		0,01		BLER
Propagation condition		Case 4		
Maximum_DL_Power (note)	7	-6,2	7	dB
Minimum_DL_Power (note)		-18		dB
DL Power Control step size, ATPC	4			dB
Limited Power Increase		"Not used"	-	
NOTE: Power is compared to	P-CPICH a	is specified i	n [9].	

VOTE: Power is compared to P-OPIOH as specified in [9].

Table 7.8.3.2: Requirements in downlink power control, wind-up effects

Parameter	Test 1, stage 3	Unit
$DPCH _E_c$	-13,3	dB
I _{or}		

The reference for this requirement is TS 25.101 [1] clause 8.8.3.1.

7.8.3.3 Test purpose

To verify that the UE downlink power control does not require too high downlink power during a period after the downlink power is limited by the UTRAN.

7.8.3.4 Method of test

7.8.3.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect SS, multipath fading simulator and an AWGN source to the UE antenna connector as shown infigure A.10.
- 2) Set up a call according to the Generic call setup procedure.
- 3) Enter the UE into loopback test mode and start the loopback test.
- 4) RF parameters are set up according to table 7.8.3.3. Stage 1 is used for the power control to converge and during Stage 2 the maximum downlink power is limited by UTRAN.
- 5) SS signals to UE target quality value on DTCH as specified in table 7.8.3.1. SS will vary the physical channel power in downlink according to the TPC commands from UE. Downlink power control mode (DPC_MODE) 0-shall be used.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

7.8.3.4.2 Procedure

1) Measure <u>DPCH</u> <u>E</u> power ratio during stage 3 according to table 7.8.3.3. I_{e}

7.8.3.5 Test Requirements

The test parameters are specified in table 7.8.3.3.

Table 7.8.3.3: Test parameter for downlink power control, wind-up effects

Parameter		Test 1	Unit	
	Stage 1	-Stage 2	Stage 3	
Time in each stage	>15	5	0,5	9
$\frac{\hat{H}_{or}}{H_{oc}}$		5,6		dB
-I _{oc}		-60		dBm/3,84 MHz
Information Data Rate	12,2			kbps
Quality target on DTCH		0,01		BLER
Propagation condition		Case 4		
Maximum_DL_Power (note)	7	-6,2	7	dB
Minimum_DL_Power (note)		-18		dB
DL Power Control step size, A _{TPC}	4			d₽
Limited Power Increase		"Not used"	-	
NOTE: Power is compared to	P-CPICH a	i s specified i	n [9].	

The downlink <u>DPCH</u> $_E_c$ power ratio values, which are averaged over one slot, shall be lower than the level specified in I_{or}

table 7.8.3.4 during stage 3 more than 90 % of the time.-

Table 7.8.3.4: Requirements in downlink power control, wind-up effects

Parameter	Test 1, stage 3	Unit
$DPCH _E_c$	-13,2	dB
I _{or}		

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7.9 Downlink compressed mode

Downlink compressed mode is used to create gaps in the downlink transmission, to allow the UE to makemeasurements on other frequencies.

7.9.1 Single link performance

7.9.1.1 Definition and applicability

The receiver single link performance of the Dedicated Traffic Channel (DCH) in compressed mode is determined by the Block Error Ratio (BLER) and transmitted DPCH_Ec/Ior power ratio in the downlink.

The compressed mode parameters are given in clause C.5. Tests 1 and 2 are using Set 1 compressed mode patternparameters from table C.5.1 in clause C.5 while tests 3 and 4 are using Set 2 compressed mode patterns from the sametable.

The requirements and this test apply to all types of UTRA for the FDD UE.

7.9.1.2 Minimum requirements

For the parameters specified in table 7.9.1 the downlink $-\frac{DPCH _ E_c}{I_{or}}$ power ratio measured values, which are

averaged over one slot, shall be below the specified value in table 7.9.2 more than 90% of the time. The measured quality on DTCH shall be as required in table 7.9.2.

Downlink power control is ON during the test. Uplink TPC commands shall be error free.

Table 7.9.1: Test parameter for downlink compressed mode

Parameter	Test 1	Test 2	Test 3	Test 4	Unit		
Delta SIR1	θ	3	0	3	d₿		
Delta SIR after1	θ	3	0	3	dB		
Delta SIR2	θ	θ	θ	θ	dB		
Delta SIR after2	θ	θ	θ	θ	dB		
$\frac{\hat{I}_{or}}{I_{oc}}$		ŧ)		dB		
-I _{oc}		dBm / 3,84 MHz					
Information Data Rate		kbps					
Propagation condition		Case 2					
Target quality value on DTCH		0,01					
Maximum DL Power (note)		-	7		dB		
Minimum DL Power (note)		d₿					
DL Power Control step size,		dB					
ATPC	1 dB						
Limited Power Increase		-					
NOTE: Power is compared to	P-CPICH as a	specified in [9].					

Table 7.9.2: Requirements in downlink compressed mode

Parameter	Test 1	Test 2	Test 3	Test 4	Unit	
$\underline{DPCH _E_c}$	-14,6	No- requirements	-15,2	No- requirements	d₿	
Measured quality of compressed and recovery	No- requirements	< 0,001	No- requirements	< 0,001	BLER	
frames					BLER	
Measured quality on DTCH		0,01 ± 30 %				

The reference for this requirement is TS 25.101 [1] clause 8.9.1.1.

7.9.1.3 Test purpose

The purpose of this test is to verify the reception of DPCH in a UE while downlink is in a compressed mode. The UE needs to preserve the BLER using sufficient low DL power. It is also verified that UE applies the Delta SIR values, which are signaled from network, in its outer loop power control algorithm.

7.9.1.4 Method of test

7.9.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect SS, multipath fading simulator and an AWGN source to the UE antenna connector as shown infigure A.10.
- 2) Set up a call according to the Generic call setup procedure.
- 3) RF parameters are set up according to table 7.9.1.
- 4) Set compressed mode parameters according to table C.5.1. Tests 1 and 2 are using Set 1 compressed mode pattern parameters and while tests 3 and 4 are using Set 2 compressed mode pattern parameters.
- 5) Enter the UE into loopback test mode and start the loopback test.
- 6) SS signals to UE target quality value on DTCH as specified in table 7.9.1. Uplink TPC commands shall be error free. SS will vary the physical channel power in downlink according to the TPC commands from UE. SS response time for UE TPC commands shall be one slot. At the same time BLER is measured. This is continued until the target quality value on DTCH is met, within the minimum accuracy requirement.

See TS 34.108 [3] and TS 34.109 [4] for details regarding generic call setup procedure and loopback test.

7.9.1.4.2 Procedure

1) Test 1: Measure quality on DTCH and \underline{DPCH}_{-E_c} power ratio values averaged over one slot. I_{cr}

2) Test 2: Measure quality on DTCH and quality of compressed and recovery frames.

3) Test 3: Measure quality on DTCH and <u>DPCH $_E_c$ power ratio values averaged over one slot.</u> I_{or}

4) Test 4: Measure quality on DTCH and quality of compressed and recovery frames.

7.9.1.5 Test requirements

The test parameters are specified in table 7.9.3.

Parameter	Test 1	Test 2	Test 3	Test 4	Unit	
Delta SIR1	θ	3	θ	3	dB	
Delta SIR after1	θ	3	θ	3	dB	
Delta SIR2	θ	θ	θ	θ	dB	
Delta SIR after2	θ	θ	θ	0	dB	
\hat{H}_{or}/H_{oc}		ð	,6		dB	
-I _{oc}		dBm / 3,84 MHz				
Information Data Rate		kbps				
Propagation condition						
Target quality value on DTCH		BLER				
Maximum DL Power (note)		dB				
Minimum DL Power (note)		dB				
DL Power Control step size,		dB				
A _{TPC}	4					
Limited Power Increase		-				
NOTE: Power is compared to	P-CPICH as	specified in [9].				

Table 7.9.3: Test parameter for downlink compressed mode

a) Test 1: The downlink <u>DPCH - E_c power ratio values averaged over one slot shall be below the values in table</u> I_{or}

7.9.4 more than 90 % of the time. The measured quality on DTCH shall be as required in table 7.9.4.

- b) Test 2: Measured quality on DTCH and measured quality of compressed and recovery frames do not exceed the values in table 7.9.4.
- c) Test3: The downlink <u>DPCH _ E_c power ratio values averaged over one slot shall be below the values in table</u> I_{or}

7.9.2 more than 90 % of the time. The measured quality on DTCH shall be as required in table 7.9.4.

d) Test 4: Measured quality on DTCH and measured quality of compressed and recovery frames do not exceed the values in table 7.9.4.

Table 7.9.4: Requirements in downlink compressed mode

Parameter	Test 1	Test 2	Test 3	Test 4	Unit
$\frac{DPCH _E_c}{I_{or}}$	-14,5	No- requirements	-15,1	No- requirements	dB
Measured quality of compressed and recovery- frames	No- requirements	< 0,001	No- requirements	< 0,001	BLER
Measured quality on DTCH		BLER			

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

7.10 Blind transport format detection

7.10.1 Definition and applicability

Performance of Blind transport format detection is determined by the Block Error Ratio (BLER) values and by the measured average transmitted DPCH_Ec/Ior value.

7.10.2 Minimum requirements

For the parameters specified in table 7.10.1 the average downlink \underline{DPCH}_{e_c} power ratio shall be below the specified I_{or} value for the BLER and FDR shown in table 7.10.2.

Table 7.10.1: Test parameters for Blind transport format detection

Parameter	Test 1	Test 2	Test 3	Test 4	Test 5	Test 6	Unit
$\frac{\hat{I}_{or}}{I_{oc}}$	-1			_3			dB
-I _{oc} -		-60					dBm / 3.84 MHz
Information Data Rate	12,2	7,95	1,95 -	12,2	7,95	1,95	kbps
	(rate 1)	(rate 2)	(rate 3)	(rate 1)	(rate 2)	(rate 3)	
propagation condition	static multi-path fading case 3					-	
TECI		off					-

Table 7.10.2: The Requirements for DCH reception in Blind transport format detection

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER	FDR
4	- 17,7dB	40 ⁻²	40-4
2	- 17,8dB	10⁻²	10⁻⁴
3		10⁻²	10⁻⁴
4	-13,0dB	10⁻²	10⁻⁴
5	-13,2dB	10⁻²	10⁻⁴
6	-13,8dB	10⁻²	10⁻⁴
of DPC	lue of DPCH_Ec/lo H is transmitted.	r, loc, and lor/loc a	re defined in case

NOTE: In the test, 9 deferent Transport Format Combinations (table 7.10.3) are sent during the call set upprocedure, so that UE has to detect correct transport format in this 9 candidates.

Table.7.10.3: Transport format combinations informed during the call set up procedure in the test

	4	2	3	4	5	6	7	8	9
DTCH	12,2 k	10,2 k	7,95 k	7,4 k	6,7 k	5,9 k	5,15 k	4 ,75 k	1,95 k
DCCH					2,4 k				

7.10.3 Test purpose

To verify the ability of the blind transport format detection to receive a predefined test signal, representing a staticpropagation channel for the wanted and for the co-channel signals from serving and adjacent cells, with a block errorratio (BLER) and false transport format detection ratio (FDR) not exceeding a specified value.

To verify the ability of the blind transport format detection to receive a predefined test signal, representing a malti-pathpropagation channel for the wanted and for the co-channel signals from serving and adjacent cells, with a block errorratio (BLER) and false transport format detection ratio (FDR) not exceeding a specified value.

7.10.4 Method of test

7.10.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1. Connect the SS and AWGN noise source to the UE antenna connector as shown in figure A.9 in the case fortest 1–3. Connect the SS, multipath fading simulator and an AWGN noise source to the UE antenna connector asshown in figure A.10 in the case of test 4–6.
- 2. Set up a call according to the Generic call setup procedure.
- 3. Set the test parameters for test 1-6 as specified table 7.10.4 and table 7.10.5.
- 4. Enter the UE into loopback test mode and start the loopback test.
- 5. In the case of test 4-6, Setup fading simulator as fading condition case 3 which are described in table D.2.2.1.

7.10.4.2 Procedure

Measure BLER and FDR of DCH.

7.10.5 Test requirements

The test parameters are specified in table 7.10.4.

Table 7.10.4: Test parameters for Blind transport format detection

Parameter	Test 1	Test 2	Test 3	Test 4	Test 5	Test 6	Unit
$\frac{\hat{I}_{or}}{I_{oc}}$		-0,7			-2,4		dB
-I _{oc}	-60				dBm / 3.84 MHz		
Information Data Rate	12,2	7,95	1,95	12,2	7,95	1,95 -	kbps
	(rate 1)	(rate 2)	(rate 3)	(rate 1)	(rate 2)	(rate 3)	
propagation condition	Static multi-path fading case 3				-		
TECI		off					-

BLER and FDR shall not exceed the values at the DPCH_Ec/Ior specified in table 7.10.5.

Table 7.10.5: The Requirements for DCH reception in Blind transport format detection

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER	FDR
4	_17,6dB	10⁻²	10⁻⁴
2	- 17,7dB	10⁻²	10⁻⁴
3	- 18,3dB	10⁻²	10⁻⁴
4	- 12,9dB	10⁻²	10⁻⁴
5	- 13,1dB	10⁻²	10⁻⁴
6	- 13,7dB	10⁻²	10⁻⁴
	lue of DPCH_Ec/lo	r, loc, and lor/loc a	re defined in case

- NOTE: In the test, 9 deferent Transport Format Combinations (table 7.10.3) are sent during the call set upprocedure, so that UE has to detect correct transport format in this 9 candidates.
- NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8 Requirements for support of RRM
8.1 General
8.2 Idle Mode Tasks
8.2.1 Cell Selection
Void.
8.2.2 Cell Re-Selection
8.2.2.1 Scenario 1: Single carrier case
8.2.2.1.1 Definition and applicability
The cell re selection delay is defined as the time from a change of cell levels to the moment when this change makes the UE camp on a new cell, and starts to send preambles on the PRACH for the RRC CONNECTION REQUEST message to perform a Location Updating procedure (MM) or Routing Area Updating procedure (GMM) on the new cell.
The requirements and this test apply to the FDD UE.
8.2.2.1.2 Minimum requirement
The cell re selection delay shall be less than 8 s with a DRX cycle length of 1.28 s.
The rate of correct cell reselections observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.
NOTE: The cell re-selection delay can be expressed as: $T_{evaluateFDD} + T_{SI}$, where:
TevaluateFDDSee table 4.1 in TS 25.133 [2] clause 4.2.2.TSIMaximum repetition period of relevant system info blocks that needs to be received by the UE to camp on a cell. 1280 ms is assumed in this test case.
This gives a total of 7.68 s, allow 8s in the test case.
The normative reference for this requirement is TS 25.133 [2] clauses 4.2.2.2 and A.4.2.1.
8.2.2.1.3 Test purpose
To verify that the UE meets the minimum requirement.
8.2.2.1.4 Method of test
8.2.2.1.4.1 Initial conditions
Test environment: normal; see clauses G.2.1 and G.2.2.
Frequencies to be tested: mid range; see clause G.2.4.

This scenario implies the presence of 1 carrier and 6 cells as given in tables 8.2.2.1.1 and 8.2.2.1.2. The UE is requested to monitor neighbouring cells on 1 carrier. The maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell shall be 1 280 ms. Cell 1 and cell 2 shall belong to different Location Areas.

Table 8.2.2.1.1: Scenario 1: General test parameters for Cell Re-selection single carrier multi-cell case

	Parameter	Unit	Value	Comment
Initial-	Active cell-		Cell2	
condition	Neighbour cells		Cell1, Cell3, Cell4, Cell5, Cell6-	
Final- condition	Active cell-		Cell1	
TYPE 1	NFORMATION BLOCK- non GSM-MAP NAS system a	-	00 80(H) → Cell 1 00 81(H) → Cell 2	This identity should be set as different value from the neigbour cell so that a Location Updating procedure(MM) or a Routing Area Updating- procedure(GMM) is performed when- UE selects more suitable cell in idle state.
- Persisten	e rvice Class (ASC#0) a ce value	-	- 4	Selected so that no additional delay is- caused by the random access- procedure. The value shall be used for all cells in the test.
HCS DRX cycle	length	S	1,28	Not used The value shall be used for all cells in the test.
T1		S	15	T1 need to be defined so that cell re- selection reaction time is taken into- account.
T2		÷	15	T2 need to be defined so that cell re- selection reaction time is taken into- account.

Table 8 2 2 1 2. Scenario	Test parameters for Cell re-selection single carrier mul-	ti call initial conditions
	rest parameters for ben re selection single carrier mar	

Parameter	Unit	C	ell 1	Ce	 2	Ce	3 3	Cel	⊢4	Ce	ll 5	Ce	sll 6	
		T 4	T2	T 4	T2	T 4	T2	T 4	T2	T 4	T2	T 4	T2	
UTRA RF Channel- Number		Chan	Channel 1		Channel 1		Channel 1		Channel 1		Channel 1		Channel 1	
CPICH_Ec/lor	dB	-10-		-10 -		-10-		-10 -		-10 -		-10-		
PCCPCH_Ec/lor	dB	-12		-12		-12-		-12		-12		-12		
SCH_Ec/lor	dB	-12		-12		-12		-12		-12		-12		
PICH_Ec/lor	dB	-15 -		-15 -		-15 -		-15 -		-15 -		-15 -		
OCNS_Ec/lor	dB	-0,94	1	-0,941		-0,94 1	F	-0,941		-0,941	-	-0,941	F	
$\frac{\hat{I}_{or}}{I_{oc}}$	dB	7,3	10,27	10,27	7,3	0,27		0,27		0,27		0,27		
-I _{oc}	dBm / 3,84 MHz	-70												
CPICH_Ec/lo	dB	-16 -	-13-	-13-	-16 -	-23-		-23-		-23		-23		
Propagation- Condition-							AW	GN-						
Cell_selection_and_ reselection_quality_ measure		CPIC	H-E _e ∕N₀	CPICH	-E₀/N₀	CPICI	∃ E ₀∕N₀	CPICH	<mark>€₀∕N</mark> ₀	CPICH	ᡰ .Ε₀∕Ν₀	CPICI	╡ €₀∕№₀	
Qqualmin	dB	-	20	-4	<u>20</u>	-	20	-2)	-	20	-	20	
Qrxlevmin	dBm		115	-1	15	-1	15	-11	5	-4	15	-4	15	
UE_TXPWR_MAX_ RACH	dB	:	21	2	<u>!1</u>	-	<u>21</u>	21	ŀ	2	<u>21</u>	2	<u>21</u>	
Qoffset2 _{s, n}	d₿	C1, C1, C1,	C2: 0 C3: 0 C4: 0 C5: 0 C6: 0	C2, (C2, (C2, (C1: 0 C3: 0 C4: 0 C5: 0 C6: 0	C3, C3, C3,	C1: 0 C2: 0 C4: 0 C5: 0 C6: 0	C4, C C4, C C4, C C4, C C4, C C4, C	2: 0 3: 0 5: 0	C5, C5, C5,	C1: 0 C2: 0 C3: 0 C4: 0 C6: 0	C6, C6, C6,	C1: 0 C2: 0 C3: 0 C4: 0 C5: 0	
Qhyst2	dB	. ,	0010		0 <u>000</u>		0010	θ			0010 0		<u>θ</u>	
Treselection	\$		<u>ө</u>		<u>0</u>		<u>θ</u>	0 Q			<u>0</u>		<u>φ</u>	
Sintrasearch	dB	not	sent		sent		sent	not s	ent		sent		sent	

8.2.2.1.4.2 Procedure

- 1) The SS activates cell 1 6 with T1 defined parameters in table 8.2.2.1.2 and monitors cell 1 and 2 for random access requests from the UE.
- 2) The UE is switched on.
- 3) The SS and the UE shall perform a first registration procedure on cell2.
- 4) 15 s after step3 has completed, the parameters are changed to that as described for T2 in table 8.2.2.1.2.
- 5) The SS waits for random access requests from the UE. If the UE responds on cell 1 within 8 s from the beginning of time period T2 then the number of successful tests is increased by one. The SS and the UE shall perform a Location Updating procedure (MM) or a Routing Area Updating procedure (GMM) on cell1.
- 6) After 15 s from the beginning of time period T2, the parameters are changed to that as described for T1 in table 8.2.2.1.2.
- 7) The SS waits for random access requests from the UE. If the UE responds on cell 2 within 8 s from the beginning of time period T1 then the number of successful tests is increased by one. The SS and the UE shall perform a Location Updating procedure(MM) or a Routing Area Updating procedure (GMM) on cell2.
- 8) After 15 s from the beginning of time period T1, the parameters are changed to that as described for T2.

9) Repeat step 5) to 8) [TBD] times.

NOTE: The time required for receiving all the relevant system information data according to the receptionprocedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRANcell. Since the maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell is 1280ms and the maximum RRC procedure delay for reception system information block is 100ms, 1380 ms is assumed in this test case. Therefore this gives a total of 7.78s.(Minimum requirement + 100ms), allow 8s in the test case.

8.2.2.1.5 Test requirements

For the test to pass, the total number of successful attempts shall be more than 90% with a confidence level of [FFS]%-of the cases.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.2.2.2 Scenario 2: Multi carrier case

8.2.2.2.1 Definition and applicability

The cell re-selection delay is defined as the time from a change of cell levels to the moment when this change makes the UE camp on a new cell, and starts to send preambles on the PRACH for the RRC CONNECTION REQUEST message to perform a Location Updating procedure(MM) or Routing Area Updating procedure (GMM) on the new cell.

The requirements and this test apply to the FDD UE.

8.2.2.2.2 Minimum requirement

The cell re selection delay shall be less than 8 s with a DRX cycle length of 1.28 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

NOTE: The cell re selection delay can be expressed as: $T_{evaluateFDD} + T_{SI}$, where:

Error! No text of specified style in document.

112

∓_{evaluateFDD} ∓_{SI} See table 4.1 in TS 25.133 [2] clause 4.2.2. Maximum repetition period of relevant system info blocks that needs to be received by the UE to camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

The normative reference for this requirement is TS 25.133 [2] clauses 4.2.2.3 and A.4.2.2.

8.2.2.2.3 Test purpose

To verify that the UE meets the minimum requirement.

8.2.2.2.4 Method of test

8.2.2.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

This scenario implies the presence of 2 carriers and 6 cells as given in tables 8.2.2.2.1 and 8.2.2.2.2. The UE is requested to monitor neighbouring cells on 2 carriers. The maximum repetition period of the relevant system infoblocks that needs to be received by the UE to camp on a cell shall be 1 280 ms. Cell 1 and cell 2 shall belong todifferent Location Areas.

Table 8.2.2.2.1: Scenario 2: General test parameters for Cell Re-selection in multi carrier case

4	Parameter	Unit	Value	Comment
Initial-	Active cell		Cell2	
condition	Neighbour cells		Cell1, Cell3,Cell4,	
			Cell5, Cell6	
Final	Active cell		Cell1	
condition				
SYSTEM IN	VFORMATION		00 80(H) → Cell 1	This identity should be set as different value from
BLOCK TY	PE 1	-	00-81(H) → Cell 2	the neigbour cell so that a Location Updating
- CN comm	- CN common GSM-MAP NAS-			procedure (MM) or a Routing Area Updating
system information				procedure (GMM) is performed when UE selects
-				more suitable cell in idle state.
Access Ser	rvice Class (ASC#0)		-	Selected so that no additional delay is caused by
- Persisten	ce value	-	4	the random access procedure. The value shall be
				used for all cells in the test.
HCS				Not used
DRX cycle	length	Ş	1,28	The value shall be used for all cells in the test.
	T 4	S	30	T1 need to be defined so that cell re-selection
				reaction time is taken into account.
	T2	S	15	T2 need to be defined so that cell re-selection
				reaction time is taken into account.

Parameter	Unit	Cell 1 Cell		12	2 Cell 3		Cell 4		Cell 5		Cell 6		
		T 4	T2	T 4	T2	T 4	T2	T 4	T2	T 4	T2	T 4	T2
UTRA RF Channel- Number		Chan	nel 1	Chan	n el 2	Chan	nel 1	Channel 1		Channel 2		Channel 2	
CPICH_Ec/lor	d₿	T	0	-1	0-	-1	0 -		40-	-1	-10-		10-
PCCPCH_Ec/lor	dB	4	2	-1	2	-1	2		12	-1	2	-	12
SCH_Ec/lor	d₿	T	2	4	2	-1	2	_	12	-1	2	_	12
PICH_Ec/lor	d₿	Т	5	4	5 -	4	5 -	_	15	-1	5 -		15 -
OCNS_Ec/lor	d₿	-0.9)41	-0.9	41	-0.9	41	-0.	.941	-0.9	41	-0.	941
$\frac{\hat{I}_{or}}{I_{oc}}$	dB	-3.4	2.2	2.2	-3. 4	-7.4	-4.8	-7.4	-4.8	-4.8 -	-7.4	-4.8	-7.4
-I _{oc}	dBm / 3.84 MHz						-	70 -					
CPICH_Ec/lo	dB	-16 -	-13 -	-13 -	-16 -	- 20 - 20		-24	-20		20		
Propagation- Condition-							AW	'GN					
Cell_selection_and_ reselection_quality_ measure		CPICH	⊢ <mark>E</mark> ∉∕N₀	CPICH	<mark>-E₀∕N</mark> ₀	CPICH	<mark>-E</mark> ∉∕ N ₀	CPICI	Η E _c ∕N₀	CPICH	-E₀∕N₀	CPICH	∔E ₀∕N
Qqualmin	d₿	-2	θ	-2	0	-2	0	-	20	-2	0	4	20
Qrxlevmin	dBm	-1	15	-11	5	-11	5	-1	15	-11	5	-1	15
UE_TXPWR_MAX_ RACH	d₿	2	1	<u>2</u> -	1	<u>2</u> -	ŀ	2	<u>21</u>	24	ŀ	2	<u>1</u>
		C1, C	2: 0	C2, C	:1:0	C3, C	1:0	C4,	C1: 0	C5, C	:1:0	C6, 	C1: 0
		C1, C		C2, C		C3, C	2: 0		C2: 0	C5, C	2: 0		C2: 0
Qoffset2_{s, n}	dB	C1, C		C2, C		C3, C			C3: 0	C5, C			C3: 0
		C1, C		C2, C		C3, C			C5: 0	C5, C			C4: 0
Qhyst2	dB	C1, (C2, C Đ		C3, C 0			C6: 0 0	C5, C 0			C5: 0 D
Treselection	\$ \$, c		Ф		9			0	ф Ф			р р
Sintrasearch	dB	note		not s		not e			sent	not s			sent
Sintersearch	dB	note		note		note			sent	not e			sent

Table 8.2.2.2.2: Scenario 2: Test parameters for Cell re-selection multi carrier multi cell, initial conditions

8.2.2.2.4.2 Procedures

- 1) The SS activates cell 1 6 with T1 defined parameters in table 8.2.2.2.3 and monitors cell 1 and 2 for random access requests from the UE.
- 2) The UE is switched on.
- 3) The SS and the UE shall perform a first location registration procedure on cell2.
- 4) 30 s after step3 has completed, the parameters are changed to that as described for T2 in table 8.2.2.2.3.
- 5) The SS waits for random access request from the UE. If the UE responds on cell 1 within 8 s from the beginning of time period T2 then the number of successful tests is increased by one. The SS and the UE shall perform a Location Updating procedure (MM) or a Routing Area Updating procedure (GMM) on cell1.
- 6) After another 15 s from the beginning of time period T2, the parameters are changed to that as described for T1in table 8.2.2.2.3.
- 7) The SS waits for random access requests from the UE. If the UE responds on cell 2 within 8 s from the beginning of time period T1 then the number of successful tests is increased by one. The SS and the UE shall perform a Location Updating procedure (MM) or a Routing Area Updating procedure (GMM) on cell2.
- 8) After 15 s from the beginning of time period T1, the parameters are changed as described for T2.
- 9) Repeat step 5) to 8) [TBD] times.
- NOTE 1: T1 is initially 30 s to allow enough time for the UE to search for cells as it has no prior knowledge of these.
- NOTE 2: The time required for receiving all the relevant system information data according to the receptionprocedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell. Since the maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell is 1280ms and the maximum RRC procedure delay for reception system information block is 100ms, 1380 ms is assumed in this test case. Therefore this gives a total of 7.78s.(Minimum requirement + 100ms), allow 8s in the test case.

8.2.2.2.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

Parameter	Unit	Ce	#1		 2	Ce	 3	Ce	₩4	Ce	 5	Ce	 6
		T 4	T2	T 4	T2	#	T2	T 4	T2	T 4	T2	T 4	T2
UTRA RF Channel		Char	nel 1	Char	nel 2	Char	nol 1	Chan	nol 1	Char	nel 2	Char	nel 2
Number				•		Unar		Chan		Unar		Unar	
CPICH_Ec/lor	dB	-9.9	-9.7	-9.7	-9.9).9 -		.9 -).9).9
POCPCH_Ec/lor	dB		12		12	<u> </u>	12-		2		12	-12-	
SCH_Ec/lor	dB	-11.9	-11.7	-11.7	-11.9		1.9		1.9 -		1.9		1.9
PICH_Ec/lor	dB		15		15-		15		15-		15-		15-
OCNS_Ec/lor	dB	-0.95 4	-0.982	-0.982	-0.95 4	-0. (954	-0. {)5 4	-0.(954	-0. (954
$\frac{\hat{H}_{or}}{H_{oc}}$	d₿	-3.5	2.8	2.8	-3.5	-9.5 -	-7.7	-9.5 -	-7.7	-7.7 -	-9.5	- 7 -7	-7.7
-I _{oc}	dBm / 3.84 MHz		70										
CPICH_Ec/lo	dB	-15.6	-12	-12	-15.6	-21.6	-22.7	-21.6	-22.7	-22.7	-21.6	-22.7	-21.6
Propagation Condition			AWGN										
Cell_selection_and_ reselection_quality_ measure		CPICH	IE₀/N ₀	CPICH	IE₀/Ν ₀	CPIC +	ΓΕ₀/Ν ₀	CPIC +	⊢E ₀∕N₀	CPICH	IE ₀∕N₀	CPIC +	IE₀/N ₀
Qqualmin	dB	-2	20	-2	20	4	<u>20</u>	-2	<u>0</u>	-2	20	-2	20
Qrklevmin	dBm	-1	15	-1	15	-1	15	-1	15	-1	15	-1	15
UE_TXPWR_MAX_ RACH	d₿	2	:1	2	:1	2	1	2	1	2	:1	2	:1
Qoffset2 _{s, n}	d₿	C1, (C1, ($\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C3: 0) C6, C2: 0							
		C1, (25: 0 26: 0	C2, (C5: 0 C6: 0	C3, (C3, (26: 0	C4, (C4, (26: 0	C5, (C4: 0 C6: 0		C5: 0
Qhyst2	dB		•)	(-)		-		•
Treselection	S		•)		•	()		•
Sintrasearch	dB		sent		sent		sent	not			sent		sent
Sintersearch	dB	not	sent	not	sent	not	sent	not	sent	not	sent	not	sent

Table 8.2.2.3: Scenario 2: Test parameters for Cell re-selection multi carrier multi cell, test requirements

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.2.3 UTRAN to GSM Cell Re-Selection

8.2.3.1 Scenario 1: Both UTRA and GSM level changed

8.2.3.1.1 Definition and applicability

The cell re selection delay is defined as the time from a change of cell levels to the moment when this change makes the UE camp on a new cell and starts to send the RR Channel Request message for location update to the new cell.

The requirements and this test apply to the combined FDD and GSM UE.

8.2.3.1.2 Minimum requirement

The cell re selection delay shall be less than $26 \text{ s} + T_{BCCH}$, where TBCCH is the maximum time allowed to read BCCH data from GSM cell TS 05.08 [20].

The rate of correct cell reselections observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

NOTE: The cell re-selection delay can be expressed as: $4 \times T_{\text{measureGSM}} + T_{\text{BCCH}}$, where:

TmeasureGSMSee table 4.1 in TS 25.133 [2] clause 4.2.2.

TBCCHMaximum time allowed to read BCCH data from GSM cell TS 05.08 [20].According to [20], the maximum time allowed to read the BCCH data, when being-
synchronized to a BCCH carrier, is 1.9 s.

This gives a total of 25.6 s + T_{BCCH} , allow 26 s + T_{BCCH} in the test case.

The normative reference for this requirement is TS 25.133 [2] clauses 4.2.2 and A.4.3.1.

8.2.3.1.3 Test purpose

To verify that the UE meets the minimum requirement.

8.2.3.1.4 Method of test

8.2.3.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

This scenario implies the presence of 1 UTRAN serving cell, and 1 GSM cell to be re-selected. The UE is requested to monitor neighbouring cells on 1 UMTS carrier and 12 GSM cells. Cell 1 and cell 2 shall belong to different Location-Areas.

Table 8.2.3.1.1: Scenario 1: General test parameters for UTRAN to GSM Cell Re-selection

Pa	Parameter		Value	Comment
Initial	Active cell		Cell1	
condition	Neighbour cell		Cell2	
Final-	Active cell		Cell2	
condition				
HCS				Not used
DRX cycle	length	\$	1.28	
T 4		\$	4 5	
T2		S	35	

Table 8.2.3.1.2: Scenario 1: Cell re-selection UTRAN to GSM cell case (cell 1), initial conditions

Parameter	Unit	Cell 1 (L	JTRA)
		T 4	T2
UTRA RF Channel Number		Channel 1	
CPICH_Ec/lor	d₿	-10 -	
PCCPCH_Ec/lor	d₿	-12	
SCH_Ec/lor	dB	-12	
PICH_Ec/lor	dB	-15 -	
OCNS_Ec/lor	d₿	-0.9 41	
$\frac{\hat{I}_{or}}{I_{oc}}$	d₿	θ	-5
I _{oc}	d Bm/3.84- MHz	-70	
CPICH_Ec/lo	d₿	-13 -	
CPICH_RSCP	dBm	- -80	-85
Propagation Condition		-AWGN-	
Cell_selection_and_ reselection_quality_measure		CPICH E	<mark>↓</mark> ⊕
Qqualmin	dB	-20	
Qrxlevmin	dBm	-115	
UE_TXPWR_MAX_RACH	dBm	21	
Qoffset1_{s, n}	dB	C1, C2: 0	
Qhyst1	dB	θ	
Treselection	9	θ	
Ssearch _{RAT}	dB	not sent	

Table 8.2.3.1.3: Scenario 1: Cell re-selection UTRAN to GSM cell case (cell 2), initial conditions

Parameter	Unit	Cell 2 (GSM)			
rarameter	Unit	T 4	12		
Absolute RF Channel- Number		ARFCN [·]	1		
RXLEV	dBm	-90	-75		
RXLEV_ACCESS_MIN	dBm	-104			
MS_TXPWR_MAX_CCH	dBm	33			

8.2.3.1.4.2 Procedure

1) The SS activates cell 1 and 2 with T1 defined parameters in tables 8.2.3.1.4 and 8.2.3.1.5 and monitors cell 1 and 2 for random access requests from the UE.

2) The UE is switched on.

3) The SS waits for random access requests from the UE on cell 1.

- 4) After 45 s, the parameters are changed as described for T2 in tables 8.2.3.1.4 and 8.2.3.1.5.
- 5) The SS waits for random access requests from the UE. If the UE responds on cell 2 within 28 s then the number of successful tests is increased by one.

6) After 35 s, the parameters are changed as described for T1 in tables 8.2.3.1.4 and 8.2.3.1.5.

- 7) The SS waits for random access requests from the UE on cell 1.
- 8) Repeat step 4) to 7) [TBD] times.

8.2.3.1.5 Test requirements

Table 8.2.3.1.4: Scenario 1: Cell re-selection UTRAN to GSM cell case (cell 1), test requirements

Parameter	Unit	Cell 1	(UTRA)
		T1	T2
UTRA RF Channel Number		Channel	1
CPICH_Ec/lor	d₿	-9.9	-10.1
PCCPCH_Ec/lor	d₿	-12-	
SCH_Ec/lor	d₿	-12-	
PICH_Ec/lor	d₿	-15-	
OCNS_Ec/lor	d₿	-0.953	-0,928
$\frac{\hat{I}_{or}}{I_{oc}}$	d₿	0.3	-5.3
<u> <i>I_{oc}</i> -(Note 1)</u>	dBm/3.84- MHz	-70	
CPICH_Ec/lo (Note 2)	d₿	<u>-12.8</u>	-16.5
CPICH_RSCP (Note2)	dBm	-79.6	-85.4
Propagation Condition		-AWGN-	
Cell_selection_and_ reselection_quality_measure		CPICH E	c ∕N ₀
Qqualmin	d₽	-20	
Qrxlevmin	dBm	-115	
UE_TXPWR_MAX_RACH	dBm	21	
Qoffset1 _{s, n}	d₿	C1, C2: 0	
Qhyst1	d₿	θ	
Treselection	8	0	
Ssearch _{RAT}	d₿	not sent	

Table 8.2.3.1.5: Scenario 1: Cell re-selection UTRAN to GSM cell case (cell 2), test requirements

			Cell 2	(GSM)]
	Parameter	Unit	T1	12	1
	Absolute RF Channel Number		ARFCN -	F	
	RXLEV (Note 1)	dBm	-90	-75	
	RXLEV_ACCESS_MIN MS_TXPWR_MAX_CCH	dBm dBm	-1(•
	MS_TXPWR_MAX_CCH	dBm	3	ð	
	he the ratio (Ioc/Rxlev) _{test requirement} - the the ratio (Ioc/Rxlev) _{test requirement} - <u>Ec/Io and CPICH_RSCP levels ha</u> s. They are not settable parameters	= (Ioc/Rxlev)_{mir} we been calcula	iimum requireme	_{nt} 0.3 dB	
[FFS]%.	e total number of successful tests st				
for this	test is non zero. The Test Toleranc Minimum Requirement has been r	e for this test is	defined in (clause F.2	and the explanation of
8.2.3.2 Sce	enario 2: Only UTRA level	changed			
8.2.3.2.1 [Definition and applicability				
	elay is defined as the time from a c Il and starts to send the RR Channe				
The requirements and	this test apply to the combined FD	D and GSM UE			
<u>8.2.3.2.2</u> ►	Ainimum requirement				
The cell re selection d data from GSM cell T	elay shall be less than 7.7 s + T_{BCC} S 05.08 [20].	H, where TBCC	H is the ma	ximum tii	me allowed to read BCCH-
The rate of correct cel [FFS]%.	l reselections observed during repe	ated tests shall I	oe at least 9	0% with 	a confidence level of
NOTE: The cell re where:	selection delay can be expressed as	s: Max (3* T_{meas}	_{ureFDD} , T _{meas}	_{sureGSM} +DI	XX cycle length) + T_{BCCH},
$\mathbf{T}_{ ext{measureFDD}}$	See table 4.1 in TS 25.133 [2] cl	ause 4.2.2.			
$\mathbf{T}_{ ext{measureGSM}}$	See table 4.1 in TS 25.133 [2] cl				
DRX cycle length	1.28s see Table A.4.7.A in TS 25.13	33 [2] clause A.4.	<u>3.2.</u>		
Т_{вссн}	Maximum time allowed to read According to [20], the maximun synchronized to a BCCH carrier	i time allowed t			
This gives a total of 7.	68 s + T_{BCCH}, allow 7.7 s + T_{BCCH} i	in the test case.			
The normative referen	ce for this requirement is TS 25.13	3 [2] clauses 4.2	2.2 and A.4	.3.2.	

8.2.3.2.3 Test purpose

To verify that the UE meets the minimum requirement.

8.2.3.2.4 Method of test

8.2.3.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

This scenario implies the presence of 1 UTRAN serving cell, and 1 GSM cell to be re-selected. The UE is requested to monitor neighbouring cells on 1 UMTS carrier and 12 GSM cells. Cell 1 and cell 2 shall belong to different Location-Areas.

Table 8.2.3.2.1: Scenario 2: General test parameters for UTRAN to GSM Cell Re-selection

Pa	arameter	Unit	Value	Comment
Initial-	Active cell		Cell1	
condition	Neighbour cell		Cell2	
Final- condition	Active cell		Cell2	
HCS				Not used
DRX cycle	length	S	1.28	
T1		\$	4 5	
T2		S	12	

Table 8.2.3.2.2: Scenario 2: Cell re-selection UTRAN to GSM cell case (cell 1), initial conditions

Parameter	Unit	Cell 1 ((UTRA)	
		T 4	T2	
UTRA RF Channel Number		Channel 1	-	
CPICH_Ec/lor	d₿	-10		
PCCPCH_Ec/lor	d₿	-12		
SCH_Ec/lor	d₿	-12		
PICH_Ec/lor	d₿	-15 -		
OCNS_Ec/lor	d₿	-0.941		
$\frac{\hat{I}_{or}}{I_{oc}}$	d₿	20	\$	
-I _{oc}	dBm/3.84- MHz	-81		
CPICH_Ec/lo	dB	-10.0	19.5	
CPICH_RSCP	dBm	-70	-100	
Propagation Condition		-AWGN-		
Cell_selection_and_ reselection_quality_measure		CPICH E	<mark>∕N</mark> ⊕	
Qqualmin	dB	-20		
Qrxlevmin	dBm	-115		
UE_TXPWR_MAX_RACH	dBm	21		
Qoffset1 _{s, n}	d₿	C1, C2: 0		
Qhyst1	dB	θ		
Treselection	\$	θ		
Ssearch _{RAT}	d₿	not sent		

Table 8.2.3.2.3: Scenario 2: Cell re-selection UTRAN to GSM cell case (cell 2), initial conditions

Parameter	Unit	Cell 2	(GSM)	
		T1	T2	
Absolute RF Channel Number		ARFCN 1		
RXLEV	dBm	-80	-80	
RXLEV_ACCESS_MIN	dBm	-104		
MS_TXPWR_MAX_CCH	dBm	33		

8.2.3.2.4.2 Procedure

1) The SS activates cell 1 and 2 with T1 defined parameters in tables 8.2.3.2.4 and 8.2.3.2.5 and monitors cell 1 and 2 for random access requests from the UE.

2) The UE is switched on.

3) The SS waits for random access requests from the UE on cell 1.

4) After 45 s, the parameters are changed as described for T2 in tables 8.2.3.2.4 and 8.2.3.2.5.

5) The SS waits for random access requests from the UE. If the UE responds on cell 2 within 9.7 s then the number of successful tests is increased by one.

6) After 12 s, the parameters are changed as described for T1 in tables 8.2.3.2.4 and 8.2.3.2.5.

7) The SS waits for random access requests from the UE on cell 1.

8) Repeat step 4) to 7) [TBD] times.

8.2.3.2.5 Test requirements

Table 8.2.3.2.4: Scenario 2: Cell re-selection UTRAN to GSM cell case (cell 1), test requirements

Parameter	Unit	Cell 1	(UTRA)	
		T1	T2	
UTRA RF Channel Number		Channel '	4	
CPICH_Ec/lor	d₽	-9.9	-10.1	
PCCPCH_Ec/lor	d₽	-12-		
SCH_Ec/lor	d₽	-12		
PICH_Ec/lor	d₽	-15 -		
OCNS_Ec/lor	d₽	-0.953	-0.941	
$\frac{\hat{I}_{or}}{I_{oc}}$	d₿	20.3	-9.3	
I oc (Note1)	dBm/3.84- MHz	-81		
CPICH_Ec/lo (Note2)	d₿	-9.9	-19.9	
CPICH_RSCP (Note2)	dBm	-70.6	-100.4	
Propagation Condition		-AWGN-		
Cell_selection_and_ reselection_quality_measure		CPICH E _c /N ₀		
Qqualmin	dB	-20		
Qrxlevmin	dBm	-115		
UE_TXPWR_MAX_RACH	dBm	21		
Qoffset1 _{s, n}	dB	C1, C2: 0		
Qhyst1	d₽	θ		
Treselection	8	θ		
Ssearch _{RAT}	d₿	not sent		

Table 8.2.3.2.5: Scenario 2: Cell re-selection UTRAN to GSM cell case (cell 2), test requirements

Parameter	Unit	Cell 2	(GSM)
		T1	T2
Absolute RF Channel Number		ARFCN 1	-
RXLEV (Note1)	dBm	-80	-80
RXLEV_ACCESS_MIN	dBm	-104	
MS TXPWR MAX CCH	dBm	33	

NOTE 1: For T1 the the ratio (Ioc/Rxlev)_{test requirement} = (Ioc/Rxlev)_{minimum requirement} + 0.3 dB

For T2 the the ratio (Ioc/Rxlev)_{test requirement} = (Ioc/Rxlev)_{minimum requirement} - 0.3 dB

NOTE 2: CPICH_Ec/Io and CPICH_RSCP levels have been calculated from other parameters for informationpurposes. They are not settable parameters themselves.

For the test to pass, the total number of successful tests shall be at least 90% of the cases with a confidence level of [FFS]%.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.2.4 FDD/TDD Cell Re-selection

8.2.4.1 Definition and applicability

The cell re selection delay is defined as the time from the cell quality levels change to the moment when this changemakes the UE reselect a better ranked cell, and starts to send the RRC CONNECTION REQUEST message to performa Location Registration on the new cell.

This test is for the case where the UE camps on an FDD cell and reselects to a TDD cell.

The requirements and this test apply to UEs supporting both FDD and TDD.

8.2.4.2 Minimum requirement

The cell re selection delay shall be less than 8 s with a DRX cycle length of 1,28 s. This shall be verified in more than [FFS]% of the cases with a confidence level of [FFS]%.

The normative reference for this requirement is TS 25.133 [2] clauses 4.2.2.4 and A.4.4.

8.2.4.3 Test purpose

To verify that the UE meets the minimum requirement for the case where the UE camps on an FDD cell and reselects to a TDD cell.

8.2.4.4 Method of test

8.2.4.4.1 Initial conditions

This scenario implies the presence of UTRA FDD and 1 UTRA TDD cell as given in tables 8.2.4.1, 8.2.4.2 and 8.2.4.3. The maximum repetition period of the relevant system information blocks that need to be received by the UE to camp on a cell shall be 1280 ms.

Cell 1 and cell 2 shall belong to different Location Areas.

Table 8.2.4.1: General test parameters for FDD/TDD Cell Re-selection

	Parameter		Value	Comment
Initial	Active cell-		Cell1	FDD cell
condition	Neighbour cells		Cell2	TDD cell
Final- condition	Active cell		Cell2	TDD cell
UE_T	XPWR_MAX_RACH	dBm	21	The value shall be used for all cells in the test.
	Service Class (ASC#0) Persistence value		4	Selected so that no additional delay is- caused by the random access- procedure. The value shall be used for- all cells in the test.
	HCS			Not used
	DRX cycle length	S	1.28	The value shall be used for all cells in the test.
	T1	S	15	
	T2	\$	15	

Table 8.2.4.2: Cell 1 specific test parameters for FDD/TDD Cell Re-selection

Parameter	Unit	Ce	 1		
		T 4	T2		
UTRA RF Channel Number		Char	nel 1		
CPICH_Ec/lor	d₿	<u> </u>	Ю		
P-CCPCH_Ec/lor	d₿	<u></u>	12		
SCH_Ec/lor	d₿	<u> </u>	1 2		
PICH_Ec/lor	dB		15		
OCNS_Ec/lor	dB	-0.	941		
\hat{I}_{or}/I_{oc}	dB	9	3		
- H _{oc}	dBm / 3.84 MHz	4	τ ο		
CPICH_RSCP	dBm	-71	-77		
Propagation Condition		AW	' GN		
Cell_selection_and_reselection_quality_mea		CPICH	<u>_Ec/No</u>		
sure					
Qrxlevmin	dBm	-1	15		
Qoffset1 _{s,n}	dB		÷		
Qhyst1	d₿	θ			
Treselection	S		θ		
Sintrasearch	d₿	not	sent		
Sintersearch	d₿	not	sent		

Table 8.2.4.3: Cell 2 specific test parameters for FDD/TDD Cell Re-selection

Parameter	Unit	Cell 2					
DL timeslot number		0 8			3		
		<u>11</u> 12		11 12 11		1 4	T2
UTRA RF Channel Number			Cha	nnel 2			
P-CCPCH_Ec/lor	dB	T	3	n .	a.		
PICH_Ec/lor	d₿	n.	a.	•	3		
SCH_Ec/lor	dB		-	.9			
SCH_t _{offset}	dB		4	ю			
OCNS_Ec/lor	dB		-3	.12			
$\frac{\hat{I}_{or}}{I_{oc}}$	dB	-4	2	-4	2		
P-CCPCH RSCP	dBm	-77	-71	n.a.	n.a.		
- I oc	dBm/ 3,8 4 MHz	-70					
Propagation Condition			A٨	/GN			
Qrxlevmin	dBm		-1	-03			
Qoffset2 _{s,n}	d₿			θ			
Qhyst2	dB			θ			
Treselection	\$	θ					
Sintrasearch	dB	not sent					
Sintersearch	dB	not sent					
Note that the transmit energy p duration when the SCH is prese			I is averag	ed over the	256 chip		

8.2.4.4.2 Procedures

- a) The SS activates cell 1 and cell 2 with T1 defined parameters and monitors them for random access requests from the UE.
- b) The UE is switched on.
- c) The SS waits for random access requests from the UE.
- d) After 15 s, the parameters are changed as described for T2.
- e) The SS waits for random access request from the UE.
- f) After another 15 s, the parameters are changed as described for T1.
- g) The SS waits for random access requests from the UE.
- h) Repeat step d) to g) [TBD] times.

8.2.4.5 Test requirements

1) In step c), after the UE has responded on cell 1, it shall not respond on any other cell (cell selection).

2) In step e), the UE shall respond on cell 2 within 8 s in more than [FFS]% of the cases.

3) In step g), the UE shall respond on cell 1.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.3 UTRAN Connected Mode Mobility

8.3.1 FDD/FDD Soft Handover

8.3.1.1 Definition and applicability

The active set update delay of the UE is defined as the time from the end of the last TTI containing an RRC message implying soft handover to the switch off of the old downlink DPCH.

The requirements and this test apply to the FDD UE.

8.3.1.2 Minimum requirement

The active set update delay shall be less than 60 ms in CELL_DCH state. The rate of correct soft handovers observedduring repeated tests shall be at least 90% with a confidence level of [FFS]%.

The active set update delay is defined as the time from when the UE has received the ACTIVE SET UPDATE messagefrom UTRAN, or at the time stated through the activation time when to perform the active set update, to the time whenthe UE successfully uses the set of radio links stated in that message for power control.

The active set update delay is depending on the number of known cells referred to in the ACTIVE SET UPDATE message. A cell is known if either or both of the following conditions are true:

- the UE has had radio links connected to the cell in the previous (old) active set.
- the cell has been measured by the UE during the last 5 seconds and the SFN of the cell has been decoded by the UE.

And the phase reference is the primary CPICH.

The active set update delay shall be less than 50+10*KC+100*OC ms, where

The normative reference for this requirement is TS 25.133 [2] clauses 5.1.2 and A.5.1.1.

8.3.1.3 Test purpose

To verify that the UE meets the minimum requirement.

8.3.1.4 Method of test

8.3.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in table 8.3.1.1.1 and 8.3.1.1.2 below. In the measurement control information it is indicated to the UE that event triggered reporting with Event 1A shall be used, and that CPICH Ec/Io and SFN CFN observed time difference shall be reported together with Event 1A. The test consists of five successive time periods, with a time duration of T1, T2, T3, T4 and T5 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

UTRAN shall send an Active Set Update command with activation time "now", adding cell 2 to the active set. The Active Set Update message shall be sent to the UE so that the whole message is available at the UE at the beginning of T4. The RRC procedure delay is defined in TS 25.133 [2].

Par	ameter	Unit	Value	Comment		
DCH parameters			DL and UL Reference Measurement Channel 12.2- kbps	As specified in clause C.3.1 and C.2.1		
Power Contro	əl		On			
Target quality	y value on-	BLER	0.01			
Initial-	Active cell		Cell 1			
conditions	Neighbouring cell		Cell 2			
Final- condition	Active cell		Cell 2			
Reporting rar	nge	d₿	3	Applicable for event 1A and 1B		
Hysteresis		dB	θ			
₩			4	Applicable for event 1A and 1B		
Reporting deactivation- threshold			θ	Applicable for event 1A		
Time to Trigg	jer	ms	θ			
Filter coeffici	ent		θ			
T1		8	5			
T2		\$	3			
T3 s		S	0.5			
T 4		ms	60	This is the requirement on active set- update delay, see clause 5.1.2.2, where KC=1 and OC=0.		
T5		\$	2			

Table 8.3.1.1.1: General test parameters for Soft handover

Table 8.3.1.1.2: Cell specific test parameters for Soft handover

Parameter	Unit		Cell 1					Cell 2			
		Ŧ 4	T2	13	T 4	T5	1 4	T2	T3	T 4	Ŧ5
CPICH_Ec/lor	dB			-10					-10		
PCCPCH_Ec/lor	dB			-12					-12		
SCH_Ec/lor	dB			-12					-12		
PICH_Ec/lor	d₿			-15					-15		
DPCH_Ec/lor	d₿	Note1	lote1 Note1 Note1 N/A			N/A	N/A	Note3	Note1		
ocns		Note2	Note2	Not	le2	-0.941	-0.9 41	-0.941	Note2	No	t e2
$\frac{\hat{H}_{or}}{H_{oc}}$	dB	θ				-Inf	2.91	2.91	2. (94	
I _{oc}	dBm/ 3.84- MHz						-70				
CPICH_Ec/lo	d₿	-13	-14	-1	4	-14	-Inf	-1 4	-14	-4	4
Propagation- Condition-		AWGN									

Note 1: The DPCH level is controlled by the power control loop

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to lor

Note 3: The DPCH level is controlled by the power control loop. The initial power shall be set equal to the DPCH_Ec/lor of Cell 1 at the end of T2.

8.3.1.4.2 Procedure

1) The RF parameters are set up according to T1.

- 2) The UE is switched on.
- 3) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.4 without Compressed mode parameters.
- [Editor's note: subclause 7.3.4 in TS 34.108 (Message sequence chart for Handover Test procedure) is not yetspecified]

- 4) SS shall transmit a MEASUREMENT CONTROL message.
- 5) 5 seconds after step4 has completed, the SS shall switch the power settings from T1 to T2.
- 6) UE shall transmit a MEASUREMENT REPORT message triggered by event 1A containing the CFN SFN observed time difference between cell 1 and cell 2.
- 7) At the beginning of T3 the downlink DPCH of cell 2 shall be activated.
- 8) SS shall send an ACTIVE SET UPDATE message with activation time "now ", adding cell 2 to the active set. The ACTIVE SET UPDATE message shall be sent to the UE so that the whole message is available at the UE at the beginning of T4.
- 9) At the beginning of T5 the DPCH from cell 1 shall be switched off.
- 10) The UE downlink BLER shall be measured during time period T5. If the UE downlink BLER does not exceed the downlink BLER target, i.e. 1%, during time period T5 then the number of successful tests is increased by one.
- 11)5 seconds after step10 has completed, the UE is switched off. Any timing information of cell 2 is deleted in the UE.

12)Repeat step 1 11[TBD] times

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message (step 4):

Information Element/Group name	Value/Remark
Message Type (10.2.17)	
UE information elements	
RRC transaction identifier	θ
-Integrity check info	Not Present
Measurement Information elements	
Measurement Identity	4
Measurement Command (10.3.7.46)	Modify
Measurement Reporting Mode (10.3.7.49)	
-Measurement Report Transfer Mode	AM RLC
-Periodical Reporting / Event Trigger Reporting Mode	Event trigger
-Additional measurements list (10.3.7.1)	Not Present
-CHOICE Measurement type	Intra-frequency measurement
-Intra-frequency measurement (10.3.7.36)	initia nequency measurement
-Intra-frequency measurement objects list (10.3.7.33)	Not Present
-Intra-frequency measurement quantity (10.3.7.38)	
	0
	FDD
Measurement quantity	CPICH_Ec/N0
-Intra-frequency reporting quantity (10.3.7.41)	
-Reporting quantities for active set cells (10.3.7.5)	
	No report
-Cell synchronisation information reporting indicator	TRUE (Note 1)
Cell Identity reporting indicator	TRUE
	FDD
	TRUE
	TRUE
	TRUE
-Reporting quantities for monitored set cells (10.3.7.5)	
	No report
	No report
-Cell synchronisation information reporting indicator	TRUE (Note 1)
	TRUE
	FDD
	TRUE
	TRUE
-Pathloss reporting indicator	TRUE
-Reporting quantities for detected set cells (10.3.7.5)	Not Present
-Reporting cell status (10.3.7.61)	Not Present
Measurement validity (10.3.7.51)	Not Present
-CHOICE report criteria	Intra-frequency measurement reporting
	criteria
-Intra-frequency measurement reporting criteria (10.3.7.39)	
-Parameters required for each event	2
-Intra-frequency event identity	Event 1A
	Active set cells and monitored set cells
	3 dB
-Cells forbidden to affect Reporting Range	Not Present
—- - ₩	1.0
	0 dB
	Not Present
	θ
-Replacement activation threshold	Not Present
	0 ms
-Amount of reporting	Infinity
-Reporting interval	0 ms (Note 2)
-Reporting cell status	Not Present
-Intra-frequency event identity	Event 1B
Triggoring condition 1	Active set cells and monitored set cells
	3 dB
-Cells forbidden to affect Reporting Range	Not Present
_	1.0
	0 dB
	Not Present
	Not Present
 Reporting deactivation threshold 	
—-Reporting deactivation threshold —-Replacement activation threshold	Not Present

Information Element/Group name	Value/Remark			
	Not Present			
	Not Present			
Reporting cell status	Not Present			
Physical channel information elements				
-DPCH compressed mode status info (10.3.6.34)	Not Present			
Note 1: The SFN-CFN observed time difference is calculated	from the OFF and Tm parameters contained			
in the IE "Cell synchronisation information ", TS 25.33	1, clause 10.3.7.6. According to TS 25.331,			
8.6.7.7, this IE is included in MEASUREMENT REPORT if IE "Cell synchronisation information				
reporting indicator" in IE "Cell reporting quantities" TS 25.331, clause 10.3.7.5 is set to TRUE in				
MEASUREMENT CONTROL.				
Note 2: Reporting interval = 0 ms means no periodical reportir	ng			

ACTIVE SET UPDATE message (step 8):

Information Element/Group name	Type and reference	Value/Remark
Message Type	Message Type	
UE information elements		
RRC transaction identifier	RRC transaction identifier	θ
	10.3.3.36	
Integrity check info	Integrity check info 10.3.3.16	Not Present
Integrity protection mode info	Integrity protection mode info-	Not Present
	10.3.3.19	
Ciphering mode info	Ciphering mode info 10.3.3.5	Not Present
Activation time	Activation time 10.3.3.1	"now".
New U-RNTI	U-RNTI 10.3.3.47	Not Present
CN information elements		
CN Information info	CN Information info 10.3.1.3	Not Present
Phy CH information elements		
Uplink radio resources		
Maximum allowed UL TX power	Maximum allowed UL TX	33 dBm
	power 10.3.6.39	
Downlink radio resources		
Radio link addition information		Radio link addition information
		required for each RL to add
Radio link addition information	Radio link addition information	
	10.3.6.68	
Radio link removal information		Radio link removal information
		required for each RL to remove
Radio link removal information	Radio link removal information	Not Present
	10.3.6.69	
TX Diversity Mode	TX Diversity Mode 10.3.6.86	None
SSDT information	SSDT information 10.3.6.77	Not Present

Radio link addition information

Information Element/Group name	Need	Multi	Type and reference	Value/Remark
Primary CPICH info	₩₽		Primary CPICH info 10.3.6.60	Same as defined in cell2
Downlink DPCH info for each RL	MP		Downlink- DPCH info- for each RL- 10.3.6.21	See below
TFCI combining indicator	₩₽		TFCI- combining- indicator- 10.3.6.81	FALSE
SCCPCH Information for FACH	OP		SCCPCH- Information- for FACH 10.3.6.70	Not Present

Downlink DPCH info for each RL

Information Element/Group name	Type and reference	Value/Remark
CHOICE mode		
>FDD		
>>Primary CPICH usage for channel estimation	Primary CPICH usage for channel estimation	Primary CPICH may be used
	10.3.6.62	
>>DPCH frame offset	Integer(038144 by step of	This should be refriected by the
	256)	IE" Cell synchronisation
		information" in received
		MEASUREMENT REPORT
		message
>Secondary CPICH info	Secondary CPICH info	Not Present
	10.3.6.73	
>>DL channelisation code		
>>>Secondary scrambling code	Secondary scrambling	Not Present
	code 10.3.6.74	
>>Spreading factor	Integer(4, 8, 16, 32, 64, 128, 256, 512)	128
>>>Code number	Integer(0Spreading factor	0
	<u></u>	
Scrambling code change	Enumerated (code change, no code change)	No code change
>>TPC combination index	TPC combination index	0
	10.3.6.85	
>>SSDT Cell Identity	SSDT Cell Identity	Not Present
	10.3.6.76	
>>Closed loop timing adjustment mode	Integer(1, 2)	Not Present

NOTE 1: These IEs are present when the UE needs to listen to system information on FACH in CELL_DCH state.

8.3.1.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.3.2 FDD/FDD Hard Handover

8.3.2.1 FDD/FDD Hard Handover to intra-frequency cell

8.3.2.1.1 Definition and applicability

The hard handover delay of the UE is defined as the time from the end of the last TTI containing an RRC message implying hard handover to the transmission of the new uplink DPCCH.

The requirements and this test apply to the FDD UE.

8.3.2.1.2 Minimum requirement

The interruption time shall be less than 110 ms in CELL_DCH state in the single carrier case. The rate of correct handovers observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

The hard handover delay D_{handover} equals the RRC procedure delay defined in TS 25.331 clause 13.5.2 plus the interruption time stated in TS 25.133 clause 5.2.2.2 as follows:

The interruption time, i.e. the time between the last TTI containing a transport block on the old DPDCH and the time the UE starts transmission of the new uplink DPCCH, is depending on whether the target cell is known for the UE or not.

If intra frequency hard handover is commanded or inter frequency hard handover is commanded when the UE does notneed compressed mode to perform inter-frequency measurements, the interruption time shall be less than T_{interrupt1}

 $T_{interrupt1=}T_{IU}+40+20*KC+150*OC+10*F_{max}-ms$

where

 T_{IU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be up to oneframe (10 ms).

 F_{max} denotes the maximum number of radio frames within the transmission time intervals of all transport channels that are multiplexed into the same CCTrCH.

Note: The figure 40 ms is the time required for measuring the downlink DPCCH channel as stated in TS 25.214clause 4.3.1.2.

In the interruption requirement T_{interrupt1} a cell is known if either or both of the following conditions are true:

the UE has had radio links connected to the cell in the previous (old) active set

the cell has been measured by the UE during the last 5 seconds and the SFN of the cell has been decoded by the UE.

The normative reference for this requirement is TS 25.133 [2] clauses 5.2.2 and A.5.2.1.

8.3.2.1.3 Test purpose

To verify that the UE meets the minimum requirement.

8.3.2.1.4 Method of test

8.3.2.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in table 8.3.2.1.1 and 8.3.2.1.2 below. In the measurement control information it isindicated to the UE that event triggered reporting with Event 1A and 1B shall be used, and that CPICH Ec/Io and SFN-CFN observed timed difference shall be reported together with Event 1A. The test consists of three successive timeperiods, with a time duration of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have anytiming information of cell 2.

UTRAN shall send a PHYSICAL CHANNEL RECONFIGURATION with activation time "now" with one active cell, cell 2. The Physical Channel reconfiguration message shall be sent to the UE so that the whole message is available at the UE the RRC procedure delay prior to the beginning of T3. The RRC procedure delay is defined in TS 25.331 [8].

N312 shall have the smallest possible value i.e. only one insync is required.

Parameter Unit		Unit	Value	Comment
DCH parameters			DL and UL Reference	As specified in clause C.3.1 and C.2.1
			Measurement Channel 12.2 kbps	
Power Contro	əl		On	
Target qualit<u></u> DTCH	y value on	BLER	0.01	
Initial	Active cell		Cell 1	
conditions	Neighbourin g cell		Cell 2	
Final- condition	Active cell		Cell 2	
Reporting rar	nge	dB	3	Applicable for event 1A and 1B
Hysteresis		d₿	θ	
Ŵ			4	Applicable for event 1A and 1B
Reporting deactivation threshold			θ	Applicable for event 1A
Time to Trigger ms		θ		
Filter coefficient			θ	
11 s		\$	5	
T2		S	5	
13		\$	5	

Table 8.3.2.1.1: General test parameters for Handover to intra-frequency cell

Table 8.3.2.1.2: Cell specific test parameters for Handover to intra-frequency cell

Parameter	Unit	Cell 1		nit Cell 1 Cell 2			
		T1	T2	T3	T1 -	T2	T3
CPICH_Ec/lor	dB		-10			-10	•
PCCPCH_Ec/lor	dB		-12			-12	
SCH_Ec/lor	dB		-12			-12	
PICH_Ec/lor	dB		-15			-15	
DPCH_Ec/lor	dB	Note1	Note1	Note3	N/A	N/A	Note1
OCNS		Note2	Note2	Note2	-0.941	-0.941	Note2
$\frac{\hat{I}_{or}}{I_{oc}}$	dB	θ	6.	97	-Infinity	5. (97
I _{oc}	dBm/			-	70		
- <i>oc</i>	3.84						
	MHz						
CPICH_Ec/lo	dB		-13		-Infinity	-1	4
Propagation				Aγ	VGN		
Condition-							
Note 1: The DP(CH level is	controlled by th	e power contro	Hoop-			
					al power from th	e cell to be equ	l al to l_{or.}
Note 3: The DP(CH may no	t be power con	trolled by the po	wer control loo	p.		

8.3.2.1.4.2 Procedure

1) The RF parameters are set up according to T1.

2) The UE is switched on.

3) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.4.

[Editor's note: subclause 7.3.4 in TS 34.108 (Message sequence chart for Handover Test procedure) is not yet specified]

4) SS shall transmit a MEASUREMENT CONTROL message.

5) 5 seconds after step4 has completed, the SS shall switch the power settings from T1 to T2

6) UE shall transmit a MEASUREMENT REPORT message triggered by event 1A

- 7) SS shall transmit a PHYSICAL CHANNEL RECONFIGURATION message with activation time set to "now". SS shall transmit the whole message such that it will be available at the UE no later than a period equals to the RRC procedure delay (= 80 ms) prior to the beginning of T3.
- 8) After 5 seconds from the beginning of time period T2, the SS shall switch the power settings from T2 to T3
- 9) UE shall transmit a PHYSICAL CHANNEL RECONFIGURATION COMPLETE message on the UL DCCH of cell 2. If the UE transmits the UL DPCCH to cell 2 less than 110 ms from the beginning of time period T3 then the number of successful tests is increased by one.
- 10) After 5 seconds from the beginning of time period T3, the UE is switched off. Any timing information of cell 2is deleted in the UE.
- 11)Repeat step 1 10 [TBD] times

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message (step 4):

Information Element/Group name	Value/Remark
Message Type (10.2.17)	
UE information elements	
RC transaction identifier	θ Net Descent
Integrity check info	Not Present
Measurement Information elements	
Measurement Identity	4
-Measurement Command (10.3.7.46)	Modify
-Measurement Reporting Mode (10.3.7.49)	
-Measurement Report Transfer Mode	AM RLC
-Periodical Reporting / Event Trigger Reporting Mode	Event trigger
-Additional measurements list (10.3.7.1)	Not Present
-CHOICE Measurement type	Intra-frequency measurement
-Intra-frequency measurement (10.3.7.36)	
-Intra-frequency measurement objects list (10.3.7.33)	Not Present
Intra-frequency measurement quantity (10.3.7.38)	
Filter coefficient (10.3.7.9)	0
Measurement quantity	CPICH_Ec/N0
-Intra-frequency reporting quantity (10.3.7.41)	
-Reporting quantities for active set cells (10.3.7.5)	
	No report
	TRUE (Note 1)
	TRUE
	FDD
	TRUE
	TRUE
Pathloss reporting indicator	TRUE
Reporting quantities for monitored set cells (10.3.7.5)	
	No report
Cell synchronisation information reporting indicator	TRUE (Note 1)
	TRUE
	FDD
	TRUE
	TRUE
	TRUE
	Not Present
Reporting cell status (10.3.7.61)	Not Present
	Not Present
	Intra-frequency measurement reporting
lates for every second se	criteria
Intra-frequency measurement reporting criteria (10.3.7.39)	
-Parameters required for each event	2
-Intra-frequency event identity	Event 1A
-Triggering condition 2	Active set cells and monitored set cells
	3 dB
	Not Present
<u>₩</u>	1.0
— -Hysteresis	0 dB
	Not Present
	θ
	Not Present
Time to trigger	0 ms
	Infinity
	0 ms (Note 2)
	Not Present
	Event 1B
-Triggering condition 1	Active set cells and monitored set cells
	3 dB
	Not Present
 Reporting Range Constant Cells forbidden to affect Reporting Range 	Not Present
 -Reporting Range Constant -Cells forbidden to affect Reporting Range -W 	1.0
 -Reporting Range Constant -Cells forbidden to affect Reporting Range -W Wsteresis 	1.0 0 dB
 -Reporting Range Constant -Cells forbidden to affect Reporting Range -W -Hysteresis -Threshold used frequency 	1.0 0 dB Not Present
 Reporting Range Constant Cells forbidden to affect Reporting Range W Hysteresis 	1.0 0 dB

Information Element/Group name	Value/Remark				
	Not Present				
	Not Present				
	Not Present				
Physical channel information elements					
-DPCH compressed mode status info (10.3.6.34)	Not Present				
Note 1: The SFN-CFN observed time difference is calculated	from the OFF and Tm parameters contained				
in the IE "Cell synchronisation information ", TS 25.331, clause 10.3.7.6. According to TS 25.331,					
8.6.7.7, this IE is included in MEASUREMENT REPORT if IE "Cell synchronisation information					
reporting indicator" in IE "Cell reporting quantities" TS 25.331, clause 10.3.7.5 is set to TRUE in-					
MEASUREMENT CONTROL.					
Note 2: Reporting interval = 0 ms means no periodical reportir	ng				

PHYSICAL CHANNEL RECONFIGURATION message (step 7):

Information Element	Value/Remark
Message Type	
UE Information Elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
-Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	"now"
-New U-RNTI	Not Present
-New C-RNTI	Not Present
-RRC State Indicator	CELL_DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	
-CN Information info	Not Present
UTRAN mobility information elements	
-URA identity	Not Present
RB information elements	
-Downlink counter synchronisation info	Not Present
PhyCH information elements	
-Frequency info (10.3.6.36)	
CHOICE mode	FDD
UARFCN-uplink(Nu)	Same uplink UARFCN as used for cell 2
	Same downlink UARFCN as used for cell :
Uplink radio resources	
-Maximum allowed UL TX power	33 dBm
-CHOICE channel requirement	Uplink DPCH info
Uplink DPCH info (10.3.6.88)	
Uplink DPCH power control info (10.3.6.91)	
CHOICE mode	FDD
	-6dB
PC Preamble	1 frame
	7 frames
Power Control Algorithm	Algorithm1
	1dB
	EDD
Scrambling code rumber	0 (0 to 16777215)
	Not Present(1)
	64
	Not Present(0)
Puncturing Limit	TBD
Downlink radio resources	555
-CHOICE mode	FDD
Downlink PDSCH information	Not Present
-Downlink information common for all radio links (10.3.6.24)	
Downlink DPCH info common for all RL (10.3.6.18)	
	Initialise
CFN-targetSFN frame offset	Not Present
Downlink DPCH power control information (10.3.6.23)	
	0 (single)
	FDD
Power offset P _{Pilot-DPDCH}	TBD
	Not Present
	128
	Fixed
	TRUE
	128
Number of bits for Pilot bits(SF=128,256)	8
	EDD
	Not Present
TX Diversity mode (10.3.6.86)	None Not Dragger
SSDT information (10.3.6.77)	Not Present
Default DPCH Offset Value (10.3.6.16)	θ
	0 1

Information Element	Value/Remark
	FDD
Primary CPICH info (10.3.6.60)	
Primary scrambling code	350
PDSCH with SHO DCH info (10.3.6.47)	Not Present
PDSCH code mapping (10.3.6.43)	Not Present
Downlink DPCH info for each RL (10.3.6.21)	
	FDD
Primary CPICH usage for channel estimation	Primary CPICH may be used
	0 chips
	Not Present
	4
Spreading factor	128
Code number	θ
	No change
	θ
	Not Present
	Not Present
SCCPCH information for FACH (10.3.6.70)	Not Present

MEASUREMENT REPORT message for Inter frequency test cases

This message is common for all inter frequency test cases in clause 8.7 and is described in Annex I.

8.3.2.1.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

Note: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.3.2.2 FDD/FDD Hard Handover to inter-frequency cell

8.3.2.2.1 Definition and applicability

The hard handover delay is defined as the time from the end of the last TTI containing an RRC message implying hardhandover to the transmission of the new uplink DPCCH.

The requirements and this test apply to the FDD UE.

8.3.2.2.2 Minimum requirement

The interruption time shall be less than 140 ms in CELL_DCH state in the dual carrier case. The rate of correcthandovers observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

The hard handover delay D_{handover} equals the RRC procedure delay defined in TS 25.331 clause 13.5.2 plus the interruption time stated in TS 25.133 clause 5.2.2.2 as follows:

If inter frequency hard handover is commanded and the UE needs compressed mode to perform inter frequencymeasurements, the interruption time shall be less than T_{interrupt2}

 $T_{interrupt2} = T_{IU} + 40 + 50 * KC + 150 * OC + 10 * F_{max} ms$

In the interruption requirement Tinterrupt2 a cell is known if:

The phase reference is the primary CPICH.

The normative reference for this requirement is TS 25.133 [2] clauses 5.2.2 and A.5.2.2.

8.3.2.2.3 Test purpose

To verify that the UE meets the minimum requirement.

8.3.2.2.4 Method of test

8.3.2.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in table 8.3.2.2.1 and 8.3.2.2.2 below. The test consists of three successive time periods, with a time duration of T1, T2 and T3 respectively. In the measurement control information it is indicated to the UE that event triggered reporting with Event 2C shall be used. The CPICH Ec/I0 of the best cell on the unused frequency shall be reported together with Event 2C reporting. At the start of time duration T1, the UE may not have any timing information of cell 2.

UTRAN shall send a PHYSICAL CHANNEL RECONFIGURATION with activation time "now" with one active cell, cell 2. The Physical Channel reconfiguration message shall be sent to the UE so that the whole message is available at the UE the RRC procedure delay prior to the beginning of T3. The RRC procedure delay is defined in TS 25.331 [8].

N312 shall have the smallest possible value i.e. only one insync is required.

Table 8.3.2.2.1: General test parameters for Handover to inter-frequency cell

Parameter		Unit	Value	Comment
DCH parameters			DL and UL Reference- Measurement Channel 12.2- kbps	As specified in clause C.3.1 and C.2.1
Power Cont	rol		On	
Target quali	ty value on-	BLER	0.01	
Compressed	d mode		A.22 set 1	As specified in TS 34.121 clause C.5.
Initial	Active cell		Cell 1	
conditions	Neighbour- cell		Cell 2	
Final conditions	Active cell		Cell 2	
Threshold n frequency	on used	d₿	-18	Absolute Ec/I0 threshold for event 2C
Reporting ra	ange	dB	4	Applicable for event 1A
Hysteresis	0	dB	θ	
Ŵ			4	Applicable for event 1A
W-non-used	frequency		4	Applicable for event 2C
Reporting de threshold	eactivation-		0	Applicable for event 1A
Time to Trig	ger	ms	θ	
Filter coeffic			θ	
T1		\$	5	
T2		\$	10	
T3		S	5	

Table 8.3.2.2.2: Cell Specific parameters for Handover to inter-frequency cell

Parameter	Unit	Unit Cell 1			Cell 2		
		T1	T2	T3	T1 -	T2	T3
UTRA RF Channel			Channel 1			Channel 2	
Number							
CPICH_Ec/lor	dB		-10			-10	
PCCPCH_Ec/lor	dB		-12			-12	
SCH_Ec/lor	dB		-12			-12	
PICH_Ec/lor	dB		-15			-15	
DPCH_Ec/lor	dB	Note1	Note1	Note3	N/A	N/A	Note1
OCNS		Note2	Note2	Note2	-0.941	-0.941	Note2
$\frac{\hat{H}_{or}}{H_{oc}}$	d₿		θ		-Infinity	-1.8	-1.8
<u> </u>	dBm/				70		•
TOC	3.84						
	MHz						
CPICH_Ec/lo	d₿		-13		-Infinity	-4	4
Propagation				AV	/GN		
Condition-							
Note 1: The DPC	H level is	controlled by th	ne power contro	Hoop-			
Note 2: The powe	er of the C	CNS channel t	hat is added sh	all make the tot	al power from th	ne cell to be equ	i al to l_{or.}
Note 3: The DPC	H may no	t be power con	trolled by the po	wer control loo	p.		

8.3.2.2.4.2 Procedure

- 1) The RF parameters are set up according to T1.
- 2) The UE is switched on.
- 3) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.4 with Compressed mode parameters as in Table 8.3.2.2.1.
- 4) SS shall transmit a MEASUREMENT CONTROL messages.
- 5) 5 seconds after step4 has completed, the SS shall switch the power settings from T1 to T2
- 6) UE shall transmit a MEASUREMENT REPORT message triggered by event 2C
- 7) SS shall transmit a PHYSICAL CHANNEL RECONFIGURATION message with activation time "now". SS shall transmit the whole message such that will be is available at the UE no later than a period equals to the RRC procedure delay (= 80 ms) prior to the beginning of T3.

8) After 10 seconds from the beginning of time period T2, the SS shall switch the power settings from T2 to T3

- 9) UE shall transmit a PHYSICAL CHANNEL RECONFIGURATION COMPLETE message on the UL DCCH of cell 2. If the UE transmits the UL DPCCH to cell 2 less than 140 ms from the beginning of time period T3 then the number of successful tests is increased by one.
- 10) After 5 seconds from the beginning of time period T3, the UE is switched off. Any timing information of cell 2is deleted in the UE.
- 11)Repeat step 1 10 [TBD] times

Specific Message Contents

All messages indicated belowabove shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message, event 2C (step 4):

Information Element/Group name	Value/Remark
Message Type (10.2.17)	
UE information elements	
RRC transaction identifier	θ
-Integrity check info	Not Present
Measurement Information elements	
Measurement Identity	2
Measurement Command (10.3.7.46)	Setup
Measurement Reporting Mode (10.3.7.49)	
-Measurement Report Transfer Mode	AM RLC
-Periodical Reporting / Event Trigger Reporting Mode	Event trigger
Additional measurements list (10.3.7.1)	Not Present
CHOICE Measurement type	Inter-frequency measurement
-Inter-frequency measurement (10.3.7.16)	
-Inter-frequency measurement objects list (10.3.7.13)	
- CHOICE Inter-frequency cell removal	Not Present
- New Inter frequency cells	Not Present
- Inter frequency cell id	Δ.
	₩
— Frequency info — - CHOICE modo	EDD
	FDD
	Not Present
- UARFCN downlink(Nd)	Same frequency as "Channel2" in Table-
	<u>8.3.2.2.2</u>
Cell info	
- Cell individual offset	Not Present
 Reference time difference to cell 	Not Present
- Read SFN indicator	TRUE
- CHOICE mode	FDD
- Primary CPICH info	
- Primary scrambling code	Set to Primary scrambling code of Cell2
- Primary CPICH Tx Power	Set to Primary CPICH Tx Power of Cell2
	described in Table 8.3.2.2.2
Ty Diversity Indicator	FALSE
	Set to Cell Selection and Re-selection inf
- Cell Selection and Re-selection into	
	of Cell2
Cell for measurement	Not Present
-Inter-frequency measurement quantity (10.3.7.18)	
	Inter-frequency reporting criteria
-Inter-frequency reporting criteria	
-Filter coefficient	θ
	FDD
	CPICH Ec/N0
-Inter-frequency reporting quantity (10.3.7.21)	
	FALSE
-Frequency quality estimate	FALSE
-Non frequency related cell reporting quantities (10.3.7.5)	TALOL
SEN-SEN observed time difference reporting indicator	Type 1
	Type 1 TRUE
Cell Identity reporting indicator	TRUE
	FDD
	TRUE
	TRUE
-Pathloss reporting indicator	TRUE
-Reporting cell status (10.3.7.61)	
	Report cells within monitored set on non-
•	used frequency
-Maximum number of reported cells per reported non-used	4
frequency	
-Measurement validity (10.3.7.51)	Not Present
Inter-frequency set update (10.3.7.22)	Not Present
	Inter-frequency measurement reporting
	criteria
-Inter-frequency measurement reporting criteria (10.3.7.19)	
-Parameters required for each event	1
Inter-frequency event identity (10.3.7.14)	Event 2C
-Threshold used frequency	Not Present

Information Element/Group name	Value/Remark
	Not Present
	0 dB
Time to trigger	0 ms
	Report cells within monitored set on non-
	used frequency
	4
frequency	
Parameters required for each non-used frequency	4
	-18 dB
	4
Physical channel information elements	
-DPCH compressed mode status info (10.3.6.34)	Not Present

PHYSICAL CHANNEL RECONFIGURATION message (step 7):

Information Element	Value/Remark
Message Type	
UE Information Elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
-Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	"now"
-New U-RNTI	Not Present
-New C-RNTI	Not Present
-RRC State Indicator	CELL_DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	
-CN Information info	Not Present
UTRAN mobility information elements	
-URA identity	Not Present
RB information elements	
-Downlink counter synchronisation info	Not Present
RB with PDCP information list	Not Present
>>RB with PDCP information	Not Present
PhyCH information elements	
-Frequency info (10.3.6.36)	
CHOICE mode	FDD
	Same uplink UARFCN as used for cell 2
	Same downlink UARFCN as used for cell
Uplink radio resources	
-Maximum allowed UL TX power	33 dBm
-CHOICE channel requirement	Uplink DPCH info
-Uplink DPCH info (10.3.6.88)	
	FDD
—-OPCCH power offset	-6dB
	1 frame
	7 frames
	Algorithm1
	• • • • • • • • • • • • • • • • • • •
	1dB
	FDD
Scrambling code type	Long
Scrambling code number	0 (0 to 16777215)
Number of DPDCH	Not Present(1)
Spreading factor	64
	TRUE
-Number of FBI bit	Not Present(0)
Puncturing Limit	TBD
Downlink radio resources	
-CHOICE mode	FDD
-Downlink PDSCH information	Not Present
-Downlink information common for all radio links (10.3.6.24)	
Downlink DPCH info common for all RL (10.3.6.18)	
Timing indicator	Initialise
CFN-targetSFN frame offset	Not Present
-Downlink DPCH power control information (10.3.6.23)	
	0 (single)
	FDD
-Power offset P _{Pilot DPDCH}	TBD
	Not Present
	128
	Fixed
	TRUE
	128
	8
CHOICE mode	FDD
DPCH compressed mode info (10.3.6.33)	
 Transmission gap pattern sequence 	4
- TGPSI	4
	deactivate

Information Element	Value/Remark
- TGCFN	Not Present
- Transmission gap pattern sequence configuration	Not Present
parameters	
-TX Diversity mode (10.3.6.86)	None
SSDT information (10.3.6.77)	Not Present
-Default DPCH Offset Value (10.3.6.16)	θ
-Downlink information per radio link list	4
-Downlink information for each radio link (10.3.6.27)	
	FDD
Primary CPICH info (10.3.6.60)	
Primary scrambling code	350
PDSCH with SHO DCH info (10.3.6.47)	Not Present
PDSCH code mapping (10.3.6.43)	Not Present
Downlink DPCH info for each RL (10.3.6.21)	
	FDD
Primary CPICH usage for channel estimation	Primary CPICH may be used
	0 chips
	Not Present
	4
	128
	θ
	No change
	θ
	Not Present
	Not Present
SCCPCH information for FACH (10.3.6.70)	Not Present

MEASUREMENT REPORT message for Inter frequency test cases

This message is common for all inter frequency test cases in clause 8.7 and is described in Annex I.

8.3.2.2.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

Note: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.3.3 FDD/TDD Handover

8.3.3.1 Definition and applicability

The hard handover delay is defined as the time from the end of the last TTI containing an RRC message implying hardhandover to the transmission of the new uplink DPCH.

The requirements and this test apply to the combined FDD and TDD UE.

8.3.3.2 Minimum requirement

The hard handover delay shall be less than 70 ms in CELL_DCH state in the dual carrier case. The rate of correct handovers observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

The hard handover delay D_{handover} equals the RRC procedure delay defined in TS 25.331 clause 13.5.2 plus the interruption time stated in TS 25.133 clause 5.3.2.2 as follows:

If FDD/TDD handover is commanded, the interruption time shall be less than,

-T_{interrupt}=T_{offset}+T_{UL}+30*F_{SFN}+20*KC+180*UC ms

where,

∓ _{offset}	Equal to 10 ms, the frame timing uncertainty between the old cell and the target cell and the target cell and the time that can elapse until the appearance of a Beacon channel
Ŧ _{UL}	Equal to 10 ms, the time that can elapse until the appearance of the UL timeslot in the- target cell
F_{SFN}	Equal to 1 if SFN decoding is required and equal to 0 otherwise
KC	Equal to 1 if a known target cell is indicated in the RRC message implying FDD/TDD- handover and equal to 0 otherwise
UC	Equal to 1 if an unknown target cell is indicated in the RRC message implying FDD/TDD- handover and equal to 0 otherwise

An inter frequency TDD target cell shall be considered known by the UE, if the target cell has been measured by the UE during the last 5 seconds.

The phase reference is the primary CPICH.

The normative reference for this requirement is TS 25.133 [2] clauses 5.3.2 and A.5.3.2.

8.3.3.3 Test purpose

To verify that the UE meets the minimum requirement.

8.3.3.4 Method of test

8.3.3.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in Table 8.3.2.2.1 and 8.3.2.2.2 below. The test consists of three successive time periods, with a time duration of T1, T2 and T3 respectively. In the measurement control information it is indicated to the UE that event triggered reporting with Event 2C shall be used. The Primary CCPCH RSCP of the best cell on the unused-frequency shall be reported together with Event 2C reporting. At the start of time duration T1, the UE may not have any timing information of cell 2.

UTRAN shall send a PHYSICAL CHANNEL RECONFIGURATION with activation time "now" with one active cell, cell 2. The Physical Channel reconfiguration message shall be sent to the UE so that the whole message is available at the UE the RRC procedure delay prior to the beginning of T3. The RRC procedure delay is defined in TS 25.133 [2].

The UL DPCH in cell 2 shall be transmitted in timeslot 10.

Parameter		Unit Value		Comment				
DCH parameters			DL Reference Measurement	As specified in TS 34.121 clause C.3.1				
			Channel 12.2 kbps	and in TS 34.122 clause C.2.2				
Power Control			- On					
Target quality value on DTCH		BLER	0.01					
	sed mode		A.22 set 3	As specified in TS 34.121 clause C.5				
Initial	Active cell		Cell 1	FDD cell				
conditions	Neighbour cell		Cell 2	TDD cell				
Final- condition	Active cell		Cell 2	TDD cell				
Q		d₿	θ	Cell individual offset. This value shall be used for all cells in the test.				
Hyste	eresis	dB	θ	Hysteresis parameter for event 2C				
Time to	- Trigger	ms	θ					
Threshold non-used frequency		dBm	-75	Applicable for Event 2C				
Filter co	efficient		θ					
Monitored cell list size			6 FDD neighbours on Channel 1 6 TDD neighbours on Channel 2					
∓ _{Sł}		∓ _{SI} s 1.28		The value shall be used for all cells in t test				
T 4		S	5					
T2		s	15					
T3		8	5					

Table 8.3.3.1: General test parameters for Handover to TDD cell

Table 8.3.3.2: Cell Specific parameters for Handover to TDD cell (cell 1)

Parameter	Unit	Cell 1					
		T1, T2	T3				
UTRA RF Channel		Channel 1					
Number		Channel 1					
CPICH_Ec/lor	dB	-10					
P-CCPCH_Ec/lor	dB	-12					
SCH_Ec/lor	dB	-12					
PICH_Ec/lor	dB	-15					
DPCH_Ec/lor	dB	Note 1	n.a.				
OCNS_Ec/lor	₿	Note 2					
$\frac{\hat{H}_{or}}{I_{oc}}$	d₿	θ					
-I _{oc}	dBm/3.84 MHz	-70					
CPICH_Ec/lo	dB	-13					
Propagation Condition		AWGN					
Note 1: The DPCH level is controlled by the power control loop							
Note 2 : The power of the OCNS channel that is added shall make the total							
power from the cell to be equal to I_{or}							

Table 8.3.3.3: Cell Specific parameters for Handover to TDD cell (cell 2)

Parameter	Unit	Cell 2									
DL timeslot number		0			2			8			
		T 4	T2	13	T 4	T2	13	1 1	T2	13	
UTRA RF Channel		Observed 2									
Number		Channel 2									
P-CCPCH_Ec/lor	dB	수			n.a.			n.a.			
PICH_Ec/lor	dB	n.a.			n.a.			-3			
SCH_Ec/lor	dB	_9			n.a.			-9			
SCH_t _{offset}	dB	5			n.a.			5			
DPCH_Ec/lor	dB		n.a.		n.a. Note 1		n.a.				
OCNS_Ec/lor	d₿		-3.12		0 Note 2		-3.12				
$\frac{\hat{H}_{or}}{I_{oc}}$	dB	-Inf	f 6		-Inf	6		-Inf	6		
P-CCPCH RSCP	dBm	-Inf -67			n.a.			n.a.			
	dBm/										
<u>-</u> <u></u>				-70							
	MHz										
Propagation Condition		AWGN									
Note 1: The DPCH level is controlled by the power control loop											

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to lor.

Note that the transmit energy per PN chip for the SCH is averaged over the 256 chip duration when the SCH is present in the time slot.

8.3.3.4.2 Procedure

1) The RF parameters are set up according to T1.

2) The UE is switched on.

- 3) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.4 with Compressed mode parameters as in Table 8.3.2.2.1.
- 4) SS shall transmit a MEASUREMENT CONTROL message.
- 5) After 5 seconds, the SS shall switch the power settings from T1 to T2.
- 6) UE shall transmit a MEASUREMENT REPORT message triggered by event 2C.
- 7) SS shall transmit a PHYSICAL CHANNEL RECONFIGURATION message with activation time "now".

- 8) After 10 seconds, the SS shall switch the power settings from T2 to T3.
- 9) UE shall transmit a PHYSICAL CHANNEL RECONFIGURATION COMPLETE message on the UL DCCH of cell 2. If the UE transmits the UL DPCCH to cell 2 less than 70 ms from the beginning of time period T3 then the number of successful tests is increased by one.

10) After 5 seconds, the UE is switched off. Any timing information of cell 2 is deleted in the UE.

11)Repeat step 1 10 [TBD] times

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message, event 2C (step 4):

Information Element/Group name	Value/Remark
Message Type (10.2.17)	
UE information elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	4
-Measurement Command (10.3.7.46)	Modify
-Measurement Reporting Mode (10.3.7.49)	Wouldy
-Measurement Report Transfer Mode	AM RLC
-Periodical Reporting / Event Trigger Reporting Mode	Event trigger
-Additional measurements list (10.3.7.1)	Not Present
-CHOICE Measurement type	
	Inter-frequency measurement
Inter-frequency measurement (10.3.7.16)	
Inter-frequency measurement objects list (10.3.7.13)	Not Present
Inter-frequency measurement quantity (10.3.7.18)	
	Inter-frequency reporting criteria
Inter-frequency reporting criteria	
Filter coefficient	θ
	TDD
	Primary CCPCH RSCP
-Inter-frequency reporting quantity (10.3.7.21)	
	FALSE
	FALSE
Frequency quality estimate	FALSE
	Type 1
 Cell synchronisation information reporting indicator 	TRUE
	TRUE
	TDD
	TRUE
Proposed TGSN reporting required	FALSE
Primary CCPCH RSCP reporting indicator	TRUE
Pathloss reporting indicator	TRUE
Reporting coll status (10.3.7.61)	INCE
	Report cells within monitored set on non-
	used frequency
Maximum number of reported cells per reported non-used	4
frequency	
Measurement validity (10.3.7.51)	Not Present
Inter-frequency set update (10.3.7.22)	Not Present
	Inter-frequency measurement reporting
	criteria
Inter-frequency measurement reporting criteria (10.3.7.19)	
Parameters required for each event	4
	Event 2C
-Threshold used frequency	Not Present
	Not Present
— -W used nequency — -Hysteresis	0 dB
— - Time to trigger	
	0 ms
	Report cells within monitored set on non-
	used frequency
	4
frequency	
Parameters required for each non-used frequency	4
	-80 dBm
	4
Physical channel information elements	· · · · · · · · · · · · · · · · · · ·
-DPCH compressed mode status info (10.3.6.34)	Not Present
A REAL TO THE REPORT OF THE REAL PROPERTY AND AND AND AND A REAL PROPERTY AND A	

PHYSICAL CHANNEL RECONFIGURATION message (step 7):

Information Element	Value/Remark	
Message Type UE Information Elements		
-RRC transaction identifier	Q	
Integrity check info	Not Present	
Integrity protection mode info	Not Present	
-Ciphering mode info	Not Present	
Activation time	"now"	
New U-RNTI	Not Present	
New C-RNTI	Not Present	
RRC State Indicator	CELL_DCH	
-UTRAN DRX cycle length coefficient	Not Present	
CN Information Elements		
-CN Information info	Not Present	
UTRAN mobility information elements		
-URA identity	Not Present	
RB information elements		
Downlink counter synchronisation info	Not Present	
-RB with PDCP information list	Not Present	
RB with PDCP information	Not Present	
PhyCH information elements		
Frequency info (10.3.6.36)		
-CHOICE mode	TDD	
-UARFCN (Nt)	Same UARFCN as used for cell 2	
Uplink radio resources		
Maximum allowed UL TX power	33 dBm	
-CHOICE channel requirement	Uplink DPCH info	
-Uplink DPCH info (10.3.6.88)		
-Uplink DPCH power control info (10.3.6.91)		
	3.84 Mcps TDD	
	Not Present	
	Individually signalled	
	3.84 Mcps TDD	
-Indivdual Timeslot interference info	4	
-Individual timeslot interference (10.3.6.38)		
-Timeslot Number (10.3.6.84)		
	3.84 Mcps TDD	
	10	
- UL Timeslot Interference	-90 dBm	
	TDD	
	Disabled	
	4	
	-TBD-dB	
Time Info (10.3.6.83)		
	"now"	
	Infinite	
Common timeslot info	Not Present	
	Ealso	
	i dibu	
	2.94 Mone	
	3.84 Mcps	
	10	
-TFCI existence	True	
	3.84 Mcps	
	Type 1	
	Default	
-Midamble configuration burst type 1 and 3	16	
	Not present	
	3.84 Mcps	
-First timeslot code list	4	
	8/1-	

Information Element	Value/Remark
Downlink radio resources	
-CHOICE mode	TDD
-Downlink information common for all radio links (10.3.6.24)	
-Downlink DPCH info common for all RL (10.3.6.18)	
Timing indicator	Initialise
CFN-targetSFN frame offset	Not Present
Downlink DPCH power control information (10.3.6.23)	
	TDD
TPC Step size	1 dB
	TDD
-CHOICE mode	TDD
-CHOICE TOD option	3.84 Mcps
	None
-Default DPCH Offset Value (10.3.6.16)	0
-Downlink information per radio link list	4
-Downlink information for each radio link (10.3.6.27)	
CHOICE mode	TDD
-Primary CCPCH info (10.3.6.57)	
	TDD
	3.84 Mcps
- CHOICE sync case	Case 2
- Timeslot	θ
	20
	False
-Downlink DPCH info for each RL (10.3.6.21)	
	TDD
	4
-TECS ID	Not Present
	"now"
	Infinite
	Not Present
- First individual timeslet info (10.3.6.37)	
- Timeslot Number (10.3.6.84)	0.04 Мала
	3.84 Mcps
- Timeslot number	2
- TFCI existence	True
- Midamble shift and burst type (10.3.6.41)	
	3.81 Mcps
	Type 1
- Midamble Allocation Mode	Default
 Midamble configuration burst type 1 and 3 	16
	Not present
	3.84 Mcps
 First timeslot channelisation codes (10.3.6.17) 	
- CHOICE codes representation	Consecutive codes
- First channelisation code	16/1
	16/2
	No more timeslots
- SCCPCH information for FACH (10.3.6.70)	Not Present

MEASUREMENT REPORT message for Inter frequency test cases

This message is common for all inter frequency test cases in clause 8.7 and is described in Annex I.

8.3.3.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

Note: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.3.4 Inter-system Handover from UTRAN FDD to GSM

8.3.4.1 Definition and applicability

The UTRAN to GSM cell handover delay is defined as the time from the end of the last TTI containing an RRCmessage implying hard handover to the transmission on the channel of the new RAT.

The requirements and this test apply to the combined FDD and GSM UE.

8.3.4.2 Minimum requirement

The hard handover delay shall be less than 40 ms. The rate of correct handovers observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

The hard handover delay as listed in table 8.3.4.1 equals the RRC procedure delay plus the interruption time listed in table 8.3.4.2. The UE shall process the RRC procedures for the RRC HANDOVER FROM UTRAN COMMAND-within 50 ms.

Table 8.3.4.1: FDD/GSM handover - handover delay

UE synchronisation status	handover delay [ms]
The UE has synchronised to the GSM cell before the	90
HANDOVER FROM UTRAN COMMAND is received	
The UE has not synchronised to the GSM cell before	190
the HANDOVER FROM UTRAN COMMAND is received	

Table 8.3.4.2: FDD/GSM handover - interruption time

Synchronisation status	Interruption time [ms]
The UE has synchronised to the GSM cell before the	40
HANDOVER FROM UTRAN COMMAND is received	
The UE has not synchronised to the GSM cell before	140
the HANDOVER FROM UTRAN COMMAND is received	

The normative reference for this requirement is TS 25.133 [2] clauses 5.4.2 and A.5.4.

8.3.4.3 Test purpose

To verify that the UE meets the minimum requirement.

8.3.4.4 Method of test

8.3.4.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

[Editor's Note: Annex G.2 must be specified also for GSM; for instance as a reference to TS 51.010 1 clause A1.2]

The test parameters are given in table 8.3.4.3, 8.3.4.4 and 8.3.4.5 below. In the measurement control information it is indicated to the UE that event triggered reporting with Event 3C shall be used.. The test consists of three successive-time periods, with a time duration of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

UTRAN shall send a HANDOVER FROM UTRAN COMMAND in advance to T3 with activation time "now". In GSM Handover command contained in that message, IE starting time shall not be included. The RRC HANDOVER-FROM UTRAN COMMAND message shall be sent to the UE so that the whole message is available at the UE the RRC procedure delay prior to the beginning of T3. The RRC procedure delay is defined in TS 25.331 [8]. The requirements are also applicable for a UE not requiring compressed mode, in which case no compressed mode pattern should be sent for the parameters specifed in table 8.3.4.3.

Parameter U		Value	Comment As specified in TS 34.121 clause C.3.	
DCH parameters	eters DL Reference Measurement Channel 12.2 kbps			
Power Control		On		
Target quality value on DTCH	BLER	0.01		
Compressed mode- patterns			Only applicable for UE requiring- compressed mode patterns	
- GSM carrier RSSI- measurement		DL Compressed mode reference- pattern 2 in Set 2-	As specified in TS 34.121 [1] clause C.5, table C.5.2	
- GSM Initial BSIC- identification		Pattern 2-	As specified in clause TS 25.133 [2] 8.1.2.5.2.1 table 8.7.	
- GSM BSIC re- confirmation		Pattern 2	As specified in clause TS 25.133 [2] 8.1.2.5.2.2 table 8.8.	
Active cell		Cell 1		
Inter-RAT measurement- quantity		GSM Carrier RSSI		
BSIC verification required		Required		
Threshold other system	dBm	-80	Absolute GSM carrier RSSI threshold- for event 3B and 3C.	
Hysteresis	dB	θ		
Time to Trigger	ms	θ		
Filter coefficient		θ		
Monitored cell list- size		24 FDD neighbours on Channel 1 6 GSM neighbours including ARFCN 1	Measurement control information is- sent before the compressed mode- patterns starts.	
N Identify abort		66	Taken from TS 25.133 [2] 8.1.2.5.2.1 table 8.7.	
T Reconfirm abort		5.5	Taken from TS 25.133 [2] 8.1.2.5.2.2- table 8.8.	
1 4	\$	20		
T2	\$	5		
13	8	5		

Table 8.3.4.3: General test parameters for Correct reporting of GSM neighbours in AWGN
Table 6.3.4.3. General lest parameters for correct reporting of Gaw neighbours in Awow
propagation condition

Table 8.3.4.4: Cell Specific Parameters for Handover UTRAN to GSM cell case (cell 1)

Parameter	Unit	Cell 1 (UTRA)			
		T1, T2, T3			
CPICH_Ec/lor	d₿	-10 -			
PCCPCH_Ec/lor	d₿	-12			
SCH_Ec/lor	d₿	-12 -			
PICH_Ec/lor	d₿	-15 -			
DCH_Ec/lor	d₿	Note 1			
OCNS_Ec/lor	d₿	Note 2			
$\frac{\hat{H}_{or}}{I_{oc}}$	dB	θ			
1 _{oc}	dBm/3. 84-MHz	-70			
CPICH_Ec/lo	d₿	-13			
Propagation Condition					
Note 1: The DPCH level is controlled by the power control loop- Note 2 : The power of the OCNS channel that is added shall make-					
the total power from the cell to be equal to l _{or.}					

Table 8.3.4.5: Cell Specific Parameters for Handover UTRAN to GSM cell case (cell 2)

Paramotor	Unit	Cell 2 (GSM)	
Farameter	5	1 4	T2, T3
Absolute RF Channel Number		ARFCN 1	
RXLEV	dBm	-85	-75

8.3.4.4.2 Procedure

1) The RF parameters for cell 1 are set up according to T1.

- 2) The UE is switched on
- 3) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.4
- 4) The RF parameters for cell 2 are set up according to T1 and the SS configures a traffic channel
- 5) SS shall transmit a MEASUREMENT CONTROL message to cell 1
- 6) After 20 seconds, the SS shall switch the power settings from T1 to T2
- 7) UE shall transmit a MEASUREMENT REPORT message triggered by event 2C
- 8) SS shall transmit a HANDOVER FROM UTRAN COMMAND message with activation time "now" and indicating the traffic channel of the target GSM cell to the UE through DCCH of the serving UTRAN cell.
- 9) After 5 seconds, the SS shall switch the power settings from T2 to T3
- 10) UE shall transmit a burst on the traffic channel of cell 2 implying that it has switched to the GSM cell. The UE sends a HANDOVER ACCESS message. If the UE transmits access bursts on the new DCCH of the target cell-less than 40 ms from the beginning of time period T3, then the number of successful tests is increased by one.
- [Editor's note: TS 34.108, 7.3.4 shall specify the messages HANDOVER ACCESS, PHYSICAL INFORMATION, SABM, UA and HANDOVER COMPLETE]

11) After 5 seconds, the UE is switched off. Any timing information of cell 2 is deleted in the UE.

12)Repeat step 1 11 [TBD] times

Specific Message Contents

All messages indicated belowabove shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message (step 5):

Information Element/Group name	Value/Remark
Message Type (10.2.17)	
UE information elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	4
-Measurement Command (10.3.7.46)	Modify
-Measurement Reporting Mode (10.3.7.49)	
Measurement Report Transfer Mode	AM RLC
-Periodical Reporting / Event Trigger Reporting Mode	Event trigger
-Additional measurements list (10.3.7.1)	Not Present
-CHOICE Measurement type	Inter-RAT measurement
Inter-RAT measurement (10.3.7.27)	
Inter-RAT measurement objects list (10.3.7.23)	Not Present
Inter-RAT measurement quantity (10.3.7.29)	
Measurement quantity for UTRAN quality estimate-	
(10.3.7.38)	
Filter coefficient	θ
	FDD
Measurement quantity	CPICH Ec/N0
	GSM
Measurement quantity	GSM Carrier RSSI
Filter coefficient	θ
BSIC verification required	Required
Inter-RAT reporting quantity (10.3.7.32)	Not Present
Reporting cell status (10.3.7.61)	
	Report cells within active set or within
	virtual active set or of the other RAT
Maximum number of reported cells	2
CHOICE report criteria	Inter-RAT measurement reporting criteria
Inter-RAT measurement reporting criteria (10.3.7.30)	
 Parameters required for each event 	4
Inter-RAT event identity (10.3.7.24)	Event 3C
	Not Present
— - ₩	Not Present
	-80 dBm
Hysteresis	0 dB
	0 ms
Reporting cell status (10.3.7.61)	
—-CHOICE reported cell	Report cells within active set or within virtual active set or of the other RAT
	2
Physical channel information elements	
-DPCH compressed mode status info (10.3.6.34)	Not Present

HANDOVER FROM UTRAN COMMAND message (step 8):

Information Element	Value/remark	
Message Type		
UE information elements		
-RRC transaction identifier	θ	
-Integrity check info	Not Present	
-Activation time	"now"	
RB information elements		
-RAB information list	1	
RAB Info	Not present	
Other information elements		
-CHOICE System type	GSM	
Frequency Band	GSM/DCS 1800 Band	
GSM message		
Single GSM message	(TBD)	
GSM message List	GSM HANDOVER COMMAND formatted	
.	as BIT STRING(1512). The contents of	
	the HANDOVER COMMAND see next-	
	table.	

HANDOVER COMMAND

Same as the HANDOVER COMMAND for M = 2 in clause 26.6.5.1 of TS 51.010, except that the CHANNEL-MODE IE is included with value = speech full rate or half rate version 3

MEASUREMENT REPORT message for Inter-RAT test cases

This message is common for all inter RAT frequency test cases in clause 8.7 and is described in Annex I.

8.3.4.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

Note: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied forthis test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.3.5 Cell Re-selection in CELL_FACH

8.3.5.1 One frequency present in neighbour list

8.3.5.1.1 Definition and applicability

The cell re selection delay is defined as the time between the occurrence of an event which will trigger Cell Reselection process and the moment in time when the UE starts sending the the preambles on the PRACH for sending RRC CELL UPDATE message to the UTRAN.

The requirements and this test apply to the FDD-UE.

8.3.5.1.2 Minimum requirements

The cell re selection delay shall be less than 1.6 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

If a cell has been detectable at least $T_{identify,intra}$, the cell reselection delay in CELL_FACH state to a cell in the same-frequency shall be less than

 $----T_{\text{reselection, intra}} = T_{\text{Measurement}_\text{Period Intra}} + T_{\text{IU}} + 20 + T_{\text{SI}} + T_{\text{RA}} - \text{ms}$

where

 $T_{Measurement_Period Intra} = 200 ms.$

- T_{IU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be up to one frame (10 ms).

T_{SI} = The time required for receiving all the relevant system information data according to the receptionprocedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell. 1280 ms is assumed in this test case.

 T_{RA} = The additional delay caused by the random access procedure. T_{RA} is a delay is caused by the physicalrandom access procedure described in TS 25.214 clause 6.1. A persistence value is assumed to be 1 in this testcase and therefore T_{RA} in this test case is 40 ms.

These requirements assume radio conditions to be sufficient, so reading of system information can be done without errors.

The normative reference for this requirement is TS 25.133 [2] clauses 5.5.2.1.1 and A.5.5.1.

8.3.5.1.3 Test purpose

The purpose of this test is to verify the requirement for the cell re selection delay in CELL_FACH state in the singlecarrier case

8.3.5.1.4 Method of test

8.3.5.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in table 8.3.5.1.1 to 8.3.5.1.4. The UE is requested to monitor neighbouring cells on 1carrier. The maximum repetition period of the relevant system info blocks that needs to be received by the UE to campon a cell shall be 1280 ms.

Table 8.3.5.1.1: General test parameters for Cell Re-selection in CELL_FACH, one freq. in neighbourlist

Parameter		Unit	Value	Comment
Initial	Active cell		Cell2	
condition	Neighbour cells		Cell1, Cell3,Cell4, Cell5, Cell6-	
Final- condition	Active cell-		Cell1	
Access Se — Persister	rvice Class (ASC#0) nce value	-	- 4	Selected so that no additional delay is caused by the random access
				procedure. The value shall be used for all cells in the test.
HCS				Not used
11		S	15	
T2		S	15	

The transport and physical parameters of the S-CCPCH carrying the FACH are defined in table 8.3.5.1.2 and table 8.3.5.1.3.

Table 8.3.5.1.2: Physical channel parameters for S-CCPCH, one freq. in neighbour list

Parameter	Unit	Level
Channel bit rate	kbps	60
Channel symbol rate	ksps	30
Slot Format #I	-	4
TECI	-	OFF
Power offsets of TFCI and Pilot	dB	θ
fields relative to data field		

Table 8.3.5.1.3: Transport channel parameters for S-CCPCH, one freq. in neighbour list

Parameter	FACH
Transport Channel Number	1
Transport Block Size	240
Transport Block Set Size	240
Transmission Time Interval	10 ms
Type of Error Protection	Convolution Coding
Coding Rate	1/2
Rate Matching attribute	256
Size of CRC	16
Position of TrCH in radio frame	Fixed

Table 8.3.5.1.4: Cell specific initial conditions for Cell Re-selection in CELL_FACH, one freq. in neighbour list

Paramete	vr Unit	Ce	 1	Cel	12	Cel	13	Ce	II 4	Ce	əll 5	Cell 6	
		T 4	T2	T1	T2	T 4	T2	T 4	T2	T 4	T2	T1	T2
UTRA RF Cha Number	nnel-	Char	nnel 1	Chan	nel 1	Chan	Channel 1 Channel 1		Cha	Channel 1		nel 1	
CPICH_Ec/lor	dB	_	10-	-1	0	-1	-10 -10		_	-10-		10-	
PCCPCH_Ec/I	or dB	_	12	-1	2	-1	2		12		-12-	-12	
SCH_Ec/lor	dB	_	12	-1	2	-1	2		12		-12-		12
PICH_Ec/lor	dB	_	15-	-1		-1	5		15-	_	45-		15-
S-CCPCH_Ec/	lor dB	-	1 2	-1	2	-4	2	-1	2	-	12	-4	2
OCNS_Ec/lor	dB	-4.:	295	-1.2	95	-1.2	95	-1.:	<u>295</u>	-4.	.295	-1.2	<u>295</u>
$\frac{\hat{I}_{or}}{I_{oc}}$	d₿	7.3	10.27	10.27	7.3 -	0.2	27	0. :	27	θ	.27	0. :	27
<u>I_{oc}</u>	dBm/3.84 MHz						-7	0					
CPICH_Ec/lo	d₿	-16	-13	-13	-16	2	3		<u>23</u>		-23		<u>23</u>
Propagation													
Condition							7.00						
Cell_selection_			PICH E/N ₀ CPICH E/N ₀		CPI	CPICH			CPICH E _e /N ₀		CP	CH-	
reselection_qu	ality_	CPIC			-E _e ∕N _θ	E _e /N ₀		CPICH E ₀ /N ₀			E _e /N ₀		
measure						,							
Qqualmin	dB		20	-2	-	-2		-20		-20		-2	-
Qrxlevmin	dBm	-1	15	-1-	15	-1-	15	-115		-4	1 15	-1	15
UE_TXPWR_ MAX_RACH	dBm	2	<u>2</u> 4	2	1	2	21 21		4	21		2	4
		C1,-	C2: 0	C2, C) 1: 0	C3, C) 1: 0	C4, (C1: 0	C5,	C1: 0	C6, (C1: 0
			C3: 0	C2, C	3: 0	C3, C		C4, (C2: 0	C6, (
Qoffset 2 _{s, n}	dB		C4: 0	C2, C		C3, C		C4, (C3: 0	C6, (
			C5: 0	C2, C		C3, C		C4, (C4: 0	C6, (
		C1, 	C6: 0	C2, C)6: 0	C3, C)6: 0	C4, (C6: 0	C5,	C6: 0	C6, (C5: 0
Qhyst	dB	4	θ	e		e		(•		θ	(•
Treselection	S	4	θ	e		e		()		θ	(•
Sintrasearch	dB	not	sent	not e	sent	not e	sent	not	sent	not	sent	not	sent
IE "FACH													
Measurement-		not	sent	not sent		not sent not sent		sent	not sent		not sent		
occasion info"													

8.3.5.1.4.2	Procedure
1) The S	S activates cell 1 6 with RF parameters set up according to T1 in table 8.3.5.1.4.
2) The U	I E is switched on.
TS 3 4	RC connection is set up according to the signalling sequence in the generic set up procedure specified in . .108 [3] subclause 7.3.3 to place the UE in the CELL_FACH state on Cell 2 and the SS waits for this- ss to complete.
	15 seconds from completion of step3 or the beginning of T1, the parameters are changed to those defined? in table 8.3.5.1.4.
then t	UE responds on Cell 1 with a PRACH (CELL UPDATE message cause "cell reselection") within 1.7 s, he success is recorded, the SS shall transmit a CELL UPDATE CONFIRM message and then the procedure s to step 7.
SS sh switel	the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The all then wait for a total of 15 s from the beginning of T2 and if no response is received, the UE shall be need off and the procedure returns to step 1. Otherwise the SS shall transmit a CELL UPDATE CONFIRMing and then the procedure continues with step 7.
7) After 8.3.5.	total of 15 s from the beginning of T2, the parameters are changed to those defined for T1 in table- 1.4.
	UE responds on Cell 2 with a PRACH (CELL UPDATE message cause "cell reselection") within 1.7 s, success is recorded and the procedure moves to step 10.
SS sh switcl	the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The all then wait for a total of 15 s from the beginning of T1 and if no response is received the UE shall be red off and the procedure returns to step 1. Otherwise the SS shall transmit a CELL UPDATE CONFIRM- red and then the procedure continues with step 10.
10)Steps	4 to 10 are repeated until a total of [TBD] successes and failures have been recorded.
NOTE:	The time required for receiving all the relevant system information data according to the reception- procedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN- cell. Since the maximum repetition period of the relevant system info blocks that needs to be received by- the UE to camp on a cell is 1280ms and the maximum RRC procedure delay for reception system information block is 100ms, 1380 ms is assumed in this test case. Therefore the cell re selection delay- shall be less than 1.7 s.(Minimum requirement + 100ms).
8.3.5.1.5	Test requirements
For the test to of the cases.	pass, the total number of successful attempts shall be more than 90% with a confidence level of [FFS]%-
Note:	If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.
8.3.5.2	Two frequencies present in the neighbour list

8.3.5.2.1 Definition and applicability

The cell re selection delay is defined as the time between the occurrence of an event which will trigger Cell Reselectionprocess and the moment in time when the UE starts sending the the preambles on the PRACH for sending RRC CELL-UPDATE message to the UTRAN.

The requirements and this test apply to the FDD UE.

8.3.5.2.2 Minimum requirements

The cell re selection delay shall be less than 1.9 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

If a cell has been detectable at least $T_{identify,inter}$, the cell reselection delay in CELL_FACH state to a FDD cell on a different frequency shall be less than

 $T_{\text{reselection, inter}} = T_{\text{Measurement inter}} + T_{\text{IU}} + 20 + T_{\text{SI}} + T_{\text{RA}} \text{ ms}$

where

- T_{fU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{fU} can be up to one frame (10 ms).
- T_{SI} = The time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell. 1280 ms is assumed in this test case.
- T_{RA} = The additional delay caused by the random access procedure. T_{RA} is a delay is caused by the physical random access procedure described in TS 25.214 clause 6.1. A persistence value is assumed to be 1 in this test case and therefore T_{RA} in this test case is 40 ms.

These requirements assume radio conditions to be sufficient, so that reading of system information can be done without errors.

The normative reference for this requirement is TS 25.133 [2] clauses 5.5.2.1.2 and A.5.5.2.

8.3.5.2.3 Test purpose

The purpose of this test is to verify the requirement for the cell re selection delay in CELL_FACH state in the singlecarrier case

8.3.5.2.4 Method of test

8.3.5.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in table 8.3.5.2.1 to 8.3.5.2.4. The UE is requested to monitor neighbouring cells on 2carriers. The maximum repetition period of the relevant system info blocks that needs to be received by the UE to campon a cell shall be 1280 ms

Table 8.3.5.2.1: General test parameters for Cell Re-selection in CELL_FACH, two freqs. in neighbour list

	Parameter	Unit	Value	Comment				
Initial	Active cell		Cell2					
condition	Neighbour cells		Cell1, Cell3,Cell4, Cell5,					
			Cell6					
Final	Active cell		Cell1					
condition								
Access Se	rvice Class (ASC#0)		-	Selected so that no additional delay is				
- Persister	nce value	-	4	caused by the random access				
				procedure. The value shall be used for				
				all cells in the test.				
HCS				Not used				
1 4		s	15					
T2		8	15					

The transport and physical parameters of the S-CCPCH carrying the FACH are defined in table 8.3.5.2.2 and table 8.3.5.2.3.

Table 8.3.5.2.2: Physical channel parameters for S-CCPCH, two freqs. in neighbour list

Parameter	Unit	Level
Channel bit rate	kbps	60
Channel symbol rate	ksps	30
Slot Format #I	-	4
TFCI	-	OFF
Power offsets of TFCI and Pilot	dB	θ
fields relative to data field		

Table 8.3.5.2.3: Transport channel parameters for S-CCPCH, two freqs. in neighbour list

Parameter	FACH
Transport Channel Number	4
Transport Block Size	240
Transport Block Set Size	240
Transmission Time Interval	10 ms
Type of Error Protection	Convolution Coding
Coding Rate	1/2
Rate Matching attribute	256
Size of CRC	16
Position of TrCH in radio frame	Fixed

Parameter	Unit	Cell 1		Cell 2		Cell 3		Ce	 4	Ce	 5	C	Cell 6	
		T 4	T2	T 4	T2	T 4	T2	T 4	T2	T 4	T2	T 4	T 1 T 2	
UTRA RF Channel- Number		Chan	nel 1	Chan	nel 2	Chan	iel 1	Channel 1		Channel 2		Channel 2		
CPICH_Ec/lor	d₿	-10-		-10	-10 -		-10 -		_10_		-10		-10-	
PCCPCH_Ec/lor	dB	-12-		-12-		-12-	-12			-12		-12-		
SCH_Ec/lor	d₿	-12		-12		-12		-12		-12		-12		
PICH_Ec/lor	d₿	-15		-15-		-15 -		-15		-15		-15		
S-CCPCH_Ec/lor	d₿	-12		-12		-12		-12		-12		-12		
OCNS_Ec/lor	d₿	-1.29	5	-1.29	5	-1.29 5		-1.295		-1.295		-1.29	5	
\hat{I}_{or}/I_{oc}	d₿	-1.8	<u>2.2</u>	2.2	-1.8	-6.8 -	-4.8	-6.8 -	-4.8	-4.8 -	-6.8	-4.8	-6.8	
I _{oc}	dBm/3.8 4-MHz	-70 -												
CPICH_Ec/lo	d₿	-15	-13 -	-13 -	-15		<u>20</u>	1	20	-	20	-	-20	
Propagation Condition		AWG	N											
Cell_selection_ and_reselection_ quality_measure			CPICH- E_/N_0CPICH- E_/N_0		CPICI E∉∕N₀			Ͱ Ε₀∕Ν₀			CPICH E ₀ /N ₀			
Qqualmin	dB	-20		-20		-20	-20		-20		-20			
Orxlevmin	dBm	-115		-115		- <u>115</u>		- <u>-115</u>		- <u>115</u>		-115		
UE_TXPWR_ MAX_RACH	dBm	21		21				21		21		21	21	
Qoffset2 _{s, n}	d₽	C1, C C1, C	$\begin{array}{c ccccc} 1, C2: 0 & C2, C1: 0 \\ 1, C3: 0 & C2, C3: 0 \\ 1, C4: 0 & C2, C4: 0 \\ 1, C5: 0 & C2, C5: 0 \\ 1, C6: 0 & C2, C6: 0 \end{array}$		C3, C1: 0 C3, C2: 0 C3, C4: 0 C3, C5: 0 C3, C6: 0		C4, C1: 0 C4, C2: 0 C4, C3: 0 C4, C5: 0 C4, C6: 0		C5, C1: 0 C5, C2: 0 C5, C3: 0 C5, C4: 0 C5, C6: 0		C6, C1: 0 C6, C2: 0 C6, C3: 0 C6, C4: 0 C6, C5: 0			
Qhyst2	dB	θ		θ		θ			θ			θ		
Treselection	S	θ		θ		θ	-		0			θ		
Sintrasearch	d₿	not se	ent	not se	ent	not se	nt	not se	nt	not sen	ŧ	not se	mt	
Sintersearch	d₿	not se	ent	not se	ent	not se	nt	not se	nt	not sen	ŧ	not se	ent	
IE "FACH Measurement- eccasion info"		sent	sent sent			sent		sent		Sent		sent		
FACH- Measurement- occasion cycle- length coefficient		3		3	3		3		3		3		3	
Inter-frequency FDD-measurement- indicator		TRUE	•	TRU	TRUE			TRUE		TRUE		TRUE		
Inter-frequency TDD measurement- indicator		FALS	E	FALS	Æ	FALS	FALSE		FALSE		FALSE		FALSE	

Table 8.3.5.2.4: Cell specific initial conditions for Cell re-selection in CELL_FACH state, two freqs. in neighbour list

8.3.5.2.4.2 Procedure

1) The RF parameters for cell 1 are set up according to T1 in table 8.3.5.2.5.

2) The UE is switched on.

- 3) An RRC connection is set up according to the signalling sequence in the generic set up procedure specified in TS 34.108 [3] subclause 7.3.3 to place the UE in the CELL_FACH state on Cell 2 and the SS waits for thisprocess to complete.
- 4) After 15 seconds from completion of step3 or the beginning of T1, the parameters are changed to those defined for T2 in table 8.3.5.2.5.

Error! No text of specified style in document.	161	Error! No text of specified style in document.						
5) If the UE responds on Cell 1 with a PRACH (CELL UPDATE message cause "cell reselection") within 2.0 s, then the success is recorded, the SS shall transmit a CELL UPDATE CONFIRM message and then the procedure moves to step 7.								
6) Since the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The SS shall then wait for a total of 15 s from the beginning of T2 and if no response is received, the UE shall be switched off and the procedure returns to step 1. Otherwise the SS shall transmit a CELL UPDATE CONFIRM- message and then the procedure continues with step 7.								
7) After total of 15 s from the beginning of T2, the parameters are changed to those defined for T1 in table 8.3.5.2.5.								
8) If the UE responds on Cell 2 with a PRACH (CELL UPDATE message cause "cell reselection") within 2.0 s, then a success is recorded and the procedure moves to step 10.								
SS shall then wait for a total of 15 s from switched off and the procedure returns to	9) Since the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The SS shall then wait for a total of 15 s from the beginning of T1 and if no response is received the UE shall be switched off and the procedure returns to step 1. Otherwise the SS shall transmit a CELL UPDATE CONFIRM-message and then the procedure continues with step 10.							
10)Steps 4 to 10 are repeated until a total of	[TBD] successes and	1 failures have been recorded.						
procedure and the RRC procedure cell. Since the maximum repetition the UE to camp on a cell is 1280r	e delay of system info on period of the releva ns and the maximum of ms is assumed in thi	information data according to the reception ormation blocks defined in 25.331 for a UTRAN- ant system info blocks that needs to be received by RRC procedure delay for reception system- is test case. Therefore the cell re selection delay- as).						
8.3.5.2.5 Test requirements								
For the test to pass, the total number of succession of the cases.	For the test to pass, the total number of successful attempts shall be more than 90% with a confidence level of [FFS]% of the cases.							
Table 8.3.5.2.5: Cell specific test requirements for Cell re-selection in CELL_FACH state, two freqs. in neighbour list								

_	-													
	Parameter	Unit	Ce	#1	Ce	<u> 2</u>	Ce	 3	C	əll 4	- C e	əll 5	Ce	II-6
			T 4	T2	T1	T2	T1	T2	T 4	T2	T1	T2	T1	T2

UTRA RE Channel	1	1		1		1		1		l		I		
Number		Chann	iel 1	Chann	el 2	Chann	el 1	Chan	nel 1	Channel 2		Channel 2		
CPICH Ec/lor	dB	-9.9	<u>-9.9</u> <u>-9.7</u> .		<u>-9.7</u> <u>-9.9</u>			<u>-9.9</u>		<u>-9.9</u>		<u>-9.9</u>		
PCCPCH_Ec/lor	dB	-12		-12			-9.9 - 12 -			-12		-12		
SCH Ec/lor	dB	-11.9	-11.7	-11.7	-11.9	-11.9		- <u>-12</u> - <u>-11.9</u>	_	-11.9	<u> </u>	- <u>11.9</u>		
PICH Ec/lor	dB	-15-		-15-		-15-		-15-		-15-		<u>-15</u>		
S-CCPCH Ec/lor	dB	-12		-12		-12		-12		-12		- 12		
OCNS Ec/lor	dB	1.282	1.309	-1.309	1.282	-1.295		-1.29	•	-1.29	5	-1.295		
$\frac{1}{I_{or}/I_{oc}}$	d₿	-2.1	2.9	2.9	-2.1	-9.4	-7	-9.4	-7	-7-	-9.4	-7	-9.4	
-Loc	dBm/3.8 4-MHz	-70 -												
CPICH_Ec/lo	dB	-14.7	-12.1	-12.1	-14.7	-22-	-22.2	-22-	-22.2	-22.2	-22	-22.2	-22	
Propagation- Condition-		AWG	1											
Cell_selection_ and_reselection_ quality_measure		CPICH	ͰΕ₀/Ν ₀	CPIC +	I-E₀/N₀	CPIC	CPICH E ₆ ∕N₀		CPICH E ₆ ∕N₀		H-E _c ∕N₀	CPICH E ₀/ N ₀		
Qqualmin	dB	-20		-20		-20		-20		-20		-20		
Qrxlevmin	dBm	-115			-115		-115		-115		-115		-115	
UE_TXPWR_ MAX_RACH	dBm	21	-		21		21		21		21		21	
Qoffset2_{s, n}	d₽	C1, C2: 0 C1, C3: 0 C1, C4: 0 C1, C5: 0 C1, C6: 0		C2, C1: 0 C2, C3: 0 C2, C4: 0 C2, C5: 0 C2, C6: 0		C3, C1: 0 C3, C2: 0 C3, C4: 0 C3, C5: 0 C3, C6: 0		C4, C1: 0 C4, C2: 0 C4, C3: 0 C4, C5: 0 C4, C6: 0		C5, C1: 0 C5, C2: 0 C5, C3: 0 C5, C4: 0 C5, C6: 0		C6, C1: 0 C6, C2: 0 C6, C3: 0 C6, C4: 0 C6, C5: 0		
Qhyst2	dB	θ., οι		θ.		θ		θ		θ		θ		
Treselection	5	0		θ		р		0		0		θ 0		
Sintrasearch	dB	not se	nt	not ser	nt	not sent		not se	nt	not se	ent	not se	nt	
Sintersearch	dB	not se		not ser		not ser		not se		not se		not se		
IE "FACH- Measurement- eccasion info"		sent		sent		sent		sent		Sent		sent		
FACH Measurement eccasion cycle- length coefficient		3		3	3		3		3			3		
Inter-frequency- FDD-measurement- indicator		TRUE		TRUE		TRUE		TRUE		TRUE		TRUE		
Inter-frequency- TDD measurement- indicator		FALSE	•	FALSE		FALSE		FALSE		FALSE		FALSE		

Note: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.3.5.3 Cell Reselection to GSM

Void.

8.3.6 Cell Re-selection in CELL_PCH

8.3.6.1 One frequency present in the neighbour list

8.3.6.1.1 Definition and applicability

The cell re selection delay is defined as the time from a change of cell levels to the moment when this change makes the UE camp on a new cell, and starts to send preambles on the PRACH for the CELL UPDATE message with cause value-"cell reselection" in the new cell.

The requirements and this test apply to the FDD UE.

8.3.6.1.2 Minimum requirements

The cell re selection delay shall be less than 8 s with a DRX cycle length of 1.28 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

NOTE: The cell re-selection delay can be expressed as: $T_{evaluateFDD} + T_{SF}$, where:

∓_{evaluateFDD}	See table 4.1 in TS 25.133 [2] clause 4.2.2.
∓ _{si}	Maximum repetition period of relevant system info blocks that needs to be received-
	by the UE to camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

The normative reference for this requirement is TS 25.133 [2] clauses 5.6.2 and A.5.6.1.

8.3.6.1.3 Test purpose

To verify that the UE meets the minimum requirements and is capable of camping on to a new cell, within the required time, when the preferred cell conditions change.

8.3.6.1.4 Method of test

8.3.6.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

This scenario implies the presence of 1 carrier and 6 cells as given in tables 8.3.6.1.1 and 8.3.6.1.2. The UE is requested to monitor neighbouring cells on 1 carrier. The maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell shall be 1280 ms.

Table 8.3.6.1.1: General test parameters for Cell Re-selection in CELL_PCH, one freq. in neighbour-list

	Parameter	Unit	Value	Comment
initial-	Active cell		Cell2	
condition	Neighbour cells		Cell1, Cell3,Cell4,	
			Cell5, Cell6	
final-	Active cell		Cell1	
condition				
Access Service Class (ASC#0)			-	Selected so that no additional delay is caused by the
- Persisten	- Persistence value		4	random access procedure. The value shall be used for
				all cells in the test.
HCS				Not used
DRX cycle	length	\$	1.28	The value shall be used for all cells in the test.
T1		\$	15	T1 need to be defined so that cell re-selection reaction-
				time is taken into account.
T2		\$	15	T2 need to be defined so that cell re-selection reaction-
				time is taken into account.

Deremeter	Unit	Cell 1		Cell 2		Cell 3		Ce	II 4	C	əll 5	Ce	 6	
Parameter	Unit	T1	T2	T 4	T2	T 1	T2	T 4	T2	T 1	T2	T1	T2	
UTRA RF Channel Number		Channe	Channel 1		Channel 1		Channel 1		el 1	Channel 1		Channel 1		
CPICH_Ec/lor	d₿	-10-		-10-	-10-		-10 -		-10 -		-10-			
PCCPCH_Ec/lor	d₿	-12		-12-		-12-		-12-		-12		-12-		
SCH_Ec/lor	d₿	-12		-12		-12		-12		-12		-12		
PICH_Ec/lor	d₿	-15-		-15-		-15-		-15-		-15-		-15		
OCNS_Ec/lor	d₿	-0.9 41		-0.941		-0.9 41		-0.9 41		-0.941	-	-0.941	F	
$\frac{\hat{I}_{or}}{I_{oc}}$	dB	7.3	10.27	10.27	7.3	0.27		0.27		0.27		0.27		
-I _{dc}	dBm/- 3.84MHz	-70												
CPICH_Ec/lo	d₿	-16-	13-	-13 -16		-23 -		-23	-23-		-23		-23	
Propagation Condition							-AW	GN-						
Cell_selection_and_ reselection_quality_ measure		CPICH	–E _c ∕N₀	CPICH	-E _e ∕N₀	CPICH- E _e ∕N₀		CPICH E ₀ /N ₀		CPICH E /N ₀		CPICI E∉∕N₀	4	
Qualmin	dB	-	20	-2	<u>0</u>	-2	0	-20		-20		-2	<u>20</u>	
Qrxlevmin	dBm	-1	15	-1:	15	-1-	15	-115		-115		-1	15	
UE_TXPWR_ MAX_RACH	dBm	2	<u>2</u> 1	2	1	2	1	2	1	:	21	2	1	
Qoffsot2 _{s, n}	d₿	C1, C1, C1,	C2: 0 C3: 0 C4: 0 C5: 0 C6: 0	C2, C1: 0 C2, C3: 0 C2, C4: 0 C2, C5: 0 C2, C5: 0 C2, C6: 0		C3, C1: 0 C3, C2: 0 C3, C4: 0 C3, C5: 0 C3, C5: 0		C4, C1: 0 C4, C2: 0 C4, C3: 0 C4, C5: 0 C4, C6: 0		C5, C1: 0 C5, C2: 0 C5, C3: 0 C5, C4: 0 C5, C6: 0		C6, (C6, (C6, (C3: 0	
Qhyst2	dB		0	Ę		θ			θ		θ)	
Treselection	S		0	e)	e	0		0		0		Ð	
Sintrasearch	dB	not	sent	note	sent	not sent		not sent		not sent		not	sent	

Table 8.3.6.1.2: Cell specific test parameters for Cell re-selection in CELL_PCH state, one freq. inneighbour list

8.3.6.1.4.2 Procedure

- 1) The SS activates cell 1 6 with T1 defined parameters in table 8.3.6.1.2 and monitors cell 1 and 2 for random access requests from the UE.
- 2) The UE is switched on.
- 3) An RRC connection is set up according to the generic set up procedure specified in TS 34.108 [3] subclause 7.3.3 to place the UE in the CELL_PCH state on Cell 2 and then the SS waits for this process to complete.
- 4) After 15 s from the completion of step 3 or the beginning of T1, the parameters are changed to those defined for T2 in table 8.3.6.1.2.
- 5) If the UE responds on Cell 1 with a PRACH (CELL UPDATE message cause "cell reselection") within 8s, then a success is recorded, the SS shall transmit a CELL UPDATE CONFIRM message and then the procedure moves to step 7.
- 6) Since the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The SS shall then wait for a total of 15s from the beginning of T2 and if no response is received, the UE shall be switched off and the procedure returns to step 1. Otherwise the SS shall transmit a CELL UPDATE CONFIRM-message and then the procedure continues with step 7.
- 7) After a total of 15 s from the beginning of T2, the parameters are changed to those defined for T1 in table 8.3.6.1.2.
- 8) If the UE responds on Cell 2 with a PRACH (CELL UPDATE message cause "cell reselection") within 8s, then a success is recorded and the procedure moves to step 10.
- 9) Since the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The SS shall then wait for a total of 15s from the beginning of T1 and if no response is received the UE shall be-

switched off and the procedure returns to step 1. Otherwise the SS shall transmit a CELL UPDATE CONFIRMmessage and then the procedure continues with step 10.

10)Steps 4 to 10 are repeated until a total of [50] successes and failures have been recorded.

NOTE: The time required for receiving all the relevant system information data according to the receptionprocedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRANcell. Since the maximum repetition period of the relevant system info blocks that needs to be received bythe UE to camp on a cell is 1280ms and the maximum RRC procedure delay for reception systeminformation block is 100ms, 1380 ms is assumed in this test case. Therefore this gives a total of 7.78s-(Minimum requirement + 100ms), allow 8s in the test case.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

RADIO BEARER SETUP (Step 3)

Information Element	Value/remark
RRC-State Indicator	CELL PCH
UTRAN DRX cycle length coefficient	7
Downlink information for each radio link	
- Primary CPICH info	
- Primary scrambling code	100

8.3.6.1.5 Test requirements

For the test to pass, the total number of successful attempts shall be more than 90% with a confidence level of [FFS]%-of the cases.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.3.6.2 Two frequencies present in the neighbour list

8.3.6.2.1 Definition and applicability

The cell re selection delay is defined as the time from a change of cell levels to the moment when this change makes the UE camp on a new cell, and starts to send preambles on the PRACH for the CELL UPDATE message with cause value-"cell reselection" in the new cell.

The requirements and this test apply to the FDD UE.

8.3.6.2.2 Minimum requirement

The cell re selection delay shall be less than 8 s with a DRX cycle length of 1.28 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

NOTE: The cell re selection delay can be expressed as: T_{evaluateFDD} + T_{SI}, where:

∓_{evaluateFDD}	See table 4.1 in TS 25.133 [2] clause 4.2.2.
T si	Maximum repetition period of relevant system info blocks that needs to be received by
	the UE to camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

The normative reference for this requirement is TS 25.133 [2] clauses 5.6.2 and A.5.6.2.

8.3.6.2.3 Test purpose

To verify that the UE meets the minimum requirement and is capable of camping on to a new cell, within the requiredtime, when the preferred cell conditions change.

8.3.6.2.4 Method of test

8.3.6.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

This scenario implies the presence of 2 carriers and 6 cells as given in tables 8.3.6.2.1 and 8.3.6.2.2. The UE isrequested to monitor neighbouring cells on 2 carriers. The maximum repetition period of the relevant system infoblocks that needs to be received by the UE to camp on a cell shall be 1 280 ms.

Table 8.3.6.2.1: General test parameters for Cell Re-selection in CELL_PCH, two freqs. in neighbourlist

	Parameter	Unit	Value	Comment
initial-	Active cell		Cell2	
condition	Neighbour cells		Cell1, Cell3,Cell4, Cell5, Cell6-	
final- condition	Active cell		Cell1	
Access Service Class (ASC#0) - Persistence value		-	- 4	Selected so that no additional delay is- caused by the random access-
				procedure. The value shall be used for all cells in the test.
HCS				Not used
DRX cycle	length	S	1.28	The value shall be used for all cells in the test.
T 4		S	15	T1 need to be defined so that cell re- selection reaction time is taken into- account.
T2		9	15	T2 need to be defined so that cell re- selection reaction time is taken into-
				account.

Parameter	Unit	Cell 1		Ç) 2	Cel	13	Cell 4		Cel	15	Cell 6		
		T1	T2	T1	T2	T 1	T2	T1	T2	T 1	T2	T 4	T2	
UTRA RF Channel Number		Chan	nel 1	Chan	Channel 2		Channel 1		Channel 1		Channel 2		Channel 2	
CPICH_Ec/lor	dB	-10-		-10		<u>-10</u>		-10-		-10-		-10-		
PCCPCH_Ec/lor	dB	-12-		-12 -		-12-		-12		-12		-12		
SCH_Ec/lor	dB	-12		-12		-12		-12		-12		-12		
PICH_Ec/lor	dB	-15-		-15		-15-		-15		-15		-15		
OCNS_Ec/lor	d₿	-0.9 4	ŀ	-0.9 4	1	-0.9 41		-0.9 41	_	-0.9 41		-0.9 41	F	
\hat{I}_{or}/I_{oc}	dB	-3. 4	<u>2.2</u>	2.2	-3. 4	-7.4 -	-4.8	-7.4	-4.8	-4.8 -	-7.4	-4.8	-7. 4	
H _{oc}	dBm/3.8 4 -MHz	-70 -			•								•	
CPICH_Ec/lo	d₿	-16 -13 -13 -16		_20 _		-20		-20		- -20				
Propagation-								WGN						
Condition-							*							
Cell_selection_		CPIC	_	CPICH		CPICH-								
and_reselection_				E _c /N _o		E A		CPICH E ₀ /N ₀		CPICH E _c /N ₀		CPICH E _o /N ₀		
quality_measure		•••			-011 0		-014 0							
Qqualmin	dB		<u>20</u>		20	-2	-		<u>20</u>	-20			20	
Qrxlevmin	dBm	-1	15	-4	1 5	-1-	H 5	-115		-11	5	-1	-15	
UE_TXPWR_ MAX_RACH	dBm	2	4	-	<u>21</u>	2	4	21		21		21		
		C1, (C2: 0	C2,	C1: 0	C3, C)1:0	C 4,	C1: 0	C5, C	:1:0	C6,	C1: 0	
		C1, (C3: 0	C2,	C3: 0	C3, C	2: 0	C4,	C2: 0	C5, C	2: 0	C6,	C2: 0	
Qoffset2 _{s.n}	dB	C1, (C4: 0	C2,	C4: 0	C3, C	;4: 0	C4,	C3: 0	C5, C	3: 0	C6,	C3: 0	
		C1, (C5: 0	C2,	C5: 0	C3, C	5: 0	C4,	C5: 0	C5, C	:4: 0	C6,	C4: 0	
		C1, (26: 0	C2, C6: 0		C3, C6: 0		C4, C6: 0		C5, C6: 0		C6, C5: 0		
Qhyst2	d₿	4)		θ	Ç			θ		Ð		0	
Treselection	S	()		θ	e		θ		θ			θ	
Sintrasearch	d₿	not	sent	not	sent	not e	sent	not	not sent		not sent		sent	
Sintersearch	dB	not	sent	not	not sent		not sent		not sent		not sent		not sent	

Table 8.3.6.2.2: Cell specific test parameters for Cell re-selection in CELL_PCH state, two freqs. in neighbour list

8.3.6.2.4.2 Procedure

1) The SS activates cell 1-6 with T1 defined parameters in table 8.3.6.2.3 and monitors cell 1 and 2 for random access requests from the UE.

2) The UE is switched on.

- 3) A RRC connection is set up according the generic set up procedure specified in TS 34.108 [3] subclause 7.3.3 toplace the UE in CELL_PCH state on cell 2. The SS waits for this process to complete.
- 4) After 15 s from the completion of step 3 or the beginning of T1, the parameters are changed to those defined for T2.
- 5) If the UE responds on Cell 1 with a PRACH (CELL UPDATE message cause "cell reselection") within 8s, then a success is recorded, the SS shall transmit a CELL UPDATE CONFIRM message and then the procedure-moves to step 7.
- 6) Since the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The SS shall then wait for a total of 15s from the beginning of T2 and if no response is received the UE shall be switched off and the procedure returns to step 1. Otherwise the SS shall transmit a CELL UPDATE CONFIRMmessage and then the procedure continues with step 7.
- 7) After a total of 15 s from the beginning of T2, the parameters are changed to those defined for T1.
- 8) If the UE responds on Cell 2 with a PRACH (CELL UPDATE message cause "cell reselection") within 8s, then a success is recorded and the procedure moves to step 10.
- 9) Since the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The SS shall then wait for a total of 15s from the beginning of T1 and if no response is received the UE shall be

switched off and the procedure returns to step 1. Otherwise the SS shall transmit a CELL UPDATE CONFIRMmessage and then the procedure continues with step 10.

10)Steps 4 to 10 are repeated until a total of [50] successes and failures have been recorded.

NOTE: The time required for receiving all the relevant system information data according to the receptionprocedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell. Since the maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell is 1280ms and the maximum RRC procedure delay for reception system information block is 100ms, 1380 ms is assumed in this test case. Therefore this gives a total of 7.78s(Minimum requirement + 100ms), allow 8s in the test case.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

RADIO BEARER SETUP (Step 3)

Information Element	Value/remark
RRC State Indicator	CELL PCH
UTRAN DRX cycle length coefficient	7
Downlink information for each radio link	
- Primary CPICH info	
- Primary scrambling code	100

8.3.6.2.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

Parameter	Unit	Ce	#1	Ce	 2	Ce	13	Ce	 4	Cel	1-5	Ce	II 6
		T 4	T2	T 4	T2	T 4	T2	T 4	T2	T 4	T2	T 4	T2
UTRA RF Channel- Number		Char	Channel 1 Channel 2		Channel 1		Channel 1		Channel 2		Channel 2		
CPICH Ec/lor	dB	-9.9	<u>9.9</u> <u>-9.7</u> <u>-9.9</u>		9	.9).9	_ _9	.9	-9.9		
PCCPCH Ec/lor	dB		-12 -12			2		12	-1		-12-		
SCH_Ec/lor	dB	-11.9	-11.7	-11.7	11.9	-1:	1.9	-1	1.9	-11	.9		1.9
PICH_Ec/lor	dB		15		15		5		15-	1	5		15-
OCNS_Ec/lor	dB	-0.95 4	-0.982	-0.982	-0.95 4	-0.)5 4	-0.	954	-0.9	54	-0.(954
\hat{H}_{or}/H_{oc}	dB	-3.5	<u>2.8</u>	<u>2.8</u>	-3.5	-9.5 -	-7.7	-9.5	-7.7	-7.7	-9.5	-7.7	-9.5
-I _{oc}	dBm / 3.84 MHz		70 -										
CPICH_Ec/lo	d₿	-15.6	-12	-12	-15.6	-21.6	-22.7	-21.6	-22.7	-22.7	-21.6	-22.7	-21.6
Propagation		AWGN											
Condition							~~~						
Cell_selection_and_													
reselection_quality_		CPICH	IE _¢ ∕Ν₀	CPIC	LE ₀∕N₀	CPICH E _c /N ₀		CPICH E ₀ /N ₀		CPICH E ₀ /N ₀			
measure													
Qqualmin	dB		<u>20</u>		<u>20</u>	-2	-	-20		-20		-20	
Qrklevmin	dBm	-1	15	-1	15	-1:	15	-1	15	-11	Ь	-1	15
UE_TXPWR_MAX_ RACH	dB	2	<u>1</u>	2	4	2	4	2	14	2 '	1	2	<u>1</u>
		C1, (C2: 0	C2, I	C1: 0	C3, () 1: 0	C4, I	C1: 0	C5, C	;1:0	C6, (C1: 0
		C1, (C3: 0	C2, (C3: 0	C3, (2: 0	C4, (C2: 0	C5, C	2: 0	C6, (C2: 0
Qoffset2 _{s, n}	dB	C1, C4: 0		· · · · · · · · · · · · · · · · · · ·	C4: 0	C3, (C3: 0	C5, C			C3: 0
		C1, C5: 0 C2, C			C3, (C5: 0	C5, C4: 0			C4: 0	
		C1, (C1, C6: 0 C2, C6:		C6: 0	C3, C6: 0		C4, C6: 0		C5, C6: 0		C6, C5: 0	
Qhyst2	dB		Ð		•	()	Ð			0
Treselection	S		9		•	θ		θ		θ		θ	
Sintrasearch	dB	not	sent		sent	not (sent		sent	not sent		not sent	
Sintersearch	dB	not-	sent	not	sent	not (sent	not	sent	not e	sent	not-	sent

Table 8.3.6.2.3: Test parameters for Cell re-selection in CELL_PCH state, multi carrier multi cell, twofreqs. in neighbour list

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.3.7 Cell Re-selection in URA_PCH

8.3.7.1 One frequency present in the neighbour list

8.3.7.1.1 Definition and applicability

The cell re selection delay is defined as the time from a change of cell levels to the moment when this change makes the UE camp on a new cell, and starts to send preambles on the PRACH for the URA UPDATE message with cause value-"URA reselection" in the new cell.

The requirements and this test apply to the FDD UE.

8.3.7.1.2 Minimum requirement

The cell re selection delay shall be less than 8 s with a DRX cycle length of 1.28 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

NOTE: The cell re selection delay can be expressed as: $T_{evaluateFDD} + T_{SI}$, where:

Error! No text of specified style in document.

170

∓_{evaluateFDD} ∓_{SI} See table 4.1 in TS 25.133 [2] clause 4.2.2. Maximum repetition period of relevant system info blocks that needs to be receivedby the UE to camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

The normative reference for this requirement is TS 25.133 [2] clauses 5.7.2 and A.5.7.1.

8.3.7.1.3 Test purpose

To verify that the UE meets the minimum requirement and is capable of camping on to a new cell, within the requiredtime, when the preferred cell conditions change.

8.3.7.1.4 Method of test

8.3.7.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

This scenario implies the presence of 1 carrier and 6 cells as given in tables 8.3.7.1.1 and 8.3.7.1.2. The UE is requested to monitor neighbouring cells on 1 carrier. The maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell shall be 1 280 ms. In System Information Block Type 2 cell1 and cell 2 URA identity is set to a different value.

Table 8.3.7.1.1: General test parameters for Cell Re-selection in URA_PCH, one freq. in neighbour list

	Parameter	Unit	Value	Comment
Initial	Active cell		Cell2	
condition	Neighbour cells		Cell1, Cell3,Cell4, Cell5,	
			Cell6-	
Final-	Active cell		Cell1	
condition				
SYSTEM I	NFORMATION BLOCK		0000 0000 0000 0001(B)	
TYPE 2		-	(Cell 1)	
- URA ider	ntity list		0000 0000 0000 0002(B)	
- URA ider	ntity		(Cell 2)	
Access Se	Access Service Class (ASC#0)		-	Selected so that no additional delay is
- Persisten	ice value	-	4	caused by the random access
				procedure. The value shall be used for
				all cells in the test.
HCS				Not used
DRX cycle	length	S	1,28	The value shall be used for all cells in
	-			the test.
T 1		\$	15	T1 need to be defined so that cell re-
				selection reaction time is taken into-
				account.
T2		S	15	T2 need to be defined so that cell re-
				selection reaction time is taken into-
				account.

Parameter	Unit	C	ell 1	Ce	ll 2	C	ell 3	Ce	4	Ce) 5	Ce	II 6	
	-	T1	T2	T 4	T2	T1	T2	T 4	T2	T 4	T2	T1	T2	
UTRA RF Channel- Number		Chan	Channel 1		Channel 1		Channel 1		Channel 1		Channel 1		Channel 1	
CPICH_Ec/lor	d₿	-10-		-10 -		-10 -		-10 -		-10 -		-10 -		
PCCPCH_Ec/lor	dB	-12-		-12 -		-12-		-12-		-12-	-12-		-12-	
SCH_Ec/lor	dB	-12		-12		-12		-12		-12		-12		
PICH_Ec/lor	dB	-15-		-15		-15		-15 -		-15 -		-15 -		
OCNS_Ec/lor	dB	-0,9 4	1	-0,941		-0,94	4	-0,941		-0,941	-	-0,9 41		
$\frac{\hat{I}_{or}}{I_{oc}}$	d₿	7,3 -	10,27	10,27	7,3 -	0,27		0,27		0,27		0,27		
I _{oc}	dBm / 3,84 MHz	-70												
CPICH_Ec/lo	d₿	-16 -	-13 - 13 - 16		-23 -		-23-		-23		-23			
Propagation Condition			AWGN-											
Cell_selection_and_ reselection_quality_ measure		CPIC	H-E _c ∕N₀	CPICH	CPICH E ₀ /N ₀		CPICH E / N ₀		CPICH E ₆ ∕N₀		CPICH E _c /N ₀		<mark>⊦E_c∕N₀</mark>	
Qqualmin	d₿	-	20	4	<u>20</u>	-20		-20		-20		-20		
Qrxlevmin	dBm		115	-1	15	-	-115		-115		-115		-115	
UE_TXPWR_MAX_ RACH	dB	:	21	2	24		21	2	1	2	24		<u>:</u> 1	
Qoffset2 _{s, n}	dB	61, 61, 61,	C2: 0 C3: 0 C4: 0 C5: 0 C6: 0	C2, C1: 0 C2, C3: 0 C2, C4: 0 C2, C5: 0 C2, C6: 0		C3, C3, C3,	C3, C1: 0 C3, C2: 0 C3, C4: 0 C3, C5: 0 C3, C5: 0 C3, C6: 0) 1: 0) 2: 0) 3: 0) 5: 0) 6: 0	C5, C1: 0 C5, C2: 0 C5, C3: 0 C5, C4: 0 C5, C6: 0		C6, (C6, (C6, (C1:0 C2:0 C3:0 C4:0 C5:0	
Qh <mark>yst2</mark>	d₿		0	-	0		θ		θ		θ		θ	
Treselection	S	1	θ		0	1	θ	θ		θ		θ		
Sintrasearch	dB	not	t sent	not	sent	no	t sent	not e	ent	not	sent	not	sent	

Table 8.3.7.1.2: Cell specific test parameters for Cell re-selection in URA_PCH state, one freq. in neighbour list

8.3.7.1.4.2 Procedure

- 1) The SS activates cell 1 6 with T1 defined parameters in table 8.3.7.1.2 and monitors cell 1 and 2 for random access requests from the UE.
- 2) The UE is switched on.
- 3) An RRC connection is set up according to the generic set up procedure specified in TS 34.108 [3] subclause 7.3.3 to place the UE in the URA_PCH state on Cell 2 and then the SS waits for this process to complete.
- 4) After 15 s from the completion of step 3 or the beginning of T1, the parameters are changed to those defined for T2 in table 8.3.7.1.2.
- 5) If the UE responds on Cell 1 with a PRACH (URA UPDATE message cause "URA reselection") within 8s, then a success is recorded, the SS shall transmit a URA UPDATE CONFIRM message and then the procedure moves to step 7.
- 6) Since the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The SS shall then wait for a total of 15s from the beginning of T2 and if no response is received, the UE shall be switched off and the procedure returns to step 1. Otherwise the SS shall transmit a URA UPDATE CONFIRM-message and then the procedure continues with step 7.
- 7) After a total of another 15 s from the beginning of T2, the parameters are changed to those defined for T1 in table 8.3.7.1.2.
- 8) If the UE responds on Cell 2 with a PRACH (URA UPDATE message cause "URA reselection") within 8s, then a success is recorded and the procedure moves to step 10.
- 9) Since the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The SS shall then wait for a total of 15s from the beginning of T1 and if no response is received the UE shall be-

switched off and the procedure returns to step 1. Otherwise the SS shall transmit a URA UPDATE CONFIRMmessage and then the procedure continues with step 10.

10)Steps 4 to 10 are repeated until a total of [TBD] successes and failures have been recorded.

NOTE: The time required for receiving all the relevant system information data according to the receptionprocedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell. Since the maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell is 1280ms and the maximum RRC procedure delay for reception system information block is 100ms, 1380 ms is assumed in this test case. Therefore this gives a total of 7.78s(Minimum requirement + 100ms), allow 8s in the test case.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

RADIO BEARER SETUP (Step 3)

Information Element	Value/remark
RRC-State Indicator	URA PCH
UTRAN DRX cycle length coefficient	7
Downlink information for each radio link	
- Primary CPICH info	
- Primary scrambling code	100

8.3.7.1.5 Test requirements

For the test to pass, the total number of successful attempts shall be more than 90% with a confidence level of [FFS]%-of the cases.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.3.7.2 Two frequencies present in the neighbour list

8.3.7.2.1 Definition and applicability

The cell re selection delay is defined as the time from a change of cell levels to the moment when this change makes the UE camp on a new cell, and starts to send preambles on the PRACH for the URA UPDATE message with cause value-"URA reselection" in the new cell.

The requirements and this test apply to the FDD UE.

8.3.7.2.2 Minimum requirement

The cell re selection delay shall be less than 8 s with a DRX cycle length of 1.28 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90% with a confidence level of [FFS]%.

NOTE: The cell re selection delay can be expressed as: T_{evaluateFDD} + T_{SI}, where:

∓_{evaluateFDD}	See table 4.1 in TS 25.133 [2] clause 4.2.2.
T si	Maximum repetition period of relevant system info blocks that needs to be received by-
	the UE to camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

The normative reference for this requirement is TS 25.133 [2] clauses 5.7.2 and A.5.7.2.

8.3.7.2.3 Test purpose

To verify that the UE meets the minimum requirement and is capable of camping on to a new cell, within the requiredtime, when the preferred cell conditions change.

8.3.7.2.4 Method of test

8.3.7.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

This scenario implies the presence of 2 carriers and 6 cells as given in tables 8.3.7.2.1 and 8.3.7.2.2. The UE is requested to monitor neighbouring cells on 2 carriers. The maximum repetition period of the relevant system infoblocks that needs to be received by the UE to camp on a cell shall be 1 280 ms. In System Information Block Type 2 in cell 1 and cell 2 URA identity is set to different value.

Table 8.3.7.2.1: General test parameters for Cell Re-selection in URA_PCH, two freqs. in neighbourlist

	Parameter	Unit	Value	Comment
Initial-	Active cell		Cell2	
condition	Neighbour cells		Cell1, Cell3,Cell4, Cell5, Cell6-	
Initial- condition	Active cell Cell2		Cell1	
SYSTEM I BLOCK TY - URA ider - URA ider	ntity list	-	0000 0000 0000 0001(B) (Cell 1) 0000 0000 0000 0002(B) (Cell 2)	
Access Se - Persister	ervi ce Class (ASC#0) a ce value	-	4	Selected so that no additional delay is- caused by the random access- procedure. The value shall be used for- all cells in the test.
HCS DRX cycle	length	S	1,28	Not used The value shall be used for all cells in-
		8	45	the test. T1 need to be defined so that cell re- selection reaction time is taken into- account.
	12	÷	15	T2 need to be defined so that cell re- selection reaction time is taken into- account.

Parameter	Unit	Cell 1		Cell 2		Cell 3		Cell 4		Cell 5		Cell 6	
		T 4	T2	T 4	T2	T 1	T2	T 4	T2	T 4	T2	T 4	T2
UT <mark>RA RF Channel-</mark> Number		Channel 1		Channel 2		Channel 1		Channel 1		Channel 2		Channel 2	
CPICH_Ec/lor	dB	-1	0	-10-		-10-		_	-10-	-10 -		-10-	
POCPCH_Ec/lor	dB	-1	2	-1	2	-12		_	-12-	-1	2	-	12
SCH_Ec/lor	dB	-1	2	-1	2	-4	2	_	42	-1	2	_	12
PICH_Ec/lor	dB	-1	5-	-1	5-	4	5	_	-15-	-1	5-	_	15
OCNS_Ec/lor	d₿	-0.8	41	-0.9	41	-0. 8	141	-0	.9 41	-0.9	41	-0.941	
\hat{H}_{or}/H_{oc}	dB	-3. 4	2.2	<u>2.2</u>	-3. 4	-7.4	-4.8	-7.4	-4.8	-4.8 -	-7.4	-4.8	-7.4
I _{oc}	dBm / 3.84 MHz							70 -					
CPICH_Ec/lo	dB	-16 -13 -13		-13 -	-16	-20 -		-20		-20		-20	
Propagation							۵۱۸	GN					
Condition													
Cell_selection_and_													
reselection_quality_		CPICH	-E _¢ ∕N₀	CPICH E _c /N ₀		CPIC⊢	E _c /N ₀	CPICH E ₀ /N ₀		CPICH E _c /N ₀		CPICH	∔E _¢ ∕₽
measure													
Qqualmin	dB	-2	-	-20			-20 -20		<u>-20</u>			20	
Qrxlevmin	dBm	-11	-5	-11	5	-115		-115 - 115		5	-1	15	
UE <mark>_TXPWR_MAX_</mark> RACH	dB	2 '	1	2 4	F	2	1	21		21		2	<u>2</u> 1
		C1, C	2: 0	C2, C	:1:0	C3, (C 4,	C1: 0	C5, C		C6, 	C1: 0
		C1, C	3: 0	C2, C	3: 0	C3, (2: 0	C4,	C2: 0	C5, C	2: 0	C6,	C2: 0
Qoffset2 _{s, n}	dB	C1, C	:4: 0	C2, C	4: 0	C3, (.4: 0	C4,	C3: 0	C5, C	3: 0	C6,	C3: 0
		C1, C	5: 0	C2, C		C3, () 5: 0	C4,	C5: 0	C5, C	4: 0	C6,	C4: 0
		C1, C	;6: 0	C2, C	:6: 0	C3, ()6: 0	C4,	C6: 0	C5, C	6: 0	C6,	C5: 0
Qhyst2	dB	Ð		θ		Ę			θ	θ			0
Treselection	S	θ		θ		Ę		θ		θ			θ
Sintrasearch	dB	not e	ent	not s	ent	not sent		not sent		not sent		not	sent
Sintersearch	dB	not e	ent	not s	ent	not (ont	not	sent	not s	ont	not	sent

Table 8.3.7.2.2: Cell specific test parameters for Cell Re-selection in URA_PCH state, two freqs. in neighbour list

8.3.7.2.4.2 Procedures

1) The SS activates cell 1-6 with T1 defined parameters in table 8.3.7.2.3 and monitors cell 1 and 2 for random access requests from the UE.

2) The UE is switched on.

- 3) An RRC connection is set up according the generic set up procedure specified in TS 34.108 [3] subclause 7.3.3 to place the UE in URA_PCH state on cell 2. The SS waits for this process to complete.
- 4) After 15 s from the completion of step 3 or the beginning of T1, the parameters are changed to those defined for T2 in table 8.3.7.2.3.
- 5) If the UE responds on Cell 1 with a PRACH (URA UPDATE message cause "URA reselection") within 8s, then a success is recorded, the SS shall transmit a URA UPDATE CONFIRM message and then the procedure moves to step 7.
- 6) Since the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The SS shall then wait for a total of 15s from the beginning of T2 and if no response is received the UE shall be switched off and the procedure returns to step 1. Otherwise the SS shall transmit a URA UPDATE CONFIRM message and then the procedure continues with step 7.
- 7) After a total of 15 s from the beginning of T2, the parameters are changed to those defined for T1 in table 8.3.7.2.3.
- 8) If the UE responds on Cell 2 with a PRACH (URA UPDATE message cause "URA reselection") within 8s, then a success is recorded and the procedure moves to step 10.

9) Since the UE has failed to respond with the correct message within the allowed time, a failure is recorded. The SS shall then wait for a total of 15s from the beginning of T1 and if no response is received the UE shall be switched off and the procedure returns to step 1. Otherwise the SS shall transmit a URA UPDATE CONFIRM-message and then the procedure continues with step 10.

10)Steps 4 to 10 are repeated until a total of [TBD] successes and failures have been recorded.

NOTE: The time required for receiving all the relevant system information data according to the receptionprocedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRANcell. Since the maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell is 1280ms and the maximum RRC procedure delay for reception system information block is 100ms, 1380 ms is assumed in this test case. Therefore this gives a total of 7.78s(Minimum requirement + 100ms), alow 8s in the test case.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

RADIO BEARER SETUP (Step 3)

Information Element	Value/remark
RRC State Indicator	URA PCH
UTRAN DRX cycle length coefficient	7
Downlink information for each radio link	
- Primary CPICH info	
- Primary scrambling code	100

8.3.7.2.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

Parameter	Unit	Ce	#1	Ce	 2	Cell 3		Ce	II-4	Ce	 5	Cell 6		
		T 4	T2	T 4	T2	T 4	T2	T 4	T2	T 4	T2	T 4	T2	
UTRA RF Channel Number		Channe		1 Channel 2		Channel 1		Channel 1		Channel 2		Channel 2		
CPICH_Ec/lor	d₿	-9.9	-9.7	-9.7	-9.9	-9.9		<u>-9.9</u>		-9.9		<u>-9.9</u>		
PCCPCH_Ec/lor	d₿		12		12	-12			12	-12 -		-12 -		
SCH_Ec/lor	dB	-11.9	-11.7	-11.7	-11.9	-1	1.9	-1	1.9 -	-1	1.9	-1	1.9	
PICH_Ec/lor	d₿		15		15		15-		15-		15-	-15		
OCNS_Ec/lor	d₽	-0.95 4	-0.982	-0.982	-0.95 4	-0.	954	-0.(-0.954		-0.95 4		-0.954	
\hat{I}_{or}/I_{oc}	d₽	-3.5	2.8	2.8	-3.5	-9.5	-7.7	-9.5 -	-7.7	-7.7-	-9.5	-7.7	-9.5	
I _{oc}	dBm / 3.84 MHz		70							•				
CPICH_Ec/lo	dB	-15.6	-12	-12	-15.6	-21.6	-22.7	-21.6	-22.7	-22.7	-21.6	-22.7	-21.6	
Propagation- Condition-			AWGN											
Cell_selection_and_ reselection_quality_ mdasure		CPICH E,/N ₀ CPICH E,/N ₀		CPICH E ₆ ∕N₀		CPICH	I-E ₀∕N₀	CPICH	ᡰ ᠊ <mark>ᡖ/N</mark> ₀	CPICH	ᡰ . <mark>∈/N</mark> ₀			
Qqualmin	d₿	-2	<u>20</u>	-4	20	-20		-20		-4	20	-20		
Qrklevmin	dBm	-1	15	-115		-115		-115		-115		-115		
UE_TXPWR_MAX_ RACH	d₽	2	1	2	24 2		!1	21		21		21		
Qoffset2 _{s, n}	d₽	C1, C2: 0 C1, C3: 0 C1, C4: 0 C1, C5: 0 C1, C6: 0		C2, C1: 0 C2, C3: 0 C2, C4: 0 C2, C5: 0 C2, C6: 0		C3, C1: 0 C3, C2: 0 C3, C4: 0 C3, C5: 0 C3, C5: 0		C4, C1: 0 C4, C2: 0 C4, C3: 0 C4, C5: 0 C4, C5: 0 C4, C6: 0		C5, C1: 0 C5, C2: 0 C5, C3: 0 C5, C4: 0 C5, C6: 0		C6, C1: 0 C6, C2: 0 C6, C3: 0 C6, C4: 0 C6, C5: 0		
Qhyst2	d₿		•		D)	θ		θ		θ		
Treselection	\$	(•	())	Ð		0		Q		
Sintrasearch	d₿	not	sent	not	sent	not	sent	not sent		not sent		not sent		
Sintersearch	d₿	not	sent	not	sent	not	sent	not	sent	not	sent	not	sent	

Table 8.3.7.2.3: Test parameters for Cell re-selection in URA_PCH state, multi carrier multi cell, twofreqs. in neighbour list

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.4 RRC Connection Control

8.4.1 RRC Re-establishment delay

8.4.1.1 Test 1

8.4.1.1.1 Definition and applicability

The UE Re establishment delay requirement (T_{UE RE ESTABLISH REQ}) is defined as the time between the moment when radio link failure is considered by the UE, to when the UE starts to send preambles on the PRACH.

T_{UE-RE-ESTABLISH-REQ} is depending on whether the target cell is known by the UE or not. A cell is known if either or both of the following conditions are true:

- the UE has had radio links connected to the cell in the previous (old) active set.

- the cell has been measured by the UE during the last 5 seconds.

The phase reference is the primary CPICH.

The requirements of this test apply to the FDD UE.

8.4.1.1.2 Minimum requirement
The Re establishment delay T _{RE-ESTABLISH} to a known cell shall be less than 1.9 s.
The rate of correct RRC re-establishments observed during repeated tests shall be at least 90%.
NOTE: The Re establishment delay in this case can be expressed as-
T _{RE-ESTABLISH} = T _{RRC-RE-ESTABLISH} + T _{UE-RE-ESTABLISH-REQ-KNOWN} -
where
$T_{RRC-RE-ESTABLISH} = -160ms + (N_{313} - 1)*10ms + T_{313}$
$T_{UE-RE-ESTABLISH_REQ-KNOWN} = 50ms + T_{search} + T_{SI} + T_{RA}$
N ₃₁₃ =20
$T_{313} = 0.05$
$T_{search} = 100ms$
T_{RA} = The additional delay caused by the random access procedure. 40 ms is assumed in this test case.
T _{SI}
This gives a total of 1820ms, allow 1.9s in the test case.
8.4.1.1.3 Test purpose
To verify that the UE meets the minimum requirement.
8.4.1.1.4 Method of test
8.4.1.1.4.1 Initial conditions
Test environment: normal; see clauses G.2.1 and G.2.2.
Frequencies to be tested: mid range; see clause G.2.4.
The test parameters are given in table 8.4.1.1 and table 8.4.1.2 below. The maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell shall be 1280 ms. And DRX cycle length shall

system info blocks that needs to be received by the UE to camp on a cell shall be 1280 ms. And DRX cycle length shall be 1280ms. In the measurement control information it is indicated to the UE that periodic reporting shall be used. The test consist of 2 successive time periods, with a time duration of T1 and T2 respectively. At the start of time period T2, the dedicated channel is removed.

Table 8.4.1.1 General test parameters for RRC re-establishment delay, Test 1

Parameter	Unit	Value	Comment
DCH Parameters		DL and UL Reference	As specified in clause C.3.1 and C.2.1
		measurement channel	
		12.2 kbps	
Power Control		On	
Active cell, Initial		Cell 1	
condition-			
Active cell, Final		Cell 2	
condition			
N313		20	
N315		4	
T313	Seconds	θ	
Monitored cell list size		24	Monitored set shall only include intra frequency
			neighbours.
Cell 2			Included in the monitored set
Reporting frequency	Seconds	4	
1 4	S	10	
T2	S	6	

Table 8.4.1.2 Cell specific parameters for RRC re-establishment delay test, Test 1

Parameter	Unit	Ce	 1	Cel	 2		
		T1 T2		T1	T2		
Cell Frequency	ChNr	2	1	4			
CPICH_Ec/lor	dB	-4	Ю	-10			
PCCPCH_Ec/lor	dB	-4	12	<u>-12</u>			
SCH_Ec/lor	dB	4	-12		2		
PICH_Ec/lor	dB	-15		-15			
DCH_Ec/lor	dB	-17	-Infinity	Not applicable			
OCNS_Ec/lor	dB	-1.049	-0.941	-0.9	141		
$\frac{\hat{I}_{or}}{I_{oc}}$	d₿	2,39	-Infinity	4,39			
-I _{oc} -	dBm/ 3.84 MHz		-7	-70			
CPICH_Ec/lo	dB	- 15 - Infinity - 13		3			
Propagation Condition		AWGN					

8.4.1.1.4.2 Procedure

- 1) The RF parameters are set up according to T1.
- 2) The UE is switched on.
- 3) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.4 without Compressed mode parameters.
- [Editor's note: subclause 7.3.4 in TS 34.108 (Message sequence chart for Handover Test procedure) is not yet specified.
- 4) The SS waits for random access requests from the UE on cell 2.
- 5) 10 s after step3 has completed, the parameters are changed to that as described for T2.
- 6) If the UE responds on cell 2 within 2.0 s from the beginning of time period T2 with a CELL_UPDATE command then the number of successful tests is increased by one.
- 7) SS shall transmit a RRC CONNECTION RELEASE message to make the UE transit to idle mode.
- 8) After 6 seconds from the beginning of time period T2, the RF parameters are set up according to T1.
- 9) The SS shall wait for 30s to make the UE complete cell reselection to cell1.
- 10)Repeat step 3 9 [TBD] times.

NOTE: The time required for receiving all the relevant system information data according to the receptionprocedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRANcell. Since the maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell is 1280ms and the maximum RRC procedure delay for reception system information block is 100ms, 1380 ms is assumed in this test case. Therefore this gives a total of 1920ms(Minimum requirement + 100ms), allow 2s in the test case.

8.4.1.1.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

Note:If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied
for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of
how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.4.1.2 Test 2

8.4.1.2.1 Definition and applicability

The UE Re establishment delay requirement (T_{UE E ESTABLISH REQ}) is defined as the time between the moment when radio link failure is considered by the UE, to when the UE starts to send preambles on the PRACH.

 $T_{\text{UE RE ESTABLISH REQ}}$ is depending on whether the target cell is known by the UE or not. A cell is known if either or both of the following conditions are true:

- the UE has had radio links connected to the cell in the previous (old) active set.

- the cell has been measured by the UE during the last 5 seconds.

The phase reference is the primary CPICH.

The requirements of this test apply to the FDD UE.

8.4.1.2.2 Minimum requirement

The rate of correct RRC re-establishments observed during repeated tests shall be at least 90%.

NOTE: The Re establishment delay in this case can be expressed as-

 $-T_{\text{RE-ESTABLISH}} = T_{\text{RRC-RE-ESTABLISH}} + T_{\text{UE-RE-ESTABLISH-REQ-UNKNOWN}}$

where

 $T_{RRC-RE-ESTABLISH} = -160ms + (N_{313}-1)*10ms + T_{313}$

 $T_{UE-RE-ESTABLISH-REQ-UNKNOWN} = 50 ms + T_{search} * NF + T_{SI} + T_{RA},$

 $N_{313} = 20$

 $T_{313} = 0s$

T_{search}= 800ms

NF is the number of different frequencies in the monitored set. 3 frequencies are assumed in this testcase.

 T_{RA} = The additional delay caused by the random access procedure. 40 ms is assumed in this test case.

 T_{st}
 is the time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in 25.331-for a UTRAN cell (ms).1280 ms is assumed in this test case.

This gives a total of 4120ms, allow 4.2s in the test case.

8.4.1.2.3 Test purpose

To verify that the UE meets the minimum requirement.

8.4.1.2.4 Method of test

8.4.1.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in table 8.4.1.3 and table 8.4.1.4 below. The maximum repetition period of the relevantsystem info blocks that needs to be received by the UE to camp on a cell shall be 1280 ms. And DRX cycle length shallbe 1280ms. In the measurement control information it is indicated to the UE that periodic reporting shall be used. The test consists of 2 successive time periods, with a time duration of T1 and T2 respectively. At the start of time period T2, the dedicated channel is removed.

Table 8.4.1.3 General test parameters for RRC re-establishment delay, Test 2

Parameter	Unit	Value	Comment
DCH Parameters		DL and UL Reference	As specified in clause C.3.1 and C.2.1
		measurement channel 12.2	
		kbps	
Power Control		On	
Active cell, initial condition		Cell 1	
Active cell, final condition		Cell 2	
N313		20	
N315		4	
T313	Seconds	θ	
Monitored cell list size		24	Monitored set shall include 2 additional
			frequencies.
Cell 2			Cell 2 is not included in the monitored set.
			Cell 2 is located on one of the 2 additional
			frequencies of the monitored set.
Reporting frequency	Seconds	4	
1 4	S	10	
T2	S	6	

Table 8.4.1.4 Cell specific parameters for RRC re-establishment delay test, Test 2

Parameter	Unit	Ce) 1	Cell 2			
		T1	T2	T 4	T2		
Cell Frequency	ChNr		4	2			
CPICH_Ec/lor	dB	-	10	4	θ		
PCCPCH_Ec/lor	dB	-	12	-12			
SCH_Ec/lor	dB	-12		-12			
PICH_Ec/lor	dB	-15		-15			
DCH_Ec/lor	dB	-17	-Infinity	Not applicable			
OCNS_Ec/lor	dB	-1.049	-0.941	-0.941			
$\frac{\hat{I}_{or}}{I_{oc}}$	dB	- 3,35 -Infinity		-Infinity	0,02		
-I _{oc}	d Bm/ 3.84 MHz	-70					
CPICH_Ec/lo	dB	-15	-Infinity	-Infinity	-13		
Propagation Condition		AWGN					

8.4.1.2.4.2 Procedure

1) The RF parameters are set up according to T1.

2) The UE is switched on.

3) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.4 without Compressed mode parameters.

[Editor's note: subclause 7.3.4 in TS 34.108 (Message sequence chart for Handover Test procedure) is not yet specified]

4) The SS waits for random access requests from the UE on cell 2.

- 5) 10 s after step3 has completed, the parameters are changed to that as described for T2.
- 6) If the UE responds on cell 2 within 4.3 s from the beginning of time period T2 with a CELL_UPDATE command then the number of successful tests is increased by one.

7) SS shall transmit a RRC CONNECTION RELEASE message to make the UE transit to idle mode.

- 8) After 6 seconds the RF parameters are set up according to T1.
- 9) The SS shall wait for 30s to make the UE complete cell reselection to cell1.

10)Repeat step 3 9 [TBD] times

NOTE: The time required for receiving all the relevant system information data according to the receptionprocedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRANcell. Since the maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell is 1280ms and the maximum RRC procedure delay for reception systeminformation block is 100ms, 1380 ms is assumed in this test case. Therefore this gives a total of-4220ms(Minimum requirement + 100ms), allow 4.3s in the test case.

8.4.1.2.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

Note: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.4.2 Random Access

8.4.2.1 Correct behaviour when receiving an ACK

8.4.2.1.1 Definition and applicability

The random access procedure is used when establishing the layer 1 communication between the UE and UTRAN. The random access shall provide a fast access but without disturbing ongoing connections. The random access is specified in clause 6 of TS 25.214 [5] and the control of the RACH transmission is specified in clause 11.2 of TS 25.321. A random access transmit sequence is described in clause 6.7.2 of TS 25.303.

8.4.2.1.2 Minimum Requirements

The UE shall have capability to calculate initial power according to the open loop algorithm and apply this power levelat the first preamble and increase the power on additional preambles. The absolute power applied to the first preambleshall have an accuracy as specified in table 6.3 of TS 25.101 [1]. The relative power applied to additional preamblesshall have an accuracy as specified in clause 6.5.2.1 of 25.101 [1].

The absolute power applied to the first preamble shall be 30 dBm with an accuracy as specified in clause 6.4.1.1 of TS 25.101 [1]. The accuracy is \pm 9dB in the case of normal condition or \pm 12dB in the case of extreme condition.

There are two relative powers, one is the power difference for preamble ramping and another is the power differencebetween last preamble part and message part. From the test parameter in the table 8.4.2.1.2, the test requirement of the power difference for all preamble ramping is 3dB (Power offset P0). The accuracy is ± 2 dB as specified in clause6.5.2.1 of 25.101 [1]. The test requirement of the power difference between 10th preamble PRACH and message part is [3 dB] (note). The accuracy is $[\pm 2 \text{ dB}]$ as specified in clause 6.5.2.1 of 25.101 [1].

NOTE: In order to calculate the power difference between 10th preamble PRACH and message part by using Power offset P p-m in the table 8.4.2.1.2, the gain factors of PRACH message part are needed. The gain factor β_e is set to 15. The [temporary] gain factor β_e is set to [15].

The UE shall stop transmitting preambles upon a ACK on the AICH has been received and then transmit a message. The UE shall transmit 10 preambles and 1 message.

The normative reference for this requirements is TS 25.133 [2] clauses 6.3.2 and A.6.2.2.1.

8.4.2.1.3 Test purpose

The purpose of this test is to verify that the behaviour of the random access procedure is according to the requirements and that the PRACH power settings are within specified limits.

8.4.2.1.4 Method of test

8.4.2.1.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

- 1) Connect the SS to the UE antenna connector as shown in figure A.1 in the case of the PRACH powermeasurement. And in the case of the function test of the random access procedure, connect the SS to the UEantenna connector as shown in figure A.8. A spectrum analyzer is set to 0 span mode.
- 2) A call is set up according to the Generic call setup procedure. The test parameters are set up according to table 8.4.2.1.1, table 8.4.2.1.2 and table 8.4.2.1.3. The PRACH procedure within the call setup is used for the test. It is necessary that an ACK on the AICH shall be transmitted after 10 preambles have been received by the SS

See TS 34.108 [3] for details regarding generic call setup procedure.

Parameter	Unit	Cell 1
UTRA RF Channel Number		Channel 1
CPICH_Ec/lor	dB	-10
PCCPCH_Ec/lor	dB	-12
SCH_Ec/lor	dB	-12
Number of other transmitted	_	φ
Acquisition Indicators	-	•
AICH_Ec/lor	dB	-10
PICH_Ec/lor	d₿	-15
OCNS_Ec/lor when an AI is not	dB	-0,941
transmitted	æ	-0,841
OCNS_Ec/lor when an AI is	dB	-1.516
transmitted	чв	-1,010
$\frac{\hat{I}_{or}}{I_{oc}}$	d₿	θ
-I _{oc}	dBm/3.	-70-
	84 MHz	
CPICH_Ec/lo	dB	-13
Propagation Condition		AWGN-

Table 8.4.2.1.1: RF Parameters for Random Access test

The test parameters "System Information Block (SIB) type 5 (ASC #0)" defined in clause 6.1 of TS 34.108 [3], shall beused in all random access tests (see note). Crucial parameters for the test requirements are repeated in tables 8.4.2.1.2and A.8.4.3.1.3 and these overrule the parameters defined in SIB type 5. NOTE: A parameter of AC to ASC mapping(AC0 9) in SIB5 of clause 6.1 of TS 34.108 [3] shall be set to 0 in the case of all random access tests. The EFACC of Type A, which is specified in clause 8.3.2.15 of TS 34.108 [3], shall be selected.

Parameter	Unit	Value
Access Service Class		-
(ASC#0)		
-	01	4
- Persistence value		
Maximum number of preamble		2
ramping cycles (M_{max}).		
Maximum number of		12
preambles in one preamble		
ramping cycle		
(Preamble Retrans Max)		
The backoff time T_{B01}	ms	N/A
-N _{B01min=} N _{B01max}	#TTI	10
Power step when no	d₿	3
acquisition indicator is		
received		
(Power offset P 0)		
Power offset between the last	d₿	θ
transmitted preamble and the		
control part of the message		
(Power offset P p-m)		
Maximum allowed UL TX	dBm	θ
power		

Table 8.4.2.1.2: UE parameters for Random Access test

Table 8.4.2.1.3: SS parameters for Random Access test

Parameter	Unit	Value
Primary CPICH DL TX power	dBm	-8
UL interference	dBm	-92
SIR in open loop power	d₿	-10
control (Constant value)		
AICH Power Offset	dB	θ

8.4.2.1.4.2 Procedure

- 1) Set the TX output level of the SS to obtain \hat{I}_{or} at the UE antenna connector. \hat{I}_{or} shall be according to table 8.4.2.1.1.
- 2)Measure the first PRACH preamble output power, the each power difference for preamble ramping and the power difference between 10th preamble PRACH and message part of the UE according to annex B.
- 3) Measure the number of the preamble part and the message part by using a spectrum analyzer.

8.4.2.1.5 Test requirements

The absolute power and the relative power shall meet the requirements in the minimum requirements in clause 8.4.2.1.2. The accuracy of the first preamble as specified in clause 6.4.1.1 of TS 25.101 [1] shall not be verified in this test. It is verified under the section 5.4.1, Open loop power control.

The UE shall stop transmitting preambles upon a ACK on the AICH has been received and then transmit a message. The UE shall transmit 10 preambles and 1 message.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.4.2.2 Correct behaviour when receiving an NACK

8.4.2.2.1 Definition and applicability

The random access procedure is used when establishing the layer 1 communication between the UE and UTRAN. The random access shall provide a fast access but without disturbing ongoing connections. The random access is specified in clause 6 of TS 25.214 and the control of the RACH transmission is specified in clause 11.2 of TS 25.321. A random access transmit sequence is described in clause 6.7.2 of TS 25.303.

8.4.2.2.2 Minimum Requirements

The UE shall stop transmitting preambles upon a NACK on the AICH has been received and then repeat the ramping-procedure when the back off timer T_{B01} expires.

The UE shall transmit 10 preambles in the first ramping cycle and no transmission shall be done by the UE within 100 ms after the NACK has been transmitted by the SS. Then the UE shall start the second preamble ramping cycle.

The normative reference for this requirements is TS 25.133 [2] clauses 6.3.2 and A.6.2.2.2.

8.4.2.2.3 Test purpose

The purpose of this test is to verify that the behaviour of the random access procedure is according to the requirements.

8.4.2.2.4 Method of test

8.4.2.2.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1) Connect the SS to the UE antenna connector as shown in figure A.8. A spectrum analyzer is set to 0 span mode.

2)A call is set up according to the Generic call setup procedure. The test parameters are set up according to table 8.4.2.1.1, table 8.4.2.1.2 and table 8.4.2.1.3. The PRACH procedure within the call setup is used for the test. It is necessary that an NACK on the AICH shall be transmitted after 10 preambles have been received by the SS.

See TS 34.108 [3] for details regarding generic call setup procedure.

8.4.2.2.4.2 Procedure

1)Set the TX output level of the SS to obtain \hat{I}_{or} at the UE antenna connector. \hat{I}_{or} shall be according to table 8.4.2.1.1.

2)Measure the number of the preamble part and the time delay between 10th preamble in the first ramping cycle and first preamble in the second ramping cycle by using a spectrum analyzer.

8.4.2.2.5 Test requirements

The UE shall stop transmitting preambles upon a NACK on the AICH has been received and then repeat the ramping-procedure when the back off timer T_{B01} expires.

The UE shall transmit 10 preambles in the first ramping cycle and no transmission shall be done by the UE within 100 ms after the NACK has been transmitted by the SS. Then the UE shall start the second preamble ramping cycle.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.4.2.3 Correct behaviour at Time-out

8.4.2.3.1 Definition and applicability

The random access procedure is used when establishing the layer 1 communication between the UE and UTRAN. The random access shall provide a fast access but without disturbing ongoing connections. The random access is specified in clause 6 of TS 25.214 and the control of the RACH transmission is specified in clause 11.2 of TS 25.321. A random access transmit sequence is described in clause 6.7.2 of TS 25.303.

8.4.2.3.2 Minimum Requirements

The UE shall stop transmit preambles when reaching the maximum number of preambles allowed in a cycle. The UE shall then repeat the ramping procedure until the maximum number of preamble ramping cycles are reached. No-ACK/NACK shall be sent by SS during this test.

The UE shall transmit 2 preambles cycles, consisting of 12 preambles in each preamble cycle.

The normative reference for this requirements is TS 25.133 [2] clauses 6.3.2 and A.6.2.2.3.

8.4.2.3.3 Test purpose

The purpose of this test is to verify that the behaviour of the random access procedure is according to the requirements.

8.4.2.3.4 Method of test

8.4.2.3.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1)Connect the SS to the UE antenna connector as shown in figure A.8. A spectrum analyzer is set to 0 span mode.

2)A call is set up according to the Generic call setup procedure. The test parameters are set up according to table 8.4.2.1.1, table 8.4.2.1.3 and table 8.4.2.1.4. The PRACH procedure within the call setup is used for the test. It is necessary that SS shall transmit no AICH.

See TS 34.108 [3] for details regarding generic call setup procedure.

Parameter	Unit	Value
Access Service Class		-
(ASC#0)		
-	01	4
- Persistence value		
Maximum number of preamble		2
ramping cycles (M_{max}).		
Maximum number of		12
preambles in one preamble-		
ramping cycle		
(Preamble Retrans Max)		
The backoff time T _{B01}	ms	N/A
-N _{B01min=} N _{B01max}	#TTI	10
Power step when no	d₿	3
acquisition indicator is		
received		
(Power offset P0)		
Power offset between the last	d₿	θ
transmitted preamble and the		
control part of the message		
(Power offset P p-m)	10	
Maximum allowed UL TX	dBm	21
power		

Table 8.4.2.1.4: UE parameters for correct behaviour at Time-out test

8.4.2.3.4.2 Procedure

1)Set the TX output level of the SS to obtain \hat{I}_{or} at the UE antenna connector. \hat{I}_{or} shall be according to table 8.4.2.1.1.

2)Measure the number of the preamble part by using a spectrum analyzer.

8.4.2.3.5 Test requirements

The UE shall stop transmit preambles when reaching the maximum number of preambles allowed in a cycle. The UE shall then repeat the ramping procedure until the maximum number of preamble ramping cycles are reached. No-ACK/NACK shall be sent by SS during this test.

The UE shall transmit 2 preambles cycles, consisting of 12 preambles in each preamble cycle.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.4.2.4 Correct behaviour when reaching maximum transmit power

8.4.2.4.1 Definition and applicability

The random access procedure is used when establishing the layer 1 communication between the UE and UTRAN. The random access shall provide a fast access but without disturbing ongoing connections. The random access is specified in clause 6 of TS 25.214 and the control of the RACH transmission is specified in clause 11.2 of TS 25.321. A random access transmit sequence is described in clause 6.7.2 of TS 25.303.

8.4.2.4.2 Minimum Requirements

The UE shall not exceed the maximum allowed UL TX power configured by the SS. No ACK/NACK shall be sent by SS during this test.

The absolute power of any preambles belonging to the first or second preamble cycle shall not exceed 0 dBm with more than specified in section 6.5 of TS 25.133.

The normative reference for this requirements is TS 25.133 [2] clauses 6.3.2 and A.6.2.2.4.

8.4.2.4.3 Test purpose

The purpose of this test is to verify that the PRACH power settings are within specified limits.

8.4.2.4.4 Method of test

8.4.2.4.4.1 Initial condition

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1) Connect the SS to the UE antenna connector as shown in figure A.1.

2) A call is set up according to the Generic call setup procedure. The test parameters are set up according to table 8.4.2.1.1, table 8.4.2.1.2 and table 8.4.2.1.3. The PRACH procedure within the call setup is used for the test. It is necessary that SS shall transmit no AICH.

See TS 34.108 [3] for details regarding generic call setup procedure.

8.4.2.4.4.2 Procedure

1) Set the TX output level of the SS to obtain \hat{I}_{or} at the UE antenna connector. \hat{I}_{or} shall be according to table 8.4.2.1.1.

2) Measure the all PRACH preamble output power of the UE according to annex B.

8.4.2.4.5 Test requirements

The UE shall not exceed the maximum allowed UL TX power configured by the SS. No ACK/NACK shall be sent by SS during this test.

The absolute power of any preambles belonging to the first or second preamble cycle shall not exceed 0 dBm with more than the tolerance specified in section 6.5 of TS 25.133.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.4.3 Transport format combination selection in UE

8.4.3.1 Interactive or Background, PS, UL: 64 kbps

8.4.3.1.1 Definition and applicability

When the UE estimates that a certain TFC would require more power than the maximum transmit power, it shall limit the usage of transport format combinations for the assigned transport format set, according to the functionality specified in section 11.4 in TS25.321 [13]. This in order to make it possible for the network operator to maximise the coverage. Transport format combination selection is described in section 11.4 of TS 25.321 [13].

8.4.3.1.2 Minimum requirements

The UE shall continuously evaluate based on the *Elimination, Recovery* and *Blocking* criteria defined below, how TFCs on an uplink DPDCH can be used for the purpose of TFC selection. The evaluation shall be performed for every TFCin the TFCS using the estimated UE transmit power of a given TFC. The UE transmit power estimation for a given TFC shall be made using the UE transmitted power measured over the measurement period, defined in 9.1.6.1 of TS 25.133-[2] as one slot, and the gain factors of the corresponding TFC.

The UE shall consider the *Elimination* criterion for a given TFC to be detected if the estimated UE transmit powerneeded for this TFC is greater than the Maximum UE transmitter power for at least X out of the last Y successivemeasurement periods immediately preceding evaluation. The MAC in the UE shall consider that the TFC is in Excess-Power state for the purpose of TFC selection.

MAC in the UE shall indicate the available bit rate for each logical channel to upper layers within T_{notify} from the moment the *Elimination* criterion was detected.

The UE shall consider the *Recovery* criterion for a given TFC to be detected if the estimated UE transmit power needed for this TFC has not been greater than the Maximum UE transmitter power for the last Z successive measurement periods immediately preceding evaluation. The MAC in the UE shall consider that the TFC is in Supported state for the purpose of TFC selection.

MAC in the UE shall indicate the available bitrate for each logical channel to upper layers within T_{notify} from the moment the *Recovery* criterion was detected.

The evaluation of the *Elimination* criterion and the *Recovery* criterion shall be performed at least once per radio frame.

The definitions of the parameters X,Y and Z which shall be used when evaluating the *Elimination* and the *Recovery* eriteria when no compressed mode patterns are activated are given in Table 8.4.3.1.1.

Table 8.4.3.1.1: X, Y, Z parameters for TFC selection

×	¥	Z
15	30	30

The UE shall consider the *Blocking* criterion for a given TFC to be fulfilled at the latest at the start of the longest uplink-TTI after the moment at which the TFC will have been in Excess Power state for a duration of:

 $-(T_{notify} + T_{modify} + T_{L1 proc})$

where:

-T_{notify} equals 15 ms

- T_{adapt max} equals MAX(T_{adapt 1}, T_{adapt 2}, ..., T_{adapt N})

- N equals the number of logical channels that need to change rate

— T_{adapt_n} equals the time it takes for higher layers to provide data to MAC in a new supported bitrate, for logical channel n. Table 8.4.3.1.2 defines T_{adapt} times for different services. For services where no codec is used T_{adapt} shall be considered to be equal to 0 ms.

Table 8.4.3.1.2: Tadapt

Service	T _{adapt} [ms]
UMTS AMR	40
UMTS AMR2	60

- T_{TTI} equals the longest uplink TTI of the selected TFC (ms).

The Maximum UE transmitter power is defined as follows

— Maximum UE transmitter power = MIN(Maximum allowed UL TX Power, UE maximum transmit power)

where

- Maximum allowed UL TX Power is set by SS and defined in TS 25.331 [8], and

— UE maximum transmit power is defined by the UE power class, and specified in TS 25.101 [1].

The normative reference for these requirements is TS 25.133 [2] clauses 6.4.2 and A.6.4.1.

8.4.3.1.3 Test purpose

The purpose is to verify the UE blocks (stops using) a currently used TFC when the UE output power is not sufficient to support that TFC. The test will verify the general requirement on TFC selection in section 8.4.3.1.2 for a RAB intended for packet data services, i.e. Interactive or Background, PS, UL: 64kbps as defined in TS 34.108 [3].

8.4.3.1.4 Method of test

8.4.3.1.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in Table 8.4.3.1.3, 8.4.3.1.4 and Table 8.4.3.1.5 below. The test consists of 2 successive time periods, with a time duration of T1 and T2 respectively.

Details on the UL reference RAB in table 8.4.3.1.3 and 8.4.3.1.4 can be found in TS 34.108 [3] section "Interactive or background / UL:64 DL: 64 kbps / PS RAB + UL:3.4 DL:3.4 kbps SRBs for DCCH".

Table 8.4.3.1.3: UL reference RAB, Interactive or Background

	TFI	64 kbps RAB (20ms TTI)	DCCH 3.4kbps (40ms TTI)
TES	TF0, bits	0x336	0x148
	TF1, bits	1x336	1x148
	TF2, bits	2x336	N/A
	TF3, bits	3x336	N/A
	TF4, bits	4x336	N/A

Table 8.4.3.1.4: UL TFCI

TECI	(64 kbps RAB, DCCH)
UL_TFC0	(TF0, TF0)
UL_TFC1	(TF0, TF1)
UL_TFC2	(TF1, TF0)
UL_TFC3	(TF1, TF1)
UL_TFC4	(TF2, TF0)
UL_TFC5	(TF2, TF1)
UL_TFC6	(TF3, TF0)
UL_TFC7	(TF3, TF1)
UL_TFC8	(TF4, TF0)
UL_TFC9	(TE1, TE1)

Table 8.4.3.1.5: General test parameters

Parameter	Unit	Value	Comment
TFCS size		10	
TECS		UL_TFC0, UL_TFC1, UL_TFC2,	
		UL_TFC3, UL_TFC4, UL_TFC5,	
		UL_TFC6, UL_TFC7, UL_TFC8,	
		UL_TFC9	
Power Control		On	
Active cell		Cell 1	
Maximum allowed UL TX	dBm	21	
power			
T 4	S	30	
T2	S	10	
Propagation condition		AWGN	

The radio conditions in the test shall be sufficient, so that decoding of the TPC commands can be made without errors.

The amount of available user data shall be sufficient to allow uplink transmission at the highest bit rate (UL_TFC8 or UL_TFC9) during the entire test and it shall be ensured that the UE is using UL_TFC8 or UL_TFC9 at the end of T1.

8.4.3.1.4.2 Procedure

- 1) The UE is switched on.
- 2) The SS shall signal to the UE the allowed TFCS according to table 8.4.3.1.5.
- 3) For T1=30 secs the SS shall command the UE output power to be between 14 and 15 dB below the UE Maximum allowed UL Tx power (table 8.4.3.1.5).
- 4) The SS shall start sending continuously TPC_emd=1 to the UE for T2=10 sees (see NOTE).
- 5) The time from the beginning of T2 until the UE blocks (stops using) UL_TFC8 and UL_TFC9 shall be measured by the SS. The UE shall stop using UL_TFC8 and UL_TFC9 within 140 ms from beginning of time period T2.
- 6) Repeat steps 3 5 [50] times.
- NOTE: This will emulate that UL_TFC8 to UL_TFC9 can not be supported because the UE reaches the maximum UL Tx power and still SS is sending power up commands.

8.4.3.1.5 Test requirements

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

Note: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.5 Timing and Signalling Characteristics

8.5.1 UE Transmit Timing

8.5.1.1 Definition and applicability

The UE transmit timing is defined as the timing of the uplink DPCCH/DPDCH frame relative to the first detected path-(in time) of the corresponding downlink DPCCH/DPDCH frame from the reference cell. The reference point is the antenna connector of the UE.

The requirements and this test apply to all types of UTRA of the FDD UE.

8.5.1.2 Minimum requirements

The UE transmission timing error shall be less than or equal to ± 1.5 chips. The reference point for the UE initialtransmit timing control requirement shall be the time when the first detected path (in time) of the correspondingdownlink DPCCH/DPDCH frame is received from the reference cell plus T₀ chips. T₀ is defined in TS25.211 [19].

When the UE is not in soft handover, the reference cell shall be the one the UE has in the active set. The cell, which is selected as a reference cell, shall remain as a reference cell even if other cells are added to the active set. In case that the reference cell is removed from the active set the UE shall start adjusting its transmit timing no later than the time when the whole active set update message is available at the UE taking the RRC procedure delay into account.

The UE shall be capable of changing the transmission timing according the received downlink DPCCH/DPDCH frame. The maximum amount of the timing change in one adjustment shall be 1/4 chip.

The minimum adjustment rate shall be 233ns per second. The maximum adjustment rate shall be $\frac{14}{10}$ chip per 200 ms. Inparticular, within any given 800*d ms period, the UE transmit timing shall not change in excess of $\pm d$ chip from the timing at the beginning of this 800*d ms period, where $0 \le d \le 1/4$.

The normative reference for this requirement is TS 25.133 [2] clause 7.1.2.

8.5.1.3 Test purpose

The purpose of this test is to verify that the UE initial transmit timing accuracy, maximum amount of timing change in one adjustment, minimum and maximum adjustment rate are within the limits specified in 8.5.1.2.

8.5.1.4 Method of test

8.5.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

For this test, two cells on the same frequency are used.

- 1) Connect the test system to the UE antenna connector as shown in figure A.1.
- 2) A call is set up with Cell 1 according to the Generic call setup procedure. The test parameters are set up according to table 8.5.1.1.

Table 8.5.1.1: Test parameters for UE Transmit Timing requirements

Parameter	Unit	Level
DPCH_Ec/ lor, Cell 1 and Cell 2	dB	-17
CPICH_Ec/ lor, Cell 1 and Cell 2	d₽	-10
PCCPH_Ec/ lor, Cell 1 and Cell 2	dB	-12
SCH_Ec/ lor, Cell 1 and Cell 2	dB	-12
PICH_Ec/ lor, Cell 1 and Cell 2	dB	-15
OCNS_Ec/ lor, Cell 1 and Cell 2	dB	-1.05
Î _{or,} Cell 1	dBm/3.84 MHz	-96
Î _{er,} -Cell-2	dBm/3.84 MHz	-99
Information data rate	kbps	12.2
Relative delay of path received from cell	μs	+/-2
2 with respect to cell 1		
Propagation condition	4	WGN

8.5.1.4.2 Procedure

- a) After a connection is set up with cell 1, the test system shall verify that the UE transmit timing offset is within T_0 ± 1.5 chips with respect to the first detected path (in time) of the downlink DPCCH/DPDCH of cell 1.
- b) Test system introduces cell 2 into the test system at delay +2 μ s from cell 1.
- c) Test system verifies that cell 2 is added to the active set.
- d) Test system shall verify that the UE transmit timing offset is still within $T_0 \pm 1.5$ chips with respect to the firstdetected path (in time) of the downlink DPCCH/DPDCH of cell 1.
- e) Test system switches Tx timing of cell 2 to a delay of 2 µs with respect to cell 1.
- f) Test system verifies cell 2 remains in the active set.
- g) Test system shall verify that the UE transmit timing offset is still within $T_0 \pm 1.5$ chips with respect to the firstdetected path (in time) of the downlink DPCCH/DPDCH of cell 1.
- h) Test system stops sending cell 1 signals.

i) Void

- j) Test system verifies that UE transmit timing adjustment starts no later than the time when the whole active setupdate message is available at the UE taking the RRC procedure delay into account. The adjustment step sizeand the adjustment rate shall be according to the requirements in clause 8.5.1.2 until the UE transmit timingoffset is within $T_0 \pm 1.5$ chips with respect to the first detected path (in time) of the downlink DPCCH/DPDCHof cell 2.
- k) Test system shall verify that the UE transmit timing offset stays within $T_0 \pm 1.5$ chips with respect to the firstdetected path (in time) of the downlink DPCCH/DPDCH of cell 2.
- 1) Test system starts sending cell 1 signal again with its original timing.
- m) Test system verifies that cell 1 is added to the active set.
- n) Test system verifies that the UE transmit timing is still within $T_0 \pm 1.5$ chips with respect to the first detected path (in time) of the downlink DPCCH/DPDCH of cell 2.
- o) Test system stops sending cell 2 signals.
- p) Void.
- q) Test system verifies that UE transmit timing adjustment starts no later than the time when the whole active setupdate message is available at the UE taking the RRC procedure delay into account. The adjustment step sizeand the adjustment rate shall be according to the requirements in clause 8.5.1.2 until the UE transmit timingoffset is within $T_0 \pm 1.5$ chips with respect to the first detected path (in time) of the downlink DPCCH/DPDCHof cell 1.
- r) Test system shall verify that the UE transmit timing offset stays within $T_0 \pm 1.5$ chips with respect to the firstdetected path (in time) of the downlink DPCCH/DPDCH of cell 1.

8.5.1.5 Test requirements

- 1) In step a), d) and g), UE transmit timing offset shall be within $T_0 \pm 1.5$ chips with respect to the first detected path (in time) of the downlink DPCCH/DPDCH of cell 1.
- 2) In step j), the adjustment step size and the adjustment rate shall meet the requirements specified in 8.5.1.2 until the UE transmit timing offset is within $T_0 \pm 1.5$ chips with respect to the first detected path (in time) of the downlink DPCCH/DPDCH of cell 2.
- 3) In step k) and n), UE transmit timing offset shall be within $T_0 \pm 1.5$ chips with respect to the first detected path (in time) of the downlink DPCCH/DPDCH of cell 2.
- 4) In step q), the adjustment step size and the adjustment rate shall meet the requirements specified in 8.5.1.2 until the UE transmit timing offset is within $T_0 \pm 1.5$ chips with respect to the first detected path (in time) of the downlink DPCCH/DPDCH of cell 1.
- 5) In step r), UE transmit timing offset shall be within $T_0 \pm 1.5$ chips with respect to the first detected path (in time) of the downlink DPCCH/DPDCH of cell 1.
- NOTE 1: The above Test Requirement differs from the Test Requirement of TS 25.133 [2] clause A7.1.2, from which the requirements for the test system are subtracted to give the above Test Requirement.
- NOTE 2: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.6 UE Measurements Procedures

8.6.1 FDD intra frequency measurements

8.6.1.1 Event triggered reporting in AWGN propagation conditions

8.6.1.1.1 Definition and applicability

In the event triggered reporting period the measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay-excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay-uncertainty is twice the TTI of the uplink DCCH.

The requirements and this test apply to the FDD UE.

8.6.1.1.2 Minimum requirements

The UE shall be able to identify and decode the SFN of a new detectable cell belonging to the monitored set within-

$$----T_{\text{identify intra}} = Max \left\{ 800, T_{\text{basic identify FDD, intra}} - \frac{T_{\text{Measurement Period, Intra}}}{T_{\text{Intra}}} \right\} ms$$

A cell shall be considered detectable when CPICH Ec/Io \geq -20 dB, SCH_Ec/Io \geq -20 dB for at least one channel tap and SCH_Ec/Ior is equally divided between primary synchronisation code and secondary synchronisation code. When L3-filtering is used an additional delay can be expected.

In the CELL_DCH state the measurement period for intra frequency measurements is 200 ms. When no transmission gap pattern sequence is activated, the UE shall be capable of performing CPICH measurements for 8 identified intrafrequency cells of the monitored set and/or the active set, and the UE physical layer shall be capable of reportingmeasurements to higher layers with the measurement period of 200 ms. When one or more transmission gap pattern sequences are activated, the UE shall be capable of performing CPICH measurements for at least Y_{measurement intra-}cells , where Y_{measurement intra} is defined in the following equation. The measurement accuracy for all measured cells shall be asspecified in the sub clause 9.1.1 and 9.1.2 of TS 25.133 [2]. If the UE has identified more than Y_{measurement intra-}cells, the UE shall perform measurements of all identified cells but the reporting rate of CPICH measurements of cells from UE physical layer to higher layers may be decreased.

$$-Y_{\text{measurement intra}} = Floor \begin{cases} X_{\text{basic measurement FDD}} & T_{\text{Intra}} \\ T_{\text{Measurement Period, Intra}} \end{cases}$$

where

-X_{basic measurement FDD} = 8 (cells)

T_{Measurement Period Intra} = 200 ms. The measurement period for Intra frequency CPICH measurements.

 T_{Intra}: This is the minimum time that is available for intra frequency measurements, during the measurement period with an arbitrarily chosen timing.

 $-T_{\text{basic_identify_FDD, intra}} = 800 \text{ ms.}$ This is the time period used in the intra frequency equation where the maximumallowed time for the UE to identify a new FDD cell is defined.

The event triggered measurement reporting delay, on cells belonging to monitored set, measured without L3 filtering, shall be less than the above defined T identify intra defined above.

If a cell, belonging to monitored set, which the UE has identified and measured at least once over the measurementperiod, becomes undetectable for a period < 5 seconds and then the cell becomes detectable again and triggers an event, the measurement reporting delay shall be less than $T_{Measurement - Period - Intra}$ ms provided the timing to that cell has notchanged more than +/ 32 chips, the UE CPICH measurement capabilities defined above are valid and L3 filtering hasnot been used. When L3 filtering is used an additional delay can be expected.

If a cell belonging to monitored set has been detectable at least for the time period $T_{identify_intra}$ and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than $T_{Measurement_Period Intra}$ when the L3-filter has not been used and the UE CPICH measurement capabilities defined above are valid.

The normative reference for these requirements is TS 25.133 [2] clauses 8.1.2.2 and A.8.1.1.

8.6.1.1.3 Test purpose

To verify that the UE meets the minimum requirements.

8.6.1.1.4 Method of test

8.6.1.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in table 8.6.1.1.1 and 8.6.1.1.2 below. In the measurement control information it isindicated to the UE that event triggered reporting with Event 1A and 1B shall be used. The test consists of threesuccessive time periods, with a time duration of T1, T2 and T3 respectively. During time duration T1, the UE shall nothave any timing information of cell 2.

Table 8.6.1.1.1: General test parameters for Event triggered reporting in AWGN propagation conditions

Parameter	Unit	Value Value	Comment
DCH parameters		DL and UL Reference	As specified in C.3.1 and C.2.1
-		Measurement Channel 12.2 kbps	
Power Control		On	
Active cell		Cell 1	
Reporting range	dB	3	Applicable for event 1A and 1B
Hysteresis	dB	0	
₩.		4	Applicable for event 1A and 1B
Reporting deactivation		θ	Applicable for event 1A
threshold			
Time to Trigger	ms	θ	
Filter coefficient		θ	
Monitored cell list size		24	
T1	S	5	
T2	S	5	
T3	S	5	

conditions								
Parameter	Unit	Cell 1				Cell 2		
		T1	T2	T3	T 4	T2	T3	
CPICH_Ec/lor	dB		-10			-10		
PCCPCH_Ec/lor	dB		-12			-12		
SCH_Ec/lor	dB		-12			-12		
PICH_Ec/lor	dB		-15			-15		
DPCH_Ec/lor	dB		-17			N/A		
OCNS			-1.049		-0.941			
$\frac{\hat{H}_{or}}{H_{oc}}$	d₿	θ	6.97	θ	-Infinity	5.97	-Infinity	
<u> </u>	dBm/3.84- MHz	-70						
CPICH_Ec/lo	dB	-13	-13	-13	-Infinity	-14	-Infinity	
Propagation Condition		AWGN						

Table 8.6.1.1.2: Cell specific test parameters for Event triggered reporting in AWGN propagation conditions

8.6.1.1.4.2 Procedure

- 1. The RF parameters are set up according to T1.
- 2. The UE is switched on.
- 3. A call is set up according to the test procedure specified in TS 34.108 [3] sub clause 7.3.2.3.
- 4. SS shall transmit a MEASUREMENT CONTROL message.
- 5. After 5 seconds from the beginning of T1, the SS shall switch the power settings from T1 to T2.
- 6. UE shall transmit a MEASUREMENT REPORT message triggered by event 1A. The measurement reporting delay from the beginning of T2 shall be less than 880 ms. If the UE fails to report the event within the required delay, then a failure is recorded. If the reporting delay for this event is within the required limit, the number of succesfull tests is increased by one.
- 7. After 5 seconds from the beginning of T2, the SS shall switch the power settings from T2 to T3.
- 8. UE shall transmit a MEASUREMENT REPORT message triggered by event 1B. The measurement reporting delay from the beginning of T3 shall be less than 280 ms. If the reporting delay for this event is within the required limit, the number of succesfull tests is increased by one.
- 9. After 5 seconds from the beginning of T3, the UE is switched off. Any timing information of cell 2 is deleted in the UE.
- 10. Repeat steps 1-9 [50] times.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message:

Information Element/Group name	Value/Remark
Message Type (10.2.17)	
UE information elements	
RRC transaction identifier	θ
-Integrity check info	Not Present
Measurement Information elements	
Measurement Identity	4
Measurement Command (10.3.7.46)	Modify
Measurement Reporting Mode (10.3.7.49)	AM RLC
-Measurement Report Transfer Mode -Periodical Reporting / Event Trigger Reporting Mode	· · · · · · · · · · · · · · · · · · ·
-Fenducal Reporting / Event Inggel Reporting Mode -Additional measurements list (10.3.7.1)	Event trigger Not Present
-CHOICE Measurement type	Intra-frequency measurement
-Intra-frequency measurement (10.3.7.36)	
-Intra-frequency measurement objects list (10.3.7.33)	Not Present
-Intra-frequency measurement quantity (10.3.7.38)	
-Filter coefficient (10.3.7.9)	θ
	FDD
-Measurement quantity	CPICH_Ec/N0
-Intra-frequency reporting quantity (10.3.7.41)	
-Reporting quantities for active set cells (10.3.7.5)	
-SFN-SFN observed time difference reporting indicator	No report
-Cell synchronisation information reporting indicator	TRUE (Note 1)
Cell Identity reporting indicator	TRUE
	FDD
	TRUE
	TRUE
-Pathloss reporting indicator	TRUE
-Reporting quantities for monitored set cells (10.3.7.5)	
-SFN-SFN observed time difference reporting indicator	No report
-Cell synchronisation information reporting indicator	TRUE (Note 1)
	TRUE
	FDD
	TRUE
	TRUE
-Pathloss reporting indicator	TRUE
-Reporting quantities for detected set cells (10.3.7.5)	Not Present
-Reporting cell status (10.3.7.61)	Not Present
Measurement validity (10.3.7.51)	Not Present
	Intra-frequency measurement reporting-
late frequency measurement reporting exiteria (40.2.7.20)	criteria
Intra-frequency measurement reporting criteria (10.3.7.39)	
-Parameters required for each event	Event 1A
Intra-frequency event identity	Event TA Monitored set cells
 Triggering condition 2 Reporting Range Constant 	Monitorea set cells 3 dB
	o up Not Present
	FDD
	1.0
Hysteresis	0 dB
-Threshold used frequency	Not Present
	θ
-Replacement activation threshold	Not Present
-Time to trigger	0 ms
	Not present
-Reporting interval	0 ms (Note 2)
-Reporting cell status	Not Present
-Intra-frequency event identity	Event 1B
-Triggering condition 1	Active set cells and monitored set cells
-Reporting Range Constant	3 dB
	Not Present
	FDD
- ₩	1.0
	0 dB

Information Element/Group name	Value/Remark
	Not Present
 Reporting deactivation threshold 	Not Present
Replacement activation threshold	Not Present
Time to trigger	0 ms
	Not Present
Reporting interval	0 ms (note 2)
	Not Present
Physical channel information elements	
-DPCH compressed mode status info (10.3.6.34)	Not Present
Note 1: The SFN-CFN observed time difference is calculated i	
in the IE "Cell synchronisation information ", TS 25.33	
8.6.7.7, this IE is included in MEASUREMENT REPORT	
reporting indicator" in IE "Cell reporting quantities" TS	25.331, clause 10.3.7.5 is set to TRUE in
MEASUREMENT CONTROL.	
Note 2: Reporting interval = 0 ms means no periodical reportir	ng

MEASUREMENT REPORT message for Intra frequency test cases

This message is common for all intra frequency test cases is described in Annex I.

8.6.1.1.5 Test requirements

For the test to pass, the total number of successful tests shall be at least 90%, with a confidence level of [FFS]% of the cases. The number of successful tests shall be on an event level, i.e. the SS shall check how many events are reported successfully out of the total number of events checked.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.6.1.2 Event triggered reporting of multiple neighbours in AWGN propagation condition

8.6.1.2.1 Definition and applicability

In the event triggered reporting period the measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay-excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay-uncertainty is twice the TTI of the uplink DCCH.

The requirements and this test apply to the FDD UE.

8.6.1.2.2 Minimum requirements

The requirements are the same as in sub clause 8.6.1.1.2.

The normative reference for these requirements is TS 25.133 [2] clauses 8.1.2.2 and A.8.1.2.

8.6.1.2.3 Test purpose

To verify that the UE meets the minimum requirements.

8.6.1.2.4 Method of test

8.6.1.2.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The initial test parameters are given in table 8.6.1.2.1.

able 8.6.1.2.1: Cell specific initial test parameters for Event triggered reporting of multip neighbours in AWGN propagation conditions						
Parameter	Unit	Cell 1	Cell 2	Cell3		
		TO	TO	TO		
CPICH_Ec/lor	d₿	-10	-10	-10		
PCCPCH_Ec/lor	dB	-12	-12	-12		
SCH_Ec/lor	d₿	-12	-12	-12		
PICH_Ec/lor	dB	-15	-15	-15		
DPCH_Ec/lor	d₿	-17	N/A	N/A		
OCNS_Ec/lor	dB	-1.049	-0.941	-0.941		
$\frac{\hat{H}_{or}}{I_{oc}}$	d₿	θ	-Inf	-Inf		
H _{oc}	dBm/ 3.84 MHz		-85			
CPICH_Ec/lo	d₿	-13	-Inf	-Inf		
Propagation Condition			AWGN			

The test parameters are given in table 8.6.1.2.2 and 8.6.1.2.3. In the measurement control information it is indicated to the UE that event triggered reporting with Event 1A, 1C and 1B shall be used and the periodical reporting of the events is not applied. The test consists of four successive time periods, with a time duration of T1, T2, T3 and T4 respectively. In the initial condition before the time T1 only Cell1 is active.

Table 8.6.1.2.2: General test parameters for Event triggered reporting of multiple neighbours in-AWGN propagation conditions

Parameter	Unit	Value	Comment
DCH parameters		DL and UL Reference Measurement Channel 12.2 kbps	As specified in C.3.1 and C.2.1
Power Control		- On	
Active cell		Cell 1	
Reporting range	dB	3	Applicable for event 1A and 1B
Hysteresis	dB	θ	
₩		4	Applicable for event 1A and 1B
Replacement- activation threshold		θ	Applicable for event 1C
Reporting- deactivation- threshold		0	Applicable for event 1A
Time to Trigger	ms	θ	
Filter coefficient		θ	
Monitored cell list- size		32	
1 4	S	10	
T2	S	10	
13	S	5	
T 4	S	10	

Parameter	Unit		Cell 1				Ce	 2			Ce	113	
		T1	T2	T3	T 4	T 4	T2	13	T4	T 4	T2	T3	T 4
CPICH_Ec/lor	d₿	-10				- 4	θ		-10				
PCCPCH_Ec/ lor	dB	-12				-1	2			-1	2		
SCH_Ec/lor	dB	-12					-1	2			-1	2	
PICH_Ec/lor	d₿	-15				-15		-15					
DPCH_Ec/lor	d₿		-17				N/A			N/A			
OCNS_Ec/lor	d₿		-1.(349			-0. {	-0.941		-0.941			
$\frac{\hat{I}_{or}}{I_{oc}}$	d₿	6.97	6.93	5.97	6.12	-Inf	9.43	6.97	7.62	5.97	6.93	-Inf	5.62
-I _{oc}	dBm/ 3.84 MHz	-85											
CPICH_Ec/lo	d₿	-13 -16 -14 -15.5 -Inf -13.5 -13 -14 -14 -16 -Inf -16					-16						
Propagation Condition			AWGN										

Table 8.6.1.2.3: Cell specific test parameters for Event triggered reporting of multiple neighbours in AWGN propagation condition

8.6.1.2.4.2 Procedure

- 1) The RF parameters are set up according to T0.
- 2) The UE is switched on.
- 3) A call is set up according to the test procedure specified in TS 34.108 [3] sub clause 7.3.2.3.
- 4) SS shall transmit a MEASUREMENT CONTROL message.
- 5) 5 seconds after step4 has completed, the SS shall switch the power settings for T0 to T1.
- 6) UE shall transmit a MEASUREMENT REPORT message for Cell 3 triggered by event 1A. The measurementreporting delay from the beginning of T1 shall be less than 880 ms. If the UE fails to report the event within the required delay, then a failure is recorded. If the reporting delay for this event is within the required limit, the number of succesfull tests is increased by one.
- 7) UE may transmit a MEASUREMENT REPORT message for Cell 3 triggered by event 1C. In case it doesn't this shall not be considered as a failure.
- 8) After 10 seconds from the beginning of T1, the SS shall switch the power settings from T1 to T2.
- 9) UE shall transmit a MEASUREMENT REPORT message for Cell 2 triggered by event 1C. The measurementreporting delay from the beginning of T2 shall be less than 880 ms. If the UE fails to report the event within the required delay, then a failure is recorded. If the reporting delay for this event is within the required limit, the number of succesfull tests is increased by one.
- 10) UE shall transmit a MEASUREMENT REPORT message for Cell 2 triggered by event 1A. The measurement reporting delay from the beginning of T2 shall be less than 880 ms. If the UE fails to report the event within the required delay, then a failure is recorded. If the reporting delay for this event is within the required limit, the number of succesfull tests is increased by one.
- 11)UE may transmit a MEASUREMENT REPORT message for Cell 3 triggered by event 1C. In case it doesn't this shall not be considered as a failure.
- 12) After 10 seconds from the beginning of T2, the SS shall switch the power settings from T2 to T3.
- 13)UE shall transmit a MEASUREMENT REPORT message for Cell 3 triggered by event 1B. The measurementreporting delay from the beginning of T3 shall be less than 280 ms. If the UE fails to report the event within the required delay, then a failure is recorded. If the reporting delay for this event is within the required limit, the number of succesfull tests is increased by one.
- 14) UE may transmit a MEASUREMENT REPORT message for Cell 2 triggered by event 1C. In case it doesn't this shall not be considered as a failure.

15) After 5 seconds from the beginning of T3, the SS shall switch the power settings from T3 to T4.

- 16)UE shall transmit a MEASUREMENT REPORT message for Cell 3 triggered by event 1A. The measurement reporting delay from the beginning of T4 shall be less than 280 ms. If the reporting delay for this event is within the required limit, the number of successful tests is increased by one.
- 17)UE may transmit a MEASUREMENT REPORT message for Cell 2 triggered by event 1C. In case it doesn't this shall not be considered as a failure.
- 18) UE may transmit a MEASUREMENT REPORT message for Cell 3 triggered by event 1C. In case it doesn't this shall not be considered as a failure.
- 19)After 10 seconds from the beginning of T4, the UE is switched off.
- 20)Repeat steps 1 19 [50] times.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message:

Information Element/Group name Aessage Type (10.2.17)	Value/Remark
Hessage Type (10.2.17) JE information elements	
-RRC transaction identifier	0 Not Present
-Integrity check info Measurement Information elements	Not Present
-Measurement Identity	4
-Measurement Command (10.3.7.46)	Modify
-Measurement Reporting Mode (10.3.7.49)	
Measurement Report Transfer Mode	AM RLC
Periodical Reporting / Event Trigger Reporting Mode	Event trigger
-Additional measurements list (10.3.7.1)	Not Present
-CHOICE Measurement type	Intra-frequency measurement
Intra-frequency measurement (10.3.7.36)	
Intra-frequency measurement objects list (10.3.7.33)	Not Present
Intra-frequency measurement quantity (10.3.7.38)	
Filter coefficient (10.3.7.9)	0
	FDD
Measurement quantity	CPICH_Ec/N0
Intra-frequency reporting quantity (10.3.7.41)	
Reporting quantities for active set cells (10.3.7.5)	
	No report
Cell synchronisation information reporting indicator	TRUE (Note 1)
 Cell Identity reporting indicator 	TRUE
	FDD
	TRUE
	TRUE
Pathloss reporting indicator	TRUE
Reporting quantities for monitored set cells (10.3.7.5)	
	No report
Cell synchronisation information reporting indicator	TRUE (Note 1)
	TRUE
	FDD
	TRUE
	TRUE
	TRUE
Reporting quantities for detected set cells (10.3.7.5)	Not Present
Reporting cell status (10.3.7.61)	Not Present
Measurement validity (10.3.7.51)	Not Present
	Intra-frequency measurement reporting
	criteria
Intra-frequency measurement reporting criteria (10.3.7.39)	
	3
	Event 1A
Triggering condition 2	Monitored set cells
	Monitorea set cells 3 dB
 —-Reporting Range Constant —-Cells forbidden to affect Reporting Range 	Not Present
— -Cells fordidden to anect Reporting Range — -W	
	1 .0
	0 dB
	Not Present
	θ Nat Descent
	Not Present
	0 ms
	Not Present
	0 ms (Note 2)
	Not Present
-Intra-frequency event identity	Event 1B
	Active set cells and monitored set cells
	3 dB
	Not Present
_ - ₩	1.0
	0 dB
-Threshold used frequency	Not Present
	Not Present
	Not Present
	Not Present

Information Element/Group name	Value/Remark
	Not Present
	0 ms (Note 2)
	Not Present
Intra-frequency event identity	Event 1C
	Active set cells and monitored set cells
	Not present
	Not Present
	Not present
Hysteresis	0 dB
	Not Present
	Not present
	θ
	0 ms
Amount of reporting	Not Present
	0 ms (Note 2)
	Not Present
Physical channel information elements	
-DPCH compressed mode status info (10.3.6.34)	Not Present
NOTE 1: The SFN-CFN observed time difference is calcu	ulated from the OFF and Tm parameters contained- 25.331, clause 10.3.7.6. According to TS 25.331,
ASUREMENT REPORT message for Intra frequency	test cases
	and a final in America T
	escribed in Annex I.
6.1.2.5 Test requirements	escribed in Annex I.
	e at least 90%, with a confidence level of [FFS]% of th
6.1.2.5 Test requirements or the test to pass, the total number of successful tests shall be ses. The number of succesfull tests shall be on an event level ccessfully out of the total number of events checked. NOTE: If the above Test Requirement differs from the N	e at least 90%, with a confidence level of [FFS]% of th l, i.e. the SS shall check how many events are reported Ainimum Requirement then the Test Tolerance applied his test is defined in clause F.2 and the explanation of
6.1.2.5 Test requirements or the test to pass, the total number of successful tests shall be ses. The number of successfull tests shall be on an event level ccessfully out of the total number of events checked. NOTE: If the above Test Requirement differs from the A for this test is non-zero. The Test Tolerance for t how the Minimum Requirement has been relaxed	e at least 90%, with a confidence level of [FFS]% of th l, i.e. the SS shall check how many events are reported Ainimum Requirement then the Test Tolerance applied his test is defined in clause F.2 and the explanation of

8.6.1.3.1 Definition and applicability

In the event triggered reporting period the measurement reporting delay is defined as the time between any event thatwill trigger a measurement report until the UE starts to transmit over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delayexcludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH . The delay uncertainty is twice the TTI of the uplink DCCH.

The requirements and this test apply to the FDD UE.

8.6.1.3.2 Minimum requirements

The requirements are the same as in sub clause 8.6.1.1.2.

The normative reference for these requirements is TS 25.133 [2] clauses 8.1.2.2 and A.8.1.3.

8.6.1.3.3 Test purpose

To verify that the UE meets the minimum requirements.

8.6.1.3.4 Method of test

8.6.1.3.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in table 8.6.1.3.1 and 8.6.1.3.2. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 1A and 1B shall be used and the periodical reporting of the events is not applied. The test consists of four successive time periods, with a time duration of T1, T2, T3 and T4 respectively. In the initial condition before the time T1 only Cell1 is active.

Table 8.6.1.3.1: General test parameters for Event triggered reporting of two detectable neighbours in AWGN propagation condition

Parameter	Unit	Value	Comment
DCH parameters		DL and UL Reference	As specified in C.3.1 and C.2.1
		Measurement Channel 12.2	
		kbps	
Power Control		On	
Active cell		Cell 1	
Reporting range	dB	3	Applicable for event 1A and 1B
Hysteresis	dB	θ	
₩.		4	Applicable for event 1A and 1B
Reporting deactivation-		θ	Applicable for event 1A
threshold			
Time to Trigger	ms	θ	
Filter coefficient		θ	
Monitored cell list size		32	
T1	5	10	
T2	5	10	
13	8	10	
T 4	9	10	

Table 8.6.1.3.2: Cell specific test parameters for Event triggered reporting of two detectable neighbours in AWGN propagation condition

Parameter	Unit		Ce	#1-1			Ce	 2			Ce	ll3	
		T 4	T2	T3	T4	T1	T2	T3	T4	T 4	T2	T3	T4
CPICH_Ec/lor	d₿	-10				-10			-10				
PCCPCH_Ec/ lor	d₿	-12			- 12 - 12			-12					
SCH_Ec/lor	d₿	-12				4	12		-12				
PICH_Ec/lor	d₿	-15			-15				-15				
DPCH_Ec/lor	d₿	-17			N/A			N/A					
OCNS_Ec/lor	d₿		-1.	049		-0.941				-0.941			
$\frac{\hat{H}_{or}}{I_{oc}}$	d₿	14.5 5	28.5 1	14.4 5	28.5 1	-Inf	27.5 1	13.9 5	21.5 1	8.05	21.5 1	13.9 5	27.5 1
I_{oc}	dBm/ 3.84- MHz				84 - 85								
CPICH_Ec/lo	d₿	-11	-13	-14.5	-13	-Inf	-14.0	-15	-20	-17.5	-20	-15	-14
Propagation Condition			AWGN										

8.6.1.3.4.2 Procedure

1) The RF parameters are set up according to T1.

2) The UE is switched on.

3) A call is set up according to the test procedure specified in TS 34.108 [3] sub clause 7.3.2.3.

- 4) SS shall transmit a MEASUREMENT CONTROL message.
- 5) After 10 seconds from the beginning T1, the SS shall switch the power settings from T1 to T2.
- 6) UE shall transmit a MEASUREMENT REPORT message for Cell 2 triggered by event 1A. The measurement reporting delay from the beginning of T2 shall be less than 880 ms. If the UE fails to report the event within the required delay, then a failure is recorded. If the reporting delay for this event is within the required limit, the number of succesfull tests is increased by one.
- 7) After 10 seconds from the beginning T2, the SS shall switch the power settings from T2 to T3.
- 8) UE shall transmit a MEASUREMENT REPORT message for Cell 3 triggered by event 1A. The measurement reporting delay from the beginning of T3 shall be less than 280 ms. If the UE fails to report the event within the required delay, then a failure is recorded. If the reporting delay for this event is within the required limit, the number of succesfull tests is increased by one.
- 9) After 10 seconds from the beginning T3, the SS shall switch the power settings from T3 to T4.
- 10) UE shall transmit a MEASUREMENT REPORT message for Cell 2 triggered by event 1B. The measurement reporting delay from the beginning of T4 shall be less than 280 ms. If the reporting delay for this event is within the required limit, the number of succesfull tests is increased by one.
- 11)After 10 seconds, the UE is switched off.
- 12)Repeat steps 1 11 [50] times.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message:

Information Element/Group name Message Type (10.2.17)	Value/Remark
Wessage Type (10.2.17) UE information elements	
RRC transaction identifier	θ
-Rec transaction denuner -Integrity check info	Vot Present
Measurement Information elements	
	1
-Measurement Identity	4 Modify
-Measurement Command (10.3.7.46)	Modify
-Measurement Reporting Mode (10.3.7.49) Measurement Report Transfer Mode	AM RLC
	Event trigger
Periodical Reporting / Event Trigger Reporting Mode	Not Present
-Additional measurements list (10.3.7.1) -CHOICE Measurement type	
	Intra-frequency measurement
-Intra-frequency measurement (10.3.7.36)	Net Dresent
Intra-frequency measurement objects list (10.3.7.33)	Not Present
Intra-frequency measurement quantity (10.3.7.38)	
Filter coefficient (10.3.7.9)	0
	CPICH_Ec/N0
-Intra-frequency reporting quantity (10.3.7.41)	
-Reporting quantities for active set cells (10.3.7.5)	
	No report
Cell synchronisation information reporting indicator	TRUE (Note 1)
 Cell Identity reporting indicator 	TRUE
	FDD
	TRUE
 CPICH RSCP reporting indicator 	TRUE
Pathloss reporting indicator	TRUE
-Reporting quantities for monitored set cells (10.3.7.5)	
	No report
Cell synchronisation information reporting indicator	TRUE (Note 1)
	TRUE
	FDD
	TRUE
	TRUE
	TRUE
	Not Present
Reporting cell status (10.3.7.61)	Not Present
Measurement validity (10.3.7.51)	Not Present
	Intra-frequency measurement reporting-
	criteria
Intra-frequency measurement reporting criteria (10.3.7.39)	unterna
 Parameters required for each event 	2
	Event 1A
-Intra-frequency event identity	
	Monitored set cells
	3 dB
	Not Present
	FDD
— - ₩	1.0
	0 dB
-Threshold used frequency	Not Present
Reporting deactivation threshold	θ
-Replacement activation threshold	Not Present
-Time to trigger	0 ms
	Not present
	0 ms (Note 2)
	Not Present
-Intra-frequency event identity	Event 1B
-Triggering condition 1	Active set cells and monitored set cells
	3 dB
Cells forbidden to affect Reporting Range	Not Present
	FDD
—— -Primary CPICH info (10.3.6.60) —— -W	10
-107	1.0
¥	0 dB

Information Element/Group name	Value/Remark					
	Not Present					
Reporting deactivation threshold	Not Present					
Replacement activation threshold	Not Present					
	0 ms					
	Not Present					
Reporting interval	0 ms (Note 2)					
	Not Present					
Physical channel information elements						
-DPCH compressed mode status info (10.3.6.34)	Not Present					
NOTE 1: The SFN-CFN observed time difference is calculated	from the OFF and Tm parameters contained					
in the IE "Cell synchronisation information ", TS 25.33	1, clause 10.3.7.6. According to TS 25.331,					
8.6.7.7, this IE is included in MEASUREMENT REPO	RT if IE "Cell synchronisation information					
reporting indicator" in IE "Cell reporting quantities" TS	25.331, clause 10.3.7.5 is set to TRUE in					
MEASUREMENT CONTROL.						
NOTE 2: Reporting interval = 0 ms means no periodical reportir	ng.					

MEASUREMENT REPORT message for Intra frequency test cases

This message is common for all intra frequency test cases is described in Annex I.

8.6.1.3.5 Test requirements

For the test to pass, the total number of successful tests shall be at least 90%, with a confidence level of [FFS]% of the cases. The number of successful tests shall be on an event level, i.e. the SS shall check how many events are reported successfully out of the total number of events checked.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.6.1.4 Correct reporting of neighbours in fading propagation condition

8.6.1.4.1 Definition and applicability

In the event triggered reporting period the measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay-excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay-uncertainty is twice the TTI of the uplink DCCH.

The requirements and this test apply to the FDD UE.

8.6.1.4.2 Minimum requirements

The requirements are the same as in sub clause 8.6.1.1.2.

The normative reference for these requirements is TS 25.133 [2] clauses 8.1.2.2 and A.8.1.4.

8.6.1.4.3 Test purpose

To verify that the UE meets the minimum requirements and also verify that the UE performs sufficient layer 1 filtering of the measurements. The test is performed in fading propagation conditions.

8.6.1.4.4 Method of test

8.6.1.4.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in table 8.6.1.4.1 and 8.6.1.4.2. In the measurement control information it is indicated to the UE that event triggered reporting with Event 1A and Event 1B shall be used. The test consists of two successive time periods, each with time duration of T1 and T2 respectively.

The TTI of the uplink DCCH shall be 20ms.

Table 8.6.1.4.1: General test parameters for correct reporting of neighbours in fading propagation condition

Parameter	Unit	Value	Comment
DCH parameters		DL and UL Reference Measurement Channel 12.2 kbps	As specified in C.3.1 and C.2.1
Power Control		On	
Active cell		Cell 1	
Reporting range	dB	θ	Applicable for event 1A and 1B
Hysteresis	dB	θ	
₩.		4	Applicable for event 1A and 1B
Reporting deactivation- threshold		θ	Applicable for event 1A
Time to Trigger	ms	120	
Filter coefficient		0	
Monitored cell list size		24	Signalled before time T1.
T 4	\$	200	
T2	8	201	

Table 8.6.1.4.2: Cell specific test parameters for correct reporting of neighbours in fadingpropagation condition

Parameter	Unit	Cell 1		Cell 2	
		T1	T2	T1	T2
CPICH_Ec/lor	d₿	-10		-10	
PCCPCH_Ec/lor	d₿	-12		-12	
SCH_Ec/lor	d₿	-12		-12	
PICH_Ec/lor	d₿	-15		-15	
DPCH_Ec/lor	d₿	-17		N/A	
OCNS		-1.049		-0.941	
$\frac{\hat{I}_{or}}{I_{oc}}$	d₿	7.29	3.29	3.29	7.29
-I _{oc}	dBm/3.84- MHz	-70			
CPICH_Ec/lo	d₿	-12	-16	-16	-12
Propagation- Condition-	Case 5 as specified in table D.2.2.1				

8.6.1.4.4.2 Procedure

- 1) The RF parameters are set up according to T1.
- 2) The UE is switched on.
- 3) A call is set up in AWGN conditions, according to the test procedure specified in TS 34.108 [3] sub clause-7.3.2.3.
- 4) SS shall transmit a MEASUREMENT CONTROL message.
- 5) 5 seconds after step4 has completed, the fading simulator is switched on, configured with the settings described in the tables above at the beginning of T1.
- 6) UE shall start transmitting MEASUREMENT REPORT messages triggered by event 1A.
- 7) SS shall count the reports. The number of received event 1A reports shall be less than 60. If the SS fails to receive less than 60 event 1A reports, then then a failure is recorded. If the SS receives number of event 1A reports within the required limit, the number of succesfull tests is increased by one.

8) After 200 seconds from the beginning of T1, the SS shall switch the power settings from T1 to T2.

9) UE shall start transmitting MEASUREMENT REPORT messages triggered by event 1B.

10)During the first 1s of time period T2 no event reports shall be counted.

11)After the first 1s SS shall start counting the reports. The number of received event 1B reports shall be less than 60. If the SS receives number of event 1B reports within the required limit, the number of successfull tests is increased by one.

12) After 201 seconds from the beginning of T2, the UE is switched off.

13)Repeat steps 1 12 [50] times.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message:

Information Element/Group name Message Type (10.2.17)	Value/Remark
Wessage Type (10.2.17) UE information elements	
RRC transaction identifier	θ
-Rec transaction identifier -Integrity check info	Not Present
Heasurement Information elements	
	1
-Measurement Identity	4 Modify
-Measurement Command (10.3.7.46)	Modify
-Measurement Reporting Mode (10.3.7.49)	AM RI C
Measurement Report Transfer Mode	Event trigger
Periodical Reporting / Event Trigger Reporting Mode	
-Additional measurements list (10.3.7.1) -CHOICE Measurement type	Not Present
	Intra-frequency measurement
-Intra-frequency measurement (10.3.7.36)	Net Dresent
-Intra-frequency measurement objects list (10.3.7.33)	Not Present
-Intra-frequency measurement quantity (10.3.7.38)	
Filter coefficient (10.3.7.9)	0
	CPICH_Ec/N0
-Intra-frequency reporting quantity (10.3.7.41)	
-Reporting quantities for active set cells (10.3.7.5)	
	No report
	TRUE (Note 1)
	TRUE
	FDD
-CPICH Ec/N0 reporting indicator	TRUE
 CPICH RSCP reporting indicator 	TRUE
-Pathloss reporting indicator	TRUE
-Reporting quantities for monitored set cells (10.3.7.5)	
	No report
Cell synchronisation information reporting indicator	TRUE (Note 1)
	TRUE
	FDD
	TRUE
	TRUE
	TRUE
	Not Present
Reporting cell status (10.3.7.61)	Not Present
Measurement validity (10.3.7.51)	Not Present
	Intra-frequency measurement reporting-
	criteria
Intra-frequency measurement reporting criteria (10.3.7.39)	unterna
	2
Parameters required for each event	∠ Event 1A
	Active set cells and monitored set cells
	0 dB
	Not Present
	FDD
— - ₩	1.0
	0 dB
-Threshold used frequency	Not Present
Reporting deactivation threshold	θ
-Replacement activation threshold	Not Present
-Time to trigger	120 ms
	Not present
-Reporting interval	0 ms (Note 2)
	Not Present
-Intra-frequency event identity	Event 1B
-Triggering condition 1	Active set cells and monitored set cells
	0-dB
	Not Present
	FDD
Primary CPICH info (10.3.6.60)	1.0
- ₩	1.0 0 dB

Information Element/Group name	Value/Remark		
	Not Present		
	Not Present		
Replacement activation threshold	Not Present		
Time to trigger	120 ms		
	Not Present		
Reporting interval	0 ms (Note 2)		
	Not Present		
Physical channel information elements			
-DPCH compressed mode status info (10.3.6.34)	Not Present		
Note 1: The SFN-CFN observed time difference is calculated from the OFF and Tm parameters contained			
in the IE "Cell synchronisation information ", TS 25.331, clause 10.3.7.6. According to TS 25.331,			
8.6.7.7, this IE is included in MEASUREMENT REPORT if IE "Cell synchronisation information-			
reporting indicator" in IE "Cell reporting quantities" TS 25.331, clause 10.3.7.5 is set to TRUE in			
MEASUREMENT CONTROL.			
Note 2: Reporting interval = 0 ms means no periodical reportir	ng		

MEASUREMENT REPORT message for Intra frequency test cases

This message is common for all intra frequency test cases is described in Annex I.

8.6.1.4.5 Test requirements

For the test to pass, the total number of successful tests shall be at least 90%, with a confidence level of [FFS]% of the cases. The number of successful tests shall be on an event level, i.e. the SS shall check every time first if the number of the event 1A events is within the required limit, and then, check if the number of the event 1B events is within the required limit.

8.6.2 FDD inter frequency measurements

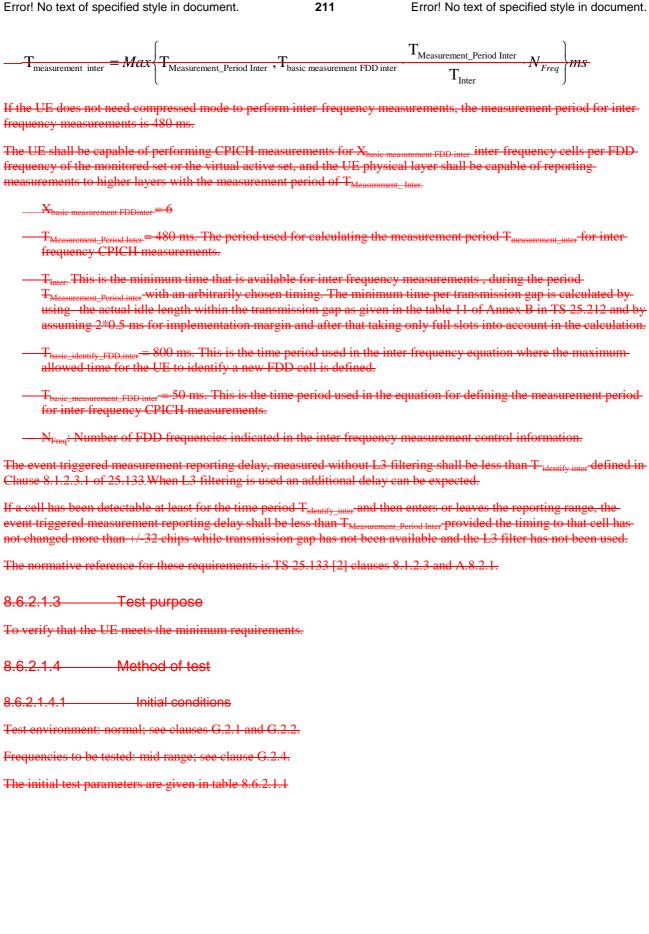
8.6.2.1 Correct reporting of neighbours in AWGN propagation condition

8.6.2.1.1 Definition and applicability

In the event triggered reporting period the measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit the measurement report over the Uu interface. This-requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This-measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH.

The requirements and this test apply to the FDD UE.

8.6.2.1.2 Minimum requirements


The UE shall be able to identify a new detectable cell belonging to the monitored set within-

$$---T_{\text{identify inter}} = Max \left\{ 5000, T_{\text{basic identify FDD, inter}} + \frac{T_{\text{Measurement Period, Inter}}}{T_{\text{Inter}}} + N_{Freq} \right\} ms$$

A cell shall be considered detectable when CPICH Ec/Io ≥ 20 dB, SCH_Ec/Io ≥ -17 dB for at least one channel tap and SCH_Ec/Ior is equally divided between primary synchronisation code and secondary synchronisation code. When L3-filtering is used an additional delay can be expected.

When transmission gaps are scheduled for FDD inter frequency measurements the UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in sub-clause 9.1.1 and 9.1.2 of 25.133 with measurement period given by

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

Parameter	Unit	Cell 1	Cell 2	Cell3
		T0	TO	10
CPICH_Ec/lor	dB	-10	-10	-10
PCCPCH_Ec/lor	dB	-12	-12	-12
SCH_Ec/lor	dB	-12	-12	-12
PICH_Ec/lor	dB	-15	-15	-15
DPCH_Ec/lor	dB	-17	N/A	N/A
OCNS_Ec/lor	dB	-1.049	-0.941	-0.941
$\frac{\hat{I}_{or}}{I_{oc}}$	dB	θ	-Inf	-Inf
-I _{oc}	d Bm/3 .84 MHz		-70	
CPICH_Ec/lo	dB	-13	-Inf	-Inf
Propagation Condition			AWGN	

Table 8.6.2.1.1: Cell specific initial test parameters for Correct reporting of neighbours in AWGN propagation condition

The test consists of two successive time periods, with a time duration T1 and T2. The test parameters are given in tables 8.6.2.1.2 and 8.6.2.1.3 below. In the measurement control information it is indicated to the UE that event triggered reporting with Event 1A and 2C shall be used. The CPICH Ec/IO of the best cell on the unused frequency shall be reported together with Event 2C reporting.

Table 8.6.2.1.2: General test parameters for Correct reporting of neighbours in AWGN propagation condition

Parameter	Unit	Value	Comment
DCH parameters		DL and UL Reference Measurement- Channel 12.2 kbps	As specified in C.3.1 and C.2.1
Power Control		- On	
Compressed mode		C.5.2 set 1	As specified in C.5.
Active cell		Cell 1	
Threshold non used	dB	-18	Absolute Ec/I0 threshold for event 2C
frequency			
Reporting range	dB	4	Applicable for event 1A
Hysteresis	dB	θ	
₩		4	Applicable for event 1A
W non-used frequency		4	Applicable for event 2C
Reporting deactivation- threshold		θ	Applicable for event 1A
Time to Trigger	ms	θ	
Filter coefficient		θ	
Monitored cell list size		24 on channel 1 16 on channel 2	Measurement control information is- sent before the compressed mode- pattern starts.
T 4	8	10	
T2	8	5	

Parameter	Unit	Cell 1		Cell 2		Cell 3	
		T1	T2	T1	T2	T1	T2
UTRA RF Channel- Number		Chai	nnel 1	Char	nel 1	Cha	innel 2
CPICH_Ec/lor	dB	-10		-10		-10	
PCCPCH_Ec/lor	dB	-12		-12		-12	
SCH_Ec/lor	dB	-12		-12		-12	
PICH_Ec/lor	dB	-15		-15		-15	
DPCH_Ec/lor	dB	-17		N/A		N/A	
OCNS		-1.049		-0.941		-0.941	
$\frac{\hat{H}_{or}}{H_{oc}}$	dB	θ	4.39	-Infinity	2.39	-1.8	-1.8
-I _{oc}	dBm/3.84 MHz	-70				-70	·
CPICH_Ec/lo	dB	-13	-13	-Infinity	-15	-14	-14
Propagation- Condition-	AWGN						

Table 8.6.2.1.3: Cell Specific parameters for Correct reporting of neighbours in AWGN propagationcondition

8.6.2.1.4.2 Procedure

- 1) The RF parameters are set up according to T0.
- 2) The UE is switched on.
- 3) A call is set up according to the test procedure specified in TS 34.108 [3] sub clause 7.3.2.3.
- 4) SS shall transmit a MEASUREMENT CONTROL message (inter frequency).
- 5) SS shall transmit a MEASUREMENT CONTROL message (intra frequency).
- 6) SS shall transmit PHYSICAL CHANNEL RECONFIGURATION message.
- 7) UE shall transmit PHYSICAL CHANNEL RECONFIGURATION COMPLETE message.
- 8) 5 seconds after step7 has completed, the SS shall switch the power settings from T0 to T1.
- 9) UE shall transmit a MEASUREMENT REPORT message (inter frequency) triggered by event 2C. The measurement reporting delay from the beginning of T1 shall be less than 9.08 seconds. If the UE fails to report the event within the required delay, then a failure is recorded. If the reporting delay for this event is within the required limit, the number of succesfull tests is increased by one.

10) After 10 seconds from the beginning of T1, the SS shall switch the power settings from T1 to T2.

11)UE shall transmit a MEASUREMENT REPORT message (intra frequency) triggered by event 1A. The measurement reporting delay from the beginning of T2 shall be less than 1036.2 ms. If the reporting delay for-this event is within the required limit, the number of succesfull tests is increased by one.

12) After 5 seconds from the beginning of T2, the UE is switched off.

13)Repeat steps 1 12 [50] times.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

PHYSICAL CHANNEL RECONFIGURATION message for Inter frequency measurement:

Information Element	Value/Remark
Message Type	
UE Information Elements	
-RRC transaction identifier	θ.
-Integrity check info	Not Present
-Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	Not Present
	Not Present
New C-RNTI	
	Not Present
-RRC State Indicator	CELL_DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	
-CN Information info	Not Present
UTRAN mobility information elements	
-URA identity	Not Present
RB information elements	
-Downlink counter synchronisation info	Not Present
PhyCH information elements	
-Frequency info	Not Present
Uplink radio resources	
-Maximum allowed UL TX power	Not Present
Downlink radio resources	
-CHOICE mode	FDD
-Downlink PDSCH information	Not Present
-Downlink FDSCH Information	NULFICSCIII
	Net Deserve
-Downlink DPCH info common for all RL	Not Present
-CHOICE mode	FDD
DPCH compressed mode info	
-Transmission gap pattern sequence	
	4
	Activate
	(Current CFN + (256 - TTI/10msec))mod 25
 Transmission gap pattern sequence 	
configuration parameters	
	FDD measurement
	Not present
	4
TGL1	7
	Not Present
	0
	3
-TGPL2	Not Present
	Mode 0
	Mode 0
	UL and DL
	SF/2
	SF/2
	B
	3.0
	3.0
	Not Present
	Not Present
	Not Present
	Not Present Not Present
	Not Present
-N Identify abort -T Reconfirm abort -TX Diversity Mode -SDT information	Not Present- Not Present-
	Not Present- Not Present- Not Present-
	Not Present- Not Present- Not Present-
	Not Present Not Present Not Present Not Present
	Not Present- Not Present- Not Present-
	Not Present Not Present Not Present Not Present

PDSCH code mapping	Not Present
Downlink DPCH info for each RL	
	FDD
Primary CPICH usage for channel estimation	Primary CPICH may be used
	Set to value Default DPCH Offset Value (as
	currently stored in SS) mod 38400
Secondary CPICH info	Not Present
Secondary scrambling code	Not Present
	128
Code number	θ
	No code change
	θ
	Not Present
Closed loop timing adjustment mode	Not Present
SCCPCH Information for FACH	Not Present

MEASUREMENT CONTROL message (inter frequency):

Information Element/Group name	Value/Remark
Message Type (10.2.17) UE information elements	
-RRC transaction identifier	Α
-RRC transaction dentiner	Not Present
Measurement Information elements	
-Measurement Identity	2
-Measurement Command (10.3.7.46)	∠ Setup
-Measurement Command (10.3.7.49) -Measurement Reporting Mode (10.3.7.49)	ociup
-Measurement Report Transfer Mode	AM RLC
	Event trigger
-Additional measurements list (10.3.7.1)	Not Present
-CHOICE Measurement type	Inter-frequency measurement
Inter-frequency measurement (10.3.7.16)	inter-nequency measurement
Inter-frequency measurement (10.3.7.10) Inter-frequency measurement objects list (10.3.7.13)	
	Not Present
	HOLFICSCHL
Inter frequency cell id	Α
Frequency info	₩
	FDD
	Not Present
	Same frequency as "Channel2" in Table-
	8.6.2.1.3
	0.0.2.1.0
	Not Present
	Not Present
	TRUE
- Primary scrambling code	Set to Primary scrambling code of Cell3
	Set to Primary CPICH Tx Power of Cell3
	described in Table 8.6.2.1.3
	FALSE
	Set to Cell Selection and Re-selection inf
	of Cell3
Cell for measurement	Not Present
Inter-frequency measurement quantity (10.3.7.18)	Not Present
Intra-frequency reporting criteria	
Intra-frequency measurement quantity (10.3.7.38)	
Filter coefficient (10.3.7.9)	θ
	CPICH_Ec/N0
Inter-frequency reporting criteria	
	θ
	EDD
	CPICH_Ec/N0
Inter-frequency reporting quantity (10.3.7.21)	
	FALSE
-Frequency quality estimate	FALSE
-Non frequency related cell reporting quantities (10.3.7.5)	
-SFN-SFN observed time difference reporting indicator	No report
Cell synchronisation information reporting indicator	TRUE (Note 1)
	TRUE
	FDD
	TRUE
	TRUE
Pathloss reporting indicator	TRUE
Reporting cell status (10.3.7.61)	Not Present
-Measurement validity (10.3.7.51)	Not Present
	Inter-frequency measurement reporting
	criteria
Inter-frequency measurement reporting criteria (10.3.7.19)	
	4
	Event 2C
	Not present

Information Element/Group name	Value/Remark				
	0 dB				
	0 ms				
	Report all active set cells + cells within				
	monitored set on used frequency				
	3				
Parameters required for each non-used frequency					
	-18 dB				
	4				
Physical channel information elements					
-DPCH compressed mode status info (10.3.6.34)	Not Present				
NOTE 1: The SFN-CFN observed time difference is calculated from the OFF and Tm parameters contained-					
in the IE "Cell synchronisation information ", TS 25.331, clause 10.3.7.6. According to TS 25.331,					
8.6.7.7, this IE is included in MEASUREMENT REPORT if IE "Cell synchronisation information-					
reporting indicator" in IE "Cell reporting quantities" TS 25.331, clause 10.3.7.5 is set to TRUE in MEASUREMENT CONTROL.					

MEASUREMENT CONTROL message (intra frequency):

Information Element/Group name	Value/Remark
Message Type (10.2.17) UE information elements	
UE Information elements - RRC transaction identifier	θ
-Integrity check info	U Not Present
Heasurement Information elements	
-Measurement Identity	4
-Measurement Command (10.3.7.46)	+ Modify
-Measurement Reporting Mode (10.3.7.49)	wouny
-Measurement Report Transfer Mode	AM RLC
-Periodical Reporting / Event Trigger Reporting Mode	Event trigger
-Additional measurements list (10.3.7.1)	Not Present
-CHOICE Measurement type	Intra-frequency measurement
-Intra-frequency measurement (10.3.7.36)	milla nequency measurement
-Intra-frequency measurement objects list (10.3.7.33)	Not Present
-Intra-frequency measurement quantity (10.3.7.38)	
-Filter coefficient (10.3.7.9)	θ
	FDD
-Measurement quantity	CPICH_Ec/N0
-Intra-frequency reporting quantity (10.3.7.41)	
-Reporting quantities for active set cells (10.3.7.5)	
-SFN-SFN observed time difference reporting indicator	No report
-Cell synchronisation information reporting indicator	TRUE (Note 1)
-Cell Identity reporting indicator	TRUE
	FDD
-CPICH Ec/N0 reporting indicator	TRUE
	TRUE
-Pathloss reporting indicator	TRUE
-Reporting quantities for monitored set cells (10.3.7.5)	
-SFN-SFN observed time difference reporting indicator	No report
Cell synchronisation information reporting indicator	TRUE (Note 1)
	TRUE
	FDD
-CPICH Ec/N0 reporting indicator	TRUE
	TRUE
Pathloss reporting indicator	TRUE
-Reporting quantities for detected set cells (10.3.7.5)	Not Present
-Reporting cell status (10.3.7.61)	Not Present
Measurement validity (10.3.7.51)	Not Present
CHOICE report criteria	Intra-frequency measurement reporting
	criteria
-Intra-frequency measurement reporting criteria (10.3.7.39)	
Parameters required for each event	4
-Intra-frequency event identity	Event 1A
-Triggering condition 2	Monitored set cells
	4 dB
-Cells forbidden to affect Reporting Range	Not Present
	FDD
-Primary CPICH info (10.3.6.60)	
_ _₩	1.0
Hysteresis	0 dB
	Not Present
 Reporting deactivation threshold 	θ
-Replacement activation threshold	Not Present
	0 ms
	Not Present
-Reporting interval	0 ms (Note 2)
-Reporting cell status	Not Present
Physical channel information elements	
-DPCH compressed mode status info (10.3.6.34)	Not Present
Note 1: The SFN-CFN observed time difference is calculated	
in the IE "Cell synchronisation information ", TS 25.33	31, clause 10.3.7.6. According to TS 25.331
in the IE "Cell synchronisation information ", TS 25.33 8.6.7.7, this IE is included in MEASUREMENT REPC	ORT if IE "Cell synchronisation information
in the IE "Cell synchronisation information ", TS 25.33	ORT if IE "Cell synchronisation information

MEASUREMENT REPORT message for Inter frequency test cases

MEASUREMENT REPORT message for Intra frequency test cases

These messages are common for all inter and intra frequency test cases and are described in Annex I.

8.6.2.1.5 Test requirements

For the test to pass, the total number of successful tests shall be at least 90%, with a confidence level of [FFS]% of the cases. The number of successful tests shall be on an event level, i.e. the SS shall check how many events are reported successfully out of the total number of events checked.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.6.3 TDD measurements

8.6.3.1 Correct reporting of TDD neighbours in AWGN propagation condition

8.6.3.1.1 Definition and applicability

In the event triggered reporting period the measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH.

The requirements and this test apply to the combined FDD and TDD UE.

8.6.3.1.2 Minimum requirement

When transmission gaps are scheduled for inter frequency TDD measurements, the UE shall be able to identify a new detectable inter frequency TDD cell belonging to the monitored set within

$$---T_{\text{identify TDD inter}} = Max \left\{ 5000, N_{\text{basic identify TDD inter}} + \frac{T_{\text{Measurement Period TDD inter}}}{N_{\text{TDD inter}}} + \frac{N_{Freq}}{N_{Freq}} \right\}$$

If the UE does not need compressed mode to perform inter frequency TDD measurements, the UE shall be able toidentify a new detectable inter frequency TDD cell belonging to the monitored set within 5000 ms.

An inter-frequency TDD cell shall be considered detectable when P CCPCH Ec/Io \geq 8 dB and SCH_Ec/Io \geq 13 dB. When L3 filtering is used an additional delay can be expected.

When transmission gaps are scheduled for inter frequency TDD measurements the UE physical layer shall be capable of reporting measurements to higher layers with a measurement period as given by

$$T_{\text{measurement TDD inter}} = Max \left\{ T_{\text{Measurement Period TDD inter}}, N_{\text{basic measurement TDD inter}}, \frac{T_{\text{Measurement Period TDD inter}}}{N_{\text{TDD inter}}}, \frac{N_{\text{Freq}}}{N_{\text{Freq}}} \right\} ms$$

If the UE does not need compressed mode to perform inter frequency TDD measurements, the measurement period forinter frequency TDD measurements shall be 480 ms.

The UE shall be capable of performing P CCPCH RSCP measurements for $X_{\text{basic measurement TDD inter}}$ inter frequency TDD cells per TDD frequency of the monitored set and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of $T_{\text{measurement TDD inter}}$.

where

 $-X_{\text{basic measurement TDD inter}} = 6$ (cells)

- T_{Measurement_Period TDD inter} = 480 ms. The time period used for calculating the measurement period T_{measurement_TDD inter}for inter frequency P CCPCH RSCP measurements.
- N_{TDD^{-inter.} This is the smallest resulting integer number of transmission gap patterns in a transmission gap patternsequence assigned to UE by UTRAN for inter frequency TDD measurements during the time period-T_{Measurement_Period TDD inter} with an arbitrarily chosen timing.}
- N_{basie_identify_TDD inter} =80. This is the number of transmission gap patterns in a transmission gap pattern sequence for inter-frequency TDD measurements during the time period used in the inter frequency TDD equation where the maximum allowed time for the UE to identify a new inter frequency TDD cell is defined.
- N_{basie_measurement_TDD inter} = 5. This is the number of transmission gap patterns in a transmission gap pattern sequence for inter frequency TDD measurements during the time period T_{Measurement_Period TDD inter} with an arbitrarily chosen timing that is used in the inter frequency TDD equation for defining where the measurementperiod for inter frequency P CCPCH RSCP measurements is defined.
- N_{free}: This is the number of TDD frequencies indicated in the inter frequency measurement control information.

The normative reference for this requirement is TS 25.133 [2] clauses 8.1.2.4 and A.8.3.1

8.6.3.1.3 Test purpose

To verify that the UE meets the minimum requirement.

8.6.3.1.4 Method of test

8.6.3.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

The test parameters are given in Table 8.6.3.1.1, 8.6.3.1.2 and 8.6.3.1.3. The test consists of 2 successive time periods, with a time duration T1 and T2. Two cells shall be present in the test, cell 1 being the UTRA FDD serving cell and cell-2 being a UTRA TDD neighbour cell on the unused frequency. All cells shall be synchronised, i.e. share the sameframe and timeslot timing.

In the measurement control information it is indicated to the UE that event triggered reporting with Event 2C shall beused. P CCPCH RSCP of the best cell on the unused frequency shall be reported together with Event 2C reporting. The Measurement control message shall be sent to the UE such that the delay between the end of the last received TTIcontaining the message and the beginning of T1 is at least equal to the RRC procedure delay as defined in [9].

The TTI of the uplink DCCH shall be 20 ms.

Parameter Unit		Unit	Value	Comment		
DCH parameters		parameters DL Reference Measurement- Channel 12.2 kbps		As specified in TS 34.121 Annex C		
Power	Control		On			
	lity value on- CH	BLER	0.01			
Compres	sed mode		A.22 set 3	As specified in TS 34.121 Annex C		
Initial	Active cell		Cell 1	FDD cell		
conditions	Neighbour- cell		Cell 2	TDD cell		
Final- condition	Active cell		Cell 1	FDD cell		
(Ç	d₿	θ	Cell individual offset. This value shall be used for all cells in the test.		
Hyste	eresis	dB	θ	Hysteresis parameter for event 2C		
Time to	- Trigger	ms	θ			
Threshold non-used frequency		dBm	-71	Applicable for Event 2C		
Filter coefficient			θ			
Monitored cell list size			6 FDD neighbours on Channel 1 6 TDD neighbours on Channel 2			
Ŧ	4	Ş	45			
T2 \$		<u>2</u> <u>\$</u> <u>10</u>				

Table 8.6.3.1.1: General test parameters for Correct reporting of TDD inter-frequency neighbours in AWGN propagation condition

Table 8.6.3.1.2: Cell 1 specific parameters for Correct reporting of TDD inter-frequency neighbours in AWGN propagation condition

Parameter	Unit	Cell 1			
		T1, T2			
UTRA RF Channel		Channel 1			
Number		Unani i i			
CPICH_Ec/lor	₿	-10			
P-CCPCH_Ec/lor	₿	-12			
SCH_Ec/lor	d₿	-12			
PICH_Ec/lor	₿	-15			
DPCH_Ec/lor	dB	Note 1			
OCNS_Ec/lor	₿	Note 2			
$\frac{\hat{I}_{or}}{I_{oc}}$	d₿	θ			
-I _{oc}	dBm/3.84- MHz	-70			
CPICH_Ec/lo	d₿	-13			
Propagation Condition	ition AWGN				
Note 1: The DPCH level is controlled by the power control loop					
Note 2 : The power of the OCNS channel that is added shall make the total					
power from th	power from the cell to be equal to l_{or}.				

Table 8.6.3.1.3: Cell 2 specific parameters for Correct reporting of TDD inter-frequency neighbours in AWGN propagation condition

Parameter	Unit	Cell 2				
DL timeslot number		0			B	
		T1	12	T1	T2	
UTRA RF Channel- Number		Channel 2				
P-CCPCH_Ec/lor	dB		3	n.	a.	
PICH_Ec/lor	d₿	n.	a.	-	3	
SCH_Ec/lor	d₿	_9				
SCH_t _{offset}	dB	10				
OCNS_Ec/lor	dB	-3.12				
P-CCPCH RSCP	dBm	-75 - 67 n.a.		n.a.		
$\frac{\hat{H}_{or}}{H_{oc}}$	d₿	-2 6 -2		6		
I_{oc}	dBm/3,84- MHz	-70				
Propagation Condition		AWGN				
Note that the transmit energy per PN chip for the SCH is averaged over the 256						
chip duration when the SCH is present in the time slot.						

8.6.3.1.4.2 Procedure

1) The RF parameters are set up according to T1.

- 2) The UE is switched on.
- 3) A call is set up according to the generic set up procedure specified in TS 34.108 [3] subclause 7.3.2.3.
- 4) SS shall transmit a MEASUREMENT CONTROL message.
- 5) SS shall transmit a PHYSICAL CHANNEL RECONFIGURATION message.
- 6) UE shall transmit a PHYSICAL CHANNEL RECONFIGURATION COMPLETE message
- 7) After 10 seconds from the beginning of T1, the SS shall switch the power settings from T1 to T2.
- 8) UE shall transmit a MEASUREMENT REPORT message triggered by event 2c for cell 2. The measurement reporting delay from the beginning of T2 shall be less than 9.2 s. If the UE fails to report the event within the required delay, then a failure is recorded. If the reporting delay for this event is within the required limit, the number of succesfull tests is increased by one.
- 9) After 10 seconds from the beginning of T3, the UE is switched off. Any timing information of cell 2 is deleted in the UE.

10)Repeat steps 1 9 [TBD] times.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message (step 4):

Information Element/Group name	Value/Remark
Message Type (10.2.17) HE information elements	
CE Information clements RRC transaction identifier	
-Integrity check info	0 Not Present
-Integrity check into Measurement Information elements	
	4
Measurement Identity	4
-Measurement Command (10.3.7.46)	Modify
-Measurement Reporting Mode (10.3.7.49) -Measurement Report Transfer Mode	AM RLC
-Neasurement Report mansier wode -Periodical Reporting / Event Trigger Reporting Mode	Event trigger
-Fendulcal Reporting / Event Inggel Reporting Wode -Additional measurements list (10.3.7.1)	Not Present
-CHOICE Measurement type	Inter-frequency measurement
-choice measurement (10.3.7.16)	inter-inequency measurement
Inter-frequency measurement (10.3.7.16) Inter-frequency measurement objects list (10.3.7.13)	
	No inter frequency cells removed
Inter-frequency cells	1 1
	+
— Frequency info (10.3.6.36) — -CHOICE <i>mod</i>e	
	Same frequency as channel 2 in Table
	Same requency as channel 2 in Table
	0.0.2.4.1.2
—-Cell individual offset	Not Present
	Not Present
-Read SEN indicator	
	TDD
	TDD
	$\frac{1}{2}$
	Set to cell parameters ID of cell 2
	FALSE
	Set to Primary CCPCH Tx power of cell 2
	as described in Table 8.6.2.4.1.2
	Not Present
	Not Present
-Cell for measurement	Not Present
-ter frequency measurement quantity (10.3.7.18)	
	Inter-frequency reporting criteria
	TDD
-Measurement quantity for frequency quality estimate	Primary CCPCH RSCP
-Inter-frequency reporting quantity (10.3.7.21)	
-Frequency quality estimate	
Non frequency related cell reporting quantities (10.3.7.5)	Ne report
	No report
Cell synchronisation information reporting indicator	FALSE
Cell identity reporting indicator	FALSE
	TDD
-Timeslot ISCP reporting indicator	FALSE
-Proposed TGSN Reporting required	FALSE
-Primary CCPCH RSCP reporting indicator	TRUE
-Pathloss reporting indicator	FALSE
-Reporting cell status (10.3.7.61)	Not Present
Measurement validity (10.3.7.51)	Not Present
CHOICE report criteria	Inter-frequency measurement reporting-
	criteria
-Inter-frequency measurement reporting criteria (10.3.7.19)	
-Parameters required for each event	4
-Intra-frequency event identity	Event 2C
-Threshold used frequency	Not Present
	Not Present
— -w ossu nequency — -Hystoresis — -Time to trigger	0 dB

Information Element/Group name	Value/Remark
	Report cells within active and/or monitored
	set on used frequency or within virtual
	active and/or monitored set on non-used
	frequency
	3
Parameters required for each non-used frequenc	
	-71
	4
Physical channel information elements	
-DPCH compressed mode status info (10.3.6.34)	Not Present

PHYSICAL CHANNEL RECONFIGURATION message (Step 6)

Information Element	Value/Remark
Message Type	
UE Information Elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
-Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	Not Present
-New U-RNTI	Not Present
-New C-RNTI	Not Present
-RRC State Indicator	CELL_DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	
-CN Information info	Not Present
UTRAN mobility information elements	
-URA identity	Not Present
RB information elements	
-Downlink counter synchronisation info	Not Present
PhyCH information elements	
Product information elements	Not Present
-Frequency into Uplink radio resources	
	Not Propert
-Maximum allowed UL TX power	Not Present
Downlink radio resources	
-CHOICE mode	FDD
-Downlink PDSCH information	Not Present
-Downlink information common for all radio links	
Downlink DPCH info common for all RL	Not Present
CHOICE mode	FDD
DPCH compressed mode info	
Transmission gap pattern sequence	
	4
	Activate
	(Current CFN + (256 – TTI/10msec))mod 250
configuration parameters	
-TGMP	TDD measurement
	Not present
	10
—	10
	Not Present
TGD TGPL1	0 11
	++ Not Present
	Mode 0
<u></u>	
	Mode 0
	UL and DL
	SF/2
	puncturing
	A
	3.0
	3.0
	Not Present
-TX Diversity Mode	Not Present
-SSDT information	Not Present
Default DPCH Offset Value	Not Present
-Downlink information per radio link list	
 Downlink information for each radio link 	
Choice mode	FDD
Choice-mode	FDD
Downlink information for each radio link	FDD 100

PDSCH code mapping	Not Present
Downlink DPCH info for each RL	
	FDD
Primary CPICH usage for channel estimation	Primary CPICH may be used
	Set to value Default DPCH Offset Value (as
	currently stored in SS) mod 38400
	Not Present
Secondary scrambling code	Not Present
	128
Code number	θ
	No code change
	θ
	Not Present
Closed loop timing adjustment mode	Not Present
SCCPCH Information for FACH	Not Present

MEASUREMENT REPORT message (step 8)

Information Element	Value/remark
Message Type (10.2.17)	
Integrity check info	Not Present
Measurement identity	4
Measured Results (10.3.7.44)	
CHOICE Measurement	Inter-frequency Measured results list
Inter-frequency measured results	4
Frequency info	
	TDD
	Same frequency as channel 2
	Not Present
Inter-frequency cell measured results	4
	Not Present
	Not Present
	Not Present
	TDD
	Set to cell parameters ID of Cell 2
	Not Present
	Checked that this IE is present
	Not Present
	Not Present
Measured results on RACH	Not Present
Additional measured results	Not Present
Event results (10.3.7.7)	
-CHOICE event result	Inter-frequency measurement event results
Inter-frequency event identity	20
-Inter-frequency cells	4
Frequency Info	
	TDD
	Same frequency as channel 2
	TDD
Primary CCPCH Info	
	TDD
	Not Present
	Set to cell parameters ID of Cell 2
	FALSE

8.6.3.1.5 Test requirements

The UE shall send one Event 2C triggered measurement report for Cell 2 with a measurement reporting delay less than 9.2 s from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

For the test to pass, the total number of successful tests shall be more than 90% with a confidence level of [FFS]% of the cases.

8.6.4 GSM measurements

8.6.4.1 Correct reporting of GSM neighbours in AWGN propagation condition

8.7 Measurements Performance Requirements

Unless explicitly stated:

- Measurement channel is 12.2 kbps as defined in Annex C, sub clause C.3.1. This measurement channel is used both in active cell and cells to be measured.
- Cell 1 is the active cell.
- -Single task reporting.

8.7.1 CPICH RSCP

8.7.1.1 Intra frequency measurements accuracy

8.7.1.1.1 Absolute accuracy requirement

8.7.1.1.1.1 Definition and applicability

The absolute accuracy of CPICH RSCP is defined as the CPICH RSCP measured from one cell compared to the actual CPICH RSCP power from same cell.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.1.1.1.2 Minimum Requirements

The accuracy requirements in table 8.7.1.1.1.1 are valid under the following conditions:

<u>— CPICH_RSCP1|_{dBm} ≥ 114 dBm.</u>

$$-\frac{I_o}{(\hat{I}_{or})} - \frac{CPICH - E_c}{I_{or}} = \frac{20dB}{I_{or}}$$

Table 8.7.1.1.1.1: CPICH_RSCP Intra frequency absolute accuracy

		Accuracy [dB]		Conditions
Parameter	Parameter Unit		Extreme condition	lo [dBm/3.84 MHz]
CPICH RSCP	dBm	±6-	±9	-9470
	dBm	±8-	±11	-7050

The normative reference for this requirement is TS 25.133 [2] clauses 9.1.1.1.1 and A.9.1.1.2.

8.7.1.1.1.3 Test purpose

The purpose of this test is to verify that the CPICH RSCP absolute measurement accuracy is within the specified limitsin clause 8.7.1.1.1.2. This measurement is for handover evaluation, DL open loop power control, UL open loop controland for the calculation of pathloss.

8.7.1.1.1.4 Method of test

8.7.1.1.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

In this case all cells are on the same frequency. CPICH RSCP intra frequency absolute accuracy requirements are tested by using test parameters in table 8.7.1.1.1.2.

Table 8.7.1.1.1.2: CPICH RSCP Intra frequency test parameters

Parameter	Unit	Ter	Test 1		Test 2		Test 3	
Faiameter	Unit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2	
UTRA RF Channel number		Char	inel 1	Channel 1		Channel 1		
CPICH_Ec/lor	dB	4	θ	-10		-10		
PCCPCH_Ec/lor	dB	-4	2	-12		-12		
SCH_Ec/lor	dB	4	2	-12		-12		
PICH_Ec/lor	dB	4	-15		- 15 - 15		-15	
DPCH_Ec/lor	dB	-15	-	-15	-	-15	-	
OCNS_Ec/lor	dB	-1.11	-0.94	-1.11	-0.94	-1.11	-0.94	
loc	dBm/ 3.84 MHz	-75	-75.54		-75.54 - 59.98		-97.52	
Îor/loc	dB	4	θ	9	θ	θ	-6.53	
CPICH RSCP, Note 1	dBm	-81.5	-85.5	-60.98	-69.88	-107.5	-114.0	
lo, Note 1	dBm/3.84 MHz	-69		- 69 - 50		4)4	
Propagation condition	-	AWGN		AWGN		AWGN		
NOTE 1: CPICH RSCP and to levels have been calculated from other parameters for information purposes. They								
are not settable parameters themselves.								

Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for tests 2 and 3 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.

1)A call is set up according to the test procedure specified in TS 34.108 [3] clause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.1.1.1.2.

8.7.1.1.1.4.2 Procedure

- 1) SS shall transmit MEASUREMENT CONTROL message.
- 2) UE shall transmit periodically MEASUREMENT REPORT messages.
- 3) SS shall check CPICH_RSCP value in MEASUREMENT REPORT messages. CPICH RSCP power of Cell 1reported by UE is compared to actual CPICH RSCP power for each MEASUREMENT REPORT message.
- 4) SS shall count number of MEASUREMENT REPORT messages transmitted by UE. After 1000-MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.1.1.1.2 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, step 3) above is repeated. After further 1000 MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.1.1.1.2 for Test 3. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, step 3) above is repeated.
- 5) After further 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit RRC CONNECTION RELEASE message.

6) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of-34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message for Intra frequency measurement (Step 1):

Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	4
-Measurement Command	Modify
-Measurement Reporting Mode	moony
Measurement Report Transfer Mode	Acknowledged mode RLC
- Periodical Reporting / Event Trigger Reporting	Periodical reporting
Mode	i onedical reporting
-Additional measurement list	Not Present
-CHOICE Measurement Type-	Intra-frequency measurement
-Intra-frequency measurement	initia frequency measurement
Intra-frequency measurement objects list	Not Present
Intra-frequency measurement quantity	
	θ
Measurement quantity	CPICH RSCP
-Intra-frequency reporting quantity	
-Reporting quantities for active set cells	
indicator	No report
Cell synchronisation information reporting-	
indicator	TRUE
	TRUE
	FDD
	TRUE
	TRUE
	TRUE
-Reporting quantities for monitored set cells	THOE
	No report
indicator	
Cell synchronisation information reporting-	FALSE
indicator	THEOE
Cell Identity reporting indicator	TRUE
	FDD
	TRUE-
	TRUE
Reporting quantities for detected set cells	Not Present
	Report all active set cells + cells within
	monitored set on used frequency
	Virtual/active set cells + 2
Measurement validity	Not Present
	Periodical reporting criteria
	Infinity
	250 ms
Physical channel information elements	
-DPCH compressed mode status info	Not Present
Dr Orr compressed mode status into	

MEASUREMENT REPORT message for Intra frequency test cases

This message is common for all intra frequency test cases in clause 8.7 and is described in Annex I.

8.7.1.1.1.5 Test requirements

The CPICH RSCP measurement accuracy shall meet the requirements in clause 8.7.1.1.1.2.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.7.1.1.2 Relative accuracy requirement

8.7.1.1.2.1 Definition and applicability

The relative accuracy of CPICH RSCP is defined as the CPICH RSCP measured from one cell compared to the CPICH RSCP measured from another cell on the same frequency.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.1.1.2.2 Minimum Requirements

The accuracy requirements in table 8.7.1.1.2.1 are valid under the following conditions:

<u>— CPICH_RSCP1,2|_{dBm} ≥ 114 dBm.</u>

$$- \frac{CPICH _RSCP1}{_{in \, dBm}} - \frac{CPICH _RSCP2}{_{in \, dBm}} \le 20 dB$$

$$\frac{I_o}{(\hat{I}_{or})_{in\ dB}} - \left(\frac{CPICH_E_c}{I_{or}}\right)_{in\ dB} \le 20dB$$

Table 8.7.1.1.2.1: CPICH_RSCP Intra frequency relative accuracy

		Accur	Conditions	
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]
CPICH_RSCP	dBm	±3	÷	-9450

The normative reference for this requirement is TS 25.133 [2] clauses 9.1.1.1.2 and A.9.1.1.2.

8.7.1.1.2.3 Test purpose

The purpose of this test is to verify that the CPICH RSCP relative measurement accuracy is within the specified limitsin clause 8.7.1.1.2.2. This measurement is for handover evaluation, DL open loop power control, UL open loop controland for the calculation of pathloss.

8.7.1.1.2.4 Method of test

8.7.1.1.2.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

In this case all cells are on the same frequency. CPICH RSCP intra frequency relative accuracy requirements are testedby using test parameters in table 8.7.1.1.1.2.

1) A call is set up according to the test procedure specified in TS 34.108 [3] clause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.1.1.1.2.

8.7.1.1.2.4.2 Procedure
1) SS shall transmit MEASUREMENT CONTROL message.
2) UE shall transmit periodically MEASUREMENT REPORT messages.
3) SS shall check CPICH_RSCP value of Cell 1 and Cell 2 in MEASUREMENT REPORT messages. CPICH RSCP power value measured from Cell 1 is compared to CPICH RSCP power value measured from Cell 2 for each MEASUREMENT REPORT message.
4) The result of step 3) is compared to actual power level difference of CPICH RSCP of Cell 1 and Cell 2.
5) SS shall count number of MEASUREMENT REPORT messages transmitted by UE. After 1000- MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to- table 8.7.1.1.1.2 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, steps 3) and 4) above are repeated. After further 1000 MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.1.1.1.2 for Test 3. While RF- parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, steps 3) and 4)- above are repeated.
6) After further 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit- RRC CONNECTION RELEASE message.
7) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.
Specific Message Contents
All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:
MEASUREMENT CONTROL message for Intra frequency measurement in clause 8.7.1.1.1.4.2 is used.
MEASUREMENT REPORT message for Intra frequency test cases
This message is common for all intra frequency test cases in clause 8.7 and is described in Annex I.
8.7.1.1.2.5 Test requirements
The CPICH RSCP measurement accuracy shall meet the requirements in clause 8.7.1.1.2.2.
NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.
8.7.1.2 Inter frequency measurement accuracy
8.7.1.2.1 Relative accuracy requirement
8.7.1.2.1.1 Definition and applicability
The relative accuracy of CPICH RSCP in inter frequency case is defined as the CPICH RSCP measured from one cell- compared to the CPICH RSCP measured from another cell on a different frequency.
The requirements and this test apply to all types of UTRA for the FDD UE.
8.7.1.2.1.2 Minimum Requirements

The accuracy requirements in table 8.7.1.2.1.1 are valid under the following conditions:

$$- \frac{CPICH _RSCP1}{_{in \, dBm}} - \frac{CPICH _RSCP2}{_{in \, dBm}} \le 20 dB.$$

$$\frac{I_o}{(\hat{I}_{or})} = \frac{CPICH E_c}{I_{or}} = \frac{20 dB}{I_{or}}$$

Table 8.7.1.2.1.1: CPICH_RSCP Inter frequency relative accuracy

		Accuracy [dB]		Accuracy [dB]		Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]		
CPICH_RSCP	dBm	±6	± 6	-9450		

The normative reference for this requirement is TS 25.133 [2] clauses 9.1.1.2.1 and A.9.1.1.2.

8.7.1.2.1.3 Test purpose

The purpose of this test is to verify that the CPICH RSCP relative measurement accuracy is within the specified limits in clause 8.7.1.2.1.2. This measurement is for handover evaluation, DL open loop power control, UL open loop control and for the calculation of pathloss.

8.7.1.2.1.4 Method of test

8.7.1.2.1.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

In this case both cells are on different frequencies and compressed mode is applied. The gap length is 7, detailed definition is in clause C.5, set 1 of table C.5.2 except for TGRRC and TGCFN. TGPRC and TGCFN shall set to-"Infinity" and "(Current CFN + (256 TTI/10msec))mod 256". CPICH RSCP inter frequency relative accuracyrequirements are tested by using test parameters in table 8.7.1.2.1.2.

Table 8.7.1.2.1.2: CPICH RSCP Inter frequency tests parameters

Desemptor	Unit	Tee	st 1	Test 2		
Parameter	Unit	Cell 1 Cell 2		Cell 1	Cell 2	
UTRA RF Channel number		Channel 1	Channel 2	Channel 1	Channel 2	
CPICH_Ec/lor	dB	-4	0	-10		
PCCPCH_Ec/lor	dB	-4	2	4	12	
SCH_Ec/lor	dB	-4	2	-4	12	
PICH_Ec/lor	dB	-4	-5	-4	15	
DPCH_Ec/lor	dB	-15 -		-15	-	
OCNS_Ec/lor	dB	-1.11 -0.94		-1.11	-0.94	
loc	dBm/ 3.84- MHz	-60.00	-60.00	-84.00	-94.46	
Î or/loc	dB	9.54 9.54		θ	-9.5 4	
CPICH RSCP, Note 1	dBm	-60.46	<u>-60.46</u> <u>-60.46</u>		-114.0	
lo, Note 1	dBm/3.84- MHz	-50.00	-50.00	-81.0	-94.0	
Propagation condition	-	AWGN AWGN				
NOTE 1: CPICH RSCP and Ic	levels have be	en calculated fro	m other parame	eters for information	ition	
purposes. They are						
Tests shall be done sequential						
for test 2 shall be set within 5 s	for test 2 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.					

1) A call is set up according to the test procedure specified in TS 34.108 [3] clause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.1.2.1.2.

8.7.1.2.1.4.2 Procedure

- 1) SS shall transmit PHYSICAL CHANNEL RECONFIGURATION message.
- 2) UE shall transmit PHYSICAL CHANNEL RECONFIGURATION COMPLETE message.
- 3) SS shall transmit MEASUREMENT CONTROL message for intra frequency measurement and transmit-MEASUREMENT CONTROL message for inter frequency measurement.
- 4) UE shall transmit periodically MEASUREMENT REPORT messages.
- 5) SS shall check CPICH_RSCP value of Cell 1 and Cell 2 in MEASUREMENT REPORT messages. CPICH RSCP power value measured from Cell 1 is compared to CPICH RSCP power value measured from Cell 2 foreach MEASUREMENT REPORT message.
- 6) The result of step 5) is compared to actual power level difference of CPICH RSCP of Cell 1 and Cell 2.
- 7) SS shall count number of MEASUREMENT REPORT messages transmitted by UE. After 1000-MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.1.2.1.2 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, steps 5) and 6) above are repeated.
- 8) After further 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit-RRC CONNECTION RELEASE message.
- 9) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

PHYSICAL CHANNEL RECONFIGURATION message for Inter frequency measurement (step 1):

Information Element	Value/Remark
Message Type	
UE Information Elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
-Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	Not Present
-New U-RNTI	Not Present-
-New C-RNTI	Not Present
-RRC State Indicator	CELL_DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	Net Present
-CN Information info UTRAN mobility information elements	Not Present
-URA identity information elements	Not Present
-ORA identity RB information elements	
-Downlink counter synchronisation info	Not Present
PhyCH information elements	
-Frequency info	Not Present
Uplink radio resources	
Maximum allowed UL TX power	Not Present
- CHOICE channel requirement	Not Present
Downlink radio resources	
-CHOICE mode	FDD
-Downlink PDSCH information	Not Present
-Downlink information common for all radio links	
-Downlink DPCH info common for all RL	Not Present
-CHOICE mode	FDD
DPCH compressed mode info	
 Transmission gap pattern sequence 	
	4
	Activate
	(Current CFN + (256 – TTI/10msec))mod 256
configuration parameters	
	FDD measurement
	Infinity
	4
TGL1	7
	Not Present
TGD	θ
	3
	Not Present
	Mode 0
	Mode 0
	UL and DL
-Downlink compressed mode method	SF/2
	SF/2
—-Downlink frame type —-DeltaSIR1	B 3.0
	3.0
	Not Present
-TX Diversity Mode	Not Present
	Not Present
-Default DPCH Offset Value	Not Present
-Downlink information per radio link list	
Downlink information for each radio link	
	FDD
Primary CPICH info	

PDSCH with SHO-DCH Info	Not Present
PDSCH code mapping	Not Present
Downlink DPCH info for each RL	
	FDD
Primary CPICH usage for channel estimation	Primary CPICH may be used
	Set to value Default DPCH Offset Value (as
	currently stored in SS) mod 38400
	Not Present
	Not Present
	128
	θ
	No code change
	θ
	Not Present
Closed loop timing adjustment mode	Not Present
SCCPCH Information for FACH	Not Present

First MEASUREMENT CONTROL message for Intra frequency measurement (Step 3):

Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	φ
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	1
-Measurement Command	Modify
-Measurement Reporting Mode	incomy
- Measurement Report Transfer Mode	Acknowledged mode RLC
- Periodical Reporting / Event Trigger Reporting	Periodical reporting
Mode	· · · · · · · · · · · · · · · · · · ·
-Additional measurement list	Not Present
-CHOICE Measurement Type	Intra-frequency measurement
-Intra-frequency measurement	
Intra-frequency measurement objects list	
Intra-frequency cell info list	Not Present
Intra-frequency measurement quantity	
Filter coefficient	θ
	FDD
Measurement quantity	CPICH RSCP
Intra-frequency reporting quantity	
Reporting quantities for active set cells	
indicator	No report
Cell synchronisation information reporting-	
indicator	TRUE
	TRUE
	FDD
	TRUE
	TRUE
Pathloss reporting indicator	TRUE
Reporting quantities for monitored set cells	
SFN-SFN observed time difference reporting	No report
indicator	
	FALSE
indicator	
Cell Identity reporting indicator	TRUE
	FDD
	TRUE-
	TRUE
Pathloss reporting indicator	TRUE
 Reporting quantities for detected set cells 	Not Present
Reporting cell status	
CHOICE reported cell	Report all active set cells + cells within
	monitored set on used frequency
Maximum number of reported cells	Virtual/active set cells + 2
Measurement validity	Not Present
CHOICE report criteria	Periodical reporting criteria
Amount of reporting	Infinity
Reporting interval	250 ms
Physical channel information elements	
-DPCH compressed mode status info	Not Present

Second MEASUREMENT CONTROL message for Inter frequency measurement (step 3):-

Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	2
-Measurement Command	E Setup
-Measurement Reporting Mode	octup
	Asknowledged mede DLC
- Measurement Report Transfer Mode	Acknowledged mode RLC
Periodical Reporting / Event Trigger Reporting	Periodical reporting
Mode	
-Additional measurement list	Not Present
-CHOICE Measurement Type	Inter-frequency measurement
-Inter-frequency measurement object list	
	Not Present
New inter-frequency cells	Cell 2 information is included
Cell for measurement	Not Present
Inter-frequency measurement quantity-	
	Inter-frequency reporting criteria
Filter coefficient	0
	EDD
-Measurement quantity for frequency quality	CPICH RSCP
estimate	
Inter-frequency reporting quantity-	
	TRUE
	TRUE
Frequency quality estimate	TRUE
Non frequency related cell reporting quantities	N a man ant
	No report
indicator	
Cell synchronisation information reporting-	TRUE-
indicator	
 Cell Identity reporting indicator 	TRUE
	FDD
	TRUE-
	TRUE-
Pathloss reporting indicator	TRUE
Reporting cell status	
	Report all active set cells + cells within
	monitored set on used frequency
	$\frac{Virtual/active set cells + 2}{Virtual/active set cells + 2}$
Measurement validity	Not Present
Inter-frequency set update	Not Present
	Periodical reporting criteria
Amount of reporting	Infinity
Reporting interval	500 ms
Physical channel information elements	
-DPCH compressed mode status info	Not Present

MEASUREMENT REPORT message for Inter frequency test cases

This message is common for all inter frequency test cases in clause 8.7 and is described in Annex I.

8.7.1.2.1.5 Test requirements

The CPICH RSCP measurement accuracy shall meet the requirements in clause 8.7.1.2.1.2.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.7.2 CPICH Ec/lo

8.7.2.1 Intra frequency measurements accuracy

8.7.2.1.1 Absolute accuracy requirement

8.7.2.1.1.1 Definition and applicability

The absolute accuracy of CPICH Ec/Io is defined as the CPICH Ec/Io measured from one cell compared to the actual CPICH_Ec/Io power ratio from same cell.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.2.1.1.2 Minimum Requirements

The accuracy requirements in table 8.7.2.1.1.1 are valid under the following conditions:

<u>— CPICH_RSCP1|_{dBm} ≥ 114 dBm.</u>

$$\frac{I_o}{(\hat{I}_{or})} = \frac{CPICH E_c}{I_{or}} \le 20 dB.$$

Table 8.7.2.1.1.1: CPICH_Ec/lo Intra frequency absolute accuracy, minimum requirements

		Accuracy [dB]		Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]
CPICH_Ec/lo	d₿	$\begin{array}{l} \pm 1,5 \text{ for -14} \leq \text{CPICH Ec/lo} \\ \pm 2 \text{ for -16} \leq \text{CPICH Ec/lo} < -14 \\ \pm 3 \text{ for -20} \leq \text{CPICH Ec/lo} < -16 \end{array}$	±₽	-9450

The normative reference for this requirement is TS 25.133 [2] clause 9.1.2.1.1.

8.7.2.1.1.3 Test purpose

The purpose of this test is to verify that the CPICH Ec/Io absolute measurement accuracy is within the specified limits in clause 8.7.2.1.1.2. This measurement is for Cell selection/re selection and for handover evaluation.

8.7.2.1.1.4 Method of test

8.7.2.1.1.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

In this case all cells are on the same frequency. CPICH Ec/Io intra frequency absolute accuracy requirements are testedby using the test parameters in table 8.7.2.1.1.2.

Parameter	Unit	Tee	st 1	Ter	st 2	Test 3	
Farameter	Unit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2
UTRA RF Channel number		Channel 1		Channel 1 Channel 1		Channel 1	
CPICH_Ec/lor	dB	4	-10 -10		4	Ю	
PCCPCH_Ec/lor	dB	-4	- 12 - 12		-4	2	
SCH_Ec/lor	dB	4	2	-12		-12	
PICH_Ec/lor	dB	-15		-15		-15	
DPCH_Ec/lor	dB	-15	-	-15	-	-6	-
OCNS_Ec/lor	dB	-1.11	-0.94	-1.11	-0.94	.2.56	-0.94
loc	dBm/ 3.84 MHz	-56.98		-56.98 -89.07		-9 4	.98 .
Îor/loc	dB	3.0	3.0	-2.9	-2.9	-9.0	-9.0
CPICH Ec/lo, Note 1	dBm	-14.0	-14.0	-16.0	-16.0	-20.0	-20.0
lo, Note 1	dBm/3.84 MHz	-50		-50 - 86		-4)4
Propagation condition	-	AWGN		AWGN AWGN			GN
NOTE 1: CPICH Ec/lo and lo levels have been calculated from other parameters for information purposes. They							

are not settable parameters themselves.

Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for tests 2 and 3 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.

1)A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.2.1.1.2.

8.7.2.1.1.4.2 Procedure

1) SS shall transmit MEASUREMENT CONTROL message.

- 2) UE shall transmit periodically MEASUREMENT REPORT messages.
- 3) SS shall check CPICH_Ec/No value in MEASUREMENT REPORT messages. According to table 8.7.2.1.1.3the SS calculates CPICH_Ec/Io power ratio of Cell 1, which is compared to the actual CPICH Ec/Io power ratiofrom the same cell for each MEASUREMENT REPORT message.
- 4) SS shall count number of MEASUREMENT REPORT messages transmitted by UE. After 1000-MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according totable 8.7.2.1.1.2 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, step 3) above is repeated. After further 1000 MEASUREMENT REPORT messages have beenreceived from UE, the RF parameters are set up according to table 8.7.2.1.1.2 for Test 3. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, step 3) above is repeated.
- 5) After further 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit RRC CONNECTION RELEASE message.

6) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.

Reported value	Measured quantity value	Unit
CPICH_Ec/No_00	CPICH Ec/lo < -24	dB
CPICH_Ec/No_01	-24 ≤ CPICH Ec/lo < -23.5	dB
CPICH_Ec/No_02	-23.5 ≤ CPICH Ec/lo < -23	dB
		
CPICH_Ec/No_47	-1 <u> </u>	dB
CPICH_Ec/No_48	-0.5 ≤ CPICH Ec/lo < 0	dB
CPICH_Ec/No_49	0 ≤ CPICH Ec/lo	d₿

Table 8.7.2.1.1.3: CPICH Ec/lo measurement report mapping

Specific Message Contents

All messages indicated above shall use the same content as described in default message content in clause 9 of 34.108-[3], with the following exceptions:

MEASUREMENT CONTROL message for Intra frequency measurement (Step 1):

Message Type UE information elements -RRC transaction identifier -Integrity check info	
-RRC transaction identifier -Integrity check info	
-RRC transaction identifier -Integrity check info	
-Integrity check info	θ
	Not Present
Measurement Information elements	
-Measurement Identity	4
-Measurement Command	Modify
-Measurement Reporting Mode	Acknowledged mode RLC
Measurement Report Transfer Mode	Periodical reporting
- Periodical Reporting / Event Trigger Reporting	
Mode	Not Present
-Additional measurement list	Intra-frequency measurement
-CHOICE Measurement Type	initia nequency measurement
-Intra-frequency measurement	
Intra-frequency measurement objects list	Not Present
Intra-frequency measurement quantity	
Filter coefficient	θ
	FDD
-Measurement quantity	CPICH RSCP
Intra-frequency reporting quantity	
-Reporting quantities for active set cells	
indicator	No report
indicator	TRUE
	TRUE
	FDD
	TRUE
	TRUE
-Pathloss reporting indicator	TRUE
Reporting quantities for monitored set cells	
	No report
indicator	
Cell synchronisation information reporting-	FALSE
indicator	
Cell Identity reporting indicator	FALSE
	FDD
	FALSE
	FALSE
-Pathloss reporting indicator	FALSE
Reporting quantities for detected set cells	Not Present
-Reporting cell status	
	Report all active set cells + cells within
	monitored set on used frequency
	Virtual/active set cells + 2
Measurement validity	Not Present
	Periodical reporting criteria
-Amount of reporting	Infinity
Reporting interval	250 ms
Physical channel information elements	
-DPCH compressed mode status info	Not Present

MEASUREMENT REPORT message for Intra frequency test cases

This message is common for all intra frequency test cases in clause 8.7 and is described in Annex I.

8.7.2.1.1.5 Test requirements

The CPICH Ec/Io measurement accuracy shall meet the requirements in clause 8.7.2.1.1.2. The effect of assumed thermal noise and noise generated in the receiver (99 dBm) shall be added into the required accuracy defined in subclause 8.7.2.1.1.2 as shown in table 8.7.2.1.1.4.

		Accuracy [dB]		Condition
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.(MHz]
	dB	-2.71.5 for -14 ≤ CPICH Ec/lo -3.22 for -16 ≤ CPICH Ec/lo < -14 -4.23 for -20 ≤ CPICH Ec/lo < -16	-4.23	-9487
CPICH_Ec/lo	ub	$\pm 1.5 \text{ for -14} \leq \text{CPICH Ec/lo}$ $\pm 2 \text{ for -16} \leq \text{CPICH Ec/lo} < -14$ $\pm 3 \text{ for -20} \leq \text{CPICH Ec/lo} < -16$	±3	-8750

Table 9.7.2.1.1.4. CPICH Ec/le Intra frequency absolute accuracy, test requirements

Tł

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.7.2.1.2 Relative accuracy requirement

8.7.2.1.2.1 Definition and applicability

The relative accuracy of CPICH Ec/Io is defined as the CPICH Ec/Io measured from one cell compared to the CPICH Ec/Io measured from another cell on the same frequency.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.2.1.2.2 Minimum Requirements

The accuracy requirements in table 8.7.2.1.2.1 are valid under the following conditions:

<u>— CPICH_RSCP1,2 $|_{dBm}$ ≥ 114 dBm.</u>

$$- \frac{CPICH _RSCP1}{_{in \, dBm}} - \frac{CPICH _RSCP2}{_{in \, dBm}} \le 20 dB.$$

$$\frac{I_o}{(\hat{I}_{or})} - \frac{CPICH - E_c}{I_{or}} = \frac{20 dB}{I_{or}}$$

Table 8.7.2.1.2.1: CPICH_Ec/lo Intra frequency relative accuracy

		Accuracy [dB		Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]
	dB	±1,5 for -14 ≤ CPICH Ec/lo		-9450
CPICH_Ec/lo		±2 for -16 ≤ CPICH Ec/lo < -14	±3	
		±3 for -20 ≤ CPICH Ec/lo < -16		

The normative reference for this requirement is TS 25.133 [2] clauses 9.1.2.1.2 and A.9.1.2.2.

8.7.2.1.2.3 Test purpose

The purpose of this test is to verify that the CPICH Ec/Io relative measurement accuracy is within the specified limits in elause 8.7.2.1.2.2. This measurement is for Cell selection/re selection and for handover evaluation.

8.7.2.1.2.4 Method of test

8.7.2.1.2.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

In this case all cells are in the same frequency. CPICH Ec/Io intra frequency relative accuracy requirements are testedby using test parameters in table 8.7.2.1.1.2.

1) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.2.3. The RF parametersfor Test 1 are set up according to table 8.7.2.1.1.2.

8.7.2.1.2.4.2 Procedure

- 1) SS shall transmit MEASUREMENT CONTROL message.
- 2) UE shall transmit periodically MEASUREMENT REPORT messages.
- 3) SS shall check CPICH_Ec/No value of Cell 1 and Cell 2 in MEASUREMENT REPORT messages. According to table 8.7.2.1.1.3 the SS calculates CPICH_Ec/Io power ratio of Cell 1 and Cell 2. CPICH_Ec/Io power ratio value measured from Cell 1 is compared to CPICH_Ec/Io power ratio value measured from Cell 2 for each-MEASUREMENT REPORT message.
- 4) The result of step 3) is compared to actual power level difference of CPICH_Ec/Io of Cell 1 and Cell 2.
- 5) SS shall count number of MEASUREMENT REPORT messages transmitted by UE. After 1000-MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.2.1.1.2 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, steps 3) and 4) above are repeated. After further 1000 MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.2.1.1.2 for Test 3. While RFparameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait foradditional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, steps 3) and 4)above are repeated.
- 6) After further 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit RRC CONNECTION RELEASE message.
- 7) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message for Intra frequency measurement in clause 8.7.2.1.1.4.2 is used.

MEASUREMENT REPORT message for Intra frequency test cases

This message is common for all intra frequency test cases in clause 8.7 and is described in Annex I.

8.7.2.1.2.5 Test requirements

The CPICH Ec/Io measurement accuracy shall meet the requirements in clause 8.7.2.1.2.2.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.7.2.2 Inter frequency measurement accuracy

8.7.2.2.1 Void

8.7.2.2.2 Relative accuracy requirement

8.7.2.2.2.1 Definition and applicability

The relative accuracy of CPICH Ec/Io in the inter frequency case is defined as the CPICH Ec/Io measured from one cell compared to the CPICH Ec/Io measured from another cell on a different frequency.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.2.2.2.2 Minimum Requirements

The accuracy requirements in table 8.7.2.2.2.1 are valid under the following conditions:

<u>— CPICH_RSCP1,2|_{dBm} ≥ 114 dBm.</u>

$$- \frac{CPICH _RSCP1}_{in \, dBm} - CPICH _RSCP2|_{in \, dBm} \le 20 dB.$$

$$\frac{I_o}{(\hat{I}_{or})} = \frac{(CPICH _ E_c)}{I_{or}} \le 20 dB.$$

Table 8.7.2.2.2.1: CPICH_Ec/lo Inter frequency relative accuracy, minimum requirements

		Accuracy [dB		Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]
	dB	<u>±1.5 for -14 ≤ CPICH Ec/lo</u>		-9450
CPICH_Ec/lo		<u>±2 for -16 ≤ CPICH Ec/lo < -14</u>	±3	
		±3 for -20 ≤ CPICH Ec/lo < -16		

The normative reference for this requirement is TS 25.133 [2] clauses 9.1.2.2.2 and A.9.1.2.2.

8.7.2.2.2.3 Test purpose

The purpose of this test is to verify that the CPICH Ec/Io relative measurement accuracy is within the specified limits in clause 8.7.2.2.2.2. This measurement is for Cell selection/re selection and for handover evaluation.

8.7.2.2.2.4 Method of test

8.7.2.2.2.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

In this case both cells are in different frequency and compressed mode is applied. The gap length is 7, detailed definition is in clause C.5, set 1 of table C.5.2 except for TGRRC and TGCFN. TGPRC and TGCFN shall set to "Infinity" and "(Current CFN + (256 - TTI/10msec))mod 256". CPICH Ec/Io inter frequency relative accuracy-requirements are tested by using test parameters in table 8.7.2.2.2.

Parameter	Unit	Tee	st 1	Tee	st 2	Test 3	
Farameter	Unit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2
UTRA RF Channel		Channel 1	Channel 2	Channel 1	Channel 2	Channel 1	Channel 2
number	-10						
CPICH_Ec/lor	dB		Ю		Ю		Ю
PCCPCH_Ec/lor	d₿	-4	1 2	-4	1 2	-4	1 2
SCH_Ec/lor	dB	-4	2	-4	2	-4	2
PICH_Ec/lor	d₿	-4	15	4	15	-4	15
DPCH_Ec/lor	d₿	-15	-	-6	-	-6	-
OCNS_Ec/lor	d₿	-1.11	-0.94	-2.56	-0.94	-2.56	-0.94
loc	dBm/ 3.84- MHz	-52.22	-52.22	-87.27	-87.27	-94.46	-94.46
Îor/loc	d₿	-1.75	-1.75	-4.7	-4.7	-9.54	-9.54
CPICH Ec/lo, Note 1	dBm	-14.0	-14.0	-16.0	-16.0	-20.0	-20.0
lo, Note 1	dBm/3.84- MHz	-50	-50	-86	-86	-9 4	-9 4
Propagation condition	-	AW	' GN	AW	' GN	AW	' GN
NOTE 1: CPICH Ec/lo	NOTE 1: CPICH Ec/lo and lo levels have been calculated from other parameters for information purposes. They						
are not settable parameters themselves.							
Tests shall be done seq	Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for tests						
2 and 3 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.							

Table 8.7.2.2.2.2: CPICH Ec/lo Inter frequency tests parameters

1) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.2.2.2.2.

8.7.2.2.2.4.2 Procedure

- 1) SS shall transmit PHYSICAL CHANNEL RECONFIGURATION message.
- 2) UE shall transmit PHYSICAL CHANNEL RECONFIGURATION COMPLETE message.
- 3) SS shall transmit a MEASUREMENT CONTROL message for intra frequency measurement and transmitanother MEASUREMENT CONTROL message for inter frequency measurement.
- 4) UE shall transmit periodically MEASUREMENT REPORT messages.
- 5) SS shall check CPICH_Ec/No value of Cell 1 and Cell 2 in MEASUREMENT REPORT messages. According to table 8.7.2.1.1.3 the SS calculates CPICH_Ec/Io power ratio of Cell 1 and Cell 2. CPICH_Ec/Io power ratio measured from Cell 1 is compared to CPICH_Ec/Io power value measured from Cell 2 for each MEASUREMENT REPORT message.

6) The result of step 5) is compared to actual power level difference of CPICH_Ec/Io of Cell 1 and Cell 2.

- 7) SS shall count number of MEASUREMENT REPORT messages transmitted by UE. After 1000-MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.2.2.2.2 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from-UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, steps 5) and 6) above are repeated. After further 1000 MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.2.2.2.2 for Test 3. While RFparameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait foradditional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, steps 5) and 6)above are repeated.
- 8) After 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit RRC-CONNECTION RELEASE message.
- 9) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.

Specific Message Contents

All messages indicated above shall use the same content as described in default message content in clause 9 of 34.108-[3], with the following exceptions:

PHYSICAL CHANNEL RECONFIGURATION message for Inter frequency measurement (step 1):

Information Element	Value/Remark
Message Type	
UE Information Elements	
-RRC transaction identifier	φ
-Integrity check info	Not Present
-Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	Not Present
-New U-RNTI	Not Present
-New C-RNTI	Not Present
-RRC State Indicator	CELL DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	
-CN Information info	Not Present
UTRAN mobility information elements	
-URA identity	Not Present
RB information elements	
-Downlink counter synchronisation info	Not Present
PhyCH information elements	
-Frequency info	Not Present
Uplink radio resources	
-Maximum allowed UL TX power	Not Present
- CHOICE channel requirement	Not Present
Downlink radio resources	
-CHOICE mode	FDD
-Downlink PDSCH information	Not Present
-Downlink information common for all radio links	
-Downlink DPCH info common for all RL	Not Present
-CHOICE mode	FDD
DPCH compressed mode info	
Transmission gap pattern sequence	
	4
	Activate
	(Current CFN + (256 - TTI/10msec))mod 25
configuration parameters	
	EDD measurement
-TGPRC	Infinity
	4
	Z Z
	Not Present
	θ
	3
	Not Present
	Mode 0
	Mode 0
	UL and DL
-Downlink compressed mode method	SE/2
-Uplink compressed mode method	<u>SF/2</u>
	B
-DeltaSIR1	3.0
	3.0
-DeltaSIR2	Not Present
	Not Present
	Not Present
-T Reconfirm abort	Not Present
TX Diversity Mode	Not Present
	Not Present
-Default DPCH Offset Value	Not Present
-Devalue DFCH Chiset value -Downlink information per radio link list	
-Downlink information for each radio link	
	FDD

PDSCH with SHO DCH Info	Not Present
PDSCH code mapping	Not Present
Downlink DPCH info for each RL	
CHOICE mode	FDD
	Primary CPICH may be used
	Set to value Default DPCH Offset Value (as-
	currently stored in SS) mod 38400
Secondary CPICH info	Not Present
	Not Present
	128
	θ
	No code change
	0
	Not Present
Closed loop timing adjustment mode	Not Present
SCCPCH Information for FACH	Not Present

First MEASUREMENT CONTROL message for Intra frequency measurement (Step 3):

Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	4
-Measurement Command	Modify
-Measurement Reporting Mode	incary
- Measurement Report Transfer Mode	Acknowledged mode RLC
- Periodical Reporting / Event Trigger Reporting	Periodical reporting
Mode	i choaloar operang
-Additional measurement list	Not Present
-CHOICE Measurement Type	Intra-frequency measurement
Intra-frequency measurement	initia noquonoy modoaromona
Intra-frequency measurement objects list	
Intra-frequency cell info list	Not Present
Intra-frequency measurement quantity	
	θ.
	CPICH RSCP
Intra-frequency reporting quantity	
indicator	No report
 Cell synchronisation information reporting- indicator 	TRUE
	TRUE
—-Cell Identity reporting indicator —-CHOICE-mode	FDD
	TRUE
	TRUE
	TRUE
Reporting quantities for monitored set cells	No. non-out
	No report
indicator	541.05
	FALSE
indicator	
Cell Identity reporting indicator	TRUE
	FDD
 	TRUE-
 CPICH RSCP reporting indicator 	TRUE
	TRUE
Reporting quantities for detected set cells	Not Present
Reporting cell status	
	Report all active set cells + cells within
	monitored set on used frequency
 Maximum number of reported cells 	Virtual/active set cells + 2
Measurement validity	Not Present
	Periodical reporting criteria
Amount of reporting	Infinity
Reporting interval	250 ms
Physical channel information elements	
-DPCH compressed mode status info	Not Present

Information Element Value/Remark ssage Type Me **UE** information elements -RRC transaction identifier Not Present -Integrity check info **Measurement Information elements** -Measurement Identity -Measurement Command Setup -Measurement Reporting Mode - Measurement Report Transfer Mode Acknowledged mode RLC - Periodical Reporting / Event Trigger Reporting Periodical reporting Mode -Additional measurement list Not Present -CHOICE Measurement Type Inter-frequency measurement --Inter-frequency measurement --Inter-frequency cell info list Not Present Cell 2 information is included -New inter-frequency cells --Cell for measurement Not Present --Inter-frequency measurement quantity--CHOICE reporting criteria Inter-frequency reporting criteria -Filter coefficient Δ -CHOICE mode FDD -Measurement quantity for frequency quality-**CPICH RSCP** estimate --Inter-frequency reporting quantity--UTRA Carrier RSSI TRUE -Frequency quality estimate TRUE -Non frequency related cell reporting quantities -SFN-SFN observed time difference reporting-No report indicator -Cell synchronisation information reporting-TRUEindicator -Cell Identity reporting indicator TRUE--CHOICE mode FDD -CPICH Ec/N0 reporting indicator TRUE -CPICH RSCP reporting indicator TRUE TRUE Pathloss reporting indicator -Reporting cell status -CHOICE reported cell Report all active set cells + cells withinmonitored set on used frequency --Maximum number of reported cells Virtual/active set cells + 2 --Measurement validity Not Present --Inter-frequency set update Not Present --CHOICE report criteria Periodical reporting criteria -Amount of reporting Infinity 500 ms -Reporting interval Physical channel information elements -DPCH compressed mode status info Not Present

Second MEASUREMENT CONTROL message for Inter frequency measurement (step 3):

MEASUREMENT REPORT message for Intra frequency test cases

This message is common for all inter frequency test cases in clause 8.7 and is described in Annex I.

8.7.2.2.5 Test requirements

The CPICH Ec/Io measurement accuracy shall meet the requirements in clause 8.7.2.2.2.2. The effect of assumed thermal noise and noise generated in the receiver (99 dBm) shall be added into the required accuracy defined in clause 8.7.2.2.2.2 as shown in table 8.7.2.2.2.3.

		Accuracy [dB] Cond			
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]	
		-2.71.5 for -14 ≤ CPICH Ec/lo -3.22 for -16 ≤ CPICH Ec/lo < -14 -4.23 for -20 ≤ CPICH Ec/lo < -16	-4.23	-9487	
CPICH_Ec/lo	dB	$\frac{\pm 1.5 \text{ for -14} \leq \text{CPICH Ec/lo}}{\pm 2 \text{ for -16} \leq \text{CPICH Ec/lo} < -14}$ $\frac{\pm 3 \text{ for -20} \leq \text{CPICH Ec/lo} < -16}{\pm 3 \text{ for -20} \leq \text{CPICH Ec/lo} < -16}$	±3	-8750	

Table 8.7.2.2.2.3: CPICH_Ec/lo Inter frequency relative accuracy, test requirements

The normative reference for this requirement is TS 25.133 [2] clause A.9.1.2.2.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.7.3 UTRA Carrier RSSI

NOTE: This measurement is for Inter frequency handover evaluation.

8.7.3.1 Absolute measurement accuracy requirement

8.7.3.1.1 Definition and applicability

The absolute accuracy of UTRA Carrier RSSI is defined as the UTRA Carrier RSSI measured from one frequencycompared to the actual UTRA Carrier RSSI power of that same frequency.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.3.1.2 Minimum Requirements

Table 8.7.3.1.1: UTRA Carrier RSSI Inter frequency absolute accuracy

		Accur	Accuracy [dB]	
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]
LITRA Carrier RSSI	dBm	±4	± 7	-9470
UTRA Gamer Rooi	dBm	±6 -	± 9	-7050

The normative reference for this requirement is TS 25.133 [2] clause 9.1.3.1.

8.7.3.1.3 Test purpose

The purpose of this test is to verify that the UTRA Carrier RSSI measurement is within the specified limits. This measurement is for inter-frequency handover evaluation.

8.7.3.1.4 Method of test

8.7.3.1.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

In this case both cells are on different frequencies and compressed mode is applied. The gap length is 7, detailed definition is in clause C.5, Set 1 of table C.5.2 except for TGRRC and TGCFN. TGPRC and TGCFN shall set to "Infinity" and "(Current CFN + (256 TTI/10msec))mod 256". UTRA Carrier RSSI absolute accuracy requirements are tested by using test parameters in table 8.7.3.1.2.

Deremeter	Unit	Te	st 1	Te	st 2	Te	st 3
Parameter	Ount	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2
UTRA RF Channel- number		Channel 1	Channel 2	Channel 1	Channel 2	Channel 1	Channel 2
CPICH_Ec/lor	dB		Ю	-4	10	-4	Ю
PCCPCH_Ec/lor	dB		12	-4	12	-4	2
SCH_Ec/lor	dB	-	12	4	12	-	2
PICH_Ec/lor	d₽	-	15	-	15	-	 5
DPCH_Ec/lor	dB	-15	_	-6	-	-6	-
OCNS_Ec/lor	d₿	-1.11	-0.94	-2.56	-0.94	-2.56	-0.94
łoc	dBm/ 3.84- MHz	-52.22	-52.22	-70.27	-70.27	-94.46	-94.46
Îor/loc	d₿	-1.75	-1.75	-4.7	-4.7	-9.5 4	-9.5 4
CPICH Ec/lo, Note 1	dBm	-14.0	-14.0	-16.0	-16.0	-20.0	-20.0
lo, Note 1	dBm/3.84 - MHz	-50	-50	-69	-69	-9 4	-9 4
Propagation condition	-	AWGN		AW	(GN	AW	'GN
NOTE 1: CPICH Ec/lo	and lo levels I	have been ca	Iculated from	other parame	eters for infor	mation purpo	ses. They
are not settal	ole parameters	s themselves.					
Tests shall be done seq	uentially. Test	1 shall be do	one first. After	test 1 has be	en executed	test paramet	ers for tests
2 and 3 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.							

Table 8.7.3.1.2: UTRA Carrier RSSI Inter frequency test parameters

1) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.3.1.2.

8.7.3.1.4.2 Procedure

- 1) SS shall transmit PHYSICAL CHANNEL RECONFIGURATION message.
- 2) UE shall transmit PHYSICAL CHANNEL RECONFIGURATION COMPLETE message.
- 3) SS shall transmit MEASUREMENT CONTROL message.
- 4) UE shall transmit periodically MEASUREMENT REPORT messages.
- 5) SS shall check UTRA carrier RSSI value of Channel 2 in MEASUREMENT REPORT messages. UTRA carrier RSSI power of Channel 2 reported by UE is compared to actual UTRA Carrier RSSI value of Channel 2 for each MEASUREMENT REPORT message.
- 6) SS shall count number of MEASUREMENT REPORT messages transmitted by UE. After 1000-MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according totable 8.7.3.1.2 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from-UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during thisperiod. Then, step 5) above is repeated. After further 1000 MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.3.1.2 for Test 3. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and
 - ignore the MEASUREMENT REPORT messages during this period. Then, step 5) above is repeated.
- 7) After further 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit RRC CONNECTION RELEASE message.
- 8) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.

Specific Message Contents

All messages indicated above shall use the same content as described in default message content in clause 9 of 34.108-[3], with the following exceptions:

PHYSICAL CHANNEL RECONFIGURATION message for Inter frequency measurement (step 1):

Information Element	Value/Remark
Message Type	
UE Information Elements	
-RRC transaction identifier	Α
-Integrity check info	Not Present
-Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	Not Present
-New U-RNTI	Not Present
-New C-RNTI	Not Present
-RRC State Indicator	CELL DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	
-CN Information info	Not Present
UTRAN mobility information elements	
-URA identity	Not Present
RB information elements	
-Downlink counter synchronisation info	Not Present
PhyCH information elements	Not Drocont
-Frequency info	Not Present
Uplink radio resources	Net Desert
-Maximum allowed UL TX power	Not Present
- CHOICE channel requirement	Not Present
Downlink radio resources	
-CHOICE mode	FDD
-Downlink PDSCH information	Not Present
-Downlink information common for all radio links	
Downlink DPCH info common for all RL	Not Present
CHOICE mode	FDD
DPCH compressed mode info	
 Transmission gap pattern sequence 	
	4
	Activate
	(Current CFN + (256 – TTI/10msec))mod 250
configuration parameters	
	EDD measurement
	Infinity
	4
	Z Z
	Not Present
	$\frac{1}{9}$
	3
	→ Not Present
	Mode 0
	Mode 0
	UL and DL
	SF/2
	SF/2
	B
	3.0
	3.0
	Not Present
DeltaSIRafter2	Not Present
	Not Present
	Not Present
TX Diversity Mode	Not Present
	Not Present
Default DPCH Offset Value	Not Present
-Downlink information per radio link list	
Downlink information for each radio link	
Choice mode	FDD
Primary CPICH info	

PDSCH with SHO-DCH Info	Not Present
PDSCH code mapping	Not Present
Downlink DPCH info for each RL	
CHOICE mode	FDD
	Primary CPICH may be used
	Set to value Default DPCH Offset Value (as
	currently stored in SS) mod 38400
Secondary CPICH info	Not Present
	Not Present
	128
	θ
	No code change
	θ
	Not Present
Closed loop timing adjustment mode	Not Present
SCCPCH Information for FACH	Not Present

MEASUREMENT CONTROL message for Inter frequency measurement (step 3):

Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	2
-Measurement Command	Setup
-Measurement Reporting Mode	
- Measurement Report Transfer Mode	Acknowledged mode RLC
- Periodical Reporting / Event Trigger Reporting	Periodical reporting
Mode	
-Additional measurement list	Not Present
-CHOICE Measurement Type	Inter-frequency measurement
Inter-frequency measurement	
Inter-frequency cell info list	
	Not Present
New inter-frequency cells	Cell 2 information is included.
Cell for measurement	Not Present
Inter-frequency measurement quantity-	
	Inter-frequency reporting criteria
Filter coefficient	θ
	FDD
	CPICH RSCP
estimate	
Inter-frequency reporting quantity-	
	TRUE
Frequency quality estimate	TRUE
Non frequency related cell reporting quantities	
	Type 1
indicator	1)001
Cell synchronisation information reporting	TRUE
indicator	
Cell Identity reporting indicator	TRUE
	FDD
	TRUE
	TRUE
	TRUE
	Report all active set cells + cells within
	monitored set on used frequency
	Virtual/active set cells $+ 2$
	Not Present
Inter-frequency set update	Not Present
	Periodical reporting criteria
Amount of reporting	Infinity
	500 ms
Physical channel information elements	
-DPCH compressed mode status info	Not Present
-มางการขากษาสรรสน การนส รเสเนร เกาง	

MEASUREMENT REPORT message for Inter frequency test cases

This message is common for all inter frequency test cases in clause 8.7 and is described in Annex I.

8.7.3.1.5 Test requirements

The UTRA Carrier RSSI absolute measurement accuracy shall meet the requirements in clause 8.7.3.1.2. The effect of assumed thermal noise and noise generated in the receiver (99 dBm) shall be added into the required accuracy defined in subclause 8.7.3.1.2 as shown in table 8.7.3.1.3.

		Accur	a cy [dB]	Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]
	dBm	-45.2	-78.2	-9487
UTRA Carrier RSSI	dBm	±4	<u>±7</u>	-8770
Γ	dBm	<u>±6</u>	± 9	-7050
now the whinna	m Kequitem	ent has been relaxed by th	e Test Tolerance is given	und the explanati in clause F.4.
	-	ent has been relaxed by th ent accuracy requir		
3.2 Relative n	-	ent accuracy requir		

8.7.3.2.2 Minimum Requirements

The accuracy requirements in table 8.7.3.2.1 are valid under the following condition:

Table 8.7.3.2.1: UTRA Carrier RSSI Inter frequency relative accuracy

		Accura	acy [dB]	Conditions
Parameter	Unit	Normal condition Extreme condition		lo [dBm/3.84 MHz]
UTRA Carrier RSSI	dBm	<u>±7</u>	±-11	-9450

The normative reference for this requirement is TS 25.133 [2] clause 9.1.3.2.

8.7.3.2.3 Test purpose

The purpose of this test is to verify that the UTRA Carrier RSSI measurement is within the specified limits. This measurement is for inter-frequency handover evaluation.

8.7.3.2.4 Method of test

8.7.3.2.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

In this case both cells are on different frequencies and compressed mode is applied. The gap length is 7, detailed definition is in clause C.5, Set 1 of table C.5.2 except for TGRRC and TGCFN. TGPRC and TGCFN shall set to-"Infinity" and "(Current CFN + (256 – TTI/10msec))mod 256". UTRA Carrier RSSI relative accuracy requirements are tested by using test parameters in table 8.7.3.1.2.

1) A call is set up according to the test procedure specified in TS 34.108 [3] clause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.3.1.2.

8.7.3.2	2.4.2 Pro	cedure				
1)	SS shall transmit PHY	SICAL CHAN	INEL RECONFIGURAT	' ION message.		
2)	2) UE shall transmit PHYSICAL CHANNEL RECONFIGURATION COMPLETE message.					
3)	3) SS shall transmit MEASUREMENT CONTROL message.					
4)	UE shall transmit peri	odically MEAS	SUREMENT REPORT n	lessages.		
	UTRA carrier RSSI p	ower value mea		nannel 2 in MEASUREME compared to UTRA carrie RT message.		0
	The result of step 5) is Channel 2.	s compared to a	etual power level differe	nce of UTRA Carrier RSS	Hof Channel 1 and	
	MEASUREMENT RI table 8.7.3.1.2 for Tes UE are ignored. SS sh period. Then, steps 5) been received from U parameters are being s	EPORT messag t 2. While RF f all wait for add and 6) above a E, the RF parar set up, MEASU	tes have been received fro barameters are being set a litional 1s and ignore the re repeated. After further neters are set up accordir REMENT REPORT met	ges transmitted by UE. Aft om UE, the RF parameters up, MEASUREMENT REF MEASUREMENT REPO 1000 MEASUREMENT I ug to table 8.7.3.1.2 for Tes sages from UE are ignored sages during this period. T	are set up accordin PORT messages fro RT messages durin REPORT messages at 3. While RF d. SS shall wait for	om- ng this- s have- r-
	RRC CONNECTION	RELEASE me	ssage.	e been received from UE,	the SS shall transr	nit-
9)	UE shall transmit RR(CONNECTI	ON RELEASE COMPLE	TE message.		
Specif	ic Message Content	S -				
	ssages indicated above h the following excep		ame content as described	in default message conten	t in clause 9 of 34.	.108-
	CAL CHANNEL RE			SUREMENT CONTROL	message for Inter-	
MEAS	UREMENT REPOR	T message fo	r inter – frequency test	cases		
This m	essage is common for	all inter freque	ncy test cases in clause 8	.7 and is described in Anne	ex I.	
8.7.3.	2.5 Test re	equirements				
assume		oise generated i	in the receiver (99 dBm	he requirements in clause &) shall be added into the re		
	Table 8.7.3.2.2: UTRA Carrier RSSI relative accuracy					
			Accur	acy [dB]	Conditions	
	Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84	

The normative reference for this requirement is TS 25.133 [2] clause A.9.1.3.2.

dBm

dBm

dBm

UTRA Carrier RSSI

4 52

<u>±-4</u>

<u>±6</u>

-7...8.2

±7

<u>± 9</u>

<u>0</u>/

-87

-70.

70

-50

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.7.3A GSM Carrier RSSI

Void.

8.7.3B Transport channel BLER

Void.

8.7.3C UE transmitted power

8.7.3C.1 Definition and applicability

The UE transmitted power absolute accuracy is defined as difference between the UE reported value and the UE transmitted power measured by test system. The reference point for the UE transmitted power shall be the antennaconnector of the UE.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.3C.2 Minimum requirements

The measurement period in CELL_DCH state is 1 slot.

Table 8.7.3C.2.1 UE transmitted power absolute accuracy

Parameter	Unit	Accuracy [dB]	
Parameter		PUEMAX 24dBm	PUEMAX 21dBm
UE transmitted power=PUEMAX	dBm	+1/-3	±2
UE transmitted power=PUEMAX-1	dBm	+1.5/-3.5	±2.5
UE transmitted power=PUEMAX-2	dBm	+2/-4	±3
UE transmitted power=PUEMAX-3	dBm	+2.5/-4.5	±3.5
PUEMAX-10 SUE transmitted power <puemax-3< td=""><td>dBm</td><td>+3/-5</td><td>±4</td></puemax-3<>	dBm	+3/-5	±4

NOTE 1: User equipment maximum output power, PUEMAX, is the maximum output power level without tolerance defined for the power class of the UE in TS 25.101 [1] section 6.2.1.

NOTE 2: UE transmitted power is the reported value.

For each empty slot created by compressed mode, no value shall be reported by the UE L1 for those slots.

The normative reference for this requirement is TS 25.133 [2] clause 9.1.6.

8.7.3C.3 Test purpose

The purpose of this test is to verify that for any reported value of UE Transmitted Power in the range PUEMAX to-PUEMAX 10 that the actual UE mean power lies within the range specified in clause 8.7.3C.2.

8.7.3C.4 Method of test

8.7.3C.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1) Connect SS to the UE antenna connector as shown in figure A.1.

The test parameters are given in Table 8.7.3C.4.1 and 8.7.3C.4.2 below. In the measurement control information it shall be indicated to the UE that periodic reporting of the UE transmitted power measurement shall be used.

Table 8.7.3C.4.1: General test parameters for UE transmitted power

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement	As specified in clause C.3.1
		Channel 12.2 kbps	
Power Control		On	
Target quality value on	BLER	0.01	
DTCH			

Table 8.7.3C.4.2: Cell Specific parameters for UE transmitted power

Parameter	Unit	Cell 1			
CPICH_Ec/lor	dB	-10			
PCCPCH_Ec/lor	dB	-12			
SCH_Ec/lor	dB	-12			
PICH_Ec/lor	dB	-15			
DPCH_Ec/lor	dB	Note1			
OCNS		Note 2			
$\frac{\hat{I}_{or}}{I_{oc}}$	dB	Φ			
-I _{oc}	dBm/3.84 MHz	-70			
CPICH_Ec/lo	dB	-13			
Propagation Condition		AWGN			
Note 1: The DPCH level is controlled by the power control loop					
Note 2: The power of the OCNS channel that is added shall make the total					
power from t	power from the cell to be equal to I _{or.}				

8.7.3C.4.2 Procedure

1) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.2.3. The RF parameters are set up according to table 8.7.3C.4.1 and 8.7.3C.4.2. Set the UE power and Maximum allowed UL TX power to the maximum power for the UE power class.

2) SS shall send continuously during the entire test Up power control commands to the UE.

3) SS shall transmit the MEASUREMENT CONTROL message as defined in the specific message contents below.

4) Decode the UE Transmitted power reported by the UE in the next available MEASUREMENT REPORTmessage.

5) Measure the mean power of the UE over a period of one timeslot.

- 6) Steps 4 and 5 shall be repeated [100] times.
- 7) Decrease the Maximum allowed UL TX power by 1 dB. The SS shall transmit the PHYSICAL CHANNEL RECONFIGURATION message, as defined in the specific message contents below.

8) SS shall wait for the PHYSICAL CHANNEL RECONFIGURATION COMPLETE message from the UE.

9) Repeat from step 4) until the Maximum allowed UL TX Power reaches PUEMAX 11.

Specific Message Contents

All messages indicated above shall use the same content as described in default message content in clause 9 of 34.108-[3], with the following exceptions:

MEASUREMENT CONTROL message:

Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	4
-Measurement Command	Modify
-CHOICE Measurement type	UE Internal measurement
UE Internal measurement quantity-	-
	FDD
Measurement quantity	UE Transmitted power
Filter coefficient	θ
UE Internal reporting quantity-	
UE Transmitted power	TRUE
	FDD
	FALSE
CHOICE report criteria-	Periodical reporting criteria
Amount of reporting	Infinity
Reporting interval	250
-Measurement Reporting Mode	
Measurement Report Transfer Mode	AM-RLC
-Periodical Reporting / Event Trigger Reporting Mode	Periodical reporting
Physical channel information elements	
-DPCH compressed mode status info	Not Present

MEASUREMENT REPORT message:

Information Element	Value/remark
Message Type	
Integrity check info	The presence of this IE is dependent on IXIT statements in TS 34.123-2. If integrity protection is indicated to be- active, this IE shall be present with the values of the sub- IEs as stated below. Else, this IE and the sub-IEs shall be absent.
	This IE is checked to see if it is present. The value is compared against the XMAC-I value computed by SS.
	This IE is checked to see if it is present. The value is used by SS to compute the XMAC-I value.
Measurement identity	4
Measured Results	
	Not present
	Checked that this IE is absent
	Checked that this IE is absent
- Primary scrambling code	150
	Checked that this IE is absent
	Checked that this IE is present
- Pathloss	Checked that this IE is absent
Measured results on RACH	Checked that this IE is absent
Additional measured results	
- UE internal measured results	
	FDD
	Checked that this IE is present
- UE Rx-Tx report entries	Checked that this IE is absent
Event results	Checked that this IE is absent

PHYSICAL CHANNEL RECONFIGURATION message:

Information Element	Value/Remark
Message Type	
UE Information Elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
-Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	Not Present
-New U-RNTI	Not Present-
-New C-RNTI	Not Present
-RRC-State Indicator	CELL DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	
-CN Information info	Not Present
UTRAN mobility information elements	
-URA identity	Not Present
RB information elements	
-Downlink counter synchronisation info	Not Present
PhyCH information elements	
-Frequency info	Not Present
Uplink radio resources	
-Maximum allowed UL TX power	At the first time this value is set to PUEMAX-1.
	After the second time this value is decreased
	with 1 dB from previous value.
Downlink radio resources	
-CHOICE mode	FDD
Downlink PDSCH information	Not Present
-Downlink information common for all radio links	Not Present
-Downlink information per radio link list	Not Present

8.7.3C.5 Test requirements

Compare each of the UE transmitted power reports against the following mean power measurement. At least 90% of the mean power measurements for any one value of reported UE transmitted power shall be within the range specified in-table 8.7.3C.5.

NOTE It is not expected or required that the distribution of UE transmitted power reports is even for the 11possible reported values.

	notor Unit	Mean Power range [dB]	
Parameter		PUEMAX 24dBm	PUEMAX 21dBm
UE transmitted power=PUEMAX	dBm	+1.7/-3.7	±2.7
UE transmitted power=PUEMAX-1	d Bm	+2.2/-4.2	±3.2
UE transmitted power=PUEMAX-2	dBm	+2.7/-4.7	±3.7
UE transmitted power=PUEMAX-3	dBm	+3.2/-5.2	±4.2
UE transmitted power=PUEMAX-4	dBm	+3.7/-5.7	±4.7
UE transmitted power=PUEMAX-5	dBm	+3.7/-5.7	±4.7
UE transmitted power=PUEMAX-6	dBm	+3.7/-5.7	±4.7
UE transmitted power=PUEMAX-7	dBm	+3.7/-5.7	±4.7
UE transmitted power=PUEMAX-8	dBm	+3.7/-5.7	±4.7
UE transmitted power=PUEMAX-9	dBm	+3.7/-5.7	±4.7
UE transmitted power=PUEMAX-10	dBm	+3.7/-5.7	±4.7

Table 8.7.3C.5 UE transmitted power test requirements

8.7.4 SFN-CFN observed time difference

8.7.4.1 Intra frequency measurement requirement

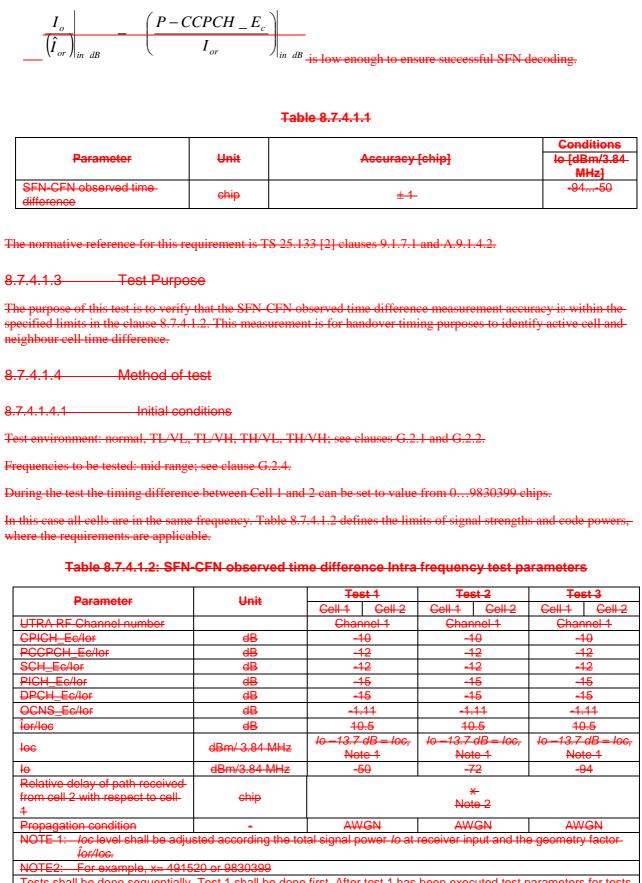
8.7.4.1.1 Definition and applicability

The intra frequency SFN CFN observed time difference is defined as the SFN CFN observed time difference from the active cell to a neighbour cell that is in the same frequency. This measurement is specified in clause 5.1.8 of TS 25.215-[22].

The reference point for the SFN CFN observed time difference shall be the antenna connector of the UE.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.4.1.2 Minimum requirements


The accuracy requirement in table 8.7.4.1.1 is valid under the following conditions:

<u>— CPICH_RSCP1,2|_{dBm} ≥ 114 dBm.</u>

$$- \left| \frac{CPICH _RSCP1}{_{in \, dBm}} - \frac{CPICH _RSCP2}{_{in \, dBm}} \right| \le 20 dB$$

$$\frac{I_o}{(\hat{I}_{or})} = \frac{CPICH_E_c}{I_{or}} \le 20dB$$

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for tests 2 and 3 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.

1)A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.4.1.2.

8.7.4.1.4.2 Procedure

1) SS shall transmit MEASUREMENT CONTROL message.

- 2) UE shall transmit periodically MEASUREMENT REPORT message.
- 3) SS shall check "OFF" and "Tm" values in MEASUREMENT REPORT message and calculate SFN CFNobserved time difference value according to the definition in clause 5.1.8 of TS 25.215 [22]. This value shall be compared to the actual SFN CFN observed time difference value for each MEASUREMENT REPORTmessage.
- 4) SS shall count the number of MEASUREMENT REPORT messages transmitted by UE. After 1000-MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according totable 8.7.4.1.2 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from-UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during thisperiod. Then, step 3) above is repeated. After further 1000 MEASUREMENT REPORT messages have beenreceived from UE, the RF parameters are set up according to table 8.7.4.1.2 for Test 3. While RF parameters arebeing set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, step 3) above is repeated.
- 5) After further 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit RRC CONNECTION RELEASE message.
- 6) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message for intra frequency measurement

Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	θ.
-Integrity check info	Not Present
Measurement Information elements	Not i resent
-Measurement Identity	4
-Measurement Command	
-Measurement Reporting Mode	Modify
- Measurement Report Transfer Mode	Acknowledged mode RLC
- Periodical Reporting / Event Trigger Reporting	Periodical reporting
Mode	i onedical reporting
-Additional measurement list	Not Present
-CHOICE Measurement Type	Intra-frequency measurement
-Intra-frequency measurement	
Intra-frequency measurement objects list	Not Present
	Not i resent
Intra-frequency measurement quantity	
Filter coefficient	θ
	FDD
Measurement quantity	CPICH RSCP
Intra-frequency reporting quantity	
Reporting quantities for active set cells	
indicator	No report
Cell synchronisation information reporting-	
indicator	TRUE
	TRUE
	FDD
	TRUE
	TRUE
Pathloss reporting indicator	TRUE
Reporting quantities for monitored set cells	
SFN-SFN observed time difference reporting-	No report
indicator	
	TRUE
indicator	
	TRUE
	FDD
	TRUE
	TRUE
	TRUE
 Reporting quantities for detected set cells 	Not Present
Reporting cell status	
CHOICE reported cell	Report all active set cells + cells within
•	monitored set on used frequency
Maximum number of reported cells	Virtual/active set cells + 2
Measurement validity	Not Present
CHOICE report criteria	Periodical reporting criteria
Amount of reporting	Infinity
Reporting interval	250 ms
Physical channel information elements	
-DPCH compressed mode status info	Not Present

MEASUREMENT REPORT message for Intra frequency test cases

This message is common for all intra frequency test cases in clause 8.7 and is described in Annex I.

8.7.4.1.5 Test requirements

The SFN CFN observed time difference measurement accuracy shall meet the requirements in clause 8.7.4.1.2.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum-Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.7.4.2 Inter frequency measurement requirement

8.7.4.2.1 Definition and applicability

The inter frequency SFN CFN observed time difference is defined as the SFN CFN time difference from the active cell to a neighbour cell that is in a different frequency. This measurement is specified in clause 5.1.8 of TS 25.215 [22].

The reference point for the SFN CFN observed time difference shall be the antenna connector of the UE.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.4.2.2 Minimum requirements

The accuracy requirement in table 8.7.4.2.1 is valid under the following conditions:

- <u>CPICH_RSCP1,2</u>|_{dBm} ≥ 114 dBm.

$$- \frac{CPICH _RSCP1}{in \, dBm} - \frac{CPICH _RSCP2}{in \, dBm} \le 20 dB$$

$$\frac{I_o}{\left(\hat{I}_{or}\right)_{in\ dB}} - \left(\frac{CPICH_E_c}{I_{or}}\right)_{in\ dB} \le 20dB$$

Table 8.7.4.2.1

			Conditions
Parameter	Unit	Accuracy [chip]	lo [dBm/3.84 MHz]
SFN-CFN observed time difference	chip	±1	- 9450

The normative reference for this requirement is TS 25.133 [2] clauses 9.1.7.2 and A.9.1.4.2.

8.7.4.2.3 Test purpose

The purpose of this test is to verify that the SFN CFN observed time difference measurement accuracy is within the specified limits in the clause 8.7.4.2.2. This measurement is for handover timing purposes to identify active cell and neighbour cell time difference.

8.7.4.2.4 Method of test

8.7.4.2.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

During the test the timing difference between Cell 1 and 2 can be set to value from 0...9830399 chips.

In this test case both cells are in different frequency and compressed mode is applied. The gap length is 7, detailed definition is in clause C.5, set 1 of table C.5.2 except for TGRRC and TGCFN. TGPRC and TGCFN shall set to-"Infinity" and "(Current CFN + (256 – TTI/10msee))mod 256". Table 8.7.4.2.2 defines the limits of signal strengths and code powers, where the requirement is applicable.

Table 8.7.4.2.2: SFN-CFN observed time difference Inter frequency tests parameters

Parameter	Unit	Tee	st 1	Test 2		Test 3	
Parameter	Diff	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2
UTRA RF Channel number		Channel	Channel	Channel	Channel	Channel	Channel
		1	2	1	2	1	2
CPICH_Ec/lor	dB	-4	θ	-10		-10	
PCCPCH_Ec/lor	d₿	-4	12 - 12		2	-4	2
SCH_Ec/lor	dB	۲ ۲	2	-4	2	4	2
PICH_Ec/lor	d₿	-4	5	-4	5	-4	5
DPCH_Ec/lor	d₿	-4	5	-15		-15	
OCNS_Ec/lor	dB	-1.11		-1.11		-1.11	
Îor/loc	d₽	10.1		10.1		10.1	
		lo –10.6 dB = loc,		lo –10.6 dB = loc,		lo −10.6 dB = loc,	
loc	dBm/ 3.84 MHz	Not	ie 1	No	te 1	Not	e 1
lo	dBm/3.84 MHz	-50 -72		-4)4		
Relative delay of path received					4		
from cell 2 with respect to cell	chip				(-		
4				INO INO	t e 2		
Propagation condition	-	AWGN AWGN			' GN	AW	GN
NOTE 1: loc level shall be adjust	sted in each carrier fr	equency a	cording th	e total sig	hal power	lo at receiv	er input
and the geometry fact			Ŭ	Ŭ	•		
NOTE2: For example, x= 191520 or 9830399							
Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for tests							

Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for tests 2 and 3 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.

1) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.4.2.2.

8.7.4.2.4.2 Procedure

- 1) SS shall transmit PHYSICAL CHANNEL RECONFIGURATION message.
- 2) UE shall transmit PHYSICAL CHANNEL RECONFIGURATION COMPLETE message.
- 3) SS shall transmit MEASUREMENT CONTROL message.
- 4) UE shall transmit periodically MEASUREMENT REPORT messages.
- 5) SS shall check "OFF" and "Tm" values in MEASUREMENT REPORT message and calculate SFN CFN observed time difference value according to the definition in clause 5.1.8 of TS 25.215 [22]. This value shall be compared to the actual SFN CFN observed time difference value for each MEASUREMENT REPORT message.
- 6) SS shall count number of MEASUREMENT REPORT messages transmitted by UE. After 1000-MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.4.2.2 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from-UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, steps 3) and 4) above are repeated. After further 1000 MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according to table 8.7.4.2.2 for Test 3. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait foradditional 1s and ignore the MEASUREMENT REPORT messages from UE are ignored. SS shall wait foradditional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, steps 4) and 5)above are repeated.
- 7) After further 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit RRC CONNECTION RELEASE message.
- 8) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

PHYSICAL CHANNEL RECONFIGURATION message for inter frequency measurement

Information Element	Value/Remark
Message Type	
UE Information Elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
-Integrity protection mode info	Not Present
-Ciphering mode info	Not Present
-Activation time	Not Present
-New U-RNTI	Not Present
New C-RNTI	Not Present
-RRC State Indicator	
	CELL_DCH
-UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	
-CN Information info	Not Present
UTRAN mobility information elements	
-URA identity	Not Present
RB information elements	
-Downlink counter synchronisation info	Not Present
PhyCH information elements	
-Frequency info	Not Present
Uplink radio resources	
-Maximum allowed UL TX power	Not Present
- CHOICE channel requirement	Not Present
Downlink radio resources	
-CHOICE mode	FDD
-Downlink PDSCH information	Not Present
-Downlink information common for all radio links	
-Downlink Information common for all RL	Not Present
-CHOICE mode	FDD
DPCH compressed mode info	
-Transmission gap pattern sequence	
	4
	Activate
	(Current CFN + (256 – TTI/10msec))mod 250
Transmission gap pattern sequence-	
configuration parameters	
	FDD measurement
-TGPRC	Infinity
	4
	7
	Not Present
	0
	3
	Not Present
	Mode 0
	Mode 0
	UL and DL
	SF/2
	SF/2
	B
	3.0
	3.0
-DeltaSIR2	Not Present
	Not Present
-Default DPCH Offset Value	Not Present
-Downlink information per radio link list	
-Downlink information for each radio link	
Choice mode	FDD
Primary CPICH info Primary scrambling code	

PDSCH with SHO DCH Info	Not Present
PDSCH code mapping	Not Present
Downlink DPCH info for each RL	
	FDD
Primary CPICH usage for channel estimation	Primary CPICH may be used
	Set to value Default DPCH Offset Value (as
	currently stored in SS) mod 38400
Secondary CPICH info	Not Present
	Not Present
	128
	θ
	No code change
	θ
	Not Present
Closed loop timing adjustment mode	Not Present
SCCPCH Information for FACH	Not Present

MEASUREMENT CONTROL message for Inter frequency measurement

Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	2
-Measurement Command	
-Measurement Reporting Mode	
- Measurement Report Transfer Mode	Acknowledged mode RLC
- Periodical Reporting / Event Trigger Reporting	Periodical reporting
Mode	
-Additional measurement list	Not Present
-CHOICE Measurement Type	Inter-frequency measurement
-Inter-frequency measurement	
Inter-frequency cell info list	
	Not Present
New inter-frequency cells-	Cell 2 information is included
Cell for measurement	
Inter-frequency measurement quantity-	Inter-frequency reporting criteria
CHOICE reporting criteria	
Filter coefficient	θ
	FDD
	CPICH RSCP
estimate	
Inter-frequency reporting quantity-	
	TRUE
Frequency quality estimate	TRUE
Non frequency related cell reporting quantities	
	No report
indicator	
	TRUE-
indicator	
	TRUE-
	FDD
	TRUE
	TRUE-
Pathloss reporting indicator	TRUE
Reporting cell status	
	Report all active set cells + cells within
	monitored set on used frequency
Maximum number of reported cells	Virtual/active set cells + 2
Measurement validity	Not Present
Inter-frequency set update	Not Present
CHOICE report criteria	Periodical reporting criteria
Amount of reporting	Infinity
Reporting interval	500 ms
Physical channel information elements	Net Descent
-DPCH compressed mode status info-	Not Present

MEASUREMENT REPORT message for Inter frequency test cases

This message is common for all inter frequency test cases in clause 8.7 and is described in Annex I.

8.7.4.2.5 Test requirements

The SFN CFN observed time difference measurement accuracy shall meet the requirements in clause 8.7.4.2.2.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.7.5 SFN-SFN observed time difference

8.7.5.1 SFN-SFN observed time difference type 1

8.7.5.1.1 Definition and applicability

This measurement is specified in clause 5.1.9 of TS 25.215 [22]. The reference point for the SFN SFN observed timedifference type 1 shall be the antenna connector of the UE.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.5.1.2 Minimum requirements

The accuracy requirement in table 8.7.5.1.1 is valid under the following conditions:

<u>— CPICH_RSCP1,2 $|_{dBm}$ ≥ 114 dBm.</u>

$$-\frac{|CPICH_RSCP1|_{in dBm} - CPICH_RSCP2|_{in dBm}| \le 20dB}{\left(\hat{I}_{or}\right)_{in dB}} - \frac{(CPICH_E_c)_{in dB}}{(I_{or})_{in dB}} \le 20dB}{\left(\frac{I_o}{(\hat{I}_{or})_{in dB}} - \frac{(P - CCPCH_E_c)_{in dB}}{(I_{or})_{in dB}}}{\left(\frac{I_o}{I_{or}}\right)_{in dB}} = \frac{(P - CCPCH_E_c)_{in dB}}{(I_{or})_{in dB}}$$

Table 8.7.5.1.1

Parameter	Unit	Accuracy [chip]	Conditions lo [dBm/3.84 MHz]
SFN-SFN observed time- difference type1	chip	±1	-9450

The normative reference for this requirement is TS 25.133 [2] clause 9.1.8.1.1 and A.9.1.5.1.2.

8.7.5.1.3 Test purpose

The purpose of this test is to verify that the measurement accuracy of SFN SFN observed time difference type 1 is within the limit specified in clause 8.7.5.1.2. This measurement is for identifying time difference between two cells.

8.7.5.1.4 Method of test

8.7.5.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

During the test the timing difference between Cell 1 and 2 can be set to value from 0...9830399 chips.

1) Connect SS to the UE antenna connector as shown in figure A.1

2) A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.5.1.2.

In this case all cells are in the same frequency. Table 8.7.5.1.2 defines the limits of signal strengths and code powers, where the requirements are applicable.

Table 8.7.5.1.2: SFN-SFN observed time difference type 1 Intra frequency test parameters

Parameter	Lin it	Ter	Test 1		Test 2		Test 3	
r arameter	Unit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2	
UTRA RF Channel number		Channel 1		Channel 1		Channel 1		
CPICH_Ec/lor	dB	-4	-10 -10		-10			
PCCPCH_Ec/lor	dB	-4	-12 -12		-12			
SCH_Ec/lor	d₿	-4	<u>-12</u> <u>-12</u>		-12			
PICH_Ec/lor	dB	-4	15	-4	15	-4	1 5	
DPCH_Ec/lor	d₿	-15		-15		-15		
OCNS_Ec/lor	d₿	-1.11		-1.11		-1.11		
Îor/loc	dB	40) .5	10.5		10.5		
		lo =13.7 dB = loc,		lo =13.7 dB = loc,		lo =13.7 dB = loc,		
loc	dBm/ 3.84 MHz	Note 1		Note 1		Note 1		
lo	dBm/3.84 MHz	-{	-50 -72		4) 4		
Relative delay of path received								
from cell 2 with respect to cell	chip				K-			
4		Note 2						
Propagation condition	-	AW	'GN	AW	'GN	AW	'GN	
NOTE 1: loc level shall be adjust	sted according the to	tal signal p	ower <i>lo</i> at	receiver in	put and the	e geometry	/ factor	
, Îor/loc.	Ŭ	5 1				с ,		
NOTE2: For example, x= 4915	20 or 9830399							

Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for tests 2 and 3 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.

8.7.5.1.4.2 Procedure

1) SS shall transmit MEASUREMENT CONTROL message.

2) UE shall transmit periodically MEASUREMENT REPORT message.

- 3) SS shall check "SFN SFN observed time difference type 1" value in MEASUREMENT REPORT message. The reported value shall be compared to actual SFN SFN observed time difference type 1 value for each-MEASUREMENT REPORT message.
- 4) SS shall count the number of MEASUREMENT REPORT messages transmitted by UE. After 1000-MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according totable 8.7.5.1.2 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from-UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, step 3) above is repeated. After further 1000 MEASUREMENT REPORT messages have beenreceived from UE, the RF parameters are set up according to table 8.7.5.1.2 for Test 3. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period. Then, step 3) above is repeated.
- 5) After further 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit RRC CONNECTION RELEASE message.

6) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3], with the following exceptions:

MEASUREMENT CONTROL message for Intra frequency measurement (Step 1):

Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	4
-Measurement Command	Modify
-Measurement Reporting Mode	
- Measurement Report Transfer Mode	Acknowledged mode RLC
- Periodical Reporting / Event Trigger Reporting	Periodical reporting
Mode	
-Additional measurement list-CHOICE-	Not Present
Measurement Type	Intra-frequency measurement
Intra-frequency measurement	
- Intra-frequency measurement objects list	Not Present
Intra-frequency measurement quantity	
Filter coefficient	θ
	FDD
Measurement quantity	CPICH RSCP
Intra-frequency reporting quantity	
Reporting quantities for active set cells	
indicator	Type 1
Cell synchronisation information reporting	21.1
indicator	TRUE
Cell Identity reporting indicator	TRUE
	FDD
	TRUE
	TRUE
Pathloss reporting indicator	TRUE
Reporting quantities for monitored set cells	
SFN-SFN observed time difference reporting	Type 1
indicator	
Cell synchronisation information reporting-	TRUE
indicator	
	TRUE
	FDD
	TRUE
	TRUE
Pathloss reporting indicator	TRUE
Reporting quantities for detected set cells	Not Present
Reporting cell status	
	Report all active set cells + cells within
	monitored set on used frequency
Maximum number of reported cells	Virtual/active set cells + 2
Measurement validity	Not Present
	Periodical reporting criteria
Amount of reporting	Infinity
Reporting interval	250 ms
Physical channel information elements	
-DPCH compressed mode status info	Not Present

MEASUREMENT REPORT message for Intra frequency test cases

This message is common for all intra frequency test cases in clause 8.7 and is described in Annex I.

8.7.5.1.5 Test requirements

The SFN SFN observed time difference type 1 accuracy shall meet the requirements in clause 8.7.5.1.2.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.7.5.2 SFN-SFN observed time difference type 2

Void.

8.7.6 UE Rx-Tx time difference

8.7.6.1 UE Rx-Tx time difference type 1

8.7.6.1.1 Definition and applicability

The UE Rx Tx time difference is defined as the time difference between the UE uplink DPCCH/DPDCH frametransmission and the first detected path (in time) of the downlink DPCH frame from the measured radio link. The reference point of the UE Rx Tx time difference shall be the antenna connector of the UE. This measurement is specified in clause 5.1.10 of TS 25.215.

The requirements and this test apply to all types of UTRA for the FDD UE.

8.7.6.1.2 Minimum requirements

Table 8.7.6.1.1

Barameter	Unit	Accuracy [chin]	Conditions
Farameter	0	Accuracy [cmp]	lo [dBm/3.84Mz]
UE RX-TX time difference	chip	± 1.5_	-9450

The normative reference for this requirement is TS 25.133 [2] clause 9.1.9.1.1 and A.9.1.6.1.2.

8.7.6.1.3 Test purpose

The purpose of this test is to verify that the measurement accuracy of Rx Tx time difference is within the limit specified in clause 8.7.6.1.2. This measurement is used for call setup purposes to compensate propagation delay of DL and UL.

8.7.6.1.4 Method of test

8.7.6.1.4.1 Initial conditions

Test environment: normal; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

1) Connect SS to the UE antenna connector as shown in figure A.1

Table 8.7.6.1.2: UE Rx-Tx time difference type 1 intra frequency test parameters

Parameter	Unit	Test 1	Test 2	Test 3
Farameter	Unit	Cell 1	Cell 1	Cell 1
UTRA RF Channel number		Channel 1	Channel 1	Channel 1
CPICH_Ec/lor	dB	-10	-10	-10
PCCPCH_Ec/lor	dB	-12	-12	-12
SCH_Ec/lor	dB	-12	-12	-12
PICH_Ec/lor	dB	-15	-15	-15
DPCH_Ec/lor	dB	-15	-15	-15
OCNS	dB	-1.11	-1.11	-1.11
Îor/loc	dB	10.5	10.5	10.5
	dBm/ 3.84 MHz	lo =10.9 dB = loc,	lo =10.9 dB = loc,	lo =10.9 dB = loc,
loc		Note 1	Note 1	Note 1
lo	dBm/3.84 MHz	-94 -	-72	-50
Propagation condition	-	AWGN	AWGN	AWGN
NOTE 1: /oc level shall be a	djusted according th	ne total signal power s	pectral density <i>lo</i> at re	ceiver input and the
geometry factor Îor/loc.				

8.7.6.1.4.2 Procedure

- 1)A call is set up according to the test procedure specified in TS 34.108 [3] subclause 7.3.2.3. The RF parametersare set up according to table 8.7.6.1.4 for Test 1.
- 2) SS shall transmit MEASUREMENT CONTROL message.
- 3) UE shall transmit periodically MEASUREMENT REPORT message.
- 4) SS shall check "UE Rx Tx time difference type 1" value in MEASUREMENT REPORT message. The reportedvalue shall be compared to actual UE Rx Tx time difference value for each MEASUREMENT REPORTmessage. The comparison should be repeated 1000 times.
- 5) The RF parameters are set up according table 8.7.6.1.4 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period.
- 6) Step 3) above shall be repeated.
- 7) The RF parameters are set up according table 8.7.6.1.4 for Test 3. While RF parameters are being set up, MEASUREMENT REPORT messages from UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during this period.
- 8) Step 3) above shall be repeated.
- 9) SS shall transmit RRC CONNECTION RELEASE message.

Specific Message Contents

All messages indicated above shall use the same content as described in default message content in clause 9 of 34.108-[3], with the following exceptions:

MEASUREMENT CONTROL message for Intra frequency measurement (Step 1):

Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	Ð
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	4
-Measurement Command	Modify
- Additional measurements list	Not Present
-Measurement Reporting Mode	AM RLC
-Measurement Report Transfer Mode	Periodical reporting
-Periodical Reporting / Event Trigger Reporting Mode	UE Internal measurement
-CHOICE Measurement type	-
-UE Internal measurement quantity	FDD
	UE Rx-Tx time difference
Measurement quantity	0 —
Filter coefficient	
UE Internal reporting quantity-	
UE Transmitted power	FALSE
	FDD
	TRUE
-CHOICE report criteria	Periodical reporting criteria
Amount of reporting	Infinity
Reporting interval	250
-Measurement Reporting Mode	
-Measurement Report Transfer Mode	AM RLC
-Periodical Reporting / Event Trigger Reporting Mode	Periodical reporting
Physical channel information elements	
-DPCH compressed mode status info	Not Present

MEASUREMENT REPORT message

Information Element	Value/remark
Message Type	
Integrity check info	The presence of this IE is dependent on IXIT statements in TS 34.123-2. If integrity protection is indicated to be- active, this IE shall be present with the values of the sub- IEs as stated below. Else, this IE and the sub-IEs shall be absent.
- Message authentication code	This IE is checked to see if it is present. The value is compared against the XMAC-I value computed by SS.
	This IE is checked to see if it is present. The value is used by SS to compute the XMAC-I value.
Measurement identity	4
Measured Results	
	UE Internal measured results
	FDD
- UE Transmitted power	Checked that this IE is absent
- Primary CPICH info	Checked that this IE is present
- UE Rx-Tx time difference type 1	Checked that this IE is present
Intra-frequency measured results Cell measured results	·
	Not present
- SFN-SFN observed time difference	Checked that this IE is absent
- Cell synchronisation information	Checked that this IE is absent
- Primary scrambling code	100
	Checked that this IE is absent
	Checked that this IE is present
	Checked that this IE is absent
Measured results on RACH	Checked that this IE is absent
Additional measured results	Checked that this IE is absent
Event results	Checked that this IE is absent

8.7.6.1.5 Test requirements

Table 8.7.6.1.3

Paramotor	Unit	Accuracy [chip]	Conditions
Farameter	onit		lo [dBm]
UE RX-TX time difference	chip	[<u>± 2.0]</u>	-9450

Table 8.7.6.1.4: UE Rx-Tx time difference type 1 intra frequency test parameters

Parameter-	Unit	Test 1	Test 2	Test 3	
		Cell 1	Cell 1	Cell 1	
UTRA RF Channel number		Channel 1	Channel 1	Channel 1	
CPICH_Ec/lor	dB	-10	-10	-10	
PCCPCH_Ec/lor	d₿	-12	-12	-12	
SCH_Ec/lor	dB	-12	-12	-12	
PICH_Ec/lor	dB	-15	-15	-15	
DPCH_Ec/lor	dB	-15	-15	-15	
OCNS	d₿	-1.11	-1.11	-1.11	
Îor/loc	dB	10.5	10.5	10.5	
loc	dBm/ 3.84 MHz	-103.6	-82.9	-62.2	
lo	dBm/3.84 MHz	-92.7	-72	-51.3	
Propagation condition	-	AWGN	AWGN	AWGN	
NOTE 1: loc level shall be a	djusted according th	ne total signal power s	pectral density <i>lo</i> at re	ceiver input and the	
geometry factor Îor/loc.	_				

The UE Rx Tx time difference accuracy shall meet the requirements in table 8.7.6.1.3.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

8.7.6.2 UE Rx-Tx time difference type 2

Void

8.7.7 Observed time difference to GSM cell

Void

8.7.8 P-CCPCH RSCP

8.7.8.1 Absolute measurement accuracy

8.7.8.1.1 Definition and applicability

The absolute accuracy of P CCPCH RSCP is defined as the P CCPCH RSCP measured in an UTRA TDD cell on onefrequency compared to the actual P CCPCH RSCP power of that cell on the same frequency.

The requirements and this test apply only to UE supporting both UTRA FDD and UTRA TDD.

8.7.8.1.2 Minimum Requirements

The accuracy requirement in table 8.7.8.1.1 is valid under the following conditions:

P-CCPCH_RSCP ≥ -102 dBm,

$$\frac{I_o}{\left(\hat{I}_{or}\right)_{in\ dB}} - \left(\frac{P - CCPCH - E_c}{I_{or}}\right)_{in\ dB} \le 8dB$$

Table 8.7.8.1.1: P-CCPCH RSCP inter frequency absolute accuracy

		Accuracy [dB]		Conditions	
Parameter	Parameter Unit		Extreme conditions	lo [dBm/3.84 MHz]	
P-CCPCH RSCP	dBm	±6 -	± 9	-9470	
	dBm	±8	± 11	-7050	

The normative reference for this requirement is TS 25.133 [2] clauses 9.1.11.1 and A.9.1.8.

8.7.8.1.3 Test purpose

The purpose of this test is to verify that the P-CCPCH RSCP absolute measurement accuracy is within the specifiedlimits.

8.7.8.1.4 Method of test

8.7.8.1.4.1 Initial conditions

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH; see clauses G.2.1 and G.2.2.

Frequencies to be tested: mid range; see clause G.2.4.

In this case both cells are on different frequencies. Cell 1 is a UTRA FDD cell and cell 2 is a UTRA TDD cell. The second Beacon timeslot shall be provided for cell 2 in timeslot 8. Compressed mode as specified in TS 25.101 [1] section A.5, set 3 of table A.22, is applied. TGPRC and TGCFN shall be set to "Infinity" and "(Current CFN + (256 - 100)).

TTI/10msec)) mod 256". P CCPCH RSCP inter frequency absolute accuracy requirements are tested by using testparameters in Table 8.7.8.1.2.

Paramotor	Parameter Unit Test 1 Cell 1 Cell 2		st 1	Ŧe	Test 2		
Farameter			Cell 1	Cell 2			
DL timeslot number		n.a.	0 8	n.a.	0	8	
UTRA RF Channel number		Channel 2	Channel 1 Channel 2 Ch		Chann	iel 1	
CPICH_Ec/lor	dB	-10	n.a.	-10	n.a.		
P-CCPCH_Ec/lor	dB	-12	- 3 n.:	3. - 12	-3	n.a	
SCH_Ec/lor	dB	-12	-9	-12	-9		
SCH_t _{offset}		n.a.	5	n.a.	5		
PICH_Ec/lor	dB	-15	n.a 🤆	≩ <mark>-15</mark>	n.a.	-3	
DPCH_Ec/lor	dB	-15	n.a.	-15	n.a	n.a.	
OCNS_Ec/lor	dB	-1.11	-3.12	-1.11	-3.1	2	
loc	dBm/ 3.84 MHz	-60	-57.7	-84	-84.7		
Îor/loc	dB	9.54	7	Ð	3		
P-CCPCH RSCP, Note 1	dBm	n.a.	-53.7 n.:	a. n.a.	-84.7	n.a.	
CPICH RSCP, Note 1	dBm	-60.46	n.a.	-94	n.a	÷	
lo, Note 1	dBm/3.84 MHz	-50	-50	-81	-8(•	
Propagation condition	-	ΑV	A	VGN			

Table 8.7.8.1.2: P-CCPCH RSCP inter frequency tests parameters

Note 1: P-CCPCH RSCP, CPICH RSCP and to levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

Note that the transmit energy per PN chip for the SCH is averaged over the 256 chip duration when the SCH is present in the time slot.

Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed, test parameters for test 2 shall be set within 5 seconds so that the UE does not lose the Cell 2 in between the test.

2)A call is set up according to the test procedure specified in TS 34.108 [3] clause 7.3.2.3. The RF parameters for Test 1 are set up according to table 8.7.8.1.2.

8.7.8.1.4.2 Procedure

1) SS shall transmit the PHYSICAL CHANNEL RECONFIGURATION message.

2) UE shall transmit the PHYSICAL CHANNEL RECONFIGURATION COMPLETE message.

3) SS shall transmit the MEASUREMENT CONTROL message.

4) UE shall transmit periodically MEASUREMENT REPORT messages.

- 5) SS shall check P CCPCH RSCP values of Cell 2 in the MEASUREMENT REPORT messages. P CCPCH RSCP power level of Cell 2 reported by the UE shall be compared to the actually set P CCPCH RSCP value of Cell 2 for each MEASUREMENT REPORT message.
- 6) SS shall count number of MEASUREMENT REPORT messages transmitted by UE. After 1000-MEASUREMENT REPORT messages have been received from UE, the RF parameters are set up according totable 8.7.8.1.2 for Test 2. While RF parameters are being set up, MEASUREMENT REPORT messages from-UE are ignored. SS shall wait for additional 1s and ignore the MEASUREMENT REPORT messages during thisperiod. Then, steps 4) and 5) above are repeated.
- 7) After further 1000 MEASUREMENT REPORT messages have been received from UE, the SS shall transmit RRC CONNECTION RELEASE message.

8) UE shall transmit RRC CONNECTION RELEASE COMPLETE message.

Specific Message Contents

All messages indicated above shall use the same content as described in the default message content in clause 9 of 34.108 [3] and in Annex I, with the following exceptions:

PHYSICAL CHANNEL RECONFIGURATION message for inter frequency measurement (Step 1):

Information Element	Value/Remark
Message Type	
UE Information Elements	
-RRC transaction identifier	θ
-ntegrity check info	→ Not Present
-Integrity protection mode info	Not Present
-ciphering mode info	Not Present
-Cipiteting mode into	Not Present
-Activation time	Not Present
-New C-RNTI	Not Present
-Rec State Indicator	CELL DCH
-CRC State Indicator -UTRAN DRX cycle length coefficient	Not Present
CN Information Elements	
-CN Information Elements	Not Procent
	Not Present
UTRAN mobility information elements	Net Descent
-URA identity	Not Present
RB information elements	
-Downlink counter synchronisation info	Not Present
PhyCH information elements	
-Frequency info	Not Present
Uplink radio resources	
-Maximum allowed UL TX power	Not Present
- CHOICE channel requirement	Not Present
Downlink radio resources	
-CHOICE mode	FDD
-Downlink PDSCH information	Not Present
-Downlink information common for all radio links	
-Downlink DPCH info common for all RL	Not Present
CHOICE mode	FDD
DPCH compressed mode info	
-Transmission gap pattern sequence	
	4
	Activate
	(Current CFN + (256 – TTI/10msec))mod 25
Transmission con actions converses	
Transmission gap pattern sequence-	
configuration parameters	TDD-measurement
	Infinity
	10
	10
	Not Present
TGD	θ
	44
	Not Present
	Mode 0
ITP	Mode 0
	UL and DL
	Puncturing
 Downlink compressed mode method 	1 anotaning
	SF/2
I I I I I I I I I I I I I I I I I I I	0
	SF/2
 Uplink compressed mode method Downlink frame type 	SF/2 A
 Uplink compressed mode method Downlink frame type DeltaSIR1 	SF/2 A 3.0
	SF/2 A 3.0 3.0
Uplink compressed mode method Downlink frame type DeltaSIR1 DeltaSIRafter1 DeltaSIR2 DeltaSIRafter2	SF/2 A 3.0 3.0 Not Present Not Present
Uplink compressed mode method Downlink frame type DeltaSIR1 DeltaSIRafter1 DeltaSIR2 DeltaSIR2 DeltaSIRafter2 N Identify abort	SF/2 A 3.0 3.0 Not Present
Uplink compressed mode method Downlink frame type DoltaSIR1 DoltaSIR2 DoltaSIR2 DoltaSIRafter2 N Identify abort T Reconfirm abort	SF/2 A 3.0 3.0 Not Present Not Present Not Present Not Present
Uplink compressed mode method Downlink frame type DeltaSIR1 DeltaSIRafter1 DeltaSIR2 DeltaSIRafter2 N Identify abort T Reconfirm abort TX Diversity Mode	SF/2 A 3.0 3.0 Not Present Not Present Not Present Not Present Not Present Not Present
Uplink compressed mode method Downlink frame type DeltaSIR1 DeltaSIRafter1 DeltaSIR2 DeltaSIRafter2 N Identify abort T Reconfirm abort TX Diversity Mode SSDT information	SF/2 A 3.0 Not Present Not Present Not Present Not Present Not Present Not Present Not Present Not Present
Uplink compressed mode method Downlink frame type DeltaSIR1 DeltaSIRafter1 DeltaSIRafter2 DeltaSIRafter2 N Identify abort T Reconfirm abort TX Diversity Mode SSDT information Default DPCH Offset Value	SF/2 A 3.0 3.0 Not Present- Not Present- Not Present- Not Present- Not Present- Not Present-
Uplink compressed mode method Downlink frame type DeltaSIR1 DeltaSIRafter1 DeltaSIRafter2 DeltaSIRafter2 N Identify abort T Reconfirm abort TX Diversity Mode SSDT information Default DPCH Offset Value Downlink information per radio link list	SF/2 A 3.0 Not Present Not Present Not Present Not Present Not Present Not Present Not Present Not Present
Uplink compressed mode method Downlink frame type DeltaSIR1 DeltaSIR2 DeltaSIRafter2 N Identify abort T. Reconfirm abort TX Diversity Mode SSDT information Default DPCH Offset Value Downlink information per radio link list -Downlink information for each radio link	SF/2 A 3.0 3.0 Not Present Not Present Not Present Not Present Not Present Not Present Not Present Not Present
Uplink compressed mode method Downlink frame type DeltaSIR1 DeltaSIRafter1 DeltaSIRafter2 DeltaSIRafter2 N-Identify abort T Reconfirm abort TX Diversity Mode SSDT information	SF/2 A 3.0 Not Present- Not Present- Not Present- Not Present- Not Present- Not Present- Not Present- Not Present- Not Present-

PDSCH with SHO DCH Info	Not Present
PDSCH code mapping	Not Present
Downlink DPCH info for each RL	
	FDD
	Primary CPICH may be used
	Set to value Default DPCH Offset Value (as
	currently stored in SS) mod 38400
Secondary CPICH info	Not Present
	Not Present
	128
Code number	θ
	No code change
	θ
	Not Present
Closed loop timing adjustment mode	Not Present
SCCPCH Information for FACH	Not Present

MEASUREMENT CONTROL message for inter frequency measurement (Step 3):

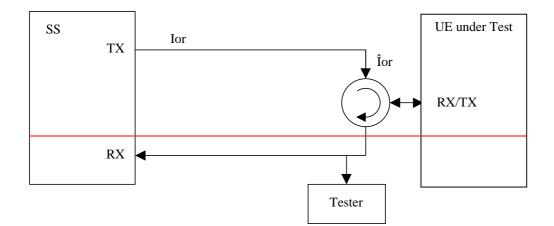
Information Element	Value/Remark
Message Type	
UE information elements	
-RRC transaction identifier	θ
-Integrity check info	Not Present
Measurement Information elements	
-Measurement Identity	2
-Measurement Command	Setup
-Measurement Reporting Mode	Comp
- Measurement Report Transfer Mode	Acknowledged mode RLC
- Periodical Reporting / Event Trigger Reporting	Periodical reporting
Mode	
-Additional measurement list	Not Present
-CHOICE Measurement Type	Inter-frequency measurement
-Inter-frequency measurement	mor nequency medealement
Inter-frequency cell info list	
	Not Present
New inter-frequency cells-	Cell 2 information is included.
	Not Present
Inter-frequency measurement quantity-	
	Inter frequency reporting criteria
—-CHOICE reporting criteria —-Filter coefficient	Inter-frequency reporting criteria
	Primary CCPCH RSCP
estimate	
Inter frequency reporting quantityUTRA Carrier RSSI	FALSE
	TRUE
Frequency quality estimate	HRUE
Non frequency related cell reporting quantities	N a man ant
	No report
indicator	ENLOF
Cell synchronisation information reporting-	FALSE
indicator	EN 05
Cell Identity reporting indicator	FALSE
	TDD
	FALSE
	FALSE
	TRUE
Pathloss reporting indicator	FALSE
Reporting cell status	Report all active set cells + cells within
	monitored set on used frequency
	Virtual/active set cells + 2
 -Maximum number of reported cells 	Not Present
Measurement validity	Not Present
Inter-frequency set update	Periodical reporting criteria
	Infinity
Amount of reporting	500 ms
Reporting interval	
Physical channel information elements	
-DPCH compressed mode status info	Not Present

8.7.8.1.5 Test requirements

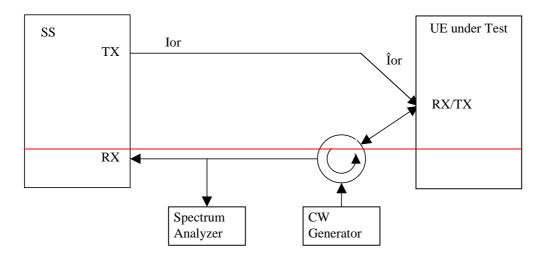
The PCCPCH RSCP measurement accuracy shall meet the requirements in clause 8.7.8.1.2.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in clause F.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in clause F.4.

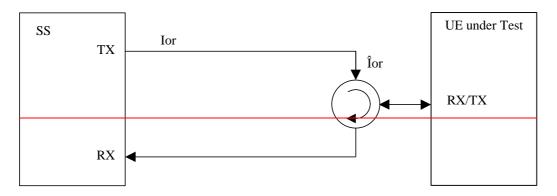
Annex A (informative): Connection Diagrams


Definition of Terms

System Simulator or SS A device or system, that is capable of generating simulated Node B signalling and analysing UE signalling responses on one or more RF channels, in order to create the required test environment for the UE under test. It will also include the following capabilities:


- 1. Measurement and control of the UE Tx output power through TPC commands
- 2. Measurement of Rx BLER and BER
- 3. Measurement of signalling timing and delays
- 4. Ability to simulate UTRAN and/or GERAN signalling

Test System A combination of devices brought together into a system for the purpose of making one or moremeasurements on a UE in accordance with the test case requirements. A test system may include one or more System-Simulators if additional signalling is required for the test case. The following diagrams are all examples of Test-Systems.


Note: The above terms are logical definitions to be used to describe the test methods used in this document (TS34.121), in practice, real devices called 'System Simulators' may also include additional measurement-capabilities or may only support those features required for the test cases they are designed to perform.

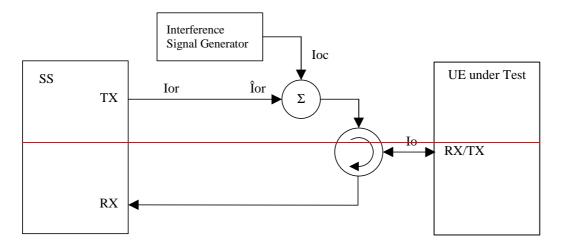

Figure A.1: Connection for Basic TX Test

Figure A.2: Connection for TX Intermodulation Test

Figure A.3: Connection for Basic RX Test

Figure A.4: Connection for RX Test with Interference

Error! No text of specified style in document.

283

Figure A.5: Connection for RX Test with Interference or additional CW

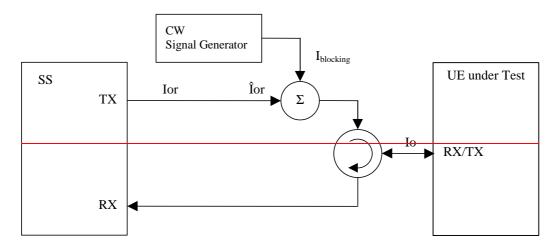
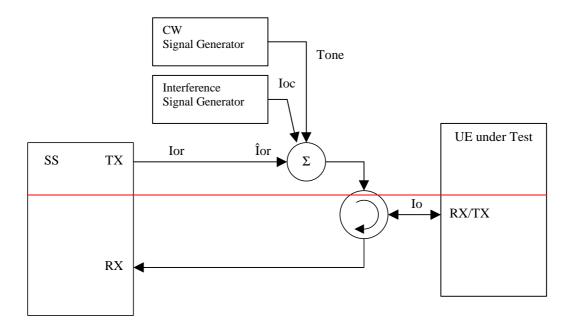
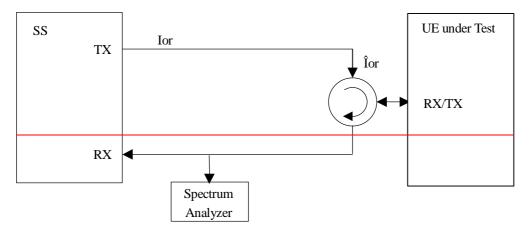




Figure A.6: Connection for RX Test with additional CW

Figure A.7: Connection for RX Test with both Interference and additional CW

Figure A.8: Connection for Spurious Emission Test

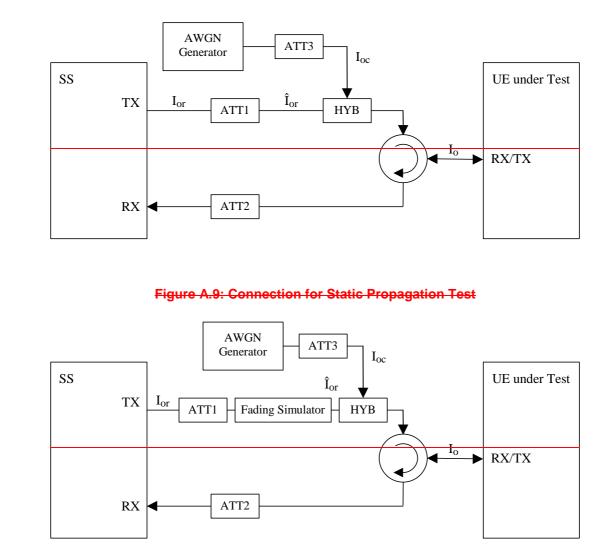
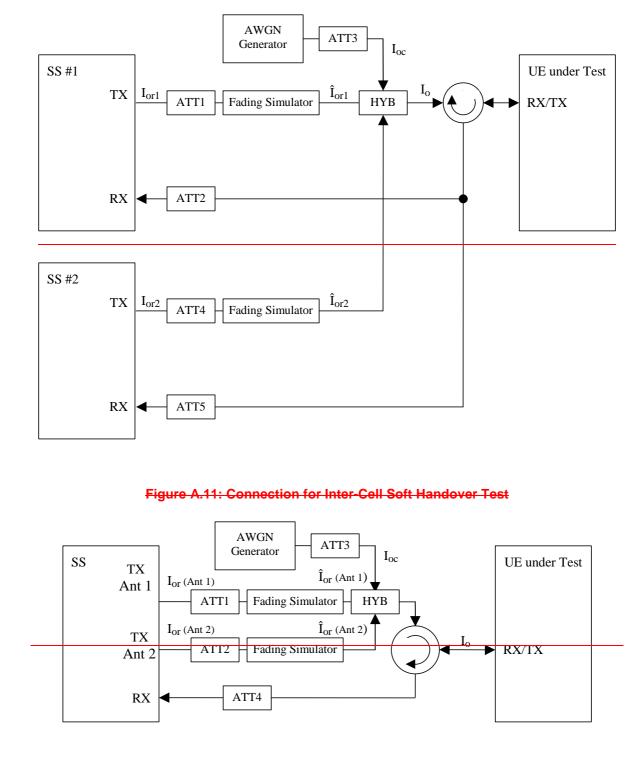



Figure A.10: Connection for Multi-path Fading Propagation Test

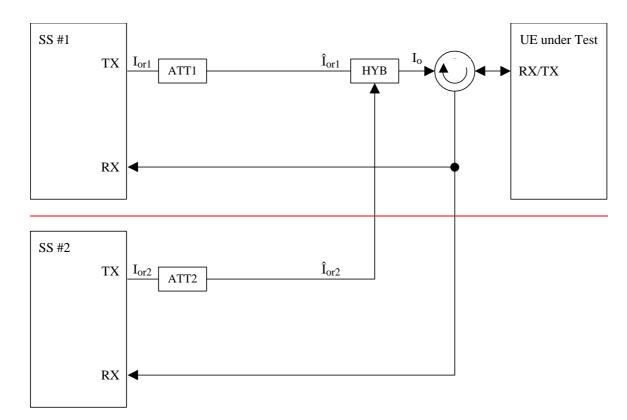
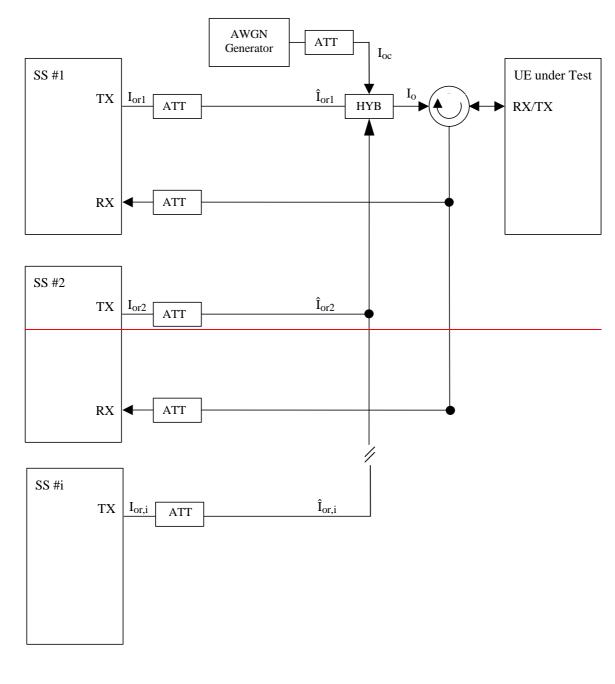
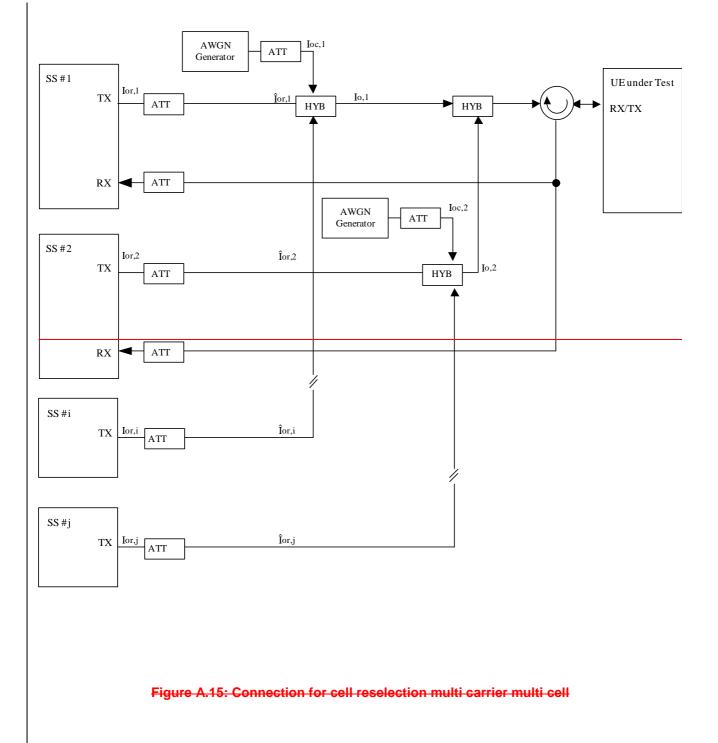




Figure A.13: Connection for Combining of TPC commands in Soft Handover Test 1

Figure A.14: Connection for cell reselection single carrier multi cell

Annex B (normative): Global In-Channel TX-Test

B.1 General

The global in channel Tx test enables the measurement of all relevant parameters that describe the in channel quality of the output signal of the Tx under test in a single measurement process.

The parameters describing the in channel quality of a transmitter, however, are not necessarily independent. The algorithm chosen for description inside this annex places particular emphasis on the exclusion of all interdependencies among the parameters. Any other algorithm (e.g. having better computational efficiency) may be applied, as long as the results are the same within the acceptable uncertainty of the test system as defined in annex F.

All notes referred in the various clauses of B.2 are put together in B.3.

B.2 Definition of the process

B.2.1 Basic principle

The process is based on the comparison of the actual **output signal of the TX under test**, received by an ideal receiver, with a **reference signal**, that is generated by the measuring equipment and represents an ideal error free received signal. The reference signal shall be composed of the same number of codes at the correct spreading factors as contained in the test signal. Note, for simplification, the notation below assumes only codes of one spreading factor although the algorithm is valid for signals containing multiple spreading factors. All signals are represented as equivalent (generally complex) baseband signals.

B.2.2 Output signal of the TX under test

The output signal of the TX under test is acquired by the measuring equipment, filtered by a matched filter (RRC 0.22, correct in shape and in position on the frequency axis) and stored for further processing.

The following form represents the physical signal in the entire measurement interval:

one vector **Z**, containing N = ns x sf complex samples;

with

ns: number of symbols in the measurement interval;

sf: number of chips per symbol. (sf: spreading factor) (see Note: Symbol length)

B.2.3 Reference signal

The reference signal is constructed by the measuring equipment according to the relevant TX specifications.

It is filtered by the same matched filter, mentioned in clause B.2.2., and stored at the Inter Symbol Interference freeinstants. The following form represents the reference signal in the entire measurement interval:

- ns, sf: see clause B.2.2.

B.2.4 void

B.2.5 Classification of measurement results

The measurement results achieved by the global in channel TX test can be classified into two types:

- Results of type "deviation", where the error free parameter has a non-zero magnitude. (These are the parametersthat quantify the integral physical characteristic of the signal). These parameters are:
 - RF Frequency;

 - Code Domain Power (in case of multi code);
 - Timing
- Results of type "residual", where the error-free parameter has value zero. (These are the parameters that quantify the error values of the measured signal, whose ideal magnitude is zero). These parameters are:

 - Peak Code Domain Error (PCDE).
 - (Additional parameters: see Note Residual)

B.2.6 Process definition to achieve results of type "deviation"

The reference signal (**R**; see clause B.2.3) and the signal under Test (Z; see subclause B.2.2) are varied with respect to the parameters mentioned in clause B.2.5 under "results of type deviation" in order to achieve best fit. Best fit is achieved when the RMS difference value between the varied signal under test and the varied reference signal is an absolute minimum.

Overview:

 $-FCT \left[Z(\tilde{f}, \tilde{t}, \tilde{\varphi}, g_1, g_2, ..., g_{synch}) - R(f, t, \varphi, \tilde{g}_1, \tilde{g}_2, ..., \tilde{g}_{synch}) \right] = Minimum !$

Z: Signal under test.

R: Reference signal,

with frequency f, the timing t, the phase φ , gain of code1 (g₁), gain of code2 (g₂) etc, and the gain of the synch channelg_{synch}. See Note: Power Step.

The parameters marked with a tilde in Z and R are varied in order to achieve a best fit.

Detailed formula: see Note: Formula for the minimum process.

The varied reference signal, after the best fit process, will be called R'.

The varied signal under test, after the best fit process, will be called Z'.

The varying parameters, leading to **R' and Z'** represent directly the wanted results of type "deviation". Thesemeasurement parameters are expressed as deviation from the reference value with units same as the reference value.

In case of multi code, the type "deviation" parameters (frequency, timing and (RF phase)) are varied commonly for allcodes such that the process returns one frequency deviation, one timing deviation, (one RF phase deviation).

(These parameters are <u>not</u> varied on the individual codes signals such that the process would return kr frequencyerrors.... (kr: number of codes in the reference signal)). The only type "deviation" parameters varied individually are the code domain gain factors (g1, g2, ...).

B.2.6.1 Decision Point Power

The mean square value of the signal under test, sampled at the best estimate of the of Intersymbol Interference freepoints using the process defined in subclause 2.5, is referred to the *Decision Point Power* (DPP):

 $-DPP = mean(|Z|^2)$

B.2.6.2 Code-Domain Power

The samples, Z', are separated into symbol intervals to create ns time sequential vectors **z** with sf complex samplescomprising one symbol interval. The *Code Domain Power* is calculated according to the following steps:

1) Take the vectors z defined above.

- 2) To achieve meaningful results it is necessary to descramble z, leading to z' (see Note1: Scrambling code)
- 3) Take the orthogonal vectors of the channelization code set € (all codes belonging to one spreading factor) as defined in TS 25.213 and TS 25.223 (range +1, -1), and normalize by the norm of the vectors to produce Cnorm=C/sqrt(sf). (see Note: Symbol length)
- 4) Calculate the inner product of z' with Cnorm.. Do this for all symbols of the measurement interval and for all codes in the code space.

This gives an array of format k x ns, each value representing a specific symbol and a specific code, which can be exploited in a variety of ways.

- k: total number of codes in the code space-

- 5) Calculate k mean square values, each mean square value unifying ns symbols within one code. (These values can be called "*Absolute CodeDomainPower* (CDP)" [Volt²].) The sum of the k values of CDP is equal to DPP.
- 6) Normalize by the decision point power to obtain

Relative CodeDomain Power = <u>Absolute CodeDomainPower</u> DecisionPointPower

B.2.7 Process definition to achieve results of type "residual"

The difference between the varied reference signal (**R**'; see clause B.2.6.) and the varied TX signal under test (**Z**'; see clause B.2.6) is the error vector **E** versus time:

 $-\mathbf{E} = \mathbf{Z} - \mathbf{R'}.$

Depending on the parameter to be evaluated, it is appropriate to represent E in one of the following two different forms:

Form EVM (representing the physical error signal in the entire measurement interval)

One vector **E**, containing N = ns x sf complex samples;

ns, sf: see B.2.2

Form PCDE (derived from Form EVM by separating the samples into symbol intervals)

ns time sequential vectors e with sf complex samples comprising one symbol interval.

E gives results of type "residual" applying the two algorithms defined in clauses B 2.7.1 and B 2.7.2.

B.2.7.1 Error Vector Magnitude (EVM)

The Error Vector Magnitude EVM is calculated according to the following steps:

- 1) Take the error vector **E** defined in clause B.2.7 (Form EVM) and calculate the RMS value of **E**; the result will be called RMS(**E**).
- 2) Take the varied reference vector **R'** defined in clause B.2.6 and calculate the RMS value of **R'**; the result will be called RMS(**R'**).
- 3) Calculate EVM according to:

 $\frac{\text{EVM} = \frac{\text{RMS}(\text{E})}{\text{RMS}(\text{R}')} \times 100\%$ (here, EVM is relative and expressed in %)

(see Note: Formula for EVM)

B.2.7.2 Peak Code Domain Error (PCDE)

The Peak Code Domain Error is calculated according to the following steps:

- 1) Take the error vectors e defined in clause B.2.7 (Form PCDE)-
- 2) To achieve meaningful results it is necessary to descramble e, leading to e' (see Note1: Scrambling code)
- 3) Take the orthogonal vectors of the channelisation code set C (all codes belonging to one spreading factor) as defined in TS 25.213 and TS 25.223 (range +1, 1). (see Note: Symbol length) and normalize by the norm of the vectors to produce Cnorm=C/sqrt(sf). (see Note: Symbol length)
- 4) Calculate the inner product of **e'** with **Cnorm**. Do this for all symbols of the measurement interval and for allcodes in the code space.

This gives an array of format k x ns, each value representing an error vector representing a specific symbol and a specific code, which can be exploited in a variety of ways.

k: total number of codes in the code space

ns: number of symbols in the measurement interval

- 5) Calculate k RMS values, each RMS value unifying ns symbols within one code. (These values can be called "*Absolute CodeEVMs*" [Volt].)
- 6) Find the peak value among the k "*Absolute CodeEVMs*". (This value can be called "*Absolute PeakCodeEVM*" [Volt].)
- 7) Calculate PCDE according to:

<u>-10*lg</u> -dB-- (a relative value in dB).

 $(\text{RMS}(\mathbf{R'}))^2$

(see Note2: Scrambling code)

(see Note IQ)

B.3 Notes

Note: Symbol length)-

A general code multiplexed signal is multicode and multirate. In order to avoid unnecessary complexity, the measurement applications use a unique symbol length, corresponding to a spreading factor, regardless of the really intended spreading factor. Nevertheless the complexity with a multicode / multirate signal can be mastered by introducing appropriate definitions.

Note: Deviation)

- It is conceivable to regard more parameters as type "deviation" e.g. Chip frequency and RF phase.
- As chip frequency and RF frequency are linked together by a statement in the core specifications [1] it is sufficient to process RF frequency only.
- A parameter RF-phase must be varied within the best fit process (B 2.6.). Although necessary, this parametervariation doesn't describe any error, as the modulation schemes used in the system don't depend on an absolute RF phase.

Note: Residual)

It is conceivable to regard more parameters as type ,,residual" e.g. IQ origin offset. As it is not the intention of the test to separate for different error sources, but to quantify the quality of the signal, all such parameters are not extracted by the best fit process, instead remain part of EVM and PCDE.

Note 1: Scrambling Code)

In general a TX signal under test can use more than one scrambling code. Note that PCDE is processed regarding the unused channelisation – codes as well. In order to know which scrambling code shall be applied on unused channelisation – codes, it is necessary to restrict the test conditions: TX signal under test shall use exactly one scrambling code.

Note 2: Scrambling Code)

To interpret the measurement results in practice it should be kept in mind that erroneous code power on unused codes is generally de scrambled differently under test conditions and under real life conditions, whereas erroneous code power on used codes is generally de scrambled equally under test conditions and under real life conditions and under real life conditions. It might be indicated if a used or unused code hits PCDE.

Note IQ)

— As in FDD/uplink each code can be used twice, on the I and on the Q channel, the measurement result may indicate separate values of CDP or PCDE for I and Q on which channel (I or Q) they occur.

Note: Fomula for the minimum process

$$-L\left(\Delta \tilde{f},\Delta \tilde{t},\Delta \tilde{\varphi},\Delta \tilde{g}_{c},\ldots\right) = \sum_{\nu=0}^{N-1} \left|Z\left(\nu\right) - R\left(\nu\right)\right|^{2}$$

Legend:

L: the function to be minimised

The parameters to be varied in order to minimize are:

 Δf : the RF frequency offset

 $\Delta \tilde{t}$: the timing offset

 $\Delta \widetilde{\varphi}$: the phase offset

 $\Delta \widetilde{g}_{c}$...code power offsets (one offset for each code)

Z(v): Samples of the signal under Test

R(v): Samples of the reference signal

 $\sum_{\nu = 0}^{N - 1}$

---: counting index ν starting at the beginning of the measurement interval and ending at its end.

N = No of chips during the measurement interval.

Z(v): Samples of the signal under Test. It is modelled as a sequence of complex baseband samples $Z(\gamma)$ with a time shift Δt , a frequency offset Δf , a phase offset $\Delta \phi$, the latter three with respect to the reference signal.

$$Z(v) = Z(v - \Delta \tilde{t}) * e^{-j2\pi\Delta \tilde{f}v} * e^{-j\Delta \tilde{\varphi}}$$

R(v): Samples of the reference signal:

$$R(\nu) = \sum_{c=1}^{No.of} (g_c + \Delta \tilde{g}_c) * Chip_c(\nu)$$

g : nominal gain of the code channel

 $\Delta \tilde{g}$: The gain offset to be varied in the minimum process

Chip(v) is the chipsequence of the code channel

Indices at g, Δg and Chip:

The index indicates the code channel: c = 1,2,... No of code channels

Range for Chip_e: +1, 1

Note: Formula for EVM

Error! No text of specified style in document.

$$EVM = \sqrt{\frac{\sum_{\nu=0}^{N-1} |Z'(\gamma) - R'(\gamma)|^2}{\sum_{\nu=0}^{N-1} |R'(\gamma)|^2} * 100\%}$$

 $Z'(\gamma)$, $R'(\gamma)$ are the varied measured and reference signals.

Annex C (normative): Measurement channels

C.1 General

The measurement channels in this annex are defined to derive the requirements in clauses 5, 6 and 7. The measurement channels represent example configuration of radio access bearers for different data rates.

The measurement channel for 12,2 kbps shall be supported by any UE both in up- and downlink. Support for other measurement channels is depending on the UE Radio Access capabilities.

C.2 UL reference measurement channel

C.2.1 UL reference measurement channel (12,2 kbps)

The parameters for the 12,2 kbps UL reference measurement channel are specified in table C.2.1.1, table C 2.1.2, table C 2.1.3 and table C.2.1.4. The channel coding for information is shown in figure C.2.1. When the UE test loop function is needed, the UE test loop mode 2 shall be used.

Table C.2.1.1: UL reference measurement channel physical parameters (12,2 kbps)

Parameter	Level	Unit
Information bit rate	12,2	kbps
DPDCH	60	kbps
DPCCH	15	kbps
DPCCH Slot Format #i	θ	-
DPCCH/DPDCH power ratio	-5,46	dB
TECI	On	-
Repetition	23	%
NOTE: Slot Format #2 is used for closed loop tests in clause 7.6.2. Slot Format #2 and		
#5 are used for site selection diversity transmission tests in subclause 7.6.3.		

Higher Layer	RAB/S	ignalling RB	RAB	SRB
RLC	Logical channel type		DTCH	DCCH
	RLC mode		TM	UM/AM
	Payload sizes, bit		244	88/80
	Max data rate, bps		12200	2200/2000
	PDU header, bit		N/A	8/16
	TrD PDU header, bit		θ	N/A
MAC	MAC header, bit		θ	4
	MAC multiplexing		N/A	Yes
Layer 1	TrCH type		DCH	DCH
	Transport Channel Id	entity	4	5
	TB sizes, bit		244	100
	TFS TF0, bits		0*244	0*100
	TF1, bits		<u>1*244</u>	1*100
	TTI, ms		20	40
	Coding type		Convolution Coding	Convolution Coding
	Coding Rate		1/3	1/3
	CRC, bit		16	12
	Max number of bits/T	TI after channel coding	804	360
	Uplink: Max number (rate matching	of bits/radio frame before-	4 02	90
	RM attribute		256	256

Table C.2.1.2: UL reference measurement channel using RLC-TM for DTCH, transport channel parameters (12.2 kbps)

Table C.2.1.3: UL reference measurement channel using RLC-AM for DTCH, transport channel parameters (12.2 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	AM	UM/AM
	Payload sizes, bit	228	88/80
	Max data rate, bps	11400	2200/2000
	PDU header, bit	16	8/16
	TrD PDU header, bit	N/A	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	4	5
	TB sizes, bit	2 44	100
	TFS TF0, bits	0*244	0*100
	TF1, bits	1*244	1*100
	TTI, ms	20	40
	Coding type	Convolution Coding	Convolution Coding
	Coding Rate	1/3	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	804	360
	Uplink: Max number of bits/radio frame before	402	90
	rate matching		
	RM attribute	256	256

Table C.2.1.4: UL reference measurement channel, TFCS (12.2 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

NOTE: The TFCs except for (TF1, TF1) are belonging to minimum set of TFCs.

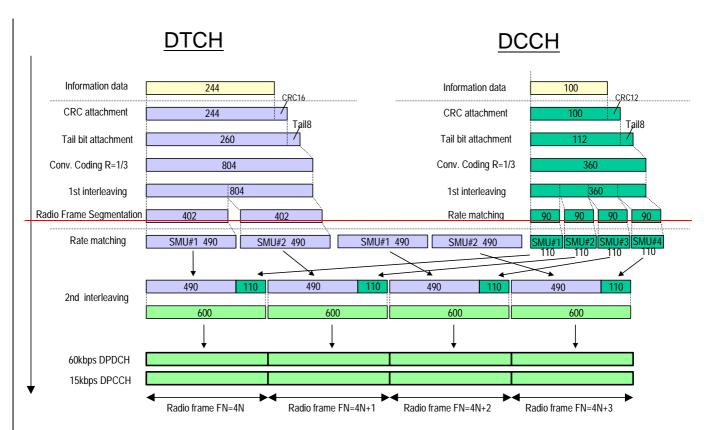


Figure C.2.1 (Informative): Channel coding of UL reference measurement channel (12,2 kbps)

C.2.2 UL reference measurement channel (64 kbps)

The parameters for the 64 kbps UL reference measurement channel are specified in table C.2.2.1, table C.2.2.2, table C.2.2.3 and table C.2.2.4. The channel coding for information is shown in figure C.2.2. When the UE test loop functionis needed, the UE test loop mode 2 shall be used. This measurement channel is not currently used in the presentdocument but can be used for future requirements.

Parameter	Level	Unit
Information bit rate	64	kbps
DPDCH	240	kbps
DPCCH	15	kbps
DPCCH Slot Format #i	θ	_
DPCCH/DPDCH	- 9,54	d₽
TFCI	On	-
Repetition	18	%

Table C.2.2.1: UL reference measurement channel (64 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	TM	UM/AM
	Payload sizes, bit	1280	88/80
	Max data rate, bps	64000	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	θ	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	1	5
	TB sizes, bit	1280	100
	TFS TF0, bits	0*1280	0*100
	TF1, bits	1*1280	1*100
	TTI, ms	20	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	3900	360
	Uplink: Max number of bits/radio frame before- rate matching	1950	90
	RM attribute	256	256

Table C.2.2.2: UL reference measurement channel using RLC-TM for DTCH, transport channel parameters (64 kbps)

Table C.2.2.3: UL reference measurement channel using RLC-AM for DTCH, transport channel parameters (64 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	AM	UM/AM
	Payload sizes, bit	1264	88/80
	Max data rate, bps	63200	2200/2000
	PDU header, bit	16	8/16
	TrD PDU header, bit	N/A	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	4	5
	TB sizes, bit	1280	100
	TES TEO, bits	0*1280	0*100
	TF1, bits	1*1280	1*100
	TTI, ms	20	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	3900	360
	Uplink: Max number of bits/radio frame before-	1950	90
	rate matching		
	RM attribute	256	256

Table C.2.2.4: UL reference measurement channel, TFCS (64 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

NOTE: The TFCs except for (TF1, TF1) are belonging to minimum set of TFCs.

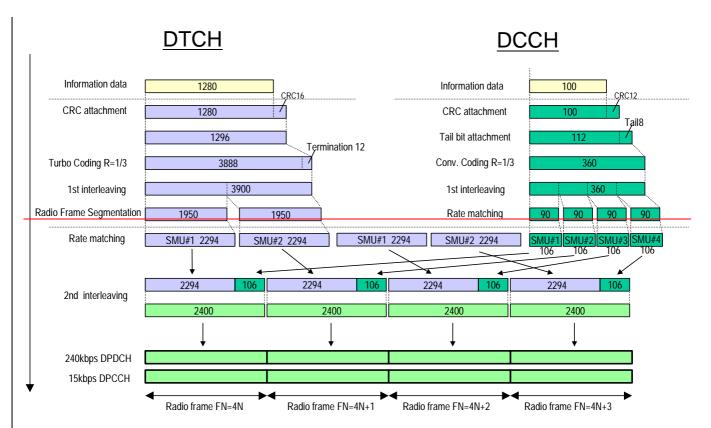


Figure C.2.2 (Informative): Channel coding of UL reference measurement channel (64 kbps)

C.2.3 UL reference measurement channel (144 kbps)

The parameters for the 144 kbps UL reference measurement channel are specified in table C.2.3.1, table C.2.3.2, table C.2.3.3 and table C.2.3.4. The channel coding for information is shown in figure C.2.3. When the UE test loop functionis needed, the UE test loop mode 2 shall be used. This measurement channel is not currently used in the presentdocument but can be used for future requirements.

Parameter	Level	Unit
Information bit rate	144	kbps
DPDCH	480	kbps
DPCCH	15	kbps
DPCCH Slot Format #i	θ	-
DPCCH/DPDCH power ratio	-11,48	dB
TFCI	On	-
Repetition	8	%

Table C.2.3.1: UL reference measurement channel (144 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC-mode	TM	UM/AM
	Payload sizes, bit	2880	88/80
	Max data rate, bps	144000	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	θ	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	1	5
	TB sizes, bit	2880	100
	TFS TF0, bits	0*2880	0*100
	TF1, bits	<u>1*2880</u>	1*100
	TTI, ms	20	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	8700	360
	Uplink: Max number of bits/radio frame before	4350	90
	rate matching		
1	RM attribute	256	256

Table C.2.3.2: UL reference measurement channel using RLC-TM for DTCH, transport channel parameters (144 kbps)

Table C.2.3.3: UL reference measurement channel using RLC-AM for DTCH, transport channel parameters (144 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	AM	UM/AM
	Payload sizes, bit	2864	88/80
	Max data rate, bps	143200	2200/2000
	PDU header, bit	16	8/16
	TrD PDU header, bit	N/A	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	4	5
	TB sizes, bit	2880	100
	TFS TF0, bits	0*2880	0*100
	TF1, bits	<u>1*2880</u>	1*100
	TTI, ms	20	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	8700	360
	Uplink: Max number of bits/radio frame before	4350	90
	rate matching		
	RM attribute	256	256

Table C.2.3.4: UL reference measurement channel, TFCS (144 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

NOTE: The TFCs except for (TF1, TF1) are belonging to minimum set of TFCs.

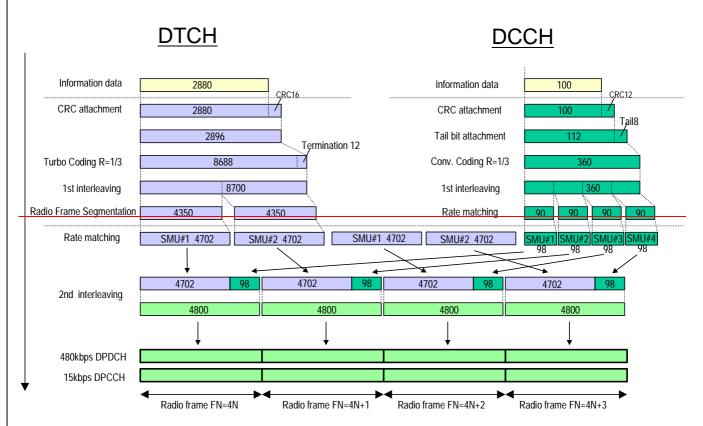


Figure C.2.3 (Informative): Channel coding of UL reference measurement channel (144 kbps)

C.2.4 UL reference measurement channel (384 kbps)

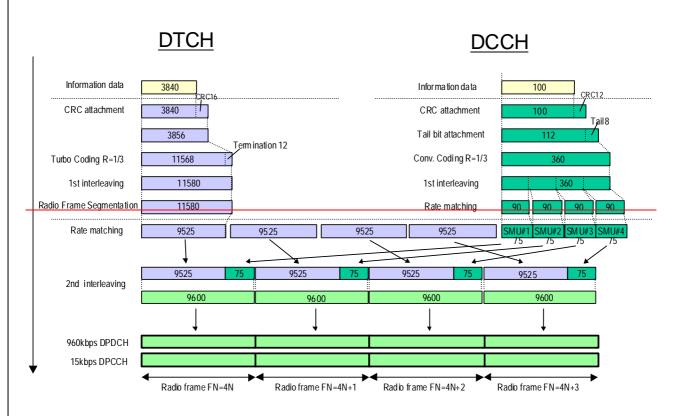
The parameters for the 384 kbps UL reference measurement channel are specified in table C.2.4.1, table C.2.4.2, table C.2.4.3 and table C.2.4.4. The channel coding for information is shown in figure C.2.4. When the UE test loop function is needed, the UE test loop mode 2 shall be used. This measurement channel is not currently used in the present document but can be used for future requirements.

Parameter	Level	Unit
Information bit rate	384	kbps
DPDCH	960	kbps
DPCCH	15	kbps
DPCCH Slot Format #i	θ	-
DPCCH/DPDCH power ratio	-11,48	d₿
TECI	On	-
Puncturing	18	%

Table C.2.4.1: UL reference measurement channel (384 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	TM	UM/AM
	Payload sizes, bit	3840	88/80
	Max data rate, bps	384000	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	θ	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	4	5
	TB sizes, bit	3840	100
	TFS TF0, bits	0*3840	0*100
	TF1, bits	1*3840	1*100
	TTI, ms	10	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	11580	360
	Uplink: Max number of bits/radio frame before- rate matching	11580	90
	RM attribute	256	256

Table C.2.4.2: UL reference measurement channel using RLC-TM for DTCH, transport channelparameters (384 kbps)


Table C.2.4.3: UL reference measurement channel using RLC-AM for DTCH, transport channelparameters (384 kbps)

Higher	RAB/Signalling RB	RAB	SRB
Layer RLC	Logical channel type	DTCH	DCCH
	RLC mode	AM	UM/AM
	Payload sizes, bit	3824	88/80
	Max data rate, bps	382400	2200/2000
	PDU header, bit	16	8/16
	TrD PDU header, bit	N/A	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	4	5
	TB sizes, bit	3840	100
	TFS TF0, bits	0*3840	0*100
	TF1, bits	1*3840	1*100
	TTI, ms	10	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	11580	360
	Uplink: Max number of bits/radio frame before-	11580	90
	rate matching		
	RM attribute	256	256

Table C.2.4.4: UL reference measurement channel, TFCS (384 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

NOTE: The TFCs except for (TF1, TF1) are belonging to minimum set of TFCs.

Figure C.2.4 (informative): Channel coding of UL reference measurement channel (384 kbps)

C.2.5 UL reference measurement channel (768 kbps)

The parameters for the UL measurement channel for 768 kbps are specified in table C.2.5.1, table C.2.5.2, table C.2.5.3and table C.2.5.4. When the UE test loop function is needed, the UE test loop mode 2 shall be used.

Table C.2.5.1: UL reference measurement channel, physical parameters (7	6 <mark>8 kbps)</mark>
---	------------------------

Parameter	Level	Unit
Information bit rate	2*384	kbps
DPDCH ₁	960	kbps
DPDCH ₂	960	kbps
DPCCH	15	kbps
DPCCH Slot Format #i	θ	-
DPCCH/DPDCH power ratio	-11.48	dB
TECI	On	-
Puncturing	18	%

3GPP

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	TM	UM/AM
	Payload sizes, bit	7680	88/80
	Max data rate, bps	768000	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	θ	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	4	5
	TB sizes, bit	3840	100
	TFS TF0, bits	0*3840	0*100
	TF1, bits	2*3840	1*100
	TTI, ms	10	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	23160	360
	Uplink: Max number of bits/radio frame before- rate matching	23160	90
	RM attribute	256	256

Table C.2.5.2: UL reference measurement channel using RLC-TM for DTCH, transport channelparameters (768 kbps)

Table C.2.5.3: UL reference measurement channel using RLC-AM for DTCH, transport channelparameters (768 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	ŦM	UM/AM
	Payload sizes, bit	7664	88/80
	Max data rate, bps	766400	2200/2000
	PDU header, bit	16	8/16
	TrD PDU header, bit	N/A	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
-	Transport Channel Identity	4	5
	TB sizes, bit	3840	100
	TFS TF0, bits	0*3840	0*100
	TF1, bits	2*3840	1*100
	TTI, ms	10	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	23160	360
	Uplink: Max number of bits/radio frame before-	23160	90
	rate matching		
	RM attribute	256	256

Table C.2.5.4: UL reference measurement channel, TFCS (768 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

NOTE: The TFCs except for (TF1, TF1) are belonging to minimum set of TFCs.

C.3 DL reference measurement channel

C.3.1 DL reference measurement channel (12.2 kbps)

The parameters for the 12,2 kbps DL reference measurement channel are specified in table C.3.1.1, table C.3.1.2, table C.3.1.3 and table C.3.1.4. The channel coding is detailed in figure C.3.1. For the RLC configuration of AM DCCHs-Timer_STATUS_Periodic shall not be set in RRC CONNECTION SETUP message used in test procedure for RF testas defined in TS34.108 clause 7.3. This is to prevent unexpected DCHs from being transmitted through such RLCentities when the timer has expired in order to sure that the required TFC from the minimum set of TFCs cancontinuously convey a DCH for DTCH during the test.

Table C.3.1.1: DL reference measurement channel (12.2 kbps)

Parameter	Level	Unit
Information bit rate	12.2	kbps
DPCH	30	ksps
Slot Format #I	44	-
TECI	On	
Power offsets PO1, PO2 and PO3	θ	dB
DTX position	Fixed	-

Table C.3.1.2: DL reference measurement channel using RLC-TM for DTCH, transport channel parameters (12.2 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	TM	UM/AM
	Payload sizes, bit	244	88/80
	Max data rate, bps	12200	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	θ	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	6	10
	TB sizes, bit	2 44	100
	TFS TF0, bits	0*244	0*100
	TF1, bits	1*244	1*100
	TTI, ms	20	40
	Coding type	Convolution Coding	Convolution Coding
	Coding Rate	1/3	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	804	360
	RM attribute	256	256

Table C.3.1.3: DL reference measurement channel using RLC-AM for DTCH, transport channel parameters (12.2 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	AM	UM/AM
	Payload sizes, bit	228	88/80
	Max data rate, bps	11400	2200/2000
	PDU header, bit	16	8/16
	TrD PDU header, bit	N/A	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	6	10
	TB sizes, bit	2 44	100
	TFS TF0, bits	0*244	0*100
	TF1, bits	1*244	1*100
	TTI, ms	20	40
	Coding type	Convolution Coding	Convolution Coding
	Coding Rate	1/3	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	804	360
	RM attribute	256	256

Table C.3.1.4: DL reference measurement channel, TFCS (12.2 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

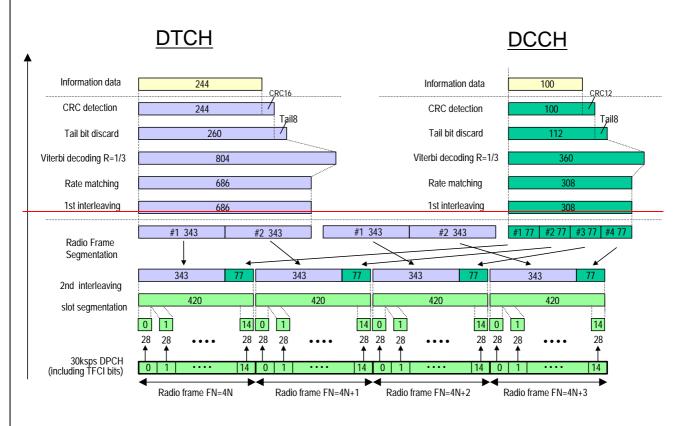


Figure C.3.1 (informative): Channel coding of DL reference measurement channel (12,2 kbps)

C.3.2 DL reference measurement channel (64 kbps)

The parameters for the DL reference measurement channel for 64 kbps are specified in table C.3.2.1, table C.3.2.2, table C.3.2.3 and table C.3.2.4. The channel coding is detailed in figure C.3.2. For the RLC configuration of AM DCCHs-Timer_STATUS_Periodic shall not be set in RRC CONNECTION SETUP message used in test procedure for RF testas defined in TS34.108 clause 7.3. This is to prevent unexpected DCHs from being transmitted through such RLCentities when the timer has expired in order to sure that the required TFC from the minimum set of TFCs cancontinuously convey a DCH for DTCH during the test.

Table C.3.2.1: DL reference measurement channel (64 kbps)

Parameter	Level	Unit
Information bit rate	64	kbps
DPCH	120	ksps
Slot Format #i	13	-
TECI	On	-
Power offsets PO1, PO2 and PO3	θ	dB
DTX position	Fixed	-

Table C.3.2.2: DL reference measurement channel using RLC-TM for DTCH, transport channel parameters (64 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	TM	UM/AM
	Payload sizes, bit	1280	88/80
	Max data rate, bps	64000	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	θ	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	6	10
	TB sizes, bit	1280	100
	TFS TF0, bits	0*1280	0*100
	TF1, bits	1*1280	1*100
	TTI, ms	20	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	3900	360
	RM attribute	256	256

Table C.3.2.3: DL reference measurement channel using RLC-AM for DTCH, transport channelparameters (64 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC-mode	AM	UM/AM
	Payload sizes, bit	1264	88/80
	Max data rate, bps	63200	2200/2000
	PDU header, bit	16	8/16
	TrD PDU header, bit	N/A	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	¢	10
	TB sizes, bit	1280	100
	TFS TF0, bits	0*1280	0*100
	TF1, bits	1*1280	1*100
	TTI, ms	20	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
1	Max number of bits/TTI after channel coding	3900	360
	RM attribute	256	256

Table C.3.2.4: DL reference measurement channel, TFCS (64 kbps)

TFCS size	4
TECS	(DTCH, DCCH)= (TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

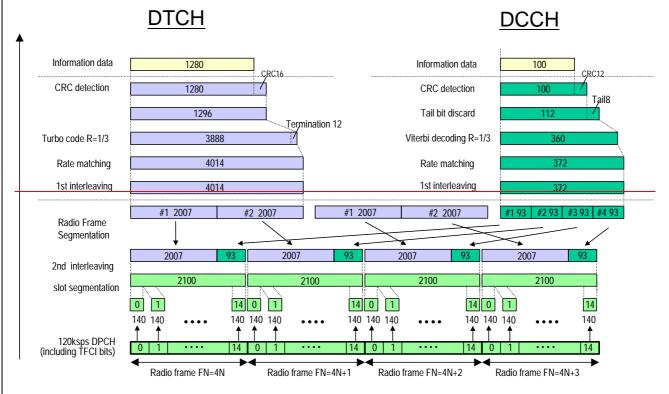


Figure C.3.2 (informative): Channel coding of DL reference measurement channel (64 kbps)

C.3.3 DL reference measurement channel (144 kbps)

The parameters for the DL reference measurement channel for 144 kbps are specified in table C.3.3.1, table C.3.3.2, table C.3.3.3 and table C.3.3.4. The channel coding is detailed in figure C.3.3. For the RLC configuration of AM DCCHs Timer_STATUS_Periodic shall not be set in RRC CONNECTION SETUP message used in test procedure for RF test as defined in TS34.108 clause 7.3. This is to prevent unexpected DCHs from being transmitted through such RLC entities when the timer has expired in order to sure that the required TFC from the minimum set of TFCs can continuously convey a DCH for DTCH during the test.

Table C.3.3.1: DL reference measurement channel (144kbps)

Parameter	Level	Unit
Information bit rate	144	kbps
DPCH	240	ksps
Slot Format #i	14	-
TECI	On	
Power offsets PO1, PO2 and PO3	θ	dB
DTX position	Fixed	_

Table C.3.3.2: DL reference measurement channel using RLC-TM for DTCH, transport channel parameters (144 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	TM	UM/AM
	Payload sizes, bit	2880	88/80
	Max data rate, bps	144000	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	θ	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	6	10
	TB sizes, bit	2880	100
	TFS TF0, bits	0*2880	0*100
	TF1, bits	1*2880	1*100
	TTI, ms	20	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	8700	360
	RM attribute	256	256

Table C.3.3.3: DL reference measurement channel using RLC-AM for DTCH, transport channel parameters (144 kbps)

Higher Layer		RAB/Signalling RB	RAB	SRB
RLC	Logical ch	hannel type	DTCH	DCCH
	RLC mod	0	AM	UM/AM
	Payload s	iizes, bit	2864	88/80
	Max data	rate, bps	143200	2200/2000
	PDU head	der, bit	16	8/16
	TrD PDU	header, bit	N/A	N/A
MAC	MAC hea	der, bit	θ	4
	MAC mult	liplexing	N/A	Yes
Layer 1	TrCH type)	DCH	DCH
		Channel Identity	6	10
	TB sizes,		2880	100
	TFS	TF0, bits	0*2880	0*100
		TF1, bits	1*2880	1*100
	TTI, ms		20	40
	Coding ty	po	Turbo Coding	Convolution Coding
	Coding Rate		N/A	1/3
	CRC, bit		16	12
	Max num	per of bits/TTI after channel coding	8700	360
	RM attribu	ute	256	256

Table C.3.3.4: DL reference measurement channel, TFCS (144 kbps)

TFCS size	4
TFCS	(DTCH, DCCH)= (TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

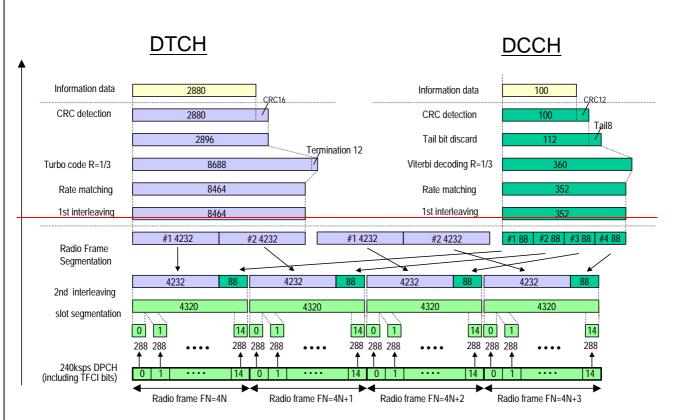


Figure C.3.3 (informative): Channel coding of DL reference measurement channel (144 kbps)

C.3.4 DL reference measurement channel (384 kbps)

The parameters for the DL reference measurement channel for 384 kbps are specified in table C.3.4.1, table C.3.4.2, table C.3.4.3 and table C.3.4.4. The channel coding is shown for information in figure C3.4. For the RLC configuration of AM DCCHs Timer_STATUS_Periodic shall not be set in RRC CONNECTION SETUP message used in test-procedure for RF test as defined in TS34.108 clause 7.3. This is to prevent unexpected DCHs from being transmitted through such RLC entities when the timer has expired in order to sure that the required TFC from the minimum set of TFCs can continuously convey a DCH for DTCH during the test.

Table C.3.4.1: DL reference measurement channel, physical parameters (384 kbps)

Parameter	Level	Unit
Information bit rate	384	kbps
DPCH-	4 80	ksps
Slot Format #i	15	-
TECI	On	-
Power offsets PO1, PO2 and PO3	θ	dB
DTX position	Fixed	-

Table C.3.4.2: DL reference measurement channel using RLC-TM for DTCH, transport channel parameters (384 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	TM	UM/AM
	Payload sizes, bit	3840	88/80
	Max data rate, bps	384000	2200/2000
	PDU header, bit	N/A	8/16
	TrD PDU header, bit	θ	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	6	10
	TB sizes, bit	3840	100
	TFS TF0, bits	0*3840	0*100
	TF1, bits	1*3840	1*100
	TTI, ms	10	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	11580	360
	RM attribute	256	256

Table C.3.4.3: DL reference measurement channel using RLC-AM for DTCH, transport channel parameters (384 kbps)

Higher Layer	RAB/Signalling RB	RAB	SRB
RLC	Logical channel type	DTCH	DCCH
	RLC mode	AM	UM/AM
	Payload sizes, bit	3824	88/80
	Max data rate, bps	382400	2200/2000
	PDU header, bit	16	8/16
	TrD PDU header, bit	N/A	N/A
MAC	MAC header, bit	θ	4
	MAC multiplexing	N/A	Yes
Layer 1	TrCH type	DCH	DCH
	Transport Channel Identity	6	10
	TB sizes, bit	3840	100
	TFS TF0, bits	0*3840	0*100
	TF1, bits	1*3840	1*100
	TTI, ms	10	40
	Coding type	Turbo Coding	Convolution Coding
	Coding Rate	N/A	1/3
	CRC, bit	16	12
	Max number of bits/TTI after channel coding	11580	360
	RM attribute	256	256

Table C.3.4.4: DL reference measurement channel, TFCS (384 kbps)

TFCS size	4
TECS	(DTCH, DCCH)= (TF0, TF0), (TF1, TF0), (TF0, TF1), (TF1, TF1)

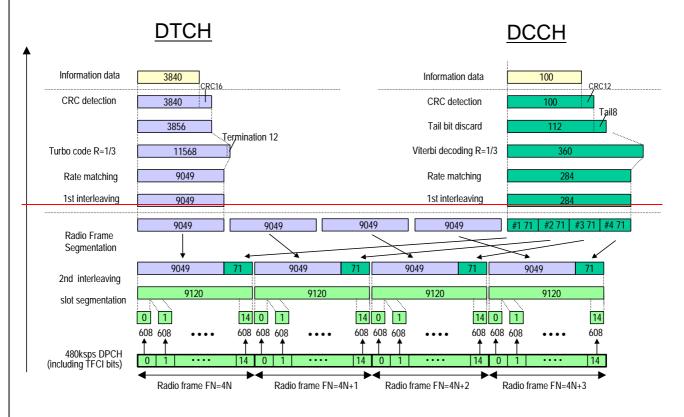


Figure C.3.4 (informative): Channel coding of DL reference measurement channel (384 kbps)

C.4 Reference measurement channel for BTFD performance requirements

C.4.1 UL reference measurement channel for BTFD performance requirements

The parameters for UL reference measurement channel for BTFD are specified in table C.4.1.1, table C.4.1.2, table C.4.1.3 and table C.4.1.4.

Table C.4.1.1: UL reference measurement channel physical parameters for BTFD

Parameter	Level	Unit
Information bit rate	12.8k, 10.8k, 8.55k, 8.0k,	kbps
	7.3k, 6.5k, 5.75k, 5.35k,	
	2.55k	
DPCCH-	15	kbps
DPCCH Slot Format #i	θ	-
DPCCH/DPDCH power ratio	-5.46 (12.8k - 7.3k)	d₿
	-2.69 (6.5k – 2.55k)	
TFCI	On	-
Puncturing Limit	100	%

Table C.4.1.2: UL reference measurement channel, transport channel parameters for SRB

Higher Layer	RA	B/Signalling RB	SRB
RLC	Logical ch	annel type	DCCH
	RLC mod		UM/AM
	Payload s	izes, bit	88/80
	Max data	rate, bps	2200/2000
	PDU head	ler, bit	8/16
	TrD PDU	header, bit	N/A
MAC	MAC hea	der, bit	4
	MAC mult	iplexing	Yes
Layer 1	TrCH type		DCH
	Transport	Channel Identity	10
	TB sizes,	bit	100
	TES	TF0, bits	0*100
		TF1, bits	1*100
	TTI, ms		40
	Coding ty		Convolution Coding
	Coding R	ate	1/3
	CRC, bit		12
	Max numl	er of bits/TTI after	360
	channel c	oding	
		ax number of bits/radio-	90
		ore rate matching	
	RM attribu	ite	256

Higher	RAB/Signalling	+ 12.8k /10.8k/8.55k/8.0k/7.3k/6.5k/5.75k/5.35k/2.55k
Layer	RB	
RLC	Logical channel	DTCH
	type	
	RLC mode	TM
	Payload sizes, bi	
	Max data rate, br	
	PDU header, bit	N/A
	TrD PDU header	θ
	bit	
MAC	MAC header, bit	θ
	MAC multiplexine	
Layer 1	TrCH type	DCH
	Transport Chann	el 1
	Identity	
	TB sizes, bit	256, 216, 171, 160, 146, 130, 115, 107, 51,12
	TFS TFO b	
	TF1 b	
	TF2 b	
	TF3 b	
	TF4 b	
	TF5 b	
	TF6 b	
	TF7 b	
	TF8 b	
	TF9 b	
	TF10	1x12
	bit	
	TTI, ms	20
	Coding type	33
	Coding Rate	1/3
	CRC, bit	θ
	RM attribute	256

Table C.4.1.3: UL reference measurement channel using RLC-TM for DTCH, transport channelparameters

Table C.4.1.4: UL reference measurement channel, TFCS

TFCS size	22
TECS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF2, TF0), (TF3, TF0), (TF4, TF0), (TF5, TF0), (TF6, TF0), (TF7, TF0),
	(TF8, TF0), (TF9, TF0), (TF10, TF0), (TF0, TF1), (TF1, TF1), (TF2, TF1), (TF3, TF1), (TF4,
	TF1), (TF5, TF1), (TF6, TF1), (TF7, TF1), (TF8, TF1), (TF9, TF1), (TF10, TF1)

NOTE: The TFCs except for (TF1, TF1), (TF2, TF1), (TF3, TF1), (TF4, TF1), (TF5, TF1), (TF6, TF1), (TF7, TF1), (TF8, TF1), (TF9, TF1) and (TF10, TF1) are belonging to minimum set of TFCs.

C.4.2 DL reference measurement channel for BTFD performance requirements

The parameters for DL reference measurement channel for BTFD are specified in table C.4.2.1, table C.4.2.2, table C.4.2.3 and table C.4.2.4. The channel coding for information is shown in figures C.4.1, C.4.2, and C.4.3. For the RLC configuration of AM DCCHs Timer_STATUS_Periodic shall not be set in RRC CONNECTION SETUP message used in test procedure for RF test as defined in TS34.108 clause 7.3. This is to prevent unexpected DCHs from being-transmitted through such RLC entities when the timer has expired in order to sure that the required TFC from theminimum set of TFCs can continuously convey a DCH for DTCH during the test.

Table C.4.2.1: DL reference measurement channel physical parameters for BTFD

Parameter	Rate 1	Rate 2	Rate 3	Unit
Information bit rate	12,2	7,95	1,95	kbps
DPCH		30		ksps
Slot Format #i		-		
TECI		-		
Power offsets PO1, PO2 and PO3		dB		
DTX position		-		

Table C.4.2.2: DL reference measurement channel, transport channel parameters for SRB

Higher Layer	RA	AB/Signalling RB	SRB
RLC	Logical cl	hannel type	DCCH
	RLC mod	le	UM/AM
	Payload (sizes, bit	88/80
	Max data	rate, bps	2200/2000
	PDU hea	der, bit	8/16
	TrD PDU	header, bit	N/A
MAC	MAC hea	der, bit	4
	MAC mul	tiplexing	Yes
Layer 1	TrCH type		DCH
-		t Channel Identity	20
	TB sizes,		100
	TFS	TF0, bits	0*100
		TF1, bits	1*100
	TTI, ms		40
	Coding ty	'pe	Convolution Coding
	Coding R		1/3
	CRC, bit		12
	Max num	ber of bits/TTI after	360
	channel o	oding	
	Uplink: M	ax number of bits/radio-	90
	frame bet	fore rate matching	
	RM attrib	ute	256

			parametero					
Higher Layer	RAB/Sigi	nalling RB	1 2.2k/10.2k/7.95k/7.4k/6.7k/5.9k/5.15k/4.75k/1.95k					
RLC	Logical channel- type		DTCH					
	RLC mod	de	TM					
	Payload	sizes, bit	244, 204, 159, 148, 134, 118, 103, 95, 39					
		a rate, bps	12200					
	PDU hea		N/A					
	TrD PDU bit	Header,	θ					
MAC	MAC hea	ader, bit	θ					
	MAC mu		N/A					
Layer 1	TrCH typ	0	DCH					
	Transpor Identity	rt Channel	4					
	TB sizes	, bit	244, 204, 159, 148, 134, 118, 103, 95, 39,0					
	TES	TF0 bit	1x0					
		TF1 bit	1x2 44					
		TF2 bit	1x204					
		TF3 bit	1x159					
		TF4 bit	1x148					
		TF5 bit	1 x134					
		TF6 bit	1x118					
		TF7 bit	1x103					
		TF8 bit	1x95					
		TF9 bit	1x39					
	TTI, ms		20					
	Coding ty		<u> </u>					
	Coding F		1/3					
	CRC, bit		θ					
	RM attrib	oute	256					

Table C.4.2.3: DL reference measurement channel using RLC-TM for DTCH, transport channelparameters

Table C.4.2.4: DL reference measurement channel, TFCS

TFCS size	20
TFCS	(DTCH, DCCH)=
	(TF0, TF0), (TF1, TF0), (TF2, TF0), (TF3, TF0), (TF4, TF0), (TF5, TF0), (TF6, TF0), (TF7, TF0),
	(TF8, TF0), (TF9, TF0), (TF0, TF1), (TF1, TF1), (TF2, TF1), (TF3, TF1), (TF4, TF1), (TF5, TF1),
	(TF6, TF1), (TF7, TF1), (TF8, TF1), (TF9, TF1),

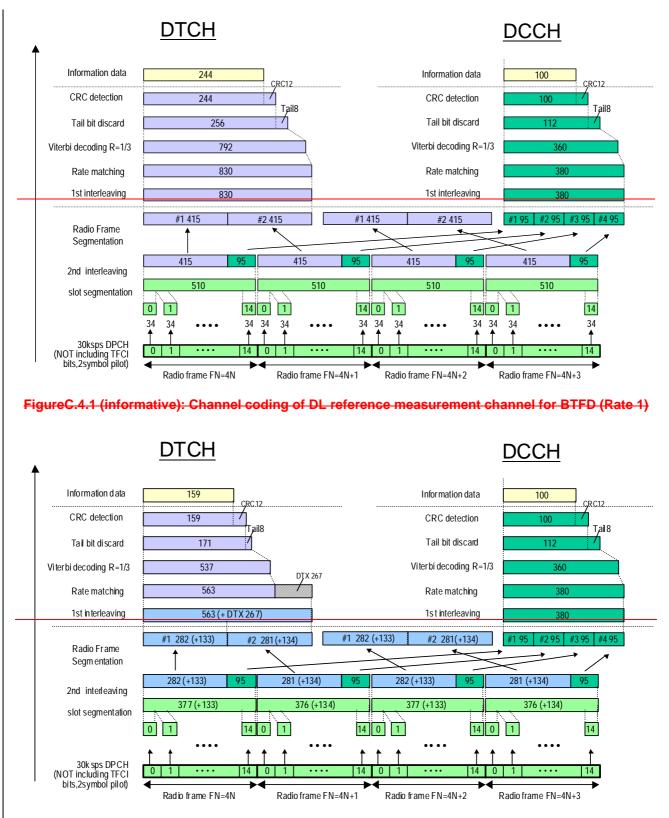


Figure C.4.2 (informative): Channel coding of DL reference measurement channel for BTFD (Rate 2)

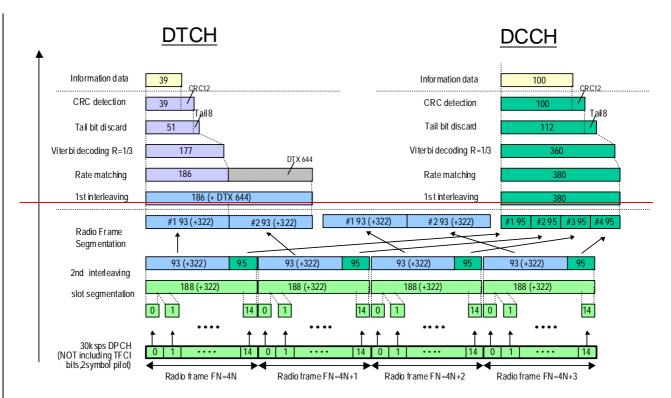


Figure C.4.3 (informative): Channel coding of DL reference measurement channel for BTFD (Rate 3)

C.5 DL reference compressed mode parameters

Parameters described in table C.5.1 are used in some test specified in TS 25.101 while parameters described in table C.5.2 are used in some tests specified in TS 25.133.

Set 1 parameters in table C.5.1 are applicable when compressed mode by spreading factor reduction is used in downlink. Set 2 parameters in table C.5.1 are applicable when compressed mode by puncturing is used in downlink.

Parameter	Set 1	Set 2	Note
TGSN (Transmission Gap Starting Slot Number)	11	11	
TGL1 (Transmission Gap Length 1)	7	7	
TGL2 (Transmission Gap Length 2)	-	-	Only one gap in use.
TGD (Transmission Gap Distance)	θ	θ	Only one gap in use.
TGPL1 (Transmission Gap Pattern Length)	4	4	
TGPL2 (Transmission Gap Pattern Length)	-	-	Only one pattern in use.
TGPRC (Transmission Gap Pattern Repetition	NA	NA	Defined by higher layers
Count)			
TGCFN (Transmission Gap Connection Frame	NA	NA	Defined by higher layers
Number):			
UL/DL compressed mode selection	DL & UL	DL & UL	2 configurations possible
			DL &UL / DL
UL compressed mode method	SF/2	SF/2	
DL compressed mode method	SF/2	Puncturing	
Downlink frame type and Slot format	11B	11A	
Scrambling code change	No	No	
RPP (Recovery period power control mode)	θ	θ	
ITP (Initial transmission power control mode)	θ	θ	

Table C.5.1: Compressed mode reference pattern 1 parameters

Parameter	Set 1	Set 2	Set 3	Note
TGSN (Transmission Gap Starting Slot Number)	4	4	10	
TGL1 (Transmission Gap Length 1)	7	7	10	
TGL2 (Transmission Gap Length 2)	-	-	-	Only one gap in use.
TGD (Transmission Gap Distance)	θ	θ	θ	
TGPL1 (Transmission Gap Pattern Length)	3	12	11	
TGPL2 (Transmission Gap Pattern Length)	-	-	-	Only one pattern in use.
TGPRC (Transmission Gap Pattern Repetition Count)	NA	NA	NA	Defined by higher layers
TGCFN (Transmission Gap Connection Frame- Number):	NA	NA	NA	Defined by higher layers
UL/DL compressed mode selection	DL & UL	DL & UL	DL & UL	2 configurations possible. DL & UL / DL
UL compressed mode method	SF/2	SF/2	SF/2	
DL compressed mode method	SF/2	SF/2	Puncturing	
Downlink frame type and Slot format	11B	11B	11A	
Scrambling code change	No	No	No	
RPP (Recovery period power control mode)	θ	θ	θ	
ITP (Initial transmission power control mode)	θ	θ	θ	

Table C.5.2: Compressed mode reference pattern 2 parameters

Annex D (normative): Propagation Conditions

D.1 General

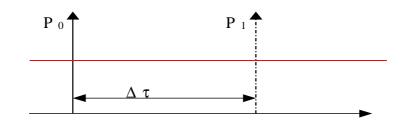
D.2 Propagation Conditions

D.2.1 Static propagation condition

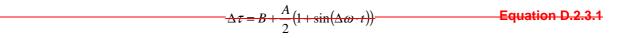
The propagation for the static performance measurement is an Additive White Gaussian Noise (AWGN) environment. No fading and multi paths exist for this propagation model.

D.2.2 Multi-path fading propagation conditions

Table D.2.2.1 shows propagation conditions that are used for the performance measurements in multi-path fadingenvironment. All taps have classical Doppler spectrum.


Table D.2.2.1: Propagation conditions for multi-path fading environments

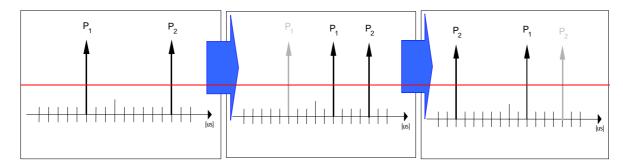
Case 1, speed 3km/h		Case 2, speed 3 km/h		Case 3, speed 120 km/h			Case 4, speed 3 km/h		* Case 5, speed 50 km/h		ie 6, 50 km/h
Relative	Average	Relative	Average	Relative	Average	Relative	Average	Relative	Average	Relative	Average
Delay	Power	Delay	Power	Delay	Power	Delay	Power	Delay	Power	Delay	Power
[ns]	[dB]	[ns]	[dB]	[ns]	[dB]	[ns]	[dB]	[ns]	[dB]	[ns]	[dB]
θ	θ	θ	θ	θ	θ	θ	θ	θ	θ	θ	θ
976	-10	976	θ	260	-3	976	θ	976	-10	260	-3
		20000	0	521	-6				521	-6	
				781	-9]			781	-9	


NOTE: Case 5 is only used in Requirements for support of RRM.

D.2.3 Moving propagation conditions

The dynamic propagation conditions for the test of the baseband performance are non fading channel models with twotaps. The moving propagation condition has two taps, one static, Path0, and one moving, Path1. The time difference between the two paths is according Equation D.2.3.1. The taps have equal strengths and equal phases.

Figure D.2.3.1: The moving propagation conditions



The parameters in the equation are shown in.

A	5 μs
B	1 μs
Δω	$40 - 10^{=3} - s^{=1}$

D.2.4 Birth-Death propagation conditions

The dynamic propagation conditions for the test of the baseband performance is a non fading propagation channel with two taps. The moving propagation condition has two taps, Path1 and Path2 while alternate between 'birth' and 'death'. The positions the paths appear are randomly selected with an equal probability rate and are shown in figure D.2.4.1.

Figure D.2.4.1: Birth death propagation sequence

- NOTE1: Two paths, Path1 and Path2 are randomly selected from the group [5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5] μs. The paths have equal strengths and equal phases.
- NOTE 2: After 191 ms, Path1 vanishes and reappears immediately at a new location randomly selected from the group [5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5] µs but excludes the point Path2.
- NOTE 3: After additional 191 ms, Path2 vanishes and reappears immediately at a new location randomly selected from the group [5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5] µs but excludes the point Path1.

NOTE 4: The sequence in 2) and 3) is repeated.

Annex E (normative): Downlink Physical Channels

E.1 General

This normative annex specifies the downlink physical channels that are needed for setting a connection and channels that are needed during a connection.

E.2 Connection Set-up

Table E.2.1 describes the downlink Physical Channels that are required for connection set up.

Table E.2.1: Downlink Physical Channels required for connection set-up

Physical Channel
CPICH
P-CCPCH
SCH
S-CCPCH
PICH
AICH
DPCH

E.2.1 Measurement without dedicated connection

Table E.2.2 describes the downlink Physical Channels that are required for measurement before connection. This is applicable for the clauses 5.4.1 and 5.5.2.

Table E.2.2: Downlink Physical Channels transmitted without dedicated connection

Physical Channel	Power
Îor	Test dependent power
CPICH	CPICH_Ec / lor = 3,3 dB
P-CCPCH	P-CCPCH_Ec / lor = 5,3 dB
SCH	SCH_Ec / lor = -5,3 dB
PICH	PICH_Ec / lor = 8,3 dB
S-CCPCH	S-CCPCH_Ec / lor = -10,3 dB

E.3 During connection

The following clauses describe the downlink Physical Channels that are transmitted during a connection i.e., when measurements are done. For these measurements the offset between DPCH and SCH shall be zero chips at base station-meaning that SCH is overlapping with the first symbols in DPCH in the beginning of DPCH slot structure.

E.3.1 Measurement of Tx Characteristics

Table E.3.1 is applicable for measurements on the Transmitter Characteristics (clause 5) with the exception of clauses 5.3, 5.4.1, 5.4.4 and 5.5.2.

NOTE: Applicability to clause 5.7 (Power setting in uplink compressed mode) is FFS.

Physical Channel	Power
Îor	–93 dBm / 3,84MHz
CPICH	CPICH_Ec / DPCH_Ec = 7 dB
P-CCPCH	P-CCPCH_Ec / DPCH_Ec = 5 dB
SCH	SCH_Ec / DPCH_Ec = 5 dB
PICH	PICH_Ec / DPCH_Ec = 2 dB
DPCH	–103,3 dBm / 3,84MHz

Table E.3.1: Downlink Physical Channels transmitted during a connection

E.3.2 Measurement of Rx Characteristics

Table E.3.2.1 is applicable for measurements on the Receiver Characteristics (clause 6) with the exception of clauses 6.3 and 6.8.

Table E.3.2.1: Downlink Physical Channels transmitted during a connection

Physical Channel	Power		
CPICH	CPICH_Ec / DPCH_Ec	- 7 dB	
P-CCPCH	P-CCPCH_Ec/ DPCH_Ec	= 5 dB	
SCH	SCH_Ec / DPCH_Ec	= 5 dB	
PICH	PICH_Ec / DPCH_Ec	= 2 dB	
DPCH	Test dependent power		

Table E.3.2.2 describes the downlink Physical Channels that are required for the test of Spurious Emissions (clause 6.8). The UE is in the CELL_FACH state during the measurement.

Table E.3.2.2: Downlink Physical Channels transmitted during the measurement for Rx Spurious Emissions

Physical Channel	Power
CPICH	-96 dBm / 3,84MHz
P-CCPCH	P-CCPCH_Ec/ CPICH_Ec = -2 dB
SCH	SCH_Ec / CPICH_Ec = -2 dB
PICH	PICH_Ec / CPICH_Ec = -5 dB

E.3.3 Measurement of Performance requirements

Table E.3.3 is applicable for measurements on the Performance requirements (clause 7), including clauses 6.3 and 5.4.4, excluding clauses 7.6.1 and 7.6.2.

Physical Channel	Power	Note
P-CPICH	P-CPICH_Ec/lor = -10 dB	Use of P-CPICH or S-CPICH as-
		phase reference is specified for
		each requirement and is also set by
		higher layer signalling.
S-CPICH	S-CPICH_Ec/lor = 10 dB	When S-CPICH is the phase
		reference in a test condition, the
		phase of S-CPICH shall be
		180 degrees offset from the phase
		of P-CPICH. When S-CPICH is not
		the phase reference, it is not
		transmitted.
P-CCPCH	P-CCPCH_Ec/lor = 12 dB	
SCH	SCH_Ec/lor = -12 dB	This power shall be divided equally
		between Primary and Secondary
		Synchronous channels
PICH	PICH_Ec/lor = -15 dB	
DPCH	Test dependent power	When S-CPICH is the phase
		reference in a test condition, the
		phase of DPCH shall be
		180 degrees offset from the phase
		of _
		P-CPICH.
OCNS	Necessary power so that total	OCNS interference consists of 16-
	transmit power spectral density	dedicated data channels as
	of Node B (lor) adds to one	specified in table E.3.6.
	power correction required to compen	
channels, e.g	. control channels, a subset of the D	PCH channels may be used.

Table E.3.3: Downlink Physical Channels transmitted during a connection⁴

Power levels are based on the assumption that multipath propagation conditions and noise source representing interference from other cells loc are turned on after the call set-up phase.

E.3.4 Connection with open-loop transmit diversity mode

Table E.3.4 is applicable for measurements for clause 7.6.1.

P-CPICH (antenna 1)		
	P-CPICH_E _{c1} /I _{or} = 13 dB	 Total P-CPICH_E_C/I_{or} = 10 dB
P-CPICH (antenna 2)	P-CPICH_E _{c2} /I _{or} = -13 dB	
P-CPICH (antenna 1)	P-CPICH_E _{c1} /I _{or} = 13 dB	1. Total P-CPICH_E _c /I _{or} = 10 dB
P-CPICH (antenna 2)	P-CPICH_E _{c2} /I _{or} = 13 dB	
P-CCPCH (antenna 1)	P-CCPCH_Ec1/Hor_ = -15 dB	1. STTD applied
P-CCPCH (antenna 2)	P-CCPCH_Ec ₂ /I _{or} = 15 dB	2. Total P-CCPCH_Ec/I_{OF} = 12 dB
SCH (antenna 1 / 2)	SCH_E _C /I _{OF} = 12 dB	 TSTD applied. This power shall be divided- equally between Primary and- Secondary Synchronous channels
PICH (antenna 1)	PICH_E _{c1} /I _{or} = -18 dB	1. STTD applied
PICH (antenna 2)	PICH_E _{c2} /I _{or} = 18 dB	2. Total PICH_E _€ /I _{OF} = 15 dB
DPCH	Test dependent power	 STTD applied Total power from both antennas
ocns	Necessary power so that total transmit power spectral density of Node B (I _{or}) adds to one	This power shall be divided equally between antennas OCNS interference consists of 16 dedicated data channels as specified in Table E.3.6.

Table E.3.4: Downlink Physical Channels transmitted during a connection²

E.3.5 Connection with closed loop transmit diversity mode

table E.3.5 is applicable for measurements for clause 7.6.2.

Table E 2 5, Downlink Dh	veical Channels transmitted during a connection ³
	YSIGAI GHAIIHEIS HAHSIIIHEU UUHHU A GOHHEGHOH

Physical Channel	Power	Note	
P-CPICH (antenna 1)	P-CPICH_Ec1/lor = 13 dB	1. Total P-CPICH_Ec/lor = 10 dB	
P-CPICH (antenna 2)	P-CPICH_Ec2/lor = -13 dB		
P-CCPCH (antenna 1)	P-CCPCH_Ec1/lor = 15 dB	1. STTD applied	
P-CCPCH (antenna 2)	P-CCPCH_Ec2/lor = -15 dB	1. STTD applied, total	
		P-CCPCH_Ec/lor = 12 dB	
SCH (antenna 1 / 2)	SCH_Ec/lor = -12 dB	1. TSTD applied	
PICH (antenna 1)	PICH_Ec1/lor = -18 dB	1. STTD applied	
PICH (antenna 2)	PICH_Ec2/lor = 18 dB	2. STTD applied, total	
		PICH_Ec/lor = 15 dB	
DPCH	Test dependent power	1. Total power from both antennas	
OCNS	Necessary power so that total	1. This power shall be divided	
	transmit power spectral density	equally between antennas	
	of Node B (lor) adds to one	2. OCNS interference consists of	
		16 dedicated data channels as	
		specified in Table E.3.6.	
NOTE: For dynamic power correction required to compensate for the presence of transient			
channels, e.g. c	control channels, a subset of the DI	PCH channels may be used.	

² Power levels are based on the assumption that multipath propagation conditions and noise source representing interference from other cells loc are turned on after the call set-up phase.

³ Power levels are based on the assumption that multipath propagation conditions and noise source representing interference from other cells loc are turned on after the call set-up phase.

Channelization Code at SF=128	Relative Level setting (dB)	DPCH Data
2	-1	The DPCH data
11	-3	for each
17	-3	channelization
23	-5	code shall be
31	-2	uncorrelated
38	-4	with each other
47	- 8 -7	and with any
55	-7	wanted signal
62	-4	over the period
69	-6	of any
78	-5	measurement.
85	-9	
94	-10	
125	-8	
113	-6]
119	θ	

Table E.3.6: DPCH Channelization Code and relative level settings for OCNS signal.

NOTE: The DPCH Channelization Codes and relative level settings are chosen to simulate a signal with realistic-Peak to Average Ratio.

E.4 W-CDMA Modulated Interferer

Table E.4.1 describes the downlink Physical Control Channels that are transmitted as part of the W-CDMA modulated interferer.

Table E.4.1: Spreading Code, Timing offsets and relative level settings for W-CDMA Modulated Interferer signal control channels.

Channel Type	Spreading Factor	Channelization Code	Timing offset (x256T _{chip})	Relative level setting (dB)	NOTE
P-CCPCH	256	4	θ	4	
SCH-	256	-	θ	4	The SCH power- shall be divided- equally between- Primary and- Secondary- Synchronous- channels
P-CPICH	256	θ	θ	-1	
PICH	256	16	16	-6	

See table E.3.6 for the definition of the 16 DPCH portion of the W-CDMA modulated interferer.

Annex F (normative): General test conditions and declarations

The requirements of this clause apply to all applicable tests in the present document.

Many of the tests in the present document measure a parameter relative to a value that is not fully specified in the UE specifications. For these tests, the Minimum Requirement is determined relative to a nominal value specified by the manufacturer.

When specified in a test, the manufacturer shall declare the nominal value of a parameter, or whether an option issupported.

In all the relevant clauses in this clause all Bit Error Ratio (BER), Block Error Ratio (BLER), False transmit format Detection Ratio (FDR) measurements shall be carried out according to the general rules for statistical testing inclause F.6.

F.1 Acceptable uncertainty of Test System

The maximum acceptable uncertainty of the Test System is specified below for each test, where appropriate. The Test System shall enable the stimulus signals in the test case to be adjusted to within the specified range, and the equipmentunder test to be measured with an uncertainty not exceeding the specified values. All ranges and uncertainties are absolute values, and are valid for a confidence level of 95 %, unless otherwise stated.

A confidence level of 95 % is the measurement uncertainty tolerance interval for a specific measurement that contains-95 % of the performance of a population of test equipment.

For RF tests it should be noted that the uncertainties in clause F.1 apply to the Test System operating into a nominal 50ohm load and do not include system effects due to mismatch between the DUT and the Test System.

F.1.1 Measurement of test environments

The measurement accuracy of the UE test environments defined in annex G, Test environments shall be.

- Pressure ±5 kPa.
- Temperature ±2 degrees.
- Relative Humidity ±5 %.
- $\frac{\text{DC Voltage}}{\pm 1,0\%}.$
- AC Voltage ±1,5 %.
- Vibration 10 %.

The above values shall apply unless the test environment is otherwise controlled and the specification for the control of the test environment specifies the uncertainty for the parameter.

F.1.2 Measurement of transmitter

Table F 1 2. Maximum	Test Custon		· for the south the state
Table L.L.E. Maximum	1001010101	OTOCILOTI	

Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
5.2 Maximum Output Power	<u>±0,7 dB</u>	
5.3 Frequency Error	±10 Hz	
5.4.1 Open loop power control in uplink	±1,0 dB	The uncertainty of this test is a combination of the downlink- level setting error and the uplink power measurement- that are uncorrelated.
		Formula = SQRT(source_level_error ² + power_meas_error ² }
5.4.2 Inner loop power control in the uplink - One step	±0,1 dB relative over a 1,5 dB range (1 dB and 0 dB step) ±0,15 dB relative over a 3,0 dB range (2 dB step) ±0,2 dB relative over a 4.5 dB range (3 dB- step)	This accuracy is based on the linearity of the absolute power- measurement of the test equipment.
5.4.2 Inner loop power control in the uplink – seven and ten steps	±0,3 dB relative over a 26 dB range	
5.4.3 Minimum Output Power	±1,0 dB	Measured on a static signal
5.4.4 Out-of-synchronisation handling of output power: <u>DPCCH_E</u>	±0,4 dB	0.1 dB uncertainty in DPCCH ratio
1 or		0.3 dB uncertainty in \hat{I}_{or}/I_{oc} - based on power meter- measurement after the- combiner
		Overall error is the sum of the \hat{f}_{or}/f_{oc} ratio error and the DPCCH_Ec/lor ratio. The absolute error of the AWGN-loc is not important but is specified as 1.0 dB
5.5.1 Transmit OFF Power: (static case)	±1,0 dB	Measured on a static signal
5.5.2 Transmit ON/OFF time mask (dynamic case)	On power +0,7 dB – 1,0 dB Off power (dynamic case) TBD	Assume asymmetric meas- error -1.0 dB / 0.7 dB- comprising RSS of: -0.7 dB- downlink error plus -0.7 dB- meas error, and +0.7 dB for- upper limit (assume UE won't- go above 24 nominal) For the off power, the- accuracy of a two-pass- measurement needs to be- analysed.
5.6 Change of TFC: power control step size (7 dB step)	±0,3 dB relative over a 9 dB range	
5.7 Power setting in uplink compressed- mode:-UE output power	Will be a subset of 5.4.2.	
5.8 Occupied Bandwidth 5.9 Spectrum emission mask-	± 100 kHz ± 1,5 dB	Accuracy = ±3*RBW. Assume 30 kHz bandwidth.
5.10 ACLR	5 MHz offset: ±0,8 dB	
	10 MHz offset: ± 0,8 dB	

Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
5.11 Spurious emissions	± 2,0 dB for UE and coexistence bands for	
	results > -60 dBm	
	\pm 3,0 dB for results < -60 dBm	
	Outside above:	
	f <u>≤2.2GHz; ± 1.5 dB</u>	
	<u>2.2 GHz < f ≤ 4 GHz;</u>	
	± 2.0 dB	
	f > 4 GHz: ±4.0 dB	
5.12 Transmit Intermodulation	- <u>± 2.2 dB</u>	CW Interferer error is 0.7 dB
		for the UE power RSS with 0.7
		dB for CW setting = 1.0 dB
		Measurement error of
		intermod product is 0.7 dB for-
		UE power RSS with 0.7 dB for
		relative = 1.0 dB
		Interferer has an effect of 2
		times on the intermod product
		so overall test uncertainty is
		2*1.0 RSS with $1.0 = 2.2$ dB.
		Apply half any excess test
		system uncertainty to increase
		the interferer level
5.13.1 Transmit modulation: EVM	±2,5 %	
	(for single code)	
5.13.2 Transmit modulation: peak code	±1.0dB	
domain error		

F.1.3 Measurement of receiver

Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
6.2 Reference sensitivity level	± 0.7 dB	
6.3 maximum input level:	± 0.7 dB	The critical parameter is the overall signal level and not the -19 dB DPCH_Ec/lor ratio.
		0.7 dB absolute error due to signal measurement.
		DPCH_Ec/lor ratio error is <0.1 dB but is not important so is ignored
6.4 Adjacent channel selectivity	± 1.1 dB	Overall system uncertainty comprises three quantities:
		1. Wanted signal level error
		2. Interferer signal level error
		3. Additional impact of interferer ACLR
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared to provide the ratio error of the two signals. Assume for simplicity this ratio error is linearly added to the- interferer ACLR.
		Test System uncertainty =- SQRT (wanted_level_error ² + interferer_level_error ²) + ACLR effect.
		The ACLR offect is calculated by:(Formula to follow)
		(E.g. ACLR at 5 MHz of 51 dB- gives additional error of .0765- dB. ACLR of 48 gives error of- -0.15 dB.)
6.5 Blocking characteristics	System error with f <15 MHz offset: ± 1.4 dB-	Using ± 0.7 dB for signal and interferer as currently defined and 68 dB ACLR @ 10 MHz.
	f >= 15 MHz offset and f _b ≤ 2.2 GHz: ± [1.0] dB- 2.2 GHz < f ≤ 4 GHz: ±[1.7] dB f > 4 GHz: ±[3.1] dB	
6.6 Spurious Response	$\frac{1 > 4 \text{ GHz: } \pm 10 \text{ dB}}{f \le 2.2 \text{ GHz: } \pm 1.0 \text{ dB}}$ $\frac{2.2 \text{ GHz} < f \le 4 \text{ GHz: } \pm 1.7 \text{ dB}}{f > 4 \text{ GHz: } \pm 3.1 \text{ dB}}$	

Table F.1.3: Maximum Test System Uncertainty for receiver tests

Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
6.7 Intermodulation Characteristics	±1.3 dB	Similar issues to 7.4 ACS test.
		ETR028 says impact f the
		closer signal is twice that of
		the far signal. If both signals-
		drop 1 dB, intermod product
		drops 2 dB.
		Formula =
		$\sqrt{(2 \cdot CW_ievei_error)^2 + (mod_ievei_error)^2}$
		(Using CW interferer ±0.5 dB,
		modulated interferer ±0.5 dB,
		wanted signal ±0.7 dB)
		1.3 dB!
		Broadband noise/ACLR not
		considered but may have
		impact.
6.8 Spurious emissions	± 3.0 dB for UE receive band (-78 dBm)	
	Outside above:	
	f <u>≤2.2GHz: ± 2.0 dB (-57 dBm)</u>	
	$2.2 \text{ GHz} < f \le 4 \text{ GHz}$	
	± 2.0 dB (-47 dBm)	
	f > 4 GHz: ±4.0 dB (-47 dBm)	

F.1.4 Performance requirement

Table F.1.4: Maximum Test System Uncertainty for Performance Requirements

Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
7.2 Demodulation in Static Propagation Condition	$\frac{\hat{H}_{or}/H_{oc}}{H_{oc}} = \frac{\pm 0.3 \text{ dB}}{\pm 1.0 \text{ dB}}$	0.1 dB uncertainty in DPCH_Ec ratio
	$\frac{DPCH_E_c}{I_{or}} = \pm 0.1 \text{ dB}$	0.3 dB uncertainty in \hat{I}_{or}/I_{oc} - based on power meter measurement after the combiner
		Overall error is the sum of the \hat{I}_{or}/I_{oc} ratio error and the DPCH_Ec/lor ratio but is not RSS for simplicity. The absolute error of the AWGN-loc is not important for any tests in clause 7 but is specified as 1.0 dB.
7.3 Demodulation of DCH in multipath Fading Propagation conditions	$\frac{\hat{I}_{or}/I_{oc}}{I_{oc}} = \pm 0.56 \text{ dB}$ $\frac{I_{oc}}{I_{oc}} = \pm 1.0 \text{ dB}$ $\frac{DPCH _ E_c}{I_{or}} = \pm 0.1 \text{ dB}$	Worst case gain uncertainty- due to the fader from the- calibrated static profile is ±0.5- dB
	1 _{or}	In addition the same $\pm 0.3 \text{ dB}$ \hat{I}_{or}/I_{oc} ratio error as 7.2. These are uncorrelated so can be RSS.
		Overall error in \hat{I}_{or}/I_{oc} is (0.5 ² . + 0.3 ²) ^{-0.5} = 0.6 dB Same as 7.3
7.4 Demodulation of DCH in Moving- Propagation conditions	$\frac{\hat{I}_{or}/I_{oc}}{I_{oc}} = \pm 0.6 \text{ dB}$ $\frac{I_{oc}}{I_{oc}} = \pm 1.0 \text{ dB}$ $\frac{DPCH_{-}E_{c}}{I_{or}} = \pm 0.1 \text{ dB}$	Same as 7.3
7.5 Demodulation of DCH in Birth-Death Propagation conditions	$\frac{\hat{H}_{or}/H_{oc}}{H_{oc}} = \frac{\pm 0.6 \text{ dB}}{\pm 1.0 \text{ dB}}$ $\frac{DPCH_{-}E_{c}}{I_{or}} = \pm 0.1 \text{ dB}$	Same as 7.3
7.6.1 Demodulation of DCH in open loop Transmit diversity mode	$\frac{\hat{f}_{or}/f_{oc}}{F_{oc}} = \frac{\pm 0.8 \text{ dB}}{\pm 1.0 \text{ dB}}$ $\frac{DPCH_{E_{c}}}{E_{c}} = \pm 0.1 \text{ dB}$	Worst case gain uncertainty- due to the fader from the- calibrated static profile is ±0.5- dB per output
	I _{or}	In addition the same ± 0.3 dB- \hat{I}_{or}/I_{oc} -ratio error as 7.2. These are uncorrelated so can
		be RSS.
		Overall error in \hat{I}_{or}/I_{oc} is $(0.5^2 \cdot + 0.5^2 + 0.3^2)^{0.5} = 0.768 \text{ dB.}$ Round up to 0.8 dB

Clause	Maximum Test System Uncertainty	Derivation of Test System- Uncertainty
7.6.2 Demodulation of DCH in closed- loop Transmit diversity mode	$\frac{\hat{H}_{or}}{H_{oc}} - \frac{\pm 0.8 \text{ dB}}{\pm 1.0 \text{ dB}}$	Same as 7.6.1
	$\frac{DPCH_E_c}{I_{or}} = \pm 0.1 \text{dB}$	
7.6.3, Demodulation of DCH in site- selection diversity Transmission power- control mode	$\frac{\hat{I}_{or}/I_{oc}}{I_{oc}} = \frac{\pm 0.8 \text{ dB}}{\pm 1.0 \text{ dB}}$	Same as 7.6.1
	$\frac{DPCH_E_c}{I_{or}} = \pm 0.1 \text{ dB}$	
7.7.1 Demodulation in inter-cell soft- Handover-	$\frac{\hat{I}_{or}}{I_{oc}} - \frac{\pm 0.8 \text{ dB}}{\pm 1.0 \text{ dB}}$	Same as 7.6.1
	$\frac{DPCH_E_c}{I_{or}} = \pm 0.1 \text{ dB}$	
7.7.2 Combining of TPC commands Test 4	$\frac{\frac{\text{lor1,lor2}}{\text{DPCH}_{-}E_{c}}}{I_{or}} = \pm 0.1 \text{ dB}$	Test is looking for changes in power – need to allow for relaxation in criteria for power
7.7.2 Combining of TPC commands Test-	\hat{I}_{or}/I_{oc} = ±0.8 dB	step of probably 0.1 dB to 0.4 dB Same as 7.6.1
2	$\frac{I_{oc}}{DPCH} = E_c \qquad \text{ if } A \neq B$	
7.8.1 Power control in downlink constant BLER target	$\frac{I_{or}}{\hat{I}_{or}/I_{oc}} \xrightarrow{\pm 0.6 \text{ dB}}$	Same as 7.3
	$\frac{I_{oc} \pm 1.0 \text{ dB}}{DPCH _ E_c} \pm 0.1 \text{ dB}$	
7.8.2, Power control in downlink initial- convergence	$\frac{\hat{I}_{or}/I_{oc}}{I_{oc}} = \frac{\pm 0.6 \text{ dB}}{\pm 1.0 \text{ dB}}$	Same as 7.3
	$\frac{DPCH_E_c}{I_{or}} = \pm 0.1 \text{ dB}$	
7.8.3, Power control in downlink: wind up effects	$\frac{\hat{I}_{or}}{I_{oc}} - \frac{\pm 0.6 \text{ dB}}{\pm 1.0 \text{ dB}}$	Same as 7.3
	$\frac{DPCH_E_c}{I_{or}} = \pm 0.1 \text{ dB}$	
7.9 Downlink compressed mode	$\frac{\hat{I}_{or}/I_{oc}}{I_{oc}} = \frac{\pm 0.6 \text{ dB}}{\pm 1.0 \text{ dB}}$	Same as 7.3
	$\frac{DPCH_E_c}{I_{or}} = \pm 0.1 \text{ dB}$	
7.10 Blind transport format detection- Tests 1, 2, 3	$\frac{\hat{H}_{or}}{H_{oc}} \xrightarrow{\pm 0.3 \text{ dB}} \frac{1}{1000} \xrightarrow{\pm 1.0 \text{ dB}}$	Same as 7.2
	$\frac{DPCH_E_c}{I_{or}} = \pm 0.1 \text{ dB}$	

Clause	Maximum Test System Uncertainty	Derivation of Test System- Uncertainty
7.10 Blind transport format detection Tests 4, 5, 6	$\frac{\hat{H}_{or}/I_{oc}}{I_{oc}} = \frac{\pm 0.6 \text{ dB}}{\pm 1.0 \text{ dB}}$ $\frac{DPCH_{E_c}}{I_{or}} = \pm 0.1 \text{ dB}$	Same as 7.3

F.1.5 Requirements for support of RRM

Table F.1.5: Maximum Test System Uncertainty for Radio Resource Management Tests

Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
8.2 Idle Mode Tasks		
8.2.2 Cell Re-Selection		
8.2.2.1 Scenario 1: Single carrier case	$\frac{\hat{I}_{or}/I_{oc}}{I_{oc}} = \pm 0.3 \text{ dB}$ $\frac{I_{oc}}{I_{oc}} = \pm 1.0 \text{ dB}$ $CPICH = E$	0.1 dB uncertainty in CPICH_Ec ratio
	$\frac{CPICH _E_c}{I_{or}} = \frac{\pm 0.1 \text{ dB}}{\pm 0.1 \text{ dB}}$	$\frac{0.3 \text{ dB uncertainty in } \hat{H}_{ar}}{I_{ar}}$
		based on power meter- measurement after the combiner
		The absolute error of the AWGN is specified as 1.0 dB.
8.2.2.2 Scenario 2: Multi carrier case	$\frac{\hat{I}_{or}}{I_{oc}} \xrightarrow{\pm 0.3 \text{ dB}}$	0.1 dB uncertainty in CPICH_Ec ratio
	I_{oc1}/I_{oc2} =0.3 dB	0.3 dB uncertainty in \hat{H}_{or}/H_{oc}
	$\frac{CPICH _E_c}{I_{or}} = \frac{\pm 0.1 \text{ dB}}{\pm 0.1 \text{ dB}}$	based on power meter- measurement after the- combiner
		0.3 dB uncertainty in loc1/loc2 based on power meter measurement after the combiner
		Overall error for the CPICH_Ec/lo is the sum of the \hat{T}_{or}/I_{oc} -ratio error and the CPICH_Ec/lor ratio.
		The absolute error of the AWGN is specified as 1.0 dB.
8.2.3 UTRAN to GSM Cell Re-Selection		

Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
8.2.3.1 Scenario 1: Both UTRA and GSM-	$\frac{\hat{I}_{ar}}{I_{ac}}$ = ±0.3 dB	0.1 dB uncertainty in
level changed	011 00	CPICH Ec ratio
Ŭ	$\frac{I_{oc}}{RXLEV}$ = ±0.3 dB	
	<u>-I_{oc}±1.0 dB</u>	
	RXLEV ±1.0 dB	
	TI.U UD	0.3 dB uncertainty in \hat{I}_{or}/I_{oc} –
	$\underline{CPICH _E_{c}}_{\pm 0.1 \text{ dB}}$	based on power meter
		measurement after the
	1 or	combiner
		0.3 dB uncertainty in
		loc/RXLEV based on power-
		meter measurement after the
		combiner
		The absolute error of the
		AWGN is specified as 1.0 dB.
		The absolute error of the
		RXLEV is specified as 1.0 dB.
8.2.3.2 Scenario 2: Only UTRA level	$\frac{\hat{I}_{or}}{I_{oc}}$ = <u>±0.3 dB</u>	Same as 8.2.3.1
changed	$\frac{1}{H_{oc}}$ /RXLEV <u>±0.3 dB</u>	
	001	
	<u>-I_{oc} ±1.0 dB</u>	
	RXLEV ±1.0 dB	
	<u>CPICH</u> $_E_c$ <u>±0.1 dB</u>	
	$\frac{\text{erren}_L_c}{\pm 0.1 \text{ dB}}$	
	I _{or}	
8.2.4 FDD/TDD cell re-selection	$\frac{\hat{I}_{or}}{I_{oc}}$ = ±0.3 dB	Same as 8.2.2.2
	<i>H_{oc}</i> <u>±1.0 dB</u>	
	$\frac{I_{ocl}}{I_{oc2}}$ = ±0.3 dB	
	$\frac{CPICH _ E_c}{L} = \frac{\pm 0.1 \text{ dB}}{L}$	
	<u></u>	
	I _{or}	
8.3 UTRAN Connected Mode Mobility		
8.3.1 FDD/FDD Soft Handover	700	No test case
8.3.2 FDD/FDD Hard Handover	TBD	
8.3.3 FDD/TDD Handover	TBD	
8.3.4 Inter-system Handover form	TBD	
UTRAN FDD to GSM		
8.3.5 Cell Re-selection in CELL_FACH		
8.3.5.1 One frequency present in the	Same as 8.2.2.1	Same as 8.2.2.1
neighbour list		
8.3.5.2 Two frequencies present in the	Same as 8.2.2.2	Same as 8.2.2.2
neighbour list 8.3.6 Cell Re-selection in CELL_PCH		
	Same as 8.2.2.4	Somo oo 8 0 0 1
8.3.6.1 One frequency present in the neighbour list	Same as 8.2.2.1	Same as 8.2.2.1
8.3.6.2 Two frequencies present in the	Same as 8.2.2.2	Same as 8.2.2.2
a.3.6.2 I wo irequencies present in the neighbour list	Janio do 0.2.2.2	Jame as 0.2.2
8.3.7 Cell Re-selection in URA_PCH		
8.3.7.1 One frequency present in the	Same as 8.2.2.1	Same as 8.2.2.1
neighbour list	Dame do 0.2.2.1	Jame as 0.2.2.1
8.3.7.2 Two frequencies present in the	Same as 8.2.2.2	Same as 8.2.2.2
neighbour list		Game de 0.2.2.2
8.4 RRC Connection Control	TBD	
8.4.1 RRC Re-establishment delay		
O.T.T TITO TO COLONISHINGHL UCIDY		

Clause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
8.4.2 Random Access	$\frac{\hat{I}_{or}}{I_{oc}}$ = ±0.3 dB	0.1 dB uncertainty in AICH_Ec-
	$\frac{I_{or}}{I_{oc}} = \pm 1.0 \text{ dB}$	ratio
		^ /
	$AICH _E_c$	0.3 dB uncertainty in \hat{I}_{or}/I_{oc} -
	$\frac{AICH_E_c}{I_{or}} = \pm 0.1 \text{ dB}$	based on power meter
	* or	measurement after the
		combiner
		Overall error is the sum of the
		$\frac{\hat{H}_{or}}{H_{oc}}$ ratio error and the
		AICH_Ec/lor ratio.
		The she shall be supported to be
		The absolute error of the AWGN is specified as 1.0 dB
8.5 Timing and Signalling Characteristics		
8.5.1 UE Transmit Timing	<u> </u>	0.1 dB uncertainty in
		DPCH_Ec ratio
	I_{or1}/I_{or2} ±0.3 dB	
	$\underline{DPCH}_{E_{c}}$	
	$\frac{121011 - 12_c}{\pm 0.1 \text{ dB}}$	0.3 dB uncertainty in lor1/lor2-
	I _{or}	based on power meter
		measurement after the
		combiner
		The absolute error of the lor is-
		specified as 1.0 dB.
8.6 UE Measurements Procedures		
8.6.1 FDD intra frequency measurements		
8.6.1.1 Event triggered reporting in-	TBD	
AWGN propagation conditions		
8.6.1.2 Event triggered reporting of	TBD	
multiple neighbours in AWGN		
propagation condition 8.6.1.3 Event triggered reporting of two-	TBD	
detectable neighbours in AWGN		
propagation condition		
8.6.1.4 Correct reporting of neighbours in	TBD	
fading propagation condition		
8.6.2 FDD inter frequency measurements		
8.6.2.1 Correct reporting of neighbours in AWGN propagation condition	TBD	
8.6.2.2 Correct reporting of neighbours in	TBD	
Fading propagation condition		
8.6.3 TDD measurements	TBD	
8.6.3.1Correct reporting of TDD	TBD	
neighbours in AWGN propagation- condition		
8.7 Measurements Performance		
Requirements		
8.7.1 CPICH RSCP		
8.7.1.1 Intra frequency measurements	$\frac{\hat{I}_{or}}{I_{oc}}$ = <u>±0.3 dB</u>	Same as 8.2.2.1
accuracy	<u><i>H</i></u> <u><i>H</i>_{oc} <u></u>±1.0 dB</u>	
	$\underline{CPICH}_{E_{c}}$ = +0.1 dB	
	$\frac{CPICH _E_c}{I_{or}} = \frac{\pm 0.1 \text{ dB}}{\pm 0.1 \text{ dB}}$	

Clause	Maximum Test System Uncertainty	Derivation of Test System
8.7.1.2 Inter frequency measurement		Uncertainty Same as 8.2.2.2
accuracy	\hat{I}_{or}/I_{oc} = ±0.3 dB	
	<u>-<i>I</i>_{oc} <u>+1.0 dB</u></u>	
	I_{oc1}/I_{oc2} = ±0.3 dB	
	$\underline{CPICH}_{E_c} = \underline{\pm 0.1 \text{ dB}}$	
	I_{or}	
	l or	
8.7.2 CPICH Ec/lo 8.7.1.1 Intra frequency measurements		Same as 8.2.2.1
accuracy	\hat{I}_{or}/I_{oc} = ±0.3 dB	Jame as 0.2.2.1
	<u>-I_{oc} ±1.0 dB</u>	
	<u>CPICH E_c</u> <u>±0.1 dB</u>	
	$\frac{\text{critch} \underline{L_c}}{\pm 0.1 \text{ dB}}$	
	I _{or}	
8.7.1.2 Inter frequency measurement	$\frac{I_{or}}{\hat{I}_{or}/I_{oc}} = \pm 0.3 \text{ dB}$	Same as 8.2.2.2
accuracy	$\frac{I_{or}I_{oc}}{I_{oc}} = \pm 1.0 \text{ dB}$	
	$\frac{I_{oc1}}{I_{oc2}}$ = ±0.3 dB	
	CPICH F	
	<u>CPICH</u> $_E_c$ <u>±0.1 dB</u>	
	I _{or}	
8.7.3A UTRA Carrier RSSI	$\frac{I_{or}}{\hat{I}_{or}/I_{oc}} = \pm 0.3 \text{ dB}$	\hat{I}
	$\frac{I_{or}}{I_{oc}} = \frac{100 \text{ dB}}{\pm 1.0 \text{ dB}}$	$\frac{0.3 \text{ dB-uncertainty in } \hat{I}_{or} / I_{oc}}{0.3 \text{ dB-uncertainty in } \hat{I}_{or}}$
		based on power meter-
	$\frac{I_{oc1}}{I_{oc2}}$ $\pm 0.3 \text{ dB}$	measurement after the combiner
	0017 002	Compiner
		0.3 dB uncertainty in loc1/loc2
		based on power meter
		measurement after the
		combiner
		The absolute error of the
		AWGN is specified as 1.0 dB
8.7.3B Transport channel BLER	TBD	
		Develiele e se se te
8.7.3C UE Transmitted power	Mean power measurement ±0,7 dB	Downlink parameters are
		unimportant.
8.7.4 SFN-CFN observed time difference	TBD	1
8.7.5 SFN-SFN observed time difference	TBD	
8.7.6 UE Rx-Tx time difference	$\frac{\hat{I}_{or}}{I_{oc}}$ = ±0.3 dB	0.3 dB uncertainty in \hat{I}_{or}/I_{oc} -
	$\frac{1}{100}$ $\pm 1.0 \text{ dB}$	
	1 OC	based on power meter- measurement after the-
	Rx-Tx Timing Accuracy [±0.5 chip]	combiner
		The absolute error of the
		AWGN is specified as 1.0 dB.
8.7.7 Observed time difference to GSM	TBD	
cell 8.7.8 P-CCPCH RSCP	TBD	

F.2 Test Tolerances (This clause is informative)

The Test Tolerances defined in this clause have been used to relax the Minimum Requirements in the present document to derive the Test Requirements.

The Test Tolerances are derived from Test System uncertainties, regulatory requirements and criticality to systemperformance. As a result, the Test Tolerances may sometimes be set to zero.

The test tolerances should not be modified for any reason e.g. to take account of commonly known test system errors (such as mismatch, cable loss, etc.).

F.2.1 Transmitter

	The A Table and a
Clause	Test Tolerance
5.2 Maximum Output Power	0.7 dB-
5.3 Frequency error	10 Hz -
5.4.1 Open loop power control in uplink	1.0 dB
5.4.2 Inner loop power control in the	0.1 dB (1 dB and 0 dB step)
uplink - One step	0.15 dB (2 dB step)
	0.2 dB (3 dB step)
5.4.2 Inner loop power control in the	0.3 dB
uplink - seven and ten steps	
5.4.3 Minimum Output Power	1.0 dB-
5.4.4 Out-of-synchronisation handling of	0.4 dB
output power:DPCCH_E_	
I _{or}	
5.4.4 Out-of-synchronisation handling of	0 ms-
output power: transmit ON/OFF time	
5.5.1 Transmit OFF power	1.0 dB-
5.5.2 Transmit ON/OFF time mask	On power +0.7 dB / -1.0 dB
(dynamic case)	
	Off power TT [] dB
5.6 Change of TFC: power control step	0.3 dB
size	
5.7 Power setting in uplink compressed	See subset of 5.4.2
mode:-UE output power	
5.8 Occupied Bandwidth	0 kHz
5.9 Spectrum emission mask	1.5 dB (0 dB for additional requirements for Band II)
5.10 ACLR	0.8 dB for ratio
	0.0 dB for absolute power
5.11 Spurious emissions	0 dB
5.12 Transmit Intermodulation	0 dB
5.13.1 Transmit modulation: EVM	0%
5.13.2 Transmit modulation: peak code	1.0 dB-
domain error	

Table F.2.1: Test Tolerances for transmitter tests.

F.2.2 Receiver

Table F.2.2: Test Tolerances for receiver tests.

Clause	Test Tolerance
6.2 Reference sensitivity level	0.7 dB
6.3 Maximum input level:	0.7 dB
6.4 Adjacent channel selectivity	0 dB -
6.5 Blocking characteristics	0 dB -
6.6 Spurious Response	0 dB -
6.7 Intermodulation Characteristics	0 dB-
6.8 Spurious emissions	0 dB-

F.2.3 Performance requirements

Clause	Test Tolerance
7.2 Demodulation in Static Propagation	$\frac{0.3 \text{ dB for}}{1 \text{ for}} + \frac{1}{1 \text{ or}} + \frac{1}{1 \text{ or}}$
Condition	0.1 dB for DPCH_Ec/lor
7.3 Demodulation of DCH in multipath	$\frac{0.6 \text{ dB for}}{\hat{H}_{or}} + \frac{\hat{H}_{or}}{\hat{H}_{or}}$
Fading Propagation conditions	0.1 dB for DPCH_Ec/lor
7.4 Demodulation of DCH in Moving-	$\frac{0.6 \text{ dB for } \hat{I}_{ac}}{I_{ac}}$
Propagation conditions	0.1 dB for DPCH_Ec/lor
7.5 Demodulation of DCH in Birth-Death	$\frac{0.6 \text{ dB for } \hat{I}_{ac}}{I_{ac}}$
Propagation conditions	0.1 dB for DPCH_Ec/lor
7.6.1 Demodulation of DCH in open loop	$\frac{0.8 \text{ dB for}}{\hat{I}_{or}} / I_{oc}$
Transmit diversity mode	0.1 dB for DPCH_Ec/lor
7.6.2 Demodulation of DCH in closed	$\frac{0.8 \text{ dB for}}{\hat{H}_{or}} + \frac{\hat{H}_{oc}}{\hat{H}_{oc}}$
loop Transmit diversity mode	0.1 dB for DPCH_Ec/lor
7.6.3, Demodulation of DCH in site	$\frac{0.8 \text{ dB for}}{\hat{I}_{oc}} / I_{oc}$
selection diversity Transmission power- control mode	0.1 dB for DPCH_Ec/lor
7.7.1 Demodulation in inter-cell soft	$\frac{0.8 \text{ dB for } \hat{I}_{ac}}{I_{ac}}$
Handover conditions	0.1 dB for DPCH_Ec/lor
7.7.2 Combining of TPC commands Test	0 dB for lor1, lor2
1	0.1 dB for DPCH_Ec/lor
7.7.2 Combining of TPC commands Test	$\frac{0.8 \text{ dB for}}{\hat{I}_{or}} / I_{oc}$
	0.1 dB for DPCH_Ec/lor
7.8.1 Power control in downlink constant- BLER target	$\frac{0.6 \text{ dB for } \hat{I}_{or}}{I_{oc}}$
	0.1 dB for DPCH_Ec/lor
7.8.2, Power control in downlink initial	$\frac{0.6 \text{ dB for}}{\hat{I}_{or}}/I_{oc}}{1}$
convergence	0.1 dB for DPCH_Ec/lor
7.8.3, Power control in downlink: wind up	$\frac{0.6 \text{ dB for} \cdot \hat{I}_{or}}{I_{oc}}$
effects	0.1 dB for DPCH_Ec/lor
7.9 Downlink compressed mode	$\frac{0.6 \text{ dB for}}{\hat{I}_{or}} / I_{oc}$
	0.1 dB for DPCH_Ec/lor
7.10 Blind transport format detection	$\frac{0.3 \text{ dB for } \hat{I}_{or}}{I_{oc}}$
Tests 1, 2, 3	0.1 dB for DPCH_Ec/lor
7.10 Blind transport format detection	$\frac{0.6 \text{ dB for}}{\hat{I}_{or}/I_{oc}}$
Tests 4, 5, 6	0.1 dB for DPCH_Ec/lor

Table F.2.3: Test Tolerances for Performance Requirements.

F.2.4 Requirements for support of RRM

Table F.2.4: Test Tolerances for Radio Resource Management Tests

	
Clause	Test Tolerance
8.2 Idle Mode Tasks	
8.2.2 Cell Re-Selection	
8.2.2.1 Scenario 1: Single carrier case	0.3 dB for \hat{I}_{or}/I_{oc}
	0.1 dB for CPICH_Ec/lor
8.2.2.2 Scenario 2: Multi carrier case	0.3 dB for \hat{I}_{or}/I_{oc}
8.2.3 UTRAN to GSM Cell Re-Selection	0.1 dB for CPICH_Ec/lor
8.2.3.1 Scenario 1: Both UTRA and GSM	<u> </u>
level changed	$\frac{0.3 \text{ dB for } \hat{I}_{or} / I_{oc}}{2}$
	0.1 dB for CPICH_Ec/lor 0.3 dB for loc/RXLEV
8.2.3.2 Scenario 2: Only UTRA level	$\frac{0.3 \text{ dB for } \hat{I}_{ar} / I_{ac}}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$
changed	0.1 dB for CPICH_Ec/lor
8.2.4 FDD/TDD cell re-selection	$\frac{0.3 \text{ dB for loc/RXLEV}}{0.3 \text{ dB for } \hat{I}_{or}/I_{oc}}$
	$\frac{0.5 \text{ up for } I_{or} / I_{oc}}{0.1 \text{ dB for CPICH Ec/lor}}$
	0.3 dB for loc1/loc2
8.3 UTRAN Connected Mode Mobility	
8.3.1 FDD/FDD Soft Handover	
8.3.2 FDD/FDD Hard Handover-	TBD
8.3.3 FDD/TDD Handover	TBD
8.3.4 Inter-system Handover form- UTRAN FDD to GSM	TBD
8.3.5 Cell Re-selection in CELL_FACH	
8.3.5.1 One frequency present in the	÷ /.
neighbour list	$\frac{0.3 \text{ dB for}}{0.1 \text{ dB for}} \hat{I}_{or} / I_{oc}$
8.3.5.2 Two frequencies present in the	
neighbour list	$\frac{0.3 \text{ dB for } \hat{I}_{or} / I_{oc}}{0.4 \text{ dB for } \Omega OL} = 5 \text{ der}$
8.3.6 Cell Re-selection in CELL_PCH	0.1 dB for CPICH_Ec/lor
8.3.6.1 One frequency present in the	<u>^ /-</u>
neighbour list	$\frac{0.3 \text{ dB for } \hat{I}_{or} / I_{oc}}{0.4 \text{ dB for } \Omega C - C}$
8.3.6.2 Two frequencies present in the	0.1 dB for CPICH_Ec/lor
neighbour list	$\frac{0.3 \text{ dB for} \cdot \hat{I}_{or} / I_{oc}}{1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -$
8.3.7 Cell Re-selection in URA_PCH	0.1 dB for CPICH_Ec/lor
8.3.7.1 One frequency present in the	\hat{L}
neighbour list	$\frac{0.3 \text{ dB for} \hat{I}_{or} / I_{oc}}{0.1 \text{ dB for CPICH_Ec/lor}}$
8.3.7.2 Two frequencies present in the	
neighbour list	$\frac{0.3 \text{ dB for}}{0.1 \text{ dB for}} \frac{\hat{I}_{or}}{I_{oc}} = \frac{1}{10000000000000000000000000000000000$
8.4 RRC Connection Control	
8.4.1 RRC Re-establishment delay	TBD
8.4.2 Random Access	
	$\frac{0.3 \text{ dB for } \hat{I}_{or}}{0.1 \text{ dB for AlCH Ec/lor}}$
8.5 Timing and Signalling Characteristics	
8.5.1 UE Transmit Timing	TBD
8.6 UE Measurements Procedures	
8.6.1 FDD intra frequency measurements	
8.6.1.1 Event triggered reporting in	TBD
AWGN propagation conditions	
8.6.1.2 Event triggered reporting of	TBD
	TBD

Clause	Test Tolerance
8.6.1.3 Event triggered reporting of two-	TBD
detectable neighbours in AWGN-	
propagation condition	
8.6.1.4 Correct reporting of neighbours in	TBD
fading propagation condition	
8.6.2 FDD inter frequency measurements	
8.6.2.1 Correct reporting of neighbours in	TBD
AWGN propagation condition	
8.6.2.2 Correct reporting of neighbours in	TBD
Fading propagation condition	
8.6.3 TDD measurements	
8.6.3.1Correct reporting of TDD	TBD
neighbours in AWGN propagation	
condition 8.7 Measurements Performance	TBD
Requirements 8.7.1 CPICH RSCP	
	^ /
8.7.1.1 Intra frequency measurements	$\frac{0.3 \text{ dB for } \hat{I}_{or}}{I_{oc}}$
accuracy	0.1 dB for CPICH_Ec/lor
	1.0 dB for loc
8.7.1.2 Inter frequency measurement	^ /
	$\frac{0.3 \text{ dB for } I_{or}}{I_{oc}}$
accuracy	0.1 dB for CPICH_Ec/lor
	0.3 dB for loc1/loc2
	1.0 dB for loc
8.7.2 CPICH Ec/lo	
8.7.1.1 Intra frequency measurements	
accuracy	$\frac{0.3 \text{ dB for } \hat{I}_{or}}{I_{oc}}$
	0.1 dB for CPICH_Ec/lor
8.7.1.2 Inter frequency measurement	
accuracy	$\frac{0.3 \text{ dB for } \hat{H}_{or}}{I_{oc}}$
	0.1 dB for CPICH_Ec/lor
8.7.3A UTRA Carrier RSSI	
	$\frac{0.3 \text{ dB for } \hat{I}_{or}}{I_{oc}}$
	1.0 dB for loc
8.7.3B Transport channel BLER	TBD
8.7.3C UE Transmitted power	0.7 dB for mean power measurement by
	test system
8.7.4 SFN-CFN observed time difference	
8.7.5 SFN-SFN observed time difference	
8.7.6 UE Rx-Tx time difference	0.3 dB for \hat{I}_{or}/I_{oc}
	1.0 dB for loc
	[0.5 chip] for Rx-Tx Timing Accuracy
8.7.7 Observed time difference to GSM	
8.7.8 P-CCPCH RSCP	TBD
	שטו

F.3 Interpretation of measurement results

The measurement results returned by the Test System are compared without any modification against the Test Requirements as defined by the shared risk principle.

The Shared Risk principle is defined in ETR 273 1 2 clause 6.5.

The actual measurement uncertainty of the Test System for the measurement of each parameter shall be included in the test report.

The recorded value for the Test System uncertainty shall be, for each measurement, equal to or lower than the appropriate figure in clause F.1 of the present document.

If the Test System for a test is known to have a measurement uncertainty greater than that specified in clause F.1, it is still permitted to use this apparatus provided that an adjustment is made value as follows.

Any additional uncertainty in the Test System over and above that specified in clause F.1 shall be used to tighten the Test Requirement — making the test harder to pass. (For some tests e.g. receiver tests, this may require modification of stimulus signals). This procedure will ensure that a Test System not compliant with clause F.1 does not increase the chance of passing a device under test where that device would otherwise have failed the test if a Test System compliant with clause F.1 had been used.

F.4 Derivation of Test Requirements (This clause is informative)

The Test Requirements in the present document have been calculated by relaxing the Minimum Requirements of the core specification using the Test Tolerances defined in clause F.2. When the Test Tolerance is zero, the Test Requirement will be the same as the Minimum Requirement. When the Test Tolerance is non zero, the Test Requirements will differ from the Minimum Requirements, and the formula used for this relaxation is given in table F.4.

Test-	Minimum Requirement in TS 25.101	Test Tolerance (TT)	Test Requirement in TS 34.121
5.2 Maximum Output Power	Power class 1 (33 dBm) Tolerance = +1/-3 dB Power class 2 (27 dBm) Tolerance = +1/-3 dB Power class 3 (24 dBm) Tolerance = +1/-3 dB Power class 4 (21 dBm) Tolerance = ±2 dB	0.7 dB	Formula: Upper Tolerance limit + TT Lower Tolerance limit - TT For power classes 1-3: Upper Tolerance limit = +1.7 dB Lower Tolerance limit = -3.7 dB For power class 4: Upper Tolerance limit = +2.7 dB Lower Tolerance limit = -2.7 dB
5.3 Frequency Error	The UE modulated carrier- frequency shall be accurate to- within ±0.1 ppm compared to the carrier frequency received from- the Node B.	10 Hz	Formula: modulated carrier frequency- error + TT modulated carrier frequency error = $\pm (0.1 \text{ ppm} + 10 \text{ Hz})$.
5.4.1 Open loop power- control in the uplink	Open loop power control- tolerance ±9 dB (Normal) Open loop power control- tolerance ±12 dB (Normal)	1.0 dB	Formula: Upper Tolerance limit + TT Lower Tolerance limit – TT For Normal conditions: Upper Tolerance limit = +10 dB Lower Tolerance limit = -10 dB For Extreme conditions: Upper Tolerance limit = +13 dB Lower Tolerance limit = -13 dB
5.4.2 Inner loop power- control in uplink	See table 5.4.2.1 and 5,4,2,2	0.25dB 0.15 dB 0.2 dB 0.3 dB	Formula: Upper Tolerance limit + TT Lower Tolerance limit – TT
5.4.3 Minimum Output Power	UE minimum transmit power- shall be less than -50 dBm	1.0 dB	Formula:- UE minimum transmit power + TT UE minimum transmit power = -49 dBm-

Table F.4.1: Derivation of Test Requirements (Transmitter tests)

Test-	Minimum Requirement in TS- 25.101	Test Telerance	Test Requirement in TS 34.121
5.4.4 Out-of- synchronisation- handling of output- powor:-	$\frac{DPCCH _ E_c}{I_{or}}$ AB: -22 dB BD: -28 dB DE: -24 dB EF: -18 dB transmit ON/OFF time 200ms $\frac{DPDCH _ E_c}{I_{or}} = -16.6 dB$ $\frac{1}{I_{or}} = -1 dB$	(TT) 0.4 dB for- 	Formulas: Ratio between A and B + TT Ratio between B and D TT Ratio between D and E TT Ratio between E and F + TT ransmit ON/OFF time + TT timing $\frac{DPDCH _ E_c}{I_{or}} = -16.6 \text{ dB}$ $\frac{I_{or}}{I_{oc}} = -1 \text{ dB}$ $\frac{DPCCH _ E_c}{I_{or}} = -1 \text{ dB}$ $DPCCH$
5.5.1 Transmit OFF power (static case)	Transmit OFF power shall be loss than -56 dBm	1.0 dB	Formula: Transmit OFF power + TT Transmit OFF power = -55dBm.
5.5.2 Transmit ON/OFF time mask (dynamic- case)	Transmit ON power shall be the target value as defined in clause 5.5.2.2 Transmit OFF power shall be- less than -56 dBm	On power- upper TT = 0.7 dB On power- lower TT = 1.0 dB- Off power- TT [] dB	Formula for transmit ON power: Transmit ON power target upper limit + On power upper TT Transmit ON power target lower limit - On power lower TT To calculate Transmit ON power target value range take the nominal TX power- range from Table 5.5.2.3 then apply table 5.4.1.1 open limits then apply table 5.7.1 (only if there has been a transmission- gap) then cap the upper value using- table 5.2.1. Formula for transmit OFF power:- Transmit OFF power + Off power TT Transmit OFF power = []dBm
5.6 Change of TFC:- power control step size	TFC step size = +5 to +9 dB	0.3 dB	Formula: Upper Tolerance limit + TT Lower Tolerance limit – TT Upper limit = -4.7 dB
5.7 Power setting in uplink compressed- mode	Various	TBD- (Subset of- 5.4.2)	Lower limit = -9.3 dB TBD

Test-	Minimum Require 25.101		Test Tolerance (TT)	Test Requirement in	
5.8 Occupied Bandwidth	The occupied channel- bandwidth shall be less than 5- MHz based on a chip rate of- 3.84 Mcps.		0 kHz	Formula: occupied channe	
5.9 Spectrum emission- mask	Minimum requireme TS25.101 Table 6.1 The lower limit shall / 3.84 MHz or which higher.	0. - be -50 dBm	1.5 dB	Formula: Minimum require Lower limit + TT Add 1.5 to Minimum requir in TS25.101 Table 6.10. Zero test tolerance is appli Additional requirements for to FCC regulatory requirem The lower limit shall be -48 MHz or which ever is higher	ment + TT ement entries ed for- Band II due- tents- 3.5 dBm / 3.84
5.10 Adjacent Channel- Leakage Power Ratio- (ACLR)	If the adjacent chan greater than -50 dB ACLR shall be highe values specified bel	m then the er than the	0.0 dB	Formula: Absolute power t	
5.11 Spurious	Power Classes 3 an UE channel +5 MHz ACLR limit: 33 dB UE channel +10 MH MHz, ACLR limit: 43	: or -5 MHz, Iz or -10 -	0.8 dB	Formula: ACLR limit - TT Power Classes 3 and 4: UE channel +5 MHz or -5 I limit: 32.2 dB UE channel +10 MHz or -1 limit: 42.2 dB- Formula: Minimum Require	0 MHz, ACLR
Emissions				Add zero to all the values of Requirements in table 5.11 5.11.1b.	of Minimum .1a and
	Frequency Band	Minimum- Requireme nt		Frequency Band	Minimum- Requiremen
	9 kHz ≤ f < 150 kHz	− 36dBm ∕ 1kHz	0 dB	9kHz ≤ f < 1GHz	- 36dBm /1kHz
	150 kHz ≤ f < 30 MHz	–36dBm /10kHz	-0 dB	150 kHz ≤ f < 30 MHz	–36dBm / 10kHz
	30 MHz ≤ f < 1000 MHz	- 36dBm /100kHz	-0 dB	30 MHz ≤ f < 1000 MHz	- 36dBm /100kHz
	1 GHz ≤ f < 12.75 GHz	- 30dBm /1MHz	0 dB	1 GHz ≤ f < 2.2 GHz	− 30dBm ∕ 1MHz
			-0 dB	2.2 GHz ≤ f < 4 GHz	_30dBm / 1MHz
			- 0 dB	4 GHz ≤ f < 12.75 GHz	- 30dBm /1MHz
	1893.5 MHz < f < 1919.6 MHz	-41dBm /300kHz	-0 dB	1893.5 MHz < f < 1919.6 MHz	-41dBm / 300kHz
	$\frac{925 \text{ MHz} \le f \le 935}{\text{MHz}}$	-67dBm / 100kHz	-0 dB -0 dB	925 MHz ≤ f ≤ 935 MHz	<u>-67dBm</u> /100kHz
	935 MHz < f ≤ 960 MHz	79dBm / 100kHz		935 MHz < f ≤ 960 MHz	79dBm / 100kHz
	1805 MHz ≤ f ≤ 1880 MHz	-71dBm /100kHz	0 dB	1805 MHz ≤ f ≤ 1880 MHz	71dBm /100kHz
5.12 Transmit Intermodulation	Intermodulation Pro 5MHz		0.dB	Formula: CW interferer lev Intermod Products limits re unchanged.	main-
5.13.1 Transmit- modulation: EVM	The measured EVM exceed 17.5%.	shall not	0%	CW interferer level = -40 d Formula: EVM limit + TT EVM limit = 17.5 %	
5.13.2 Transmit- modulation: peak code- domain error	The measured Peak code- domain error shall not exceed- -15 dB.		1.0 dB	Formula: Peak code doma Peak code domain error =	

Test-	Minimum Requi 25.10		Test Tolerance (TT)	Test Requirement in	TS 34.121
6.2 Reference- sensitivity level	Îor = -106.7 dBm / 3.84 MHz DPCH_Ec = -117 dBm / 3.84 MHz BER limit = 0.001		0.7 dB	Formula: Îor+TT DPCH_Ec+TT BER limit unchanged Îor =106 dBm/X DPCH_Ec =116.3 dBm	3.84 MHz
6.3 Maximum input- level	-25 dBm lor -19 dBc DPCH_E	c/lor	0.7 dB	Formula: lor-TT	
6.4 Adjacent Channel- Selectivity	Îor = -92.7 dBm / 3.84 MHz DPCH_Ec = 103 dBm / 3.84 MHz Ioac (modulated) = -52- dBm/3.84 MHz BER limit = 0.001		0.dB	lor = -25.7 dBm Formula: Îor unchanged DPCH_Ec unchanged loac = TT BER limit unchanged loac = TT BER limit unchanged loac = TT BER limit unchanged	
6.5 Blocking Charactoristics	See Table 6.5.3 a TS34.121 BER limit = 0.001		0 dB	Formula:- I- _{blocking} (modulated) - TT (c I- _{blocking} (CW) - TT (dBm) BER limit unchanged	IBm/3.84MHz
6.6 Spurious Response	Iblocking(CW) –44 dBm Fuw: Spurious response frequencies BER limit = 0.001		0.dB	Formula: I _{blocking} (CW) - T Fuw unchanged BER limit unchanged I _{blocking} (CW) = -44 dBm	「(dBm)
6.7 Intermodulation Characteristics	Iouw1 (CW) -46 dBm Iouw2 (modulated) -46 dBm / 3.84 MHz -46 dBm / Fuw1 (offset) 10 MHz Fuw2 (offset) 20 MHz Ior = -103.7 dBm/3.84 MHz -46 dBm DPCH Ec = -114 dBm/3.84		0 dB	Formula: lor + TT DPCH_Ec + TT louw1 level unchanged louw2 level unchanged BER limit unchanged.	
	BER limit = 0.001			lor = -114 dBm BER limit. = 0.001	
6.8 Spurious Emissions				Formula: Maximum level + Add zero to all the values of Level in table 6.8.1.	
	Frequency Band	Maximum- level		Frequency Band	Maximum- level
	9kHz ≤ f < 1GHz	-57dBm / 100kHz	0 dB	9kHz ≤ f < 1GHz	-57dBm / 100kHz
	1GHz ≦ f ≦- 12.75GHz	-47dBm -/1MHz	0 dB	1 GHz ≤ f ≤ 2.2GHz	-47dBm -/1MHz
			0 dB	2.2GHz < f ≤ 4GHz	-47dBm -/1MHz
	<u>1920MHz ≤ f ≤</u>	-60dBm	0 dB	$4GHz < f \le 12.75GHz$ $1920MHz < f < 1980MHz$	-47dBm -/1MHz -60dBm
	$\frac{1920MHZ \le 1 \le 1}{1980MHZ}$ $\frac{2110MHZ \le 1 \le 1}{2110MHZ \le 1 \le 1}$	- 000Bm / 3.84MHz -60dBm	0 dB	<u>1920MHZ S I S 1980MHZ</u> 2110MHz S f S 2170MHz	- 60dBm
	2170MHz	/ 3.84MHz			/ 3.84MHz

Table F.4.2: Derivation of Test Requirements (Receiver tests)

Test	Minimum Requirement in TS	Test-	Test Requirement in TS 34.121
	25.101	Tolerance (TT)	-
7.2 Demodulation of	<u>DPCH_E_c -5.5 to -16.6 dB</u>	0.1 dB	Formulas:
DPCH in static	$\frac{1}{I_{m}} = \frac{1}{c} = \frac{1}{2} = $	for-	$DPCH_E_c$ = ratio + TT
conditions	OF	\underline{DPCH}_{E_c}	I _{or}
	-I_{oc} = -60 dBm	I _{or}	$\frac{DPCH_E_c}{I_{or}} = \text{ratio} + TT$ $\frac{\hat{I}_{or}}{\hat{I}_{oc}} = \text{ratio} + TT$
	$\hat{T}_{or}/T_{oc} = -1 \mathrm{dB}$	$\frac{0.3 \text{ dB for}}{\hat{I}_{or}/I_{oc}}$	-Ioc-unchanged
			$\frac{\hat{I}_{or}/I_{oc}}{\rm = -0.7 \ dB}$
			<u>DPCH_E_c</u> -5.4 to -16.5 dB: I_{or}
7.3 Demodulation of	<u>DPCH_E_c</u> -2.2 to -15.0	0.1 dB	Formulas:
DPCH in multi-path	I_{or}	for-	$\frac{Formulas:}{DPCH_E_c} = ratio + TT$ $\frac{1}{I_{or}} + ratio + TT$
fading propagation- conditions Tests 1-4		$\underline{DPCH}\underline{E_c}$	I _{or}
	-<i>I</i>_{oc} = -60 dBm		or / oc
	$\hat{I}_{or}/I_{oc} = 9 \text{ dB to } -3 \text{ dB}$	$\frac{0.6 \text{ dB for}}{\hat{I}_{or}/I_{oc}}$	-I _{oc} -unchanged
			$\frac{\hat{H}_{or}}{I_{oc}} = 9.6 \text{ to } -2.4 \text{ dB}$
			<u>DPCH_E_c -2.1 to -14.9 dB:</u>
			I _{or}
7.3 Demodulation of	<u>_DPCH_E_c3.2 to -7.7 dB</u>	0.1 dB	Formulas:
DPCH in multi-path fading propagation	$\frac{I_{or}}{I_{or}}$	for- DPCH E	$\frac{DPCH_E_c}{I_{cr}} = ratio + TT$
conditions Tests 5-8	I_{oc} = - 60 dBm	I_{or}	$\frac{I_{or}}{\hat{I}_{or}/I_{oc}} = \text{ratio} + TT$
		0.6 dB for	07 0
	$\hat{I}_{or}/I_{oc} = 6 \text{ dB to -3 dB}$	$\frac{1}{\hat{I}_{or}/I_{oc}}$	-I _{oc} -unchanged
			$\hat{H}_{or}/I_{oc} = 6.6$ to -2.4 dB
			<u>DPCH_E_c -3.1 to -7.6 dB:</u>
			1 or
7.3 Demodulation of	<u>DPCH_E_c -4.4 to -11.8 dB</u>	0.1 dB	Formulas:
DPCH in multi-path		for DRCH E	<u>DPCH_E_c = ratio + TT</u>
fading propagation conditions Tests 9-12		$\frac{DPCH_E_c}{I}$	$\frac{DPCH_E_c}{I_{or}} = \text{ratio} + TT$ $\frac{\hat{I}_{or}}{I_{oc}} = \text{ratio} + TT$
	$I_{oc} = -60 \text{ dBm}$		$\frac{T_{or}}{T_{oc}} = \frac{ratio + 1}{ratio}$
	$\hat{H}_{or}/I_{oc} = 6 \text{ dB to -3 dB}$	$\frac{0.6 \text{ dB for}}{\hat{I}_{or}/I_{oc}}$	-I _{oc} -unchanged
			$\hat{H}_{or}/I_{oc} = 6.6 \text{ to } -2.4 \text{ dB}$
			<u>DPCH_E_c</u> -4.3 to -11.7 dB: I_{cr}

Table F.4.3: Derivation of Test Requirements (Performance tests)

Test	Minimum Requirement in TS- 25.101	Test Telerance	Test Requirement in TS 34.121
7.3 Demodulation of DPCH in multi-path fading propagation conditions Tests 13-16	$\frac{DPCH_E_c}{I_{or}} = 2.2 \text{ to } -15.0 \text{ dB}$ $\frac{I_{oc}}{I_{oc}} = -60 \text{ dBm}$ $\frac{1}{I_{oc}} = -9 \text{ dB}$	0.6 dB for	Formulas: $\frac{DPCH_E_{c}}{I_{or}} = \text{ratio} + \text{TT}$ $\hat{I}_{or}/I_{oc} = \text{ratio} + \text{TT}$ $I_{oc} \text{-unchanged}$ $\hat{I}_{or}/I_{oc} = 9.6$ $\frac{DPCH_E_{c}}{I_{or}} = -2.1 \text{ to } -14.9 \text{ dB};$
7.3 Demodulation of DPCH in multi-path- fading propagation- conditions Tests 17-20	$\frac{DPCH_E_c}{I_{or}} = -1.4 \text{ to } -8.8 \text{ dB}$ $\frac{I_{oc}}{I_{oc}} = -60 \text{ dBm}$ $\hat{I}_{or}/I_{oc} = -6 \text{ to } -3 \text{ dB}$		$\frac{Formulas:}{DPCH_E_c} = ratio + TT$ $\frac{\hat{I}_{or}}{\hat{I}_{oc}} = ratio + TT$
7.4 Demodulation of DPCH in moving- propagation conditions	$\frac{DPCH_E_{c}}{I_{or}} = -60 \text{ dBm}$ $\hat{I}_{or}/I_{oc} = -1 \text{ dB}$	$\frac{0.1 \text{ dB}}{\text{for}}$ $\frac{DPCH_E_c}{I_{or}}$ $\frac{0.6 \text{ dB for}}{\hat{f}_{or}/I_{oc}}$	Formulas: $\frac{DPCH_E_{c}}{I_{or}} = \text{ratio} + \text{TT}$ $\hat{I}_{or}/I_{oc} = \text{ratio} + \text{TT}$ $I_{oc} - \text{unchanged}$ $\hat{I}_{or}/I_{oc} = -0.4 \text{ dB}$ $\frac{DPCH_E_{c}}{I_{or}} = -10.8 \text{ to} - 14.4 \text{ dB}$
7.5 Demodulation of DPCH birth-death- propagation conditions	$\frac{DPCH_E_{c}}{I_{or}} = -8.7 \text{ to } -12.6 \text{ dB}$ $\frac{1}{O_{oc}} = -60 \text{ dBm}$ $\frac{1}{I_{or}}/I_{oc} = -1 \text{ dB}$		Formulas: $\frac{DPCH_E_{c}}{I_{or}} = \text{ratio} + \text{TT}$ $\hat{I}_{or}/I_{oc} = \text{ratio} + \text{TT}$ $I_{oc} - \text{unchanged}$ $\hat{I}_{or}/I_{oc} = -0.4 \text{ dB}$ $\frac{DPCH_E_{c}}{I_{or}} = -18.6 \text{ to} - 12.5 \text{ dB}$

Error! No text of specified style in document.

356

Test	Minimum Requirement in TS- 25.101	Test Telerance (TT)	Test Requirement in TS 34.121
7.6.1 Demodulation of DPCH in transmit- diversity propagation- conditions	$\frac{DPCH_E_c}{I_{or}} = -16.8 \text{ dB}$ $\frac{1}{I_{oc}} = -60 \text{ dBm}$	0.1 dB	Formulas:
	$\hat{I}_{or}/I_{oc} = 9 \text{ dB}$	0.8 dB for	-I _{oc} -unchanged
			$\hat{I}_{or}/I_{oc} = 9.8 \text{ dB}$
			$\frac{DPCH_E_c}{I_{or}} \xrightarrow{-16.7 \text{ dB}}$
7.6.2 Demodulation of DCH in closed loop Transmit diversity mode	$\frac{DPCH_E_{c}}{I_{or}} = -18 \text{ to } -18.3 \text{ dB}$	$\frac{0.1 \text{ dB}}{\text{for}}$ \underline{DPCH}_E_c I_{or}	$\frac{Pormulas:}{DPCH_E_c} = ratio + TT$
	$\frac{I_{oc}}{I_{oc}} = -60 \text{ dBm}$ $\frac{\hat{I}_{oc}}{I_{oc}} = 9 \text{ dB}$		\hat{H}_{or}/H_{oc} = ratio + TT H_{oc} unchanged
		T _{or} /T _{oc}	$\hat{I}_{or}/I_{oc} = 9.8 \text{ dB}$
			$\frac{DPCH_E_{c}}{I_{or}} = \frac{17.9 \text{ to } -18.2 \text{ dB}}{18.2 \text{ dB}}$
7.6.3, Demodulation of DCH in site selection- diversity Transmission- power control mode	$\frac{DPCH_E_c}{I_{or}} = 7.5 \text{ to } -9.2 \text{ dB}$	0.1 dB for DPCH_E _c	$\frac{POrmulas:}{DPCH_E_c} = ratio + TT$ I_{or}
power control mode	$H_{oc} = -60 \text{ dBm}$	I _{or}	$\frac{\hat{I}_{or}}{I_{oc}} = \text{ratio} + \text{TT}$
	$\hat{I}_{or}/I_{oc} = 0$ to -3 dB	$\frac{\hat{I}_{or}}{I_{oc}}$	<i>H_{oc}</i> -unchanged
			$\frac{\hat{I}_{or}}{I_{oc}} = 0.8 \text{ to } -2.2 \text{ dB}$ $DPCH = E = 7.4 \text{ to } 0.1 \text{ dP}$
			$\frac{DPCH_E_c}{I_{or}}$ -7.4 to -9.1 dB:
7.7.1 Demodulation in inter-cell soft Handover	$\frac{DPCH_E_c}{I_{or}}$	$\frac{0.1 \text{ dB}}{\text{for}}$ \underline{DPCH}_E_c	
	<i>I_{oc} = - 60 dBm</i>	I _{or}	$\frac{\hat{I}_{or}}{I_{oc}} = \text{ratio} + \text{TT}$
	$\hat{I}_{or}/I_{oc} = \text{lor}2/\text{loc} = 6 \text{ to } 0 \text{ dB}$	$\frac{0.8 \text{ dB for}}{\hat{I}_{or}/I_{oc}}$	-I _{oc} -unchanged
			$\hat{H}_{or}/H_{oc} = 6.8 \text{ to } 0.8 \text{ dB}$
			<u>DPCH_E_c</u> -5.4 to -15.4 dB: I_{or}

Test	Minimum Requirement in TS	Test	Test Requirement in TS 34.121
	25.101	Tolerance (TT)	
7.7.2 Combining of TPC commands Test 1	$\frac{DPCH_E_c}{I_{or}} = 12 \text{ dB}$	$\begin{array}{c} \begin{array}{c} 0.1 \text{ dB} \\ \hline \text{for} \\ DPCH_E_c \end{array}$	$\frac{POrmulas:}{DPCH_E_c} = ratio + TT$
	lor1 and lor2 -60dBm	I _{or}	- or
		0dB for lor1 and lor2	$\frac{DPCH_E_c}{I_{or}} = -11.9 \text{ dB:}$ $\frac{1}{1} = -600 \text{Bm}$ $\frac{1}{1} = -600 \text{Bm}$
			The absolute levels of lor1 and lor2 are not important to this test.
7.7.2 Combining of TPC commands Tost 2	$\frac{DPCH_E_c\12 \text{ dB}}{I_{or}}$	0.1 dB for- DPCH_E _c	$\frac{Pormulas:}{DPCH_E_c} = ratio + TT$ $\frac{\hat{I}_{or}}{\hat{I}_{oc}} = ratio + TT$
	$I_{oc} = -60 \text{ dBm}$	I _{or}	$\frac{\hat{I}_{or}}{I_{oc}} = \text{ratio} + TT$
	$\hat{I}_{or}/I_{oc} = 0 \text{ dB}$	$\frac{0.8 \text{ dB for}}{\hat{I}_{or}/I_{oc}}$	-I _{oc} -unchanged
			$\hat{I}_{or}/I_{oc} = 0.8 \text{ dB}$
			$\frac{DPCH_E_c}{I_{or}} \sim 11,9 \text{ dB:}$ Formulas:
7.8.1 Power control in downlink constant BLER target	$\frac{DPCH_E_c}{I_{or}} \xrightarrow{-9 \text{ to -16 dB}}$	$\begin{array}{c} 0.1 \text{ dB} \\ \text{for} \\ \underline{DPCH} \underline{E_c} \end{array}$	Formulas: $\frac{DPCH_E_c}{I_{or}} = ratio + TT$ $\hat{I}_{or}/I_{oc} = ratio + TT$
	<u>-<i>I</i>_{oc} = - 60 dBm</u>	I _{or}	$\hat{H}_{or}/H_{oc} = \text{ratio} + TT$
	$\hat{H}_{or}/H_{oc} = 9 \text{ to -1 dB}$	$\frac{0.6 \text{ dB for}}{\hat{I}_{or}/I_{oc}}$	-I _{oc} -unchanged
			$\frac{\hat{H}_{or}}{I_{oc}} = 9.6 \text{ to } -0.4 \text{ dB}$
			<u>DPCH_E_c -8.9 to -15.9 dB:</u> I_{or}
7.8.2, Power control in downlink initial convergence	$\frac{DPCH_E_c}{I_{or}} = -8.1 \text{ to } = -18.9 \text{ dB}$	0.1 dB for DPCH_E _c	$\frac{Formulas:}{DPCH_E_c} = ratio + TT$ $\frac{\hat{I}_{or}}{\hat{I}_{or}/I_{oc}} = ratio + TT$
	<u> <i>I_{oc}</i> - = - 60 dBm</u>	I _{or}	$\hat{H}_{or}/H_{oc} = \text{ratio} + TT$
	$\frac{I_{oc}}{I_{or}/I_{oc}} = -1 \text{ dB}$	$\frac{0.6 \text{ dB for}}{\hat{I}_{or}/I_{oc}}$	- Hoc - unchanged
			$\hat{I}_{or}/I_{oc} = -0.4 \text{ dB}$
			$\frac{DPCH_E_c}{I_{or}} = -8.0 \text{ to} = -18.8 \text{ dB};$

Test-	Minimum Requirement in TS- 25.101	Test Telerance (TT)	Test Requirement in TS 34.121
7.8.3, Power control in downlink: wind up offects	$\frac{DPCH_E_{c}_13.3 \text{ dB}}{I_{or}}$ $\frac{I_{oc}=-60 \text{ dBm}}{\hat{I}_{or}/I_{oc}=-5 \text{ dB}}$	$\frac{0.1 \text{ dB}}{\text{for}}$ $\frac{DPCH_E_c}{I_{or}}$	$\frac{Formulas:}{DPCH_E_c} = ratio + TT$ $\frac{\hat{I}_{or}}{\hat{I}_{or} - ratio} + TT$
	$\hat{I}_{or}/I_{oc} = 5 \text{ dB}$	$\frac{\hat{f}_{or}}{\hat{f}_{oc}}$	$\frac{I_{oc} \text{-unchanged}}{\hat{I}_{or}/I_{oc}} = 5.6 \text{ dB}$ $\frac{DPCH_E_c}{I_{or}} = 13.2 \text{ dB};$ Formulas:
7.9 Downlink- compressed mode	$\frac{DPCH_E_c}{I_{or}}$ $\frac{1}{1} + 14.6 \text{ dB}$	$\frac{0.1 \text{ dB}}{\text{for}}$ $\frac{DPCH_E_c}{I_{or}}$ $\frac{0.6 \text{ dB for}}{\hat{f}_{or}/I_{oc}}$	$ \frac{I_{or}}{I_{or}} = ratio + TT $ $ \frac{I_{or}}{I_{or}} = ratio + TT $ $ \frac{I_{or}}{I_{oc}} = ratio + TT $ $ \frac{I_{oc}}{I_{oc}} = ratio + TT $ $ \frac{I_{oc}}{I_{oc}} = 9.6 \text{ dB} $
7.10 Blind transport format detection Tests-	<u></u>	0.1 dB for-	<u>DPCH_E</u> I _{or} Test 1 -14.5 dB Test 3 -15.1 dB : Formulas:
1, 2, 3	I_{or} $I_{oc} = -60 \text{ dBm}$ $\hat{I}_{or}/I_{oc} = -1 \text{ dB}$	0.2 dD for	$\frac{DPCH_E_{c}}{I_{or}} = ratio + TT$ $\frac{\hat{I}_{or}/I_{oc}}{\hat{I}_{oc}} = ratio + TT$ $\frac{I_{oc}}{I_{oc}} = ratio + TT$ $\frac{I_{oc}}{I_{oc}} = -0.7 \text{ dB}$
7.10 Blind transport		0.1 dB	<u>DPCH_E_c -17.6 to -18.3 dB:</u> I _{or}
format detection Tests- 4, 5, 6	$\frac{I_{or}}{I_{or}} = -\frac{60 \text{ dBm}}{3 \text{ dB}}$	$\frac{for}{DPCH_E_c}$	$\frac{DPCH_E_c}{I_{or}} = \text{ratio} + \text{TT}$ $\hat{I}_{or}/I_{oc} = \text{ratio} + \text{TT}$ $\frac{1}{I_{or}} = \text{ratio} + \text{TT}$
		- H _{or} /H _{oc}	$\frac{I_{oc} \text{-unchanged}}{\hat{I}_{or}/I_{oc}} = -2.4 \text{ dB}$ $\underline{DPCH}_E_c}_{-12.9 \text{ to}} -13.7 \text{ dB}:$ I_{or}

Test-	Test Parameters in TS 25.133	Test Tolerance (TT)	Test Requirement in TS 34.121
8.2 Idle Mode Tasks		(11)	
8.2.2 Cell Re-Selection			
8.2.2.1 Scenario 1: Single carrier case	$\frac{CPICH_E_c}{I_{or}} = 10 \text{ dB}$	$\frac{\frac{0.1 \text{ dB for}}{CPICH_E_c}}{I_{or}}$	Formulas: <u>CPICH_E_c = ratio - TT</u>
	$I_{oc} = -70 \text{ dBm}$	0.3 dB for lor/loc	$\frac{I_{or}}{\text{lor/loc} = \text{ratio} - \text{TT}}$
	lor/loc = 7.3 dB Note: Parameters are valid-		- I _{oc} -unchanged
	for cell 1 at time T1 and cell 2 at time T2		lor/loc = 7 dB
			$\frac{CPICH_E_c}{I_{or}} \xrightarrow{-10.1 \text{ dB}}$
	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$	$\frac{\frac{0.1 \text{ dB for}}{CPICH_E_c}}{I_{or}}$	Formulas: $CPICH _ E_c = ratio + TT$
	$\frac{1}{1 - c} = -70 \text{ dBm}$	0.3 dB for lor/loc	$\frac{I_{or}}{\text{lor/loc} = \text{ratio} + \text{TT}}$
	lor/loc = 10.27 dB Note: Parameters are valid-		loc unchanged
	for cell 1 at time T2 and cell 2 at time T1		lor/loc = 10.57 dB
			$\frac{CPICH_E_c}{I_{or}} \xrightarrow{-9.9 \text{ dB}}$
8.2.2.2 Scenario 2: Multi carrier case	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$	0.1 dB for CPICH_E _c	Formulas:
	I_{oc} = - 70 dBm	I _{or} 0.3 dB for lor/loc	$\frac{CPICH _E_c}{I_{or}} = \frac{Fatio _TT}{I_{or}}$
	lor/loc = -3.4 dB		loc unchanged
	Note: Parameters are valid for cell 1 at time T1 and cell		loc ratio unchanged
	2 at time T2		lor/loc = -3.7 dB
			$\frac{CPICH_E_c}{I_{or}}$

Table F.4.4: Derivation of Test Requirements (RRM tests)

Test-	Test Parameters in TS 25.133	Test Tolerance (TT)	Test Requirement in TS 34.121
	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$ $\frac{I_{oc}}{I_{oc}} = -70 \text{ dBm}$ $\frac{I_{oc}}{I_{oc}} = -2.2 \text{ dB}$ Note: Parameters are valid- for cell 1 at time T2 and cell 2 at time T1	$\frac{0.1 \text{ dB for}}{CPICH _ E_c}$ $\frac{I_{or}}{I_{or}}$ 0.3 dB for lor/loc	Formulas: $\frac{CPICH _ E_c}{I_{or}} = ratio + TT$ $lor/loc = ratio + TT$ $loc unchanged$ $loc ratio unchanged$ $lor/loc = 2.5 dB$ $\frac{CPICH _ E_c}{I_{or}} = 9.9 dB;$
8.2.3 UTRAN to GSM- Cell Re-Selection 8.2.3.1 Scenario 1:- Both UTRA and GSM- level changed	TBD $\frac{CPICH _ E_c}{I_{or}} = -10 \text{ dB}$ $1000000000000000000000000000000000000$	0.1 dB for <u>CPICH_E_c</u> I _{or} 0.3 dB for lor/loc 0.3 dB for loc/RXLEV	Formulas: $\frac{CPICH_E_c}{I_{or}} = ratio + TT$ $\frac{Ior/Ioc = ratio + TT}{(Ioc/RxIev)_{test requirement}} = (Ioc/RxIev)_{minimum requirement} + TT$ $\frac{Ior/Ioc = 0.3 dB}{I_{or}} = -9.9 dB$
	$\frac{CPICH _ E_c}{I_{or}} = 10 \text{ dB}$	0.1 dB for <u>CPICH _ E</u> I _{or} 0.3 dB for lor/loc 0.3 dB for loc/RXLEV	Formulas: $\frac{CPICH - E_c}{I_{or}} = ratio - TT$ $\frac{Ior/Ioc = ratio - TT}{(Ioc/RxIeV)_{test requirement}} = \frac{(Ioc/RxIeV)_{minimum requirement}}{(Ioc/RxIeV)_{minimum requirement}} = \frac{Ior/Ioc}{I_{or}} = -5.3 \text{ dB}$
8.2.3.2 Scenario 2: Only UTRA level changed	$\frac{CPICH - E_c}{I_{or}} = -10 \text{ dB}$	0.1 dB for <u>CPICH _ E</u> I _{or} 0.3 dB for lor/loc 0.3 dB for loc/RXLEV	Formulas: $\frac{CPICH _ E_c}{I_{or}} = ratio + TT$ $\frac{Ior/Ioc = ratio + TT}{(Ioc/RxIov)_{test requirement}} = \frac{Ioc/RxIov)_{test requirement}}{Ioc/RxIov)_{minimum requirement}} + TT$ $\frac{Ior/Ioc = 20.3 \text{ dB}}{I_{or}}$

Test-	Test Parameters in TS 25.133	Test Tolerance (TT)	Test Requirement in TS 34.121
	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$	0.1 dB for <u>CPICH_E</u> I _{or} 0.3 dB for lor/loc 0.3 dB for loc/RXLEV	Formulas: $\frac{CPICH _ E_c}{I_{or}} = ratio + TT$ $lor/loc = ratio + TT$ $\frac{(loc/Rxlev)_{test requirement} =}{(loc/Rxlev)_{minimum requirement} + TT}$ $lor/loc = 20.3 dB$ $\frac{CPICH _ E_c}{I_{or}} = -9.9 dB$
8.2.4 FDD/TDD cell re- selection	TBD		
8.3 UTRAN Connected Mode Mobility	TBD		
8.3.1 FDD/FDD Soft Handover	TBD		
8.3.2 FDD/FDD Hard- Handover	TBD		
8.3.3 FDD/TDD- Handover	TBD		
8.3.4 Inter-system- Handover form UTRAN FDD to GSM	TBD		
8.3.5 Cell Re-selection in CELL_FACH			
8.3.5.1 One frequency- present in the- neighbour list	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$ $\frac{I_{oc} = -70 \text{ dBm}}{I_{oc} = -7.3 \text{ dB}}$ Note: Parameters are valid- for cell 1 at time T1 and cell- 2 at time T2	0.1 dB for <u>CPICH _ E</u> I _{or} 0.3 dB for lor/loc	Formulas: $\frac{CPICH _ E_c}{I_{or}} = ratio _ TT$ $lor/loc = ratio _ TT$ $\frac{I_{oc} \text{-unchanged}}{lor/loc = 7 \text{ dB}}$ $\frac{CPICH _ E_c}{I_{or}} = 10.1 \text{ dB}:$
	$\frac{CPICH _ E_c}{I_{or}} = -10 \text{ dB}$ $\frac{I_{or}}{I_{or}} = -70 \text{ dBm}$ $\frac{1}{1000} = 10.27 \text{ dB}$ Note: Parameters are valid- for cell 1 at time T2 and cell- 2 at time T1	0.1 dB for <u>CPICH _ E_c</u> I _{or} 0.3 dB for lor/loc	Formulas: $\frac{CPICH _ E_c}{I_{or}} = ratio + TT$ $lor/loc = ratio + TT$ $loc unchanged$ $lor/loc = 10.57 dB$ $\frac{CPICH _ E_c}{I_{or}} = 9.9 dB$

Test-	Test Parameters in TS 25.133	Test Tolerance (TT)	Test Requirement in TS 34.121
8.3.5.2 Two- frequencies present in- the neighbour list	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$ $\frac{I_{oc}}{I_{oc}} = -70 \text{ dBm}$ $\frac{1}{1000} = -3.4 \text{ dB}$ Note: Parameters are valid- for cell 1 at time T1 and cell 2 at time T2	0.1 dB for <u>CPICH_E</u> I _{or} 0.3 dB for lor/loc	Formulas: $\frac{CPICH _ E_c}{I_{or}} = ratio - TT$ $lor/loc = ratio - TT$ $loc unchanged$ $loc ratio unchanged$ $lor/loc = -3.7 dB$ $\frac{CPICH _ E_c}{I_{or}} = -10.1 dB$
	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$ $\frac{I_{oc} = -70 \text{ dBm}}{I_{oc} = 2.2 \text{ dB}}$ Note: Parameters are valid- for cell 1 at time T2 and cell- 2 at time T1	0.1 dB for <u>CPICH _ E_c</u> I _{or} 0.3 dB for lor/loc	Formulas: $\frac{CPICH - E_c}{I_{or}} = ratio + TT$ Ior/loc = ratio + TT Ioc unchanged Ioc ratio unchanged Ior/loc = 2.5 dB $\frac{CPICH - E_c}{I_{or}} = 9.9 \text{ dB}$
8.3.6 Cell Re-selection in CELL_PCH			
8.3.6.1 One frequency- present in the- neighbour list	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$ $\frac{I_{oc}}{I_{oc}} = -70 \text{ dBm}$ $\frac{Ior/Ioc = 7.3 \text{ dB}}{I_{oc}}$ Note: Parameters are valid- for cell 1 at time T1 and cell- 2 at time T2	0.1 dB for <u>CPICH_E_c</u> I _{or} 0.3 dB for lor/loc	Formulas: $\frac{CPICH _ E_c}{I_{or}} = ratio - TT$ $Ior/loc = ratio - TT$ $\frac{I_{oc} - unchanged}{Ior/loc = 7 dB}$ $\frac{CPICH _ E_c}{I_{or}} = 10.1 dB$

Test-	Test Parameters in TS 25.133	Test Tolerance (TT)	Test Requirement in TS 34.121
	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$ $\frac{1}{I_{or}} = -70 \text{ dBm}$ $\frac{1}{I_{oc}} = -70 \text{ dBm}$ $\frac{1}{I_$	0.1 dB for <u>CPICH_E</u> I _{or} 0.3 dB for lot/loc	Formulas: $\frac{CPICH _ E_c}{I_{or}} = ratio + TT$ $lor/loc = ratio + TT$ $loc unchanged$ $lor/loc = 10.57 dB$ $\frac{CPICH _ E_c}{I_{or}} = 0.9 dB;$
8.3.6.2 Two- frequencies present in- the neighbour list	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$ $\frac{I_{oc} = -70 \text{ dBm}}{I_{oc} = -3.4 \text{ dB}}$ Note: Parameters are valid- for cell 1 at time T1 and cell 2 at time T2	$\frac{\frac{0.1 \text{ dB for}}{CPICH_E_c}}{I_{or}}$ 0.3 dB for lor/loc	Formulas: $\frac{CPICH _ E_c}{I_{or}} = ratio - TT$ Ior/Ioc = ratio - TT Ioc unchanged Ioc ratio unchanged Ior/Ioc = -3.7 dB $\frac{CPICH _ E_c}{I_{or}} = -10.1 \text{ dB}:$
	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$ $\frac{I_{oc} = -70 \text{ dBm}}{I_{oc} = -2.2 \text{ dB}}$ Note: Parameters are valid- for cell 1 at time T2 and cell 2 at time T1	0.1 dB for <u>CPICH_E_c</u> I _{or} 0.3 dB for lor/loc	Formulas: $\frac{CPICH _ E_c}{I_{or}} = ratio + TT$ $lor/loc = ratio + TT$ $loc unchanged$ $loc ratio unchanged$ $lor/loc = 2.5 dB$ $\frac{CPICH _ E_c}{I_{or}} = 9.9 dB$

Test	Test Parameters in TS 25.133	Test Tolerance (TT)	Test Requirement in TS 34.121
8.3.7.1 One frequency present in the neighbour list	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$ $\frac{I_{oc}}{I_{oc}} = -70 \text{ dBm}$ $\frac{I_{oc}}{I_{oc}} = -7.3 \text{ dB}$	$\frac{0.1 \text{ dB for}}{CPICH _E_c}$ $\frac{I_{or}}{I_{or}}$ 0.3 dB for lor/loc	Formulas:
	Note: Parameters are valid- for cell 1 at time T1 and cell 2 at time T2		$\frac{I_{oc} \text{-unchanged}}{\text{lor/loc} = 7 \text{ dB}}$ $\frac{\underline{CPICH}_{E_c}}{I_{or}} = 10.1 \text{ dB};$
	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$ $\frac{I_{oc} = -70 \text{ dBm}}{I_{oc} = -70 \text{ dBm}}$ $1000000000000000000000000000000000000$	$\frac{0.1 \text{ dB for}}{CPICH _E_c}$ $\overline{I_{or}}$ 0.3 dB for lor/loc	Formulas: $\frac{CPICH _ E_c}{I_{or}} = ratio + TT$ $lor/loc = ratio + TT$ $loc unchanged$ $lor/loc = 10.57 dB$ $\frac{CPICH _ E_c}{I_{or}} = 0.9 dB$
8.3.7.2 Two- frequencies present in- the neighbour list	$\frac{CPICH_E_c}{I_{or}} = -10 \text{ dB}$ $\frac{I_{oc} = -70 \text{ dBm}}{I_{oc} = -3.4 \text{ dB}}$ Note: Parameters are valid- for cell 1 at time T1 and cell 2 at time T2	0.1 dB for <u>CPICH_E_c</u> I _{or} 0.3 dB for lor/loc	Formulas: $\frac{CPICH _ E_c}{I_{or}} = ratio _ TT$ Ior/loc = ratio _ TT Ioc_unchanged Ioc_ratio_unchanged Ior/loc = -3.7 dB $\frac{CPICH _ E_c}{I_{or}} = 10.1 \text{ dB};$

Test	Test Parameters in TS 25.133	Test Tolerance (TT)	Test Requirement in TS 34.121
	$\underline{CPICH}_{E_c} = -10 \text{ dB}$	0.1 dB for	Formulas:
		$\frac{CPICH_E_c}{I_{or}}$	<u>CPICH_E_c</u> = ratio + TT
	<u>−I_{oc} = - 70 dBm</u>	0.3 dB for lor/loc	$\frac{I_{or}}{\text{lor/loc} = \text{ratio} + TT}$
	$\frac{10}{10} = 2.2 \text{ dB}$		loc unchanged
	Note: Parameters are valid for cell 1 at time T2 and cell 2 at time T1		loc ratio unchanged
			lor/loc = 2.5 dB
			$\frac{CPICH_E_c\9.9 \text{ dB}}{I_{or}}$
8.4 RRC Connection	TBD		
Control			
8.4.1 RRC Re- establishment delay	TBD		
8.4.2 Random Access	TBD		
8.5 Timing and Signalling	TBD		
Characteristics			
8.5.1 UE Transmit Timing	TBD		
8.6 UE Measurements Procedures	TBD		
8.6.1 FDD intra frequency	TBD		
measurements 8.6.1.1 Event triggered reporting in AWGN	TBD		
propagation conditions 8.6.1.2 Event triggered reporting of multiple- neighbours in AWGN- propagation condition	TBD		
8.6.1.3 Event triggered reporting of two- detectable neighbours- in AWGN propagation-	TBD		
condition 8.6.1.4 Corroct reporting of neighbours- in fading propagation-	TBD		
condition 8.6.2 FDD inter- frequency- measurements	TBD		
8.6.2.1 Correct reporting of neighbours- in AWGN propagation- condition	TBD		
8.6.2.2 Correct reporting of neighbours- in Fading propagation- condition	TBD		
8.6.3 TDD- measurements	TBD		
8.6.3.1Correct- reporting of TDD- neighbours in AWGN- propagation condition	TBD		

8.7.4 DECLARSCE TBD 8.7.1 CPICLARSCE TBD 8.7.2 CPICLARSCE TBD 8.7.3 CPICLARSCE TBD 8.7.4 CPICLARSCE TBD <	Test-	Test Parameters in TS 25.133	Test Tolerance (TT)	Test Requirement in TS 34.121
8.7.1.1-Initia frequency- measurements. accuracy TBD 8.7.2.2-Linter-frequency- measurements. accuracy TBD 8.7.3.1-Initia frequency- measurements. accuracy TBD 8.7.3.2-Life frequency- measurements. accuracy initial + TD Initial Depends on PUEMAX see- table 8.7.3C-2.1 8.7.3.2-Life frequency- difference TBD 8.7.4-SFN-CFN difference TBD 8.7.4-UERX Initial 8.7.2-2.1 8.7.4-UERX TBD 8.7.4-UERX TBD 8.7.4-UERX TBD 8.7.4-UERX Initial 8.7.2-2.1 8.7.4-UERX TBD 10.1-10.0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	Performance-			
Statuments Image: Status Image: Status Image: Status Image: Status Status Image: Status Image: Status Image: Status Image: Status Status Image: Status Image: Status Image: Status Image: Status Status Image: Status Image: Status Image: Status Image: Status Status Image: Status Image: Status Image: Status Image: Status Status Image: Status Image: Status Image: Status Image: Status Status Image: Status Image: Status Image: Status Image: Status Status Image: Status Image: Status Image: Status Image: Status Status Image: Status Image: Status Image: Status Image: Status Status Image: Status Image: Status Image: Status Image: Status Status Image: Status Image: Status Image: Status Image: Status Status Image: Status Image: Status Image: Status Image: Status Status Image: Status Image: Status Image: Status Image: Status Status Image: Status Image: Status Image: Status Image: Status Status Ima		TBD		
measurement-accuracy B-7.2-CPICH-Ec/0 TBD Image: Comparison of the comparison of	measurements	TBD		
8.7.1.1 Intra frequency measurements. decorracy neasurements. decorracy 8.7.1.2 Inter frequency 8.7.4 LTRA Carrier RSSI 8.7.32 UE Transport. channel BLER TBD 8.7.32 UE Transport. channel BLER TBD 8.7.32 UE Transport. channel BLER 0.7.4B 8.7.32 UE Transmitted decorracy innit Depende on PUEMAX see- table 8.7.32.2.1 0.7.4B 8.7.4 SEN CFN observed time- difference TBD 8.7.4 SEN CFN observed time- difference 1-00.700 fB + /oe: Test 1: lo = -02.7 dBm, Test 2: lo = -200 dBm 7.7.6 UE Rw.Tx time- difference 1-00.700 fB + /oe: Test 1: lo = -02.7 dBm, Test 2: lo = -200 dBm Timing Accuracy ± 1.5 chip 1-08 for loc 0.3 dB for loc/loc Test 3: lo = -600 dBm Test 2: lo = -600 dBm Formula: loc'(1 TTrue + (lor/loc - TTruetwe))) ≥ -04 Test 2: lo = -600 dBm Formula: loc'(1 TTrue + (lor/loc + TTruetwe))) ≥ -04 Test 3: lo = -600 dBm Formula: loc'(1 TTrue + (lor/loc + TTruetwe))) ≥ -04 Test 2: unchanged (no critical RF- parametere) Test 3: lo = -61.3 dBm, loc = -62.2 dBm Test 3: lo = -61.3 dBm, loc = -62.2 dBm Formula: loc'(1 TTrue + (lor/loc + TTruetwe)) ≤ -50 Timing accuracy [±2.0] chip Formula: loc'(1 TTrue + (lor/loc + TTruetwe)) ≤ -50 S.7.7 Observed time- difference to GSM cell TBD		TBD		
Image: contranspondent in the second seco	8.7.2 CPICH Ec/lo	TBD		
measurement-accuracy RSSI TBD 8-7.36 UTRA-Carrier RSSI TBD 8-7.36 UTRA-Carrier RSSI TBD 8-7.36 UTRA-Carrier RSSI Accuracy-upper limit Depends on PUEMAX.see- table 8-7.3C.2.1 0.7.dB 8-7.4 SEN-CFN observed time- difference Accuracy-upper limit Depends on PUEMAX.see- table 8-7.3C.2.1 0.7.dB 8-7.4 SEN-CFN observed time- difference IBD IED 8-7.6 UE RX-TX-time- difference In -10-0.4B = -100; Tool 1-10 = -04.4Bm Test3-1-0 = -50.4Bm Test3-1-0 = -50.4Bm Test3-1-0 = -50.4Bm Timing Accuracy ± 1.5-ohip Timing Accuracy ± 1.5-ohip Timing Accuracy ± 1.5-ohip Timing Accuracy ± 1.5-ohip Tost 2: unchanged (no critical RF- parameters) 7-622-2Bm Tost 2: unchanged (no critical RF- parameters) 7-632-2-4Bm, Tost 2: unchanged (no critical RF- parameters) 7-632-2-4Bm 7-642-2-4Bm 7-70-70-70-70-70-70-70-70-70-70-70-70-70	measurements	TBD		
8.7.3A UTRA Carrier. TBD TBD PSSI BF.3B Transport channel BLER TBD Formula: Upper accuracy limit + TT begends on PUEMAX see- table 8.7.3C-UT ransmitted 8.7.4 SFN CFN- ebberved lime- difference Accuracy upper limit Accuracy level limit difference 0.7.4B Formula: Upper accuracy limit + TT Add and subtract TT to all the values- in table 8.7.3C-2.1 8.7.4 SFN CFN- ebberved lime- difference TBD 0.7.4B Formula: Upper accuracy limit + TT Add and subtract TT to all the values- in table 8.7.3C-2.1 8.7.4 SFN CFN- ebberved lime- difference TBD 0.3.4B for locit Test 1: lo = -92.7.4Bm, loc = -103.6.4Bm 8.7.6 UE Rx/Tx time- difference to -10.9.4B = /ee, Test 1: lo = -50dBm 1.4B for locit Test 1: lo = -92.7.4Bm, loc = -103.6.4Bm Test 2: lo = -50dBm Test 2: lo = -51.3.6Bm Test 2: lo = -51.3.6Bm, loc = '1.10 = -61.3.6Bm, loc = -62.2.4Bm Formula: loc *(1+TT _{loc} + (lor/loc + TT _{lorloc})) ≤ -94 Test 3: lo = -51.3.6Bm, loc = -62.2.4Bm Test 3: lo = -51.3.6Bm, loc = -62.2.4Bm Test 3: lo = -51.3.6Bm, loc = -62.2.4Bm Test 1: lo = 0.1.3.6Bm, loc = -62.2.4Bm Test 1: loc = -01.3.6Bm, loc = -62.2.4Bm Test 3: loc = -51.3.6Bm, loc = -62.2.4Bm Timing accuracy [12.0] chip Timing accuracy [12.0] chip Timing accuracy [12.0] chip Formula: loc *(1+TT _{loc} + (lor/loc+TT _{lorloc})) ≤ -50 Tim		TBD		
channel BLER	8.7.3A UTRA Carrier RSSI	TBD		
power Accuracy lower limit Depende on PUEMAX see- table 8.7.3 C.2.4	channel BLER			
8.7.4 SEN-CEN- observed time- difference TBD 8.7.5 SEN-SEN- observed time- difference TBD 8.7.6 UE Rx-Tx time- difference !a = 10.9 dB = !ac; Test 1: lo = -92.0 dBm Test 2: lo = -72dBm Test 2: lo = -50dBm Timing Accuracy ± 1.5 chip 1 dB for loc 0.3 dB for lor/loc [0.5 chip for timing- accuracy] Test 1: lo = -92.7 dBm, loc = -103.6 dBm 7 or the set 1: lo = -72dBm Test 2: lo = -50dBm 1 dB for loc 0.3 dB for lor/loc [0.5 chip for timing- accuracy] Test 2: lo = -103.6 dBm 7 or the set 1: lo = -72dBm Test 2: lo = -51.3 dBm, loc = -62.2 dBm Test 2: unchanged (no oritical RF- parametere) 7 or the set 2: lo = -51.3 dBm, loc = -62.2 dBm Test 2: lo = -51.3 dBm, loc = -62.2 dBm 8.7.7 Observed time- difference to GSM cell TBD		Accuracy lower limit Depends on PUEMAX see-	0.7 dB	Lower accuracy limit – TT Add and subtract TT to all the values
8.7.5 SFN-SFN- ebserved time- difference TBD 8.7.6 UE Rx-Tx time- difference to -10.0 dB = loc; Test 1: lo = -92.4 dBm; Test2 : lo = -72dBm; Test2 : lo = -72dBm; Test3 : lo = -50dBm 1 dB for loc Test 1: lo = -92.7 dBm; loc = -103.6 dBm 7.6 Schip for timing; accuracy] 1 dB for loc Test 1: lo = -92.7 dBm; loc = -103.6 dBm 7.6 Schip for timing; accuracy] 1 dB for loc Formula: loc*(1 + TT loc+ (lor/loc + TT lor/loc)) ≥ -94 7 Test 2: unchanged (no critical RF- parameters) Tost 2: lo = -51.3 dBm, loc = -62.2 dBm Formula: loc*(1+TT loc+ (lor/loc+TT lor/loc)) ≤ -50 Timing accuracy [±2.0] chip Formula: loc*(1+TT loc+ (lor/loc+TT lor/loc)) ≤ -50 Timing accuracy [±2.0] chip Formula: loc*(1+TT loc+ (lor/loc+TT lor/loc)) ≤ -50 Timing accuracy [±2.0] chip Formula: loc*(1+TT loc + (lor/loc+TT lor/loc)) ≤ -50 Timing accuracy [±2.0] chip Formula: loc*(1+TT loc + (lor/loc+TT lor/loc)) ≤ -50 Timing accuracy [±2.0] chip Formula: loc*(1+TT loc + GSM cell TBD TBD	observed time-	TBD		
difference Test 1: lo = -94 dBm Test 2: lo = -72dBm Test 3: lo = -50dBm Ioc = -103.6 dBm Timing Accuracy ± 1.5 chip Ioc = -103.6 dBm Formula: Ioc*(1 TT _{loc} + (lor/loc TT _{lor/loc})) ≥ -94 Test 2: unchanged (no critical RF- parameters) Test 2: unchanged (no critical RF- parameters) Test 3: lo = -51.3 dBm, loc = -62.2 dBm Formula: Ioc*(1+TT _{loc} + (lor/loc+TT _{lor/loc})) ≤ -50 Timing accuracy [±2.0] chip Formula: Ioc*(1+TT _{loc} + (lor/loc+TT _{lor/loc})) ≤ -50 Timing accuracy [±2.0] chip Formula: Ioc*(1+TT _{loc} + (lor/loc+TT _{lor/loc})) ≤ -50 8.7.7 Observed time difference to GSM cell TBD	8.7.5 SFN-SFN- observed time-	TBD		
difference to GSM cell		Tost 1: lo = -94 dBm Tost2 : lo = -72dBm Tost3 : lo = -50dBm	0.3 dB for lor/loc	$\frac{\text{loc} = -103.6 \text{ dBm}}{\text{Formula:}}$ $\frac{\text{Formula:}}{\text{loc}^{*}(1-TT_{\text{loc}} + (\text{lor/loc}-TT_{\text{lor/loc}})) \ge} -94$ $\frac{\text{Test 2: unchanged (no critical RF-parameters)}}{\text{Test 3: lo} = -51.3 \text{ dBm, loc} = -62.2 \text{ dBm}}$ $\frac{\text{Formula:}}{\text{Formula:}} + (\text{lor/loc} + TT_{\text{lor/loc}})) \le -50$ $\frac{\text{Timing accuracy [\pm 2.0] chip}}{\text{Formulas:}}$ $\frac{\text{Upper limit} + TT}{\text{lop}}$
	0.7.7.0	TRD		-
		100		

F.5 Acceptable uncertainty of Test Equipment (This clause is informative)

This informative clause specifies the critical parameters of the components of an overall Test System (e.g. Signal generators, Signal Analysers etc.) which are necessary when assembling a Test System that complies with clause F.1-Acceptable Uncertainty of Test System. These Test Equipment parameters are fundamental to the accuracy of the overall Test System and are unlikely to be improved upon through System Calibration.

F.5.1 Transmitter measurements

Table F 5 1: Equipment accuracy	v for transmitter measurements
Table Figure Lyuphient accuracy	y for transmitter measurements

Test	Equipment accuracy	Test conditions
5.2 Maximum Output Power	Not critical	19 to 25 dBm
5.3 Frequency error	± 10 Hz	0 to 500 Hz.
5.4.1 Open loop power control in uplink	Not critical	-43.7 dBm to 25 dBm
5.4.2 Inner loop power control in the uplink – single step	±0.1 dB relative over a 1.5 dB range ±0.15 dB relative over a 3.0 range	+ 25 dBm to - 50 dBm
	±0.2 dB relative over a 4.5 dB range	
5.4.2 Inner loop power control in the uplink – seven and ten steps	±0.3 dB relative over a 26 dB range	+25 dBm to -50 dBm
5.4.3 Minimum Output Power	Not critical	
$\frac{5.4.4 \text{ Out-of-synchronisation handling-of-}}{output power: _ \frac{DPCCH_E_c}{I_{or}}}$	±0.1 dB uncertainty in DPCCH_Ec/lor ratio	Ratio from 16.6 dB to 28 dB
5.5.1 Transmit ON/OFF Power: UE- transmit OFF power	Not critical	-56 dBm (static power)
5.5.2 Transmit ON/OFF Power: transmit ON/OFF time mask	TBD	-56 dBm (dynamic power over approx. 70 dB range)
5.6 Change of TFC: power control step- size	±0.3 dB relative over a 9 dB range	+25 dBm to -50 dBm
5.7 Power setting in uplink compressed mode:-UE output power	Subset of 5.4.2	+25 dBm to -50 dBm
5.8 Occupied Bandwidth	±100 kHz	For results between 4 and 6- MHz?
5.9 Spectrum emission mask-	Not critical	P_Max Accuracy applies ± 5 dB either side of UE requirements
5.10 ACLR	5 MHz offset ± 0.8 dB 10 MHz offset ± 0.8 dB	19 to 25 dBm at 5 MHz offset for- results between 40 dB and 50- dB.25 dBm at 10 MHz offset for- results between 45 dB and 55- dB.
5.11 Spurious emissions	Not critical	19 to 25 dBm
5.12 Transmit Intermodulation	Not critical	19 to 25 dBm
5.13.1 Transmit modulation: EVM	+2.5 %- (for single code)	25 dBm to -21 dBm
5.13.2 Transmit modulation: peak code domain error	±1.0dB	For readings between -10 dB to- -20 dB.

F.5.2 Receiver measurements

Table F.5.2: Equipment accuracy for receiver measurements

Clause	Equipment accuracy	Test conditions		
6.2 Reference sensitivity level	Not critical			
6.3 Maximum input level:	Not critical			
6.4 Adjacent channel selectivity	Not critical			
6.5 Blocking characteristics	Not critical			
6.6 Spurious Response	Not critical			
6.7 Intermod Characteristics	Not critical			
6.8 Spurious emissions	Not critical			

F.5.3 Performance measurements

Table G.3: Equipment accuracy for performance measurements

Clause	Equipment accuracy	Test conditions
7.2 to 7.10	$\frac{DPCH_{-}E_{c}}{I_{or}} = \pm 0.1 \text{ dB}$	-2.2 to18.9 dB

F.6 General rules for statistical testing

F.6.1 Statistical testing of receiver BER/BLER performance

F.6.1.1 Error Definition

1) Bit Error Ratio (BER)

- The Bit Error Ratio is defined as the ratio of the bits wrongly received to all data bits sent. The bits are the information bits above the convolutional/turbo decoder

2) Block Error Ratio (BLER)

A Block Error Ratio is defined as the ratio of the number of erroneous blocks received to the total number of blocks sent. An erroneous block is defined as a Transport Block, the cyclic redundancy check (CRC) of which is wrong.

F.6.1.2 Test Method

Each test is performed in the following manner:

- a) Setup the required test conditions.
- b) Record the number of samples tested and the number of occurred events (bit error or block error)
- e) Stop the test at a stop criterion which is minimum test time or an early pass or an early fail event.
- d) Once the test is stopped decide according to the pass fail decision rules (subclause F.6.1.7)

F.6.1.3 Test Criteria

The test shall fulfil the following requirements:

a) good pass fail decision

1) to keep reasonably low the probability (risk) of passing a bad unit for each individual test;

2) to have high probability of passing a good unit for each individual test;

b) good balance between testtime and statistical significance

3) to perform measurements with a high degree of statistical significance;

4) to keep the test time as low as possible.

F.6.1.4 Calculation assumptions

F.6.1.4.1 Statistical independence

- (a) It is assumed, that error events are rare (lim BER BLER → 0) independent statistical events. However the memory of the convolutional /turbo coder is terminated after one TTI. Samples and errors are summed up every TTI. So the assumption of independent error events is justified.
- (b) In the BLER test with fading there is the memory of the multipath fading channel which interferes the statisticalindependence. A minimum test time is introduced to average fluctuations of the multipath fading channel. So the assumption of independent error events is justified approximately.

F.6.1.4.2 Applied formulas

The formulas, applied to describe the BER BLER test, are based on the following experiments:

(1) After having observed a certain number of errors (**ne**) the number of samples are counted to calculate BER BLER. Provisions are made (note 1) such that the complementary experiment is valid as well:

(2) After a certain number of samples (ns) the number of errors, occurred, are counted to calculate BER BLER.

Experiment (1) stipulates to use the following Chi Square Distribution with degree of freedom ne: 2*dchisq(2*NE,2*ne).

Experiment (2) stipulates to use the Poisson Distribution: dpois(ne,NE)

(NE: mean of the distribution)

To determine the early stop conditions, the following inverse cumulative operation is applied:

0.5 * qchisq(D,2*ne). This is applicable for experiment (1) and (2).

D: wrong decision risk per test step

Note: other inverse cumulative operations are available, however only this is suited for experiment (1) and (2).

F.6.1.4.3 Approximation of the distribution

The test procedure is as follows:

During a running measurement for a UE ns (number of samples) and ne (number of errors) are accumulated and from this the preliminary BER BLER is calculated. Then new samples up to the next error are taken. The entire past and the new samples are basis for the next preliminary BER BLER. Depending on the result at every step, the UE can pass, can fail or must continue the test.

As early pass and early fail UEs leave the statistical totality under consideration, the experimental conditions are changed every step resulting in a distribution that is truncated more and more towards the end of the entire test. Such a distribution can not any more be handled analytically. The unchanged distribution is used as an approximation to calculate the early fail and early pass bounds.

F.6.1.5 Definition of good pass fail decision.

This is defined by the probability of wrong decision F at the end of the test. The probability of a correct decision is 1 F.

The probability (risk) to fail a good DUT shall be \leq F according to the following definition: A DUT is failed, accepting a probability of \leq F that the DUT is still better than the specified error ratio (Test requirement).

The probability to pass a bad DUT shall be \leq F according to the following definition: A DUT is passed, accepting a probability of \leq F that the DUT is still worse than M times the specified error ratio. (M>1 is the bad DUT factor).

This definitions lead to an early pass and an early fail limit:

Early fail: ber≥ berlim_{fail}

$$ber \lim_{fail} (D, ne) = \frac{2 * ne}{qchisq(D, 2 * ne)}$$
(1)

For $ne \geq [7]$

Early pass: ber ≤berlimbad_{pass}

$$ber \operatorname{lim} bad_{pass}(D, ne) = \frac{2 * ne * M}{qchisq(1 - D, 2 * ne)}$$
(2)

For ne ≥ 1

With-

ber (normalized BER, BLER): BER, BLER according to F.6.1.1 divided by Test requirement

D: wrong decision probability for a test step . This is a numerically evaluated fraction of F, the wrong decision probability at the end of the test. See table F.6.1.6.1.

ne: Number of error events

M: bad DUT factor see table F.6.1.6.1.

qchisq: inverse cumulative chi squared distribution

F.6.1.6 Good balance between testtime and statistical significance

Three independent test parameters are introduced into the test and shown in Table F.6.1.6.1. These are the obviousbasis of test time and statistical significance. From the first two of them four dependent test parameters are derived. The third independent test parameter is justified separately.

Independent test parameters			Đe	Dependent test parameters		
Test Parameter	Value	Reference	Test parameter	Value	Reference	
Bad DUT factor M	[1.5]	Table F.6.1.8	Early pass/fail- condition	Curves	Subclause F.6.1.5 Figure 6.1.9	
Final probability of wrong pass/fail decision F	[0.2%] [0.02%, note 2]	Subclause F.6.1.5	Target number of error events	[345]	Table 6.1.8	
			Probability of- wrong pass/fail- decision per test- step D	[0.0085%] [0.0008% and 0.008%, note 2]		
			Test limit factor TL	[1.234]	Table 6.1.8	
Minimum test time		Table F.6.1.6.2				

Table F.6.1.6.1 independent and dependent test parameters

The minimum test time is derived from the following justification:

1) For no propagation conditions and static propagation condition

No early fail calculated from fractional number of errors <1 (see note 1)

2) For multipath fading condition

No stop of the test until 990 wavelengths are crossed with the speed given in the fading profile.

3) For birth death propagation conditions

No stop of the test until 200 birth death transitions occur

4) For moving propagation conditions: 628 sec

This is necessary in order to pass all potential critical points in the moving propagation profile 4 times:

Maximum rake window

Maximum adjustment speed

Intersection of moving taps

Table F.6.1.6.2 : minimum Test time

Fading profile	Minimum test- time
Multipath propagation 3 km/h	164 sec
Multipath propagation 50 km/h	9.8 sec
Multipath propagation 120 km/h	4.1 sec
Multipath propagation 250 km/h	2 sec
Birth Death propagation	38.2 sec
Moving propagation	628 sec

In table F.6.1.8the minimum test time is converted in minimum number of samples.

F.6.1.7 Pass fail decision rules

No decision is allowed before the minimum test time is elapsed.

- 1) If minimum Test time < time for target number of error events then the following applies: The requiredconfidence level 1 F (= correct decision probability) shall be achieved. This is fulfilled at an early pass or earlyfail event.
- -For BER:
- For every TTI (Transmit Time Interval) sum up the number of bits (ns) and the number if errors (ne) from the beginning of the test and calculate

BER₊ (including the artificial error at the beginning of the test (Note 1))and

BER₀ (excluding the artificial error at the beginning of the test (Note 1)).

If BER_0 is above the early fail limit, fail the DUT.

If BER₁ is below the early pass limit, pass the DUT.

Otherwise continue the test

For BLER:

For every block sum up the number of blocks (ns) and the number of erroneous blocks (ne) from the beginning of the test and calculate

BLER₁ (including the artificial error at the beginning of the test (Note 1))and

BLER₀ (excluding the artificial error at the beginning of the test (Note 1)).

If BLER₁ is below the early pass limit, pass the DUT.

If BLER₀ is above the early fail limit, fail the DUT.

Otherwise continue the test

- 2) If the minimum test time \geq time for target error events, then the test runs for the minimum test time and the decision is done by comparing the result with the test limit.
- -For BER:
- For every TTI (Transmit Time Interval) sum up the number of bits (ns) and the number if errors (ne) from the beginning of the test and calculate BER₀

-For BLER:

- For every block sum up the number of blocks (ns) and the number of erroneous blocks (ne) from the beginning of the test and calculate BLER₀

If $BER_0/BLER_0$ is above the test limit, fail the DUT.

If BER₀/BLER₀ is on or below the test limit, pass the DUT.

F.6.1.8 Test conditions for BER, BLER tests

Type of test (BER)	Test requirement (BER/BLER)	Test limit (BER/BLER) = Test requirement (BER/BLER) x TL TL-	Target number of error- events (time)	Minimum- number of samples-	Prob that good unit will fail = Prob that bad unit will pass -[%]	Bad unit BER/BLE R factor M
Reference- Sensitivity Level	0.001	[1.234]	[345] (22.9s)	Note 1	[0.2]	[1.5]
Maximum Input- Level	0.001	[1.234]	[345] (22.9s)	Note 1	[0.2]	[1.5]
Adjacent- Channel- Selectivity	0.001	[1.234]	[<u>345]</u> (22.9s)	Note 1	[0.2]	[1.5]
Blocking Characteristics Pass condition Note 2	0.001	[1.251]	[403] (26.4s)	Note 1	[0.2]	[1.5]
Blocking Characteristics Fail condition Note 2	0.001	[1.251]	[403] (26.4s)	Note 1	[0.02]	[1.5]
Spurious- Response	0.001	[1.234]	[345] (22.9s)	Note 1	[0.2]	[1.5]
Intermodulation Characteristics	0.001	[1.234]	[345] (22.9s)	Note 1	[0.2]	[1.5]

Table F.6.1.8: Test conditions for a single BER/BLER tests

	Hapie		st conaiti				
Type of test (BLER)	Information Bit-rate-	T est- requirement (BER/BLER)	Test limit (BER/B LER)= Test require ment- (BER/B LER)x TL	Target number of error events (time)	Minimum- number of samples	Prob that bad unit will pass = Prob that good unit will fail [%]	Bad unit BER/BL ER factor M
			ŦĿ				
Demodulation in Static Propagation- conditions	12.2 64 144 38 4	0.01 0.1 0.01 0.1 0.1 0.01 0.1	[1.234]	[<u>345]</u> (559.165) (55.928) (559.166) (55.928) (55.928) (559.166) (27.966)	Note1	[0.2]	[1.5]
		0.01		(279.58s)			
Demodulation of DCH in Multi-path Fading- Propagation- conditions							
3km/h (Case 1, Case 2,	<u>12.2</u>	0.01	[1.234]	[345] (559.16s)	[8200]	[0.2]	[1.5]
Case 4)	64	0.1		(55.92s)	[8200]		
		0.01		(559.16s)	[8200]		
	144	0.1 0.01		(55.92s) (559.16s)	[8200]		
	384	0.01 0.1		(27.96s)	[8200] [16400]		
		0.01		(279.58s)	[16400]		
120 km/h	10.0	0.04	[1.234]	[345]	10051	[0.2]	[1.5]
(Case3)	12.2 64	0.01 0.1		(559.16s) (55.92s)	[205] [205]		
	04	0.01 0.01		(559.16s)	[205] [205]		
	144	0.1		(55.92s)	[205]		
	384	0.01 0.1		(559.16s) (27.06a)	[205] [410]		
		0.01		(27.96s) (279.58s)	[410]		
250 km/h			[1.234]	[345]		[0.2]	[1.5]
(Case 6)	12.2	0.01		(559.16s) (55.02a)	[100]		
	64	0.1 0.01		(55.92s) (559.16s)	[100] [100]		
	144	0.1		(55.92s)	[100] [100]		
		0.01		(559.16s)	[100]		
	384	0.1 0.01		(27.96s) (279.58s)	[200] [200]		
Demodulation of DCH		0.01	[<u>1.234]</u>	[<u>345]</u>	[200]	[0.2]	[1.5]
in Moving-	12.2	0.01		(559.16)	[31400]		
Propagation- conditions	64	0.01			[31400]		
Demodulation of DCH			[<u>1.234]</u>	[<u>345]</u>		[0.2]	[1.5]
in Birth-Death-	12.2	0.01		(559.16s)	[1910]		
Propagation- conditions	64	0.01		(559.16s)	[1910]		
Demodulation of DCH in Base Station Transmit diversity modes (3 km/h, case1)	12.2	0.01	[1.234]	[345] (559.16s)	[8200]	[0.2]	[1.5]

Table F.6.1.8-2: Test conditions for BLER tests

Demodulation of DCH in closed loop- transmit diversity			[1.234]	[345]		[0.2]	[1.5]
mode (3 km/h, case1) Mode 1	12.2	0.01		(559.16s)	[8200]		
Mode 2	12.2	0.01		(559.16s)	[8200]		
Demodulation of DCH in Site Selection- Diversity- Transmission Power-	12.2	0.01	[1.234]	[345] (559.16)	[8200]	[0.2]	[1.5]
Control mode							
Demodulation of DCH			[1.234]	[345]		[0.2]	[1.5]
in Inter-Cell Soft Handover	12.2 64	0.01 0.1	1	(559.16s) (55.92s)	[205] [205]	[]	[]
(120 km/h, case3)		0.01		(559.16s)	[205]		
	144	0.1		(55.92s)	[205]		
	004	0.01		(559.16s)	[205]		
	38 4	0.1 0.01		(27.96s) (279.58s)	[410] [410]		
Combining of TPC		0.01		Not applicable			
commands from radio							
links of different radio							
link sets							
Power control in the				Not applicable			
downlink, constant							
BLER target							
Power control in the				Not applicable			
downlink, initial							
convergence Power control in the				Not applicable			
downlink, wind up							
effects							
Downlink compressed mode				Not applicable			
Blind transport format							
detection	Static 1 <u>2.2</u> 7.95 1.95	$\begin{array}{c} \text{BLER} \text{FDR} \\ 10^{-2} - 10^{-4} \\ 10^{-2} - 10^{-4} \\ 10^{-2} - 10^{-4} \end{array}$	[1.234]	[345] BLER FDR 559.16s 932min 559.16s 932min 559.16s 932min	Note 1- Note 1- Note 1 -	[0.2]	[1.5]
	Multipath <u>12.2</u> 7.95 1.98	$\begin{array}{c} 10^{-2} - 10^{-4} \\ 10^{-2} - 10^{-4} \\ 10^{-2} - 10^{-4} \end{array}$		559.16s 932min 559.16s 932min 559.16s 932min	[205] -[205] -[205]		

F.6.1.9 Practical Use (informative)

See figure F.6.1.9:

The early fail limit represents formula (1) in F.6.1.5. The range of validity is $[ne \ge 7, \ge 8 \text{ in case of blocking test}]$ to [ne = 345]

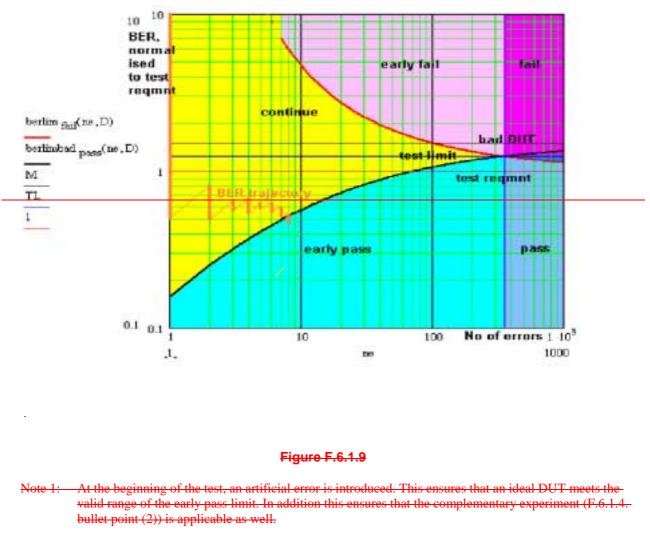
The early pass limit represents the formula (2) in F.6.1.5. The range of validity is ne=1 to [ne =345]. See note 1

The intersection co-ordinates of both curves are : number of errors ne = [345] and test limit TL = [1.234].

The range of validity for TL is ne>345.

A typical BER BLER test, calculated form the number of samples and errors (F.6.1.2.(b)) using experimental method (1) or (2) (see F.6.1.4. calculation assumptions) runs along the yellow trajectory. With an errorless sample the trajectory goes down vertically. With an erroneous sample it jumps up right. The tester checks if the BER BLER test intersects the early fail or early pass limits. The real time processing can be reduced by the following actions:

- BLER₀ (excluding the artificial error at the beginning of the test (Note 1)). is calculated only in case of an errorevent.
- BER₀ (excluding the artificial error at the beginning of the test (Note 1)). is calculated only in case of an errorevent within a TTL.


So the early fail limit cannot be missed by errorless samples.

The check against the early pass limit may be done by transforming formula (2) in F.6.1.5 such that the tester checksagainst a Limit Number of samples (NL(ne)) depending on the current number of errors (including the artificial errorat the beginning of the test (Note 1)).

Early pass if

 $\frac{NL(ne) \ge \frac{qchisq(1-D,2*ne)}{2*TR*M}}$

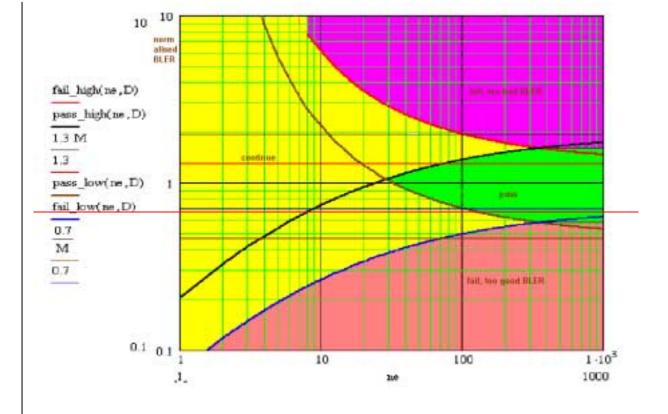
TR: test requirement (0.001)

For the check against the early fail limit the artificial erroneous sample, introduced at the beginning of the test, is disregarded.

Due to the nature of the test, namely discrete error events, the early fail condition shall not be valid, when fractional errors <1 are used to calculate the early fail limit: Any early fail decision is postponed until number of errors ne \geq [7]. In the blocking test any early fail decision is postponed until number of errors ne \geq [8].

- Note2: F=[0.2%] is intended to be used for a test containing a few BER/BLER tests (e.g. receiver sensitivity is repeated 12 times). For a test containing many BER/BLER tests (e.g. blocking test) this value is not appropriate for a single BER/BLER test.
 - The blocking test contains approx. 12750 single BER tests. A DUT on the limit will fail approx. 25 to 26times due to statistical reasons (wrong decision probability at the end of the test F=[0.2]%). 24 fails are allowed in the blocking test-but they are reserved for spurious responses. This shall be solved by the following rule:

All passes (based on F=[0.2]%) are accepted, including the wrong decisions due to statistical reasons.


- An early fail limit based on F=[0.02%] instead of [0.2%] is established, that ensures that wrong decisions due to statistical reasons are reduced to 2 to 3.
 - These asymmetric test conditions ensure that a DUT on the test limit consumes hardly more test time for a blocking test than in the symmetric case and on the other hand discriminates sufficiently between statistical fails and spurious response cases.

F.6.1.10 Dual limit BLER tests

This annex is applicable for subclause 7.8.1 Power control in the downlink constant BLER target and subclause 7.9-Downlink compressed mode. In this tests the BLER shall stay between two limits.

Table F.6.1.10. Parameters for single and dual limit BLER

Fied BLER * 1.3 (upper test requirement) Fied BLER * 0.7 (lower test requirement) PUT BLER *1.3
ied BLER * 0.7 (lower test requirement) UT BLER *1.3
UT BLER *1.3
UT BLER *1.3
UT BLER *0.7
PUT BLER *0.7
OT BEEK O.P
- Test limit
: Test limit
igh
high
low
ow
_ <u>_</u>

Figure F.6.1.10: Dual limit BLER

F.6.1.10.1 Description of the parameters for dual limit BLER tests

(refer figure F.6.1.10)

The origin

1 (black horizontal line in the centre): this is the normalised origin BLER-

The assymptotes

1.3 (red horizontal line): this is the specified upper limit of the range (BLER +30%) (upper test requirement)

0.7(blue horizontal line): this is the specified lower limit of the range (BLER 30%)(lower test requirement)

1.3*M (black horizontal line): this is M times the specified upper limit of the range (Bad DUT BLER)

0.7/M (brown horizontal line): this is 1/M times the specified lower limit. (Bad DUT BLER)

The pass/fail limits

Fail_high (bold red curve):

Definition: A momentary BLER value above this curve is with high probability above the specified upper limit: BLER + 30%.

Verdict: Above: Fail due to bad BLER

Below: continue

It approaches towards 1.3(red).

Validity range 7< errors <345.

Formula:

$$\frac{\text{fail_high(nc,D)} := 2}{\text{qchisq}(D,2 \cdot nc)}$$

Fail_low (bold blue curve):

Definition: A momentary BLER value below this curve is with high probability below the specified lower limit: BLER 30%).

Verdict: Above: continue

Below: Fail due to too good BLER

It approaches towards 0.7(blue).

Validity range 1≤ errors <343.

Formula:

$$\frac{\text{fail}_\text{low}(\text{ne}, \text{D}) := 2 - \frac{\text{ne} \cdot 0.7}{\text{qchisq}(1 - \text{D}, 2 \cdot \text{ne})}$$

Pass_high (bold black curve):-

Definition: a momentary BLER value on and below this curve is with high probability below M times the specified upper limit.

Verdict: Above: continue

Below: pass for $ne \ge 29$

continue for ne < 29

It approaches 1.3*M(black).

Validity range 1≤ errors <345.

Formula:

Pass_low (bold brown curve):

Definition: a momentary BLER value on and above this curve is with high probability above 1/M times the specified lower limit of the range.

Verdict: Above: pass for $ne \ge 29$,

continue for ne < 29

Below: continue

It approaches 0.7/M(brown).

Validity range 7< errors <343.

$$\frac{\text{ne} \cdot \frac{0.7}{M}}{\text{pass_low} (\text{ne}, \text{D}) \coloneqq 2 \cdot \frac{M}{\text{qchisq} (\text{D}, 2 \cdot \text{ne})}}$$

Legende formulas:

D: wrong decision risk per test step: 0.000085

M: bad DUT factor: 1.5

ne: number of errors

qchisq: inverse cumulative chi square function

Upper test limit (boarder between pink and green)1.3*1.234 = 1.6

Validity range: $345 \leq \text{errors.}$

Verdict: Above: fail due to bad BLER

Below: pass

Lower test limit (boarder between green and orange) 0.7/1.234 = 0.567

Validity range: $343 \leq \text{errors}$

Verdict: Above: pass-

Below: fail due to too good BLER

The intersection co-ordinates:

Fail_high (bold red curve) and Pass_high (bold black curve):-

Upper target number of errors (345) and upper test limit: 1.3* 1.234

Fail_low (bold blue curve) and Pass_high (bold black curve):-

Lower target number of errors (343) and lower test limit: 0.7 / 1.234

Pass_high (bold black curve) and Pass_low (bold brown curve)

Minimum number of errors (29) and optimum normalised BLER (1.049)

The ranges:

Range(pink): in this range the measurement can be stopped and the DUT is failed due to too high BLER.
Range (orange): in this range the measurement can be stopped and the DUT is failed due to too low BLER.
Range (yellow): in this range the measurement is undecided and must be continued.
Range (green): in this range the measurement can be stopped and the DUT is passed. No final BLER result is achieved.

F.6.1.10.2 F	Pass fail decision rules
No decision is allowed	before the minimum test time (Table F.6.1.6.2) has elapsed
	st time < time for target number of error events then the following applies: The required el 1 F (= correct decision probability, Table F.6.1.6.2) shall be achieved. This is fulfilled at
fail_high	
pass_high	
pass_low	
fail_low	
For every block	c sum up the number of blocks (ns) and the number of erroneous blocks (ne) from the beginning- calculate
-BLER ₊ (includ	ing the artificial error at the beginning of the test (Note 1, F.6.1.9))and
-BLER ₀ (exclud	ing the artificial error at the beginning of the test (Note 1, F.6.1.9)).
<u> </u>	ove <i>fail_high</i> , fail the test due to too bad_BLER
	ow <i>fail_low</i> , fail the test due to too good BLER
	or below <i>fail_high</i> and if BLER ₊ is above <i>pass_high</i> , continue the test
— If BLER ₀ is be	low <i>pass_low</i> and if BLER ₊ is above or on <i>fail low</i> , continue the test
— If BLER ₁ is be	low or on <i>pass_high</i> and if BLER ₆ is on or above <i>pass_high</i> , pass the test
2) If the minimum decision is don	test time \geq time for target error events, then the test runs for the minimum test time and the e by comparing the result with the upper and lower test limit.
	ove the upper test limit, fail the DUT due to too bad BLER
	ow the lower test limit, fail the DUT due to too good BLER
	or below the upper test limit and if $BLER_1$ is on or above the lower test limit, pass the DUT

F.6.1.10.3 Test conditions for dual limit BLER tests

Table F.6.1.10.3 Test conditions for dual limit BLER tests

Type of test (BLER)	Data rate, Propagation condition	Test requirement (BLER)	Test limit = Test requirement * TL TL	Target number of error events- (time)	Minimum- number of samples	Prob that a good unit will fail = prob that a bad unit will pass: F[%]	Bad unit factor M
Power control in the downlink, constant- BLER targot	12.2 kbit/s, 3km/h- (case4)	0.01±30%	Upper TL: 1.3*1.234 Lower TL- 0.7/1.23 4	Upper: 345 (431.25s) Lower 343 (1191s)	8200	0.2	Upper:- 1 .5 Lower- 1/1.5
Downlink compressed mode	12.2kbit/s, 3km/h (case 2)	0.01±30%	Upper TL: 1.3*1.234 Lower TL- 0.7/1.234	Upper: 345 (431.25s) Lower 343 (1191s)	8200	0.2	Upper: 1 .5 Lower- 1/1.5

F.6.2 Statistical testing of RRM delay performance

F.6.2.1 Test Method

Each test is performed in the following manner:

a) Setup the required test conditions.

b) Measure the delay repeated times. Start each repetition after sufficient time, such that each delay test is independent from the previous one. The delay times, measured, are simplified to:

a good delay, if the measured delay is \leq limit.

a bad delay, if the measured delay is > limit

c) Record the number of delays (ns), tested, and the number of bad delays (ne)

d) Stop the test at an early pass or an early fail event.

e) Once the test is stopped, decide according to the pass fail decision rules (subclause F.6.2.7)

F.6.2.2 Bad Delay Ratio (ER)

The Bad Delay Ratio (ER) is defined as the ratio of bad delays (ne) to all delays (ns). (1 ER is the success ratio)

F.6.2.3 Test Criteria

The test shall fulfil the following requirements:

a) good pass fail decision

1) to keep reasonably low the probability (risk) of passing a bad unit for each individual test;

2) to have high probability of passing a good unit for each individual test;

b) good balance between test time and statistical significance

3) to perform measurements with a high degree of statistical significance;

4) to keep the test time as low as possible.

F.6.2.4 Calculation assumptions

F.6.2.4.1 Statistical independence

It is arranged by test conditions, that bad delays are independent statistical events.

F.6.2.4.2 Applied formulas

The specified ER is 10% in most of the cases. This stipulates to use the binomial distribution to describe the RRM delay statistics. With the binomial distribution optimal results can be achieved. However the inverse cumulative operation forthe binomial distribution is not supported by standard mathematical tools. The use of the Poisson or Chi Square-Distribution requires ER->0. Using one of this distributions instead of the binomial distribution gives sub-optimalresults in the conservative sense: a pass fail decision is done later than optimal and with a lower wrong decision riskthan predefined.

The formulas, applied to describe the RRM delay statistics test, are based on the following experiment:

(1) After having observed a certain number of bad delays (**ne**) the number of all delays (**ns**) are counted to calculate-ER. Provisions are made (note 1) such that the complementary experiment is valid as well:

(2) After a certain number of delays (ns) the number of bad delays (ne), occurred, are counted to calculate ER.

Experiment (1) stipulates to use the Chi Square Distribution with degree of freedom ne: 2*dchisq(2*NE,2*ne).

Experiment (2) stipulates to use the Poisson Distribution: dpois(ne,NE)

(NE: mean value of the distribution)

To determine the early stop conditions, the following inverse cumulative operation is applied:

0.5 * qchisq(D,2*ne) for experiment (1) and (2)

D: wrong decision risk per test step

Note: Other inverse cumulative operations are available, however only this is suited for experiment (1) and (2).

F.6.2.4.3 Approximation of the distribution

The test procedure is as follows:

During a running measurement for a UE ns (Number of Delays) and ne (Number of bad delays) are accumulated andfrom this the preliminary ER is calculated. Then new samples up to the next bad delay are taken. The entire past and the new samples are basis for the next preliminary ER. Depending on the result at every step, the UE can pass, can failor must continue the test.

As early pass- and early fail-UEs leave the statistical totality under consideration, the experimental conditions are changed every step resulting in a distribution that is truncated more and more towards the end of the entire test. Such a distribution can not any more be handled analytically. The unchanged distribution is used as an approximation to-calculate the early fail and early pass bounds.

F.6.2.5 Definition of good pass fail decision.

This is defined by the probability of wrong decision F at the end of the test. The probability of a correct decision is 1 - F.

The probability (risk) to fail a good DUT shall be \leq F according to the following definition: A DUT is failed, accepting a probability of \leq F that the DUT is still better than the specified bad delay ratio (Test requirement).

The probability (risk) to pass a bad DUT shall be \leq F according to the following definition: A DUT is passed, accepting a probability of \leq F that the DUT is still worse than M times the specified bad delay ratio. (M>=1 is the bad DUT factor).

This definitions lead to an early pass and an early fail limit:

Early fail: er≥ erlim_{fail}

Error! No text of specified style in document.

384

(2)

$$er \lim_{fail} (D, ne) = \frac{2 * ne}{qchisq(D, 2 * ne)}$$
(1)

For $ne \ge [5]$

Early pass: $er \leq erlimbad_{pass}$

$$er \operatorname{lim} bad_{pass}(D, ne) = \frac{2 * ne * M}{qchisq(1 - D, 2 * ne)}$$

For ne ≥ 1

With-

er (normalized ER): ER according to F.6.2.2 divided by specified ER

D: wrong decision probability for a test step . This is a numerically evaluated fraction of F, the wrong decision probability at the end of the test. see table F.6.2.6.1

ne: Number of bad delays

M: bad DUT factor see table F.6.2.6.1

qchisq: inverse cumulative chi squared distribution

F.6.2.6 Good balance between test-time and statistical significance

Two independent test parameters are introduced into the test and shown in Table F.6.2.6.1. These are the obvious basis of test time and statistical significance. From them four dependent test parameters are derived.

Table F.6.2.6 inde	hendent and	dependent tes	t naramotors
Tuble Field	senaent una	ucpendent teo	parameters

Independe	ent test para	ameters	Dependent test parameters		
Test Parameter	Value	Reference	Test parameter	Value	Reference
Bad DUT factor M	[1.5]	Table F.6.1.8	Early pass/fail- condition	Curves	Subclause F.6.2.5 Figure 6.2.9
Final probability of wrong pass/fail	[5%]	Table F.6.2.8	Target number of bad delays	[154]	Table 6.2.8
decision F			Probability of wrong pass/fail decision per test-	[0.6 %]	
			step D Test limit factor TL	[1.236]	Table 6.2.8

F.6.2.7 Pass fail decision rules

The required confidence level 1 F (= correct decision probability) shall be achieved. This is fulfilled at an early pass or early fail event. Sum up the number of all delays (ns) and the number of bad delays from the beginning of the test and calculate:

-ER₊ (including the artificial error at the beginning of the test (Note 1))and

 $-ER_0$ (excluding the artificial error at the beginning of the test (Note 1)).

If ER_0 is on or above the early fail limit, fail the DUT.

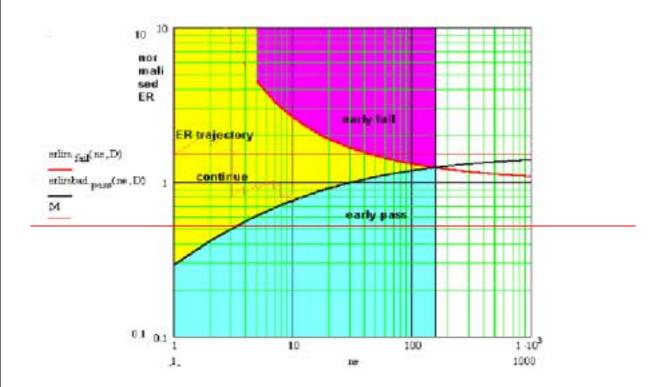
If ER₊ is on or below the early pass limit, pass the DUT.

Otherwise continue the test

F.6.2.8 Test conditions for RRM delay tests and Combining of TPC commands test 1

Table F.6.2.8: Test conditions for a single RRM delay tests and Combining of TPC commands test 1

Type of test	Test requirement Delay (s)	Test requirement (ER= 1- success- ratio)	Testlimit(ER) = Test requirement (ER)x-TL TL	Target number of bad delays	Prob that good unit will fail Prob that bad unit will pass [%]	Bad unit factor M
8.2.2 Cell recelection	8	0.1	[1.236]	[154]	[5]	[1.5]
8.2.3.1 UTRAN- to GSM cell- reselection, scenario 1	27.9	0.1	[1.236]	[154]	[5]	[1.5]
8.2.3.2 UTRAN to GSM cell- reselection, scenario 2	9.6	0.1	[1.236]	[154]	[5]	[1.5]
8.2.4 FDD/TDD- Cell reselection	8	0.1	[1.236]	[154]	[5]	[1.5]
8.3.1 FDD/FDD Soft handover 8.3.2 EDD FDD	50+10*KC +100*OC-ms	0.1	[1.236]	[154]	[5]	[1.5]
Hard Handover 8.3.2.1 Handover to intra frequency cell	70 ms	0.1	[1.236]	[154]	[5]	[1.5]
8.3.2.2 Handover to- interfrequency- cell	100ms	0.1	[1.236]	[154]	[5]	[1.5]
7.7.2 Combining of TPC commands Test 1 Note: The theory of statistical testing of RRM delay performance in clause F.6.2 is applied for test case 7.7.2 Combining of TPC commands Test 1. The success ratio for delay is- replaced by the success ratio for power control sequence.	Not- applicable	0.01	[1.236]	[154]	[5]	[1.5]


F.6.2.9 Practical Use (informative)

See figure F.6.2.9:

The early fail limit represents formula (1) in F.6.2.5. The range of validity is $[ne \ge 5]$ to [ne = 154]

The early pass limit represents the formula (2) in F.6.2.5. The range of validity is ne=1 to [ne=154]. See note 1. The intersection co-ordinates of both curves are: target number of bad delays ne = [154] and test limit TL = [1.236].

A typical delay test, calculated form the number of samples and errors (F.6.2.2) using experimental method (1) or (2) (see F.6.2.4.2. calculation assumptions) runs along the yellow trajectory. With an good delay the trajectory goes down-vertically. With a bad delay it jumps up right. The tester checks if the ER test intersects the early fail or early pass-limits.

Figure F.6.2.9

Note 1: At the beginning of the test, an artificial bad delay is introduced. This ensures that an ideal DUT meetsthe valid range of the early pass limit. In addition this ensures that the complementary experiment (F.6.2.4.2. bullet point (2)) is applicable as well. For the check against the early fail limit the artificial baddelay sample, introduced at the beginning of the test, is disregarded.

Due to the nature of the test, namely discrete bad delay events, the early fail condition shall not be valid, when fractional bad delays <1 are used to calculate the early fail limit: Any early fail decision is postponed until number of errors ne \geq [5].

Annex G (normative): Environmental conditions

G.1 General

This normative annex specifies the environmental requirements of the UE. Within these limits the requirements of the present documents shall be fulfilled.

G.2 Environmental requirements

The requirements in this clause apply to all types of UE(s)

G.2.1 Temperature

The UE shall fulfil all the requirements in the full temperature range of:-

Table G.2.1.1

+15°C to + 35°C	for normal conditions (with relative humidity of 25 % to 75 %)
- 10°C to + 55°C	for extreme conditions (see IEC publications 68-2-1 and 68-2-2)

Outside this temperature range the UE, if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in TS 25.101 [1] for extreme operation.

Some tests in the present document are performed also in extreme temperature conditions. These test conditions are denoted as TL (temperature low, -10*C) and TH (temperature high, +55*C).

G.2.2 Voltage

The UE shall fulfil all the requirements in the full voltage range, i.e. the voltage range between the extreme voltages.

The manufacturer shall declare the lower and higher extreme voltages and the approximate shutdown voltage. For the equipment that can be operated from one or more of the power sources listed below, the lower extreme voltage shall not be higher, and the higher extreme voltage shall not be lower than that specified below.

Table G.2.2.1

Power source	Lower extreme voltage	Higher extreme voltage	Normal conditions voltage
AC mains	0.9 * nominal	1.1 * nominal	nominal
Regulated lead acid battery	0.9 * nominal	1.3 * nominal	1.1 * nominal
Non regulated batteries: - Loclanché / lithium - Mercury/nickel & cadmium	0.85 * nominal 0.90 * nominal	Nominal Nominal	Nominal Nominal

Outside this voltage range the UE if powered on, shall not make ineffective use of the radio frequency spectrum. In nocase shall the UE exceed the transmitted levels as defined in TS 25.101 [1] for extreme operation. In particular, the UE shall inhibit all RF transmissions when the power supply voltage is below the manufacturer declared shutdown voltage.

Some tests in the present document are performed also in extreme voltage conditions. These test conditions are denoted as VL (lower extreme voltage) and VH (higher extreme voltage).

G.2.3 Vibration

The UE shall fulfil all the requirements when vibrated at the following frequency/amplitudes:-

Table G.2.3.1

Frequency	ASD (Acceleration Spectral Density) random vibration
5 Hz to 20 Hz	0.96 m²/s³
20 Hz to 500 Hz	0.96 m ² /s ³ at 20 Hz, thereafter 3 dB / Octave

Outside the specified frequency range the UE, if powered on, shall not make ineffective use of the radio frequency-spectrum. In no case shall the UE exceed the transmitted levels as defined in TS 25.101 [1] for extreme operation.

G.2.4 Specified frequency range

The manufacturer shall declare, which of the frequency bands defined in clause 4.2 is supported by the UE.

Some tests in the present document are performed also in low, mid and high range of the operating frequency band of the UE. The UARFCN's to be used for low, mid and high range are defined in TS 34.108 [3] clause 5.1.1.

Annex H (normative): UE Capabilities (FDD)

H.1 Radio Access and RF Baseline Implementation Capabilities:

- NOTE 1: This clause shall be aligned with TR 25.926, UE Radio Access Capabilities regarding FDD RF parameters. These RF UE Radio Access capabilities represent options in the UE, that require signalling to the network.
- NOTE 2: In addition there are options in the UE that do not require any signalling. They are designated as UE baseline capabilities, according to TR 21.904, Terminal Capability Requirements.

NOTE 3: Table H.1 provides the list of UE radio access capability parameters and possible values.

Table H.1: RF UE Radio Access Capabilities

	UE radio access capability parameter	Value range
FDD RF parameters	UE power class	3, 4
	([23] 25.101 clause 6.2.1)	
	Tx/Rx frequency separation for frequency band I	190 MHz,
	([23] 25.101 clause 5.3)	174.8-205.2 MHz,
	Not applicable if UE is not operating in frequency	134.8-245.2 MHz
	band I	

Table H.2 provides the UE baseline implementation capabilities.

Table H.2: UE RF Baseline Implementation Capabilities

UE implementation capability	Value range
Radio frequency bands	I,
([23] 25.101 clause 5.2)	II,
	┟┿╢
	I + III
	 +
	 + +

- The special conformance testing functions and the logical test interface as specified in TS 34.109 [4]. This issueis currently under investigation.
- Uplink reference measurement channel 12.2 kbps (FDD), TS 25.101 [1] clause A.2.1
- Downlink reference measurement channel 12.2 kbps (FDD), TS 25.101 [1] clause A.3.1.

H.2 Service Implementation Capabilities:

- Uplink reference measurement channel 64 kbps (FDD), TS 25.101 [1] clause A.2.2
- Uplink reference measurement channel 144 kbps (FDD), TS 25.101 [1] clause A.2.3
- Uplink reference measurement channel 384 kbps (FDD), TS 25.101 [1] clause A.2.4
- Downlink reference measurement channel 64 kbps (FDD), TS 25.101 [1] clause A.3.2.
- Downlink reference measurement channel 144 kbps (FDD), TS 25.101 [1] clause A.3.3.

- Down link reference measurement channel 384 kbps (FDD), TS 25.101 [1] clause A.3.4.

Annex I (normative): Default Message Contents

This Annex contains the default values of common messages, other than those described in TS 34.108. The messages are primarily concerning the RRM test cases in clause 8 and unless indicated otherwise in specific test cases, shall be transmitted and checked by the system simulator. The necessary messages are listed in alphabetical order.

In this Annex, decimal values are normally used. However, sometimes, a hexadecimal value, indicated by an "H", or a binary value, indicated by a "B" is used.

Contents of MEASUREMENT REPORT message for Intra frequency test cases

Information Element	Value/remark
Message Type	
Integrity check info	The presence of this IE is dependent on IXIT statements
	in TS 34.123-2. If integrity protection is indicated to be
	active, this IE shall be present with the values of the sub-
	IEs as stated below. Else, this IE and the sub-IEs shall be
	absent.
—- Message authentication code	This IE is checked to see if it is present. The value is
	compared against the XMAC-I value computed by SS.
— - RRC Message sequence number	This IE is checked to see if it is present. The value is
	used by SS to compute the XMAC-I value.
Measurement identity	4
Measured Results	
 Intra-frequency measured results list 	
 Cell measured results 	
	Not present
	Checked that this IE is present
 Cell synchronisation information 	
	Checked that this IE is present
OFF	Checked that this IE is present
	FDD
	Checked that this IE is present
 Primary scrambling code 	150
	Checked that this IE is present
	Checked that this IE is present
	Checked that this IE is present
Measured results on RACH	Checked that this IE is absent
Additional measured results	Checked that this IE is absent
Event results	Checked that this IE is absent

Contents of MEASUREMENT REPORT message for Inter frequency test cases

Information Element	Value/remark
Message Type	
Integrity check info	The presence of this IE is dependent on IXIT statements- in TS 34.123-2. If integrity protection is indicated to be- active, this IE shall be present with the values of the sub- IEs as stated below. Else, this IE and the sub-IEs shall be absent.
- Message authentication code	This IE is checked to see if it is present. The value is compared against the XMAC-I value computed by SS.
	This IE is checked to see if it is present. The value is used by SS to compute the XMAC-I value.
Measurement identity	4
Measured Results	
	Checked that this IE is present
 Inter-frequency cell measurement results 	
	Not present
	Checked that this IE is present
————————————————————————————————————	
	Checked that this IE is present
	Checked that this IE is present
	FDD
	Checked that this IE is present
- Primary scrambling code	150
	Checked that this IE is present
	Checked that this IE is present
- Pathloss	Checked that this IE is present
Measured results on RACH	Checked that this IE is absent
Additional measured results	Checked that this IE is absent
Event results	Checked that this IE is absent

Contents of MEASUREMENT REPORT message for inter - RAT test cases

Information Element	Value/remark
Message Type	
Integrity check info	The presence of this IE is dependent on IXIT statements
	in TS 34.123-2. If integrity protection is indicated to be
	active, this IE shall be present with the values of the sub-
	IEs as stated below. Else, this IE and the sub-IEs shall be
	absent.
	This IE is checked to see if it is present. The value is
	compared against the XMAC-I value computed by SS.
	This IE is checked to see if it is present. The value is
	used by SS to compute the XMAC-I value.
Measurement identity	4
Measured Results	
	GSM
- Measured GSM cells	Checked that this IE is present
	Checked that this IE is present
	Checked that this IE is present
	Checked that this IE is present
Measured results on RACH	Checked that this IE is absent
Additional measured results	Checked that this IE is absent
Event results	Checked that this IE is absent

Annex J (informative): Information about special regional application of test cases and requirements

This annex provides information about special regional application of the tests specified in the core part of the presentdocument. The special regional application of certain test cases is typically caused by specific local regulation and legalisation.

J.1 Japan

For regulatory testing in Japan shared risk against core specification value with test tolerance of zero may be applied provisionally, until the time the non zero test tolerances principle used in the present document is reflected in Japanese regulations, The shared risk principle described above will apply to the following requirements:

NOTE: This information should be reviewed on a regular basis to check its applicability, as changes to regulation allowing usage of the non zero test tolerances principle are expected.

Error! No text of specified style in document.

-

3GPP