

	
3GPP TSG-SA WG6 Meeting #52	S6-223551
Toulouse, 14th – 18th November 2022	(revision of S6-223421)

	CR-Form-v12.2

	CHANGE REQUEST

	

	
	23.222
	CR
	0096
	rev
	2
	Current version:
	17.7.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:	
	CAPIF extensibility as requested by ETSI ISG MEC

	
	

	Source to WG:
	Nokia, Nokia Shangahi Bell, Apple, Intel, Huawei, Ericsson

	Source to TSG:
	SA6

	
	

	Work item code:
	TEI18
	
	Date:
	2022-11-17

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-18

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)
Rel-19	(Release 19)

	
	

	Reason for change:
	This CR intends to lay the foundation for stage 3 updates to fulfil the CAPIF extensibility requirements suggested by ETSI ISG MEC (see S6-222714 (LSin) and S6-222716 (Disc))

a)		Allow extending enumerations, e.g., for data formats, protocols and security mechanisms, without breaking "native" CAPIF API invokers

[bookmark: _Hlk118716672][bookmark: _Hlk118716706]b)		Support extensions for service API descriptions which allow providing additional information during service API publication, persisting such information by CAPIF and returning it as part of the discover service APIs result.

c)		Provide a mechanism that allows definition of additional filtering criteria for discover service API queries.

	
	

	Summary of change:
	It updates the Protocol design requirements to call out extensibility of the set of protocols.
It updates publication/discovery requirements to call out API infomodel extensibility.
It further updates the API guidelines such that also non-REST / non-resource-based are enabled.

	
	

	Consequences if not approved:
	ETSI ISG MEC requirements are not fullfilled.

	
	

	Clauses affected:
	4.11, 9.2, 9.3

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

***1st Change**
[bookmark: _Toc492994852][bookmark: _Toc75416390][bookmark: _Toc492994825][bookmark: _Toc114825016][bookmark: _Toc75416353]4.11	Protocol design
[bookmark: _Toc492994853][bookmark: _Toc75416391]4.11.1	Introduction
In order for the CAPIF to be common across all present and future API invokers for various usages and purposes, a minimum common protocol stack model is necessary so that all API invokers that use the common-framework-based API need to support only one and the same set of protocols, e.g. security layer protocol(s). Extensibility of this model allows evolution and re-use.
[bookmark: _Toc492994854][bookmark: _Toc75416392]4.11.2	Requirements
[AR-4.11.2-a] The CAPIF shall support a minimum common protocol stack model common for all API implementations to be based on.
[AR-4.11.2-b] The CAPIF shall support a common security mechanism for all API implementations to provide confidentiality and integrity protection.
[AR-4.11.2-c] The CAPIF shall be extensible to support different protocol stack models, including related security mechanisms, in addition to the minimum common protocol stack model.
[bookmark: _Hlk119598652]NOTE: Potentially, Stage 3 needs to consider all CAPIF APIs for protocol extensibility.
Editor's note: To enable the extension of CAPIF to support different API architectures, whether and what updates to the CAPIF architecture and procedures are needed is FFS.

***2nd Change**

[bookmark: _Toc114825291]9	API consistency guidelines
[bookmark: _Toc114825292]9.1	General
This clause specifies the API consistency guidelines for all northbound APIs utilizing CAPIF architecture. The guidelines are categorized as follows:
-	fundamental API guidelines, applicable to all northbound APIs utilizing CAPIF; and
-	architecture design considerations, applicable to all northbound APIs utilizing CAPIF.
[bookmark: _Toc114825293]9.2	Fundamental API Guidelines
The specification of each northbound API utilizing the common API framework should define:
1.	the function of the API;
2.	the resource(s) or endpoints involved;
3.	the list of supported operations and their usage;
4.	the list of input and output parameters along with applicable schemas, as required;
5.	the list of supported response codes;
6.	the behaviour of the network entity exposing the APIs (e.g. the CAPIF core function or the API exposing function) for each supported operation; and
7.	the list of applicable data types; and
8.	the list of applicable protocols and data serialization formats.
In order to facilitate the consistency of the northbound APIs utilizing the common API framework it is recommended to adopt the guidelines which define the following:
1.	consistent nomenclature for the operations, data structures and resources/endpoints;
2.	design principles for the use of operations for common tasks; and
3.	a template for the consistent documentation of APIs.
The northbound APIs utilizing the common API framework should support the following properties:
1.	be extensible, such that it is possible to accommodate future requirements, including vendor-specific needs;
2.	support access control mechanisms;
3.	support charging, if applicable; and
4.	be backward and forward compatible with different versions of the same API.
The guidelines above are generic w.r.t. the API architecture. They are valid for network APIs that follow the RESTful architectural style and that expose resources towards the API invoker, as well as for network APIs of other architectures that expose general network endpoints towards the API invoker. A network endpoint represents one end of a communication channel through which the API consumer communicates with the API producer, using messages of a protocol defined by the API architecture. A resource is identified, and the corresponding endpoint is addressed, by a resource identifier (such as a URI).
[bookmark: _Toc114825294]9.3	Architecture design considerations
[bookmark: _Hlk118717862]Northbound APIs utilizing common API framework should adhere to RESTful architecture, whenever possible. Service operations can use custom API operations (RPC-style interaction), when it is seen a better fit for the style of interaction to model, e.g. non-CRUD service operations.
NOTE:	The selection of a particular API style is specific to each API implementation, and subject to Stage 3 scope.
The API design:
1.	should have a uniform interface that conveys the resource/data model of the API to its client developers and:
a.	the implementation of the resource(s)/operations involved in the APIs should be hidden from the client, andbut adequate operations should be designed to operate on the resource(s)/data;
b.	any single API should be atomic;
c.	all resources/operations involved in APIs should be accessible through a common approach, and resources/data should be similarly modified using a consistent approach;
2.	should allow the client (such as the API invoker) and the server (such as the CAPIF core function or the API exposing function) to evolve independently, i.e. the client should not have to be aware of the execution aspects of the APIs on the server;
3.	should be stateless such that each request from the client (such as the API invoker) to the server (such as the CAPIF core function or the API exposing function) contains all of the information necessary for the server to understand the request;
4.	should define the usage of standard operations, such as Create, Read, Update and Delete, consistently along with the applicable response codes;
5.	should allow to label responses as cacheable or non-cacheable, to improve network efficiency by supporting caching in the client (such as the API invoker), if applicable in the API architecture;
6.	should prevent unwanted modification of the resources/data during invocation of APIs; and
7.	should support version control.

End of Changes *

